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Abstract
Due to the fast increase of sensing data and quick response requirement in the Internet

of Things (IoT), the large amount of network traffic flows and computing tasks become too

heavy to be supported by the limited radio and traffic resources in the IoT. In this study,

we analysis the resource limitation in the IoT, three corresponding resource allocation

algorithms are proposed to manage the limited radio and traffic resources in IoT.

In the first proposal, the UAV-enabled IoT is proposed as the resource management

platform. In the UAV-enabled IoT, the UAV-mounted flying base stations using both

D2D and cellular connection is deployed as high dynamic edge computing server to pro-

vide content sharing and delivery service to both IoT devices and central cloud server.

Based on the UAV-enabled IoT, a anti-cooperation game based partially channel assign-

ment (POC) algorithm referred to as ACPOCA is proposed to dynamically allocate POC

to each link in the IoT. In our proposed game theory based AC-POCA, the device use

only local information to play the game, and reach a steady state, uniqueness of which is

verified through analysis. Also, the upper bound of AC-POCA (i.e., Price of Anarchy) is

analytically evaluated, which is corroborated by simulation results. In addition, simula-

tion results demonstrate the effectiveness of AC-POCA in terms of good throughput and

low signaling overhead in a dynamic network environment.

After the AC-POCA is proposed, we further consider the radio resource allocation in

the more real IoT environment with high dynamic changed traffic flows such as bursty

traffic in the network. Such kind of high dynamics of traffic load make the conventional

fixed channel assignment based radio allocation algorithm ineffective. Furthermore, con-

sider the tremendous number of devices using various underlying protocols to connect

in IoT. The Software Defined Networking (SDN) based IoT referred to as SDN-IoT is

considered to deal with the heterogeneous resources and underlying protocols of IoT. In

the vein, a Deep Learning based Partially Channel Assignment Algorithm, referred to

as DLPOCA, is proposed to intelligently allocate channels to each link in the SDN-IoT

network. In addition, to deal with the high dynamic bursty traffic, we further consider

a deep learning based prediction method to estimate the future traffic in IoT. Then, the

traffic prediction based novel intelligent channel assignment algorithm (TP-DLPOCA) is

proposed, which can intelligently avoid potential congestion and quickly assign suitable

channels in SDN-IoT. The simulation result demonstrates that our proposal significantly

outperforms conventional channel assignment algorithms and ACPOCA in the high dy-

namic network environment.

Finally, After the suitable radio resources are intelligently allocated to the links in

the IoT, a deep learning based network traffic allocation algorithm is proposed to further

optimize the network flows allocation in the IoT. In the proposal, we propose appropriate

input and output characterizations of heterogeneous network traffic and propose a online
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deep neural networks system. We describe how our proposed deep learning based network

traffic control system works and differs from traditional neural networks. With the pro-

posal, the network traffic can be intelligent allocated to suitable routing path, which can

continuously learn from historical experiences to improve the allocation decision by itself.

Also, simulation results are reported which demonstrate the encouraging performance of

our proposed deep learning system compared to a benchmark routing strategies in terms

of significantly better signaling overhead, throughput, and delay.
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Chapter 1

Introduction

1.1 Background-The development and status of IoT

With the wide use of high speed internet, the physical objects embedded with electronics,

software, sensors, actuators can easily connect to internet and construct as a big smart

things driven network. Those smart network is commonly known as Internet of things

(IoT) [1, 2, 3, 4] , and the physical objects are referred to as IoT devices. With the

rapid development of internet, there are more than 200 billion IoT devices is expected to

interconnected around the world in the next 3 years. [5]

With the IoT paradigm, the researchers envisions the scenario contains a large number

of smart physical objects equipped with micro controllers, transceivers to collect data and

communication with each other in our daily life. It is foreseeable that, those intelligent

networks will integrate into our life and become an integral part of the Internet. [6]

As the rapid increase of IoT devices, there is an associated business market for both

manusfacturers, network services providers, software developers and platform builders.

The IoT devices and corresponding equipments are expected to reach 212 billions around

2020 [7]. Both the traffic flows and connected machines are grows fast in the past 10

years [8, 9], especially the M2M devices increased more than three times during 2017-

2012 [10]. The applications of IoT are widely distributed in various areas, such as health-

care, industry management, automation systems. In addition, the Navigant research

report Shows global revenue from IoT and analytics for utilities market may Grow to $5.1

billion in 2028 [11]. moreover, the market of IoT application in smart city is estimated to

continuous increase for nearly 16 billions per year in the future years. [12, 6]

The rapid growth of IoT in both industry and business fields emerges a big challenge

and opportunity for researchers. The traditional network structures only consider the

simple server and clients are no longer suitable for the new IoT system. the traditional

Internet architecture needs to be revised to match the IoT challenges. For example,

the tremendous number of objects swilling to connect to the Internet should be consid-
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Chapter 1: Introduction

ered in many underlying protocols [5]. IoT draws together various technologies such as

Radio Frequency Identication (RFID), Near Field Communication (NFC), Wireless Sen-

sor Networks (WSN), Machine-to-Machine (M2M), Unmanned Aerial Vehicles (UAVs)

communications. The complexity, possible limitations and heterogeneity of various IoT

devices connected to the internet will require even more specic tools to manage them and

to improve the performance of the whole network [13]. In such complex IoT environment,

the requirement of communication QoS of devices is tremendously increasing with both

the computational resource and radio resource of devices in IoT is limited. How to balance

the increased QoS requirement and limited resources becomes critical problem.

1.2 Introduction of the resource allocation in IoT

The resource allocation algorithms are widely researched in traditional network, such as

channel allocation in cellular network [14], network traffic allocation in wireless mesh

network [15], computing resource offloading in mobile network [16] and energy resource

allocation in WSN [17]. In the thesis, we mainly focus on the channel allocation and

network traffic allocation.

1.2.1 Considered UAV-anabled IoT and Anti-Coordination Game

based dynamic POC Assignment algorithm (ACPOCA)

The cloud computing, as an novel internet-based computing platform, can provides shared

processing resources computers and other devices on demand [16]. In traditional network,

the cloud server is normally deployed as the center service to offload computing resources

form distributed devices. Recently, the mobile-edge computing (MEC) has gained mo-

mentum to expend the resource offloading tasks from the center cloud computing to the

edge nodes in IoT [18]. Moreover, as another hot technique, Unmanned Aerial Vehicles

(UAVs) have appeared as a promising candidate to be exploited as flying base stations [19]

to quickly construct efficient and high Quality-of-Service (QoS) wireless networks even in

remote and/or rural areas [20, 21]. Such kind of flying base stations can be deployed as

high dynamic edge computing service provider in both traditional cellular network and

the considered IoT. On the other hand, in IoT, the bandwidth and energy are limited at

the content servers when multiple users aim to access the same content. This limitation

results in increased resource waste and delay [22]. To address this issue, Device-to-Device

(D2D) [23, 24, 25, 26] communication with caching emerged as a complementary solu-

tion in IoT [27]. D2D communication reuses existing licensed spectrum resources to make

under-laid transmission links, which can typically be deployed between smart devices [28],

which is a widely used technique in IoT. Furthermore, UAVs, to exploit their earlier

2
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Secondary D2D 

links(reuse channels)

Primary cellular 

links in IoT

IoT Devices

Congested

Congested

The UAV-anabled IoT: Could Partially Overlapping Channels 

(PoCs) be used to improve network throughput?

How to assign channels to 

the right links.

With the high dynamics of IoT, when

topology is changed, how to change channels?

New devices joins inDevice moves out

UAV (MEC)

Figure 1.1: Considered UAV-enabled IoT architecture and the problem of using partially
overlapping channels in the network.

mentioned flexibility to construct wireless communication networks in locations lacking

adequate cellular infrastructure, have been used to establish D2D links with caching [20].

With such UAV-anabled D2D, the whole UAV base stations based MEC in IoT is referred

to as UAV-enabled IoT. With the high dynamical ability of UAV, the infrastructure of the

UAV-enabled IoT is not only used to offload computing but also can be flexibly changed

to form a dynamic wireless network provider to meet the varying IoT user requirements.

In this research, we first envision the UAV-enabled IoT whereby the primary links

(i.e., downlink transmission) and secondary links (i.e., D2D underlink communication)

are considered as complementary methods for content delivery to offer better performance

compared to conventional content delivery approaches.

However, as demonstrated in Fig.1.1 in the proposed combined heterogeneous network,

both primary and D2D links share the same spectrum whereby both the UAVs and IoT

devices typically use multi-radio, multi-channel communications. The spectrum used by

both primary and secondary links of the UAV-enabled IoT makes the channel resources

limited in the entire network, and the nearby channels easily become overlapping. Such

overlapping channels in the neighboring UAVs and IoT devices can cause severe interfer-

3



Chapter 1: Introduction

ence leading to network congestion. Since high interference exists between non-orthogonal

(overlapping) channels and the number of orthogonal channels is limited, the Partially

Overlapping Channel (POC) can be a good solution to decrease interference and improve

network throughput [29, 30, 31] .To maximize the channel resource utilization, POCs can

be assigned to the UAVs and IoT devices. Researches demonstrated that proper assign-

ment of POCs can efficiently avoid interference and improve the aggregate throughput

of various communication networks. However, current POC algorithms mostly focus on

the improvement of network performance after channel assignment, but lack the con-

sideration of waste throughput due to the suspended transmission during the channel

assignment process. With the high dynamics of the considered IoT, the assigned channels

need to be frequently changed to adaptively adjust to the dynamically changed network

traffic. This dynamic adjustment throws out a critical requirement for the quick process-

ing of the channel assignment. Therefore, How to efficiently assign POCs to the nodes

while minimizing interference is a critical problem. Based on the conventional channel

assignment problem, by considering the mobility of UAVs and IoT devices, the network

topology becomes highly dynamic, which means that the link state and interference range

of each node may frequently change. However, conventional POCs assignment are typi-

cally limited by complex and numerous iterations, which depends on the persistent global

information and cause significantly long convergence time. Therefore, the existing POCs

assignment in other communication networks may not applicable to the highly dynamic

environment in the considered UAV-enabled IoT. This poses a further challenge to the

channel assignment problem. In the first part of our research, based on the complex con-

ditions in UAV-enabled IoT, I address those issues, and propose an Anti-Coordination

Game [32] based dynamic POC Assignment algorithm, referred to as AC-POCA.

The contributions of the first part are as follows.

• I present a UAV-anabled IoT and justify the adopted network topology. Then, I

analyze the new features of channels assignment problems in the proposed network.

• According to the new features of the proposed network, I use the anti-coordination

game to model the channel assignment problem in the considered network that uses

local information and leads to quick convergence time.

• Based on the high mobility of the UAV-enabled IoT, the dynamic topology based

POC assignment algorithm is further designed to deal with situations in which the

network environment is dynamically changed.

• I prove the existence and uniqueness of the steady state in AC-POCA and demon-

strate its superior performance over comparable methods in both mixed and dynamic

environments.

4



Chapter 1: Introduction

1.2.2 Considered SDN-IoT and proposed Deep Learning based

Partially Overlapping Channel Assignment (DLPOCA)

As the mentioned in the background, a big challenge of IoT is that the tremendous number

of objects swilling to connect to the Internet should be considered in many underlying pro-

tocols. If all IoT devices and corresponding communications are constructed in the same

structure and protocols, the resources algorithms maybe easily designed, however, the real

world IoT deployments are fundamentally heterogeneous. Software Defined Networking

(SDN) [33, 34] is a famous technique used in the IoT to deal with the heterogeneous

resources and structure [35] . In such SDN-IoT as depicted in Fig. 1.2, heterogeneous

devices sense and collect data in the sensing plane, and then send the data to the gateway

after integration through switches (i.e., routers) in the data plane. With SDN, the soft-

ware enabled with resource allocation algorithm are commonly deployed upon the sensing

plane of heterogeneous sensor devices. In such structure, the different underlying proto-

cols no longer the bottleneck of designed resource allocation algorithm. However, with

the increasing number of devices, the load of integrated traffic in switches may become

significantly heavy, and multiple radio channels are needed to be evenly assigned to each

link to balance the load [36, 37, 38].

To solve this problem, in the first part, an Anti-Coordination based POC Algorithm

(ACPOCA) was proposed, which can efficiently reduce the iteration times of channel

assignment process, and improve the network throughput. However, without a central

controller, both the signaling and suspension time of the network are limited by the dis-

tributed setting. Therefore, to address such challenges, in the second part, a deep learning

based, intelligent POC assignment algorithm with the centralized SDN is proposed. The

contributions of the deep learning based proposal can be explained in two aspects.

• First, with the central control paradigm of SDN, switches do not need to exchange

their channel states anymore. All channel assignment processes can be carried out

in the central controller. Thus, the signaling overhead of the network is significantly

reduced.

• Second, since the deep learning approach can learn from previous channel assign-

ment processes through training with the data collected from the existing channel

assignment algorithms (e.g., ACPOCA), the channel assignment can be finished in

just single iteration.

In summary, this approach, which we refer to as the Deep Learning based Partially

Overlapping Channel Assignment (DLPOCA), can efficiently reduce the suspension time

caused by channel assignment, and achieves almost non-suspending flows during the chan-

nel assignment process.
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Figure 1.2: The SDN-IoT architecture.

Additionally, in existing channel assignment algorithms, as the most important base-

line metric in the channel assignment, the traffic load is usually assumed to be continuous

and stable. This means that the traffic load in the next time interval after the channel as-

signment is similar to that in last time interval. However, the real traffic loads in practical

networks are more complex and may suddenly change like a bursty traffic. Particularly in

SDN-IoT, in the sensing plane of the SDN-IoT structure, the devices can be divided into

three groups depending on the sensing mechanism: periodic sensing, event-driven sensing,

and query-based sensing [39, 40, 41, 42]. For the periodic sensing devices, such as tem-

perature, humidity and light sensing devices, they sense data and periodically integrate

and transmit them to the central controller. Moreover, these devices may have different

policies (e.g., sensing circle, volume of sensing data, and so forth). For example, a kind of

temperature sensing device may collect 3kB temperature once in every 30s, another kind

of humidity sensing device may collect 10kB humidity data once every 1 minute. Those

different policies result in highly complex, periodically bursty distribution of the traffic

load. For the event-driven and query-based sensing devices, the traffic load is also not con-

sequent but explosively generated when a new event occurs or a query comes. The bursty

traffic caused by the event-driven and query-based sensing device is more random and

irregular than that generated by the periodic sensors. In the SDN-IoT network, with het-

erogeneous resources, sensing devices can hardly cooperate with one another, making the

switch impossible to know the real future traffic integrated by the heterogeneous sensors.

Furthermore, besides the traffic generated by its connected sensing devices represented
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as integrated traffic, each switch may also have to forward the traffic from other switches

denoted as relayed traffic. In practical networks, the mixed traffic containing integrated

and relayed traffic becomes more complex. Even though many existing researchers pro-

posed some methods about traffic load prediction, most of them focused on the traffic

changes in the long-term and did not consider the traffic load change caused by routing.

Therefore, in the third part of our research, a deep learning based prediction and POCs

assignment algorithm is proposed. contributions of the third part are separately outlined

as follows.

• First, I use the powerful deep learning approach to predict the complex traffic, which

can achieve above 90 percent accuracy and have a quick response time. (5ms<)

• Second, I investigate the advantage of using the centralized SDN technique in the

deep learning based traffic load prediction in the IoT environment. In order to show

the improvement of deep learning based traffic load prediction in SDN-IoT compare

with conventional IoT, we respectively design three traffic load prediction algorithms

to suit three different control systems (i.e., centralized SDN control system, semi-

centralized control system and distributed control system). After designing those

three different prediction methods, we further compare the prediction accuracy in

those three different control systems. The result shows that, the prediction accuracy

of centralized SDN based prediction is always better than those in the two other

systems.

• Finally, with the centralized SDN control, we combine the deep learning based traf-

fic prediction and partially overlapping channel assignment, that uses the predicted

traffic load as the criterion to perform the intelligent channel assignment. Such

proposed intelligent partially overlapping channel assignment, which we refer to as

TP-DLPOCA, can efficiently increase the channel assignment accuracy and process-

ing speed of channel assignment. The simulation results demonstrate that both the

throughput and delay in the SDN-IoT with our proposal are better than those of

the conventional algorithms.

1.2.3 The deep learning based network traffic allocation in SDN-

IoT

After the radio channels are intelligently assigned to each links in SDN-IoT. The potential

routing paths from source node to destinations can be easily got. However, as we men-

tioned above, with the traffic increase, the nodes in the certain routing path may suffer

extremely high burden. Then, how can we allocate the traffic flow to suitable path to
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alleviate the network traffic burden? Current SDN enabled network still use conventional

routing strategies which are commonly based on fixed rules [43], such as the Shortest

Path (SP) algorithm. The problem of fixed rule-based routing protocols is that the same

paths will be chosen when similar traffic patterns appear, even though these paths can

result in traffic congestion according to previous experiences. Repetitions of the same

fault lead to the unnecessary network performance deterioration. Moreover, the reactive

manner utilized in conventional routing protocols, to update path after some link/switch

failure, causes the unavoidable delay in a centralized control system [44]. Even we can
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develop an intelligent routing strategy by adding the memory mechanism, many other

latent problems still exist and new problems may appear due to the changing network

situations. Therefore, it is extremely important to design an intelligent routing strategy

which has the ability to learn from previous experiences and adapt itself to the changes.

