

Optogenetic astrocyte activation evokes BOLD fMRI response with oxygen consumption without neuronal activity modulation

Journal:	GLIA
Manuscript ID	GLIA-00462-2017.R2
Wiley - Manuscript type:	Original Research Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Takata, Norio; Keio Univ. Sch. of Med., Neuropsychiatry; Central Institute for Experimental Animals (CIEA) Sugiura, Yuki; Keio Univ. Sch. of Med., Biochemistry Yoshida, Keitaro; Keio Univ. Sch. of Med., Neuropsychiatry Koizumi, Miwako; Keio Univ. Sch. of Med., Neuropsychiatry Hiroshi, Nishida; Keio Univ. Sch. of Med., Neuropsychiatry Honda, Kurara; Keio Univ. Sch. of Med., Biochemistry Yano, Ryutaro; Keio University School of Medicine, Physiology Komaki, Yuji; Central Institute for Experimental Animals (CIEA) Matsui, Ko; Tohoku University, Graduate School of Life Sciences Suematsu, Makoto; Keio Univ. Sch. of Med., Biochemistry Mimura, Masaru; Keio Univ. Sch. of Med., Neuropsychiatry Okano, Hideyuki; Keio Univ. Sch. of Med., Physiology; RIKEN Brain Science Institute Tanaka, Kenji ; Keio University School of Medicine, Neuropsychiatry
Key Words:	astrocytes, optogenetics, BOLD, fMRI, imaging mass spectrometry
	1

SCHOLARONE[™] Manuscripts

Optogenetic astrocyte-stim. BOLD fMRI signal Acetyl-carnitine

GLIA

Oxygen consumption

w/o neuronal activity modulation

Table of Contents Image (TOCI) 58x52mm (300 x 300 DPI)

BOLD fMRI response with oxygen consumption

Optogenetic astrocyte activation evokes

3	without neuronal activity modulation
4	Running title: Astrocytes evoke BOLD fMRI response
5	Norio Takata ^{a,b} , Yuki Sugiura ^c , Keitaro Yoshida ^a , Miwako Koizumi ^a , Hiroshi Nishida ^a ,
6	Kurara Honda ^c , Ryutaro Yano ^d , Yuji Komaki ^b , Ko Matsui ^e , Makoto Suematsu ^c , Masaru
7	Mimura ^a , Hideyuki Okano ^{d,f} , Kenji F. Tanaka ^a
8	a. Department of Neuropsychiatry, Keio University School of Medicine, 35
9	Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
10	b. Central Institute for Experimental Animals (CIEA), 3-25-12, Tonomachi, Kawasaki,
11	Kanagawa 210-0821, Japan
12	c. Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi,
13	Shinjuku, Tokyo 160-8582, Japan
14	d. Department of Physiology, Keio University School of Medicine, 35 Shinanomachi,
15	Shinjuku, Tokyo 160-8582, Japan
16	e. Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University,
17	Sendai, Miyagi 980-8575, Japan
18	f. Laboratory for Marmoset Neural Architecture, RIKEN Brain Science Institute, Wako,
19	Saitama 351-0198, Japan
20	Corresponding Authors
21	Norio Takata, Ph.D. Email: takata.norio@keio.jp
22	Kenji F. Tanaka, M.D., Ph.D. Email: <u>kftanaka@keio.jp</u>
23	Department of Neuropsychiatry, Keio University School of Medicine,
24	35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
25	Tel +81-3-5363-3934;
	1

26 Acknowledgements

35	Word Count
34	
33	Japan Agency for Medical Research and Development (AMED) to N.T., K.F.T. and H.O
32	Ministry of Education, Culture, Sports, Science, and Technology of Japan (MEXT) and
31	Brain/MINDS and the Strategic Research Program for Brain Sciences (SRPBS) from the
30	15KT0111, 16H01620, and 16K07032 to N.T., 24111551 and 26290021 to K.F.T.);
29	Science Foundation to N.T.; JSPS KAKENHI Grant Numbers (25430011, 25115726,
28	Youcef Bouchekioua for his technical support. This work was supported by Takeda
27	We thank Dr. Kouichi C. Nakamura for a generous gift of an antibody. We also thank Dr.

- 36 Total word count: 7382 (Abstract: 149, Introduction: 593, Materials and Methods: 215,
- 37 Results: 2175, Discussion: 998, References: 1910, Figure Legends: 987.)
- 38 Number of Pages: 33
- 39 Number of Tables: 0; Total number of figures: 4; Number of Color Images: 4

40

41 **Table of Contents**

- 42 Main Points
- 43 --- Optogenetic activation of astrocytes evoked BOLD signal that accompanied
- 44 oxygen consumption without modulation of neuronal activity.
- 45 --- Acetyl-carnitine was synthesized at the site of astrocyte-, but not neuron-evoked

46 BOLD signal.

47 Table of Contents Image (TOCI)

Optogenetic astrocyte-stim. BOLD fMRI signal Acetyl-carnitine Oxygen consumption Oxygen consumption W/o neuronal activity modulation

49 Abstract

50 Functional magnetic resonance imaging (fMRI) based on the blood oxygenation 51 level-dependent (BOLD) signal has been used to infer sites of neuronal activation in the 52 brain. A recent study demonstrated, however, unexpected BOLD signal generation 53 without neuronal excitation, which led us to hypothesize the presence of another cellular 54 source for BOLD signal generation. Collective assessment of optogenetic activation of 55 astrocytes or neurons, fMRI in awake mice, electrophysiological measurements, and 56 histochemical detection of neuronal activation, coherently suggested astrocytes as 57 another cellular source. Unexpectedly, astrocyte-evoked BOLD signal accompanied 58 oxygen consumption without modulation of neuronal activity. Imaging mass 59 spectrometry of brain sections identified synthesis of acetyl-carnitine via oxidative 60 glucose metabolism at the site of astrocyte-, but not neuron-evoked BOLD signal. Our 61 data provide causal evidence that astrocytic activation alone is able to evoke BOLD 62 signal response, which may lead to reconsideration of current interpretation of BOLD 63 signal as a marker of neuronal activation. 64

65 Keywords

66 astrocytes; BOLD; optogenetics; fMRI; imaging mass spectrometry

67 Introduction

68	Blood oxygenation level-dependent (BOLD) functional magnetic resonance
69	imaging (fMRI) is a fundamental imaging tool in basic and clinical investigations of
70	human brain activity (Ogawa, Lee, Kay, & Tank, 1990). The BOLD signal is not a
71	direct measurement of neuronal activity; instead, the signal is influenced by cerebral
72	blood flow (CBF), cerebral blood volume (CBV), and the cerebral metabolic rate of
73	oxygen consumption (Ogawa, Menon, Kim, & Ugurbil, 1998; Shen, Ren, &
74	Duong, 2008). Despite the above caveats, the BOLD signal has been widely used as a
75	surrogate marker of neuronal activation, because accumulating evidence has
76	demonstrated a close correlation between BOLD signal response and
77	electrophysiological activation of neurons following sensory stimulation (Logothetis,
78	Pauls, Augath, Trinath, & Oeltermann, 2001; Niessing et al., 2005). Recent
79	optogenetic fMRI (ofMRI) studies have further confirmed the correlation (Kahn et al.,
80	2013; Lee et al., 2010; Takata et al., 2015). However, the cellular mechanisms of
81	BOLD signal generation have not been fully elucidated (Ekstrom, 2010; Vanzetta &
82	Slovin, 2010). It is reported that coupling between BOLD and electrophysiological
83	signal in visual cortex of behaving monkeys is context dependent (Maier et al., 2008).
84	Furthermore, unexpected BOLD signal generation is found without activation of local
85	neurons in the visual cortex of monkeys performing a fixation-on-off task (Sirotin &
86	Das, 2009).
87	Astrocytes are also considered to participate in BOLD signal generation
88	(Haydon & Carmignoto, 2006; Otsu et al., 2015; Schummers, Yu, & Sur, 2008; Takano et
89	al., 2006), but in a passive way that just couples neuronal activity to the hemodynamic

90	response to fulfill metabolic demand of neurons (Petzold & Murthy, 2011; Raichle &
91	Mintun, 2006). A study that combined BOLD fMRI and fiber-optic calcium (Ca^{2+})
92	recording in the cortex of anesthetized rats during electrical paw stimulation reported a
93	correlation between prolonged BOLD signal components and Ca ²⁺ surge in astrocytes,
94	and their modeling suggested involvement of astrocytes in a late component of the BOLD
95	response (Schulz et al., 2012). However, direct investigation of causal relationship
96	between astrocyte activation and BOLD signal generation seems difficult to examine in
97	the study, because sensory stimulation inevitably activates neurons in addition to
98	astrocytes. Moreover, a recent study reported intact BOLD signal response upon hindpaw
99	stimulation of anesthetized inositol 1,4,5-triphosphate receptor type 2 knock-out
100	(IP ₃ R2-KO) mice, which lack large cytosolic Ca ²⁺ surges in astrocytes, suggesting a
101	minor role of astrocytic Ca ²⁺ activity in BOLD signal generation (Jego,
102	Pacheco-Torres, Araque, & Canals, 2014) (but see (Srinivasan et al., 2015; Stobart
103	et al., 2016) that demonstrate preserved Ca ²⁺ dynamics in astrocytes of IP ₃ R2-KO mice,
104	and (Mishra et al., 2016) that shows multiple sources of calcium signals in astrocytes).
105	Note that most of these studies were performed under anesthesia, which could affect
106	neurovascular coupling, energy metabolism, and BOLD signal generation (Masamoto &
107	Kanno, 2012; Sokoloff et al., 1977).
108	This study aimed to investigate a causal relationship between astrocyte activity
109	and BOLD signal generation using of MRI in awake transgenic mice, whose cortical
110	neurons or astrocytes express channelrhodopsin-2 (ChR2) (Tanaka et al., 2012).
111	Optical activation of either neurons or astrocytes by light illumination through intact skull
112	evoked a BOLD signal response in the cortex. Oxygen consumption upon stimulation of

113	either neurons or astrocytes was suggested by experiments of ofMRI in the presence of a
114	vasodilator. Unexpectedly, optical activation of astrocytes did not modulate neuronal
115	activity, which was confirmed with in situ hybridization for c-fos mRNA and in vivo
116	electrophysiology. Metabolic underpinnings of the oxygen consumption was investigated
117	with metabolite imaging of brain sections using imaging mass spectrometry (IMS).
118	Activation of astrocytes, but not neurons, augmented synthesis of acetyl-carnitine (AC)
119	from glucose, which consumed oxygen. Collectively, our findings demonstrate
120	unexpected active role of astrocytes in BOLD signal generation.
121	

122 Materials and Methods

123 **fMRI in awake mice.**

124 We have elaborated fMRI in awake mice using a high signal-to-noise ratio

125 cryogenic MRI detector, CryoProbe (Yoshida et al., 2016). Confounding effects of

anesthetics during fMRI in awake mice were avoided because anesthesia is not necessary

127 with this protocol to place awake mice in an animal bed of MRI.

128 *In vivo* multichannel extracellular recordings.

129 Extracellular recording was performed as described previously (Takata et al.,

- 130 2015). A 16-channel, linear silicon probe was inserted through a craniotomy (Φ 0.5 mm;
- 131 AP -3.0 mm, ML -2.0 mm) for recording from the cortex, which corresponds to the site of
- 132 global peak of BOLD signal response upon optogenetic astrocyte activation (Fig. 2c).

IMS with FMW-assisted brain fixation for ¹³C₆-glucose metabolic pathway tracing.

135 Two-dimensional imaging of metabolites in the brain slices by combining IMS,

- 136 FMW, and ¹³C-isotope was reported previously (Sugiura, Honda, Kajimura, &
- 137 Suematsu, 2014; Sugiura, Taguchi, & Setou, 2011). To trace the metabolic fate of
- 138 glucose, ${}^{13}C_6$ -glucose was injected intraperitoneally. Fifteen minutes later (Sugiura et
- al., 2014), optogenetic stimulation of the left cortex through the intact skull was
- 140 performed. Thirty seconds later, mice were euthanized by FMW-irradiation for 0.96 s on
- 141 the brain (Sugiura, Honda, & Suematsu, 2015). Matrix-assisted laser desorption
- 142 ionization (MALDI)-IMS was performed on thin sections of the brain. See
- 143 Supplementary Materials and Methods for more details.
- 144

145 **Results**

Transcranial illumination of the cortex of awake mice that express ChR2(C128S) in neurons or astrocytes.

