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Abstract

A quantum walk is regarded as a quantum analog of a random walk and the dynamics is
interpreted as a wave propagation on the underlying graph of which the time evolution is
defined by a unitary operator. Thus, periodicity is one of the most significant characteristics
of quantum walks which cannot be seen in random walks, and an important problem is
to determine the classes of graphs which admit a periodic quantum walk. We mainly
focus on the Grover walk, which is a particular type of quantum walks with applications
to searching problems, graph-isomorphism problems and so forth. In this paper, we first
characterize some classes of graphs on which a periodic Grover walk is exhibited, e.g., cycle
graphs, path graphs, distance-regular graphs, and generalized Bethe trees. We next derive
conditions of graph structure by means of spectral analysis which gives rise to a periodic
Grover walk. By using those conditions, we construct classes of graphs which admit a
periodic Grover walk. Finally, we introduce several graph-transformations, e.g., multiplex
and subdivision graphs, and prove that they preserve the periodic behavior. Moreover, we
consider the staggered walk on the generalized line graph induced from a Hoffman graph
and study the relation between periodicity of the Grover walk and that of the staggered
walk.
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Chapter 1

Introduction

A quantum walk is interpreted as a quantum analogy of a random walk [23] and has been
actively discussed in various fields such as quantum physics and computer sciences [47],
[63] since Y.Aharonov et al. [2] introduced a quantum random walk as an antecedent
of a quantum walk in 1993. The motivation was to detect a single atom in the excited
state on some photons in a cavity as fast as possible. Slightly later, there has been an
increasing interest in quantum walks on graphs in relation to searching problems [54],
graph-isomorphism problems [15] and so forth. A quantum walk often shows a specific
characteristic which is not observed in a random walk and the characteristic helps us to
solve the problems. What we focus on in this paper is periodicity of quantum walks, which
is one of the most important property of quantum walks [28], [41]. Especially, in order to
shed light on the profound relation between quantum walks and graph structure we consider
characterization of graphs which admit a periodic quantum walk. In this paper, we give
not only an extended result of [28] but also a condition of structure to allow periodicity.
Furthermore, we introduce some graph-transformations preserving the periodicity.

Unlike a random walk, a particle of a quantum walk has chirality and its motion is
interpreted as a wave propagation on the underlying graphs [17]. More precisely, a particle
has an amplitude expressed in terms of a Hilbert space associated to the underlying graph
and the time evolution is given by a unitary operator. Then the quantum interference,
that is, overlaps and cancellations of waves play an important role. Then the unitary time
evolution ensures that the amplitude at each time always gives the probability distribution.
There are two types of, quantum walks: discrete- and continuous-time quantum walks.
Both types have been intensively studied with many applications. Indeed, one of the
principal motivations to investigate quantum walks was to design quantum systems solving
problems more efficiently than classical systems. As a strong evidence, Shor [59] provided
a quantum algorithm to solve an integer factorization and a discrete logarithm problem,
which gave an exponential speedup over classical algorithms. In addition, Grover [22] also
provided a quantum search algorithm for an unordered database, which gives a quadratic
speedup over classical search algorithms.

For discrete-time quantum walks, Meyer [49] proposed quantum cellular automata to
realize a physical device for quantum computations. The cell automata gave foundation of
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discrete-time quantum walks on the one-dimensional lattice. Nayak and Vishwanath [52]
formulated a discrete-time quantum walk called the Hadamard walk on the one-dimensional
lattice by taking the Shorödinger’s approach to obtain the asymptotic form of the probabil-
ity distribution. Later, Ambainis et al. [4] analyzed quantum walks on the one-dimensional
lattice not only by the Schrödinger’s approach but also using path integrals. After that,
Konno [35], [36] reformulated quantum walks on the one-dimensional lattice and obtained
the weak limit theorem for quantum walks corresponding to the central limit theorem for
a random walk. Moreover, it was shown that the proper time scaling for a quantum walk
to obtain a reasonable weak limit is linear in construct to a classical random walk of which
the proper time scale is the square root of time. It is one of the reasons why quantum
algorithms are more efficient than classical ones. Another widely studied topic on quan-
tum walk is localization which means that the particle stays at an initial position at a high
probability. The localization is found in the one-dimensional lattice [37], the half line [40]
and so forth. Furthermore, coexistence of the linear spreading and the localization of a
quantum walk is also mentioned in [27].

While discrete-time quantum walks on the one-dimensional lattice were intensively
studied, quantum walks on general graphs were in the limelight as an extension of the
one-dimensional lattice by several researchers. D.Aharonov et al. [3] first gave an idea of
quantum walks on the general graphs, where a quantum version of the mixing time, the
filling time and the dispersion time are defined. In particular, a quadratically fast conver-
gence of the mixing time for quantum walks on cycles are mentioned and the lower bound
of the mixing time is obtained for general graphs. Szegedy [62] defined a quantum walk
on bipartite graphs and formulated the quantum hitting time. The quantum hitting time
is proved to be quadratically faster than the classical one. Furthermore, Childs et al. [13]
and Kempe [33] proposed exponentially faster quantum hitting times. As is seen in those
works, quantum walks on graphs suggest to realize more efficient systems to solve several
problems such as searching problems. Indeed, searching algorithms to detect a target set
on graphs as fast as possible by driving a quantum walk have been intensively analyzed.
Aaronson et al. [1] and Shenvi et al. [58] proposed quantum search algorithms to find a
marked item on a d-dimensional lattice and the hypercube. These algorithms are shown
to provide a quadratical speed up. As an application of quantum searchings, Ambainis [6]
formulated an algorithm to solve element distinctness more efficiently. Moreover, Magniez
et al. [46] proposed a quantum algorithm to find triangles on a graph.

Continuous-time quantum walks are also well-studied fields, where the time evolution
operator is defined by a Hamiltonian. Farhi [16] first proposed an idea of continuous-time
quantum walks to solve a decision problem. It can be regarded as a quantum algorithm
on a tree. A family of trees which provides an exponentially speedup to solve the problem
than classical algorithms was found in the result. In particular, the perfect state transfer
is one of the most interesting topics on continuous-time quantum walks. If there exist two
vertices u, v such that the state of particle on u completely transfers to the another one
v, such a phenomenon is called perfect state transfer. Bose [10] first proposed the perfect
state transfer. Some classes of graphs which admit perfect state transfer were found in [8],
[19], [34], and [61]. Furthermore, Godsil [19] found spectral restriction of graphs admitting
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perfect state transfer. However, it is still open what kind of graph structure is required to
provide the perfect state transfer.

What we deal with in this paper is characterization of graphs in terms of specific char-
acteristics of quantum walks, or in short, relation between graph structure and quantum
walks. In this context it is worthwhile to discuss periodicity of discrete-time quantum
walks which one of the most significant characteristics of quantum walks. The periodicity
in this paper means that there exists an integer k ∈ N such that the k-th power of the
time evolution operator becomes the identity operator. Thus, for a periodic quantum walk,
the behavior of the particle becomes periodic. Recently, the periodicity of discrete-time
quantum walks has been studied in [28], [41], [43], [66] and [67]. The periodicity is an
interesting property of quantum walks but it is very flail. The periodicity often disappears
even if we give a small change to the graph. Therefore, we are interested in what kind
of graph structure gives or preserves the periodicity. In addition, research on quantum
walks pays attention to analyze properties of quantum walks for a fixed graph. On the
contrary, we aim to characterize graph structure given by a property of quantum walks.
This standpoint is regarded as an inverse problem from the viewpoint of quantum walks.

We mainly treat the periodicity of the Grover walk, which is a quantum walk derived
from Grover’s search algorithm. The Grover walk is one of the most intensively studied
quantum walks on graphs [5], [64]. A graph-isomorphism problem is one of the most
interesting applications of the Grover walks. It is used to distinguish two cospectral strongly
regular graphs in terms of the adjacency matrix. The cube of the time evolution operator of
the Grover walk is believed to be an invariance of these graphs [15], [20]. Ren et al. [57] gave
a relation between the Ihara zeta function and the Grover walk. Furthermore, Konno and
Sato [39] expressed the characteristic polynomial of the time evolution operator of Grover
walk in terms of the second weighted zeta function. It is remarkable that the spectrum of
the time evolution operator of the Grover walk is reduced to that of the transition operator
of a simple random walk on the underlying graph [27], [30], [48]. Such a spectral mapping
is useful for some problems of quantum walks such as searching problems. Structural
quantities of a graph such as the degree or the diameter are often retrieved from a simple
random walk. If we suppose the periodicity of the Grover walk, there must be restriction
to a simple random walk on the graph and the restriction inherits to the graph structure.
Thus, we may see graph structure restricted by the periodicity. This is the principal reason
why we choose the Grover walk.

This paper is organized as follows: As preliminaries, we give definition of graphs, graph-
transformations, and associated operators in Chapter 2. In addition, we introduce the
Chebyshev polynomials and their properties, which are useful tools throughout this paper.

In Chapter 3, we define the Grover walk and its periodicity. Especially, the spectral
expression of the time evolution operator appeared in Lemma 3.2.2 plays an important
role in this paper. By spectral analysis, we give several classes of graphs on which a
periodic Grover walk is exhibited, i.e., cycle graphs and path graphs, see Theorems 3.4.1
and 3.5.1, respectively. We next treat classes of graphs having an equitable partition,
i.e., Hamming graphs, Johnson graphs, and generalized Bethe trees. The main results are
stated in Theorems 3.6.3, 3.6.4, and 3.7.6. Indeed, these results give an extension of the
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ones in [28].
In Chapter 4, we derive a condition of a graph to admit a periodic Grover walk in The-

orem 4.1.2, which is the most important statement in this paper. Thereby, we construct
new classes of graphs by an operator called join on which a periodic Grover walk is exhib-
ited. We join two cycles, several cycles, a cycle and a claw, and several path graphs and
show that the Grover walks on these graphs are periodic in Theorems 4.2.1, 4.2.2, 4.2.3,
and 4.2.4, respectively. Moreover, we find the shape of graphs admitting an odd-periodic
Grover walk in Theorem 4.3.1.

In Chapter 5, we introduce, as graph-transformations, multiplex graphs, subdivision
graphs and generalized line graphs induced by a Hoffman graph. We show that multiplex
and subdivision graph preserve the periodicity of Grover walks in Theorems 5.1.1, and
5.2.1, respectively. Furthermore, we study another quantum walk called staggered walk
on a generalized line graph. Combining the ideas of multiplex and subdivision graphs, we
show that the staggered walk on the generalized line graph becomes periodic whenever the
Grover walk on the original graph is periodic, see Theorem 5.3.2.

Finally, Chapter 6 summarizes the main results. In addition, we discuss some future
directions. We extend the condition of periodicity and state some works derived from the
extended conditions.
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Chapter 2

Preliminaries

In this Chapter, we prepare basic notions and notations of graphs, and introduce several
classes of graphs and graph-transformations. Moreover, we recall the Chebyshev polyno-
mials and their useful properties.

2.1 Graphs

A graph G = (V,E) is composed of a vertex set V (G) and an edge set E(G). The vertex
set V (G) is a countable set and an element of V (G) is called a vertex. The edge set E(G)
is a 2-element subset of V (G) and an element of E(G) is called an edge. We say that
two vertices u, v ∈ V (G) are adjacent (denoted by u ∼ v), if an unordered pair {u, v} is
a member of E(G). An edge connecting u and v is denoted by uv and these vertices are
called the endpoints of uv. Then

E(G) = {uv | u, v ∈ V (G), u ∼ v}.

We may relax the above conditions to allow a multiple edge. In that case E(G) is under-

v1

v2 v3

v4

G = (V,E)
V (G) = {v1, v2, v3, v4}

E(G) = {v1v2, v1v3, v1v4}

v1

v2

v3

H = (V,E)
V (H) = {v1, v2, v3}
E(H) = {v1v2, v2v3}

Figure 2.1: Examples of graphs
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stood as a multiset. Let muv be the multiplicity of an edge uv. Then we express the edge
set by

E(G) = {uv(muv) | u ∼ v}.
A graph having a multiedge is called a multigraph. For a multigraph G, we define a simple
graph called the underlying graph G by

V (G) = V (G),

E(G) = {uv | uv ∈ E(G)}.
In other words, the underlying graph is given by regarding a multiedge as a single edge.

v2

v1

v3 v4

G = (V,E)
V (G) = {v1, v2, v3, v4}

E(G) = {v1v2(2), v1v3(1), v1v4(3)}

Figure 2.2: A multigraph

If a multigraph has no multiedge, it is called a simple graph. An edge uv ∈ E(G) may
be given two directions, i.e., from u to v and from v to u. Then an edge with a direction
is called an arc. We denote an arc from u to v by (u, v). For a simple graph G we define
the symmetric arc set by

A(G) = {(u, v), (v, u) | uv ∈ E(G)}.

For a multigraph, the symmetric arc set is denoted by

A(G) = {(u, v; j), (v, u; j) | uv ∈ E(G), 1 ≤ j ≤ muv},

where muv is the multiplicity of an edge uv.
Let u ∈ V (G) and e ∈ E(G). If u is one of the endpoints of e, we write u ≈ e. If two

edges e and f have a common endpoint, then we write e ≈ f . Let G and H be graphs.
If H satisfies that V (H) ⊂ V (G) and E(H) ⊂ E(G), H is a subgraph of G by definition.
Let S be a subset of V (G) and H a subgraph of G with V (H) = S. If each edge satisfying
that both endpoints belong to S is in E(H), H is called the induced subgraph spanned by
S and is denoted by G[S]. For a vertex u ∈ V (G), every vertex v with v ∼ u is called a
neighbor of u and we define

N(u) := {v ∈ V (G) | u ∼ v}.
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The number of neighbors of u is called the degree of u and denoted by degG(u). If there
is no danger of confusion, omitting the subscripts we write deg(u). A vertex of degree one
is called a leaf. A sequence of distinct vertices {u0, u1 . . . , uk} ⊂ V (G) satisfying ui ∼ ui+1

for 0 ≤ i ≤ k − 1 is called a path from u0 to uk. If u0 ∼ uk in addition, the sequence
{u0, u1 . . . , uk, u0} is called an essential cycle. We define the distance between u, v ∈ V (G)
to be the length of a shortest path from u to v and denote it by d(u, v).

Furthermore, if |V (G)| < ∞, the graph G is called finite. If there exists a path between
any pair of vertices, the graph G is called connected. Throughout this paper, we only deal
with finite and connected graphs. In that case, we define the diameter of G by

diam(G) := max
u,v∈V (G)

d(u, v).

We will introduce several fundamental classes of graphs in the next subsection. In partic-
ular, if the vertex set of G is decomposed into the disjoint union of two subsets such that
any vertex in each subset is not adjacent each other, then G is called a bipartite graph.
Thus, the lengths of all the essential cycles in G are even if and only if G is a bipartite
graph. A graph G with unique essential cycle is called a unicycle graph. If the number
of vertices of the unique essential cycle of a unicycle graph is odd (resp. even), then the
graph is called an odd-unicycle graph (resp. even-unicycle graph). If the degrees of all the
vertices of G are constant, then G is called a regular graph. If the degree of a regular graph
is k, it is called a k-regular graph. Moreover, a graph G having no essential cycle is called
a tree.

2.1.1 Several classes of graphs

Here, let us introduce several important classes of graphs.

• Cycle graphs.

For n ∈ N with n ≥ 3, the cycle graph on n vertices is denoted by Cn. For V (Cn) =
{v1, . . . , vn}, the edge set E(Cn) is defined by

E(Cn) = {vivi+1 | 1 ≤ i ≤ n},

where we tacitly understand that vn+1 = v1.

• Path graphs.

For n ∈ N, the path graph on n vertices is denoted by Pn. For V (Pn) = {v1, . . . , vn},
the edge set E(Pn) is defined by

E(Pn) = {vivi+1 | 1 ≤ i ≤ n− 1}.
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Figure 2.3: A cycle graph

Figure 2.4: A path graph

• Complete graphs.

For n ∈ N, the complete graph on n vertices is denoted by Kn. For V (Kn) =
{v1, . . . , vn}, the edge set E(Kn) is defined by

E(Kn) = {vivj | 1 ≤ i < j ≤ n}.

Then all the vertices are adjacent each other. Let G be a graph and S be a subset
of V (G). If G[S] becomes a complete graph, S is called a clique.

Figure 2.5: A complete graph

• Complete bipartite graphs.

For r and s ∈ N, the complete bipartite graph, denoted by Kr,s, is defined as a
bipartite graph with two disjoint subsets A and B with |A| = r, |B| = s such that

E(Kr,s) = {uv | u ∈ A, v ∈ B}.

Then any vertex in A is adjacent to every vertex in B. For r ≥ 2, the graph K1,r is
called a claw.

10



Figure 2.6: A complete bipartite graph

• Strongly regular graphs.

