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% 1% Introduction and main results
We consider the abstract mathematical model of a (two-phase) composite medium containing
a core made of a different material. The aim of this work is twofold.

First, we study the so-called torsional rigidity of this medium. The torsional rigidity (from now
on we will refer to it as £) of a composite medium is defined as the integral of some function u (the
so-called stress firnction) defined as the solution of some boundary value problem. Our aim is to
investigate how rotational symmetry is related to optimality (in the precise sense of “maximizing
the torsional rigidity functional under volume constraints”). The one-phase analogue of this
problem (i.e. the case of a homogeneous medium with no core) was first studied by Pélya in 1948
he proved that ball maximizes the torsional rigidity among all domains of a fixed volume. Indeed,
such a result does not hold true when a core is present. We will use shape derivatives (see
Chapter 3) to show that the radial configuration given by two concentric balls is a stationary point
for the torsional rigidity functional. Moreover, such radially symmetric configuration can either be
a local maximum or a saddle point depending on the relative hardness of the materials used (see
Chapter 4 for the details).

The second original result of this PhD Thesis (see Chapter 5) concerns overdetermined elliptic
problems and the resulting symmetry of its solutions. In 1971 Serrin proved that the ball is the
only domain for which the solution of some elliptic boundary value problem (involving the Laplace
operator) simultaneously satisfies both Dirichlet and Neumann constant boundary condition. Our
result states that, when the Laplace operator is replaced by a two-phase operator (i.e. an operator
in divergence form, but with only piecewise constant coefficients), then resulting overdetermined

problem admits infinitely many non radially symmetric solutions.
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# 2% (lassical results in the one-phase setting

This chapter introduces the original proofs of Pélya and Serrin for the one-phase torsion
problem and the classical (one-phase) Serrin overdetermined problem. We recall that these proofs
are based on spherical rearrangement inequalities and the moving plane method respectively,
which fully exploit the invariance properties of the Laplace operator, and hence cannot be easily

adapted to the case of two-phase differential operators of divergence form.

# 3% Shape derivatives

This chapter introduces the fundamental tool used in this PhD Thesis, namely shape

derivatives. They can be thought as an analogue of classical derivatives for shape functionals i.e.
functionals that map domains in the Euclidean space (or tuples of them) to the set of real
numbers (or more generally, any Banach space).
Although far from a complete introduction of the subject, this chapter aims to lay the
mathematical foundation to deal with functionals like torsional rigidity (defined in the
introduction) that depend on shapes indirectly, by means of the solutions to some partial
differential equations.

The first step consists in giving a formula (called Hadamard's formula) for differentiating
simple shape functionals in integral form. We actually give to versions for this formula® one for
volume (N dimensional) integrals and one for surface (N-1) dimensional one.

Another deep result introduced in this chapter is the so-called structure theorem, which
roughly states that the first order shape derivative of any shape functional is “concentrated at
the boundary” . More specifically we say that it just depend on the normal component of the
perturbation field on the boundary of the domain in question. A similar (but more involved) result
holds true for second order shape derivatives as well.

Finally we present some ways of computing the shape derivative of particular Banach space
valued shape functionals, namely those that associate to any domain the solution u of some
boundary value problem defined thereon (such a function u is usually referred to as state function
in the literature). Under mild regularity assumptions, the structure theorem holds true and we
are able to characterize the shape derivative of u as the solution of some other boundary value

problem.

# 4% Two phase torsional rigidity
The computations here are quite straightforward, although tedious at some time. As a first
step we define the class of perturbations that we will be working with, i.e. sufficiently smooth
perturbations that fix the barycenter of our composite medium and do not alter either its total
volume, nor the ratio of the volumes of the two phases. By an application of the formulas of
Chapter 3 we obtain first and second order volume and barycenter preserving conditions (which
will be useful later on).
We recall that the torsional rigidity of our composite medium can be written as the integral

of the stress function over it. Now, by combining the computation of the shape derivative of



integral functionals (Section 3.2) and the derivative of the state function u (Section 3.4) we obtain
the first order shape derivative of the torsional rigidity functional . As predicted by the general
theory, this shape derivative can be expressed as a boundary integral that does not depend on the
shape derivative of the state function u. Finally, by the volume preserving condition at first order,
we have that the shape derivative of E vanishes when the composite medium is radially
symmetric.

The computation of the second order shape derivative of £ at the radially symmetric
configuration given by two concentric balls is radically more involved and is the core of this
chapter. Expressing the second order derivative of £ in terms of u and its shape derivative u'is
essentially just given by a further application of the Hadamard formula. The laborious part
consists in the accurate analysis of the terms containing u’and its gradient: these compu tations

can be carried out explicitly by means of spherical harmonics (see Appendix B).

% 5% Atwo-phase overdetermined problem of Serrin type

In this chapter we show the existence of nontrivial (i.e. non radially symmetric) solutions to
the two-phase overdetermined problem described in Chapter 1. This result is proven by means of
a perturbation argument based on the implicit function theorem for Banach spaces applied in a
neighborhood of a trivial solution. In the end we give a refined version of this result, taking into

account volume or surface area constraints.

fté%&A Elements of tangential calculus

In this Appendix we present the basic definitions of tangential differential operators
(tangential gradient, tangential divergence and so on), which occur so often in calculations
involving shape derivatives (see Chapter 3 for some applications). Essential properties and

theorems (e.g. the tangential analogue of integration by parts) are also discussed.

f1$%B Spherical harmonics

In the last Appendix of this work, we introduce an essential tool for the computations
performed in Chapter 4: spherical harmonics. They can be defined as the restriction of uniform
harmonic polynomials . to the unit sphere, although the equivalent characterization as
eigenfunctions of the Laplace-Beltrami operator turns out to be more useful in some calculations.
We also provide a classical proof of the following fact: the family of (appropriately normalized)
spherical harmonics forms an orthonormal basis of the vector space of square summable functions

on the unit sphere.
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