148 Double transgenic animals that express ChR2(C128S), a step-function

- 149 opsin-type variant of ChR2 (Berndt, Yizhar, Gunaydin, Hegemann, & Deisseroth,
- 150 2009), were generated by crossing a tetO-ChR2(C128S)-YFP line with a cell-type
- 151 specific-tTA line (Tanaka et al., 2012); hereafter, we refer to
- 152 *Chrm4*-tTA::tetO-ChR2(C128S)-YFP and *Mlc1*-tTA::tetO-ChR2(C128S)-YFP double
- 153 transgenic lines as Neuron-ChR2 and Astrocyte-ChR2, respectively. For gene
- 154 manipulation strategies to generate transgenic mice, see Supplementary Fig. 1.
- 155 Expression of ChR2(C128S)-EYFP was observed in the cortex and sub-cortical brain
- 156 structures of both Neuron- and Astrocyte-ChR2 mice (Fig. 1a, d). Double
- 157 immunostaining for NeuN (neuron marker) and YFP (ChR2-marker) showed high
- expression levels of ChR2(C128S) at neuronal somas in layer IV and at dendrites in layer

159	II/III of the cortex of Neuron-ChR2 mice (Fig. 1b, c). In Astrocyte-ChR2 mice, almost
160	uniform expression of ChR2(C128S) was observed throughout the cortical layers (Fig.
161	1e). The enlarged view of the staining reveals the expression pattern of ChR2(C128S)
162	with fine laminar morphology that is characteristic of astrocytes (Fig. 1f). Moreover, we
163	have shown co-expression of ChR2(C128S) and GLAST, an astrocyte specific glutamate
164	transporter, in the brain of Astrocyte-ChR2 mice (Tanaka et al., 2012), further
165	confirming astrocytic expression of ChR2(C128S). Expression of ChR2(C128S) across a
166	wide cortical area in these transgenic mice lines allows transcranial manipulation of
167	neuronal or astrocytic activity because ChR2(C128S) has higher sensitivity than
168	conventional ChR2 (Mattis et al., 2012).
169	To perform light illumination through the intact skull of awake mice during
170	fMRI experiments, a skull-holder and an optic fiber were attached horizontally on the
171	skull (Yoshida et al., 2016). fMRI on awake mice is advantageous to avoid the
172	confounding effects of anesthetics on neuronal and astrocytic activity (Greenberg,
173	Houweling, & Kerr, 2008; Thrane et al., 2012). The tip of an optic fiber was
174	positioned on the intact skull over the left visual cortex (Fig. 1g, h, i).
175 176	Optogenetic stimulation of astrocytes as well as neurons evokes BOLD signal response.
177	We investigated whether transcranial photo-activation of neurons or astrocytes
178	was able to induce a BOLD signal response using Neuron- or Astrocyte-ChR2 mice,
179	respectively. Transcranial manipulation is desirable to avoid inserting an optic fiber into

- 180 the brain, which may result in "reactive astrocytes" with distinct physiological
- 181 characteristics (Aguado, Espinosa-Parrilla, Carmona, & Soriano, 2002). We

182	applied a pair of blue and yellow lights with 30 s separation, which kept a cation channel
183	of ChR2(C128S) open for 30 s. This pair of lights was repeated 3 times at an interval of 2
184	min. The duration of each light was 0.5 and 5.0 s for Neuron- and Astrocyte-ChR2 mice,
185	respectively. We employed longer illumination in Astrocyte-ChR2 mice because we
186	speculated that effect of optogenetic stimulation was smaller in astrocytes, considering
187	that astrocytic membrane resistance is lower than neurons.
188	We found that transcranial optogenetic stimulation of either neurons or
189	astrocytes could evoke a BOLD signal response in the cortex (Fig. 2a, c). The response
190	was observed dominantly in the left cortex, which was ipsilateral to the site of light
191	illumination. The most significant BOLD signal response was evoked within the cortex of
192	Neuron- and Astrocyte-ChR2 mice (arrows in Fig. 2a, c). Subcortical BOLD signal
193	response may reflect direct photo-activation, based on our measurements of ofMRI using
194	a triple transgenic mouse whose astrocytes express ChR2(C128S) except in the cortex
195	(see Supplementary Results and Supplementary Fig. 2a-d). In addition, light illumination
196	for optogenetic stimulation seemed not enough to evoke BOLD signal response through
197	visual stimulation nor brain-tissue heating (see Supplementary Results and
198	Supplementary Fig. 3a, b). Further, open field test and of MRI using anesthetized
199	Astrocyte-ChR2 mice suggested that behavioral state-change, which may cause
200	widespread astrocyte excitation in the brain, seemed not to contaminate BOLD signal
201	fluctuation upon optogenetic stimulation of astrocytes (see Supplementary Results,
202	Supplementary Fig. 2e, f, and Supplementary Fig. 4).
203	We compared temporal dynamics of BOLD signal fluctuations at the site of the
204	most significant response upon optogenetic stimulation of Neuron- or Astrocyte-ChR2

205	mice, respectively (arrows in Fig. 2a, c). A BOLD signal response could be evoked
206	repeatedly in both Neuron- and Astrocyte-ChR2 mice (Fig. 2b, d). Peak amplitudes of the
207	response during the first stimulation period, i.e., 30 s-period between a pair of blue and
208	yellow vertical lines (Fig. 2b, d), were significantly higher for Neuron- than
209	Astrocyte-ChR2 mice $(6.1 \pm 0.4\%$ versus $4.7 \pm 0.5\%$, $P = 0.03$, n = 12 and 9 animals for
210	Neuron- and Astrocyte-ChR2 mice, respectively; two-sample <i>t</i> -test). The magnitude of
211	the BOLD signal response was dependent on the light intensities (Supplementary Fig. 3c,
212	d).

Oxygen consumption is elicited by optogenetic stimulation of either astrocytes or neurons.

215 Because BOLD signal has been considered to reflect augmentation of the 216 metabolic demand of neurons (Heeger & Ress, 2002), we addressed whether 217 astrocyte-evoked BOLD signal response resulted in oxygen consumption. We performed 218 ofMRI after injection of a nitric oxide-releasing vasodilator, sodium nitroprusside (SNP), 219 so that oxygen consumption could be detected as negative deflection of the BOLD signal 220 (Nagaoka et al., 2006). 221 Neuronal activation by optogenetic stimulation using Neuron-ChR2 mice in the 222 presence of SNP resulted in a negative BOLD response (Fig. 2e, f), which was in good 223 accordance with previous studies (Nagaoka et al., 2006; Tsurugizawa, Ciobanu, & 224 Le Bihan, 2013). The location of the most significant negative BOLD signal was 225 similar to that of the positive BOLD response in ofMRI experiments without SNP 226 (compare arrows in Fig. 2a and e). The negative deflection of the BOLD signal occurred 227 only once, followed by a gradual increase that exceeded baseline (Fig. 2f) (see below).

228	Astrocyte activation by optogenetic stimulation using Astrocyte-ChR2 mice in
229	the presence of SNP also resulted in a negative BOLD response (Fig. 2g, h), which
230	suggests that activation of astrocytes results in oxygen consumption. The location of the
231	most significant negative BOLD signal was comparable to that of the positive BOLD
232	response in ofMRI experiments without SNP (compare arrows in Fig. 2c and g). Negative
233	deflection of the BOLD response was observed only once to the first optogenetic
234	stimulation of astrocytes (Fig. 2h), which was similar to the result in Neuron-ChR2 mice
235	(Fig. 2f), although the gradual increase of the BOLD signal after the first optogenetic
236	stimulation was not as clear as that in Neuron-ChR2 mice.
237	It's not clear in this study why negative deflection was hardly induced by the
238	second and the third illumination on Neuron- or Astrocyte-ChR2 mice. BOLD signal is
239	assumed to reflect increase of 1) blood volume, 2) blood flow, and 3) oxygenation in the
240	blood (Shen et al., 2008). Considering that SNP suppresses the first two factors, gradual
241	increase of BOLD signals might indicate physiological response to suppress oxygen
242	consumption in the brain in the presence of SNP after the first optical stimulation. This
243	might explain the absence of negative BOLD response upon the second and the third
244	illumination.

Neuronal activation is not observed by optogenetic stimulation of astrocytes.

247 Because BOLD signal is used as a marker of neuronal activation, we examined

the modulation of neuronal activity upon optogenetic stimulation of Neuron- or

249 Astrocyte-ChR2 mice. We first performed in situ hybridization for c-fos mRNA, a

250 neuronal activity marker, to obtain the spatial distribution of neuronal activation. Animals

251 were perfused 30 min after optogenetic stimulation, and then post-fixed, sliced, and

Page 14 of 65

GLIA

252	stained	for	c-fos	mRNA.

253	Neuronal activation of Neuron-ChR2 mice increased <i>c-fos</i> mRNA staining in the
254	ipsilateral cortex to the site of light illumination (Fig. 3a), which is consistent with
255	previous reports (Stark, Davies, Williams, & Luckman, 2006). Unexpectedly,
256	astrocyte activation of Astrocyte-ChR2 mice did not augment <i>c-fos</i> mRNA staining (Fig.
257	3b). We quantified staining intensity for <i>c-fos</i> mRNA in the left and right cortex (blue and
258	red rectangles in Fig. 3a, b, respectively) by calculating their mean pixel values. While
259	Neuron-ChR2 mice showed significantly higher staining for <i>c-fos</i> mRNA in the left
260	cortex than that in the right cortex (107 \pm 3 versus 83 \pm 7 in the left and right cortex, P =
261	0.02, $n = 9$ mice, paired <i>t</i> -test; Fig. 3a), Astrocyte-ChR2 mice showed comparable
262	staining for <i>c-fos</i> mRNA in the left and right cortex $(79 \pm 6 \text{ versus } 79 \pm 6 \text{ in the left and})$
263	right cortex, $P = 0.86$, n = 9 mice, paired <i>t</i> -test; Fig. 3b).
264	This result cannot distinguish the following possibilities: 1) optogenetic
265	activation of astrocytes indeed did not modulate neuronal activity, or 2) it did modulate
266	neuronal activity, but was not enough to increase expression of <i>c-fos</i> mRNA. To directly
267	examine neuronal activity upon optogenetic stimulation of neurons or astrocytes, we next
268	performed electrophysiological recording in the cortex of awake, head-fixed Neuron- or
269	
	Astrocyte-ChR2 mice, using a linear 16-channel silicon probe electrode. This was a
270	Astrocyte-ChR2 mice, using a linear 16-channel silicon probe electrode. This was a separate experiment to the ofMRI. Again, we observed neuronal activation upon
270 271	Astrocyte-ChR2 mice, using a linear 16-channel silicon probe electrode. This was a separate experiment to the ofMRI. Again, we observed neuronal activation upon optogenetic stimulation of Neuron-, but not of Astrocyte-ChR2 mice (Fig. 3c-f),
270 271 272	Astrocyte-ChR2 mice, using a linear 16-channel silicon probe electrode. This was a separate experiment to the ofMRI. Again, we observed neuronal activation upon optogenetic stimulation of Neuron-, but not of Astrocyte-ChR2 mice (Fig. 3c-f), supporting the first possibility.
270271272273	Astrocyte-ChR2 mice, using a linear 16-channel silicon probe electrode. This was a separate experiment to the ofMRI. Again, we observed neuronal activation upon optogenetic stimulation of Neuron-, but not of Astrocyte-ChR2 mice (Fig. 3c-f), supporting the first possibility. Specifically, in Neuron-ChR2 mice, local field potential (LFP) power at the

275	the stimulation, followed by a gradual decrease (Fig. 3c). Average power of LFP at
276	gamma and HFO during the period of the first light-activation was significantly higher
277	than that during the pre-stimulus period (bar graph at lower right of Fig. 3c; 6.3 ± 1.2 and
278	2.0 ± 0.6 for gamma and HFP; $P = 0.003$ and 0.02, respectively; $n = 6$ mice, paired <i>t</i> -test).
279	Multi-unit activities (MUA) in the cortex were also augmented by the optogenetic
280	stimulation of Neuron-ChR2 mice (Fig. 3e). The mean relative number of spikes during
281	the first activation period (60~90 s) was significantly higher than that during the
282	pre-stimulus period (lower panel of Fig. 3e; 3.4 ± 0.6 , $P = 0.01$, $n = 6$ mice, paired <i>t</i> -test).
283	These results are in good accordance with previous reports (Kahn et al., 2013; Lee et
284	al., 2010; Takata et al., 2015).
285	In Astrocyte-ChR2 mice, optogenetic activation of astrocytes did not modulate
286	LFP power (Fig. 3d). The average power of LFP during the first light activation period
287	was not different from that during the pre-stimulus period (bar graph at lower right of Fig.
288	3d; -0.2 ± 0.3 , -0.5 ± 0.4 , -0.4 ± 0.4 , and -0.1 ± 0.3 for delta, theta, gamma, and HFO,
289	respectively, $P > 0.25$, n = 5 mice, paired <i>t</i> -test). Neither was MUA modulated (mean
290	relative number of spikes during the first activation period: 1.3 ± 0.2 , $P = 0.22$, $n = 5$ mice,
291	paired <i>t</i> -test).
292	Illumination using only yellow light did not evoke electrophysiological response
293	in Neuron- or Astrocyte-ChR2 mice (Supplementary Fig. 5a-d). The magnitude of
294	electrophysiological response was dependent on intensities of blue light (Supplementary

Fig. 5e-h). These results were consistent with that of ofMRI (Supplementary Fig. 3).

¹³C₆-glucose is metabolized into ¹³C₂-AC by optogenetic activation of astrocytes, but not neurons.