For n, k, λ, µ ∈ N a strongly regular graph SRG(n, k, λ, µ) is defined as a k-regular
graph on n vertices such that

|N(u) ∩N(v)| = λ

if u ∼ v and
|N(u) ∩N(v)| = µ

otherwise.

Figure 2.7: A strongly regular graph SRG(10, 3, 0, 1)

2.1.2 Graph-transformations

Let G and G ′ be families of graphs. Then mappings from G to G ′ are called Graph-
transformations. We introduce useful graph-transformations.

• Line graph.
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G

⇒

L(G)

Figure 2.8: A line graph

For a simple graph G the line graph L(G) is defined by

V (L(G)) := E(G),

E(L(G)) := {e, f ∈ E(G), ef | e ≈ f and e ̸= f}.

In other words, each edge in G is regarded as a vertex of L(G) and two vertices
of L(G) are adjacent if and only if their corresponding edges in G has a common
neighbor.

• Multiplex graph.

For n ∈ N, a multigraph given by replacing each edge of G by a multiedge with
multiplicity n is called the multiplex graph MPn(G) in this paper. To be precise,
MPn(G) is defined by

V (MPn(G)) := V (G),

E(MPn(G)) := {e(n) | e ∈ E(G)}.

• Subdivision graph.

Set V (G) = {vi | 1 ≤ i ≤ n}. For l ∈ N, the l-subdivision graph Sl(G) is given by
embedding the path graph with length l in each edge of G. For e = vivj ∈ E(G), let
us denote the path graph embedded to e by P (e). We define

V (P (e)) := {w(r)
i,j | 0 ≤ r ≤ l},

and
E(P (e)) := {w(r−1)

i,j w
(r)
i,j | 1 ≤ r ≤ l},
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G

⇒

MP3(G)

Figure 2.9: A multiplex graph

where we tacitly understand that w
(0)
i,j = vi, w

(l)
i,j = vj and w

(r)
i,j = w

(l−r)
j,i for 0 ≤ r ≤ l.

Then we have
V (Sl(G)) = V (G) ∪

⊔
e∈E(G)

V (P (e))

and
E(Sl(G)) =

∪
e∈E(G)

E(P (e)).

In other words, Sl(G) is given by adding l − 1 vertices to each edge of G.

G

⇒

S4(G)

Figure 2.10: A subdivision graph
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2.1.3 Operators associated to graphs

For a countable set Λ, we define the Hilbert space of square summable functions on Λ by

ℓ2(Λ) := {f : Λ → C | ∥f∥2 < ∞},

where the inner product and the norm are given by

⟨f, g⟩ :=
∑
x∈Λ

f(x)g(x)

and
∥f∥ :=

√
⟨f, f⟩,

respectively. The standard basis of ℓ2(Λ) is given by {δx | x ∈ Λ}, where δx(y) = 1 if
x = y and δx(y) = 0 otherwise. Let us define the identity operator on ℓ2(Λ) by IΛ, that is,
IΛf = f for any f ∈ ℓ2(Λ). For a finite Λ, let jΛ and 0Λ be the all-one and zero function in
ℓ2(Λ), respectively. That is, jΛ(x) = 1,0Λ(x) = 0 for any x ∈ Λ. Throughout this paper,
for an operator X on ℓ2(Λ) we denote the set of eigenvalues of X by σ(X).The support of
f ∈ ℓ2(Λ) is defined by

supp(f) := {x ∈ Λ | f(x) ̸= 0}.

For a simple graph G = (V,E), we define the adjacency operator A = A(G) as follows:

Af(u) =
∑
v∼u

f(v), f ∈ ℓ2(V (G)).

Define the transition operator T = T (G) by

Tf(u) =
1

deg(u)

∑
v∼u

f(v), f ∈ ℓ2(V (G)),

and the degree operator M = M(G) by

Mf(u) = deg(u)f(u), f ∈ ℓ2(V (G)).

Then it follows immediately that
T = M−1A.

Then the representation matrices of A and T with respect to the standard basis {δu | u ∈
V (G)} are written as

Au,v =

{
1, if u ∼ v,

0, otherwise,

and

Tu,v =

{
1

deg(u)
, if u ∼ v,

0, otherwise.
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We sometimes consider the symmetric transition operator

T̃ = M
1
2TM− 1

2 = M− 1
2AM− 1

2

instead of T since their spectra are in coincidence. If G is a multigraph, the transition
operator is defined as follows:

Tf(u) =
∑
v∼u

muv

Mu

f(v), f ∈ ℓ2(V (G)), (2.1)

where muv is the multiplicity of an edge uv and Mu =
∑

v∼u muv. The transition operator
expresses a random walk on G. If G is simple, it expresses a simple random walk on G. In
that case, it is easily shown that jV (G) is an eigenfunction of T for 1, which is the maximum
eigenvalue. Thus, 1 ∈ σ(T ) and the absolute values of all the eigenvalues of T is at most
one. It is known that −1 ∈ σ(T ) if G is a bipartite graph [12].

2.2 Chebyshev polynomials

Let {Tj}∞j=0 and {Uj}∞j=0 be sequences of polynomials satisfying

T0(λ) = 1, T1(λ) = λ,

U0(λ) = 1, U1(λ) = 2λ

and the same recurrence relation;

Lj(λ) = 2λLj−1(λ)− Lj−2(λ), j ≥ 2.

Then {Tj(λ)} and {Uj(λ)} are called the Chebyshev polynomials of the first and of the sec-
ond kind, respectively. For the Chebyshev polynomials of the second kind, it is convenient
to set U−1(λ) = 0. The coefficients of the term of the maximum degree of Tj(λ) and Uj(λ)
become 2j−1 and 2j, respectively. From the above relations, it follows that

Tj(cos θ) = cos(jθ),

Uj(cos θ) =
sin((j + 1)θ)

sin θ
,

for j ∈ N and θ ∈ R. We will provide some key properties of the Chebyshev polynomials.

Lemma 2.2.1. If a complex sequence {ai}∞i=0 satisfies

λai =
1

2
(ai−1 + ai+1)

for λ ∈ C, then we have
ai = Ui−1(λ)a1 − Ui−2(λ)a0.
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Proof. Straightforward by induction.

Lemma 2.2.2. Let j ≥ 0 and λ ∈ C.

(i) λUj(λ)− Uj−1(λ) = Tj+1(λ).

(ii) λTj(λ)− Tj−1(λ) = (λ2 − 1)Uj−1(λ).

(iii) U2
j (λ)− Uj−1(λ)Uj+1(λ) = 1.

Proof. Straightforward by induction.
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Chapter 3

Periodicity of Grover walks

In this Chapter, we define the Grover walk and touch its periodicity which is our main
topic in this paper. Preparing some useful tools to analyze the periodicity, we characterize
several classes of graphs which admit periodic Grover walks.

3.1 Grover walks

Let G be a multigraph. Here, a particle moves around arcs of the underlying graph rather
than vertices. In addition, the motion of the particle can be interpreted as a dynamics on
the arcs. Now, we give a unitary operator on ℓ2(A(G)) defined by

Uφ(f) =
∑

o(f)=t(e)

(
2

deg(t(f))
− δe,f−1

)
φ(e), φ ∈ ℓ2(A(G)),

where δe,f is the Kronecker delta symbol. Then U is called the Grover transfer operator
and the quantum walk defined by the above U is called the Grover walk. Let φ0 ∈ ℓ2(A(G))
be a function with ∑

e∈A(G)

|φ0(e)|2 = 1.

Then we define a sequence {φt}∞t=0 as

φt = U tφ0. (3.1)

Due to the unitarity of U , we have ∑
e∈A(G)

|φt(e)|2 = 1

at each time t. Thus, we understand that the value |φt(e)|2 is the finding probability of
the particle on e at time t. Now, the equation (3.1) gives the dynamics of the Grover walk.
Then the function φt and the value φt(e) are called the quantum state and amplitude,
respectively.
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3.2 Periodic Grover walk

Let G be a multigraph and U the Grover transfer operator. If there exists a positive integer
k ∈ N such that Uk = IA(G), the Grover walk on G is periodic. In that case, the smallest
k ∈ N such that Uk = IA(G) is called the period of the Grover walk. For simplicity, we call
a graph satisfying the above condition a Grover-periodic graph. Especially, if the period is
specified as k, we call the graph a Grover-k-periodic graph.

Proposition 3.2.1. A graph G is Grover-k-periodic if and only if λk = 1 for every λ ∈
σ(U) and there exists λ ∈ σ(U) such that λj ̸= 1 for 0 < j < k.

Proof. Immediate by diagonalization of U .

Let U be the Grover transfer operator with σ(U) = {λ1, λ2, . . . , λd}. We set

Ni := min{k ∈ N |λk
i = 1, 1 ≤ i ≤ d.}

Then the period of the Grover walk is given by

N = lcm(N1,N2, . . . ,Nd),

where the right-side stands for the least common multiple of N1,N2, . . . ,Nd.

Lemma 3.2.2 (Higuchi, Konno, Sato, Segawa [28]). Let G be a multigraph. The spectrum
of the Grover transfer operator U is given by

σ(U) = {e±i cos−1 (σ(T (G)))} ∪ {1}b1(G) ∪ {−1}b1(G)−1+1B(G),

where b1(G) = |E(G)| − |V (G)|+ 1 and 1B(G) = 1 if G is bipartite, 1B(G) = 0 otherwise.

Throughout this paper, the branch of cos−1 is specified as [0, π]. If G is simple, b1(G)
coincides with the number of the essential cycles in G, and called the first Betti number.

Proposition 3.2.3. A graph G is Grover-periodic if and only if every eigenvalue of T is
the real part of a root of unity, that is,

cos−1(σ(T (G))) ⊂ πQ.

Proof. By Proposition 3.2.1, every eigenvalue of U is the root of unity if G is Grover-
periodic. Hence, it holds cos−1(σ(T (G))) ⊂ πQ by Lemma 3.2.2.

Let us define the Joukowski transformation J : C\{0} → C as follows: For z ∈ C,

J (z) :=
z + z−1

2
. (3.2)
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Lemma 3.2.4. For z ∈ C with |z| = 1 and j ≥ 0 the following relations hold:

(i) (2z)jTj(J (z)) = 2j−1(z2j + 1).

(ii) (2z)jUj(J (z)) = 2j
i∑

k=0

z2j−2k,

where Tj and Uj are the Chebyshev polynomials of the first and second kind, respectively.

Proof. Straightforward by direct calculation.

Lemma 3.2.5 (Higuchi, Konno, Sato, Segawa [28]). Let f be a monic and rational poly-
nomial of degree n. Then the zeros of f are the real parts of a root of unity if and only if
the polynomial (2z)nf (J (z)) is a product of some cyclotomic polynomials for z ∈ C with
|z| = 1.

Proof. Let λ1, λ2, . . . , λd be the distinct zeros of f , that is,

f(x) =
d∏

k=1

(x− λk)
mk ,

where mk is the multiplicity of λk. Suppose that they are the real parts of a root of unity.
Then we have

(2z)nf(J (z)) = (2z)n
d∏

k=1

(
z + z−1

2
− λk

)mk

=
d∏

k=1

(z2 − 2λkz + 1)mk

=
d∏

k=1

{(z − eiθk)(z − e−iθk)}mk , (3.3)

where θk = cos−1(λk). Since θk ∈ πQ and f is rational, the right-hand side of (3.3) is a
product of cyclotomic polynomials.

3.3 Related works

Finite graphs that admit periodic quantum walks have been investigated. It is shown [41]
that the Hadamard walk on the cycle Cn is periodic if and only if n = 2, 4 or 8, whose
periods are 2, 8, or 24, respectively. In [28], periodic Szegedy walks on finite graphs are
analyzed. The Szegedy walk is induced from a random walk on the underlying graph and
the Grover walk is a special case of the Szegedy walk induced from a simple random walk.
In [28], Szegedy walks induced from not only a simple random walk but also from a lazy
random walk are considered. The results are summarized as follows:
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• Complete graphs.

The Szegedy walk on a complete graph Kn with n ≥ 2 induced from a lazy random
walk with a laziness l is periodic if and only if (n, l) = (2, 0), (3, 0),

(
n, 1

n

)
,
(
2, 1

4

)
and(

n, n+1
2n

)
, whose periods are 2, 3, 4, 6 and 6, respectively.

• Complete bipartite graphs.

The Szegedy walk on a complete bipartite graph Kr,s with r+ s ≥ 3 induced from a
lazy random walk with a laziness l is periodic if and only if l = 0 or 1

2
, whose periods

are 4 or 12, respectively.

• Strongly regular graphs.

The Szegedy walk on a strongly regular graph SRG(n, k, λ, µ) induced from a simple
random walk is periodic if and only if

(n, k, λ, µ) = (5, 2, 0, 1), (2k, k, 0, k), (3λ, 2λ, λ, 2λ),

whose periods are 5, 4, or 12, respectively. Those graphs are nothing but C5, Kk,k,
and Kλ,λ,λ, respectively.

• Cycle graphs.

Here, we consider the cycle graph Cn (n ≥ 3), and set C2 = P2. For V (Cn) =
{v1, v2, . . . , vn} with v1 = vn+1, define the transition probability from vi to vi+1 and
from vi+1 to vi for 1 ≤ i ≤ n by p and 1 − p with p ̸= 1

2
, respectively. Then the

Szegedy walk on a cycle graph Cn induced from the non-reversible random walk with
the above transition probabilities is periodic if and only if

(i) n = 2 and p = 2−
√
3

4
, 2−

√
2

4
or 1

4
, whose periods are 6, 8 or 12, respectively.

(ii) n = 4 and p = 2−
√
3

4
, 2−

√
2

4
or 1

4
, whose periods are 12, 8 or 12, respectively.

(iii) n = 8 and p = 2−
√
2

4
whose period is 24.

3.4 Cycle graphs

Theorem 3.4.1. The cycle graph Cn is Grover-periodic for any n ≥ 3, and its period is
n.

Proof. Let A = A(Cn) and T = T (Cn) be the adjacency and transition operators, respec-
tively. It is well-known (e.g., [12]) that

σ(A) =

{
2 cos

2π

n
j | 0 ≤ j ≤ n− 1

}
.

Since Cn is a 2-regular graph, it follows immediately that

T =
1

2
A
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and

σ(T ) =

{
cos

2π

n
j | 0 ≤ j ≤ n− 1

}
.

Thus, it follows that cos−1(σ(T )) ⊂ πQ. By Proposition 3.2.3, we assert that the graph
Cn is Grover-periodic and its period is n for n ∈ N.

3.5 Path graphs

Theorem 3.5.1. The path graph Pn is Grover-periodic for any n ≥ 2, and its period is
2(n− 1).

Proof. Set G = Pn and let T = T (G) be the transition operator. Suppose that λf = Tf
for f ∈ ℓ2(V (G)), that is,

λf(u) =
1

deg(u)

∑
v∼u

f(v), u ∈ V (G).

Then we have

λf(v1) = f(v2), (3.4)

λf(vn) = f(vn−1), (3.5)

λf(vi) =
1

2
(f(vi−1) + f(vi+1)), 2 ≤ i ≤ n− 1 (3.6)

From (3.6) we see that

f(vi+1) = 2λf(vi)− f(vi−1), 2 ≤ i ≤ n− 1.

In view of Lemma 2.2.1, we obtain

f(vi+1) = Ui−1(λ)f(v2)− Ui−2(λ)f(v1),

where {Ui(λ)} is the Chebyshev polynomial of the second kind. By (3.4) and (i) of Lemma
2.2.2, we have

f(vi+1) = λUi−1(λ)− Ui−2(λ)f(v1)

= Ti(λ)f(v1), (3.7)

where {Ti(λ)} is the Chebyshev polynomial of the first kind. In particular, setting i = n−1,
we get

f(vn) = Tn−1(λ)f(v1).

On the other hand, taking (3.5) into account, we have

λTn−1(λ) = λf(vn)

= f(vn−1)

= Tn−2(λ)f(v1).
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If f(v1) = 0, we see from (3.7) that f(v) = 0 for v ∈ V (G), which is not an eigenfunction.
Hence, f(v1) ̸= 0 and we obtain

λTn−1(λ)− Tn−2(λ) = 0

(λ2 − 1)Un−2(λ) = 0,

where we applied (ii) of Lemma 2.2.2 to the first equation. We set λ = cos θ for 0 < θ < π.
Then Un−2(λ) = 0 if and only if

sin (n− 1)θ

sin θ
= 0,

from which we obtain

λ = cos
π

n− 1
j, 0 < j < n− 1.

Thus, we find n− 2 distinct eigenvalues together with linearly independent eigenfunctions
of T . The remaining eigenvalues are ±1 since G is a bipartite graph. Since 2+ (n− 2) = n
coincides with |V (G)|, we obtain

σ(T ) =

{
cos

π

n− 1
j | 0 < j < n− 1

}
∪ {±1}.

Obviously, cos−1(σ(T )) ⊂ πQ, which implies that G is Grover-periodic and its period is
2(n− 1) by Proposition 3.2.3.

