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We study conformal embeddings of a noncompact Riemann surface of finite genus into compact Riemann
surfaces of the same genus and show some of the close relationships between the classical theory of univalent
functions and our results. Some new problems are also discussed. This article partially intends to introduce our
results and to invite the function-theorists on plane domains to the topics on Riemann surfaces.
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1. Introduction

The rôle of univalent functions in complex analysis is doubtlessly important. Various problems concerning the
coefficients of the seties expansion have been above all deeply studied and many remarkable results are now in our
possession. Univalent function theory is still today an active field. The domain of definition of a univalent function is,
by the definition, limited to a plane domain — a nonempty connected open subset of the Riemann sphere.

Although it is desirable to study analyticity on general Riemann surfaces, univalent functions make sense only on
planar Riemann surfaces. The main object of the present paper shall be hence univalent analytic mapping, i.e.
conformal embedding of a Riemann surface into another. This causes however a new difficulty; we cannot designate
the image of the given surface under such a mapping at the outset. In other words, we have to consider the following
problem at first. What kind of Riemann surfaces do we have to choose as the image? The notion of continuations of a
Riemann surface serves the purpose, as the discussion below shows.

The first half of the present paper is devoted to a short summary of our basic results. In order to compare them with
the classical theory of univalent functions, we confine ourselves to those topics whose counterpart can be easily found.
(For other topics, see for instance, [38], [23], [39], and [40].) As an example of such topics we focus our attention to the
span in the second half of the paper.

The span is first defined by M. Schiffer ([30]) for multiply connected plain domains, and has been since then
generalized in many different directions (see e.g., [15], [27], [28], [29]). Hamano-Maitani-Yamaguchi [10] considered a
certain holomorphic family of finite Riemann surfaces parametrized by the unit disk D and showed that one of the
generalized spans (the harmonic span in [28]) is a subharmonic function on D. Concerning the Schiffer span for plane
domains a similar result is obtained by S. Hamano ([9]). The span with which we are concerned in this paper is, on the
other hand, of different kind and presently defined only for Riemann surfaces of genus one, but shares many interesting
function-theoretic properties with the Schiffer span (cf. [35], [36], [37], and [38]).

We finally state our recent results which shows that our span is a natural object in the theory of functions of several
complex variables. The details will appear elsewhere as a joint work with S. Hamano and H. Yamaguchi.

2. Continuations of a Riemann Surface

We start with an open (= noncompact) Riemann surface R of genus g (which may be zero). We assume the finiteness
of g but nothing about the ideal boundary of R. As a natural generalization of the univalent functions we consider the
conformal embeddings of R into closed (= compact) surfaces and show that they bear much similarity. In case g � 1,
however, some new and less trivial problems arise. For example, we have to comprehend the totality of the possible
closed Riemann surfaces R̂ into which R can be conformally embedded.

It is worthwhile noting here that we are concerned with an abstract open Riemann surface (as a one-dimensional
complex analytic manifold) R. Looking for a closed Riemann surface into which R can be conformally embedded is
therefore finding a realization of R (resp. its ideal boundary) as a subdomain (resp. its relative boundary) on a closed

2010 Mathematics Subject Classification: Primary 30Fxx, Secondary 30Cxx.

This work is supported by JSPS Grants-in-Aid for Scientific Research (C) 20540174, (B) 22340025, (C) 22540196, and (C) 23560070.

Dedicated to Professor Dr. Wolfgang Luh on his 75th birthday
�Corresponding author. E-mail: shiba.masakazu.h14@kyoto-u.jp

Received May 29, 2014; Accepted November 1, 2014; J-STAGE Advance published June 7, 2019

Interdisciplinary Information Sciences Vol. 25, No. 1 (2019) 23–31
#Graduate School of Information Sciences, Tohoku University
ISSN 1340-9050 print/1347-6157 online
DOI 10.4036/iis.2019.A.02

http://dx.doi.org/10.4036/iis.2019.A.02


Riemann surface.
To discuss the above problem precisely we recall a formal definition. In this paragraph let R be any Riemann surface.