298	We asked whether neuron- or astrocyte-evoked BOLD signal was underlain by
299	the same metabolic activity because astrocyte-evoked BOLD signal accompanied oxygen
300	consumption without neuronal activation (Fig. 2 and 3). We used IMS to examine
301	two-dimensional distribution of brain metabolites upon optogenetic stimulation of
302	Neuron- or Astrocyte-ChR2 mice ($n = 3$ and 5 mice, respectively). Intraperitoneal
303	injection of ¹³ C-isotope labeled glucose (¹³ C ₆ -glucose) was performed fifteen minutes
304	before optogenetic stimulation, which allowed us to trace flows of ¹³ C from glucose to
305	various metabolites (Fig. 4a, b). Transcranial light illumination for optogenetic
306	stimulation of neurons or astrocytes was executed as before. Thirty seconds after the
307	stimulation, focused microwave (FMW) irradiation was applied for 0.92 s to the head of
308	the mouse to rapidly inactivate enzymatic reactions in the brain, which minimizes
309	postmortem alterations in metabolites during brain extraction (Sugiura et al., 2015).
310	Brains were then extracted, frozen, and sliced coronally at a thickness of 8 μ m. The
311	spatial distribution of ¹³ C-containing metabolites that were synthesized from
312	¹³ C ₆ -glucose was explored and visualized using IMS.
313	Optogenetic stimulation of astrocytes, but not neurons, resulted in an increase of
314	non-labeled AC and ${}^{13}C_2$ -AC at the site of light illumination in the cortex (Fig. 4c and d,
315	middle row), suggesting that AC was metabolized from glucose via oxidative
316	decarboxylation of pyruvate to produce acetyl-CoA followed by transfer of acetyl-group
317	to carnitine (Fig. 4b). Concomitantly, reduction of carnitine, a substrate for AC synthesis,
318	was observed at the same region in the brain of Astrocyte-ChR2 mice (dotted circles in
319	Fig. 4d, upper right panel), indicating that synthesis of AC from acetyl-CoA and carnitine 15

320	occurred in the brain. Spatial patterns of fluctuation of these metabolites were similar to
321	that of the BOLD signal response upon astrocyte activation (compare Fig. 2c with the
322	bottom panels of Fig. 4d or Supplementary Fig. 6a), implying that astrocyte activation
323	accelerated the metabolic pathway that produces AC in the brain. Notably, optogenetic
324	stimulation of astrocytes did not result in accumulation of NADH (Supplementary Fig. 6b,
325	upper right panel). This suggests the presence of oxidative conversion of NADH to NAD^+
326	by mitochondrial complex I activity (Fig. 4b). These imaging results were also supported
327	by a capillary electrophoresis (CE)-electrospray ionization (ESI)-mass spectrometry
328	(MS) technique (Morikawa et al., 2012; Sugiura et al., 2016) (Supplementary Fig.
329	7). Taken together, these results suggest that while comparable a BOLD signal response
330	was evoked by optogenetic stimulation of either neurons or astrocytes, the respective
331	BOLD signal fluctuations were accompanied by distinct metabolic flows.

332

333 **Discussion**

334 We demonstrated that 1) selective stimulation of astrocytes is sufficient for the 335 induction of a BOLD signal response with oxygen consumption in the absence of 336 neuronal activation, and 2) activation of astrocytes, but not neurons, resulted in glucose 337 oxidation with production of AC, which is known to modulate neuronal energy processes 338 (Pettegrew, Levine, & McClure, 2000; Traina, 2016). Our data present a causal 339 relationship between astrocyte activation and BOLD signal generation, suggesting that 340 BOLD signal fluctuations can reflect metabolic demands of astrocytes in addition to 341 neurons. These findings may challenge the current interpretation of the BOLD signal 342 response as a surrogate marker of neuronal activation in fMRI studies (Figley &

343 Stroman, 2011; Gurden, 2013).

344	The physiological relevance of optogenetic stimulation of astrocytes has not
345	been resolved completely, while increasingly many studies have recently employed
346	optogenetic manipulation of astrocytes to utilize its advantages to shift the states of
347	astrocytes non-invasively with cell-type specificity (Figueiredo et al., 2014; Gourine
348	et al., 2010; Masamoto et al., 2015; Pelluru, Konadhode, Bhat, & Shiromani,
349	2016; Perea, Yang, Boyden, & Sur, 2014; Sasaki et al., 2012; Tanaka et al.,
350	2012; Tang et al., 2014). The responses of astrocytes upon optogenetic activation have
351	been reported as a few mV of depolarization, pH decrease, and cytosolic Ca ²⁺ surge
352	(Beppu et al., 2014; Perea et al., 2014; Sasaki et al., 2012), which can be
353	observed in physiological situations (MacVicar, Crichton, Burnard, & Tse, 1987; Rose &
354	Ransom, 1996; Seigneur, Kroeger, Nita, & Amzica, 2006; Takata et al., 2011).
355	Among the above three responses, depolarization of astrocytes might be the
356	primary cause for BOLD signal induction in the current study, because we reported
357	previously that astrocytic depolarization was coupled to efflux of potassium ions, a potent
358	vasodilator, from astrocytes (Masamoto et al., 2015; Sasaki et al., 2012). Although we
359	have shown that only \sim 5 mV depolarization was evoked with significantly larger light
360	power (7 mW/mm ² blue light illumination for 10 s; see Supplementary Materials and
361	Methods) on Bergmann glial cells (astrocytes in the cerebellum) in slice preparation from
362	young Astrocyte-ChR2 mice (postnatal day 17 to 24), we have also demonstrated that
363	amplitude of optogenetically induced inward currents developed age-dependent manner
264	
364	(Sasaki et al., 2012), suggesting that effect of optogenetic stimulation is larger in the

366	In the current study, optogenetic stimulation of astrocytes did not significantly
367	activate neurons, which may appear inconsistent with previous reports that showed
368	induction of <i>c-fos</i> mRNA in neuronal and/or glial cells upon optogenetic activation of
369	astrocytes in the cortex or cerebellum using Astrocyte-ChR2 mice (Sasaki et al., 2012;
370	Tanaka et al., 2012). While light intensity at the tip of the optic fiber was comparable
371	among studies, the layout of the optic fiber differed: earlier studies placed an optic fiber
372	perpendicular to the cranial skull, while the fiber was placed horizontally in the present
373	study. Thus, it is conceivable that less light reached the brain in the current study, which
374	may explain the lack of modulation of neuronal activity upon optogenetic manipulation
375	of astrocytes. In line with this, astrocytes show distinct physiological response depending
376	on stimulation intensity (Sekiguchi et al., 2016). It is possible that previous studies
377	employed light illumination that was strong enough to modulate neuronal activity,
378	because most of the studies used neuronal response as a readout for optogenetic
379	manipulation of astrocytes. It should be noted, however, that axonal activity cannot be
380	detected with our extracellular electrodes. Therefore, the current study cannot exclude a
381	possibility that optogenetic manipulation of astrocytes might have modulated axonal
382	activity (Tang et al., 2014), which may lead to BOLD signal generation. Note that even
383	in this case, our results support the idea of causal involvement of astrocytes in BOLD
384	signal generation.
385	Optogenetic stimulation of astrocytes resulted in unexpected oxygen
386	consumption without neuronal activation. We have previously shown that optogenetic
387	activation of astrocytes results in potassium efflux from astrocytes (Masamoto et al.,
388	2015), which should be followed by restoration of the ionic gradient of astrocytes by

Page 20 of 65

GLIA

Na'-/K'-ATPase. Thus, synthesis of adenosine triphosphate (ATP) might be a candidate
to account for the oxygen consumption, although we did not observe a significant
increase in ATP upon optogenetic stimulation of astrocytes (Supplementary Fig. 6). AC
might be another candidate for oxygen consumption upon optogenetic astrocyte
activation, because metabolism from glucose to AC involves production of NADH, an
electron donor that transfers an electron to molecular oxygen during oxidative
phosphorylation in mitochondria (Fig. 4b). In accord with this idea, NADH was not
accumulated (Supplementary Fig. 6) while AC synthesis was evident (Fig. 4d) upon
optogenetic stimulation of astrocytes, suggesting consumption of a molecular oxygen by
oxidization of NADH to NAD^+ in mitochondria (Fig. 4b). See Supplementary Discussion
on the possibility of AC as an energy substrate for neurons.
The BOLD signal response has been used to infer activation of neurons because
The BOLD signal response has been used to infer activation of neurons because accumulating evidence has shown a close correlation between BOLD signal fluctuations
The BOLD signal response has been used to infer activation of neurons because accumulating evidence has shown a close correlation between BOLD signal fluctuations and electrophysiological activation of neurons (Logothetis et al., 2001; Niessing et
The BOLD signal response has been used to infer activation of neurons because accumulating evidence has shown a close correlation between BOLD signal fluctuations and electrophysiological activation of neurons (Logothetis et al., 2001; Niessing et al., 2005). However, in the present study, we demonstrated that astrocytes can evoke a
The BOLD signal response has been used to infer activation of neurons because accumulating evidence has shown a close correlation between BOLD signal fluctuations and electrophysiological activation of neurons (Logothetis et al., 2001; Niessing et al., 2005). However, in the present study, we demonstrated that astrocytes can evoke a BOLD signal response that accompanies oxygen consumption without activation of local
The BOLD signal response has been used to infer activation of neurons because accumulating evidence has shown a close correlation between BOLD signal fluctuations and electrophysiological activation of neurons (Logothetis et al., 2001; Niessing et al., 2005). However, in the present study, we demonstrated that astrocytes can evoke a BOLD signal response that accompanies oxygen consumption without activation of local neurons. This may suggest the existence of BOLD signal fluctuations that are irrelevant
The BOLD signal response has been used to infer activation of neurons because accumulating evidence has shown a close correlation between BOLD signal fluctuations and electrophysiological activation of neurons (Logothetis et al., 2001; Niessing et al., 2005). However, in the present study, we demonstrated that astrocytes can evoke a BOLD signal response that accompanies oxygen consumption without activation of local neurons. This may suggest the existence of BOLD signal fluctuations that are irrelevant to activation of local neurons. Indeed, a recent study found unexpected BOLD signal
The BOLD signal response has been used to infer activation of neurons because accumulating evidence has shown a close correlation between BOLD signal fluctuations and electrophysiological activation of neurons (Logothetis et al., 2001; Niessing et al., 2005). However, in the present study, we demonstrated that astrocytes can evoke a BOLD signal response that accompanies oxygen consumption without activation of local neurons. This may suggest the existence of BOLD signal fluctuations that are irrelevant to activation of local neurons. Indeed, a recent study found unexpected BOLD signal fluctuations that occurred without activation of local neurons during a repeated
The BOLD signal response has been used to infer activation of neurons because accumulating evidence has shown a close correlation between BOLD signal fluctuations and electrophysiological activation of neurons (Logothetis et al., 2001; Niessing et al., 2005). However, in the present study, we demonstrated that astrocytes can evoke a BOLD signal response that accompanies oxygen consumption without activation of local neurons. This may suggest the existence of BOLD signal fluctuations that are irrelevant to activation of local neurons. Indeed, a recent study found unexpected BOLD signal fluctuations that occurred without activation of local neurons during a repeated anticipation task (Sirotin & Das, 2009). Activation of astrocytes might be a cellular
The BOLD signal response has been used to infer activation of neurons because accumulating evidence has shown a close correlation between BOLD signal fluctuations and electrophysiological activation of neurons (Logothetis et al., 2001; Niessing et al., 2005). However, in the present study, we demonstrated that astrocytes can evoke a BOLD signal response that accompanies oxygen consumption without activation of local neurons. This may suggest the existence of BOLD signal fluctuations that are irrelevant to activation of local neurons. Indeed, a recent study found unexpected BOLD signal fluctuations that occurred without activation of local neurons during a repeated anticipation task (Sirotin & Das, 2009). Activation of astrocytes might be a cellular substrate underlying this type of BOLD signal fluctuation. What physiological
The BOLD signal response has been used to infer activation of neurons because accumulating evidence has shown a close correlation between BOLD signal fluctuations and electrophysiological activation of neurons (Logothetis et al., 2001; Niessing et al., 2005). However, in the present study, we demonstrated that astrocytes can evoke a BOLD signal response that accompanies oxygen consumption without activation of local neurons. This may suggest the existence of BOLD signal fluctuations that are irrelevant to activation of local neurons. Indeed, a recent study found unexpected BOLD signal fluctuations that occurred without activation of local neurons during a repeated anticipation task (Sirotin & Das, 2009). Activation of astrocytes might be a cellular substrate underlying this type of BOLD signal fluctuation. What physiological

412	It's shown that astrocytes are sensitive to neuromodulators such as acetylcholine and
413	noradrenalin, which can be released in the cortex by axonal fibers ascending from the
414	Meynert nucleus or Locus coeruleus, respectively (Bekar, He, & Nedergaard, 2008;
415	Pankratov & Lalo, 2015; Takata et al., 2011). Thus, astrocytes may be able to
416	respond to neuromodulatory activity of remote neurons, by augmenting metabolic
417	activity including synthesis of AC that can be used as preparatory energy fuel for local
418	neurons.