3.6 Distance-regular graphs

Let G = (V,E) be a simple graph. If V (G) is decomposed into a disjoint union of non-
empty subsets Γ1,Γ2, . . . ,Γr ⊂ V (G), then π = {Γ1,Γ2, . . .Γr} is called a partition of G. If
Γi is a clique for 1 ≤ i ≤ r, we call π a clique partition. A partition π is called an equitable
partition, if there exists a non-negative integer bi,j such that each vertex u ∈ Γi has bi,j
neighbors in Γj for every pair of indices i, j, regardless the choice of u, that is,

|N(u) ∩ Γj| = bi,j

for 1 ≤ i, j ≤ r and u ∈ Γi.

3.6.1 Definition of distance-regular graphs

Let G be a simple, k-regular graph. Let d = diam(G). For a vertex x ∈ V (G), we define

Γj(x) := {y ∈ V (G) | d(x, y) = j}, 0 ≤ j ≤ d. (3.8)
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Then G is a distance-regular graph if it holds that

|N(y) ∩ Γj−1(x)| = cj, (3.9)

|N(y) ∩ Γj(x)| = aj, (3.10)

|N(y) ∩ Γj+1(x)| = bj, (3.11)

for any x ∈ V (G), 1 ≤ j ≤ d and y ∈ Γj(x). Then {Γ0(x),Γ1(x), · · · ,Γd(x)} becomes
an equitable partition of G. The above non-negative parameters {aj, bj, cj} are called the
intersection numbers [11]. In addition, it holds that for 0 ≤ j ≤ d,

cj + aj + bj = k, (3.12)

where we set c0 = bd = 0. From the connectivity of G it follows immediately that bi ̸=
0, cj ̸= 0 for 0 ≤ i ≤ d− 1 and 1 ≤ j ≤ d.

3.6.2 Restriction on diameter

For an operator X, let us denote the number of distinct eigenvalues of X is denoted by
n(X). For any graph G and its adjacency operator A = A(G), it is well-known that
diam(G) < n(A) [12]. This relation also holds for the transition operator, that is,

diam(G) < n(T ), (3.13)

which is proved in a similar way.

Theorem 3.6.1. Let r be a rational number with |r| ≤ 1. Then it holds that cos−1(r) ∈ πQ
if and only if

r ∈
{
0,±1,±1

2

}
.

Proof. We only show the necessity since the sufficiency is clear. Put h(x) = x − r. Then
we have

2z · h (J (z)) = z2 − 2rz + 1. (3.14)

By Lemma 3.2.5 and Theorem 3.6.1, (3.14) is a product of cyclotomic polynomials. Ac-
cording as r = 0,±1, or ±1

2
, (3.14) becomes

z2 + 1,

z2 ± 2z + 1,

z2 ± z + 1,

which are products of cyclotomic polynomials.

Theorem 3.6.2. Let G be a Grover-periodic graph. If all the eigenvalues of T (G) are
rational, it holds necessarily that

diam(G) < 5.

Proof. Let λ be an eigenvalue of T (G). By Proposition 3.2.3, we have λ ∈
{
0,±1,±1

2

}
.

Then it follows n(T ) ≤ 5. In view of (3.13), we obtain diam(G) < 5.
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3.6.3 Hamming graphs

For positive integers d ≥ 1 and q ≥ 2 the Hamming graph H(d, q) is defined as follows:
Let F be a finite set of q elements. The vertex set of H(d, q) is F d and two vertices
x = (x1, x2, · · · , xd), y = (y1, y2, · · · , yd) ∈ F d are adjacent if |{i |xi ̸= yi, 1 ≤ i ≤ d}| = 1.
It follows that the graph is d(q − 1)-regular and diam(H(d, q)) = d. Let A and T be
the adjacency and transition operators of H(d, q), respectively. It is known [11] that the
distinct eigenvalues of the adjacency operator A are given by

σ(A) = {d(q − 1)− qi | 0 ≤ i ≤ d}.

Then it follows immediately that

σ(T ) =

{
1− qi

d(q − 1)

∣∣∣ 0 ≤ i ≤ d

}
.

Theorem 3.6.3. The only Grover-periodic Hamming graphs H(d, q) are

H(1, 2), H(1, 3), H(2, 2), H(3, 3), H(4, 2)

whose periods are 2, 3, 12, and 12, respectively.

Proof. For d = 1, the Hamming graph is nothing but else the complete graph Kq. It is
known [28] that the complete graph Kq is Grover-periodic if and only if q = 2 or 3. Then
the Grover-periodic Hamming graphs H(1, q) are the cases of q = 2 and 3, whose periods
are 2 and 3, respectively. Now, we suppose d ≥ 2 and every eigenvalue of T is rational.
From the proof of Theorems 3.6.1 and 3.6.2, it follows that diam(H(d, q)) = d < 5 and

σ(T ) ⊂
{
0,±1,±1

2

}
. (3.15)

For d = 2, we have

σ(T ) =

{
1− 2q

2(q − 1)
, 1− q

2(q − 1)
, 1

}
.

Then it is easily seen that q = 2 only fulfills (3.15) and we have

σ(T ) = {−1, 0, 1}.

Thus, we have d = q = 2. The only Grover-periodic Hamming graph among H(2, q) is
H(2, 2) ≃ C4 and the period is 4. For d = 3 we have

σ(T ) =

{
1− q

q − 1
, 1− 2q

3(q − 1)
, 1− q

3(q − 1)
, 1

}
.

Then q = 3 only fulfills (3.15) and we have

σ(T ) =

{
−1

2
, 0,

1

2
, 1

}
.
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Thus, the only Grover-periodic Hamming graph among H(3, q) is H(3, 3) and the period
is 12. For d = 4, we have

σ(T ) =

{
1− q

q − 1
, 1− 3q

4(q − 1)
, 1− q

2(q − 1)
, 1− q

4(q − 1)
, 1

}
.

Similarly, we obtain q = 2 and

σ(T ) =

{
−1,−1

2
, 0,

1

2
, 1

}
.

Thus, the only Grover-periodic Hamming graph among H(4, q) is H(4, 2), and the period
is 12.

3.6.4 Johnson graphs

For two positive integers n and k with n ≥ k, the Johnson graph J(n, k) is defined as
follows: The vertices of J(n, k) are the k-element subsets of a fixed n-element set. Two
vertices X,Y ∈ V (J(n, k)) are adjacent if |X ∩ Y | = k − 1. It follows that the graph is
k(n − k)-regular and diam(J(n, k)) = min{k, n − k}. Let A and T be the adjacency and
transition operators of J(n, k), respectively. It is known that the d+1 distinct eigenvalues
of A are given by

σ(A) = {(d− j)(n− d− j)− j | 0 ≤ i ≤ d},
where d = min{k, n− k} [11]. Hence, we obtain

σ(T ) =

{
(d− j)(n− d− j)− j

d(n− d)
| 0 ≤ j ≤ d

}
.

Theorem 3.6.4. The only Grover-periodic Johnson graphs J(n, k) are

J(2, 1), J(3, 1), J(4, 2)

whose periods are 2, 3 and 12, respectively.

Proof. Note that every eigenvalue of the transition operator of J(n, k) is rational. Hence,
we have d < 5 by Theorem 3.6.2. For d = 1, we have

σ(T ) =

{
− 1

n− 1
, 1

}
.

In order to achieve (3.15), it necessarily holds that n = 2 or 3. If d = k, that is, 2k ≤ n,
then we obtain (n, k) = (2, 1) and (3, 1). If d = n − k, that is, 2k ≥ n, then we obtain
(n, k) = (2, 1) and (3, 2). Indeed, it is easily checked that J(3, 2) ≃ J(3, 1). Thus the
Grover-periodic Johnson graphs J(n, 1) are J(2, 1) or J(3, 1), which are nothing but else
K2 or K3, respectively. For d = 2 we have

σ(T ) =

{
− 1

n− 2
,
n− 4

2n− 4
, 1

}
.
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Hence, it is necessary that n = 3 or 4. If n = 3, we have k = 2 or 1 according as the
diameter is d = k or d = n−k. However, these pairs satisfy neither the assumption 2k ≤ n
for d = k nor 2k ≥ n for d = n− k. If n = 4, we obtain k = 2 for both of the cases d = k
and d = n− k and we have

σ(T ) =

{
−1

2
, 0, 1

}
.

Thus, the graph is J(4, 2) and the period is 12. For the cases of d = 3 and d = 4, we obtain

σ(T ) =

{
− 1

n− 3
,
n− 7

3n− 9
,
2n− 9

3n− 9
, 1

}
and

σ(T ) =

{
− 1

n− 4
,
n− 10

4n− 16
,
2n− 14

4n− 16
,
3n− 16

4n− 16
, 1

}
,

respectively. However, any n does not fulfill (3.15) for both of the two cases. Thus, there
are no Grover-periodic Johnson graphs for d = 3 and d = 4.

26



3.7 Generalized Bethe trees

3.7.1 Definition

Let G be a tree and fix an arbitrary x ∈ V (G). For j ≥ 0, let Γj(x) be defined as in (3.8)
and n be defined as Γn(x) ̸= ϕ and Γn+1(x) = ϕ. The rooted tree G is called a generalized
Bethe tree if

|N(u) ∩ Γi+1(x)| = d(i), 0 ≤ i ≤ n− 1,

is independent of u ∈ Γi. In that case, the graph is denoted by B(d(0), d(1), . . . , d(n− 1)).
Note that {Γ0(x),Γ1(x), . . . ,Γn(x)} becomes an equitable partition of G. For simplicity,
we put Ci := Γi(x). Examples of generalized Bethe trees are shown in Figure 3.1. For
u ∈ Ci with i ≠ 0, n, the child and parent of u are defined to be vertices in N(u) ∩ Ci+1

and N(u) ∩ Ci−1, respectively.

C0 C1 C2 C3

B(2, 3, 1)

C0 C1 C2

B(5, 2)

Figure 3.1: Examples of generalized Bethe trees

Define

D0 =
1

d(1) + 1
, Di =

d(i)

(d(i) + 1)(d(i+ 1) + 1)
, 1 ≤ i ≤ n.

For 0 ≤ i ≤ n let us define

Ψi =
1√
Ci

∑
v∈Ci

δv
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and let A be the subspace of ℓ2(V (G)) spanned by Ψ0,Ψ1, . . . ,Ψn. Then it follows that

A⊥ =

{
f ∈ ℓ2(V (G))

∣∣∣∣∑
v∈Ci

f(v) = 0, 0 ≤ i ≤ n

}
.

It is easily checked that T is invariant on A⊥. By direct calculation, the following holds.

Lemma 3.7.1. For a generalized Bethe tree B(d(0), d(1), · · · , d(n− 1)), it holds that

T̃Ψi =


√
D0Ψ1, i = 0,

√
Dn−1Ψn−1, i = n,√
DiΨi+1 +

√
Di−1Ψi−1, otherwise.

The representation matrix of T̃ with respect to {Ψ0,Ψ1, · · ·Ψn} becomes

T̃ |A =



0
√
D0√

D0 0
√
D1√

D1 0
√
D2

. . .
. . .

. . .√
Dn−2 0

√
Dn−1√

Dn−1 0


.

3.7.2 Spectral analysis of transition operator

Let G = B(d(0), d(1), · · · , d(n − 1)) be a generalized Bethe tree. For v ∈ V (G)\C0 let
P (v) be the parent of v. For 1 ≤ i ≤ n− 1 we define

P i(v) = P (P (· · ·P (P︸ ︷︷ ︸
i

(v))),

and set P 0(v) = v. For v ∈ V , we define Nn(v) ⊂ V (G) by

Nn(v) = {w ∈ Cn | ∃j, P j(w) = v}.

We define a sequence of polynomials in λ ∈ C inductively as follows:
g0(λ) = 1,

g1(λ) = λ,

gi(λ) = (d(n− i+ 1) + 1)λgi−1(λ)− d(n− i+ 1)gi−2(λ), 2 ≤ i ≤ n,

gn+1(λ) = d(0)(λgn(λ)− gn−1(λ)).
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Then it is easily checked that the coefficient of the maximum degree of gi is

i−1∏
j=1

(d(n− j) + 1), 2 ≤ i ≤ n,

and that of gn+1 is d(0)
∏n−1

j=1 (d(n− j)− 1).
Moreover, let us define

Ω := {1 ≤ i ≤ n | d(n− i) ≥ 2}.

For i ∈ Ω and v∗ ∈ Cn−i, let N(v∗) ∪ Cn−i+1 = {v1, v2, . . . , vl}.

Lemma 3.7.2. For every i ∈ Ω the zeros of gi are eigenvalues of T . Let λ be a zero of gi.
Then the following function f ∈ ℓ2(V (G)) is an eigenfunction of T for λ and f ∈ A⊥.
For w ∈ Nn(v1), 0 ≤ j ≤ i− 1,

f(P j(w)) = gj(λ);

for w ∈ Nn(v2), 0 ≤ j ≤ i− 1,

f(P j(w)) = −gj(λ);

for w ∈ Cn\ (Nn(v1) ∪Nn(v2)), 0 ≤ j ≤ i− 1,

f(P j(w)) = 0;

for w ∈ ∪n−i
j=0Cj,

f(w) = 0.

Proof. For any u ∈ ∪n−i
j=0Cj\{v∗} it holds clearly that (Tf)(u) = λf(u). For v∗, we have

(Tf)(v∗) =
1

deg(v∗)

∑
x∼v∗

f(x)

=
1

deg(v∗)
(f(v1) + f(v2))

=
1

deg(v∗)
(gi−1(λ)− gi−1(λ))

= 0

= λf(v∗).
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For any w ∈ Nn(v1) and 0 ≤ j ≤ i− 1 it follows that

(Tf)(P j(w)) =
1

deg(P j(w))

∑
u∼P j(w)

f(u)

=
1

d(n− j) + 1

f(P j+1(w)) +
∑

u∼P j(w)
u∈Cn−j+1

f(u)


=

1

d(n− j) + 1
(gj+1(λ) + d(n− j)gj−1(λ))

= λgj(λ)

= λf(P j(w)).

For any w ∈ Nn(v2) and every 0 ≤ j ≤ i− 1 it similarly holds that

(Tf)(P j(w)) = −λgj(λ) = λf(P j(w)).

Furthermore, it is clear that

(Tf)(P j(w)) = 0 = λf(P j(w))

for any w ∈ Cn\ (Nn(v1) ∪Nn(v2)) and 0 ≤ j ≤ i − 1. Thus, (Tf)(x) = λf(x) for
x ∈ ∪n

j=n−i+1Cj. Hence, it holds that (Tf)(x) = λf(x) for any x ∈ V (G).
Since

∑
u∈Ci

f(u) = 0 for any 0 ≤ i ≤ n by the definition of f , we have f ∈ A⊥.

It follows from Lemma 3.7.2 that σ(T̃ |A⊥) ⊃
∪

i∈Ω{λ ∈ C | gi(λ) = 0}.

Lemma 3.7.3. It holds that

σ(T̃ |A⊥) =
∪
i∈Ω

{λ ∈ C | gi(λ) = 0}.

Proof. For the assertion it is sufficient to show that the number of the linearly independent
eigenfunctions obtained during the above argument coincides with dimA⊥ = |V (G)|−(n+
1). By definition of a generalized Bethe tree it follows that |C0| = 1 and

|Ci| =
i−1∏
j=0

d(j), 1 ≤ i ≤ n− 1. (3.16)

Thus,

|V (G)| =
n∑

i=0

|Ci| = |C0|+
n−1∑
i=0

|Cn−i| = 1 +
n−1∑
i=0

n−i−1∏
j=0

d(j).
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Then it holds that dimA⊥ =
∑n−1

i=0

∏n−i−1
j=0 d(j) − n. For i ∈ Ω, let λ be a zero of gi.

By Lemma 3.7.2 there are d(n− i)− 1 linearly independent eigenfunctions for λ for every
v ∈ Cn−i. Hence, we find |Cn−i| (d(n− i)− 1) linearly independent eigenfunctions for λ.
The zeros of gi are the eigenvalues of a tri-diagonal matrix and all the eigenvalues of the tri-
diagonal matrices are simple [53]. Hence, the number of the linearly independent eigenfunc-
tions for to the zeros of gi is i|Cn−i| (d(n− i)− 1). Here, we put Fi := i|Cn−i| (d(n− i)− 1)
for 1 ≤ i ≤ n. By (3.16) it follows that

Fi = i

(
n−i∏
j=0

d(j)−
n−i−1∏
j=0

d(j)

)
,

for 1 ≤ i ≤ n − 1 and Fn = n(d(0) − 1). Then the number of the linearly independent
eigenfunctions for the zeros of every gi for i ∈ Ω is

∑n
i=1 Fi because Fi = 0 for i with

d(n− i) = 1. Thus, we get

n∑
i=1

Fi =
n−1∑
i=1

i

(
n−i∏
j=0

d(j)−
n−i−1∏
j=0

d(j)

)
+ Fn

=
n−1∑
i=1

(
i
n−i∏
j=0

d(j)− i
n−i−1∏
j=0

d(j)

)
+ Fn

=
n−1∑
i=1

n−i∏
j=0

d(j)− (n− 1)d(0) + n(d(0)− 1)

=
n−1∑
i=1

n−i∏
j=0

d(j) + d(0)− n

=
n∑

i=1

n−i∏
j=0

d(j)− n,

which equals dimA⊥.