If there is an injective holomorphic mapping �̂ of R into another Riemann surface R̂, then the pair ðR̂; �̂Þ is called a
continuation (or prolongation, extension) of R. (cf. [29]). Specifically, ðR̂; �̂Þ is called a compact continuation of R if R̂ is
a closed surface, and a continuation of the same genus if the genus of R̂ is the same as that of R. In this article we use a
shorter term ‘‘closing’’ instead of the long phrase ‘‘compact continuation of the same genus.’’

As pioneering studies on the continuations of a Riemann surface we refer to T. Radó [26] and S. Bochner [3]. The
main concern of [3] was in the case g ¼ 1, but even in the case of finite genus the concept of continuations is very
useful as we see in the following.

Any univalent function on a plane domain D defines together with its natural embedding into the Riemann sphere Ĉ a
closing of D. Although Ĉ is only the closed Riemann surface of genus zero, there are infinitely many closings of D.
This can be easily seen if D is simply connected, as the Riemann mapping theorem shows.

Among such various closings of a plane domain D there are distinguished ones. Indeed, Koebe’s generalized
uniformization says D can be conformally mapped onto the so-called extremal horizontal (resp. vertical) slit plane.
These mappings yield typical closings of D, and they do not coincide in general. Cf. [5], [8], and [29]. Z. Nehari [25]
and M. Mori [24] intended to generalize this classical theorem to open Riemann surfaces of finite genus. However, they
were mainly interested in the values of the mapping functions, and hence did not need the notion of closings at all.
Their results will be interpreted in the light of ‘‘closings.’’

3. The Embedding Theorem

Let R be a Riemann surface of finite genus g as before. We call a single-valued meromorphic function f on R an
S0-function, if it satisfies any one of the following conditions.
[C] d f is a canonical semiexact differential on R in the sense of Kusunoki ([18]).
[D] Im d f is a distinguished harmonic differential on R in the sense of Ahlfors ([1]).
[P] Im f is a ðQÞL1-function on R in the sense of Sario ([29]).
Furthermore, for real t 2 ð�1; 1�, we say that a meromorphic function f is an St-function on R if Imðe�

�
2
it f Þ is an

S0-function. Cf. [34].

Remark 3.1. The name ‘‘St-functions’’ is after their hydrodynamic property. They describe ideal fluid flows on R such
that the ideal boundary of R is recognized as impenetrable. They are called Strömungsfunktionen in the classical texts
(e.g., [16]). Note that St-functions and Strömungsfunktionen are not the so-called stream functions. The name ‘‘stream
function’’ is usually used to indicate the imaginary part of an St-function, so that it is not analytic but harmonic on R.
Cf. also [34].

We note that any one of the conditions [C], [D] and [P] implies the existence of a compact set K on R such that the
Dirichlet integral ZZ

RnK
j f 0ðzÞj2 dxdy

is finite, where z ¼ xþ iy stands for a generic local parameter on R. Hence we know that an St-function f has only a
finite number of poles on R.

The present paper is based on the following embedding theorem. For the proof see [34] together with [41].

Theorem 3.2. Let t 2 ð�1; 1�. For any nonconstant St-function f on R there exist a closed Riemann surface R̂ of
genus g, a conformal embedding �̂ : R! R̂, and a meromorphic function f̂ on R̂ such that
(1) the two-dimensional Lebesgue measure of R̂ n �̂ðRÞ vanishes,
(2) each component of R̂ n �̂ðRÞ consists of a finite number of C1-arcs which have finitely many points in common,
(3) f ¼ f̂ � �̂ on R,
(4) f̂ is holomorphic on R̂ n �̂ðRÞ, and
(5) Imðe�

�
2
it f Þ ¼ const. on each boundary component of R̂ n �̂ðRÞ.