419 **References**

- 420 Aguado, F., Espinosa-Parrilla, J. F., Carmona, M. A., & Soriano, E. (2002). Neuronal
- 421 activity regulates correlated network properties of spontaneous calcium transients
- 422 in astrocytes in situ. *The Journal of Neuroscience*, 22 (21), 9430–9444.
- 423 Bekar, L. K., He, W., & Nedergaard, M. (2008). Locus coeruleus
- 424 alpha-adrenergic-mediated activation of cortical astrocytes in vivo. *Cerebral*425 *Cortex*, 18 (12), 2789–2795. doi:10.1093/cercor/bhn040
- 426 Beppu, K., Sasaki, T., Tanaka, K. F., Yamanaka, A., Fukazawa, Y., Shigemoto, R., &
- 427 Matsui, K. (2014). Optogenetic countering of glial acidosis suppresses glial
- 428 glutamate release and ischemic brain damage. *Neuron*, *81* (2), 314–320.
- 429 doi:10.1016/j.neuron.2013.11.011
- 430 Berndt, A., Yizhar, O., Gunaydin, L. A., Hegemann, P., & Deisseroth, K. (2009).
- 431 Bi-stable neural state switches. *Nature Neuroscience*, *12* (2), 229–234.
- 432 doi:10.1038/nn.2247
- 433 Ekstrom, A. (2010). How and when the fMRI BOLD signal relates to underlying neural
- 434 activity: The danger in dissociation. *Brain Research Reviews*, *62* (2), 233–244.
- 435 doi:10.1016/j.brainresrev.2009.12.004
- 436 Figley, C. R., & Stroman, P. W. (2011). The role(s) of astrocytes and astrocyte activity in
- 437 neurometabolism, neurovascular coupling, and the production of functional
- 438 neuroimaging signals. *The European Journal of Neuroscience*, 33 (4), 577–588.
- 439 doi:10.1111/j.1460-9568.2010.07584.x
- 440 Figueiredo, M., Lane, S., Stout, R. F., Liu, B., Parpura, V., Teschemacher, A. G., &
- 441 Kasparov, S. (2014). Comparative analysis of optogenetic actuators in cultured

442	astrocytes. Cell Calcium, 56 (3), 208–214. doi:10.1016/j.ceca.2014.07.007
443	Gourine, A. V., Kasymov, V., Marina, N., Tang, F., Figueiredo, M. F., Lane, S.,
444	Kasparov, S. (2010). Astrocytes Control Breathing Through pH-Dependent
445	Release of ATP. Science, 329 (5991), 571–575. doi:10.1126/science.1190721
446	Greenberg, D. S., Houweling, A. R., & Kerr, J. N. D. (2008). Population imaging of
447	ongoing neuronal activity in the visual cortex of awake rats. Nature Neuroscience,
448	11 (7), 749–751. doi:10.1038/nn.2140
449	Gurden, H. (2013). Astrocytes: can they be the missing stars linking neuronal activity to
450	neurofunctional imaging signals? Frontiers in Cellular Neuroscience, 7.
451	doi:10.3389/fncel.2013.00021
452	Haydon, P. G., & Carmignoto, G. (2006). Astrocyte Control of Synaptic Transmission
453	and Neurovascular Coupling. Physiological Reviews, 86 (3), 1009–1031.
454	doi:10.1152/physrev.00049.2005
455	Heeger, D. J., & Ress, D. (2002). What does fMRI tell us about neuronal activity? Nature
456	Reviews. Neuroscience, 3 (2), 142–151. doi:10.1038/nrn730
457	Jego, P., Pacheco-Torres, J., Araque, A., & Canals, S. (2014). Functional MRI in mice
458	lacking IP3-dependent calcium signaling in astrocytes. Journal of Cerebral Blood
459	Flow and Metabolism, 34 (10), 1599-1603. doi:10.1038/jcbfm.2014.144
460	Kahn, I., Knoblich, U., Desai, M., Bernstein, J., Graybiel, A. M., Boyden, E. S., Moore,
461	C. I. (2013). Optogenetic drive of neocortical pyramidal neurons generates fMRI
462	signals that are correlated with spiking activity. Brain Research, 1511, 33-45.
463	doi:10.1016/j.brainres.2013.03.011
464	Lee, J. H., Durand, R., Gradinaru, V., Zhang, F., Goshen, I., Kim, DS., Deisseroth, K.

465	(2010). Global and local fMRI signals driven by neurons defined optogenetically
466	by type and wiring. Nature, 465 (7299), 788-792. doi:10.1038/nature09108
467	Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001).
468	Neurophysiological investigation of the basis of the fMRI signal. Nature, 412
469	(6843), 150–157. doi:10.1038/35084005
470	MacVicar, B. A., Crichton, S. A., Burnard, D. M., & Tse, F. W. (1987). Membrane
471	conductance oscillations in astrocytes induced by phorbol ester. Nature, 329
472	(6136), 242–243. doi:10.1038/329242a0
473	Maier, A., Wilke, M., Aura, C., Zhu, C., Ye, F. Q., & Leopold, D. A. (2008). Divergence
474	of fMRI and neural signals in V1 during perceptual suppression in the awake
475	monkey. Nature Neuroscience, 11 (10), 1193-1200. doi:10.1038/nn.2173
476	Masamoto, K., & Kanno, I. (2012). Anesthesia and the quantitative evaluation of
477	neurovascular coupling. Journal of Cerebral Blood Flow and Metabolism, 32 (7),
478	1233-1247. doi:10.1038/jcbfm.2012.50
479	Masamoto, K., Unekawa, M., Watanabe, T., Toriumi, H., Takuwa, H., Kawaguchi, H.,
480	Suzuki, N. (2015). Unveiling astrocytic control of cerebral blood flow with
481	optogenetics. Scientific Reports, 5, 11455. doi:10.1038/srep11455
482	Mattis, J., Tye, K. M., Ferenczi, E. A., Ramakrishnan, C., O'Shea, D. J., Prakash, R.,
483	Deisseroth, K. (2012). Principles for applying optogenetic tools derived from
484	direct comparative analysis of microbial opsins. Nature Methods, 9 (2), 159-172.
485	doi:10.1038/nmeth.1808
486	Mishra, A., Reynolds, J. P., Chen, Y., Gourine, A. V., Rusakov, D. A., & Attwell, D.
487	(2016). Astrocytes mediate neurovascular signaling to capillary pericytes but not

488	to arterioles. <i>Nature Neuroscience</i> , 19 (12), 1619–1627. doi:10.1038/nn.4428
489	Morikawa, T., Kajimura, M., Nakamura, T., Hishiki, T., Nakanishi, T., Yukutake, Y.,
490	Suematsu, M. (2012). Hypoxic regulation of the cerebral microcirculation is
491	mediated by a carbon monoxide-sensitive hydrogen sulfide pathway. Proceedings
492	of the National Academy of Sciences, 109 (4), 1293–1298.
493	doi:10.1073/pnas.1119658109
494	Nagaoka, T., Zhao, F., Wang, P., Harel, N., Kennan, R. P., Ogawa, S., & Kim, SG.
495	(2006). Increases in oxygen consumption without cerebral blood volume change
496	during visual stimulation under hypotension condition. Journal of Cerebral Blood
497	Flow and Metabolism, 26 (8), 1043-1051. doi:10.1038/sj.jcbfm.9600251
498	Niessing, J., Ebisch, B., Schmidt, K. E., Niessing, M., Singer, W., & Galuske, R. A. W.
499	(2005). Hemodynamic signals correlate tightly with synchronized gamma
500	oscillations. Science (New York, N.Y.), 309 (5736), 948-951.
501	doi:10.1126/science.1110948
502	Ogawa, S., Lee, T. M., Kay, A. R., & Tank, D. W. (1990). Brain magnetic resonance
503	imaging with contrast dependent on blood oxygenation. Proceedings of the
504	National Academy of Sciences of the United States of America, 87 (24), 9868–
505	9872.
506	Ogawa, S., Menon, R. S., Kim, S. G., & Ugurbil, K. (1998). On the characteristics of
507	functional magnetic resonance imaging of the brain. Annual Review of Biophysics
508	and Biomolecular Structure, 27, 447-474. doi:10.1146/annurev.biophys.27.1.447
509	Otsu, Y., Couchman, K., Lyons, D. G., Collot, M., Agarwal, A., Mallet, JM., Charpak,
510	S. (2015). Calcium dynamics in astrocyte processes during neurovascular

511	coupling. <i>Nature Neuroscience</i> , 18 (2), 210–218. doi:10.1038/nn.3906
512	Pankratov, Y., & Lalo, U. (2015). Role for astroglial a1-adrenoreceptors in
513	gliotransmission and control of synaptic plasticity in the neocortex. Frontiers in
514	Cellular Neuroscience, 9, 230. doi:10.3389/fncel.2015.00230
515	Pelluru, D., Konadhode, R. R., Bhat, N. R., & Shiromani, P. J. (2016). Optogenetic
516	stimulation of astrocytes in the posterior hypothalamus increases sleep at night in
517	C57BL/6J mice. The European Journal of Neuroscience, 43 (10), 1298–1306.
518	doi:10.1111/ejn.13074
519	Perea, G., Yang, A., Boyden, E. S., & Sur, M. (2014). Optogenetic astrocyte activation
520	modulates response selectivity of visual cortex neurons in vivo. Nature
521	Communications, 5. doi:10.1038/ncomms4262
522	Pettegrew, J. W., Levine, J., & McClure, R. J. (2000). Acetyl-L-carnitine
523	physical-chemical, metabolic, and therapeutic properties: relevance for its mode
524	of action in Alzheimer's disease and geriatric depression. Molecular Psychiatry, 5
525	(6), 616–632.
526	Petzold, G. C., & Murthy, V. N. (2011). Role of Astrocytes in Neurovascular Coupling.
527	Neuron, 71 (5), 782–797. doi:10.1016/j.neuron.2011.08.009
528	Raichle, M. E., & Mintun, M. A. (2006). Brain work and brain imaging. Annual Review of
529	Neuroscience, 29, 449-476. doi:10.1146/annurev.neuro.29.051605.112819
530	Rose, C. R., & Ransom, B. R. (1996). Mechanisms of H+ and Na+ Changes Induced by
531	Glutamate, Kainate, and d-Aspartate in Rat Hippocampal Astrocytes. The Journal
532	of Neuroscience, 16 (17), 5393–5404.
533	Sasaki, T., Beppu, K., Tanaka, K. F., Fukazawa, Y., Shigemoto, R., & Matsui, K. (2012).

534	Application of an optogenetic byway for perturbing neuronal activity via glial
535	photostimulation. Proceedings of the National Academy of Sciences of the United
536	States of America, 109 (50), 20720-20725. doi:10.1073/pnas.1213458109
537	Schulz, K., Sydekum, E., Krueppel, R., Engelbrecht, C. J., Schlegel, F., Schröter, A.,
538	Helmchen, F. (2012). Simultaneous BOLD fMRI and fiber-optic calcium
539	recording in rat neocortex. Nature Methods, 9 (6), 597-602.
540	doi:10.1038/nmeth.2013
541	Schummers, J., Yu, H., & Sur, M. (2008). Tuned Responses of Astrocytes and Their
542	Influence on Hemodynamic Signals in the Visual Cortex. Science, 320 (5883),
543	1638–1643. doi:10.1126/science.1156120
544	Seigneur, J., Kroeger, D., Nita, D. A., & Amzica, F. (2006). Cholinergic Action on
545	Cortical Glial Cells In Vivo. Cereb. Cortex, 16 (5), 655-668.
546	doi:10.1093/cercor/bhj011
547	Sekiguchi, K. J., Shekhtmeyster, P., Merten, K., Arena, A., Cook, D., Hoffman, E.,
548	Nimmerjahn, A. (2016). Imaging large-scale cellular activity in spinal cord of
549	freely behaving mice. Nature Communications, 7, 11450.
550	doi:10.1038/ncomms11450
551	Shen, Q., Ren, H., & Duong, T. Q. (2008). CBF, BOLD, CBV, and CMRO2 fMRI Signal
552	Temporal Dynamics at 500-msec Resolution. Journal of Magnetic Resonance
553	Imaging : JMRI, 27 (3), 599-606. doi:10.1002/jmri.21203
554	Sirotin, Y. B., & Das, A. (2009). Anticipatory haemodynamic signals in sensory cortex
555	not predicted by local neuronal activity. Nature, 457 (7228), 475-479.
556	doi:10.1038/nature07664