Here, let us put g̃0(λ) = 1 and

g̃0 = 1, g̃i =
1∏i−1

j=1(d(n− j) + 1)
gi, 1 ≤ i ≤ n− 1.

We define {
p0(λ) = 1,

pi(λ) = det(λIi − T̃ (i)), 1 ≤ i ≤ n+ 1,
(3.17)

where Ii is the i × i identity matrix and T̃ (i) is the principal submatrix of T̃ |A given by
removing the first row up to the (n+1−i)-th row and the first column up to the (n+1−i)-th
column.
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Lemma 3.7.4. It holds that
pi(λ) = g̃i(λ)

for any λ ∈ C and 0 ≤ i ≤ n+ 1.

Proof. Since g̃0(λ) = p0(λ) = 1 and g̃1(λ) = p1(λ) = λ, it is sufficient to show that {g̃i}
and {pi} satisfy the same recurrence relation. First, by the cofactor expansion, we have

pi(λ) = λpi−1(λ)−Dn−i+1pi−2(λ) (3.18)

for 0 ≤ i ≤ n + 1. If i = 2 or 3, it is easily seen that g̃i(λ) = λg̃i−1(λ) − Dn−i+1g̃i−2(λ)
since d(n) = 0. For 4 ≤ i ≤ n,

g̃i(λ) =
(d(n− i+ 1) + 1)λgi−1(λ)∏i−1

j=1(d(n− j) + 1)
− d(n− i+ 1)gi−2(λ)∏i−1

j=1(d(n− j) + 1)

=
λgi−1(λ)∏i−2

j=1(d(n− j) + 1)
− d(n− i+ 1)gi−2(λ)

(d(n− i+ 1) + 1)(d(n− i+ 2) + 1)
∏i−3

j=1(d(n− j) + 1)

= λg̃i−1(λ)−Dn−i+1g̃i−2(λ).

We have g̃n+1(λ) = λg̃n(λ)−D0g̃n−1(λ) since gn+1(λ) = d(0)(λgn(λ)− gn−1(λ)) and D0 =
1

d(1)+1
, so we see that pi(λ) = g̃i(λ) for any λ ∈ C and 0 ≤ i ≤ n+ 1.

Then it follows immediately that the zeros of pn+1(λ) are the eigenvalues of T̃ |A. In-
deed, the polynomials {pi}ni=0 are the monic orthogonal polynomials with Jacobi coeffi-
cients {

√
D0,

√
D1, · · · ,

√
Dn−1}. Then together with Lemma 3.7.3, the above discussion

is summarized as follows:

Theorem 3.7.5. It holds that

σ(T̃ |A⊥) =
∪
i∈Ω

{λ ∈ C | pi(λ) = 0},

σ(T̃ |A) = {λ ∈ C | pn+1(λ) = 0}.

3.7.3 Grover-periodic generalized Bethe trees

Theorem 3.7.6. The only Grover-periodic generalized Bethe trees are Sk(B(1, 2, 3)) and
Sk(B(s, 3)) for k, s ∈ N, and both of their periods are 12k.
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B(1, 2, 3)
B(s, 3)

Figure 3.2: Grover-periodic generalized Bethe trees

Proof. Let G = B(d(0), d(1), · · · , d(n)) be a generalized Bethe tree and put l = |Ω|. We
define positive integers k1, k2, . . . , kl in such a way that n −Ki ∈ Ω for 1 ≤ i ≤ l, where
Ki =

∑i
j=1 kj (See Figure 3.3). Then we define kl+1 = n−Kl and Kl+1 = kl+1 +Kl = n.

Moreover, we put di = d(n − Ki). By Lemmas 3.7.4 and 3.7.2, the zeros of pKi
are the

eigenvalue of T̃ |A⊥ for 1 ≤ i ≤ l, and those of pK(l+1)+1 are the eigenvalues of T̃ |A. We

will find the polynomial pKi
and check whether (2z)KipKi

(J (z)) is a product of cyclotomic
polynomials for every 1 ≤ i ≤ l + 1. The argument will be divided into a few steps.

C0

kl+1︷ ︸︸ ︷
Cn−Kl

pKl

Cn−K2

k2︷ ︸︸ ︷

pK2

Cn−K1

k1︷ ︸︸ ︷

pK1

C0

Figure 3.3: Setting

Lemma 3.7.7. Let pi be defined as in (3.17). For 1 ≤ i ≤ K1, it holds that

pi =
1

2i−1
Ti. (3.19)
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Proof. If K1 = 1, 2, then it clearly holds because p1 = λ = T1, and p2 = λp1 −Dn−1p0 =
λ2 − 1

2
= 1

2
T2. Here, we assume that K1 ≥ 3. We prove it by induction on i. Indeed,

Dn−i+1 =
1
4
for 3 ≤ i ≤ K1 and it holds that

pi = λpi−1 −Dn−i+1pi−2

= λ

{
1

2i−2
Ti−1

}
− 1

4

{
1

2i−3
Ti−2

}
=

1

2i−1
(2λTi−1 − Ti−2)

=
1

2i−1
Ti.

Lemma 3.7.8. For 2 ≤ j ≤ l + 1 with kj ≥ 2 and 2 ≤ i ≤ kj, it holds that

pK(j−1)+i =
1

2i−2
Ui−2pK(j−1)+2 −

1

2i−1
Ui−3pK(j−1)+1. (3.20)

Proof. It is easy to confirm that (3.7.8) holds for i = 2 and 3. Then we assume that i ≥ 4
and we have

pK(j−1)+i = λpK(j−1)+i−1 −Dn−K(j−1)−i+1pK(j−1)+i−2

= λpK(j−1)+i−1 −
1

4
pK(j−1)+i−2

= λ

{
1

2i−3
Ui−3pK(j−1)+2 −

1

2i−2
Ui−4pK(j−1)+1

}
− 1

4

{
1

2i−4
Ui−4pK(j−1)+2 −

1

2i−3
Ui−5pK(j−1)+1

}
=

1

2i−2
(2λUi−3 − Ui−4)pK(j−1)+2 −

1

2i−1
(2λUi−4 − Ui−5)pK(j−1)+1

=
1

2i−2
Ui−2pK(j−1)+2 −

1

2i−1
Ui−3pK(j−1)+1.

If l = 0, the graph is nothing but else the path graph Pn+1, which is the Grover-2n-
periodic graph. If l = 1, the graph is expressed as

B(1, 1, · · · , 1︸ ︷︷ ︸
k2

, d1, 1, 1, · · · , 1︸ ︷︷ ︸
k1−1

).

If k2 = 0 and k1 = 1, or k2 = 1 and k1 = 1, then these graphs are nothing but else claws,
which are Grover-4-periodic graphs. Hence, we omit these cases. By Lemma 3.7.7, we have

pK1 =
1

2K1−1
TK1 .
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Furthermore, it follows by (i) on Lemma 3.2.4 that

(2z)K1pK1(J (z)) = z2K1 + 1, (3.21)

which is a cyclotomic polynomial. The zeros of (3.21) are the eigenvalues of T̃ |A⊥ and
satisfy

z4k1 = 1. (3.22)

These are 4k1-th roots of unity. Next, we find the polynomial pn+1 = pK2+1 to analyze the
eigenvalues of T̃ |A. Then we have

pK1+1 =

{
λp1 − d1

d1+1
p0 if k1 = 1,

λpK1 − d1
2(d1+1)

pK1−1 if k1 ≥ 2,

and

pK1+2 =

{
λpK1+1 − 1

d1+1
pK1 if k2 = 1,

λpK1+1 − 1
2(d1+1)

pK1 if k2 ≥ 2.

Indeed, for any k1 ∈ N, we have

(2z)K1+1pK1+1(J (z)) = z2K1+2 +
1− d1
d1 + 1

z2K1 +
1− d1
d1 + 1

z2 + 1. (3.23)

Furthermore, if k2 = 1, then

(2z)K1+2pK1+2(J (z)) = z2K1+4 − 2

d1 + 1
z2K1+2 +

1− d1
d1 + 1

z2K1 +
1− d1
d1 + 1

z4 − 2

d1 + 1
z2 + 1

(3.24)
and if k2 ≥ 2, then

(2z)K1+2pK1+2(J (z)) = z2K1+4 +
1− d1
d1 + 1

z2K1 +
1− d1
d1 + 1

z4 + 1 (3.25)

by (i) on Lemma 3.2.4. If k2 = 1, then K2 + 1 = K1 + 2. Furthermore, if k2 = 2, then
K2 + 1 = K1 + 3, i.e., pK2+1 = pK1+3 = λpK2+2 − 1

2
pK1+1. Therefore, it follows that

pK2+1 =


pK1+2 if k2 = 1,

λpK1+2 − 1
2
pK1+1 if k2 = 2,

1
2k2−2 (λUk2−2 − Uk2−3) pK1+2 − 1

2k2−1 (λUk2−3 − Uk2−4) pK1+1. if k2 ≥ 3,

by Lemma 3.7.8. Using (3.23), (3.24), (3.25) and (ii) on Lemma 3.2.4, we get

(2z)K2+1pK2+1(J (z)) = z2K2+2 − z2K2 +
1− d1
d1 + 1

(
z2k2+2 − z2k2 − z2K1+2 + z2K1

)
− z2 + 1.

Unless k1 = K1 = k2, the above polynomial is not an integer polynomial, which implies
that it is not a product of cyclotomic polynomials. Thus, the Bethe tree is nothing k1-
subdivision of Sk2(K1,d1+1). Then the above polynomial becomes

z4k1+2 − z4k1 − z2 + 1 = (z2 − 1)(z4k1 − 1)

and the zeros satisfy z4k1 = 1. Therefore, the period is 4k1.
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Lemma 3.7.9. If G is Grover-periodic and l ≥ 2, it holds that k1 = k2 and d1 = 3.

Proof. By Lemma 3.7.8, we obtain

pK2 =

{
pK1+1 if k2 = 1,

1
2k2−2Uk2−2pK1+2 − 1

2k2−1Uk2−3pK1+1 if k2 ≥ 2.

Indeed, for any k1, k2 ∈ N it follows that

(2z)K2pK2(J (z)) = z2K2 +
1− d1
d1 + 1

z2k1 +
1− d1
d1 + 1

z2k2 + 1 (3.26)

by (3.23), (3.24), (3.25), and (ii) of Lemma 3.2.4. Thus, (3.26) is not an integer polynomial
unless k1 = k2 and d1 = 3.

Then (3.26) turns to
z4k1 − z2k1 + 1, (3.27)

and the zeros satisfy
z12k1 = 1. (3.28)

Lemma 3.7.10. If l ≥ 3, then G is not Grover-periodic.

Proof. We suppose l ≥ 3 and derive a contradiction. Then the zeros of pK3 are the
eigenvalue of T̃ on A⊥ by Theorem 3.7.5. Then we also have

pK3 =

{
pK2+1 if k3 = 1,

1
2k3−2Uk3−2pK2+2 − 1

2k3−1Uk3−3pK2+1 if k3 ≥ 2.

by Lemma 3.7.8. We set k1 = k2, and d1 = 3 from Lemma 3.7.9. Therefore, it follows that
K2 = 2k1 and

pK2+2 = λpK2+1 −
1

2(d2 + 1)
pK2

pK2+1 =

{
λpK2 − d2

4(d2+1)
pK2−1 if k1 = k2 = 1,

λpK2 − d2
2(d2+1)

pK2−1 if k1 = k2 ≥ 2.

pK2−1 =


pK1 if k1 = k2 = 1,

pK1+1 if k1 = k2 = 2,
1

2k1−3Uk1−3pK1+2 − 1
2k1−2Uk1−4pK1+1 if k1 = k2 ≥ 3.

Combining (3.21), (3.23), (3.24), (3.25), and (3.27), we have

(2z)K2−1pK2−1 (J (z)) = z4k1−2 − 1

2
z2k1 − 1

2
z2k1−2 + 1, (3.29)

36



(2z)K2+1pK2+1 (J (z)) = z4k1+2 +
1− d2
d2 + 1

z4k1 − 1

d2 + 1
z2k1+2 − 1

d2 + 1
z2k1 +

1− d2
d2 + 1

z2 + 1,

(3.30)

(2z)K2+2pK2+2 (J (z)) = z4k1+4 +
1− d2
d2 + 1

z4k1 − 1

d2 + 1
z2k1+4 − 1

d2 + 1
z2k1 +

1− d2
d2 + 1

z4 + 1.

(3.31)
Thus, for any k1, k3 ∈ N we have

(2z)K3pK3 (J (z)) = z2K3+
1− d2
d2 + 1

z4k1− 1

d2 + 1
z2k1− 1

d2 + 1
z2k1+2k3+

1− d2
d2 + 1

z2k3+1. (3.32)

The above polynomial is not an integer polynomial for any d2 ∈ N≥2, and k1, k3 ∈ N. In
other words, the zeros of pK3 are not roots of the real part of the unity for any d2 ∈ N≥2,
and k1, k3 ∈ N. Therefore, we have to set l < 3 so that the zeros of pK3(λ) are not the
eigenvalues of T̃ .

Therefore, the candidates of Grover-periodic generalized Bethe trees are written as

B(1, 1, · · · , 1︸ ︷︷ ︸
k3

, d2, 1, 1, · · · , 1︸ ︷︷ ︸
k1−1

, 3, 1, 1, · · · , 1︸ ︷︷ ︸
k1−1

), (3.33)

or,
B(d2, 1, 1, · · · , 1︸ ︷︷ ︸

k1−1

, 3, 1, 1, · · · , 1︸ ︷︷ ︸
k1−1

). (3.34)

For (3.33), we consider the eigenvalues of T |A to determine the parameters k3 ∈ N
and d2 ∈ N≥2. We find pn+1 = pK3+1 and analyze its zeros since these coincide with the
eigenvalues of T̃ |A. Then we have

pK3+1 =

{
λpK3 − 1

d2+1
pK2 if k3 = 1,

λpK3 − 1
2
pK3−1 if k3 ≥ 2.

For k1, k3 ∈ N the polynomials (2z)K3pK3(J (z)) and (2z)K2pK2(J (z)) are of the forms
(3.32) and (3.27), respectively. By (3.27), (3.30), (3.31) and

pK3−1 =


pK2 if k3 = 1,

pK2+1 if k3 = 2,
1

2k3−3Uk3−3pK2+2 − 1
2k3−2Uk3−4pK2+1 if k3 ≥ 3,

we have

(2z)K3−1pK3−1(J (z)) = z2(K3−1) +
1− d2
d2 + 1

z4k1 − 1

d2 + 1
z2k1

− 1

d2 + 1
z2k1+2(k3−1) +

1− d2
d2 + 1

z2(k3−1) + 1.

(3.35)
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Indeed, by (3.32) and (3.35), we obtain

(2z)K3+1pK3+1 (J (z)) =z2K3+2 − 1

d2 + 1

(
z2k1+2k3+2 − z2k1+2k3 − z2k1+2 + z2k1

)
− 1− d2

d2 + 1

(
z4k1+2 − z4k1 − z2k3+2 + z2k3

)
− z2K3 − z2 + 1.

for any k3 ∈ N. The above polynomial is not an integer polynomial unless k1 = k3 and
d2 = 2. Then the right hand side becomes

z6k1+2 − z6k1 − z2 + 1 = (z + 1)(z − 1)(z6k1 − 1),

whose zeros satisfy
z6k1 = 1. (3.36)

Thus, it is necessary that k3 = k1 and d2 = 2. Put k1 = k. Then the generalized Bethe tree
is B(1, 1, · · · , 1︸ ︷︷ ︸

k

, 2, 1, 1, · · · , 1︸ ︷︷ ︸
k−1

, 3, 1, 1, · · · , 1︸ ︷︷ ︸
k−1

), which is nothing but else Sk(B(1, 2, 3)). Then

it follows from (3.22), (3.28), and (3.36) that the period is 12k.
For (3.34), we find pn+1 = pK2+1 and analyze its zeros. We have

pK2+1 =

{
λpK2 − 1

4
pK1 if k1 = 1,

λpK2 − 1
2
pK2−1 if k1 ≥ 2.