(See the diagram below.)

According to our terminology ðR̂; �̂Þ is a closing of R. The closing obtained in this way depends not only on t but also
f . In fact, both of R̂ and �̂ are not always uniquely determined, even if t and f are fixed.
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Remark 3.3. In condition (2) we do not exclude the case where a component reduces to a point.
Remark 3.4. Conditions (2), (4) and (5) in the above theorem can be described in a more intuitive manner if we use
the hydrodynamical terminology. The given function f on R describes an ideal fluid flow, where each ideal boundary
component is impenetrable. Meanwhile, condition (4) states that the function f̂ constructed in the theorem describes a
flow on the closed Riemann surface R̂, and condition (2) together with condition (5) means that R̂ n �̂ðRÞ consists of a
set of stream arcs of f̂ . Therefore, all except for finitely many boundary components are simple C1-arcs. An exceptional
ideal boundary component is realized on R̂ as a connected closed set on streamlines with stagnation points on it. It is an
interesting problem which ideal boundary component is exceptional. We discuss the problem in another paper (a joint
work with H. Yamaguchi).

It turns out that the proof of this theorem can be carried out for multi-valued St-functions too, if we change the
expression a little. For later use we state the general version in terms of differentials.

Theorem 3.5. Let t 2 ð�1; 1� and ’ be a nontrivial meromorphic differential on R such that Imðe�
�
2
it’Þ satisfies any

one of the condition [C], [D] or [P]. Then there exists a closed Riemann surface R̂ of genus g, a conformal embedding
�̂ : R! R̂ and a meromorphic differential ’̂ on R̂ such that
(1) the two-dimensional Lebesgue measure of R̂ n �̂ðRÞ vanishes,
(2) each component of R̂ n �̂ðRÞ consists of a finite number of C1-arcs which have finitely many points in common,
(3) ’ ¼ �̂�ð’̂Þ on R, where �̂� stands for the pull-back by �̂,
(4) ’̂ is holomorphic on R̂ n �̂ðRÞ. and
(5) Imðe�

�
2
it’̂Þ ¼ 0 along each component of R̂ n �̂ðRÞ.

Remark 3.3 and Remark 3.4 are available for conditions (2), (4), and (5) in Theorem 3.5. To state condition (5) more
precisely, let �1; �2; . . . ; �k be the C1-arcs in condition (2). Then condition (5) above means that Imðe�

�
2
it’̂Þ vanishes

along each �n, 1 � n � k.
The closings of R obtained here might be considered only as examples, but this is not the case. Indeed, if the genus g

is zero or one, this kind of closings have various remarkable extremal properties and are essentially used to obtain the
precise geometric description of the totality of the closings of R, as we see in the next section.

4. Univalent Functions as Closings

4.1 Some elementary observations

We review in the present section an elementary but suggestive example to observe what a univalent function means
as a closing of its domain of definition. Let D be the open unit disk in the z-plane and R its exterior together with point
at infinity:

D :¼ fjzj < 1g and R :¼ Ĉ n �D ¼ f1 < jzj � 1g:

The Joukowski transformation

J : z 7!w ¼ zþ
1

z

is a univalent meromorphic function on the Riemann surface R. As is well known J maps the Riemann surface R onto
the slit domain in the w-sphere

�0 :¼ Ĉw n s0;

where s0 stands for the segment

fw 2 Ĉ j �2 � Rew � 2; Imw ¼ 0g

on the real axis.
Usually the (ideal) boundary @R of R is recognized as the unit circle C :¼ fjzj ¼ 1g. It corresponds (in a one-to-one

manner) to the doubly traced segment s0.
We forget D for a while and consider J only on R. It can be shown that J is an S0-function on R and therefore by our
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Theorem there exists a closing ðR̂; �̂Þ of R by w ¼ f ðzÞ ¼ JðzÞ. Indeed, we have only to set