557	Sokoloff, L., Reivich, M., Kennedy, C., Rosiers, M. H. D., Patlak, C. S., Pettigrew, K. D.,
558	Shinohara, M. (1977). The [14C]deoxyglucose Method for the Measurement
559	of Local Cerebral Glucose Utilization: Theory, Procedure, and Normal Values in
560	the Conscious and Anesthetized Albino Rat. Journal of Neurochemistry, 28 (5),
561	897–916. doi:10.1111/j.1471-4159.1977.tb10649.x
562	Srinivasan, R., Huang, B. S., Venugopal, S., Johnston, A. D., Chai, H., Zeng, H.,
563	Khakh, B. S. (2015). Ca2+ signaling in astrocytes from Ip3r2-/- mice in brain
564	slices and during startle responses in vivo. Nature Neuroscience, 18 (5), 708-717.
565	doi:10.1038/nn.4001
566	Stark, J. A., Davies, K. E., Williams, S. R., & Luckman, S. M. (2006). Functional
567	magnetic resonance imaging and c-Fos mapping in rats following an anorectic
568	dose of m-chlorophenylpiperazine. NeuroImage, 31 (3), 1228-1237.
569	doi:10.1016/j.neuroimage.2006.01.046
570	Stobart, J. L., Ferrari, K. D., Barrett, M. J. P., Stobart, M. J., Looser, Z. J., Saab, A. S., &
571	Weber, B. (2016). Long-term In Vivo Calcium Imaging of Astrocytes Reveals
572	Distinct Cellular Compartment Responses to Sensory Stimulation. Cerebral
573	Cortex. doi:10.1093/cercor/bhw366
574	Sugiura, Y., Honda, K., Kajimura, M., & Suematsu, M. (2014). Visualization and
575	quantification of cerebral metabolic fluxes of glucose in awake mice. Proteomics,
576	14 (7-8), 829-838. doi:10.1002/pmic.201300047
577	Sugiura, Y., Honda, K., & Suematsu, M. (2015). Development of an Imaging Mass
578	Spectrometry Technique for Visualizing Localized Cellular Signaling Mediators
579	in Tissues. Mass Spectrometry, 4 (1), 1-9. doi:10.5702/massspectrometry.A0040

580	Sugiura, Y., Katsumata, Y., Sano, M., Honda, K., Kajimura, M., Fukuda, K., & Suematsu,
581	M. (2016). Visualization of in vivo metabolic flows reveals accelerated utilization
582	of glucose and lactate in penumbra of ischemic heart. Scientific Reports, 6, 32361.
583	doi:10.1038/srep32361
584	Sugiura, Y., Taguchi, R., & Setou, M. (2011). Visualization of spatiotemporal energy
585	dynamics of hippocampal neurons by mass spectrometry during a
586	kainate-induced seizure. PloS One, 6 (3), e17952.
587	doi:10.1371/journal.pone.0017952
588	Takano, T., Tian, GF., Peng, W., Lou, N., Libionka, W., Han, X., & Nedergaard, M.
589	(2006). Astrocyte-mediated control of cerebral blood flow. Nat Neurosci, 9 (2),
590	260–267. doi:10.1038/nn1623
591	Takata, N., Mishima, T., Hisatsune, C., Nagai, T., Ebisui, E., Mikoshiba, K., & Hirase, H.
592	(2011). Astrocyte calcium signaling transforms cholinergic modulation to cortical
593	plasticity in vivo. The Journal of Neuroscience, 31 (49), 18155–18165.
594	doi:10.1523/JNEUROSCI.5289-11.2011
595	Takata, N., Yoshida, K., Komaki, Y., Xu, M., Sakai, Y., Hikishima, K., Tanaka, K. F.
596	(2015). Optogenetic activation of CA1 pyramidal neurons at the dorsal and
597	ventral hippocampus evokes distinct brain-wide responses revealed by mouse
598	fMRI. PloS One, 10 (3), e0121417. doi:10.1371/journal.pone.0121417
599	Tanaka, K. F., Matsui, K., Sasaki, T., Sano, H., Sugio, S., Fan, K., Yamanaka, A.
600	(2012). Expanding the repertoire of optogenetically targeted cells with an
601	enhanced gene expression system. Cell Reports, 2 (2), 397-406.
602	doi:10.1016/j.celrep.2012.06.011

603	Tang, F., Lane, S., Korsak, A., Paton, J. F. R., Gourine, A. V., Kasparov, S., &
604	Teschemacher, A. G. (2014). Lactate-mediated glia-neuronal signalling in the
605	mammalian brain. Nature Communications, 5, 3284. doi:10.1038/ncomms4284
606	Thrane, A. S., Thrane, V. R., Zeppenfeld, D., Lou, N., Xu, Q., Nagelhus, E. A., &
607	Nedergaard, M. (2012). General anesthesia selectively disrupts astrocyte calcium
608	signaling in the awake mouse cortex. Proceedings of the National Academy of
609	Sciences of the United States of America, 109 (46), 18974–18979.
610	doi:10.1073/pnas.1209448109
611	Traina, G. (2016). The neurobiology of acetyl-L-carnitine. Frontiers in Bioscience
612	(Landmark Edition), 21, 1314–1329.
613	Tsurugizawa, T., Ciobanu, L., & Le Bihan, D. (2013). Water diffusion in brain cortex
614	closely tracks underlying neuronal activity. Proceedings of the National Academy
615	of Sciences of the United States of America. doi:10.1073/pnas.1303178110
616	Vanzetta, I., & Slovin, H. (2010). A BOLD Assumption. Frontiers in Neuroenergetics, 2.
617	doi:10.3389/fnene.2010.00024
618	Yoshida, K., Mimura, Y., Ishihara, R., Nishida, H., Komaki, Y., Minakuchi, T., Takata,
619	N. (2016). Physiological effects of a habituation procedure for functional MRI in
620	awake mice using a cryogenic radiofrequency probe. Journal of Neuroscience
621	Methods, 274, 38-48. doi:10.1016/j.jneumeth.2016.09.013

622 Figure Legends

Figure 1. Transgenic mice that express

624 ChR2(C128S)-EYFP at neurons or astrocytes.

- 625 (a, d) Immunostaining against YFP (ChR2-marker) on coronal sections of the brain from
- 626 Neuron- (a) and Astrocyte-ChR2 mice (d). (b, e) Double-immunostaining for NeuN
- 627 (neuron marker, red) and YFP (green) of coronal sections of the brain from Neuron- (b)
- 628 and Astrocyte-ChR2 mice (e). (c, f) Higher magnification images of cortical layer IV of
- 629 Neuron- or Astrocyte-ChR2 mice. (g) Schematic drawings of attachment of a headbar
- 630 (gray) and an optic fiber with a cannula (red) on the intact skull. A headbar was used for
- 631 cranial fixation during of MRI in awake mice. (h) A photograph of a transgenic mouse
- 632 with an attached headbar (arrow head) and a fiber optic cannula (arrow). (i) Estimated
- area of illumination (pale blue) by an optic fiber (red), drawn over a horizontal (left) and a
- 634 sagittal (right) brain section of an anatomical MRI image. Scale bar: **a,d**, 3 mm; **b,e**, 200
- 635 μm; **c,f**, 50 μm; **g,h,i**, 5 mm.

Figure 2. Transcranial optogenetic stimulation of neurons or astrocytes evoked BOLD signal response with oxygen consumption.

- 639 (a, c) Activation *t*-maps overlaid on structural MRI images showing spatial distribution
- of positive BOLD response upon optogenetic activation of cortical neurons (a) or
- 641 astrocytes (c) from n = 13 Neuron- or 9 Astrocyte-ChR2 mice, respectively. Illumination
- 642 was applied on the left side of the skull (left side in the figure). Values at the lower left
- 643 indicate anterior-posterior (AP) distance from bregma in mm. Color bar indicates *t*-values.
- Arrows at AP -4.0 and -3.0 mm in (a) and (c), respectively, indicate approximate position
- of a global peak of *t*-values, which were used for locations of ROIs for BOLD time

646 courses. (**b**, **d**) Time-course of BOLD signal fluctuation upon optogenetic activation of

- 647 neurons (b) or astrocytes (d). Blue and yellow vertical lines show timing of illumination
- 648 for each color. Note that ChR2(C128S), a step function opsin with the closing time
- 649 constant (τ) of 106 s, was kept open even after cessation of blue illumination until yellow
- 650 illumination. The x-axis at the top shows the scan number of fMRI measurements. Gray
- 651 shading indicates the SEM. (e-h) The same as (a-d), but in the presence of a vasodilator,
- SNP, from n = 3 Neuron- or 3 Astrocyte-ChR2 mice, respectively, showing negative
- BOLD response that indicates oxygen consumption upon optogenetic activation of
- neurons (f) or astrocytes (h). Scale bar: a, c, e, g, 2 mm.

655 Figure 3. Optogenetic stimulation of neurons, but not 656 astrocytes, results in neuronal activation.

657 (a, b) Representative images of *in situ* hybridization on coronal brain sections around AP

-2.0 mm for *c-fos* mRNA, 30 min after optogenetic stimulation of cortical neurons (a) or

astrocytes (b) using Neuron- or Astrocyte-ChR2 mice, respectively (n = 9 each).

660 Optogenetic stimulation of neurons, but not astrocytes, induced expression of *c-fos*

- 661 mRNA (blue-purple signal) in the cortex ipsilateral to light illumination. Rectangles in
- blue and red were for quantification of staining intensity of *c-fos* mRNA. Scale bar: 1 mm.
- 663 (c, d) LFP fluctuations upon optogenetic stimulation of Neuron- (c) or Astrocyte-ChR2
- 664 mice (d). <u>Upper left:</u> Representative traces of LFP recorded with a silicon probe
- 665 electrode, inserted into the cortex of an awake Neuron- (c) or Astrocyte-ChR2 mouse (d).
- 666 The blue area indicates the period of blue-light illumination. Note that the duration of
- light illumination was 0.5 and 5.0 s for Neuron- and Astrocyte-ChR2 mice, respectively.
- 668 **Upper right:** Mean wavelet power spectrogram of LFP recorded in the cortex of n = 6
- 669 Neuron- (c) or n = 5 Astrocyte-ChR2 mice (d). Power values of LFP were normalized for 21

685 686	Figure 4. Synthesis of AC at the site of optogenetic activation of astrocytes, but not of neurons.
684	Astrocyte-ChR2 mice (f). The SEM envelopes the mean traces.
683	channels of the silicon probe in the cortex, from $n = 6$ Neuron- (e) and $n = 5$
682	Lower panel: Relative number of MUA counts, recorded from the most superficial 10
681	(60~90 s, green), 2^{nd} (210~240 s, red), and 3^{rd} (360~390 s, pale blue) activation periods.
680	<u>right</u> : Representative mean traces of MUA during a baseline period ($0 \sim 60$ s, blue), and 1^{st}
679	A horizontal red line in the upper trace indicates a threshold for MUA extraction. Upper
678	representative time course of high-pass filtered LFP (upper trace) and MUA (lower trace).
677	optogenetic stimulation of Neuron- (e) or Astrocyte-ChR2 mice (f). Upper left: A
676	Astrocyte-ChR2 mice (d). $*P < 0.05$, $**P < 0.01$; paired <i>t</i> -test. (e, f) MUA response upon
675	first activation period (60~90 s). No modulation of LFP power was observed in
674	<u>right</u> : The bar graph compares the mean power of LFP at each frequency band during the
673	the delivery of light pulses of each color. The SEM envelopes the mean traces. Lower
672	courses of LFP-power at each frequency band. Vertical lines of blue and yellow indicate
671	indicate the delivery of blue and yellow light pulses, respectively. Lower left: Mean time
670	each recording session (see methods). Blue and yellow triangles with white vertical lines

687 (a) <u>Upper panel:</u> Schematic of IMS experiments, which involved pathway tracing of

- 688 ¹³C₆-labeled glucose upon optogenetic stimulation. A red circle indicates ¹³C-isotope in a
- 689 glucose molecule. Optic fiber was attached on the left intact skull. Lower panel:
- 690 Experimental time course. FMW fixation of the brain was performed 30 s following
- 691 optogenetic stimulation. (b) Schematic representation of ${}^{13}C_6$ -glucose metabolism into
- 692 acetyl-carnitine (AC). (c, d) Representative IMS images for carnitine (right top), AC (left
- 693 middle), ¹³C₂-AC (middle right), AC/carnitine ratio (left bottom), and ¹³C₂-AC/carnitine

694	ratio (right bottom), after optogenetic stimulation of a Neuron- (c) or an Astrocyte-ChR2
695	mouse (d). Astrocyte activation augmented synthesis of AC that accompanies O_2
696	consumption (d, left middle). Upper left panel shows optical images of brain sections
697	used for IMS. Each panel shows three consecutive slices. Dotted circles in a top right
698	panel in (\mathbf{d}) indicates area that showed reduction of carnitine. These experiments were
699	repeated with $n = 3$ Neuron- and $n = 5$ Astrocyte-ChR2 mice, obtaining similar results.
700	Scale bar: c,d, 2 mm.

Figure 1

Figure 1. Transgenic mice that express ChR2(C128S)-EYFP at neurons or astrocytes.

190x254mm (300 x 300 DPI)

Figure 2

Figure 2. Transcranial optogenetic stimulation of neurons or astrocytes evoked BOLD signal response with oxygen consumption.