The polynomials pK1 , pK2 and pK2−1 are of the forms (3.21), (3.27) and (3.29), respectively.
Thus, for any k1 ∈ N we obtain

(2z)K2+1pK2+1(J (z)) = z4k1+2 − z4k1 − z2 + 1 = (z + 1)(z − 1)(z4k1 − 1),

whose zeros satisfy
z4k1 = 1. (3.37)

Put k1 = k and d2 = s. Then the generalized Bethe tree is B(s, 1, 1, · · · , 1︸ ︷︷ ︸
k−1

, 3, 1, 1, · · · , 1︸ ︷︷ ︸
k−1

),

which is nothing but else Sk(B(s, 3)). The period is 12k by (3.22), (3.28) and (3.37).
Therefore, the only Grover-periodic Bethe trees are Sk(B(1, 2, 3)) and Sk(B(s, 3)) for k, s ∈
N and we complete the proof.
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Chapter 4

Restricted structure on
Grover-periodic graphs

In the previous Chapter, we characterized Grover-periodic graphs in some special classes of
graphs, in particular, distance-regular graphs and generalized Bethe trees. In this Chapter,
we will find a tight condition for general Grover-periodic graphs. What we would like to
state most in this paper is the condition. The tightness of the condition enables us to
determine several classes of Grover-periodic graphs. After that, we construct a new class
of graphs by a method called join. Then the condition plays an important role to construct
a new Grover-periodic graphs obtained by the join. Furthermore, we reach our conjecture
for Grover-odd-periodic graphs by the condition.

4.1 Necessary condition for Grover-periodic graphs

Let G be a simple graph on n vertices and T be the transition operator. We define

φ(x) := det(xIn − T ) =
n∑

i=0

ρix
i, (4.1)

where In is the n × n-identity matrix. Note that the determinant in (4.1) is determined
uniquely independent of the representation matrix of T . Moreover, we define

Ψ(z) := (2z)nφ (J (z)) =
2n∑
j=0

αjz
j. (4.2)

Lemma 4.1.1. Let αj be defined as in (4.2). Then it holds that

(i) α2n = 1,

(ii) α2n−j = αj for every 0 ≤ j ≤ n.
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Proof. Since φ(x) is a monic polynomial, so is Ψ(z) and (i) follows. By definition, we
obtain

Ψ(z) = (2z)n

{
n∑

i=0

ρi

(
z + z−1

2

)i
}

(4.3)

=
n∑

i=0

{
2n−iρi

i∑
r=0

(
i

r

)
zn−2r+i

}
. (4.4)

The coefficient of z2n−j in (4.4) is obtained by the terms corresponding to i = n− (j−2k),
r = k with 0 ≤ k ≤ ⌊ j

2
⌋. Thus, it follows that

α2n−j =

⌊ j
2
⌋∑

k=0

2j−2kρn−(j−2k)

(
n− (j − 2k)

k

)
. (4.5)

On the other hand, the coefficient of zj of (4.4) is obtained by the terms corresponding to
i = n− (j − 2k), r = n− (j − k) with 0 ≤ k ≤ ⌊ j

2
⌋. Thus, we obtain

αj =

⌊ j
2
⌋∑

k=0

2j−2kρn−(j−2k)

(
n− (j − 2k)

n− (j − k)

)
. (4.6)

Then (ii) follows from
(
n−(j−2k)

k

)
=
(
n−(j−2k)
n−(j−k)

)
.

By Lemma 3.2.5, in order to induce periodic Grover walks, it is necessary that Ψ(z) is
a product of cyclotomic polynomials. Then it follows that αj ∈ Z for every 0 ≤ j ≤ 2n.

Theorem 4.1.2. For a simple graph G = (V,E) with n = |V |, let ρi be defined as in (4.1).
If G is Grover-periodic, it holds that

2jρn−j ∈ Z, 1 ≤ j ≤ n

Proof. We prove by contradiction. Take j in such a way that 2jρn−j /∈ Z and 2lρn−l ∈ Z
for every 1 ≤ l ≤ j − 1. By (4.5), we have

α2n−j = 2jρn−j +

⌊ j
2
⌋∑

k=1

2j−2kρn−(j−2k)

(
n− (j − 2k)

k

)
. (4.7)

By the assumption, the second term is an integer while the first term is not. Therefore
α2n−j /∈ Z, which implies that Ψ(z) is not represented by a product of cyclotomic polyno-
mials. Then G is not Grover-periodic by Lemma 3.2.5.
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For a simple graph G with |V (G)| = n, let Fi be a subset of V (G)i defined by

Fi := {(v1, v2, . . . , vi) | v1 ∼ v2 ∼ · · · ∼ vi ∼ v1}

for 2 ≤ i ≤ n. Two elements v = (v1, v2, . . . vi) and v′ = (v′1, v
′
2, . . . , v

′
i) in Fi are cyclicly

equivalent if there exists k ∈ N such that vj = v′j+k for 1 ≤ j ≤ i, where the index is

understood in modulo i. Then we denote v
ci∼ v′. In addition, we define

Ei := Fi/ci.

For v ∈ Fi, let [v] be the equivalent class of v with respect to
ci∼. For w = [(v1, v2, . . . , vi)] ∈

Ei, we define a map Mi : Ei → Q by

Mi(w) =
i∏

j=1

1

deg vj
, 2 ≤ i ≤ n.

By definition, we see that Mi is a well-defined map. Let Y = xIn − T . By definition, we
have

detY =
∑
σ∈Sn

sgn(σ)
∏

v∈V (G)

Yv,σ(v), (4.8)

where Sn is the set of the permutations on V (G) and sgn(σ) is 1 if σ is an even permutation,
and −1 otherwise. A permutation of the from

σ =

(
v1 v2 . . . vi
v2 v3 . . . v1

)
, . . . ,

(
v1 v2 . . . vi
vi v1 . . . vi−1

)

is called a cyclic permutations. For a cyclic permutation σ =

(
x1 x2 . . . xl

xi1 xi2 . . . xil

)
, we

define the length by |σ| = l. Note that a cyclic permutation with length 2 is called a
transposition.

Proposition 4.1.3. For a graph G with |V (G)| = n, let ρj be the same as in (4.1). Then
we have ρn = 1, ρn−1 = 0 and

ρn−j =
∑

i1+i2+···+iγ=j
2≤ik≤n

(−1)γ

 ∑
[V (k)]∈Eik

V (k)∩V (k′)=ϕ

γ∏
k=1

Mik([V
(k)])


for 2 ≤ j ≤ n.

Proof. It is clear that ρn = 1 since φ(x) is a monic polynomial. Now, ρn−j consists of j
constants and n − j variables. Here, there is no permutation which contributes to xn−1

since Tu,u = 0 for u ∈ V (G). Hence, we have ρn−1 = 0. For 2 ≤ j ≤ n, the term xn−j is
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contributed by combinations of distinct permutations such that the summation over their
length is j. Then the permutation σ is expressed by

σ = σ1 · σ2 · · ·σγ,

where σk is a permutation on V (k) = {v(k)1 , v
(k)
2 , . . . , v

(k)
ik

} with V (k) ∩ V (k′) = ϕ for 1 ≤
k, k′ ≤ γ and

∑γ
k=1 |σk| = j. Since it holds that Tv,σk(v) ̸= 0 for every 1 ≤ k ≤ γ

and v ∈ V (k), we have v
(k)
1 ∼ σ(v

(k)
1 ) ∼ . . . ,∼ σik−1(v

(k)
1 ) ∼ v

(k)
1 . Thus, σk is a cyclic

permutation on V (k). For σ = σ1 · σ2 · · ·σγ, we have

ρn−j =
∑

i1+i2+···+iγ=j
2≤ik≤n

sgn(σ)
∑

[V (k)]∈Eik

V (k)∩V (k′)

γ∏
k=1

∏
v∈V (k)

Yv,σk(v)

by (4.8). Here, it follows that∏
v∈V (k)

Yv,σk(v) =
∏

v∈V (k)

(−1)ik
1

deg(σk(v))
= (−1)ikMik([V

(k)])

since σk is a cyclic permutation. Moreover, we have

sgn(σ) =

γ∏
k=1

sgn(σk) =

γ∏
k=1

(−1)ik+1 = (−1)j+γ.

Therefore, we have

ρn−j =
∑

i1+i2+···+iγ=j
2≤ik≤n

(−1)j+γ
∑

[V (k)]∈Eik

V (k)∩V (k′)=ϕ

γ∏
k=1

(−1)ikMik([V
(k)])

=
∑

i1+i2+···+iγ=j
2≤ik≤n

(−1)j+γ · (−1)j
∑

[V (k)]∈Eik

V (k)∩V (k′)=ϕ

γ∏
k=1

Mik([V
(k)])

=
∑

i1+i2+···+iγ=j
2≤ik≤n

(−1)γ

 ∑
[V (k)]∈Eik

V (k)∩V (k′)=ϕ

γ∏
k=1

Mik([V
(k)])


and we complete the proof.

4.2 Join of Grover-periodic graphs

For two graphs G and H, we construct a new graph by the join of G and H with respect
to two vertices u ∈ V (G) and v ∈ V (H). The join in this paper is defined by identifying
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u and v. Then the graph is denoted by G(u) ∗H(v), that is,

V (G(v) ∗H(v′)) := (V (G)\{v}) ∪ (V (H)\{v′}) ∪ {u},
E(G(v) ∗H(v′)) := E(G) ∪ E(H).

If there is no danger of confusion, omitting the superscripts we write G ∗H.

4.2.1 Join of two cycles

Cn Cm

u

Figure 4.1: The graph Cn ∗ Cm

Theorem 4.2.1. For any n,m ∈ N with n,m ≥ 3, the graph Cn ∗ Cm is Grover-periodic
and its period is lcm(n,m, n+m).

Proof. We first consider the case where n ̸= m. Let

V (Cn) = {v0, v1, v2, · · · , vn−1}, V (Cm) = {w0, w1, w2, · · · , wm−1},

and identify v0 = w0 = u. Let G = C
(v0)
n ∗ C(w0)

m . We will find all the linearly independent
eigenfunctions of T = T (G) and show that their eigenvalues are the real parts of a root
of unity. We need to find |V (G)| = m + n − 1 linearly independent eigenfunctions. Let
f ∈ ℓ2(V (G)) be an eigenfunction of T = T (G) associated to an eigenvalue λ. We put
λ = cos θ for 0 < θ < π. Then Tf = λf reduces to the following system of equations:

λf(vi) =
1

2
(f(vi−1) + f(vi+1)) , 1 ≤ i ≤ n (4.9)

λf(wj) =
1

2
(f(wj−1) + f(wj+1)) , 1 ≤ j ≤ m (4.10)

λf(u) =
1

4
(f(v1) + f(vn−1) + f(w1) + f(wm−1)) , (4.11)

where vn = wm = u. Then it follows from Lemma 2.2.1 that

f(vi) = Ui−1(λ)f(v1)− Ui−2(λ)f(u), 1 ≤ i ≤ n (4.12)

f(wj) = Uj−1(λ)f(w1)− Uj−2(λ)f(u), 1 ≤ j ≤ m. (4.13)
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Setting i = n and j = m in the above equations, we have f(u) = Un−1f(v1) − Un−2f(u)
and f(u) = Um−1f(w1)− Um−2f(u). Thus, we have

f(v1) =
1 + Un−2

Un−1

f(u), (4.14)

and

f(w1) =
1 + Um−2

Um−1

f(u), (4.15)

if Un−1 ̸= 0 and Um−1 ̸= 0, that is,

θ ̸= π

n
r, 0 ≤ r ≤ n,

and

θ ̸= π

m
s, 0 ≤ s ≤ m,

Now, f(x) is expressed in terms of f(u) by (4.12), (4.13), (4.14) and (4.15) for x ∈ V (G).
Without loss of generality, we set f(u) = 1. We obtain

f(vn−1) = Un−2f(v1)− Un−3f(u)

=
Un−2(1 + Un−2)

Un−1

− Un−3

=
Un−2 + U2

n−2 − Un−3Un−1

Un−1

=
Un−2 + 1

Un−1

, (4.16)

where we applied (iii) of Lemma 2.2.2 to the third equation. Similarly, we obtain

f(wm−1) =
Um−2 + 1

Um−1

. (4.17)

Inserting (4.14), (4.15), (4.16) and (4.17) to (4.11), we have

4λ =

(
1 + Un−2

Un−1

+
1 + Un−2

Un−1

+
1 + Um−1

Um−1

+
1 + Um−1

Um−1

)
2λ =

1 + Un−2

Un−1

+
1 + Um−2

Um−1

λ− 1 + Un−2

Un−1

+ λ− 1 + Um−2

Um−1

= 0

λUn−1 − Un−2 − 1

Un−1

+
λUm−1 − Um−2 − 1

Um−1

= 0

Tn − 1

Un−1

+
Tm − 1

Um−1

= 0, (4.18)

Um−1(Tn − 1) + Un−1(Tm − 1) = 0, (4.19)
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where we applied (i) of Lemma 2.2.2 to the fourth equation. Put λ = cos θ. Then it follows
that

sinmθ

sin θ
(cosnθ − 1) +

sinnθ

sin θ
(cosmθ − 1) = 0,

2 sin
(m+ n)θ

2
cos

(m+ n)θ

2
− 2 sin

(m+ n)θ

2
cos

(m− n)θ

2
= 0,

− 2 sin
(m+ n)θ

2
sin

nθ

2
sin

mθ

2
= 0.

Now, we suppose that θ ̸= π
n
r and π

m
s for 0 ≤ r ≤ n and 0 ≤ s ≤ m. Then it follows that

sin
(m+ n)θ

2
= 0,

that is,

θ =
2π

m+ n
k, 1 ≤ k ≤

⌊
m+n−1

2

⌋
.

Therefore, we have found ⌊m+n−1
2

⌋ eigenvalues and associated linearly independent eigen-
functions of T .

Now, we suppose that Un−1(λ) = 0, or Um−1(λ) = 0. A zero of Un−1 is written as

λr = cos
π

n
r, 0 < r < n. (4.20)

Remark that Un−2(λr) = (−1)r+1. For an even r as in (4.20), let us define gr ∈ ℓ2(V (G))
as follows:

gr(v) =

{
Ui−1(λr), if v = vi,

0 v = u
(4.21)

for 1 ≤ i ≤ n− 1. We show that gr is an eigenfunction of T associated to λr for an even r.
It is enough to show that (Tgr)(u) = λrg(u) since it clearly holds that (Tgr)(x) = λrgr(x)
for x ∈ V (G)\{u} by the definition of the Chebyshev polynomials. In fact, we have

(Tgr)(u) =
1

4
(f(v1) + f(vn−1) + f(w1) + f(wm−1))

=
1

4
(U0(λr) + Un−2(λr))

=
1

4
(1− 1)

= 0

= λrgr(u).

Then gr is an eigenfunction of T associated to λr for an even r and it satisfies that
supp(gr) ⊂ V (Cr). In this paper, we call an eigenfunction in the form as in (4.21) a
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persistent eigenfunction on Cn. Hence, we have found ⌊n−1
2
⌋ other linearly independent

eigenfunctions. By a similar procedure, we also find ⌊m−1
2

⌋ linearly independent eigen-
functions of T associated to cos π

m
s for an even s with 0 < s < m, which are persistent

eigenfunctions on Cm. Note that G is a bipartite graph if both of m,n are even. Then
we have 1,−1 ∈ σ(T ) if both of m and n are even, and 1 ∈ σ(T ),−1 ̸∈ σ(T ) otherwise.
Hence, the number of the linearly independent eigenfunctions that we have found so far is⌊

m+ n− 1

2

⌋
+

⌊
n− 1

2

⌋
+

⌊
m− 1

2

⌋
+ 1 + 1B(G) = m+ n− 1,

which coincides with |V (G)|. Therefore, we have found all the linearly independent eigen-
functions of T . Moreover, the eigenvalues of T are

λ = cos
2π

m+ n
k, cos

π

n
r, cos

π

m
s,

where the ranges of k and even r, s are as mentioned in above. Obviously, these are the
real parts of the m + n, n and m-th root of unity, respectively. Therefore, Cn ∗ Cm is
Grover-periodic by Proposition 3.2.3 and its period is lcm(n,m,m+ n).

We next consider the case where n = m. By a similar procedure, gr as in (4.21) becomes
a persistent eigenfunction on each cycle associated to λr = cos π

n
r. We have thus found

2⌊n−1
2
⌋ linearly independent eigenfunctions. For an even r with 0 < r < n let us define

ĝr ∈ ℓ2(V (G)) as follows:

ĝr(v) =

{
Ti(λr), if v = vi or v = wi,

1 v = u
(4.22)

for 1 ≤ i ≤ n − 1. We show that ĝr is another eigenfunction of T (G) associated to λr

for an even r. Remark that Tn−1(λr) = (−1)rλr. Similarly, it is enough to show that
(T ĝr)(u) = λrĝr. In fact, we have

(T ĝr)(u) =
1

4
(f(v1) + f(vn−1) + f(w1) + f(wn−1))

=
1

4
(T1(λr) + Tn−1(λr) + T1(λr) + Tn−1(λr))

= λr

= λrĝr(u).