To address the aforementioned issues and considering the high computation resource

equipped in the SDN-IoT controller, we propose a deep learning based intelligent rout-

ing strategy for SDN-IoT demenstrated in Fig.1.3. Definitely speaking, we consider the

network as an image and the different features of traffic patterns as different channels

of pixels. Since the Convolutional Neural Networks (CNNs) are the most widely utilized

architectures in the field of image classification, in this article, I utilize CNNs to analyze

the network traffic patterns and make the routing decisions. Our proposal consists of two

phases, the initial phase and the running phase. The contributions of our proposal can

be summarized as follows.

• I propose online self-learning method in network. This method will continuously

label real-time collected data to retrain the deep learning architectures. Therefore,

the deep learning architectures can get adapted to the environmental changes.

• To overcome the repeated mistakes caused by the fixed rule based routing algorithm,

I utilize the deep learning method to predict the traffic state in SDN-IoT. Definitely

speaking, in the actual running phase, the central controller will monitor the network

performance and utilize the real-time performance as the feedback of the routing

decision to periodically retrain the CNNs. Thus, the proposed strategy can not only

learn from previous experiences and proactively update the paths, but also adjust

and improve itself to suit the new traffic situation.
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Overview of Resource allocation,

game theory and deep learning in

IoT

2.1 Introduction

In IoT, the cellular communication and D2D communication are widely deployed in IoT

as the underling technique to fast construct the feasible IoT. However, the related research

works did not take into consideration the shortcoming of cellular infrastructure in remote,

rural, or disaster-affected areas.

UAV based wireless networks recently emerged as an attractive technique for facili-

tating public safety and military communications [45]. This is because the UAVs can be

rapidly deployed as aerial base stations to form a flexible cellular network [19, 46]. In

[20], the deployment of a UAV-based communication network over a given geographical

area was analyzed. The analysis demonstrated the feasibility of deploying UAVs in D2D

enabled cellular networks. While the UAVs equipped with reasonably large storage and

computing ability can be considered as content-centric server nodes in the considered IoT

network [47, 48], On the other hand, one of our earlier works in [45] demonstrated how

emerging wireless networks aided by UAVs can become useful in enabling communications

in ultra-dense environments in urban locations which might be the hot area in future IoT

scenario. to the best of our knowledge, no previous work has investigated the importance

of a combined UAV and D2D based network technology for supporting the network in

IoT.

However, with the mixed using of UAV, D2D and UAV, the heterogeneous devices

and underling protocol deployed in distributed manner may cause unpredictable error and

conflict. In order to solve such problem in the complex IoT environment, The SDN-IoT
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structure processed in centralized manner was first proposed by Qin at al. in 2014 [35]

which incorporates and supports commands in a heterogeneous structure to optimize

the SDN-IoT network. After the first SDN-IoT structure was proposed, many related

works emerged. Sood et al [49] employed a multi-objective constraint to manage the

layer resource in SDN-IoT. Ojo et al [13] presented a SDN-IoT architecture with Network

Function Virtualization (NFV) implementation to address the new challenges of IoT.

Nguyen et al [50] proposed a SDN-based IoT Mobile Edge Cloud Architecture to deploy

diverse IoT services at the mobile edge.

With such SDN-IoT, as shown in Fig.1.2 the algorithm for network control and re-

source allocation methods can be easily deployed in SDN central controller to manage the

whole IoT. About resource allocation, there are many exist works detailed introduced in

the next sections. In The remain sections, we first overview the existing studies about

resource allocation in conventional networks in Sec.2.2. Then, in Sec.2.3, the related radio

allocation namely channel assignment algorithms are introduced. In this section, we first

survey the channel assignment in wireless network and then introduce the usage of new

partially overlapping channels (POCs) in wireless network and IoT. After the channel as-

signment, we simply introduced the research state about my employed techniques, game

theory in network in Sec.2.4 and deep learning in network in Sec.2.5. Finally, the existing

works about network traffic allocation are discussed in Sec.2.6

2.2 Overview of resource allocation in network

The network resource such as radio resources, computing resources, power resources are

limited in the IoT. There are many resource allocation related researches, in this section,

we introduce the research flow of resource allocation.

Ten years ago, the resource allocation algorithm is first proposed to deal with the

limited resource utilization in cellular network. S.A. Grandhi et al., [51], gives resource

allocation solution for cellular radio systems. In the research, a Distributed Dynamic

Resource Allocation (DDRA) scheme based on local signal and interference measurements

is proposed for multiuser radio networks. In [52] C.Curescu et al. presents a bandwidth

allocation and admission control mechanism to be used in a radio network cell of a future

generation telecommunication network. This approach is based on the time-aware utility

to maximize the quality level of network. In the cellular network, the previous resource

allocation algorithms are mostly just consider the user in the network directly connect to

the base station, to improve it. M.Dohler et al. [53] proposed a FDMA-based regenerative

multihop links based resource allocation method, and researchers in [54] proposed a relay

and centralization based resource allocation algorithm. However, the resource limitation

of the relay node are not fully considered in those researches. To address this issue, Y.
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Li [55] proposed a relay station based integrated radio resource allocation algorithm which

also take the resource limitation of relay station into consideration.

The resource allocation problem is widely studied in conventional cellular network,

however, with the network technique developing, more complex heterogeneous network

such as D2D and UAV communication enabled IoT have emerged. To conquer the chal-

lenge, many researches are proposed. To model the complex network environment, R.

Yin [56] and F. Wang [57] use game theory to model the resource allocation problem, the

power and radio resource allocation algorithm is proposed correspondingly. D.H.Lee [58]

considers the resource allocation solutions in both distributed and centralized control

manner in the network. In [59], the authors jointly consider admission, power and radio

resource allocation, and propose a tress stage resource allocation algorithm. Then, B.

Zhou in [60] and M. Hasan in [61] consider the relay situation in the D2D enabled cel-

lular network. Those above methods mainly consider single factors in the network, the

researches [62], [63] and [64] further consider power consumption in both user and station,

the solutions are suitable for heterogeneous networks. However, those methods lack con-

sideration of multiple cellular and the interferences between different cellulars, Z. Zhou

in [65] considers C-RAN and multiple cellular environment, proposes an energy-efficient

resource allocation algorithm for D2D Communications network. Those resource alloca-

tion methods widely research the balance of different types of resource in the network.

However, all of those researches lack the focus on specific radio resource features, and

there are no related resource allocation algorithm designed for SDN-IoT.

2.3 Overview of channel assignment in wireless net-

work

In this section, we give a preliminary of the specific channel resource allocation in wireless

network. The radio channel allocation (i.e., assignment) is widely researched in conven-

tional wireless network.

2.3.1 Channel assignment in wireless network

A. Raniwala et al. in [66] at first studies the channel assignment problem in multi-

channel wireless mesh network and proposes that the channel assignment problem can

be treated as graph coloring problem [67] which is a NP-hard problem [68]. P. Kyasanur

in [69] proposes a classical fixed channel assignment algorithm in the multi-chennal multi-

interface wireless network. This method uses stable channels to fit for static network,

however, when the number of channels increases, the proposed NICs based interface model

may not satisfy the limited resources. In [70], instead of fixed network topology, the
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authors propose a topology channel based channel assignment algorithm. In this approach,

the channel assignment scheme is based on the independent network traffic to enable

flexible network topology. Even through the method is designed for flexible network,

the channel assignment algorithm itself is not dynamic. In this vein, some dynamic

channel assignment algorithms are proposed. The study in [71] shows a technique to

allow the channel dynamic switch within significant shot time slot. With such kind

of quick channel switch technique, A Raniwala et al. in [72] proposes traffic load based

dynamic channel assignment algorithm. A spanning tree topology is used in this algorithm

to leverage routing overload in the considered wireless network, both the neighbor-to-

interface binding and interface-to-channel binding are considered in this approach. In [73],

the authors further consider the impact of traffic patterns and network connectivity of

wireless links in network, a corresponding fixed channel assignment algorithm is proposed.

The priority rank of all nodes in network is calculated as the main factor of this proposal.

And the author first considers the nodes near the gateway with highest traffic load are

allocated highest ranks in the algorithm. In addition, to consider more complex network

environment, Zhou et al. [74] studies the radio allocation problem in multi-channel multi-

radio network, in this research, the authors focus on the minimal video distortion and

resource fairness to improve channel utilization. All of those studies work on the non-

overlapping (orthogonal) channels, however, in many cases, the application of partially

overlapping channels gives much better performance in terms of both network throughput

and QoS. In next part, I give a overview of partially overlapping channels in wireless

network.

2.3.2 Partially overlapping channel assignment in wireless net-

work

in 2005, Mishra et.al [75, 30] first research the situation of using partially overlapping

channels (POCs) in the network can improve the network performance. Bukkapatanam

et al. [31] then gives a detailed analysis of usage of overlapping channels in backbone

network. However, no corresponding POCs based assignment algorithm is proposed.

As the channel assignment algorithm is proved to be a NP-hard problem, In [76], a

heuristic POCs assignment algorithm is proposed. However, in this approach, the net-

work traffic is static and the traffic load in each node are not considered. P.D.F et.al [77]

firstly consider the POCs assignment problem from the game theoretical perspective.

With the definition of utility function of nodes (players) in network, the players auction

is processed to make the total utility of network maximum. After it, the same authors

further improve the game theory based POC assignment algorithm with cooperative game

theory[29] and proved the existence of the steady state(Nash Equilibrium) in the POC
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assignment algorithm (game). Besides, without employ game theory, there are some other

POCs assignment studies, Y. Ding in [78] proposes a POC assignment algorithm based on

unknown network traffic. Instead of conventional wireless network, P. Ciotrnae et.al [79]

considers the POC problem in WI-FI communication, with the build test bed, both the in-

terference model and SINR performance are detailed analysis. F. S. Bokhari [80] proposes

a mixed POCs assignment algorithm in both centralized and distributed control manner.

In summary, the related works widely study the POCs assignment in wireless networks,

many heuristic algorithms are proposed to minimize the interference and improve the net-

work throughput. However, as I know, no POCs assignment algorithm is proposed for the

specific IoT environment. In next part, we investigate the channel assignment researches

in IoT.

2.3.3 Channel assignment in IoT

The IoT is emerged as the famous network around the world recently, in terms of the

new features and special heterogeneous structures in IoT, many novel channel assignment

algorithms for IoT are proposed.

As the D2D is the main technique used in IoT, many researches work on the channel

assignment in D2D Underlaying cellular network that I have introduced in section.2.3.1.

Recently, in [81], Thong Huynh et.al further considered the joint downlink and uplink

interfere problem in D2D Underlaying cellar network. N. ul Hasan [82] investigates the

IoT scenario in 5G network. Based on the specific architecture and infrastructure, a QoS-

aware channel assignment mechanism for smart building with heterogeneous IoT devices

is proposed. Consider the channel assignment and network traffic allocation problem

are not independent from each other. HyungWon Kim in [83] proposes a mixed channel

assignment and routing algorithm which are suitable for event-driven video traffic in

wireless IoT. Last year, in the study of [84], H. B. Salameh considers the cognitive radio

networks (CRNs) in IoT, a time sensitive channel assignment approach under proactive

jamming attacks is proposed to improve the network performance. In this approach, the

security features of licensed users activities, fading conditions, and jamming attacks are

jointly considered. The IoT relies on cellular network, and in order to connect to various

IoT devices, the D2D connections are cooperated with cellular IoT. L. Zhao consideres the

the interference graph in the cooperated D2D Cellular Networks in IoT and proposes a

greedy based channel assignment algorithm. Those researches widely investigate channel

assignment in IoT, however, none of them consider the partially overlapping channel can

be used in IoT to improve the radio resource utility and network performance. In my

thesis, the POC assignment in IoT by using game theory and deep learning is the main

study objective.
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2.4 Overview of game theory in network

As mentioned above, the channel assignment problem is a NP hard problem. Game

theory, as a famous tool to provide near optimal solution to deal with NP hard problem,

is widely used in economics area [85, 86]. In last decade, a lot of engineering issues

are solved by researchers using game theoretical perspective. In the specific network

area, the game theory based solutions are widely distributed in topics such as network

traffic allocation [87, 88, 89], power resource allocation [90] and CRAN deployment [91].

Meshkati in [92] use non-cooperative game theory based algorithm to allocate power,

traffic in network. In this research, the author consider the QoS level of user and let users

to play the non-cooperative game to achieve the maximum utility in terms of energy

and transmission delay. However, the channel assignment is not considered in this study,

therefore, in [93], D. Niyato considers the radio allocation problem in network scenario

which using IEEE 802.16-based multi-hop wireless mesh infrastructure for relaying traffic

from IEEE 802.11 Wireless Local Area Networks (WLANs) based communications. In

this study, both the bandwidth and admission are allocated by using game theory based

auction process. In [94], Z. Zhao et.al use incompletely cooperative game theory to solve

the channel assignment and system performance optimization problem in wireless mesh

network.

The above methods use game theory to solve problems in network, however, none

of them consider POC assignment. In [95] Y. Song considers the jointly power and

channel resource allocation in access network. Furthermore, in [96], W. Yuan proposes a

overlapping channel capacity optimization algorithm in WLAN based on game theory.

In [29], P.D.F et.al employ game theory concepts to model mesh routers as decision

makers of a cooperative game. In the cooperative game, the interaction among all mesh

routers can be classified as an identical interest game. In this proposal, a players nego-

tiation based POC assignment algorithm is proved that can converge to a steady state

(Nash Equilibrium). However, in the above approaches, they do not consider the effect of

algorithm convergence time and how to adjust the algorithm to the highly dynamic net-

work scenario. Furthermore, in the existing works, many channel assignment algorithms

are based on the traffic loads of nodes without taking into account the situation of dy-

namic traffic load. In the dynamic traffic load scenario, the traffic load of each load may

change frequently which means that the channel assignment should be correspondingly

changed also. In addition, the dynamic topology of the network was not considered by

existing research works whereby the nodes may move frequently, which is the common

case in IoT. In such a case, the distance between each node may dynamically change and

the condition of the respective links change correspondingly. In other words, when the

network topology changes, the channels should also be reassigned to cope with the new
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topology. However, the long convergence time and need of global information make it

difficult to reassign the channels frequently. Because both the dynamic traffic load and

dynamic network topology exist in our considered combined UAV and D2D network, the

existing works may not be applicable to such networks. Therefore, in my thesis, a new

anti-coordination game based POC assignment algorithm in section. 3 and the further

improved deep learning based POC assignment algorithm in section. 5 are proposed.

2.5 Overview of deep learning in network

The performance of deep learning has been significantly improved since Hinton et al. [97]

proposed the greedy layer-wise training method to pre-train the deep belief architectures.

As more layers in the structures can represent a more complex relationship between the

input and output, deep learning has become an efficient tool to explore the unknown rela-

tionships among a number of factors. Besides the academic research on its applications in

image classification and nature language processing [98], various enterprises have adopted

deep learning to promote their products and improve their services. For example, Apple’s

”Siri” utilized this technique to provide the best response to customers’ requests [99]. In

the field of communication networks, researchers also attempt to adopt this technique to

address the emerging network challenges. However, not many achievements have been

made due to the difficulty in characterization of the deep learning structure’s input and

output for defining networking problems [100, 101]. Wang et al. applied the deep learn-

ing technique to find the features of the traffic flow data [102]. The results showed that

their approach works well for protocol identification and anomalous protocol detection.

In [101], He et al. present an efficient green resource allocation algorithm based on the

deep reinforcement learning, which can achieve high Quality of Experience (QoE) perfor-

mance. To meet the fast convergence requirement of the future backbone network, our

earlier work [103] proposed a tensor based deep learning approach to solving the routing

problem. We considered utilizing a tensor to arrange the multiple parameters related to

routing performance and the simulation results evaluate the efficiency of the deep learn-

ing strategy. deep learning based routing strategy running in GPU accelerated Software

Defined Routers (SDRs) which can be widely deployed in SDN-IoT. That work demon-

strated that the accuracy of the deep learning structure reaches as high as 95% and the

GPU accelerated routers conducts the computation 100 times faster than the conventional

routers. However, the performance of the deep learning structures in [102, 103] depends

on the supervised training which needs a large quantity of data. However, all of above

works not consider the channel assignment problem in wireless network especially in IoT.

In my thesis, we consider the deep learning for both radio channel allocation and network

traffic allocation. In the proposals, the network traffic patterns and corresponding deci-
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sion data are used to train the proposed DBN and CNNs for the decision making of both

the channel assignment and traffic routing. While the controller utilizes the deep neural

networks to choose the channel and paths, the historical experiences are continuously

collected and formatted as new training data.

2.6 Overview of deep learning in network traffic al-

location

Our earlier work in [100] envisioned the first proof-of-concept of using deep learning

architectures for substantially improving the heterogeneous network traffic control. A

deep learning system was proposed that can be trained in a supervised manner based

on uniquely characterized inputs using traffic patterns at the edge routers of a wireless

backbone network. However, the deep learning algorithm was trained upon a considered

benchmark routing method, namely Open Shortest Path First (OSPF). The survey con-

ducted in [104] demonstrated that there exist different deep learning architectures such

as Deep Boltzmann Machines (DBMs), Deep CNNs, and so forth that could be exploited

for network traffic control systems. However, the case study considered in that work also

considered a baseline routing method for training the deep learning algorithm. Further-

more, the work in [103] explored current Software Defined Router (SDR) architectures and

demonstrated how the deep learning technique can be harnessed to compute the routing

paths. The Graphics Processing Unit (GPU)-accelerated SDR enabling massively par-

allel computing for the deep learning was shown to substantially improve the backbone

network traffic control. However, similar to the afore-mentioned researches, this work

also adopted a supervised deep learning system dependent on a conventional rule-based

routing method. Therefore, how to design a new traffic allocation algorithm which is not

depended on the existing labeled data and get rid of conventional routing protocol in

SDN-IoT becomes a new challenge.