190x254mm (300 x 300 DPI)

Figure 3

Figure 3. Optogenetic stimulation of neurons, but not astrocytes, results in neuronal activation. $190 \times 254 \text{mm} (300 \times 300 \text{ DPI})$

Figure 4

Figure 4. Synthesis of AC at the site of optogenetic activation of astrocytes, but not of neurons. 190x254mm (300 x 300 DPI)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

GLIA

Running title: Astrocytes evoke BOLD fMRI response	
Supplementary Materials and Methods	
Ethics Statement	
All animal experiments were conducted in accordance with the National	
Institutes of Health Guide for Care and Use of Laboratory Animals (NIH Publications No.	
8023) and approved by the Animal Ethics Committee of Keio University (approval	
number: 12034-(3)) and CIEA (16062A).	
Generation of Chrm4-tTA BAC transgenic mice	
Mouse BAC DNA (clone RP23-138P5) was modified by inserting a codon	
optimized tTA (mtTA)-SV40 pA cassette (Tanaka et al., 2010) into the translation	
initiation site of Chrm4 gene. Modified BAC DNA was linearized by PI-SceI enzyme	
digestion (New England Biolabs Inc., Ipswich, MA, USA), and injected into fertilized	
eggs from CBA/C57BL6 mice. For genotyping of Chrm4-tTA line, the following primer	
set Chrm-394U (5'-AAGCACCAAGTTCTCTCCCGTCTT-3') and mtTAL24	
(5'-cggagttgatcaccttggacttgt-3') was used and the transgenic line yielded 430 bp product.	
Generation of ChR2(C128S) expressing lines	
Double transgenic mice of <i>Chrm4</i> -tTA::tetO-ChR2(C128S)-EYFP and	
<i>Mlc1</i> -tTA::tetO-ChR2(C128S)-EYFP were prepared for experiments. <i>Mlc1</i> -tTA BAC	
transgenic mouse (RIKEN BRC stock number:05450) and tetO-ChR2(C128S)-EYFP	
knockin mouse (RIKEN BRC stock number: 05454) were obtained from RIKEN	

- 21 BioResource Center, JAPAN, and the methods for genotyping were previously described
- 22 (Kanemaru et al., 2014; Tanaka et al., 2012).

Page 40 of 65

Surgery for attaching an optical fiber and a head-holder on the skull of the mice

GLIA

25 In total, 51 double transgenic mice, postnatal 8–12 weeks old, were used; 26

26 were *Chrm4*-tTA::tetO-ChR2(C128S) mice (9 males and 17 females) and 25 were

27 *Mlc1*-tTA::tetO-ChR2(C128S)-EYFP mice (13 males and 12 females). Animals were

anesthetized with a mixture of ketamine and xylazine (100 mg/kg and 10 mg/kg,

29 respectively, i.p.). After skull exposure, an optical fiber of silica glass (Φ 400 μ m,

30 CFML14L05, Thorlabs, NJ, USA) was placed on the surface of the skull horizontally to

31 the bregma-lambda line. The side of an optical fiber was painted in black to avoid stray

32 light. The tip of an optical fiber was located at -5.1 mm posterior to the Bregma (AP -5.1

33 mm), 3.0 mm lateral from the midline to the left (ML - 3.0 mm), and 0.6 mm ventral from

34 the horizontal plane passing through bregma and lambda on the surface of the skull (DV

40.6 mm). The tip of an optical fiber was imbedded with a transparent silicone ($\Phi 200 \mu m$,

36 Kwik-Sil Adhesive, WPI, FL, USA). Optical fiber was then attached on the skull with

37 dental acrylic (Super-Bond C&B, Sun Medical, Shiga, Japan). In the case of IMS

38 experiments, an optical fiber of plastic (Φ 500 μm, Eska SK20, Mitsubishi Chemical,

39 Tokyo, Japan) was used instead of an optical fiber of silica glass.

Next, a custom-made acrylic head bar (3 × 3 × 27 mm³) was mounted along the
sagittal suture of the exposed skull using the dental cement for fMRI in awake mice
(Yoshida et al., 2016). For experiments of *in vivo* electrophysiology, a custom-made
U-shaped plastic plate was attached on the skull instead of a head bar to enable fixation of
the mouse's head to a stereotaxic frame (SR-6M-HT, Narishige, Tokyo, Japan) during
recording. For IMS experiments, a head-holder was not attached because a head of a

46 mouse is fixed in a dedicated tube (WJM-24 or WJM-28, Muromachi Kikai, Tokyo,

47 Japan). After covering the exposed skull with the dental acrylic, the animal was returned

- 48 to its homecage for recovery (Yoshida et al., 2016).
- 49

fMRI in awake mice

50 Mice were acclimated to mock fMRI environment for 2 hrs/day for at least 7 51 days before performing fMRI in awake mice (Yoshida et al., 2016). Structural and 52 functional MRI was performed as described previously (Komaki et al., 2016; Takata 53 et al., 2015) using a 7.0-Tesla MRI apparatus equipped with actively shielded gradients 54 at a maximum strength of 700 mT/m (Biospec 70/16, Bruker BioSpin AG, Fällanden, 55 Switzerland) with a cryogenically cooled 2-ch transmit/receive phased array surface coil 56 (CryoProbe, Z120046, Bruker BioSpin AG, Fällanden, Switzerland), and the ParaVision 57 5.1 software interface (Bruker Biospin AG, Fällanden, Switzerland). Structural 58 T2-weighted images were acquired using a rapid acquisition process with a relaxation 59 enhancement (RARE) sequence in coronal orientations (repetition time [TR], 6100 ms; 60 echo time [TE], 48 ms; spectral bandwidth [BW], 5 kHz; RARE factor, 8; number of averages, 4; number of slices 52; spatial resolution, $75 \times 75 \times 300 \ \mu\text{m}^3$). Before fMRI 61 62 measurement, a field map was acquired to reduce signal loss artifacts (TE, 1.520 ms; 5.325 ms; TR. 20 ms; spatial resolution. $300 \times 300 \times 300$ um³; matrix. $64 \times 64 \times 64$ 63 64 voxels), fMRI was performed using a gradient-echo echo-planar sequence (TR, 1500 ms; 65 TE, 20 ms; BW, 250 kHz; flip angle, 50°; number of segments, 1; number of averages 1; number of slices 18; spatial resolution, $200 \times 200 \times 500 \text{ }\mu\text{m}^3$; FOV, $19.2 \times 19.2 \text{ }\text{mm}^2$; 66 67 matrix, $96 \times 96 \times 18$ voxels). This functional image covered the whole brain except the 68 olfactory bulb and the cerebellum. Total scanning time was 8.5 min (340 volumes with a

69 1.5-s interval). In ofMRI experiments in the presence of a nitric oxide donor,

subcutaneous injection of S-nitroprusside (SNP, 10 mg/kg, Sigma-Aldrich, MO, USA)

71 was performed five minutes before the start of fMRI measurements (Nagaoka et al.,

72 2006; Tsurugizawa, Ciobanu, & Le Bihan, 2013; Yamamoto, 1992).

73 Transcranial light illumination

74 A pair of blue and yellow light pulses with 30-s intervals (1.1~2.5 mW at the tip 75 of an optical fiber; LEDC2-B/A, Doric Lenses, QC, Canada) were delivered 60-s after the 76 start of fMRI measurements. Pulse duration was 0.5 s and 5 s for experiments with 77 Neuron- and Astrocyte-ChR2 mice, respectively. In the case of IMS experiments, only 78 the first blue light was delivered, 30–40 s after which FMW was applied to inactivate 79 enzymatic reactions in the brain. Area of illumination was estimated to cover the left 80 parietal cortex based on calculation using numerical aperture and diameter of the optic 81 fiber without considering light scattering in the skull and the cerebral parenchyma (Fig. 82 1i). Power of illuminated light beneath the skull was estimated to be $\sim 5\%$ of that at the tip 83 of an optical fiber, based on our measurement using a power meter (PM160T, Thorlabs, 84 NJ, USA; detector ø10 mm) that was put beneath the skull (0.15 and 2.7 mW, respectively). Estimated irradiance beneath the skull is ~0.002 mW/mm², which 85 86 corresponds to half-maximal activation (EPD50) of ChR2(C128S) (Mattis et al., 2012). In vivo multichannel extracellular recordings 87 88 Extracellular recording was made from awake transgenic mice using a 16-channel, linear silicon probe (100-μm spacing, 177-μm² recording site area; 89 90 NeuroNexus, MI, USA), which was inserted through a craniotomy ($\Phi 0.5$ mm; AP -3.0

91 mm, ML -2.0 mm) at a depth of 1.7 mm ventrally from the pia for recording from the

92	cortex. The craniotomy was sealed with a mixture of wax and paraffin oil. Recording
93	sessions started > 1 h after insertion of the silicon probe for recovery (Takata et al.,
94	2014). Electrophysiological signals were recorded with a RZ2 neurophysiology
95	workstation (Tucker-Davis Technologies, FL, USA).
96 97	IMS with FMW-assisted brain fixation for ¹³ C ₆ -glucose metabolic pathway tracing
98	To trace the metabolic fate of glucose, ${}^{13}C_6$ -glucose (1 mg/g body weight, in
99	saline) was injected intraperitoneally. Fifteen minutes later (Sugiura, Honda,
100	Kajimura, & Suematsu, 2014), optogenetic stimulation of neurons or astrocytes was
101	performed with illumination of blue light for 0.5 or 5 s transcranially on the left
102	hemisphere of the brain of Neuron- or Astrocyte-ChR2 mice, respectively. Mice were
103	then confined in a tubulous, water-jacket holder (WJM-24 or 28, Muromachi Kikai,
104	Tokyo, Japan), and placed inside a microwave fixation system (MMW-05, Muromachi
105	Kikai, Tokyo, Japan). Thirty seconds after the optogenetic stimulation, mice were
106	euthanized by FMW-irradiation on the brain (5 kW for 0.96 s), which immediately
107	elevated the temperature of the brain up to 80°C to inactivate metabolic enzymes and
108	minimize postmortem changes in labile metabolites (Sugiura, Honda, & Suematsu,
109	2015). After microwave irradiation, brains were dissected with a surgical knife at room
110	temperature, embedded into a super cryo-embedding medium (SCEM, Section Lab,
111	Hiroshima, Japan), rapidly frozen in liquid N ₂ , and stored at -80°C.
112	Thin sections of the frozen brain were prepared with a cryomicrotome (CM3050,
113	Leica Microsystems, Wetzlar, Germany) and thaw-mounted on an indium thin
114	oxide-coated glass slide (Bruker Daltonics, Leipzig, Germany) at -16°C. Slices were then

115	manually spray-coated with 9-aminoacridine (10 mg/mL, dissolved in 80% ethanol) and
116	2,5-dihydroxybenzoic acid (DHB) as a matrix (50 mg/mL, dissolved in 80% ethanol) for
117	anion and cation metabolites, respectively. Matrix-assisted laser desorption ionization
118	(MALDI)-IMS was performed using an Ultra Flextreme MALDI-TOF mass
119	spectrometer (Bruker Daltonics, Leipzig, Germany) equipped with an Nd:YAG laser. The
120	laser power was optimized to minimize in-source decay of phosphate of nucleotides. Data
121	were acquired in the reflectron mode with raster scanning using a pitch distance of 100
122	μ m. Each mass spectrum was the result of 300 laser shots at each data point. Signals
123	between m/z 50 and 1000 were collected. Molecular identification was performed based
124	on previous reports (Sugiura et al., 2014; Sugiura, Taguchi, & Setou, 2011).
125	Image reconstruction was performed using FlexImaging 4.0 software (Bruker Daltonics,
126	Leipzig, Germany).

127 Histology

128 After measurements, animals were deeply anesthetized and transcardially

129 perfused with PB containing 4% PFA. Immunohistochemistry of EYFP to confirm

130 neuronal or astrocytic expression of ChR2(C128S)-EYFP was performed using

131 affinity-purified antibodies against heat-denatured GFP (a gift from Dr. Kouichi C.

132 Nakamura, Kameda, Koshimizu, Yanagawa, & Kaneko, 2008). In

133 situ hybridization to examine *c-fos* mRNA expression was performed as reported

134 previously (Takata et al., 2015).