Then ĝr is an eigenfunction of T (G) associated to λr for an even r and we have thus
found ⌊n−1

2
⌋ another linearly independent eigenfunctions. Furthermore, for an odd r with

0 < r < n let us define hr ∈ ℓ2(V (G)) as follows:

hr(v) =


Ui−1(λr), if v = vi,

−Ui−1(λr), if v = wi,

0 v = u

(4.23)
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for 1 ≤ i ≤ n− 1. Similarly, it is enough to show that (Thr)(u) = λrhr(u). By Un−2(λr) =
(−1)r+1, we have

(Thr)(u) =
1

4
(f(v1) + f(vn−1) + f(w1) + f(wn−1))

=
1

4
(U0(λr) + Un−2(λr)− U0(λr)− Un−2(λr))

= 0

= λrhr(u).

Then we have thus found ⌊n
2
⌋ another linearly independent eigenfunctions of T (G) associ-

ated to λr for an odd r. Therefore, the number of linearly independent eigenfunctions that
we have obtained is

2

⌊
n− 1

2

⌋
+

⌊
n− 1

2

⌋
+
⌊n
2

⌋
+ 1 + 1B(G) = 2n− 1,

which coincides with |V (G)|. Thus, we have exhausted all the linearly independent eigen-
functions of T (G) and the eigenvalues are

λ = cos
π

n
r, 0 ≤ r ≤ n.

Hence, G is Grover-periodic by Proposition 3.2.3 and the period is 2n = lcm(n,m, n+m),
which completes the proof.

4.2.2 Join of several cycles

In this subsection, we consider the join of cycle graphs CN1 , CN2 , . . . , CNn with n ≥ 3 by

identifying a single vertex. Let V (CNi
) = {v(i)j | 0 ≤ j ≤ Ni − 1} with v0 = vNi

for 1 ≤ i ≤

n. Then we consider the periodicity of the Grover walk on G = C
v
(1)
0

N1
∗ Cv

(2)
0

N2
∗ · · · ∗ Cv

(n)
0

Nn
.

Theorem 4.2.2. Let n ≥ 3 and 3 ≤ N1 ≤ N2 ≤ · · · ≤ Nn. Then G = C
(v

(1)
0 )

N1
∗ C

(v
(2)
0

N2)
∗

· · · ∗ C
(v

(n)
0

Nn)
is Grover-periodic if and only if N1 = N2 = · · · = Nn = N , or n is even,

N1 = N2 = · · · = Nn
2
= N and Nn

2
+1 = Nn

2
+2 = · · · = Nn = M whose periods are 2N and

lcm(N,M,N +M), respectively.

Proof. We first consider the case where N1 = N2 = · · · = Nn = N . Now, we find persistent
eigenfunctions as in (4.21) on each cycle associated to λr = cos π

N
r for an even r with

0 < r < N . We have thus found n⌊N−1
2

⌋ linearly independent eigenfunctions of T (G). For

λr, let us define ĝr, h
(i)
r ∈ ℓ2(V (G)) as follows:

ĝr(v
(i)
j ) = Tj(λr), 1 ≤ i ≤ n, 1 ≤ j ≤ N
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u

CN1CN2

CNn

Figure 4.2: A join of cycles

and

h(i)
r (v) =


Uj−1(λr) if v = v

(1)
j ,

−Uj−1(λr) if v = v
(i)
j ,

0 v = u

for 2 ≤ i ≤ n and 0 ≤ j ≤ Ni − 1. By a similar way as in the proof of Theorem 4.2.1,
it is checked that ĝr and h

(i)
r are eigenfunctions of T (G) associated to λr for an even and

an odd r, respectively. Then we have thus found ⌊N−1
2

⌋ + (n − 1)⌊N
2
⌋ another linearly

independent eigenfunctions. The remaining eigenfunctions are ones associated to 1 if G
is a non-bipartite graph, and ±1 otherwise. After all, the number of linearly independent
eigenfunctions that we have found is

n

⌊
N − 1

2

⌋
+

⌊
N − 1

2

⌋
+ (n− 1)

⌊
N

2

⌋
+ 1 + 1B(G) = n(N − 1) + 1,

which coincides with |V (G)|. Moreover, the eigenvalues of T are

λ = cos
π

N
k, 0 ≤ k ≤ N.

Thus, G is Grover-periodic and the period is 2N by Proposition 3.2.3.
We next consider the case where N1 = N2 = · · · = Nn does not hold. Let M1 be the

minimum length of the cycles and define

l1 := |{1 ≤ i ≤ n | Ni = M1}|.

Note that 1 ≤ l1 < n. Recall that

det(xI|V (G)| − T ) =

|V (G)|∑
i=0

ρix
i.
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Here, we consider ρ|V (G)|−M1 . If M1 is odd, the permutations which contribute to ρ|V (G)|−M1

are the cyclic permutations with length M1 on each cycle with length M1 because of the
minimality of M1. Since deg u = 2n, we have

ρ|V (G)|−M1 = −2l1 ·
1

2M1−1
· 1

deg u

= − 1

2M1−1n
l1

by Proposition 4.1.3. In order that G is Grover-periodic, it necessarily holds that

2M1ρ|V (G)|−M1 = − 2

n
l1 ∈ Z

by Theorem 4.1.2. Since l1 < n, we have l1 =
n
2
.

If M1 is even, the permutations which contribute to ρ|V (G)|−M1 are cyclic permutations
with length M1 or products of M1

2
transpositions because of the minimality of M1. Note

that the product of transpositions corresponds to a combination of disjoint M1

2
edges on

G. Define Bu := {e ∈ E(G) | e ≈ u}. If a combination of disjoint edges does not involve
an edge in Bu, this permutation yields

1

4
· 1
4
· · · 1

4︸ ︷︷ ︸
M1
2

=
1

2M1
.

If a combination of disjoint edges involves e ∈ Bu, this permutation yields

1

4
· 1
4
· · · 1

4︸ ︷︷ ︸
M1
2

−1

· 1

2 deg u
=

1

2M1n
.

From the symmetry of G, the number of combinations of disjoint edges involving an edge
in Bu is constant for every e ∈ Bu. Let t be the number. Then the number of such
combinations is t|Bu| = 2nt. Therefore, we have

ρ|V (G)|−M1 = 2l1 ·
1

2M1−1
· 1

deg u
+ (−1)

M1
2

1

2M1
s+ (−1)

M1
2

1

2M1n
t|Bu|

=
1

2M1−1n
l + (−1)

M1
2

(
1

2M1
s+

1

2M1−1
t

)
(4.24)

by Proposition 4.1.3, where s is the number of combinations of disjoint edges which does
not involve the edges in Bu. Then the condition 2M1ρ|V (G)|−M1 ∈ Z implies that

2

n
l1 ∈ Z.

Thus, we have l1 =
n
2
.
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By the above arguments, it holds that l1 =
n
2
for the two cases. Let M2 be the second

minimum length of the cycles, i.e., M2 = NN
2
+1 and define

l2 := |{1 ≤ i ≤ n | Ni = M2}|.

Here, we only give the proof for an odd M2 as the one for an odd M2 is similar. We
consider ρ|V (G)|−M2 . When M1 is even, the permutations which contribute to ρ|V (G)|−M2 are
the cyclic permutations with length M2 on each cycle with length M2. Then we have

ρ|V (G)|−M2 = −2l2 ·
1

2M2−1
· 1

deg u

= − 1

2M2−1n
l2.

Similarly, it holds that l2 = n
2
. When M1 is odd, the permutations which contribute to

ρ|V (G)|−M2 are cyclic permutations with lengthM2 or a product of a cyclic permutation with
lengths M1 and M2−M1 transpositions. Such a permutation corresponds to a combination
of a cycle with length M1 and M2−M1

2
disjoint edges on G. Then this permutation yields

1

2
· 1
2
· · · 1

2︸ ︷︷ ︸
M1−1

· 1

2 deg u
· 1
4
· 1
4
· · · 1

4︸ ︷︷ ︸
M1−M2

2

=
1

2M2n
.

Due to the symmetry of G, the number of such combinations is constant for each cycle
with length M1. Let s

′ be the number. Then the total of such combinations is 2s′l1 = s′n.
Thus, we have

ρ|V (G)|−M2 = −2l2 ·
1

2M2−1
· 1

deg u
+ (−1)

M2−M1
2

+1 1

2M2n
2s′l1

= − 1

2M2−1n
l2 + (−1)

M2−M1
2

+1 1

2M2
s′

Since the last term becomes an integer after multiplying 2M2 , it follows that l2 = n
2
.

Therefore, we have n is even and

l1 = l2 =
n

2
.

Now, we set l1 = l2 =
n
2
. Let λ = cos θ with 0 < θ < π be an eigenvalue of T = T (G).

By a similar way as the proof of Theorem 4.2.1, we have

UM2−1(λ)(TM1(λ)− 1) + UM1−1(λ)(TM2(λ)− 1) = 0,

that is

θ =
2π

M1 +M2

k, 0 < k < M1 +M2
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if UM1−1 ̸= 0 and UM2−1 ̸= 0. Similarly, we have thus found ⌊M1+M2

2
⌋ linearly independent

eigenfunctions. I addition, we find persistent eigenfunctions as in (4.21) on each cycle
associated to cos π

M1
r and cos π

M2
r′, where r and r′ are even with 0 < r < M1 and 0 < r′ <

M2. Hence, the number of the persistent eigenfunctions is

2∑
i=1

li

⌊
Mi − 1

2

⌋
.

Let λr = cos π
M1

and µr′ = cos π
M2

r′ for 0 < r < M1 and 0 < r′ < M2, respectively. Put

n̂ = n
2
. We define h

(i)
r , h̃

(i)
r′ ∈ ℓ2(V (G)) as follows:

h(i)
r (v) =


Uj−1(λr) if v = v

(1)
j ,

−Uj−1(λr) if v = v
(i)
j ,

0 otherwise.

for 2 ≤ i ≤ n̂ and 0 ≤ j ≤ Ni − 1 and

h̃
(i)
r′ (v) =


Uj−1(µr′) if v = v

(n̂+1)
j ,

−Uj−1(µr′) if v = v
(i)
j ,

0 otherwise.

for n̂+2 ≤ i ≤ n and 0 ≤ j ≤ Ni− 1. Similarly, it is checked that these are eigenfunctions
of T associated to λr with odd r and µr′ with odd r′, respectively. We have thus found

2∑
i=1

(li − 1)

⌊
Mi

2

⌋
linearly independent eigenfunctions. Accordingly, the number of the linearly independent
eigenfunctions of T is⌊
M1 +M2

2

⌋
+

2∑
i=1

(
li

⌊
Mi − 1

2

⌋
+ (li − 1)

⌊
Mi

2

⌋)
+1+1B(G) = l1(M1−1)+l2(M2−1)+1,

which coincides with |V (G)|. Moreover, the eigenvalues that we have obtained so far are
given by

λ = cos
2π

M1 +M2

k, cos
π

M1

r, cos
π

M2

r′

for 1 ≤ k ≤ ⌊M1+M2

2
⌋, 1 ≤ r ≤ M1 − 1, and 1 ≤ r′ ≤ M2 − 1.

Therefore, G is Grover-periodic if and only if N1 = N2 = . . . Nn = N or N1 = N2 =
· · · = Nn

2
= M1 and Nn

2
+1 = Nn

2
+2 = · · · = Nn = M2 for an even n whose periods are 2N

and lcm(M1 +M2, 2M1, 2M2), respectively.

51



4.2.3 Join of a cycle and a claw

Let r ≥ 2 and consider a claw K1,r with V (K1,r) = {u} ∪ {wi | 1 ≤ i ≤ r} and E(K1,r) =

{uwi | 1 ≤ i ≤ r}. We call u the center of a claw. We will consider the join Cn ∗K(u)
1,r .

Cn

u K1,2

Figure 4.3: The graph Cn ∗K(u)
1,2

Theorem 4.2.3. Let n ∈ N and r ≥ 2. The join Cn ∗K(u)
1,r is Grover periodic if and only

if r = 2 and the period is lcm(n, n+ 2, 4).

Proof. Let G = Cn ∗K(u)
1,r and ρj be defined as in (4.1) for 1 ≤ j ≤ |V (G)|. Now the cyclic

permutations with length n only contribute to ρ|V (G)|−n, which implies that

ρ|V (G)|−n = −2
1

2
· 1
2
. . .

1

2︸ ︷︷ ︸
n−1

· 1

deg u

= − 1

2n−2(r + 2)

by Proposition 4.1.3. Since it holds that 2nρ|V (G)|−n ∈ Z by Theorem 4.1.2, we have r = 2.
We set r = 2. Let V (Cn) = {u, v1, . . . , vn−1} where we set vn = u. Then we have

|V (G)| = n + 2. Let f ∈ ℓ2(V (G)) be an eigenfunction of T = T (G) for λ. By a similar
procedure as in the proof of Theorem 4.2.2, we have

λf(vi) =
1

2
(f(vi−1) + f(vi+1)) , (4.25)

λf(u) =
1

4
(f(v1) + f(vn−1) + f(w1) + f(w2)) , (4.26)

λf(w1) = f(u),

λf(w2) = f(u),
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for 1 ≤ i ≤ n. If λ ̸= ±1, we similarly obtain

f(vi) = Ui−1f(v1)− Ui−2f(u), 1 ≤ i ≤ n

by (4.25). Under the assumption of Un−1 ̸= 0, f(v1) is expressed in terms of f(u) as (4.14):

f(v1) =
1 + Un−2

Un−1

.

In addition, it follows that f(vn−1) = f(v1) by (4.16). Furthermore, we suppose that λ ̸= 0.
Then it follows that

f(w1) = f(w2) =
1

λ
f(u). (4.27)

Inserting (4.14), (4.16) and (4.27) to (4.26) and putting f(u) = 1, we have

4λ =

(
1 + Un−2

Un−1

+
1 + Un−2

Un−1

+
1

λ
+

1

λ

)
2λ =

1 + Un−2

Un−1

+
1

λ

2λ2Un−1 = λ(1 + Un−1) + Un−1

λ(2λUn−1 − Un−2) = Un−1 + λ

λUn − Un−1 = λ.

Tn+1 = λ,

where we applied (ii) of Lemma 2.2.2 to the fifth equation. Putting λ = cos θ with 0 <
θ < π

2
and π

2
< θ < π, it follows that

cos (n+ 1)θ − cos θ = 0,

− 2 sin
(n+ 2)θ

2
sin

nθ

2
= 0.

Since Un−1 ̸= 0, it follows that

sin
(n+ 2)θ

2
= 0, (4.28)

that is,

θ =
2π

n+ 2
s, 0 < s < n+2

2
.

and s ̸= n+2
4
. When n ∈ 4N−2, θ in the above may take 0. Now, we consider the following

three cases (i) n is odd, (ii) n is even but n ̸∈ 4N− 2, (iii) n ∈ 4N− 2.
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For the case of (i), we find n+1
2

linearly independent eigenfunctions of T associated to
the eigenvalues as in (4.28). In addition, we find n−1

2
persistent eigenfunctions on Cn given

as in (4.21). Moreover, we define g ∈ ℓ2(V (G)) as follows:

g(v) =


1 if v = w1,

−1 if v = w2,

0 otherwise.

(4.29)

Indeed, it is an eigenfunction of T (G) associated to 0. We call the above eigenfunction a
persistent eigenfunction on K1,2. Then the remaining eigenfunctions are ones associated to
1 since G now is a non-bipartite graph. Therefore, the number of the linearly independent
eigenfunctions that we have found so far is

n+ 1

2
+

n− 1

2
+ 1 + 1 = n+ 2,

which coincides with |V (G)|.
For the case of (ii), we similarly find n

2
linearly independent eigenfunctions of T asso-

ciated to the eigenvalues as in (4.28). In addition, we find the persistent eigenfunctions
on Cn and K1,2 as in (4.21) and (4.29), respectively. Note that G is a bipartite graph.
Then the remaining eigenfunctions are ones associated to ±1. Therefore, the number of
the linearly independent eigenfunctions that we have found is

n

2
+ 2 +

n− 2

2
+ 1 = n+ 2,

which coincides with |V (G)|.
For the case of (iii), we find n

2
− 1 linearly independent eigenfunctions of T for the

eigenvalues as in (4.28) and the persistent ones on Cn and K1,r. In addition, we set the
following g̃ ∈ ℓ2(V (G)): g̃(w1) = −1, g̃(w2) = −1 and

g̃(vi) =


0 if i is even,

1 if i ∈ 4N+ 1,

−1 if i ∈ 4N+ 3.