2.7 Summary

In this chapter, I first give a preliminary on the related works of resource allocation

in conventional wireless network and the considered SDN-IoT. From the existing works,

there are lack of methods to deal with the partially overlapping channels in IoT, and

the conventional channel allocation methods only focus on the static scenario and not

intelligent for dealing with the changing traffic and topology in the IoT. To address such

issues, I introduce two powerful tools namely game theory and deep learning and survey

the related applications of using the tools in network. Besides, I investigated the research
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flow of deep learning used in network traffic resource allocation area. The proposed novel

deep learning based traffic allocation algorithm is detailed described in chapter.6. With

the overview of existing works, the weakness of past methods and the challenges of the

resources allocation problem in IoT are emerged. In next chapter, we detailed model the

considered system and formulate the radio resource allocation problems. The solutions

for solving the problems are correspondingly proposed individually in next chapters.
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Chapter 3

The Proposed Anti-Coordination

Game based Channel Assignment

In this chapter, we detailed describe how to model the channel assignment problem in

considered IoT and propose the corresponding anti-coordination game based channel as-

signment algorithm.

To make the proposal clear, in this part, I firstly give the network model and channel

interference model. By analyzing the models, the partially overlapping channel assignment

problem is formulated as a game theory based utility maximization problem. Consider

the complexity of the UAV-enabled IoT, we proposed the anti-coordination game based

channel assignment algorithm referred as ACPOCA to solve the utility maximization

problem in two steps. In the first step, we considered the topology of the network is fixed,

the corresponding POC assignment solution are proposed in section. 3.2.2. Then, the full

ACPOCA to handle the dynamic topology is proposed in section. 3.2.3. In section. 3.3, I

clarify the existence and uniqueness of the steady state of our proposed algorithm. The

simulation results are given and analyzed in section. 3.4.2.

3.1 Network Model

Consider the UAV-enabled IoT network as a three-dimensional topology. Also, consider

the UAV and IoT Devices sharing the same channels. Therefore, in the remainder of the

paper, we refer to both the UAVs and IoT devices as “nodes”. Let N denote the number

of existing nodes in the system that are represented by the set, Aold = {a1, a2, . . . , aN}.
Each node in the considered network is represented by its own features, i.e., latitude,

longitude, and height. In contrast to the traditional wireless network, the considered

IoT exhibits high flexibility, and nodes can move and be added or removed according

to situational demands. If M nodes are added to the network, they are denoted by
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B = {b1, b2, . . . , bM}. Therefore, the total nodes, in the considered system, are represented

by A = Aold ∪B = {a1, a2, . . . , aN , aN+1, aN+2, . . . , aN+M}.
In order to transmit the IoT data, the nodes in our considered network are assumed

to comprise 802.11 2.4 GHz links and multiple radios with up to 11 channels. As men-

tioned earlier, both primary cellular and D2D links share those channels. However, the

non-overlapping channels are limited (e.g., channels 1, 6, and 11). On the other hand,

using overlapping channels in an arbitrary fashion results in severe interference and even-

tually network congestion. In order to alleviate this problem and improve the aggregate

throughput of the considered network, we aim to exploit POCs. Even though POCs can

also interfere with each other, their interference range is significantly smaller than the

typical overlapping channels [105]. Such reduced interference range of POCs enables an

increased number of parallel transmissions, and, thus, leads to increased network capacity.

The issue of assigning POCs can be considered to be an optimization problem in

which the available communication channels need to be mapped to network interfaces for

minimizing signal interference and maximizing the communication capacity. The inter-

ference range is defined as the distance within which interference occurs. Furthermore,

in a network having multi-channels connections, there are four different types of interfer-

ences which should be addressed due to their influence of network capacity: co-channel

interference, orthogonal channels interference, adjacent channels interference, and self in-

terference [29]. Next, we present a model to describe these different types of interferences.

3.2 Interference model

The Interference Matrix or “I-Matrix” method in [105] may be used to model the above-

mentioned types of interferences in order to carry out appropriate channel assignment.

I-Matrix employs a special matrix to record the interference of each node and determines

whether the chosen channel is viable or not to a given link exploiting POC. In order to

record the interference of each node, a metric called Interference Factor (IF ) is defined to

measure the interference between channels. IF represents a ratio of geographical distance

and interference range between two operating radios. fp,q expresses the effective spectral

overlapping level between channels p and q.

The works in [106, 107] conducted experiments to measure fp,q under real conditions for

different channel separations. Here, we use the result of those works to construct Table 3.1,

Here δ refers to the interference range for a channel separation between channels p and q,

IR(δ) = |p− q| denotes the geographical interference distance between channels p and q.

Now, let d refer to the distance between nodes operating with channels p and q. If

the nodes use the same channel, d is set to zero. Then, fp,q is calculated in the following

three cases respectively:
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Table 3.1: Interference Range (IR).

δ 0 1 2 3 4 5
IR(δ) 132.6 90.8 75.9 46.9 32.1 0

1. fp,q = 0: when δ ≥ 5 or d > IR(δ).

When the nodes are assigned orthogonal channels or have enough distance to avoid

interference, no interference occurs between the radios.

2. 1 < fp,q <∞: when 0 ≤ δ < 5 and d ≤ IR(δ).

When overlapping interference occurs, the distance between the nodes is smaller

than the interference range. In this case, IF should be a ratio proportional to the

distance between the nodes. IF can be calculated as follows:

fp,q = IR(δ)/d. (3.1)

3. fp,q =∞: when 0 ≤ δ < 5 and d = 0.

This happens because of the self interference problem. Hence, two overlapping chan-

nels (δ < 5) are not viable to be assigned to the node due to their full interference.

After we have modeled the interference factor of POC, we further use the Interference

Vector and I-Matrix to measure the interference situation of each node.

Table 3.2: Interference Vector.

di Ch1 Ch2 Ch3 Ch4 Ch5 Ch6 Ch7 Ch8 Ch9 Ch10 Ch11
d3 f3,1 f3,2 f3,3 f3,4 f3,5 f3,6 f3,7 0 0 0 0

• Interference Vector: The Interference Vector is shown in Table 3.2 that is calculated

based on all the IF s between one channel to all 11 channels. The table keeps track

of the distance dp to the nearest assigned radio in channel p.

• I-Matrix: Each node updates its own Interference Vectors of all 11 channels, which

form an I-Matrix according to Table 3.3. Also, the node updates I-matrix when

any channel assignment is changed.

Based on the afore-mentioned network and interference models, we are now ready to

formulate the research problem.
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Table 3.3: I-Matrix.

Ch di 1 2 3 4 5 6 7 8 9 10 11
1 d1 f1,1 f1,2 f1,3 f1,4 f1,5 0 0 0 0 0 0
2 d2 f2,1 f2,2 f2,3 f2,4 f2,5 f2,6 0 0 0 0 0
3 d3 f3,1 f3,2 f3,3 f3,4 f3,5 f3,6 f3,7 0 0 0 0
4 d4 f4,1 f4,2 f4,3 f4,4 f4,5 f4,6 f4,7 f4,8 0 0 0
5 d5 f5,1 f5,2 f5,3 f5,4 f5,5 f5,6 f5,7 f5,8 f5,9 0 0
6 d6 0 f6,2 f6,3 f6,4 f6,5 f6,6 f6,7 f6,8 f6,9 f6,10 0
7 d7 0 0 f7,3 f7,4 f7,5 f7,6 f7,7 f7,8 f7,9 f7,10 f7,11
8 d8 0 0 0 f8,4 f8,5 f8,6 f8,7 f8,8 f8,9 f8,10 f8,11
9 d9 0 0 0 0 f9,5 f9,6 f9,7 f9,8 f9,9 f9,10 f9,11

10 d10 0 0 0 0 0 f10,6 f10,7 f10,8 f10,9 f10,10 f10,11
11 d11 0 0 0 0 0 0 f11,7 f11,8 f11,9 f11,10 f11,11

3.2.1 Problem Formulation

Each node in the proposed network shown in Fig. 1.1 wants to be assigned a proper channel

to maximize its throughput based on its own traffic demands. However, each node also

wants its channel to be different from its neighboring node such that the interference is

minimum. When the nodes improve their own connectivity through assignment of proper

channels, the total connectivity will be improved also. However, this means that each

node acts selfishly to obtain the best possible channel assignment. Without the help of

a central controller (e.g., a ground station), the nodes need to use a distributed channel

assignment procedure. In such a distributed scenario, the channel assignment problem

can be represented by the properties of an anti-coordination game played by the nodes.

• Anti-Coordination Channel Assignment Game: Games such as the game of chicken

and hawk-dove game in which players score the highest when they choose opposite

strategies are called anti-coordination games. We use the Anti-Coordination game

property that if and only if the strategy in the game has a total bandwagon, it satis-

fies the interference property of the channel assignment model. In our network, each

node is considered as a decision maker of the game, and the assignment of channel

is considered as a strategy. Thus, we can model the interactions among nodes as

an anti-coordination channel assignment game. The game has finite sets of nodes,

referred to as players A = {a1, a2, . . . , aN} with a common strategy space S. In our

work, we assign the channel(s) to a node’s (i.e., player’s) radios by its chosen strat-

egy. We express the strategy of the ith player as si ∈ S, si = {ki,1, . . . , ki,c, . . . , ki,|C|},
where ki,c is a binary value. When channel c is assigned to a player, we set ki,c to

1, and 0 otherwise. |C| refers to the number of channels for the channel set C.

The Cartesian product of the players’ strategy vector is defined as the game profile

of the network, Ψ = ×i∈Asi = s1 × s2 × · · · × sN. A game profile is composed of

each strategy of every player. s−i means the strategy set chosen by all other players

except player i.
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• Player Utility: The objective of the game is to maximize the network throughput.

However, in the anti-coordination game, a player only focuses on his utility. We

define the utility of a player i as Mi. This utility can be a proportional measure of

the connectivity of each node as shown in (3.2). Each link with channel q’s capacity

is evaluated according to its interference factor, denoted by IFq . The link data rate

R is used to measure the traffic load of the player (node). The importance of a player

also depends on two topology control factors, h and k, which mean its hop count to

the gateway (GW), and whether it can connect to the GW or not. Here, h and k are

used to measure how efficiently these links connect to the gateway (GW). The work

in [29] assumes that the utility is linearly proportional to the hop count h. However,

that assumption has a shortcoming when the network is large whereby the utility of

any node far away from the gateway decreases quite fast and finally approaches 0,

and therefore, is eventually ignored in the next anti-coordination game. Hence, in

this work, we adopt a natural logarithmic function ln (h+ 2), where h+ 2 is used to

avoid the denominator of the utility function to become 0 and, this exhibits better

performance in larger networks. k is set to 1 if the node can indirectly reach the

GW, and 0 otherwise.

Mi = k

∑
q∈C

R
IFq+1

ln (h+ 2)
(3.2)

• Social Welfare: The social welfare means the total utility of the network. Each

player has its utility function Ui(Ψ) dependent on its own strategy and other players’

strategies. Because we defined an anti-coordination game, the social welfare of the

game, UNET , can be represented as follows.

UNET (Ψ) = Ui(Ψ) =
∑
i∈A

Mi, ∀i. (3.3)

By modeling the channel assignment as an anti-coordination game, we may use the

game theoretical properties to guarantee optimized network performance. In such a game,

the players will change their interdependent strategies in S to improve their utilities, which

correspondingly improve the value of UNET . Then, several important issues arise: (i) how

the players play the game to improve the social welfare, (ii) whether they ever reach a

consensus, or steady state, (iii) if the topology changes, how the game goes on to reach

such a steady state, and (iv) how efficient this steady state performance would be. In

the following section, we propose an algorithm to allow the nodes to play such a game

and address the afore-mentioned issues by proving the existence of a steady state and

evaluating its performance.

In this section, our main objective is to design an optimal channel assignment algo-
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rithm using game theoretic approach. In this vein, we first show that our formulated

game is a potential game [108].

In our prior research in [29], if a game is in a state of Nash Equilibrium (NE) whereby

the players arrive at an agreement, the game can be considered to be in a steady state.

Strategy s∗ ∈ S is an NE if the game utility satisfies the following,

Ui(s
∗) ≥ Ui(s

′

i, s−i) ∀ s
′

i ∈ Si,∀i ∈ A. (3.4)

In our formulated game in Sec. 3.2.1, there exists a potential function P as follows,

P (s
′
, s−i)− P (s

′′
, s−i) = Ui(s

′
, s−i)− Ui(s

′′
, s−i) ∀ i, s

′
, s
′′
, (3.5)

where s
′

and s
′′

stand for two arbitrary strategies. It is straightforward that the network

utility function (3.3) itself is a potential function for the game. Hence, we have,

P = Ui(Ψ) = UNET (Ψ),∀i. (3.6)

Thus, our considered problem is a potential game. In potential games, the existence of

NE can be proved. Also, such games have several useful properties. The first property is

that the finite potential game possesses at least one pure strategy NE [108]. The second

property is that All NEs are either local or global maximizers of the utility function [108].

The third property states that there are well-known learning schemes to reach these

function maximizers such as best response and better response [109].

By these properties of a potential game, we can prove that our formulated game can

reach a steady state, and all players will reach a consensus. Now, let us call a player ai

unhappy, if ai can achieve better utility by changing its channel. Let Au indicate the

set of unhappy players. We now run the learning schemes to make the unhappy player

happy until no unhappy node exists, i.e., (Au = ∅). With potential and coordination

games, learning schemes like best response, better response, smoothed better response,

and perfect foresight response may be used to accomplish such goals. These learning

schemes are described below.

• Best response: As expressed in (3.7), the player searches its entire strategy space

and selects the one which yields the best outcome considering the other players’

strategies. This scheme provides fast convergence in polynomial time. In fact, in

our game, the number of steps is equal to the number of connected links in network.

On the other hand, it requires intensive processing that grows linearly according to

the strategy space and has normal probability to get trapped in a local optimum.

rClst+1
i = arg max

s∈Si

Mi. (3.7)
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• Better response: As expressed in (3.8), each player selects a random strategy and

keeps it as long as it generates a better outcome than the previous one. Thus, better

response provides a less intensive computation at the cost of a slower convergence

to the equilibrium, and has normal probability to be trapped in a local optimum.

rClst+1
i =

srandi if Mi(s
rand
i , s−i) > Mi(s

t
i , s−i)

sti otherwise.
(3.8)

• Smoothed better response: This method uses randomness in the decision process

which may lead to convergence to the global NE with a high probability. This

uncertainty occurs according to the following probability function:

p(srandi , sti ) =
eMi(s

rand
i ,s−i)/γ

eMi(srandi ,s−i)/γ + eMi(sti ,s−i)/γ
, (3.9)

where γ is a parameter responsible to control the trade-off between the technique’s

outcome performance and convergence speed. A large value of γ enables an extensive

strategy search and slow convergence. On the other hand, a small γ restricts the

search while improving the convergence speed. The player will evaluate the newly

selected random strategy against the previous one, and select the new strategy

according to (3.9). Thus, notice that smoothed better response incurs the least

intensive computation at the cost of the slowest convergence to NE.

• Perfect foresight response: While this is similar to the best response technique,

it involves the players to form an expectation by discounted average time of action

distributions of the next period instant of current action distribution [110]. This

method gives one path from any initial state to the NE, but it may be trapped in

this point forever. Also, compared to the best response technique, this may result

in a higher computation cost.

The above four learning schemes have their own advantages and disadvantages. If the

nodes were involved in a cooperative game as shown in our earlier work in [29], smoothed

better response technique could be used. However, in such a scenario, when each node

changes its channel, all other nodes should update their I-Matrix. This means that the

nodes changing their channels need to exchange their channel selection information with

the other nodes, thereby significantly increasing the signaling overhead. In addition,

with the cooperative game method, each node calculates its utility depending on the

strategy selection of all other nodes and the global information. Thus, when the traffic

load and topology of the network change, the utility of every node is changed and the

channels need be reassigned to all the nodes. During the reassignment of channels, the
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content transmission and delivery of the whole network may be halted. Both the increase

of signaling and waiting time to perform reassignment will cause severe degradation of

throughput of network. Therefore, in order to avoid the global channel reassignment and

decrease the signaling overhead, our algorithm should be designed independent of other

nodes and to converge as fast as possible. In other words, different from the cooperative

game in [29], in our anti-coordination game played by the nodes in a decentralized manner,

each player’s response only depends on its own utility from local information and does not

need to know the utility of the other players. As a result, the channel reassignment only

affect local node and neighbors and signaling overhead can be reduced. The performance

of decreased overhead, Psig, can be calculated as follows:

Psig = 1− |E|
|E| ×Niter × |C|

, (3.10)

where |E| denotes the number of connected links in the network. Niter stands for the

number of iterations by smoothed-better-response.