135 Data processing and analysis

- 136 Analysis of fMRI data was performed using SPM12 software
- 137 (www.fil.ion.ucl.ac.uk/spm) as previously (Takata et al., 2015; Yoshida et al.,

138	2016). This consisted of head movement correction, adjustments of acquisition timing
139	across slices, and smoothing using a Gaussian kernel of 0.4-mm full width at half
140	maximum. Structural and functional images were spatially normalized to a standard
141	structural brain averaged from 20 C57BL/6 mice. Statistical <i>t</i> -maps were calculated using
142	a generalized linear model (GLM) with random effects using a block design regarding the
143	optogenetic activation, delayed vascular response and head movement. Activation was
144	detected using a statistical threshold of uncorrected $P < 0.005$ and a cluster size > 10,
145	which were objectively chosen via Monte Carlo simulations using the "AlphaSim"
146	implementation in a toolbox REST (Song et al., 2011), resulting in a family-wise error
147	rate of $P < 0.05$. The parameters used for the simulations were as follows: full width at
148	half maximum, 0.4 mm; cluster connection radius, 0.2 mm; individual voxel threshold
149	probability, 0.005; number of Monte Carlo iterations, 100,000; voxels in mask, 13441.
150	Timecourses of BOLD signals were obtained with a spherical ROI of 0.7-mm diameter,
151	using the SPM toolbox MarsBar (<u>http://marsbar.sourceforge.net</u>).
152	Electrophysiological data analysis was performed using MATLAB (R2014a,
153	MathWorks, MA, USA). LFPs were decomposed to frequency bands of delta (1-4 Hz),
154	theta (6–9 Hz), gamma (40–90 Hz), and high frequency oscillation (HFO; 140–200 Hz)
155	(Buzsáki et al., 2003). Power values of LFP were logged and z-scored by each
156	frequency band with its mean and standard deviation (SD) during the period before the
157	first blue illumination for each recording session (Carr, Karlsson, & Frank, 2012).
158	MUA was extracted by thresholding the high-pass filtered LFP (> 300 Hz) with 4σ where
159	σ = median{absolute value of the filtered LFP / 0.6745} (Quiroga, Nadasdy, &
160	Ben-Shaul, 2004). Count of MUA was binned to 1.5 s. Data are expressed as mean \pm

- 161 SEM across animals, except where otherwise noted. Two-tailed *t*-tests were used for
- 162 comparisons of two population means, unless otherwise noted.
- 163

164 Supplementary Results

Optogenetic stimulation of astrocytes as well as neurons evokes BOLD signal response.

Subcortical BOLD signal in Astrocyte-ChR2 mice may reflect direct photo-activation of astrocytes

- 169 Other than the cortex, a BOLD signal response was observed in the hippocampus
- and thalamus of Neuron- and Astrocyte-ChR2 mice, respectively (Fig. 2a, c). Subcortical
- 171 BOLD signal in Astrocyte-ChR2 mice may reflect direct photo-activation of astrocytes
- 172 due to an especially high expression level of ChR2(C128S) (Fig. 1d), and higher
- 173 sensitivity of ChR2(C128S), which is ~1000 times more sensitive than conventional
- 174 ChR2 (Mattis et al., 2012). To confirm this scenario, we generated a triple transgenic
- 175 mice (Astrocyte-ChR2 mice with *Emx1*-Cre) that express ChR2(C128S) in astrocytes of
- 176 ventral but not dorsal part of the brain (Supplementary Fig. 2a, b). Transcranial
- 177 illumination of Astrocyte-ChR2 mice with *Emx1*-Cre evoked BOLD signal response in
- subcortical region, indicating that sufficient amount of light reached the subcortical
- 179 region to activate ChR2(C128S) (Supplementary Fig. 2c, d).
- 180 Light illumination for optogenetic stimulation seemed not
- 181 enough to evoke BOLD signal response through visual
- 182 stimulation nor brain-tissue heating
- 183 Illumination using only yellow light, which does not open ChR2(C128S), did not
- 184 evoke BOLD signal fluctuations in neither Neuron- nor Astrocyte-ChR2 mice

185	(Supplementary Fig. 3a, b). This suggests that the BOLD signal response was not derived
186	from activation of the visual pathways of mice (Schmid et al., 2016); nor was it an
187	artefact of the illumination heating the brain tissue (Christie et al., 2012). It is recently
188	shown that blue light triggers arteriole dilations, independently of heat (Rungta,
189	Osmanski, Boido, Tanter, & Charpak, 2017). Amount of light used in our study (0.15 mW
190	for 0.5 or 5 s; see Supplementary Materials and Methods) is below the lower limit of the
191	effect (0.5~1 mW for 2 s with 40% duty cycle). Also note that the reported blood flow
192	increases by blue light per se returned to baseline shortly, while our BOLD signal
193	response lasted more than 30 s after blue light illumination because ChR2(C128S) is a
194	step-function opsin. Moreover, we reported previously that blue light illumination with
195	higher power (1~2 mW for 0.5 s) did not evoke BOLD signal fluctuation in wild type
196	mice (Takata et al., 2015).
197 198 199	Behavioral state change seemed not to contaminate BOLD signal fluctuation upon optogenetic activation of astrocytes or neurons
200	It's reported that change in behavioral state of mice (<i>i.e.</i> locomotion and startle
201	response) may cause widespread astrocyte excitation in the brain (Nimmerjahn, Mukamel,
202	& Schnitzer, 2009; Paukert et al., 2014; Srinivasan et al., 2015). If optogenetic
203	stimulation results in behavioral response, it's possible that BOLD signal fluctuation in
204	our study may reflect behavioral state-change that results in astrocyte excitation, rather
205	than optogenetic astrocyte activation. To address this possibility, we performed
206	open-field tests using Neuron-ChR2 or Astrocyte-ChR2 mice. Light illumination did not
207	evoke overt motor responses in our experimental condition (Supplementary Fig. 4).
208	Moreover, we performed of MRI using anesthetized Astrocyte-ChR2 mice, demonstrating

209	BOLD signal response upon optogenetic astrocyte activation (Supplementary Fig. 2e, f).
210	These results imply that behavioral state-change was not a dominant cause for the BOLD
211	signal response in the present study. That being said, contribution of behavioral
212	state-change in BOLD signal fluctuation cannot be ruled out completely in the current
213	study. Future investigation that realizes simultaneous Ca ²⁺ imaging and optogenetic
214	manipulation of neurons and/or astrocytes in vivo should deepen our understandings of
215	the role of astrocytes on BOLD signal induction. In performing this experiment,
216	sophisticated experimental setup would be necessary to avoid possible interference of
217	excitation light for Ca^{2+} imaging on photocycle of ChR2(C128S).
218	

219 Supplementary Discussion

AC is involved in many physiological effects, such as increased glucose metabolism (Ori,

221 Freo, Pizzolato, & Dam, 2002), acetylcholine release (Imperato, Ramacci, &

Angelucci, 1989), and cerebral blood flow in the brain (Postiglione et al., 1991). It is

tempting to speculate that astrocyte-derived AC can be an energy substrate for neurons by

fueling tricarboxylic acid (TCA) cycle in neurons because 1) acyl-carnitine including AC

- is known to facilitate influx and efflux of acetyl groups across the inner membrane of
- 226 mitochondria, and 2) AC can be converted to neurotransmitters such as glutamate and
- 227 GABA via TCA-cycle (Hadera et al., 2016; Jones, McDonald, & Borum, 2010;
- 228 Scafidi et al., 2010). Additionally, it's noteworthy that co-occurrence of
- 229 carnitine-decrease and AC-increase at the site of optogenetic astrocyte activation
- 230 indicates *de novo* synthesis of AC in the brain upon astrocyte activation. AC has been
- considered to enter the brain through the blood-brain barrier via the high affinity, Na⁺

- dependent organic cation/carnitine transporters such as OCTN2, which is abundant on
- astrocyte endfeet (Scafidi et al., 2010).

234 Supplementary References

235	Buzsáki, G., Buhl, D. L., Harris, K. D., Csicsvari, J., Czéh, B., & Morozov, A. (2003).
236	Hippocampal network patterns of activity in the mouse. Neuroscience, 116 (1),
237	201-211. doi:10.1016/S0306-4522(02)00669-3
238	Carr, M. F., Karlsson, M. P., & Frank, L. M. (2012). Transient slow gamma synchrony
239	underlies hippocampal memory replay. Neuron, 75 (4), 700-713.
240	doi:10.1016/j.neuron.2012.06.014
241	Christie, I. N., Wells, J. A., Southern, P., Marina, N., Kasparov, S., Gourine, A. V., &
242	Lythgoe, M. F. (2012). fMRI response to blue light delivery in the naïve brain:
243	Implications for combined optogenetic fMRI studies. NeuroImage, 66 (1), 634-
244	641. doi:10.1016/j.neuroimage.2012.10.074
245	Hadera, M. G., McDonald, T., Smeland, O. B., Meisingset, T. W., Eloqayli, H., Jaradat, S.,
246	Sonnewald, U. (2016). Modification of Astrocyte Metabolism as an Approach
247	to the Treatment of Epilepsy: Triheptanoin and Acetyl-L-Carnitine.
248	Neurochemical Research, 41 (1-2), 86-95. doi:10.1007/s11064-015-1728-5
249	Imperato, A., Ramacci, M. T., & Angelucci, L. (1989). Acetyl-L-carnitine enhances
250	acetylcholine release in the striatum and hippocampus of awake freely moving
251	rats. Neuroscience Letters, 107 (1-3), 251–255.
252	Jones, L. L., McDonald, D. A., & Borum, P. R. (2010). Acylcarnitines: role in brain.
253	Progress in Lipid Research, 49 (1), 61-75. doi:10.1016/j.plipres.2009.08.004
254	Kanemaru, K., Sekiya, H., Xu, M., Satoh, K., Kitajima, N., Yoshida, K., Tanaka, K. F.
255	(2014). In Vivo visualization of subtle, transient, and local activity of astrocytes
256	using an ultrasensitive Ca2+ indicator. Cell Reports, 8 (1), 311-318.
257	doi:10.1016/j.celrep.2014.05.056
258	Komaki, Y., Hikishima, K., Shibata, S., Konomi, T., Seki, F., Yamada, M., Okano, H.
259	(2016). Functional brain mapping using specific sensory-circuit stimulation and a
260	theoretical graph network analysis in mice with neuropathic allodynia. Scientific
261	Reports, 6, 37802. doi:10.1038/srep37802
262	Mattis, J., Tye, K. M., Ferenczi, E. A., Ramakrishnan, C., O'Shea, D. J., Prakash, R.,
263	Deisseroth, K. (2012). Principles for applying optogenetic tools derived from

264	direct comparative analysis of microbial opsins. Nature Methods, 9 (2), 159-172.
265	doi:10.1038/nmeth.1808
266	Nagaoka, T., Zhao, F., Wang, P., Harel, N., Kennan, R. P., Ogawa, S., & Kim, SG.
267	(2006). Increases in oxygen consumption without cerebral blood volume change
268	during visual stimulation under hypotension condition. Journal of Cerebral Blood
269	Flow and Metabolism, 26 (8), 1043-1051. doi:10.1038/sj.jcbfm.9600251
270	Nakamura, K. C., Kameda, H., Koshimizu, Y., Yanagawa, Y., & Kaneko, T. (2008).
271	Production and histological application of affinity-purified antibodies to
272	heat-denatured green fluorescent protein. The Journal of Histochemistry and
273	Cytochemistry, 56 (7), 647-657. doi:10.1369/jhc.2008.950915
274	Nimmerjahn, A., Mukamel, E. A., & Schnitzer, M. J. (2009). Motor Behavior Activates
275	Bergmann Glial Networks. Neuron, 62 (3), 400-412.
276	doi:10.1016/j.neuron.2009.03.019
277	Ori, C., Freo, U., Pizzolato, G., & Dam, M. (2002). Effects of acetyl-l-carnitine on
278	regional cerebral glucose metabolism in awake rats. Brain Research, 951 (2),
279	330-335. doi:10.1016/S0006-8993(02)03290-0
280	Paukert, M., Agarwal, A., Cha, J., Doze, V. A., Kang, J. U., & Bergles, D. E. (2014).
281	Norepinephrine controls astroglial responsiveness to local circuit activity. Neuron,
282	82 (6), 1263-1270. doi:10.1016/j.neuron.2014.04.038
283	Postiglione, A., Soricelli, A., Cicerano, U., Mansi, L., De Chiara, S., Gallotta, G.,
284	Salvatore, M. (1991). Effect of acute administration of l-acetyl carnitine on
285	cerebral blood flow in patients with chronic cerebral infarct. Pharmacological
286	Research, 23 (3), 241-246. doi:10.1016/S1043-6618(05)80083-0
287	Quiroga, R. Q., Nadasdy, Z., & Ben-Shaul, Y. (2004). Unsupervised spike detection and
288	sorting with wavelets and superparamagnetic clustering. Neural Computation, 16
289	(8), 1661–1687. doi:10.1162/089976604774201631
290	Rungta, R. L., Osmanski, BF., Boido, D., Tanter, M., & Charpak, S. (2017). Light
291	controls cerebral blood flow in naive animals. Nature Communications, 8, 14191.
292	doi:10.1038/ncomms14191
293	Scafidi, S., Fiskum, G., Lindauer, S. L., Bamford, P., Shi, D., Hopkins, I., & McKenna, M.
294	C. (2010). Metabolism of acetyl-L-carnitine for energy and neurotransmitter