R̂ :¼ Ĉw; �̂ :¼ J; and f̂ ðwÞ :¼ w:

In standard courses of complex analysis one carefully notes that J is not conformal on the set @R, since its derivative
vanishes at z ¼ �1 2 @R. This is true if we use the unit circle as the naı̈ve conformal structure of @R. Since R consists of
interior points only, we can also use another conformal structure of @R. If we conformally saw the both sides of slit in a
natural fashion and eliminate the segment s0 from �0 to obtain the Riemann sphere Ĉw, we have another conformal
structure on the ideal boundary, by which J (actually Ĵ) is holomorphic on the ideal boundary too. This is the idea of
our Theorem, which is not new but goes back to the Riemann mapping theorem. It concerns only the interior of the
domain of definition and pays no attention to the (conformal structure of the) boundary.

In the above observation the univalence of J seems to work substantially. However, our theorem is concerned with a
general S0-function f : R! Ĉw too and hence we can construct a closing of R by f . Of course, the situation becomes
less trivial. For example, the function

hðzÞ :¼ fJðzÞg2 � 2; z 2 R

is also an S0-function on R. The function h on R can be continuously extended onto the circle C, by which we
understand the set-theoretical boundary of R. (It is of importance to forget the usual conformal structure on C!) The
extended function will be denoted by the same letter h. It can be shown that the image of R under h is a two-sheeted
covering surface R̂ of Ĉw since h has a single pole of order two at1 2 R. The image of C under h is s0 as before, but
each side of the segment is now traced twice when z moves along C once. By identifying points on C appropriately we
obtain a closed Riemann surface of genus zero onto which h is holomorphically extended. To illustrate the
nonuniqueness of the identification procedure, we take a real number a with jaj < 2 and restart with the two-sheeted
covering Riemann surface Ta over Ĉw which has two branch points over w ¼ a and w ¼ 1. If we remove the set of all
points on Ta that lie over the segment s0, we have a subsurface Ra of Ta. Obviously Ra does not depend on a and
actually they are the R. Consequently, there are infinitely many, apparently different, closings of R.

Although Ta (jaj < 2) look like distinct, they are essentially the same; every Ta is, because of its planarity,
conformally equivalent to the Riemann sphere Ĉw. The h is not a univalent function on R, but we can regard it as
a conformal embedding of R into any closed Riemann surface Ta, jaj < 2. The image surface hðRÞ is uniquely
determined, independently of the choice of a. Note that the (covering) Riemann surface Ta is prepared for establishing a
one-to-one correspondence between the domain and the image of h. That is, the nonunivalent function h on R can be
regarded as a univalent mapping of R into Ta.

Remark 4.1. The nonuniqueness of the closings can be more clearly understood, if we consider two-sheeted covering
surfaces with two fixed branch points other than a and 1. Such surfaces are of genus one and have different moduli.
However, the surface cut along a fixed segment near a as above is always the same.

Remark 4.2. The cubic of the Joukowski transformation also provides an interesting example. It is one-to-one on the
boundary circle C of R but is not univalent in any neighborhood of the boundary. Cf. [17]. In this example also, we
have no uniqueness assertion of closings.

4.2 The closings of a plane domain by univalent functions

Here we recall a classical result in the conformal mapping theory. To fix the notation let D be a domain on the
Riemann sphere Ĉz which contains the point at infinity. (We impose no restrictions on the ideal boundary as before.)
Let F ¼ F ðD;1Þ denote the class of functions f which are univalent meromorphic on D and is written as

f ðzÞ ¼ zþ
�f

z
þ oð1=zÞ about z ¼ 1:

The theorem below is called ‘‘the fundamental theorem in the theory of conformal mapping’’ or ‘‘Koebe’s generalized
uniformization theorem.’’ Many proofs are known today. Some of the typical proofs can be found, for example, in [5],
[8], [14], [19], and [29].