Thus, we design our Anti-Coordination game based Partially Overlapping Channels

Assignment (AC-POCA) algorithm using the best response technique to allow it to con-

verge rapidly and also avoid global channel reassignment. The steps of AC-POCA are

shown in Alg. 1, in which we assume each node has a unique identification parameter

IDai∈A for routing purpose. It is worth reminding that due to the features of our con-

sidered UAV-enabled IoT network, the network has a highly dynamic topology and high

mobility of nodes. We respectively describe our algorithm in two steps, first we consider

the static topology of the network and then we consider the dynamic case.

3.2.2 Static topology

In the initial phase, all the nodes are initialized such that they belong to the unhappy

set, Au. Each node uses a priority queue to store Au. The priority order of each node in

set Au is decided by various metrics such as traffic load, number of neighbors, distance

to gateway, and so forth. Here, we use a queue to store the unhappy set because with

the best response technique, each node only performs channel assignment once (i.e., only

one iteration) and will not affect the channel selection of nodes carrying out channel

assignment prior to it (i.e., in front of it in the queue). Then consider the I-matrix of each

node also initial calculated in the first case, consider the de-centralized network, where

each node only calculates the distance from other nodes in each interfere vector within its

transmission range. Then, each node processes the steps is shown within lines 13 to 27 in

Alg. 1 so that the best response strategy is used to assign the POCs. In line 19, after a

channel is selected by the calculated utility, a valid threshold hv, denoting the tolerance

26



Chapter 3: The Proposed Anti-Coordination Game based Channel
Assignment

to channel interference is used to assess whether the channel selection strategy is valid or

not. Then, the node removes itself from the unhappy set Au and broadcasts IDai∈A and

notification qt to other nodes to continue those steps until none of the nodes belongs to

Au.

From here on, we present an easy-to-understand example of our proposed algorithm

in Fig. 3.1 that describes a simple scenario where only 4 nodes construct a network. For

the sake of simplicity, consider that the distance between each node is 100 meters and the

link data rate is 1Mbps for all links. The assigned channels and overall network utilities

for different initial orders of the nodes are listed in Table 3.4. The table demonstrates

the different steady states of each link in different initial orders. For example, in row 1,

the order {1,2,3,4} means the nodes a1, a2, a3, and a4 have the first, second, third, and

fourth initial orders, respectively. According to their orders, the four nodes are placed

into the unhappy set Au. Then, the first order node, i.e., a1 is selected to play the channel

assignment game. Node a1 performs channel assignment on all of its links represented by

edges {e1,e2}. e1 chooses the first strategy sseli from strategy space{ki,1, . . . , ki,c, . . . , ki,|C|},
and judges whether it satisfies (3.7). Because e1 is the first link which the first channel

assignment is performed, no other channel will interfere with it. Thus, using line 13 of

Alg. 1, e1 chooses channel 1 and its interference factor, IF , is zero. In addition, using

(3.2), the utility of a1 for e1 is 0.721. If a1 changes to any other channel on e1, its utility

will not increase. If the utility is larger than a threshold (e.g., 0 in this example), a1

considers the channel assignment on e1 to be valid. Similarly, a1 assigns channel on its

remaining link/edge e2. Because the channel assigned on e1 interferes with that on e2,

a1 needs to choose the best channel (e.g., channel 6) so as to make its utility for e2 the

maximum (i.e., 0.721). Thus, a1’s utility becomes 1.442. After all its edges have received

valid channel assignments, a1 becomes a happy player, and therefore, is removed from

Au. At this point, a1 broadcasts this event to the other nodes, which, in turn, update

their I-Matrix. Now, a2 becomes the first order node in Au that starts to play the channel

assignment game on its links e1 and e4. Because a channel was already assigned on e1,

a2 only needs to assign a channel on e4, which interferes with the channels assigned on

e1 and e2. Using (3.2), a2 decides that the best channel to be assigned on e4 is 7, which

yields a2’s utility to the maximum (i.e., 1.822). As a consequence, a2 is removed from

Au, and a3 starts playing the channel assignment game on only link e3, which is within

the interference range of the other three edges (e1, e2, and e4). Regardless of the chosen

channel, a3’s IF for e3 is∞ mentioned in Sec.3.2 leading to a utility of 0, which is invalid.

Therefore, e3 is not assigned any channel. For agreeing with the channel already assigned

on e2, a3 receives its maximum utility of 1.822. Then, a3 is removed from Au. At this

point, a4 is the final unhappy player remaining in Au, which commences its channel

assignment game. Because channels have been already assigned to both its links (e3 and

27



Chapter 3: The Proposed Anti-Coordination Game based Channel
Assignment

Belongs to unhappy set Au

Removed from set Au

Edge yet to choose strategy

Edge has chosen a  strategy

One strategy chosen 

from strategy set Si

a1 a2

a3
a4

e1

e2
e4

e3

After a1 chooses 

strategies for all 

its edges, a1

becomes happy 

and is removed 

from the set Au Gateway (GW)

Figure 3.1: A simple, easy-to-understand illustration of the operation of the proposed AC-
POCA algorithm. The example comprises 4 nodes with 4 links in the proposed network.
In this instance, node a1 is the player with the first initial order. So, it chooses channel
assignment strategies on its links (edges) before the other players.

e4), a4 does not need to carry out further channel assignment and receives its maximum

utility of 1.443. Thus, the total network utility (UNET ) with this initial order in row 1 of

Table 3.4 is 6.529. In the same manner, the other initial orders lead to different channel

assignment on these links resulting in other steady states with varying UNET values.

3.2.3 Dynamic topology

Furthermore, in our combined UAV-enabled IoT, the network topology may dynamically

change due to the distance changed between the nodes (UAV or IoT devices), new nodes

arrival, and old nodes departure. When the network topology changes, how the game

can reach a new steady state should also be considered. In such a case, we focus on the

distance df between the nodes. The node arrival and departure are also special cases of

distance change. Here, we define dfn as the distance between node ai and ai+1 during the

Table 3.4: Channel assignment using AC-POCA in the different links shown in Fig. 3.1
for different initial orders of the players. Among the 24 possible initial orders, only a few
are listed as a simple example.

Order Ch (e1) Ch (e2) Ch (e3) Ch (e4) UNet

Order:1,2,3,4 1 6 ∅ 7 6.529
Order:2,1,3,4 1 7 ∅ 6 6.529
Order:3,4,1,2 6 1 6 11 5.693
Order:4,1,2,3 11 6 1 6 5.693

· · · · · · · · · · · · · · · · · ·
Order:4,3,2,1 1 7 1 6 5.693
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time-slot n. So, the different strategy is chosen by the difference from dfn−1 to dfn. Those

different strategies are considered within lines 4 to 9 of Alg. 1. The lines 4 and 5 show the

case of a new node joining the network, lines 6 and 7 show a case whereby the distance

between two nodes are far enough to disrupt/break the link. Lines 8 and 9 show the

case where the interfere range is changed by the distance change between the two nodes.

Then, the steps of mixed channel assignment shown within lines 12 to 23 are repeated

so that until none of the nodes belongs to Au. In this algorithm, each node performs

this algorithm by itself. Only when the assignment steps are finished, the broadcast to

notify other nodes is performed. Unlike the conventional channel assignment algorithm,

nodes calculate their utilities and perform assignment only by local information, except

the I-matrix update phase. As shown in the case of the mixed topology, each mixed initial

order leads to a unique steady state and the node only performs channel assignment once.

This implies that the joining node in the unhappy queue will not interfere with others in

front of it. When the environment of the node is changed, the node just pushes itself into

the unhappy queue again. This means that even the node reassigns its channel, it will not

interfere with the channel assignment of other nodes. Compared with the conventional

channel assignment algorithm whereby all nodes should reassign their channels when the

topology of the network is changed which causes network transmission to be totally halted,

our AC-POCA algorithm can significantly improve the throughput of the network.

Next, we need to demonstrate that for a given initial order of the nodes, the pro-

posed AC-POCA algorithm has a unique steady state. The following section analyzes the

uniqueness of the steady state for a given initial order of nodes.

3.3 Analysis on Unique Steady State

From above section, we already know the existence of a steady state (i.e., NE) in our game.

To further prove its uniqueness, we use several definitions as follows. As mentioned in

Sec. 3.2, we consider our game as a N -player game, G = (S,M), where S is the common

pure strategy space S = Si,∀i. M represents the utility matrix and x means a selection

probability of any strategy in the strategy space, S. supp(x) indicates the support

function of x. When a player chooses strategy x, br(x) and wr(x), respectively, represent

the sets of the best and worst responses to x in pure strategy.

From [111], it is known that the Anti-Coordination game has the property that

wr(x) ∈ supp(x) is always satisfied for any strategy x. And from the definition in [112],

it may be noticed that the strategy x makes the game reach a NE only when it satisfies

supp(x) ∈ br(x). This means that if any other NE exists, the following equation should
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Algorithm 1 Anti-coordination Game-based Partially Overlapping Channel Assignment
(AC-POCA) Algorithm.

Input: Each node ai(i ∈ 1, N) in A
Output: The selected strategy sseli of each link
1: Initialization: unhappy set Au ← A
2: Set a priority order to every node in set Au

3: for each time slot n do:
4: ∀ai ∈ A
5: qt← 0
6: if dfn−1 =∞ and dfn <∞ then
7: Put ai+1 into set A and Au

8: else if dfn =∞ then
9: Put ai and ai+1 into set Au

10: else if |dfn − dfn−1| > dh then
11: Put ai into set Au

12: end if
13: while |Au| 6= ∅ and qt = 0 do
14: Select the first order node afo in unhappy set Au

15: if afo = ai then
16: for each link ei of node ai do
17: sseli ← first strategy in {ki,1, . . . , ki,c, . . . , ki,|C|}
18: while sseli does not satisfy (3.7) do
19: sseli ← next strategy
20: end while
21: if sseli 6= valid strategy(Mi < hv) then
22: sseli ← ∅
23: else
24: st+1

i ← sseli

25: end if
26: end for
27: qt← 1
28: Broadcast qt, IDai

and st+1
i , and all nodes update I-Matrix

29: end if
30: if all link ei = ∅ then
31: Remove ai from A
32: end if
33: Remove afo from unhappy set Au

34: end while
35: end for

be satisfied:

wr(x) ∈ supp(x) ∈ br(x). (3.11)

This implies that the sets of wr(x), supp(x) and br(x) are equal, and each of them

is equal to S. However, this is impossible for the strategy in the interior. Thus, the NE,

i.e., the steady state is unique in our proposed AC-POCA algorithm.
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Figure 3.2: The utility function (UNET ) of AC-POCA algorithm demonstrating the com-
parison of maximum and average utilities.

3.4 Performance Evaluation

In this section, we evaluate our proposed AC-POCA algorithm by first analyzing the Price

of Anarchy (PoA) to derive the upper bound. Then, computer-based simulation results

are provided to further verify the effectiveness of the proposal.

3.4.1 Price of Anarchy (PoA)

The PoA measures how the efficiency of a system is degraded because of the selfish

behavior of its agents or players [113]. The PoA measure can be extended to diverse

systems including game-theoretic models. In our proposed AC-POCA algorithm, the

players (i.e., nodes) can be trapped at a local optimum point where none of the players is

willing to change strategy even if the system performance is still distant from the desirable

global optimum. Because of this, the efficiency of our game-theoretic algorithm needs to

be evaluated through PoA analysis. According to its definition, PoA may be expressed

as follows:

PoA =
max UNET (Ψ

′
)

min UNET (Ψ′′)
,Ψ

′
,Ψ

′′ ∈ NE. (3.12)

In our earlier work in [29], we demonstrated that the worst and best NEs are the two

situations of common channel assignment and non-interfering links channel assignment.

Thus, with the definition of PoA, its upper bound is further expressed as follows.
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Figure 3.3: The utility function (UNET ) of AC-POCA compared with that of a cooperative
game with three learning schemes.

• The worst NE for Multi-Radio Multi-Channel (MRMC) networks is the Common

Channel (CC) assignment: UCC
NET (Ψ).

• The best NE for MRMC networks is a topology with Non-Interfering (NI) links and

hop count is the Shortest Path (SP): UNI−SP
NET (Ψ).

Thus, PoA of (3.12) can be rewritten as follows.

PoA =
UNI−SP
NET (Ψ)

UCC
NET (Ψ)

(3.13)

In the remainder of the section, computer-based simulation results are provided to

further verify our analysis.

3.4.2 Simulation Results

Our conducted simulations consider two scenarios, the static and dynamic topologies.

These simulation scenarios are configured using C++ as follows. First, consider the static

topology, a grid topology similar to that described in [29] is constructed as the wireless

IoT system. The distance between the neighboring nodes in the network is set to 120 m.

The gateway node is positioned at the edge of the simulated grid that is the farthest from

the user devices. The nodes are assumed to be equipped with multi-channels, multi-radios
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operating with IEEE 802.11g wireless technology. For simplicity, the link data rate is set

to 8Mbps. In our conducted simulations, the numbers of nodes are varied in the range of

{9, 16, 25, 36, 49}.
In Fig. 3.2, we simulate our algorithm in different network settings. Here, we set a time

based random seed to initialize the order of the players, and repeat the simulation 1000

times to calculate the average utility. It can be noticed from the plot in this figure that

the average utility is quite close to the maximum utility of the network. This corroborates

our PoA analysis in (3.13).

Furthermore, we compare the utility of AC-POCA with the cooperative game used

in [29] with three learning schemes. For comparison, we use the same player utility

function of eq. (3.2). Here, the three learning schemes of cooperative game are referred

to as BS-CO (Best Response), BR-CO (Better Response) and SBR-CO (Smooth Better

Response). Then, the result is shown in Fig. 3.3. From the result, we can see that the

utility of AC-POCA is almost the same as BS-CO, and slightly differ from BR-CO and

SBR-CO. To compare with the increased iteration times Niter and significant signaling

overhead in eq. (3.10), the slightly lower utility of AC-POCA can be considered as a

tradeoff with its significantly lower number of iterations and signaling overhead, which is

discussed next.

Now, we compare the performance of our proposed AC-POCA algorithm in the static

network topology with two existing methods from [29], i.e., Cooperative Channel Assign-

ment Game (CoCAG) with Best Response (BR) and Smoothed Better Response (SBR).

For ease of representation, the two compared methods are referred to as CoCAG-BR and

CoCaG-SBR, respectively. The comparison is performed in terms of the convergence time

performance and signaling overhead.

Next, we compare the convergence speed of AC-POCA and existing CoCAG-BR and

CoCAG-SBR algorithms in Fig. 3.4. In the conducted simulations, we set the factor of

finalization criteria in SBR to 85 percent of the maximum utility, which was estimated

by a centralized brute force algorithm. The results in the plot in Fig. 3.4 demonstrate

that the proposed AC-POCA method has the fastest convergence speed because it uses

the unhappy queue and only exploits the local information available to the nodes.

In order to evaluate the signaling overhead of the proposed AC-POCA in contrast

with the other two existing methods, we set the length of signaling packets to 1Kb and

consider that the nodes use flooding to broadcast the notification qt and their channel

selection changes. Fig. 3.5 demonstrates that the signaling overhead is significantly lower

with the proposed AC-POCA algorithm compared with that of CoCAG. This is because

of the improvement in AC-POCA in terms of convergence speed and optimization of the

SBR/BR functions as analyzed earlier section.

After channel assignment is performed to a link, the link is set to an active to verify if

33



Chapter 3: The Proposed Anti-Coordination Game based Channel
Assignment

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 9  16  25  36  49

N
u
m

b
e
r 

o
f 

it
e
ra

ti
o
n
s

Number of nodes

AC-POCA

CoCAG-SBR

CoCAG-BR

Figure 3.4: Comparison of convergence time performance for the proposal (AC-POCA)
and conventional CoCAG algorithms with SBR and BR learning techniques.

the assigned channel is, indeed, viable. In the wireless IoT system, the number of active

links directly impacts the aggregate throughput. Therefore, in Fig. 3.6, we compare

the number of active links in the proposed AC-POCA algorithm with those achieved

by two existing heuristic methods, i.e., the original POC assignment approach [76] and

the conventional OC assignment approach. In different network settings, the proposed

AC-POCA exhibits the best performance in terms of the number of active links.

Finally, we consider the throughput in the dynamic network topology. Based on the

above static scenario, we consider the nodes in the network can randomly move. For

simplicity of the conducted simulation, both the data generation and node movement

are treated as Poisson processes. We set the moving speed as randomly form 10 to 100

meters/s. The node movement time is set randomly, and the movement rate is set to 1/60s.

This means that the node may randomly move from 10 to 100 meters every minute. In

such a dynamic scenario, we compare the throughput of AC-POCA and CoCAG which

reassign the channels when the topology is similarly changed. The result is demonstrated

in Fig. 5.8, in which the process time is 1000s. The data generation rate is 125KB/s

in each node. To simplify the simulation, we set the value of hv, in AC-POCA, in each

scenario, as the largest one (only when IFj = 0, no interference exists). From the result,

it can be noticed that with the growth of the network size, the throughput performance

of our proposal is much better than conventional one. This is because of both channel
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assignment time and iteration time of the conventional channel assignment algorithm

become much larger when the number of user increases significantly, as shown in Fig. 3.4.