295	synthesis in the immature rat brain. Journal of Neurochemistry, 114 (3), 820-831.
296	doi:10.1111/j.1471-4159.2010.06807.x
297	Schmid, F., Wachsmuth, L., Albers, F., Schwalm, M., Stroh, A., & Faber, C. (2016). True
298	and apparent optogenetic BOLD fMRI signals. Magnetic Resonance in Medicine.
299	doi:10.1002/mrm.26095
300	Song, XW., Dong, ZY., Long, XY., Li, SF., Zuo, XN., Zhu, CZ., Zang, YF.
301	(2011). REST: a toolkit for resting-state functional magnetic resonance imaging
302	data processing. PloS One, 6 (9), e25031. doi:10.1371/journal.pone.0025031
303	Srinivasan, R., Huang, B. S., Venugopal, S., Johnston, A. D., Chai, H., Zeng, H.,
304	Khakh, B. S. (2015). Ca2+ signaling in astrocytes from Ip3r2-/- mice in brain
305	slices and during startle responses in vivo. Nature Neuroscience, 18 (5), 708-717.
306	doi:10.1038/nn.4001
307	Sugiura, Y., Honda, K., Kajimura, M., & Suematsu, M. (2014). Visualization and
308	quantification of cerebral metabolic fluxes of glucose in awake mice. Proteomics,
309	14 (7-8), 829-838. doi:10.1002/pmic.201300047
310	Sugiura, Y., Honda, K., & Suematsu, M. (2015). Development of an Imaging Mass
311	Spectrometry Technique for Visualizing Localized Cellular Signaling Mediators
312	in Tissues. Mass Spectrometry, 4 (1), 1-9. doi:10.5702/massspectrometry.A0040
313	Sugiura, Y., Taguchi, R., & Setou, M. (2011). Visualization of spatiotemporal energy
314	dynamics of hippocampal neurons by mass spectrometry during a
315	kainate-induced seizure. PloS One, 6 (3), e17952.
316	doi:10.1371/journal.pone.0017952
317	Takata, N., Shinohara, Y., Ohkura, M., Mishima, T., Nakai, J., & Hirase, H. (2014).
318	Imaging of Astrocytic Activity in Living Rodents. NeuroMethods, 85, 191-207.
319	Takata, N., Yoshida, K., Komaki, Y., Xu, M., Sakai, Y., Hikishima, K., Tanaka, K. F.
320	(2015). Optogenetic activation of CA1 pyramidal neurons at the dorsal and
321	ventral hippocampus evokes distinct brain-wide responses revealed by mouse
322	fMRI. PloS One, 10 (3), e0121417. doi:10.1371/journal.pone.0121417
323	Tanaka, K. F., Ahmari, S. E., Leonardo, E. D., Richardson-Jones, J. W., Budreck, E. C.,
324	Scheiffele, P., Hen, R. (2010). Flexible Accelerated STOP Tetracycline
325	Operator-knockin (FAST): a versatile and efficient new gene modulating system.

326	Biological Psychiatry, 67 (8), 770-773. doi:10.1016/j.biopsych.2009.12.020
327	Tanaka, K. F., Matsui, K., Sasaki, T., Sano, H., Sugio, S., Fan, K., Yamanaka, A.
328	(2012). Expanding the repertoire of optogenetically targeted cells with an
329	enhanced gene expression system. Cell Reports, 2 (2), 397-406.
330	doi:10.1016/j.celrep.2012.06.011
331	Tanaka, K. F., Takebayashi, H., Yamazaki, Y., Ono, K., Naruse, M., Iwasato, T.,
332	Ikenaka, K. (2007). Murine model of Alexander disease: analysis of GFAP
333	aggregate formation and its pathological significance. Glia, 55 (6), 617-631.
334	doi:10.1002/glia.20486
335	Tsurugizawa, T., Ciobanu, L., & Le Bihan, D. (2013). Water diffusion in brain cortex
336	closely tracks underlying neuronal activity. Proceedings of the National Academy
337	of Sciences of the United States of America. doi:10.1073/pnas.1303178110
338	Yamamoto, H. A. (1992). Nitroprusside intoxication: protection of alpha-ketoglutarate
339	and thiosulphate. Food and Chemical Toxicology, 30 (10), 887-890.
340	Yoshida, K., Mimura, Y., Ishihara, R., Nishida, H., Komaki, Y., Minakuchi, T., Takata,
341	N. (2016). Physiological effects of a habituation procedure for functional MRI in
342	awake mice using a cryogenic radiofrequency probe. Journal of Neuroscience
343	Methods, 274, 38-48. doi:10.1016/j.jneumeth.2016.09.013

344 Supplementary Figure Legends

345 Supplementary Figure 1. Engineering of neuron-,

GLIA

astrocyte-, or ventral astrocyte-specific ChR2(C128S) mice.

- 348 (a) Gene manipulation strategies. Top, tetO cassette was inserted downstream of the Actb
- 349 polyA signal in tetO knockin mice, but with no gene induction. Middle, tTA-mediated
- 350 gene induction. tTA binds to the tTA-dependent promoter (tetO) and transactivates the
- transcription of ChR2(C128S) in double-transgenic mice. Bottom, The tetO cassette was
- 352 removed by crossing with Cre mice, yielding Cre recombination. tetO, Tetracycline
- 353 operator; tTA, tetracycline-controlled transcriptional activator; pA, polyadenylation
- 354 signal; loxP, locus of X-over P1.
- 355 (b) Strategy for the generation of neuron-, astrocyte-, or ventral astrocyte-specific
- 356 ChR2(C128S) mice. <u>Neuron-ChR2 mice</u>: *Chrm4*-tTA induced the expression of ChR2 in
- 357 neurons, resulting in *Chrm4*-tTA::tetO-ChR2(C128S)-EYFP double-transgenic mice.
- 358 <u>Astrocyte-ChR2 mice</u>: Mlc1-tTA induced the expression of ChR2 in astrocytes, resulting
- 359 in Mlc1-tTA::tetO-ChR2(C128S)-EYFP double-transgenic mice. <u>Astrocyte-ChR2 mice</u>
- 360 with Emx1-Cre: Mlc1-tTA induced the expression of ChR2 in astrocytes in ventral
- 361 telencephalon (lower panel), but not in dorsal telencephalon by Cre-mediated removal of
- tetO cassette (upper panel). This results in *Emx1*-Cre;
- 363 Mlc1-tTA::tetO-ChR2(C128S)-EYFP triple transgenic mice.

Supplementary Figure 2. Transcranial light illumination evoked BOLD signal response in the subcortical region of Astrocyte-ChR2 with *Emx1*-Cre.

367 (a) Left, Schematic expression pattern of *Emx1*-Cre (black area) in a coronal brain

368	section of <i>Emx1</i> -Cre mouse (Tanaka et al., 2007). Right, DAB immunohistochemistry
369	against YFP (ChR2-marker) on coronal sections of the brain from Astrocyte-ChR2 with
370	<i>Emx1</i> -Cre mice. This demonstrates a lack of ChR2(C128S) expression in the dorsal
371	telencephalon. Scale bar: 1 mm. (b) A strategic diagram to generate <i>Emx1</i> -Cre;
372	Mlc1-tTA::tetO-ChR2(C128S)-EYFP triple transgenic mice. (c) Transcranial light
373	illumination of the brain from $n = 2$ Astrocyte-ChR2 with <i>Emx1</i> -Cre mice resulted in
374	BOLD response at subcortical region (an arrow points at superior colliculus). This
375	demonstrates that sufficient light reached through the skull to the subcortical region to
376	activate the ultra-sensitive ChR2(C128S) (Mattis et al., 2012). (d) Time-course of
377	BOLD signal fluctuation upon optogenetic activation of astrocytes at an arrow in (c).
378	Blue and yellow vertical lines show timing of illumination for each color. (e, f) ofMRI
379	using anesthetized Astrocyte-ChR2 mice (three measurements from 2 mice)
380	demonstrated BOLD signal fluctuation upon optogenetic activation of astrocytes
381	without behavioral response of mice. The duration of blue and yellow light was 0.5 s
382	only in this observation. Medetomidine was used for anesthesia (Takata et al., 2015).
383 384 385	Supplementary Figure 3. BOLD signal fluctuation upon optogenetic stimulation of neurons or astrocytes with only yellow light or reduced power light.
386	(\mathbf{a}, \mathbf{b}) Time course of BOLD signal fluctuations in the cortex of $n = 7$ Neuron- (\mathbf{a}) or $n = 8$
387	Astrocyte-ChR2 mice (b), upon illumination by pairs of yellow lights separated by 30 s.
388	(\mathbf{c}, \mathbf{d}) Time courses of BOLD signal responses in the cortex of $n = 13$ Neuron- (\mathbf{c}) or $n =$

- 389 11 Astrocyte-ChR2 mice (d), upon optogenetic activation using light power modulated to
- 390 10%, 20%, and 100% of that used in other experiments (i.e. Figs. 2–4). Grey shading
- 391 indicates the SEM.

Supplementary Figure 4. Optogenetic stimulation of either neurons or astrocytes did not induce behavioral response.

- 395 (a) A photo of a freely moving mouse with an optical fiber attached on the surface of its
- skull. (b) Representative data of the tracking of the mouse position during a habituation
- 397 period (8.5 min; Habituation) and a following period after habituation with light
- 398 illumination (8.5 min; Light). Scale bar: 5 cm. (c) Representative locomotion velocity
- 399 (black trace, left axis) and travel distance (gray trace, right axis) of a Neuron-ChR2
- 400 (left) or Astrocyte-ChR2 (right) mouse are plotted against time (bin width = 1 s). (d)
- 401 Grouped data that compares mean velocity of 3 Neuron-ChR2 (left panel) or 3
- 402 Astrocyte-ChR2 (right panel) mice during the last 30 s of a habituation period, 30 s
- 403 prior to the blue light illumination (Pre), and 30 s after the blue light illumination
- 404 (Light). Mean velocity of mice was not modulated by light illumination (1.9 ± 0.1)
- 405 versus 3.2 ± 1.4 , P = 0.11 for Neuron-ChR2 mice, 1.2 ± 0.2 versus 1.3 ± 0.3 , P = 0.61
- 406 for Astrocyte-ChR2 mice; paired *t*-test). Data are mean \pm SD. NS: not significant.

407 Supplementary Figure 5. Electrophysiological response 408 upon optogenetic stimulation of neurons or astrocytes 409 with only yellow light or reduced power light.

- 410 (**a**, **b**) Time courses of LFP-power at each frequency band from n = 5 Neuron- (**a**) or n = 5
- 411 Astrocyte-ChR2 mice (b), upon illumination by pairs of yellow lights. Data are
- 412 normalized (see methods). Vertical yellow lines indicate the delivery of yellow light
- 413 pulses. (c, d) Relative number of MUA counts per 1.5-s bin, recorded at the most
- 414 superficial 10 channels of the silicon probe electrode in the cortex of n = 5 Neuron-ChR2
- 415 (c) or n = 5 Astrocyte-ChR2 mice (d). (e, f) Time courses of LFP-power at each frequency

416	band from $n = 6$ Neuron- (e) or $n = 5$ Astrocyte-ChR2 mice (f), upon illumination by blue
417	and yellow light, whose power was modulated as described in Supplementary Fig. 1. Data
418	are normalized (see methods). Vertical blue and yellow lines indicate the delivery of light
419	pulses of each color. (g, h) Relative number of MUA counts per 1.5-s bin, recorded at the
420	most superficial 10 channels of the silicon probe electrode in the cortex of $n = 6$ Neuron-
421	(g) or $n = 5$ Astrocyte-ChR2 mice (h). Gray shading indicates SEM which envelopes a
422	mean trace.

Supplementary Figure 6. Representative images of other metabolites after optogenetic stimulation of astrocytes.

- 426 (a) Additional representative IMS images for AC/carnitine ratio (lower left) and
- 427 $^{13}C_2$ -AC/carnitine ratio (lower right) after optogenetic stimulation of the left cortex of an
- 428 Astrocyte-ChR2 mouse. Upper images are optical images of a coronal brain section used
- 429 for IMS. (b) Representative IMS images for glucose flux (left column), NADH (top panel
- 430 at right column), and adenosine-nucleotides (bottom three panels at right column) after
- 431 optogenetic stimulation of the cortex of the same Astrocyte-ChR2 mouse as Fig. 4d.
- 432 Images (top to bottom, left to right) represent lactate, ¹³C₂-lactate, glutamate,
- 433 $^{13}C_2$ -glutamate, NADH, ATP, ADP, and AMP. Arrow heads in the panels indicate regions
- that showed significant increase of AC (Fig. 4d). Scale bar, 2 mm.

Supplementary Figure 7. AC-increase upon optogenetic stimulation of astrocytes demonstrated by CE/ESI/MS technique.

- 438 Amount of carnitine, AC, and ${}^{13}C_2$ -AC in the dorsal cortexes that were ipsilateral and
- 439 contralateral to the optical stimulation was compared (upper panel), using a CE/ESI/MS

- 440 technique that analyzed micro-dissected brain tissues from n = 3 Astrocyte-ChR2 mice.
- 441 Amount of AC in the ipsilateral cortex was significantly higher than that in the
- 442 contralateral cortex after optogenetic stimulation (*P = 0.04, paired *t*-test; lower middle).
- 443 There was tendency of carnitine decrease (lower left) and ¹³C₂-AC increase (lower
- 444 right) in the ipsilateral cortex (P = 0.54 for carnitine and P = 0.23 for ${}^{13}C_2$ -AC, paired
- 445 *t*-test). These results support the imaging observation by IMS (Fig. 4d).

446

Supplementary Figure 2

GLIA

447

Supplementary Figure 3

Supplementary Figure 4

449

Supplementary Figure 5

450

Supplementary Figure 6

Supplementary Figure 7