Indeed, g̃ becomes an eigenfunction of T (G) associated to 0. Since G is a bipartite graph,
the remaining eigenfunctions are ones for ±1. Therefore, the number of the linearly inde-
pendent eigenfunctions of T that we have found is(n

2
− 1
)
+ 2 +

n− 2

2
+ 1 + 1 = n+ 2,

which coincides with |V (G)|.
Therefore, the eigenvalues of T are exhausted as

λ = cos
2π

n+ 2
s, cos

π

n
r, 0,

for all the cases, where the ranges of r and s are as mentioned above. Obviously, these
are the real parts of the n + 2, n and 4-th root of unity, respectively. Consequently, G is
Grover-periodic with the period lcm(n, n+ 2, 4) by Proposition 3.2.3.
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4.2.4 Join of several paths

For n,m ∈ N, we join m path graphs on n vertices by identifying their leaves. Let us
denote the graph by Pn,m. Define the vertex set by

u0

u1

Pn

︸ ︷︷ ︸
m

Figure 4.4: The graph Pn,m

V (Pn,m) = {u0, u1} ∪ {w(i)
j | 1 ≤ i ≤ m, 1 ≤ j ≤ n},

with w
(i)
1 = u0 and w

(i)
n = u1 for 1 ≤ i ≤ m. Define the edge set by

E(Pn,m) = {w(i)
j w

(i)
j+1 | 1 ≤ i ≤ m, 1 ≤ j ≤ n− 1}.

Theorem 4.2.4. The graph Pn,m is Grover-periodic for n,m ∈ N, and the period is 2(n−1).

Proof. Let G = Pn,m. Here, we will find |V (G)| = m(n − 2) + 2 linearly independent
eigenfunctions of T (G). We define functions on ℓ2(V (G)) by Ψ1 = δu0 , Ψn = δu1 and

Ψj =
1

m

m∑
i=1

δ
w

(i)
j
, 2 ≤ j ≤ n− 1.

Let A be the subset of ℓ2(V (G)) spanned by Ψ1,Ψ2, . . . ,Ψn. Then it follows that

A⊥ =

{
f ∈ ℓ2(V (G)) |

n∑
i=1

f(w
(i)
j ) = 0, 1 ≤ j ≤ n

}
.

It is easily checked that

T (G)Ψ1 = Ψ2,

T (G)Ψn = Ψn−1,
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and

T (G)Ψj =
1

2
(Ψj−1 +Ψj+1), 2 ≤ j ≤ n− 1.

Then T (G) is invariant on A and we have

T (G)|A = T (Pn).

Hence, σ(T (Pn)) ⊂ σ(T (G))) and we find n linearly independent functions according to
the Theorem 3.5.1.

The remaining eigenvalue of T (G) is

λk = cos
π

2(n− 1)
k

for an even k with 0 < k < 2(n− 1). For an even k with 0 < k < 2(n− 1) and 1 ≤ i ≤ m,

let us define g
(i)
k ∈ ℓ2(V (G)) by

g
(i)
k (v) =


Uj−2(λk) if v = w

(1)
j (2 ≤ j ≤ n)

−Uj−2(λk) if v = w
(i)
j (2 ≤ j ≤ n)

0 otherwise

(4.30)

for 2 ≤ j ≤ n. Then g
(i)
k ∈ A⊥. It is easily checked that T (G)g

(i)
k (x) = λkg

(i)
k (x) for

x ∈ V (G)\u1. Remark that Un−2(λk) = 0 for an even k. Thus, we have

T (G)g
(i)
k (u1) =

1

m
(g

(i)
k (w

(1)
n−1) + g

(i)
k (w

(i)
n−1))

=
1

m
(Un−3(λk)− Un−3(λk))

= 0

= λkUn−2(λk)

= λkg
(i)
k (u1).

Hence, g
(i)
k becomes an eigenfunction of T (G) associated to λk. We have thus found (n−

2)(m − 1) linearly independent eigenfunctions of T (G). Therefore, the number of the
linearly independent eigenfunctions that we have obtained is

n+ (n− 2)(m− 1) = m(n− 2) + 2,

which coincides with |V (G)|. Furthermore, the eigenvalues is

λ = cos
π

n− 1
k, 0 ≤ k ≤ n− 1.

Therefore, the graph Pn,m is Grover-periodic by Proposition 3.2.3 and the period is 2(n−
1).
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4.3 Grover-odd-periodic graphs

In this Section, we treat the Grover-odd-periodic graphs. We give a simple necessary
condition for a graph to be Grover-odd-periodic.

Theorem 4.3.1. If a graph G is Grover-odd-periodic, then it holds that b1(G) = 1 and
1B(G) = 0.

Proof. LetG be a Grover-odd-periodic graph. Then it holds that−1 ̸∈ σ(U) by Proposition
3.2.1, which implies that b1(G)−1+1B(G) = 0. Then it follows that b1(G) = 1,1B(G) = 0
or that b1(G) = 0,1B(G) = 1. If b1(G) = 0,1B(G) = 1, then G is a tree. Then G is a
bipartite graph and it holds that −1 ∈ σ(T ). Hence, it follows that −1 ∈ {e±i cos−1 (σ(T ))} ⊂
σ(U). Therefore, it holds that b1(G) = 1 and 1B(G) = 0.

Cr

T1

v1

T2

v2

Tr

vr

Figure 4.5: An odd-unicycle graph

The conditions b1(G) = 1 and 1B(G) = 0 imply that G is an odd-unicycle graph. Then
the graph G has exactly one essential cycle with odd length. Let Cr be the essential cycle
with V (Cr) = {v1, v2, . . . , vr}, where r is an odd integer. Let Ti be a tree connecting to
vi for 1 ≤ i ≤ r(see Figure 4.3). If Ti = ϕ for 1 ≤ i ≤ r, then G = Cr, which is a
Grover-periodic graph. Now, we suppose that

1 ≤ ∃i ≤ r such that Ti ̸= ϕ. (4.31)

Theorem 4.3.2. Let G be an odd-unicycle graph fulfilling (4.31). If G is Grover-periodic,
there exists a vertex v ∈ V (Cr) such that deg(v) = 4 and deg(u) = 2 for u ∈ V (Cr)\{v}.
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Cr

T1T2

Figure 4.6: A shape of a Grover-odd-periodic graph

Proof. Let |V (G)| = n and ρj be defined as in (4.1) for 0 ≤ j ≤ n. We consider ρn−r.
Then the permutations which only contribute to ρn−r are

σ =

(
v1 v2 . . . vr
v2 v3 . . . v1

)
,

(
v1 v2 . . . vr
vr v1 . . . vr−1

)
and Er = {[(v1, v2, . . . , vr)], [(vr, vr−1, . . . , v1)]} since Cr is the unique essential cycle on G
and r is odd. Thus, we have

ρn−r = (−1) · (Mr([(v1, v2, . . . , vr)] +Mr([(vr, vr−1, . . . , v1)])

= −2
r∏

i=1

1

deg(vi)

by Proposition 4.1.3. Then it follows that

2rρn−r = −2r+1

r∏
i=1

1

deg(vi)
∈ Z

by Theorem 4.1.2. Since deg(vi) ≥ 2 for 1 ≤ i ≤ r, there exists a vertex v ∈ V (Cr) such
that deg(v) = 4 and deg(u) = 2 for u ∈ V (Cr)\{v}.

Without loss of generality we set deg(v1) = 4. Thus, we have Ti = ϕ for 2 ≤ i ≤ r and
a shape of a Grover-odd-periodic graph is seen in Figure 4.3. Along the above argument
we come to the following conjecture.

Conjecture 4.3.3. For an odd k ∈ N with k ≥ 3, a graph G is Grover-k-periodic if and
only if G = Ck.
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Chapter 5

Graph-transformations preserving
periodicity

In this Chapter, we discuss graph-transformations which preserve the periodicity of quan-
tum walks. In particular, we focus on multiplex graphs, subdivision graphs and line graphs
induced by a Hoffman graph. In the last part, we study another quantum walk called a
staggered walk.

5.1 Multiplex graph

Theorem 5.1.1. Let G be a simple graph. If G is Grover-k-periodic, so is MPn(G) for
n ∈ N.

Proof. For uv ∈ E(MPn(G)), let muv be the multiplicity of uv ∈ E(G). Put Mu =∑
v∼u muv. By definition we have muv = n for uv ∈ E(MPn(G)) and Mu = n degG(u).

Then it follows by (2.1) that
T (MPn(G)) = T (G).

This completes the proof by Lemma 3.2.2.

5.2 Subdivision

Spectral mappings of several operators, e.g., the adjacency operator and the Laplacian
operator by subdivision are referred to in [24], [60]. Below we show the spectral mapping
of the transition operator by subdivision and apply it to periodicity of the Grover walk.

Theorem 5.2.1. Let k, l ∈ N. If a graph G is Grover-periodic, so is Sl(G).

Proof. Let G be a Grover-k-periodic graph with |V (G)| = n and |E(G)| = m. Put
G′ = Sl(G). We decompose V (G′) into the following disjoint subsets: V0 := V (G) =

{v1, · · · , vn}, V1 := V (G′)\V (G) = {w(r)
i,j | 0 ≤ r ≤ l, vivj ∈ E(G)}, where setting of w

(r)
i,j is
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seen in subsection 2.1.2. Namely, V0 is the vertex set of the original graph G and V1 is the
set of the additional vertices. For the proof, it is sufficient to find |V (G′)| = n+ (l − 1)m
linearly independent eigenfunctions of T (G′) and verify that all the eigenvalues satisfy the
condition in Proposition 3.2.3. Let f ∈ ℓ2(V (G′)) be an eigenfunction of T (G′) associated
to µ. For vi ∈ V0 and vj ∈ V0 with vivj ∈ E(G), it holds that

µf(vi) =
1

deg(vi)

∑
vivj∈E(G)

f(w
(1)
i,j ), (5.1)

µf(w
(r)
i,j ) =

1

2
(f(w

(r−1)
i,j ) + f(w

(r+1)
i,j )), 1 ≤ r ≤ l − 1. (5.2)

Applying Lemma 2.2.1 to (5.2), we have

f(w
(r)
i,j ) = Ur−1(µ)f(w

(1)
i,j )− Ur−2(µ)f(vi), 1 ≤ r ≤ l. (5.3)

When r = l, we obtain

f(w
(l)
i,j ) = Ul−1(µ)f(w

(1)
i,j )− Ul−2(µ)f(vi).

First, we suppose that Ul−1 ̸= 0. Then we have

f(w
(1)
i,j ) =

Ul−2f(vi) + f(vj)

Ul−1

. (5.4)

Inserting the above equation to (5.1), we have

µf(vi) =
1

deg(vi)

∑
vivj∈E(G)

Ul−2f(vi) + f(vj)

Ul−1

,

µUl−1f(vi) = Ul−2f(vi) +
1

deg(vi)

∑
vivj∈E(G)

f(vj),

(µUl−1 − Ul−2)f(vi) =
1

deg(vi)

∑
vivj∈E(G)

f(vj),

Tlf(vi) =
1

deg(vi)

∑
vivj∈E(G)

f(vj),

where we applied (i) of Lemma 2.2.2 to the third equation. Now, we have

Tl(µ)f |V0 = T (G)f |V0

and Tl(µ) is an eigenvalue of T (G) and f |V0 is the associated eigenfunction. Here, we note
that f |V0 = 0V (G) implies f = 0V (G′) by (5.3) and (5.4). Then we have f |V0 ̸= 0V (G). Thus,
there is an eigenvalue λ ∈ σ(T (G)) such that Tl(µ) = λ. Put λ = cos θ and µ = cosφ for
0 < θ, φ < π. Then we have

cos lφ = cos θ,
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that is,

−2 sin
lφ+ θ

2
sin

lφ− θ

2
= 0.

Hence, φ is expressed as

φ =
θ + 2πs

l
,

−θ + 2πs′

l
,

for

0 ≤ s ≤
⌊
l − 1

2

⌋
, 1 ≤ s′ ≤

⌊
l

2

⌋
.

We have thus found l linearly independent eigenfunctions of T (G′) for fixed θ with θ ∈
cos−1(σ(T (G))\{±1}). If G is a bipartite graph (resp. non-bipartite graph), there are
l(n− 2) (resp. l(n− 1)) linearly independent eigenfunctions of T (G′).

The remaining eigenvalues are zeros of Ul−1, that is,

µt = cos
π

l
t (5.5)

for 0 < t < l. For the above µt we have Ul−2(µt) = (−1)t and Tl−1(µt) = (−1)tµt.
First, we suppose that G is a bipartite graph. Let C be an essential cycle on G with
V (C) = {vν1 , vν2 , · · · , vνd}. Note that the lengths of all the essential cycles are even. For

an essential cycle C and µt in (5.5), let us define a function g
(C)
t ∈ ℓ2(V (G′)) by

g
(C)
t (v) =

{
(−1)tjUr−1(µt), if v = w

(r)
νj ,νj+1 ,

0, otherwise
(5.6)

for 1 ≤ j ≤ d, 1 ≤ r ≤ l − 1 and 0 < t < l, where we set vνd+1
= vν1 . By Ul−2(µt) = (−1)t,

it is checked that g
(C)
t is an eigenfunction of T (G′) for µt. Therefore, there are l−1 linearly

independent eigenfunctions of T (G′) for a fixed essential cycle C. Then the number of
linearly independent eigenfunctions for (5.6) is (l − 1)(m + n − 1). Since G is a bipartite
graph, V0 can be decomposed into two disjoint subsets. Name the subsets X and Y . For
0 < t < l, let us define a function ĝt ∈ ℓ2(V (G′)) by

ĝt(v) =


1, if v ∈ X,

(−1)t, if v ∈ Y ,

Tr(µt), if v = w
(r)
vi,vj ,

for 1 ≤ r ≤ l − 1, 0 < t < l and every vivj ∈ E(G) with vi ∈ X, vj ∈ Y . By Tl−1(µt) =
(−1)tµt, it is easily checked that ĝ ∈ ℓ2(V (G′)) is an eigenfunction of T (G′) associated to
µt. We have thus found l − 1 linearly independent eigenfunctions associated to µt. The
remaining eigenvalues are ±1 since G′ is a bipartite graph as G is a bipartite graph. Then
the number of the linearly independent eigenfunctions of T (G′) that we have found so far
is

l(n− 2) + (l − 1)(m+ n− 1) + (l − 1) + 2 = n+ (l − 1)m,
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which coincides with |V (G′)|. Therefore, we have exhausted the linearly independent
eigenfunctions of T (G′).

Next, we suppose that G is a non-bipartite graph. Note that there exist at least one
essential cycles with odd length. For the eigenvalues in (5.5) with even t, g

(C)
t becomes

an eigenfunction of T (G′) for µt for every essential cycle C. In addition, ĝ(t) is an eigen-
functions of T (G′) associated to µt when t is even. There are

⌊
l−1
2

⌋
(m− n+ 1) +

⌊
l−1
2

⌋
=⌊

l−1
2

⌋
(m − n + 2) linearly independent eigenfunctions. For an eigenvalue µt with odd t,

g
(C)
t becomes an eigenfunction of T (G′) associated to µt if the length of C is even. Let
C1, C2, . . . , Cq be the distinct essentials cycles with odd length in G. From the connec-
tivity of G, there exits a path on G connecting a vertex in C1 and a vertex in Ci for
2 ≤ i ≤ q. Let V (C1) = {vν1 , vν2 . . . , vνd} and V (Ci) = {vη1 , vη2 , . . . , vηe}. We find a path
P = {vρ1 , vρ2 , · · · , vρf} with vρ1 = vν1 , vρf = vη1 . For 2 ≤ i ≤ q and odd t with 0 < t < l,

let us define a function h
(i)
t ∈ ℓ2(V (G′)) by

h
(i)
t (v) =


(−1)aUr−1(µt), if v = w

(r)
νa,νa+1 ,

2 · (−1)b+1Ur′−1(µt), if v = w
(r)
ρb,ρb+1 ,

(−1)b+cUr′′−1(µt), if x = w
(r)
ηc,ηc+1 ,

0, otherwise

for 1 ≤ a ≤ d, 1 ≤ b ≤ e, 1 ≤ c ≤ f and 1 ≤ r ≤ l − 1, where we set νd+1 = ν1, ηe+1 =

η1, ρf+1 = ρ1. By Ul−2(µt) = (−1)t, it is similarly checked that h
(i)
t is an eigenfunction of

T (G′) for µt with odd t. We have thus found
⌈
l−1
2

⌉
(m − n) linearly independent eigen-

functions of T (G′). Furthermore, if l even, G′ becomes a bipartite graph and we have
−1 ∈ σ(T (G′)). The remaining eigenvalue is 1. Hence, the number of the linearly inde-
pendent eigenfunctions that we have found is

l(n− 1) +

⌊
l − 1

2

⌋
(m− n+ 2) +

⌈
l − 1

2

⌉
(m− n) + 1 + 1B(G

′) = n+ (l − 1)m,

which coincides with |V (G′)|. Therefore, we have exhausted all the linearly independent
eigenfunctions of T (G′).