3.5 Summary

The considered UAV-enabled IoT require quick network access. However, quick and dy-

namic network formulation is required to support such a system. Besides, the radio chan-

nel assignment of the nodes is an optimization problem since the number of orthogonal

channels is limited and using overlapping channels in adjacent nodes with both primary

cellular and D2D links leads to severe interference in IoT. Furthermore, in the considered

UAV-enbaled IoT network, the mobility of nodes leads to highly dynamic situation which

renders conventional channel assignment algorithms unsuitable. For overcoming those

challenges, we presented an interference model and formulated a formal problem. Then,

we proposed AC-POCA, a distributed Anti-Coordination game based algorithm for solv-

ing the channel assignment problem in the considered UAV-enabled IoT network. Using

AC-POCA, the nodes are able to use only local information to reach a steady state in the

network. Through analysis, the uniqueness of the steady state in the proposed AC-POCA

was also verified. In addition, simulation results were provided to demonstrate that the

proposal leads to fast convergence, low signaling overhead, and improved throughput in
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contrast with the existing methods.

The significant performance of AC-POCA is based on two assumptions. The first one

is the heterogeneous devices in IoT can efficiently connect with each other immediately,

the second assumption is that the traffic loads in the IoT are smooth and not suddenly

change in ashort time. However, in the real IoT environment, the devices in IoT might

be various and not controlled in distributed way whereby the heterogeneous devices and

structure lead to more dynamic even bursty network traffic. In next chapter, to deal with

the real challenge in IoT, we consider the SDN to make the distributed heterogeneous

infrastructure of IoT to a centralized architecture referred as SDN-IoT. Based on the in-

telligent deep learning, a corresponding deep learning based partially overlapping channel

assignment algorithm (DLPOCA) is proposed in the SDN-IoT.
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Deep Learning Based Traffic load

prediction

In previous chapter, we proposed a distributed POC assignment algorithm to solve the

radio resource allocation problem in UAV-enabled IoT. Such as the UAV-enabled IoT

scenario, due to the high mobility and wide coverage of these devices, different types of

wireless radio access technologies like cellular, MEC and D2D have been widely used in

IoT. The complexity of heterogeneous communication technologies and device infrastruc-

tures have resulted in many critical issues, such as the task and space sharing among

different devices, the network load balance, and so forth. Therefore, the assumptions

used in the previous scenario may not practical in the real heterogeneous IoT.

As described in introduction, to better suit the heterogeneous large scale IoT, the

Software Defined Networking (SDN) [33] technology has been proposed as a novel solu-

tion to connect the distributed heterogeneous devices into a centralized sharing working

system. This is referred as the SDN-IoT [35, 50]. In SDN-IoT, as shown in Fig. 1.2,

various devices includes UAVs are widely deployed in the sensing plane. All sensing data

collected by the sensing plane are forwarded through switches in data plane and then de-

livered to the gateway. Using the control plane, SDN-IoT separates the network control

logic from the underlying routers and switches to the central controller, which usually

has high computation capacity. Thus, the controller is able to control the whole network,

e.g., by computing packets forwarding paths and managing the channel resource, while

the switches in the data plane are just responsible for forwarding the massive IoT data.

The wireless SDN-IoT meets the requirement that huge number of heterogeneous de-

vices work cooperatively in one large scale network. And the state information from

devices can be collected through the SDN network immediately. However, with the in-

creasing number of devices, the traffic load of switches may become significantly heavy,

and multiple channels need to be appropriately allocated to links. In addition, heteroge-

neous devices have different policies in data sensing and collection, which result in uneven
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Figure 4.1: The problem of existing POC assignment algorithms and our research goal.

bursty traffic arrival of switches. For such situations, how to adaptively assign channels

to fit such bursty traffic becomes a significant research challenge.

As depicted in Fig. 4.1, conventional POC assignment algorithms [29, 105, 75, 29, 114]

and even our ACPOCA algorithm only focus on the current (i.e., last time slot) traffic

load, which works well with the assumption of stable traffic loads. However, once the

traffic pattern suddenly changes in the next time slot, the channel in good condition may

be assigned to a wrong link with a heavy load in the last time slot, but idle in next

one. On the other hand, the link with high load in the next time slot may be assigned a

channel in poor condition due to its idle state in the last time slot. The wrong channel

assignment decision significantly wastes the channel resource, and this leads to decreased

network throughput and high packet loss rate.

Furthermore, conventional POC assignment algorithms do not consider the dynamics

of traffic patterns and perform the channel management in a static manner. Thus, they

carry out the channel assignment only once in the initial part in a distributed fashion,

and have the problems of high computation complexity and long iteration time. In a

dynamic IoT environment, the channels need to be reassigned once the network traffic

condition changes. However, when the channel assignment is being processed, the net-

work transmission must be suspended until new channels are available. Thus, the high

computation complexity and long iteration time of conventional algorithms may lead to
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long suspension time of network transmission.

Therefore, in order to improve the network transmission performance, two main prob-

lems need to be solved. One is the dynamic traffic load prediction problem, and the other

is the problem of how to achieve the quick convergence of channel assignment algorithm

to reduce transmission suspension time.

In this vein, a deep learning based intelligent POC assignment algorithm is proposed.

Our proposal consists of two parts. First, we utilize deep learning technique to predict the

future traffic loads of switches according to the history of traffic data. Then, the central

controller of SDN-IoT can further adopt the deep learning technique to allocate the chan-

nel resource according to the traffic load prediction. The centralized control mechanism

in SDN-IoT can ensure the traffic load prediction accuracy, while the high computation

ability of the central controller in SDN expedites the POC assignment process.

To better describe our proposal, we at first model the network of SDN-IoT in Sec. 4.0.1,

the used deep learning model is detailed described in Sec. 4.1. Then, based on the control

manner of the IoT, we proposed three network traffic prediction mechanisms based on

deep learning in this chapter. After the prediction, the deep learning based partially

overlapping channel assignment algorithm (DLPOCA) and the enhanced traffic prediction

based DLPOCA referred as TP-DLPOCA are proposed in next chapter.

4.0.1 Network Model

Consider the SDN-IoT is constructed in a heterogeneous structure which contains different

kinds of devices. Devices sense and collect data, and then send the data to the gateway

through multiple switches. For better understanding, we use graph G = (D ∪ S ∪ C,E)

to represent the network where D denotes the set of devices in the network and D =

{d1, d2, . . . , d|D|}. And S denotes the set of switches and S = {s1, s2, . . . , sM} where M

is the total number of switches. Consider the switches are randomly deployed in the

considered area, and each switch serves the devices located in its own service area. For

example, an Access Point (AP) of a residence is regarded as a switch and all the devices

in this house are served by the AP. The average number of devices belong to each switch

area is presented as R, namely |D| = M ×R. Each switch collects data from devices, and

then send them to the gateway with multi-hop transmission. The central controller C

is deployed randomly in the network as the global network viewer to manage all packets

forwarding, deep learning process, channel assignment and other network problems. The

structure of the SDN-IoT is shown as Fig.1.2.

In the sensing plane, we consider Q different kinds of periodic sensing devices and W

different kinds of event driven sensing devices with totally number of |D| deployed in the

whole area. For example, one kind of periodic sensing device senses and collects 10kB
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data in every 30s and another kind of periodic sensing device collects 7kB data in every

20s.

Let E represents the edges set in the graph G. Furthermore, the edge e ∈ E in the

graph means the link between two vertices. The weight, w(e), represents the connection

ability of the link e. This weight depends on many factors such as the transmission

distance, transmission power, interference, bandwidth, and so on. Consider the links

between devices and switches use different spectrum from the links between switches.

The data sensed by a single device are small and the capacity requirement of a single

link between devices and switches is not so strict. Therefore, the considered interference

mainly exists in the links between the switches in the data plane.

The interference already introduced in Chapter. 3. In order to quickly measure all the

channels conditions, in the conventional partially channel assignment algorithms, each

router uses the interference matrix (IMatrix) to record the fp,q value of all the links.

And all routers need to broadcast their channel information and update IMatrix contin-

uously, which result in large signaling. On the other hand, in our proposed deep learning

based channel assignment algorithm, the IMatrix is no longer needed, each switch just

receives traffic load information and activates neural network weight matrix obtained by

the training process. The only signaling overhead is the traffic load transmission process

between switch and central controller. Next, we describe the deep learning training model

used in training process.

4.1 Deep learning model

In our proposed training process, we consider two neural network structures, the basic

Deep Belief Architecture (DBA) and the deep Convolutional Neural Network (CNN). As

shown in Fig. 4.2a, the chosen DBA is constructed with L layers, including one input

layer, one visible output layer and (L − 2) hidden layers. The unit in each layer except

the input layer has its own weight value called bias. And the units in two adjacent layers

are connected with each other via weighted links while no inner layer connection exists.

Let xinput and youtput denote the values of units in the input and output layer, respectively.

wij denotes the weight of link between units i and j, and bi represents the bias of unit

i. Additionally, w and b represent the matrices consisting weights of all links and all

the bias values, respectively. The training of the DBA consists of two steps, namely

forward propagation and back propagation processes. The forward propagation is used

to construct the structure and activate output, while the back propagation is used to

adapt the structure and fine-tune the values of w and b. As modeled in our previous work
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Figure 4.2: The employed deep learning structures.

in [103], the forward propagation process can be modeled as a log-likelihood function,

l(w, b, xinput, youtput) =
m∑
t=1

log p(v(t)), (4.1)

where, v(t) denotes the tth training data. The DBA training process can be seen as a log-

linear Markov Random Field (MRF). Hence, we use p(v(t)) to represent the probability

of v(t). Here, m represents the total number of training data.

Since the purpose of the training process is to maximize l(w, b, xinput, youtput), in the

backpropagation process, the gradient descent method is adopted to adjust the link weight

w and bias b, which is represented as:

w = w + η
∂l(w, b, xinput, youtput)

∂w
, (4.2)

b = b+ η
∂l(w, b, xinput, youtput)

∂b
, (4.3)

42



Chapter 4: Deep Learning Based Traffic load prediction

where, η is the learning rate of training process.

The second considered deep learning structure is the deep CNN as shown in Fig. 4.2b.

At the first glance, the structure of deep CNN is similar to DBA, and the main training

process also includes forward and back propagation. However, when the size of the input

layer becomes quite large and spatially connected in high dimensions, the DBA cannot

capture the spatial features efficiently. As a powerful deep learning structure, the deep

CNN is widely used in image identification and natural language processing [115, 116].

In the deep CNN, the covolutional layers are good at capture the spatial and temporal

connections of the input data.[117]. This is a better choice to construct the learning

system of centralized network of spatial connection extraction. To better extract the

spatial connections of input data, the convolutional and pooling layers are employed in

the deep CNN. The convolution operation is used to filter the input and pass the result

to the next layer, while the pooling layers are used to combine the outputs of the neuron

clusters at one layer into a single neuron in the next layer, which can further reduce the

redundant data and extract the wide range spatial features. Different filters may be used

in each convolutional layer and their results are combined to transfer to fully connection

layers. With the utilization of convolutional and pooling layers, the features of input can

be efficiently extracted, which significantly reduces the computation burden.

As the purpose of the convolution operation is to extract the distinguished features of

the input, the parameters (weights and biases) of the convolution operation consist of a

set of learnable filters. If we use W (l1) to denote the filters and the kth filter is represented

by W
(l1)
k , the obtained feature map by the convolution operation can be shown as follows.

u
(l1)
i,j,k = (U (l1−1) ∗W (l1)

k )(i, j) + w
(l1)
bk

=
P∑
p=1

M
′∑

m=1

N
′∑

n=1

wm,n,pa
(l−1)
i+m,j+n,p + w

(l1)
bk

(4.4)

a
(l1)
i,j,k = f(u

(l1)
i,j,k) (4.5)

where f(·) is the activation function and a
(l1)
i,j,k is the activated value of the unit in the ith

row and jth column of the feature map. Therefore, u
(l1)
i,j,k is the value before activation.

w
(l1)
bk denotes the bias of the kth filter and is usually a single numeric value. a

(l1−1)
i+m,j+n,d is the

activated value of unit in the (i+m)th row and (j+n)th column. Besides the convolution

layers, the full connection layers are used to construct the basic training structure which

is similar to DBA. Then, the similar forward propagation and back propagation processes

are repeated to fine-tune the whole CNN structure.

In SDN-IoT, the central controller is the brain to control all functions of switches. All
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control and computation tasks are handled in the control controller, which is a totally

centralized control system. In order to research the performance between using central-

ized SDN system and semi-centralized or distributed conventional control system without

centralized SDN, we separately design our deep learning based traffic load prediction

algorithm into three different systems.

In the conventional network, the switch (i.e., router, in order to easily describe, we

still simply call a router in conventional network a switch) only knows local information

and communication with each other in a distributed manner, which is referred to as a

distributed control system. There is also a kind of mixed control system, in which the

central controller is deployed with limited computation and communication ability. The

limited central controller only knows part of the global information. In such a mixed

system, the switches need to handle a part of the tasks in a localized manner and suffer

from limited service from the central controller. Such a system can be treated as a

semi-central control system. Based on these three different control systems, we propose

three deep learning based traffic load prediction methods, namely, Central control based

Traffic load Prediction (CTP), Semi-Central control Traffic load Prediction(S-CTP), and

Distributed control Traffic load Prediction (DTP). Next, we describe the three prediction

methods, respectively.

It is worth mentioning that apart from the link condition of each switch, the main

factors influencing the traffic load is the arrival traffic flow. As mentioned earlier, in

each switch, the traffic load sequence, TL, consists of two parts: the relayed traffic

flow from other switches denoted by TL rel , and the integrated traffic flow composed

by the sensing data from devices in the sensing plane denoted by TL int . Therefore,

TL = TL rel + TL int .

4.2 Traffic Load Prediction in Central Control Sys-

tem:CTP

In the prediction process of central control system, there are four phases, i.e., data col-

lection phase, training phase, prediction phase, and online training phase.

4.2.1 Data Collection Phase

In the central control system, all the information of switches are periodically collected

by the central controller. The central controller records the traffic load sequence, TL, of

every switch in the last N time slots. And the length of each time slot is represented as ∆.

The traffic load of switch i in last time slot k is recorded as tlik. Then, the past traffic loads

TLi of switch i are formed as a length-N vector, TLi = {tl ik , tl ik−1 , · · · , tl ik−N+1}, where N
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represents the number of considered past time slots. N depends on the complexity of input

data and is decided according to the training performance. In this case, the controller

collects all traffic load series of every switch, and formats them as a traffic load matrix

TL = {TL1 ,TL2 , · · · ,TLM}. From the point of the time series, the traffic loads of all

switches in the last N time slots can be also represented as TL = {tlk , tlk−1 , · · · , tlk−N+1}.
After data collection, the traffic load matrix TL is used as the input of training data.

In the next time slot, the central controller records the traffic load as the real future traffic

load tlk+1 = {tl1k+1 , tl
2
k+1 , · · · , tlMk+1} which will be utilized as the output of training data.

After thousands of time slots, the central controller collects thousands of such labeled

data and adopt those labeled real data to train the deep neural network in the training

phase.

4.2.2 Training Phase

In this phase, in order to obtain a better training performance, we use a Deep Convo-

lutional Neural Network (deep-CNN) to fit our matrix based training data[118]. In our

earlier work[100], we compared the training performance with different output formats,

and the result shows that the complex output significantly impair the training accu-

racy. In other words, utilizing only one deep-CNN to predict the future traffic load of

all switches, which needs to use the full tlk+1 as the output, is too resource-consuming

and has a significantly low accuracy. Therefore, we decouple the complex of output and

use M deep-CNNs, where each deep-CNN is only used to predict the traffic load of one

switch. Thus, the central controller only uses the future traffic load of one switch as the

output of corresponding deep-CNN. For example, the training data of deep-CNN CNN i

is (xinput , youtput) = (TL, tl ik+1 ). Then, the central controller trains all the deep-CNNs,

respectively, to obtain all the stable weight matrices.

4.2.3 Prediction and Accuracy Calculation Phase

In the prediction phase, the central controller undertakes the future traffic load prediction

and calculates the prediction accuracy. In this phase, the weight matrix of each deep-

CNN obtained in the training phase is adopted to predict the future traffic load, which is

a forward propagation process as mentioned in Sec. 4.1. The output of all deep-CNNs is

recorded as TLPk+1 = {tlp1
k+1 , tlp

2
k+1 , · · · , tlpM

k+1}. As mentioned above, the real future

traffic load of time slot (k+1) is recorded as TLk+1 = {tl1k+1 , tl
2
k+1 , · · · , tlMk+1}. Therefore,

we can calculate the prediction accuracy according to the following equation.

1

K ×M

K−1∑
k=0

M∑
i=1

|tlpik+1 − tlik+1|
tlimax

, (4.6)
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Figure 4.3: The training and prediction phase in a semi-central control system.

where, K represents the total number of considered time slots. tl imax represents the maxi-

mum traffic loads of switch i, Here, we simply consider the maximum traffic load is equal

to the maximum buffer size of the switch.

4.2.4 Online Training Phase

If the generation policy of input traffic always acts as a certain pattern, the training and

prediction processes, based on only the existing training data, are reasonable. However,

in a practical network, the generation policy of the input traffic may change because of

some reasons, such as some devices break down, or some new sensing tasks are assigned

to existing devices. Based on such situations, the training process should also be adapted

correspondingly. Then the online training phase is necessary for adjusting the deep-CNNs

to adapt to the new environment.

In this online training phase, each switch continuously records the traffic load data,

and the training phase is processed periodically with the collected new training data.

Therefore, the weight matrices are periodically adjusted.

4.3 Traffic Load Prediction in Semi-central Control

System:S-CTP

In this kind of system, we consider the central controller only has some limited compu-

tation ability and the switches need to finish some tasks in a localized manner. In this

case, each switch makes some simple pre-prediction just with the local information to
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alleviate the computational burden of central controller. And the final prediction is still

conducted by the central controller with integrated global pre-prediction information from

all switches.

4.3.1 Data Collection Phase

In the central control system, the central controller predicts the traffic load based on

collected traffic patterns of all switches, that needs highly central computation ability

and correspondingly fast communication mechanism of SDN technique. However, with

the limited ability of the central controller in a semi-central control system, each switch

cannot simply transfer all raw traffic information to the central controller because this

will put much burden on the central controller. Thus, in the semi-central control system,

switches should perform some pre-treatment of the raw data and send less information to

the central controller to decrease both computation and signaling overheads of the central

controller. In this case, for each switch i, it records the traffic load tl ik of the last time

slot, and also separately records the relayed traffic load TL rel i and integrated traffic load

TL int i of the last N time slots. Then, each switch i predicts the future integrated traffic

load tlp int ik+1 of the next time slot by using recorded TL int i as input. This training

and prediction process is conducted in the training phase. Then, the switch sends the

obtained tlp int ik+1 and recorded traffic load of last time slot tl ik to the central controller.

The central controller collects the data from all switches, and constructs them as the

training data tlk and tl intk .

4.3.2 Training Phase

The training phase consists of two steps. The first step is that each switch trains a

local neural networks to predict its future integrated traffic load with its past N -time-

slot integrated traffic loads. Therefore, for switch i, the training data of its local neural

network can be represented as (xinput , youtput) = (TL int i , tl int ik+1 ). Since the input is

much simpler compared with the input of deep-CNN utilized in the central control system

and the training can be treated as the function fitting process between the input and

output, here, we can just use deep belief network (DBN or DBA) mentioned in Sec. 4.1 to

perform this training process. As we mentioned in the data collection phase, the trained

DBA will be utilized to predict the future integrated traffic load which is represented as

tlp int ik+1 , and the results will be periodically sent to the central controller.

When switches finish self prediction and send the result to the central controller, the

central controller performs the final prediction with last time slot traffic load tlk and pre-

dicted integrated traffic load tlp intk+1 of all switches. Since the traffic load and integrated

traffic are two different network features, we form them as two channels of the input data,
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similar to our earlier research in [118]. Therefore, the input of training data can be formed

as a matrix (tlk , tlp intk+1 ) = ({tl1k , tl2k , · · · , tlMk }, {tlp int1k+1 , tlp int2k+1 , · · · , tlp intMk+1}).
As mentioned earlier, the deep learning structures in the central controller are utilized to

predict the future traffic loads of all switches. Similar to the central control based pre-

diction, we utilize M deep-CNNs to make the prediction to alleviate the computational

burden and guarantee the accuracy. Therefore, for CNN i, its labeled training data is

formed as (xinput , youtput) = ((tlk , tlp intk+1 ), tl ik+1 ).

Except the above-mentioned two phases, the prediction phase and online phase in the

semi-central control system are almost the same as those in the central control system.

The whole training process of each switch and the central controller is shown in Fig.4.3.

4.4 Traffic Load Prediction in Distributed Control

System:DTP

In the conventional distributed network, the switches (i.e., router) do not know the global

information, and the prediction must be executed in each switch only according to its local

information. Thus, a local information based distributed traffic load prediction method

is designed as follows.

In the distributed control system, each switch only collects its own traffic load including

the relayed traffic load and integrated traffic load. Without additional information of

other switches, the relationship between two kinds of traffic loads in different time slots

becomes more complex. Therefore, the deep-CNNs utilized in this system are much wider

and deeper than the deep-CNNs used in the central and semi-central control systems.

In order to get better training performance, we try two forms of the training data.

The first one is to separate the integrated traffic load and relayed traffic load as input.

Therefore, switch i records the integrated traffic load TL int i and relayed traffic load

TL rel i of the last N time slots. Then, the two traffic loads are constructed to a two

channel matrix as input of training data. Correspondingly, the traffic load in the next

time slot, tl ik+1 , is taken as the output. Thus, the training data can be represented as

(xinput , youtput) = ((TL rel i ,TL int i), tl ik+1 ).

The second kind of input is only the combined traffic load TLi . In this case, the

training data can be denoted as (xinput , youtput) = (TLi , tl ik+1 ). And in the simulation

(presented later in sec. 5.2), we compare the two kinds of training data and find that

in current simulated network environment, both methods can achieve the same accuracy

(i.e., above 85% in the network with 16 switches.). However, it takes more time for

the first method to converge. Thus, we temporarily use the second method as the DTP

training data in our research.
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The CTP, SCTP and DTP methods are designed to fit the aforementioned three

different kinds of control systems. The comparison of the prediction performance with

those different methods are researched in section. 5.2.

4.5 Summary

In this chapter, based on the SDN-IoT structure, we proposed three deep learning based

traffic prediction algorithms based on different control manner. The used deep DBN

and CNN are detailed described in the system model part. From the simulation result,

the centralized SDN based control method shows better performance than conventional

distributed and semi-distributed manner. After the network traffic prediction, the deep

learning based channel assignment algorithm is proposed in the next chapter.
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Proposed Deep Learning Based

Partially Channel Assignment

After the traffic loads of the next time slot are predicted by our proposed prediction

methods, many existing channel assignment algorithms which are based on the traffic

profile can be used to assign proper channel to each link. However, due to the problem

we mentioned in Chapter. 1, the conventional channel assignment algorithms with slow

convergence cannot meet the new requirement of the considered SDN-IoT. Aided by the

high computation ability in the future SDN [103], we propose a new deep learning based

channel assignment algorithm, which shows better convergence performance than the

conventional algorithms, and leads to better network throughput.

In this chapter, we at first propose a supervised deep learning based partially channel

assignment algorithm (DLPOCA). In the DLPOCA, the deep DBN is employed to be

the training structure. With the collect data from the previous ACPOCA contains traffic

patterns and assigned channel number of each links, the training data are characterized

from collected data to formatted tensor. With offline learning, the deep DBNs are fully

trained with the training data. Then, through the trained DBNs, the SDN central con-

troller can intelligent made channel assignment decision by inputting the traffic patterns

of IoT.

After the DLPOCA, we further combine the DLPOCA and the traffic prediction,

propose the traffic prediction based DLPOCA referred to as TP-DLPOCA. In the TP-

DLPOCA, instead of the traffic load of current time slot, we use the predicted traffic load

and the assigned channel number of next time slot as training data to train and active

the trained deep DBNs. The main difference between the TP-DLPOCA and conventional

methods is demonstrated in Fig.5.1.
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Time
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game theory 
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Xinput
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Cout(p+1)
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Figure 5.1: The decision process comparison of the TP-DLPOCA and the conventional
game theory based POC assignment methods.

5.1 Proposed Deep Learning Based Partially Chan-

nel Assignment

In this section, we introduce the proposed Proposed Deep Learning Based Partially Chan-

nel Assignment (DLPOCA). In our proposal, we use deep learning to train the network

with the data from our prior proposed ACPOCA, in which, the partially overlapping chan-

nels are assigned to each link by using an anti-coordination game. In the anti-coordination

game based partially channel assignment algorithm (AC-POCA), each router (i.e., switch)

chooses the channel of its links by using a utility function and plays game with other

switches. Different from cooperative game, AC-POCA can always get a unique stable

state in the network, and such uniqueness of AC-POCA makes the algorithm appropriate

to be trained by deep learning and gets almost the same accuracy as that of AC-POCA.

If we set the AC-POCA as a benchmark, the deep learning based channel assignment al-

gorithm can get 100% accuracy compared with the benchmark. Besides the same channel

assignment accuracy, the deep learning based assignment algorithm can save the game

process time between switches, leading to much faster convergence.

To train the network, we try to find the main features of training data. In ACPOCA

with fixed topology, traffic load is the main feature to order the routers in the queue of

game, and the order significantly affects the channel assignment result of each router.

In the intuition of human, the traffic load (TL) should be the main feature of training

data, and some other features should also be considered such as the hop count (HC) to

the gateway and interference factor (IF) of each link. Then, we respectively use those

features and some combinations of them to construct the different format of input of

training data. In the experiment result shown in Table 6.1, we can find that any feature

combination containing the feature of traffic load can get 100% accuracy. To the opposite

extreme, the accuracy of using any combination without traffic load is less than 70%.
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Besides the accuracy rate of different combinations, we compare the training epochs (i.e.,

training time) of the combinations containing traffic load. And the result shows that the

method only using traffic load as input of training data can get the best performance of

training. Therefore, in the training process, the traffic load is utilized as the main feature

to construct the input of training data.

Here, we divide the channel assignment algorithm into two parts. In the first part,

we propose a Deep Learning based Partially Overlapping Channel Assignment algorithm

(DLPOCA). In the second part, we further propose an intelligent deep learning channel

assignment strategy which joints the DLPOCA with traffic load prediction algorithm,

referred to as TP-DLPOCA, to obtain further improved performance.

5.1.1 Deep Learning based Channel Assignment

To better describe our proposal, we divide the whole assignment process into two steps,

i.e., the training phase and dynamic channel assignment phase.

5.1.1.1 Training Phase

Here, we use the traffic load and channel assignment result of AC-POCA as the training

data set. Before using the data set, we need to characterize the training data into a suitable

format. As we described above, we use the traffic load as the main feature to construct the

input of training data. Such training data format is denoted as tlk = {tl1k , tl2k , · · · , tlMk }.
Because the AC-POCA only considers the current traffic load, and the result is not affected

by the traffic load of the past time sequence, we only use the traffic load of the last one

slot as the input of training data.

Then, we consider that the assigned number of each link is recorded as the output

of training data. If the scale of the network is significantly large, the number of links is

large to make the output very complex. As mentioned in our previous work [100], the

complex output will significantly decrease the training accuracy. Therefore, as the same

method employed in our traffic prediction algorithm, we use M ×Emax neural network to

separately train the network, where Emax denotes the maximum number of active links of

each node. For example, for 802.11 2.4 GHz links, because of self-interference, the same

channel cannot be assigned to two links of one node. Then, the maximum number of

active links Emax is 11, which is equal to the maximum number of channels Cmax. Since

each neural network is only used to predict the channel for one link, the number of total

neural networks is equal to the number of links. And the neural network corresponding to

the jth link in switch j is recorded as {NNi ,j |i ≤ M , j ≤ Emax}. For each neural network,

the output is characterized as a vector consisting of Cmax binary elements, which can

be denoted as L = {l1 , l2 , · · · , lCmax−1 , lCmax |l ∈ {0 , 1}}. And if channel i is assigned, the
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Figure 5.2: The integrated traffic pattern of different switches in the periodic intensive
case (PIC).

value of the ith element is 1, otherwise 0. Therefore, the training data of each neural

network is indicated as (xinput , youtput) = (tlk ,L).

With the training data, we try different kinds of neural network structures and different

parameters for training. The comparison of the training results of different structures and

parameters is shown in Sec. 5.2.2. Because of the large number of neural network and data

set, this training process is better to be processed in the central controller. And the bias

and weight matrices of all neural networks are recorded and updated in the central con-

troller. The trained weight matrix of each switch is recorded as {WMi ,j |i ≤ M , j ≤ Emax}.

PIC EIC

R 100 100

Q 30 30

W 10 20

np 80 50

ne 20 50

Table 5.1: The configuration of PIC and EIC
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Figure 5.3: The integrated traffic pattern of different switches in the event intensive case
(EIC).

5.1.1.2 Dynamic Channel Assignment Phase

After the training process, the central controller sends the copy of the trained weight

matrices to each corresponding switch. Each switch only stores the weight matrices cor-

responding to its own links. Then, during the packet transmission period, the central

controller sends the traffic load information tlk to each switch periodically, and each

switch uses the current traffic load information as the input to trigger a forward propaga-

tion process with the corresponding weight matrix to get the output Lk+1 (i.e., the binary

vector of chosen channel). If the already assigned channel Lk of the link is different from

the new one Lk+1, the switch confirms the new channel number with the other switch on

the other side of the link. If both switches get the same result, they change the channel

of this link to the new one. Otherwise, the switches report the different results to the

central controller. The whole process is shown in Alg. 2.

With deep learning based channel assignment, the channel assignment result can be

simply obtained via a forward propagation process, which is much faster than the the game

theory based channel assignment and saves most of the communication cost/signaling

overhead. This is because in the conventional game theory based channel assignment

methods, each router needs to keep receiving and updating the channel statements of all

other routers in every iteration. Consequently, the more iterations of decision process,

the heavier signaling overhead. On the other hand, in our proposed deep learning based
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Algorithm 2 Algorithm of DLPOCA

Input: Trained weight matrices {WMi,j |i ≤ M , j ≤ Emax}; each switch {si|i = 1 → M}, traffic load
tlk.

Output: The assigned channel Lk+1
j of each link {ej |j = 1→ Emax}.

1: for j = 1 to Emax do
2: The switch on the other side of link ej is record as {sf |f ≤M}.
3: si use tlk as input to trigger forward propagation with WMi,j , the result is recorded as Lk+1

j .

4: if Lk+1
j 6= Lk

j then

5: if Lk+1
j = Lk+1

f of sf then

6: Assign Lk+1
j to link ej .

7: else
8: Feedback the wrong information to central controller.
9: end if

10: end if
11: end for

channel assignment, only one iteration is needed, which is the main reason why our

proposal can significantly outperform the conventional one.

5.1.2 Deep Learning based Channel Assignment jointed with

Prediction

Algorithm 3 Algorithm of TP-DLPOCA

Input: Trained weight matrices {WMi,j |i ≤ M , j ≤ Emax}; each switch {si|i = 1→M}.
Output: The predicted traffic load tlpk+1; assigned channel Lk+1

j of each link {ej |j = 1→ Emax}.
1: if Prediction model = CTP then
2: si send TLi to central controller.
3: The central controller collects all {TLi |i → M}, and execute CTP prediction algorithm to get

tlpk+1.
4: Central controller sends tlpk+1 to all switches.
5: else if Prediction model = S-CTP then
6: si uses TLi inti as input to calculate tlp intik+1

7: si sends tlp intik+1 to central controller.
8: The central controller collects all {tlp intik+1|i → M} and {tlik|i → M}, then executes S-CTP

prediction algorithm to get tlpk+1.
9: Central controller sends tlpk+1 to all switches.

10: else if Prediction model = DTP then
11: si uses TL rel i and TL int i as input to calculate tlpik+1 by executing DTP prediction algorithm.
12: si sends tlpik+1 to central controller.
13: The central controller collects all {tlpik+1|i→M} to construct as tlpk+1.
14: Central controller sends tlpk+1 to all switches.
15: end if
16: tlpk+1 is used as input to execute algorithm. 2.

The traditional channel assignment performs the channel assignment according to the

current (i.e., the last time slot) traffic load. This assumption is reasonable when the

traffic load is constantly and slowly changed. However, in the practical environment, the

traffic load is not so smooth. And in different applications, the traffic load may suddenly
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change or have more complex features. To solve this problem, we further combine the

deep learning based channel assignment with the proposed traffic load prediction method,

which is named as TP-DLPOCA. To compare it with DLPOCA, we replace the input

traffic load in the training data with the predicted traffic load obtained via the deep

learning structures described in Sec. 4. Since, the traffic load of all switches in next slot

is predicted and formated as tlpk+1 = {tlp1
k+1 , tlp

2
k+1 , · · · , tlpM

k+1}, the training data are

denoted as (xinput , youtput) = (tlpk+1 ,L).

Except the new training data set with the predicted traffic load, the training phase of

TP-DLPOCA is the same as the DLPOCA. In the dynamic channel assignment phase, the

traffic load prediction is done before the channel assignment. Then, the central controller

sends the predicted traffic load information tlpk+1 to every switch. The entired process is

shown in Alg. 3.

5.2 Performance Evaluation

In this section, we evaluate our proposal from three aspects: the prediction accuracy, the

performance of DLPOCA, and the performance of TP-DLPOCA.

We simulate the scenarios with the configuration using C++/WILL [119] API as

follow. A square area is set with same maximum width and length which is proportional

to the number of switches and devices in the network. All switches in the network are

randomly deployed in this area. As we described in Sec.4.0.1, there are different kinds

of devices deployed in the control area of each switch. In the conducted simulations, we

set the average number of devices belong to each switch area R = 100 and the kinds of

periodic sensing devices Q = 30. In the beginning of simulation, we randomly choose 10

out of the Q (i.e., 30) kinds of periodic sensing devices to be deployed in the network.