After all, we obtain

σ(T (G′)) =
∪

λ∈σ(T (G))\{±1}

{µ ∈ R | Tl(µ) = λ, }

∪ {µ ∈ R | Ul−1(µ) = 0, Ul−2(µ) = −1}b1(G)+1

∪ {µ ∈ R | Ul−1(µ) = 0, Ul−2(µ) = 1}b1(G)−1+2·1B(G)

∪ {−1}1B(G′) ∪ {1}

and the eigenvalues of T (G′) are given by

µ = cos
±θ + 2πs

l
, cos

π

l
t, ±1
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for θ ∈ cos−1(σ(T (G))\{±1}),where the ranges of s, s′ and t are as mentioned above. Now
we recall that G is Grover-k-periodic. Then we have θ ∈ 2π

k
Z. If k is even, the eigenvalues

cos
±θ + 2πs

l

are the real parts of the kl-th root of unity. Therefore, G′ is Grover-periodic and its period
is lcm(kl, 2l, 2, 1) = kl by Proposition 3.2.3. If k is odd, we have b1(G) = 1,1B(G) = 0
by Theorem 4.3.1. Then the eigenvalues satisfying Ul−1(µ) = 0, Ul−2(µ) = 1 will vanish.
Hence G′ is also Grover-periodic by Proposition 3.2.3 and the period is lcm(kl, l, 2, 1) = kl
if l is even, lcm(kl, l, 1) = kl otherwise. In any case, the period is kl and we complete the
proof.

5.3 Line graphs induced by Hoffman graphs

We need the notion of a tessellation of a graph. A graph G is said to be 2-tessellable if
there exists two clique partitions C = {C1, C2, . . . , Ck} and D = {D1, D2, . . . , Dl} such
that

E(G) =
k⊔

i=1

E(G[Ci]) ∪
l⊔

j=1

E(G[Dj])

and we call C ⊔ D a tessellation cover. Here, we treat the staggered walk defined in a
2-tessellable graph. Ambainis et al. [7] suggested a staggered walk on the two-dimensional
lattice and also formulated an efficient searching algorithm driven by a staggered walk.
Staggered walks on graphs have been analyzed along with problems such as searching
problems in [55] and [56]. In this Section, we define a staggered walk on a generalized line
graph induced by a Hoffman graph and analyze the periodicity. In particular, we provide
a class of Hoffman graphs which induce periodic staggered walks.

5.3.1 Hoffman graphs

The Hoffman graphs were studied by Woo and Neumaier [65] as a generalization of line
graphs. A Hoffman graph consists of two disjoint sets of vertices called fat and slim. A
Hoffman graph h is a pair (H,µ), where H = (V,E) is a graph and µ is a labeling map
from V to {f, s} satisfying the following conditions:

(i) every vertex with label f is adjacent to at least one vertex with label s;

(ii) the vertices with label f are pairwise non-adjacent.

A vertex labeled by s is called slim, and one labeled by f is fat. Figure 5.1 shows
examples of Hoffman graphs, where a fat vertex is denoted by a big dot and a slim one by
a small dot.
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Figure 5.1: Examples of Hoffman graphs

From now on, we always consider Hoffman graphs with two fat vertices. For such a
Hoffman graph h = (H,µ), we set

F (h) := {v ∈ V (H) | µ(v) = f},
S(h) := {v ∈ V (H) | µ(v) = s}.

Let G = (V,E) be a simple graph. It is noticeable that the line graph L(G) is obtained by
using a Hoffman graph h = as follows:

(i) Embed the Hoffman graph h to each edge of the original graph G.

(ii) Connect two distinct vertices if they have a common fat neighbor.

(iii) Remove all fat vertices.

G

(i)−→ (ii)−→

L̃h(G)

(iii)−−→

Lh(G)

Figure 5.2: An example of construction of an ordinary line graph by Hoffman graph

Figure 5.2 illustrates the procedure. The concept of a line graph is generalized by replacing

(i)−→ (ii)−→ (iii)−−→

Figure 5.3: An example of generalized line graph by h′

the Hoffman graph h with a general one, for example, h′ = . (See Figure 5.3)
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L

...

...

...

...

...

...

...

R

K2m

K2m

K2m

Kmn Kmn

Figure 5.4: The Hoffman graph hm,n

For a graph G and a Hoffman graph h the graph obtained by the above procedure
(i)–(iii) is called a generalized line graph and is denoted by Lh(G). Furthermore, we denote
the graph obtained by the process (i)–(ii) by L̃h(G). By definition of the generalized line
graph, there is a correspondence between the vertices of G and the fat vertices of L̃h(G).
In addition, there is a correspondence between the edges of G and the Hoffman graphs
embedded in L̃h(G). For vi ∈ V (G) and ej ∈ E(G), let us denote by νi ∈ V (L̃h(G))
and ej the corresponding fat vertex and embedded Hoffman graph, respectively. Let C =
{C1, C2, . . . , Ck}, D = {D1, D2, . . . , Dl} be two partitions of the vertices of Lh(G) defined
by

Ci := N(νi)

Dj := S(ej),

for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Then C and D constitute a 2-tessellation of Lh(G) and
Lh(G) is a 2-tessellable graph. We call C ⊔ D the natural tesellation. There are natural
correspondences between C and V (G), D and E(G).

For positive integers m and n, we define the Hoffman graph hm,n as follows: The vertex
set of hm,n is

{(a, i, j) | 1 ≤ a ≤ 2, 1 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {L,R}.
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Two vertices (a, i, j) and (b, i′, j′) are adjacent if and only if a = b or i = i′. Moreover, L is
adjacent to (1, i, j) for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Similarly, R is adjacent to every (2, i, j)
for 1 ≤ i ≤ m and 1 ≤ j ≤ n. The labeling map µ is

µ(v) =

{
f if v ∈ {L,R},
s otherwise.

The shape of hm,n is illustrated in Figure 5.4.
For a 2-tessellable graph H with tessellations C = {C1, . . . , Ck} and D = {D1, . . . , Dl},

the intersection graph is a multigraph defined by

• V (I(H)) := C ⊔D.

• E(I(H)) := {Cτ(x)Dϵ(x)(mx) | x ∈ V (H)},
where the multiplicity is given by mx = |Cτ(x)∩Dϵ(x)|. Note that V (H) ≃ E(I(H)). Let us
denote two arcs on I(H) associated with x ∈ V (H) by (Cτ(x), Dϵ(x);x) and (Dϵ(x), Cτ(x);x).
Then

A(I(H)) := {(Cτ(x), Dϵ(x);x), (Dϵ(x), Cτ(x);x) | x ∈ V (H)}.
We give an example of an intersection graph in Figure 5.5.

H

⇒

I(H)

Figure 5.5: An example of an intersection graph

5.3.2 Definition of staggered walks

The staggered walk is a quantum walk defined on a 2-tessellable graph. Let H = (V,E) be
a 2-tessellable graph with two clique partitions C = {C1, . . . , Ck} and D = {D1, . . . , Dl}.
Then for x ∈ V (H) there uniquely exist 1 ≤ i ≤ k and 1 ≤ j ≤ l such that x ∈ Ci ∩Dj.
Let us denote the indices i and j by τ(x) and ϵ(x), respectively. Define a unitary operator
Ĉ on ℓ2(V (H)) by

Ĉf(x) =
∑

y∈Cτ(x)

(
2

|Cτ(x)|
− δx,y

)
f(y), f ∈ ℓ2(V (H)).
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Similarly, we define a unitary operator D̂ on ℓ2(V (H)) by

D̂f(x) =
∑

y∈Dϵ(x)

(
2

|Dϵ(x)|
− δx,y

)
f(y), f ∈ ℓ2(V (H)).

We set Û = D̂Ĉ. The quantum walk on H defined by Û = Û(H) is called the staggered
walk with respect to C = {C1, . . . , Ck} and D = {D1, . . . , Dl}. If there exits an integer
k ∈ N such that Ûk = Ûk(H) = IV (H) we say that H is a staggered-periodic graph.

5.3.3 Periodicity of staggered walks

Let A and B be operators on Hilbert spaces H and K, respectively. Then A and B are
unitarily equivalent if there exists a unitary operator χ : H → K such that A = χ−1Bχ.

Let G be a simple graph. Here, H = Lhm,n(G) is the 2-tessellable graph with respect
to the natural tessellation C = {C1, · · · , Ct}, D = {D1, · · · , Dk}. It follows immediately
that I(H) ≃ MPm(S2(MPn(G))). Since V (G) ≃ C, there exits a bijective map ϕ : C →
V (G) which maps a clique Ci to the corresponding vertex of G. Then we have |Ci| =
mn deg(ϕ(Ci)) for 1 ≤ i ≤ t. In addition, we define the following subspace B ⊂ A(I(H)):

B := {(Dϵ(x), Cτ(x);x) | x ∈ V (H)}.

Then B ≃ V (H). To prove our main result in this Section, we show the unitary equivalence
between the staggered walk on a generalized line graph induced from hm,n and the Grover
walk on the original graph G by following [42].

Theorem 5.3.1. For a graph G, let H and H ′ be Lhm,n(G) and its intersection graph,

respectively. Then Û(H) and U2(H ′)|ℓ2(B) are unitarily equivalent.

Proof. We fix x ∈ V (H). Let ex = (Dϵ(x), Cτ(x);x). Using the correspondence between
V (H) and B, we define a unitary operator χ : ℓ2(V (H)) → ℓ2(B) by

χg(ex) = g(x), g ∈ ℓ2(V (H)).

Note that

χ−1φ(x) = φ((ex)), φ ∈ ℓ2(ℓ2(B)).

For g ∈ ℓ2(V (H)) we have

(Ûg)(x) = (D̂Ĉg)(x)

=
∑

y∈Dϵ(x)

(
2

|Dϵ(x)|
− δx,y

)
Ĉg(y)

=
∑

y∈Dϵ(x)

(
2

|Dϵ(x)|
− δx,y

) ∑
z∈Cτ(y)

(
2

|Cτ(y)|
− δy,z

)
g(z).
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Since |Cτ(y)| = mn degG ϕ(Cτ(y)) and |Dϵ(x)| = 2mn, we have

(Ûg)(x) =
∑

y∈Dϵ(x)

(
1

mn
− δx,y

) ∑
z∈Cτ(y)

(
2

mn degG ϕ(Cτ(y))
− δy,z

)
g(z). (5.7)

Next, we consider the action of χ−1U2|ℓ2(B)(H ′)χ. Let φ = χg ∈ ℓ2(B). Then we have

(χ−1U2|ℓ2(B)χg)(x) = (χ−1UUφ)(x)

= (UUφ)(ex)

=
∑

f∈A(H′)
t(f)=o(ex)

(
2

degH′(t(f))
− δex,f−1

)
(Uφ)(f)

=
∑

f∈A(H′)
t(f)=o(ex)

(
2

degH′(t(f))
− δex,f−1

) ∑
h∈A(H′)
t(h)=o(f)

(
2

degH′(t(h))
− δf,h−1

)
φ(h).

(5.8)

Since o(ex) = Dϵ(x), an arc f ∈ A(H ′) with t(f) = o(ex) is written as (Cτ(y), Dϵ(x); y)
for y ∈ Cτ(x). Note that (Cτ(y), Dϵ(x); y) = (Cτ(y), Dϵ(y); y) since y ∈ Dϵ(x). Then each arc
f ∈ A(H ′) with t(f) = o(ex) corresponds to a vertex y ∈ Dϵ(x), where the inverse arc e

−1
x =

(Cτ(x), Dϵ(x);x) corresponds to x itself. For the above f , an arc h ∈ A(H ′) with t(h) = o(f)
is written as (Dϵ(z), Cτ(y); z) for z ∈ Cτ(y) with y ∈ Dϵ(x). Note that (Dϵ(z), Cτ(y); z) =
(Dϵ(z), Cτ(z); z) since y ∈ Dϵ(x). Then each arc h ∈ A(H ′) with t(h) = o(f) corresponds
to a vertex z ∈ Cτ(y), where the inverse arc f−1 = (Dϵ(y), Cτ(y); y) corresponds to y itself.
Then it follows that

φ(h) = (χg)(h)

= (χg)((Dϵ(z), Cτ(z); z))

= (χg)(ez)

= g(z).

Since degH′(t(f)) = 2mn and degH′(t(h)) = mn deg(ϕ(Cτ(y))), (5.8) is rewritten as∑
y∈Dϵ(x)

(
1

mn
− δx,y

) ∑
z∈Cτ(y)

(
2

mn degG ϕ(Cτ(y))
− δy,z

)
g(z),

which equals (5.7). We complete the proof.

Theorem 5.3.2. If a graph G is Grover-periodic, Lhm,n(G) is staggered-periodic for m,n ∈
N.

Proof. Let H = Lhm,n(G) and H ′ = I(H). Note that H ′ ≃ MPm(S2(MPn(G))). If G is
a Grover-periodic graph, so is MPn(G) by Theorem 5.1.1. Note also that S2(MPn(G))
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is obtained by replacing each edge of G with P3,n. By a similar way as in the proof of
Theorem 4.2.4, there exists a subset A ⊂ ℓ2(V (S2(MPn(G)))) such that

T (S2(MPn(G)))|A = T (S2(G)).

Hence, we have
σ(T (S2(G)) ⊂ σ(T (S2(MPn(G))))

and the remaining eigenvalues of T (S2(MPn(G))) are

λk = cos
π

4
k

for k ∈ {0, 2, 4} with associated eigenfunction as in (4.30). Therefore, S2(MPn(G)) is
Grover-periodic by Theorem 5.2.1. Moreover, MPm(S2(MP (G))) is Grover-periodic by
Theorem 5.1.1. Then there exists an integer k such that

(U2(H ′)|ℓ2(B))k = Iℓ2(B).

By Theorem 5.3.1, we have

Ûk(H) = χ−1(U(H ′)|ℓ2(B))kχ = IV (H).

Therefore, H is staggered-periodic, which completes the proof.
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Chapter 6

Summary and discussions

In this paper, we are mainly concerned with characterization of graphs which admit pe-
riodic Grover walks (named Grover-periodic graph). Periodicity treated in this paper is
regarded as a discrete version of perfect state transfer [18] and [19]. As an extension of
[28], characterization of concrete classes of Grover-periodic graphs, e.g., cycle graphs, path
graphs, Hamming graphs, Johnson graphs and generalized Bethe trees are obtained by
spectral analysis. The results are summarized as follows:

• Cycle graphs.

For n ∈ N, the cycle graph Cn is Grover-periodic and its period is n.

• Path graphs.

For n ∈ N, the path graph Pn is Grover-periodic and its period is 2(n− 1).

• Hamming graphs.

The Grover-periodic Hamming graphs are only

H(1, 2), H(1, 3), H(2, 2), H(3, 3), H(4, 2)

and their periods are 2, 3, 4, 12 and 12, respectively.

• Johnson graph.

The Grover-periodic Johnson graphs are only

J(2, 1), J(3, 1), J(4, 2)

and their periods are 2, 3, and 12, respectively.

• Generalized Bethe trees.

The Grover-periodic generalized Bethe trees are only

Sk(B(1, 2, 3)), Sk(B(s, 3))

for k, s ∈ N and both of their periods are 12. (The graphs B(1, 2, 3) and B(s, 3) are
illustrated in Figures 3.2.)
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Through the research, we aim to see how graph structure affects an induced quantum walk.
Our concern is to see restriction of graphs when we suppose that the quantum walk induced
by the graph is periodic. By analysis of the transition operator, we obtain the following
condition. Let T be the transition operator of a simple graph G on n vertices and

det(xIn − T ) =
n∑

i=0

ρix
i, 0 ≤ i ≤ n,

where In is the n× n-identity matrix. Then it holds necessarily that

2jρn−j ∈ Z, 0 ≤ i ≤ n.

By using the condition, we constructed a new class of Grover-periodic graphs obtained by
the join, e.g., a cycle and a cycle, a cycle and a claw. Moreover, thanks of the condition,
we approached our conjecture for the Grover-odd-periodic graph, that is, the Grover-odd-
periodic graph is only the cycle graph with odd length. Furthermore, we introduced some
graph-transformations, e.g., multiplex graphs, subdivision graphs and line graphs induced
by a Hoffman graph preserving the periodicity. If a simple graphG is Grover-periodic, these
graphs MPk(G), Sl(G) and Lhm,n(G) are also Grover-periodic for k, l,m, n ∈ N, where a
Hoffman graph hm,n is seen in Figure 5.4.

In the next stage, we aim to enlarge graphs while maintaining periodicity of quantum
walks. We believe that these results give great contribution to the purpose. In particular,
the condition (6.1) will be a useful tool for our future directions. Characterization of
Grover-k-periodic graphs is still an open problem for every k ∈ N. Furthermore, we may
consider more extended setting. Here, we will treat graphs satisfying

Uk(G) = IA(G)

for k ∈ N. This condition can be extended to

Uk(G) = P,

where P is a permutation operator. Then there exist e, f ∈ A(G) such that

Uk(G)δe = δf .

In addition, our condition tacitly requires that Uk(G)φ0 = φ0 for any φ0 ∈ ℓ2(A(G)). It
can be loosened to the condition that there exists φ such that Uk(G)φ = φ. We may call
such a graph partial periodic. To see graph structure under such relaxed conditions is also
our future work. We ultimately aim to reveal the relation between quantum walks and
graph structure.
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