Consider the number of periodic sensing devices in each switch control area denoted as

np and the number of event driven devices denoted as ne. For simulating the influence of

different kinds of devices, we considered two cases with different ratios of periodical and

event driven devices deployed in the sensing plane. In one case, we deploy 80 periodic

sensing devices and 20 randomly event driven sensing devices to each switch control area

(i.e., np = 80 and ne = 20), which represents the high ratio of periodic sensing devices,

we briefly call it Periodic Intensive Case (PIC). In the other case, in each switch control

area, we only deploy 50 periodic sensing devices and increase the number of randomly

event driven sensing devices to 50, which represents the case with high ratio of event

driven devices and briefly named as Event Intensive Case (EIC) in our research. We

set the kinds of event driven sensing devices W = 10 in PIC and W = 20 in EIC. The

data collection policy of event sensing devices is random. The detailed configuration and

one example of integrated traffic load of different switches in the two different cases are
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Figure 5.4: The performance comparison of the three kinds of proposed mechanisms with
different numbers of time slots and different lengths of the time slot.
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shown in Table. 5.1, Fig. 6.5a and Fig. 5.3. Consider the distance between switches is

randomly set ranging from 10m to the maximum width of the square place. The gateway

is positioned at the top right corner in the simulated network that is the farthest from

the user devices. To simplify the simulation, we use the similar spectrum configuration

of [120], the multi-channels, multi-radios are assumed to be equipped on each switch and is

operated with IEEE 802.11g wireless technology. The interference model of those wireless

channels is mentioned in Sec. 3.2, and the IR(σ) is shown in Table 3.1. The data rate of

each link is set to 8Mbps. We conduct our network with the number of switches from 9

to 64 to show the different performances in various network environments.

5.2.1 Prediction Accuracy

At first, we evaluate the accuracy performance of traffic load prediction with three pro-

posed mechanisms, namely, CTP, S-CTP, and DTP. In the case of PIC, the number of

switches and the slot length are 16 and 1s, respectively. We compare the prediction

accuracy of three mechanisms with different number of slots N , which is an important

parameter of the prediction algorithm mentioned in Sec. 4.2. In Fig. 5.4a, we can notice

that the accuracy of all three mechanisms increases with the increasing value of N before

N = 30. When N exceeds 30, the accuracy slightly increases and intends to be stable.

That indicate that N = 30 is the threshold, which represents whether the features used

in the input data are enough for training. Furthermore, the figure shows that, when N

is below the threshold, the accuracy of S-CTP is better than that of DTP, while the

accuracy of DTP is higher when N is above the threshold. And the accuracy with CTP

is always better than S-CTP and DTP (more than 90%).

With the different kinds of policies chosen by devices, the features of traffic patterns

become more complex. Thus, choosing the suitable time slot ∆ to fit the features of traffic

pattern is very important to increase the prediction accuracy. In addition, we compare

the accuracy of the three mechanisms with different lengths of ∆. This simulation is

conducted in the situation of PIC, and the number of switches and the value of N are

16 and 70, respectively. The result indicates that the prediction accuracy is significantly

affected by ∆. For all three mechanism, there are two crests (i.e. ∆ = 4 or 7 ) which

show the most suitable slot length ∆ for our traffic patterns. However, regardless of the

∆ value we choose, the accuracy of CTP is always better than the other two mechanisms.

Fig. 5.5a demonstrates the accuracy of the three mechanisms with different numbers

of switches. This simulation is conducted in the situation of PIC and N = 70,∆ = 1s.

The switches are deployed as described in Sec. 4.0.1. From the figure, we can notice

that the prediction accuracies of CTP and DTP decrease with an increasing number of

switches. However, S-CTP always exhibits a stable prediction accuracy. And when the
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number of switches is more than 25, the performance of S-CTP is even better than that

of DTP. When the number of switches exceeds 25, the prediction accuracy of CTP also

tends to be stable and can achieve nearly 90% accuracy. This means that the proposed

deep learning based prediction algorithm is also suitable for a large scale network.

Furthermore, as shown in Fig. 5.5b, we compare the three kinds of deep learning based

traffic load prediction accuracy in situations of PIC and EIC. The prediction accuracies

in PIC always significantly outperforms that in EIC. This is because there are so many

random events in EIC and it is hard to track its policy. On the other hand, considering

the fact that the event driven still has some rules in practical networks, such situation

can be further researched in the future works.

Thus, the results show the advantage of using the SDN central control system. This is

because the high computation ability and communication mechanism in SDN allows more

complex information to be used as training data in learning process. Next, we investigate

the performance of deep learning based channel assignment in SDN-IoT.

5.2.2 Performance of Deep Learning Based Channel Assignment

In this part, we compare the learning performance of POC with different learning struc-

tures and different learning parameters. Then, we compare the POC accuracy of our

proposal. Finally, we compare the throughput between our proposed DLPOCA and tra-

ditional channel assignment algorithms (i.e., the orthogonal channel assignment, POC,

AC-POCA).

In Fig. 5.6, we compare the training accuracy with different learning structures, i.e.,

DBN with 2 and 3 hidden layers. The number of nodes in each layer is set to 20 and

100. Here, we briefly call them 20-2-DBN, 20-3-DBN, 100-2-DBN, and 100-3-DBN, re-

spectively. Then, we change the DBN structure into deep CNN with 1 and 2 convolution

layers and 2 full connection layers, respectively. In the CNN, we set the size of convolution

layer as 3× 3, the number of nodes in full connection layer is 100, the number of channels

in convolution layer is 20, and the padding and stride are set to 1. Correspondingly, we

briefly call them 1-CNN, 2-CNN. Then, we compare those different training structures in

different network structures. After running all those training processes with mini-batch

size of 20 and 500 epoches, the accuracy result is shown in Fig. 5.6. From the result,

we can notice that the accuracy is deeply related to the training structure, and the deep

CNN is much better than DBN in our scenario. Moreover, the 2-CNN can always get

100% accuracy in our network and is chosen as our final training structure.

Our proposed DLPOCA chooses the deep-CNN as the training structure, and the

simulation result demonstrates almost 100% accuracy. Then, we compare the convergence

time (i.e., iteration times) of DLPOCA and conventional algorithms, Cooperative Channel
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Figure 5.6: The accuracy with different configuration of learning structure.

Assignment Game (CoCAG) with Best Response (BR) and Smoothed Better Response

(SBR) [29] and ACPOCA [120]. For ease of representation, the three methods are briefly

referred to as CoCAG-BR, CoCAG-SBR and ACPOCA, respectively. We run the channel

assignment process 100 times with randomly deployment of nodes and obtain the average

number of iteration times.

Fig. 5.7 shows the comparison result of the convergence time. As described in Sec. 5.1.1,

with our proposed DLPOCA, the number of iteration times is always 1, which significantly

outperforms conventional algorithms. In conventional algorithms, the switch chooses the

channel of its links depends on the decisions of other switches. This means that the

switches must wait until other prior switches finished their channel assignment. The more

the iteration times, the longer time each switch needs to spend in channel assignment.

This causes redundant convergence time.

Because of the redundant convergence time, redundant signaling correspondingly in-

creases. During the convergence time, all links are down because of the channel reassign-

ment, and the throughput decreases with such redundant convergence time. However,

with our proposed DLPOCA, the number of iteration time is always 1, and both the

convergence time and signaling overhead are significantly low.

Considering the dynamics of network, the traffic load and link condition may change

frequently, leading to the frequent channel reassignments. Here, we consider the traffic

load in the situation of PIC. In order to simulate such a situation, we set the frequency
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Figure 5.7: The convergence compared with proposal and conventional algorithm.

of channel assignment in our simulation as 10s/1 (i.e., every 10 seconds execute once).

During the channel assignment, all data transmissions are paused. And then, we compare

the throughput between DLPOCA, ACPOCA and CoCAG. In this simulation, the buffer

of each node is set to 100KB, and the packets are randomly discarded when the buffer is

full. In order to show the advantage of our proposal more clearly, in this section, we just

consider that all packets are generated normally, i.e., not in the situation of PIC or EIC.

The packet generation rate of each node is set as 1Mbps. The packet size and signaling

size both are set to 1kb. Then, we run the simulation over 1000s, and the throughput

result is demenstrated in Fig. 5.8. From the above result, it can be noticed that the

throughput of the proposed DL-POCA is always better than that of conventional channel

assignment algorithms. This is because of the quick convergence of our proposal. The

channel assignment of all routers can be decided only with one broadcast and finished

almost immediately. On the contrary, in the conventional channel assignment algorithms,

the switches need to make decisions one by one that causes a high number of iterations

to converge. Especially by randomly Smoothed Better Response based game theoretical

CoCAG, switch have to make many redundant decisions to maximize their utility.
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rithms.

5.2.3 Performance of the Joint Deep Learning Based Prediction

and Channel Assignment

To further improve the channel performance, we combine the intelligent deep learning

based channel assignment with deep learning based traffic load prediction. The result of

Fig. 5.9 shows the performance of our proposed TP-DLPOCA with conventional chan-

nel assignment algorithms (i.e., CoCAG, AC-POCA). In this simulation, the parameters

are considered to be the same as those in Sec. 5.2.2. Figs. 5.9a and 6.4 demonstrate

the comparison of throughput and packet loss rate of TP-DLPOCA and conventional

algorithms, respectively. From the results, we can notice that the performance of the

proposed TP-DLPOCA is much better than that of conventional algorithms and even

DLPOCA. Furthermore, when the number of switches increases, the packets loss rate of

TP-DLPOCA almost tends to be stable, indicating the advantage of TP-DLPOCA com-

pared with conventional algorithms in a larger network. This is because TP-DLPOCA

can predict the congestion and give the links in the congestion area higher priority to be

assigned with high quality channels. And even when the network situation changes, the

proposed TP-DLPOCA can still learn from the new situation and predict the congestion

to assign suitable channels. This good performance of the proposed TP-DLPOCA can be

credited as the online intelligent channel assignment strategy.
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5.3 Summary

The explosive growth of sensing data and quick response requirements of the IoT have

recently led to the high speed transmissions in the wireless IoT to emerge as a critical issue.

Assigning suitable channels in wireless IoT is a basic guarantee of high speed transmission.

However, the conventional fixed channel assignment algorithms are not suitable in the IoT

due to the highly dynamic traffic loads. Recently, the Software Defined Networking based

IoT (SDN-IoT) is proposed to improve the transmission quality. Moreover, the deep

learning technique has been widely researched in high computational SDN. Therefore,

a deep learning based partially channel assignment algorithm (DLPOCA) was proposed

to intelligently assign channels to each link in SDN-IoT. Then, by using the previous

proposed traffic load prediction method to predict the future traffic load and network

congestion, we combine the traffic prediction and channel assignment to propose a novel

intelligent channel assignment algorithm (TP-DLPOCA), which can intelligently avoid

traffic congestion and quickly assign suitable channels to the wireless links of SDN-IoT.

Extensive simulation results demonstrate that our proposal significantly outperforms the

conventional channel assignment algorithms.
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Proposed Deep Learning Based

Network Traffic Allocation

As mentioned in the introduction, in my thesis, I mainly consider the radio resource al-

location and traffic resource allocation problem in the IoT. In previous works, we solved

the radio resources allocation problem in IoT. However, in the considered SDN-IoT, es-

pecially in the Data plane, how to allocation the integrated traffic flows from sensing

plane then becomes the main concern in the SDN-IoT. In this chapter, we consider the

traffic allocation problem in the data plane of SDN-IoT which can be treated as a SDN

enabled backbone in IoT. In conventional network, the network traffic control especially

the routing protocol are widely researched to offer the traffic allocation service in net-

work. However, the networks still operate on routing frameworks that were designed

decades earlier. Indeed, as the wireless networks continue to evolve, efficient network

traffic control such as routing methodology in the wireless backbone network appears as

a key challenge [121]. The existing routing protocols used in such networks were designed

originally for the fixed, wired networks that rely on calculating the shortest path from a

source to its destination based on distance vectors or link costs [122, 123, 124, 125]. To

conquer the challenges, in this chapter, I further introduce a deep learning based network

traffic allocation (i.e., network traffic control) mechanism.

The application of deep learning for network traffic allocation, in wireless/heterogeneous

networks is a relatively new area. With the evolution of wireless networks, efficient net-

work traffic control such as routing methodology in the network appears as a key challenge.

This is because of the reason that, firstly, the conventional routing protocol requires lots of

global information from all other nodes which leads to high signaling overhead, in second,

the conventional routing protocols do not learn from their previous experiences regarding

network abnormalities such as congestion and so forth. Therefore, in the future high

speed network, an intelligent network traffic control method is essential to avoid those

problems.
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As mentioned in the related work part, my previous works [100, 103] mainly used

supervised learning to solve the signaling problem of traffic allocation. In this chapter,

I address the second issue and propose a new, real-time deep learning based intelligent

network traffic allocation method. The proposed method do not depends on the existing

labeled data and is based on online self-learning which exploiting deep Convolutional Neu-

ral Networks (deep CNNs) with uniquely characterized inputs and outputs to represent

the considered backbone in SDN-IoT. Simulation results demonstrate that our proposal

achieves significantly lower average delay and packet loss rate compared to those observed

with the existing routing methods. We particularly stress on our proposed method’s inde-

pendence of existing routing protocols that make it a potential candidate to remove rout-

ing protocol(s) from future wired/wireless networks especially in the considered SDN-IoT

scenario.

6.1 Problem Statement and Considered Deep Learn-

ing System

In this section, we first formulate the problem statement, and then present our considered

deep learning system model.

To describe our research problem in an easy manner, we consider a the backbone

topology of the data plane in the SDN-IoT consisting of several SDN switches to serve

the IoT devices as depicted in Fig. 6.1. The mechanism to choose one route from a num-

ber of alternative paths to connect each source-destination pair in such a communication

network is referred to as a routing strategy. Let N denote the number of existing switches

(i.e., routers) in the network that are represented by the set, R = {r0, r1, . . . , rN−1}. The

routing strategy in a network can be formulated as a classical combinatorial optimiza-

tion problem, i.e., the shortest path routing problem in a graph. However, conventional

routing protocols (such as OSPF, Intermediate System to Intermediate System (IS-IS),

Routing Information Protocol (RIP), and so forth) are inherently prone to the same prob-

lem when the network environment degrades. In particular, when the network becomes

heavily congested, conventional routing protocols typically make routing decision, which

is retained even if the same/similar congestion events recur at a later instant. This is

because the conventional routing protocols, designed decades earlier, adhere to making

decisions based on fixed rules or policies. In other words, the traditional routing strate-

gies are not intelligent and therefore, they repeatedly make the same routing decision for

similar congestion scenarios triggered by the burst traffic that suddenly changes during

a short time interval. For example, as depicted in Fig. 6.1, the source switch r0, r3 and

r6 receive integrated input packets from sensing plane and send them to the destination
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Figure 6.1: Considered wireless network backbone and depicting our focused problem.

switch r5. Prior to the appearance of burst traffic at the source switch, the load of switch

r4 is small, and hence, the traditional routing method chooses r4 to forward the packets to

r5. However, when the source switch suddenly experience the burst traffic, the load of r4

increases dramatically which leads to congestion at r4. In order to deal with such a net-

work congestion, the packets are forwarded via alternative paths (e.g., through r1 and/or

r7) to relieve the burden at r4. However, when such a situation recurs, the conventional

routing method always makes the same decision to combat the same/similar congestion

event. This is because the traditional protocol is “non-intelligent”, i.e., not able to learn

from the past events and “remember” how to deal with such scenarios.

In order to intelligently make routing decisions in a the considered network as shown in

Fig. 6.1, in this chapter, we adopt a deep learning system. Our considered deep learning

system model is presented in the remainder of the section. The deep learning system can

collect past “errors” (i.e., ineffective routing decisions) and their corresponding events

(i.e., congestion, network performance degradation, and so forth) to predict and avoid

the same errors when similar situations recur. In other words, when a certain routing

strategy and input traffic pattern are given, by employing the trained deep learning sys-

tem, a certain output can be obtained so as to indicate whether this routing strategy

may cause congestion or not. As our purpose is to learn the identifiable features from

the network traffic, we employ a strong feature learning system, namely deep CNN intro-

duced in Chapter.4, to construct our learning system as depicted in Fig. 6.3a. The deep

CNN comprises two main components, namely the feature extraction and classification

parts. The training process is similar to the pre-mentioned Deep-CNN in the traffic load

prediction part. In the feature extraction part, many convolution layers are used to filter

68



Chapter 6: Proposed Deep Learning Based Network Traffic Allocation

the low level features of the input data while the pooling layers are used to progressively

reduce the size of features and parameters, and improve computation in the network.

The convolution and pooling layers are employed to eventually extract features of the

input data. Based on those extracted features, the classification part carries out the final

training process. This part is a little different from the previous prediction process, the

fully connected layers provide the core workspace to compute the extracted input data

and outputs as an N -dimensional vector. Different from the continuous value of predict

traffic load in prediction part, the output in this process are constructed as discrete value

denotes the result of the final classification.

Next, assuming that a routing strategy is given, we set the traffic patterns of each node

(i.e., switch) and the state of congestion in the network as input and output. Consider the

traffic pattern of the network consists of different kinds of information (features), such as

packets generation rate, waiting queue length in buffer, and so forth. To better utilize the

powerful matrix computing ability of deep CNN, we characterize the input data format

into a 3-dimensional matrix, (CN,T,R), which is similar to the data format shown in

Fig. 6.3b where CN = {cn0, cn1, · · · , cnM−1}, and M denotes the number of data channels

(Different from the wireless channel in network, the ”‘channel”’ is a concept used in CNN

to denotes the different features extracted from the input) used as input. If we only

consider a single channel cnj, the input data of each channel is recorded as a 2-dimensional

matrix (T,R). Because the traffic pattern is constructed by a time series containing many

time intervals, only a single time interval is not sufficient to describe all the features of

traffic patterns. Therefore, we use a number of time slots to record adequate features.

T = {tβ, tβ−1, · · · , tβ−H+1}, where tβ means the current time interval, and H indicates the

number of time intervals used as an input sequence. R = {r0, r1, · · · , rN−1}, as mentioned

earlier, means different nodes (i.e., routers). Thus, as shown in the matrix in Fig. 6.3b,

the different rows record the features of different time intervals while different columns

record the features of different switches. Furthermore, different platforms indicate records

in different channels. For example, consider the generation rate recorded as the second

channel. Then, the generation rate of switch r5 during last time interval is recorded in

column 5, line 1 of channel 2. Corresponding to the input matrix, as mentioned above,

our output is simply characterized as a 2-dimensional vector, and each of its element has

a binary value. For example, we can set (1, 0) as the notation of congestion.

All the weights in the deep CNN are initialized with a random function, i.e., Gaussian

function and Xavier function. With the input and output, the assigned deep CNN is

running to train the neural network to reduce the error until a reasonable weight matrix

of the neural network is obtained. Then, such a trained neural network (i.e., its weight

matrix) can be used to provide the desired output when a certain input traffic pattern is

given.
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6.2 Proposed Deep Learning Based Network Traffic

Control Method

In this section, we describe our proposed deep learning based intelligent network traffic

control method. It is an online algorithm, which can be used in any existing routing

protocol to improve them or used to evolve into a new routing strategy. In other words,

our proposal aims to be independent of any baseline routing protocol. In our proposal, the

entire process can be divided into four steps, i.e., initial, running, updating, and training

phases. These steps are shown in the flow chart of Fig. 6.2 and described in the remainder

of the section.

6.2.1 Initial Phase

Prior to the running phase, each switch needs to complete several tasks as follows. First,

each switch rf calculates all possible paths, pf,i,j, to each destination node ri. The path

number j is recorded as a 2-dimensional matrix. Additionally, {pf,i,j ∈ Pf |f ≤ N, i ≤
m, j ≤ n}, where m (≤ N) and n denote the number of destinations and the maximum

number of possible paths to each destination, respectively. Pf indicates the set of all pos-

sible paths combination to all destination routers of rf and is recorded as a 3-dimensional

path matrix. In the path set Pf , all pf,i,j paths are arranged as a minimum priority queue

depending on the metric value (e.g. hop number, distance) of each path. For example,

in switch r1, the third order path to destination r5 is expressed as p1,5,3. We assume that

there is a switch rsup with sufficient computation ability that collects Pf of all switches

and records as a 4-dimensional matrix P = {P1, P2, · · · , PN−1, PN}. This is done for the

purpose of avoiding congested paths and quickly choosing the valid alternative path in

the minimum priority queue of each router. In addition to the total paths combination

containing all routing data to each destination, another routing strategy combination

set C is employed to only record the paths number combination c of all routers as an

N -dimensional vector {c(j1,j2,··· ,jN−1,jN )|j <= n, c ∈ C}.

6.2.2 Running Phase

In the running phase, we have two periods, namely the cold start period and intelligent

running period. In the cold start period, before the training phase learns enough situ-

ations and routing judgment of updating phase can be done, we choose the minimum

hop paths combination P short (i.e., the first order path in the tensor) of all routers from

the paths set P as the first routing paths combination. Then, after rsup collects enough

training data and the training phase is accomplished, the running phase goes into intel-

ligent running period. In the intelligent running period, the real-time updating phase is
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Figure 6.2: The flow chart of our proposed deep learning based network traffic control
method.

processed periodically. Furthermore, the valid paths combination P valid are intelligently

chosen and executed by the result of the routing judgment in the updating phase.

6.2.2.1 Real-time Updating Phase

The updating phase collects traffic patterns for training data and performs routing judg-

ment to intelligently choose the valid paths combination and find the best path to avoid

congestion. During the updating phase, there are two steps, namely, data collection, and

path selection and routing judgment.

• Data Collection: The routing information and traffic patterns should be collected

and updated to rsup in a certain time period, tup. When the packets arrive at

the destination switch, the switch records the transmission delay td of each packet.

During the updating phase, rsup records the routing strategy combination c. In

addition, each switch calculates the average packets delay and packets loss rate
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Figure 6.3: Our unique input characterization for the deep CNN.

during the period between the last and the current updating phases, and sends those

information to rsup. Here, we refer to the period between two consecutive updating

phases as the updating interval, tup. Then, a threshold th is preset (by calculating

from the maximum and minimum values of all periods) to judge whether the network

is congested or not during this tup. The result is recorded as {y(2)|(1, 0)(0, 1)}. The

occurrence of the congestion is recorded as (1, 0). Otherwise, (0, 1) is recorded. Also,

the traffic patterns including packets generation rate and packets waiting queue size

in the buffer of each router are recorded as {x(i)|i = 1, . . . , N}. To improve the

accuracy, the traffic patterns are always recorded over h intervals where (h > 1).

Both the congestion state and traffic patterns are finally combined as a labeled

training set, {D = (x(i×h), y(2))|i = 1, . . . , N ;h > 1, }. After several updating

phases, the training set becomes large enough to train the deep CNN, i.e., to start

the training phase.

• Path Selection and Routing Judgment: In rsup, for each routing strategy c, there

is a corresponding deep neural network’s WM to judge whether the recent traffic

patterns will cause congestion or not. If the result is indeed, a congestion, we

denote this paths combination, c as invalid. The switches in the network choose
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the next combination, cnext, and perform the above judgment again until a valid

paths combination is chosen. For example, when c(1,··· ,1) is assessed by WM1 ,··· ,1

as invalid, c is changed to c(2,··· ,1) and judged by WM2 ,··· ,1 again. Until c(2,3,··· ,5)

is evaluated by WM2 ,3 ,··· ,5 to be valid, the network will choose the corresponding

paths combination p of strategy combination c(2,3,··· ,5) as a valid routing path pvalid

during the next updating interval. Next, we describe how the neural network’s WM

is constructed and improved through the training phase.

Table 6.1: Considered features of the deep CNN.

Input layer Convolutional layers Full connection layers Output layer

Width 3

layer 1 2
layer 1 2

node 2width 3 3

height 3 3

node 100 15

height 10

channel 20 30

active softmaxstride 1 1

padding
width

1 1
active relu relu

channel 2

padding
height

1 1

initialize xavier
active relu relu

initialize xavier xavier
initialize xavier xavier

6.2.2.2 Online Training phase

The training phase learns the congestion state of each combination c to train the network

and improve the routing judgment accuracy of the updating phase. After the training

data D is collected in the updating phase, the deep CNN is created according to the paths

combination C. For example, if the network route is in c(1,3,...,3), then the neural network

WM1 ,3 ,...,3 is constructed for training. If WM1 ,3 ,...,3 already exists, then the training

process begins to improve the deep CNN network as mentioned in Sec. 6.1. These trained

neural networks (i.e., their weight matrices) are used in the updating phase to make

the routing decision. With such an online (i.e., real-time) training algorithm, the neural

networks can be trained periodically with the training interval, tin. It is worth noting that

the training interval tin is set as a large number of updating intervals (i.e., tups) so as to

obtain sufficient labeled training data. Then, the neural network WM can be improved

over time so as to make the routing decision with higher accuracy.
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Figure 6.4: Packet loss rate before and after the training phase of proposal.

6.3 Performance Evaluation

In this section, we evaluate the performance of our proposed deep learning based traffic

control method by conducting simulations using C++/WILL [119]. We compare the

performance of our proposal and conventional routing algorithm including OSPF, IS-

IS, and RIP. For simplifying our conducted simulations, we consider our scenario as a

3x3 SDN backbone with 9 switches in the data plane of SDN-IoT, topology of which

is depicted in Fig. 6.1. In such a network, we consider each node as a switch. The

simulation is conducted on a workstation with Intel Core i7-6900K CPU, 64GB Random

Access Memory (RAM), and Nvidia Geforce TitanX GPU. Here, we consider r0, r3, r6 as

source switches which can generate integrated packets from sensing plane and send them

to the destination r5, and all switches are assumed to receive and forward packets. The

link bandwidth between each switch is set to 800Mbps. The buffer of each switch is set

as 10MB, and the packets are randomly discarded when the buffer is full. At first, we

set the average packet generation rate of each source switch as 180Mbps, and the data

generation process is set as a Poisson process (with means=2). Consider at the initial

phase, all switches choose the shortest path to send packets. Then, our proposal is used to

train the new routing paths. We set the data updating interval (tup) and training interval

(tin) as 1s and 100s, respectively. The layers of the deep CNN are set to two convolution

layers and two fully connected layers. Because of the manageable size of the input data,

for the conducted simulation, no pooling layer is considered. The specific features of the
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deep neural network are shown in Table 6.1. The total running time is 1200s, the data

collection phase begins since the beginning, and the training phase commences at 600s.

From Fig. 6.4, we can see that, without the intelligent training process, the switches

only choose the first paths combination, the packets delay and packet loss rate always

remain in a high level, which indicates congestion. When the training begins, both packet

loss rate and packets delay significantly decrease. This is because the network learned

the solution to avoid the congestion and chooses valid paths combination by training the

labeled routing data. After running 500s of the training phase, the number of congestion

occurrences becomes almost zero. This shows a significant performance improvement in

avoiding congestion using our proposed real-time learning exploiting deep CNNs. From

Fig. 6.4, we can see that, without the intelligent training process, the switches only choose

the first paths combination, the packets delay and packet loss rate always remain in a high

level, which indicates congestion. When the training begins, both packet loss rate and

packets delay significantly decrease. This is because the network learned the solution to

avoid the congestion and chooses valid paths combination by training the labeled routing

data. After running 500s of the training phase, the number of congestion occurrences

becomes almost zero. This shows a significant performance improvement in avoiding

congestion using our proposed real-time learning exploiting deep CNNs.

Next, we compare the performance of our proposal with existing routing algorithms,

i.e, RIP, IS-IS, and OSPF. In order to simulate a network congestion, we use different kinds

of bursty input data in each different source node. One of them is shown in Fig. 6.5a

for generating the packets at one of the source nodes. Note that the average packets

generation rate is set to 180Mbps. Fig. 6.5b demonstrates the comparative performances.

As RIP, IS-IS and OSPF employ similar graph-based algorithms for determining the

routing paths, they exhibit similar performances. From the result, we can notice that

with ongoing time, the delay and packet loss rate always stay in a high level with the

traditional routing protocols. However, they decrease significantly with our proposal.

Such trends indicate that the traditional routing algorithms always deal with the sudden

traffic surge instances in a similar manner, and hence, result in network congestion. In

other words, because of the lack of learning process, when a similar input traffic appears,

the conventional routing methods always choose a similar strategy and repeatedly confront

congestion. Compared with those traditional algorithms, when a congestion happens, our

proposal is able to learn the congestion state so that it may avoid the same problem

at a later instant. With the same learning features as shown in Table 6.1, our proposal

running for more than 1000s (i.e., 10 learning phases) achieves a significantly high learning

accuracy (i.e., up to 98.7%). This means that our proposed intelligent routing decision

faciliated by the deep learning methodology can avoid almost 98.7% congestion cases.

Thus, our proposal allows real-time learning to achieve better performance with time.
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Figure 6.5: The input traffic and performance comparison of our proposal and conven-
tional OSPF, IS-IS, and RIP of average delay

76



Chapter 6: Proposed Deep Learning Based Network Traffic Allocation

Furthermore, with such kind of bursty input traffic, we compare the performance of our

proposal with existing routing protocols in different packet generation rates ranging from

40Mbps to 480Mbps. Fig. 6.6a demonstrates the comparison of packets loss rates between

our proposed method and the conventional routing protocols after the simulation period

of 1000s.

In addition to the comparison of the total throughput of the network, we compare the

signaling overhead between our proposal with that of the conventional OSPF as shown in

Fig. 6.6b. The result in the figure demonstrates that despite the communication overhead,

our proposal outperforms the conventional routing protocol. In the conventional OSPF,

each router needs to update its routing table by flooding a significantly large number of

link-state advertisements (LSAs) during each updating period. On the other hand, in

our proposal, instead of flooding LSAs to all routers, each router just sends its feature

information to rsup in each updating phase. After computing the routing strategy only, rsup

floods the strategy to other routers. This results in a significantly less signaling overhead

than the conventional scenario whereby each router floods its LSAs to all routers.

From the above results, it can be noticed that our proposal exhibits intelligent learning

and therefore, achieves more effective network traffic control compared to the traditional

routing methods. Furthermore, our proposal can be considered as a proof-of-concept

demonstrating that the proposed technique is entirely independent of the existing routing

protocols, and it can collect training data by itself over time to improve its performance.

Indeed, such an approach can open up a new direction by providing an intelligent and

self-routing decision making method in the future network traffic control systems.

6.4 Conclusion

Recently, deep learning emerged as a powerful machine learning technique for various dis-

ciplines such as computer science, mathematics, bio-engineering, and so forth. However,

the deep learning application for network traffic allocation in wireless IoT networks is a rel-

atively new research field. As the wireless networks especially the wireless IoT continue to

become more complex, efficient network traffic control, particularly routing methodology,

requires renewed research attention. In this vein, SDN has been viewed as the paradigm

of next generation IoT due to its flexibility and conciseness. However, current SDN-IoT

structure mainly utilizes conventional routing protocols based traffic allocations which are

based on fixed rules and lacks the intelligence to learn from previous experiences. This

can lead to the repetition of wrong traffic allocation decisions when similar traffic patterns

happen. The inaccurate path decision results in the network congestion, which leads to

further performance deterioration. In this Chapter, we propose a online deep learning

based routing strategy which utilizes CNNs to choose the paths combinations according
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Figure 6.6: Comparison of our proposal and conventional OSPF, IS-IS, and RIP in terms
of packet loss rate and signaling overhead.
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to the network traffic trace in an online fashion. This strategy can not only better choose

the paths combinations according to previous network trace, but also keeps improving its

performance through continually learning from previous experience. Analysis shows that

our proposal can avoid the congested paths and balance the network traffic, resulting in

the significant improvement of packet loss rate and average packet delay in the SDN-IoT.

Thus, it can be concluded that our proposal outperforms conventional routing protocols

based traffic allocation in SDN-IoT.
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Chapter 7

Conclusion

7.1 Summary and Discussions

The resource in IoT is limited. In order to better utilize the limited resources, we proposed

a UAV-enabled IoT structure which employ UAV-enabled base station as the edge com-

puting server in IoT. In the proposed IoT structure, the caching based D2D and UAV are

jointly deployed to construct the heterogeneous IoT called as UAV-enabled IoT. With the

considered UAV-enabled IoT, we considered the radio resource allocation in the network

as an channel assignment problem since the number of orthogonal channels is limited and

using overlapping channels in adjacent nodes with both primary and D2D links leads to

severe interference. Furthermore, in the considered network, the mobility of IoT devices

leads to highly dynamic situation which renders conventional channel assignment algo-

rithms unsuitable. For overcoming those challenges, we presented an interference model

and formulated a formal problem. Then, we proposed AC-POCA, a distributed Anti-

Coordination game based algorithm for solving the channel assignment problem in the

considered UAV-enabled IoT. Using AC-POCA, the IoT devices are able to use only local

information to reach a steady state in the network. Through analysis, the uniqueness of

the steady state in the proposed AC-POCA was also verified. Simulation results were pro-

vided to demonstrate that the proposal leads to fast convergence, low signaling overhead,

and improved throughput in contrast with the existing channel allocation methods.

However, in the UAV-enabled IoT, the IoT devices are constructed heterogeneously

and links between them are connected dynamically, which leads to unstable of the con-

ventional IoT structure. Another big challenge of the heterogeneous IoT is that the

tremendous number of object swilling to connect to the Internet should be considered in

many underlying protocols. To address such problem, recently, the Software Defined Net-

working based IoT (SDN-IoT) is proposed to provide adequate solutions to heterogeneous

underlying IoT devices. However, as the large scale devices in the SDN-IoT are heteroge-

neous which makes both the topology and traffic flows in the network high dynamically
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change. Current SDN structure mainly utilizes conventional channel assignment and

routing protocols which are based on xed rules lacks the intelligence to catch on the high

dynamically changed traffic patterns. To deal with the high dynamic changed network

traffic, we proposed a novel deep learning based traffic load prediction method to predict

the future traffic load and network congestion. Then, a deep learning based partially

channel assignment algorithm (DLPOCA) was proposed to intelligently assign channels

to each link in SDN-IoT. Finally, we combine the deep learning based traffic prediction

and channel assignment to propose a novel intelligent channel assignment algorithm (TP-

DLPOCA), which can intelligently avoid traffic congestion and quickly assign suitable

channels to the wireless links of SDN-IoT. Extensive simulation results demonstrate that

our proposal significantly outperforms the conventional channel assignment algorithms

and ACPOCA.

Finally, with the allocated channel, we further proposed a deep learning based network

traffic control algorithm to deal with the traffic allocation problem in the data plain of

SDN-IoT. The a deep learning based network traffic control algorithm which utilizes CNNs

to choose the paths combinations according to the network trafc trace in an online fashion.

This strategy can not only better choose the paths combinations according to previous

network trace, but also keeps improving its performance through continually learning

from previous experience. Analysis shows that the proposal can avoid the congested

paths and balance the network trafc, resulting in the signicant improvement of packet

loss rate and average packet delay in the SDN-IoT. In summary, in the thesis, I research

on the resource allocation problem in the IoT, the corresponding radio resource allocation

and traffic allocation algorithm are proposed to alleviate the high burden and improve

the network performance in IoT.
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