Theorem 4.3. There exists a domain �D
0 on Ĉw containing the point at infinity and a conformal mapping f0 of D onto

�D
0 such that

(1) Ĉw n�D
0 is a compact set of measure zero,

(2) each component of Ĉw n�D
0 is a horizontal segment (or a point), and

(3) f0 is a unique element in F that maximizes Re �f .

Similarly, there uniquely exists an element f1 of F which minimizes Re �f . It maps D onto a domain �D
1 whose

complement in Ĉw is a compact set of measure zero and consists of vertical segments (or points). The functions f0 and
f1 are known as the extremal horizontal resp. vertical parallel slit mappings. The extremal parallel slit mappings for an
arbitrary inclination can be analogously constructed.

These classical results can be more generally reformulated in:
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Theorem 4.4. Let R be an open Riemann surface of genus zero. Fix a point p on R and a local parameter z about p
with zðpÞ ¼ 0. Let F ¼ F ðR; pÞ be the class of conformal embedding f of R into Ĉ and is written as

f ðzÞ ¼
1

z
þ �f zþ oðzÞ about p:

Then, there exists a complex number �� and a nonnegative number �0 such that the circle

f� 2 C j � ¼ �� þ �0e
�it;�1 < t � 1g

parametrizes the extremal parallel slit mapings of R. Furthermore, the set of coefficients

K ¼ KðR; pÞ ¼ f� 2 C j � ¼ �f ; f 2 F ðR; pÞg

is exactly the (possibly degenerated) closed disk

fj�� ��j � �0g:

The disk K has many interesting properties (see [5], [8], [14], for example). We mention here, among other things,
only the following. M. Schiffer referred to the diameter �0 ¼ �0ðR; pÞ :¼ 2�0 of K as the span of R (more correctly: the
span of ðR; pÞ). In a forthcoming paper [9] Hamano studied, along the line of H. Yamaguchi (cf. [10]), the dependence
of the span on R from the viewpoint of several complex variables. To state her result more precisely, let fRðsÞgs2D be a
family of plane domains such that the boundary of each RðsÞ consists of a finite number of analytic Jordan curves. If the
total space

fðs; pÞ j s 2 D; p 2 RðsÞg

is a two-dimensional pseudoconvex domain, then the span is a subharmonic function on the parameter domain D.

5. The Closings of an Open Torus

In this section let R be an open Riemann surface of genus one, unless otherwise stated. Recalling that a closed
Riemann surface of genus one is usually called ‘‘a torus,’’ we use ‘‘an open torus’’ to mean an open Riemann surface of
genus one. In accordance with the classical usage we do not need the term ‘‘a closed torus.’’ We impose no particular
conditions on the ideal boundary of R; the cardinality of the Kerékjártó-Stoı̈low boundary components of R may be
uncountable.

To comprehend the family of closings of R quantitatively, it is necessary to consider them in the Torelli space.
Namely, we fix once and for all a canonical homology basis � ¼ fA;Bg of R modulo dividing cycles. The pair ðR; �Þ is
referred to as a homologically marked open torus.

Now we use � to refine the notion of closings. A closing of ðR; �Þ is, by definition, is a torus R̂ together with a
canonical homology basis �̂ ¼ fÂ; B̂g and a conformal injection �̂ : R! R̂ such that �̂ðAÞ and �̂ðBÞ are homologous to Â

and B̂ respectively. A closing of ðR; �Þ may be thus written as ððR̂; �̂Þ; �̂Þ, but we prefer a simpler notation ½R̂; �̂; �̂�.
Furthermore, two such triples ½R̂; �̂; �̂� and ½ ~R; ~�; ~�� shall be identified if there exists a conformal bijection j : ~R! R̂

with j � ~� ¼ �̂ (cf. the diagram below).

Hereafter ‘‘a closing’’ means an equivalence class under the relation 	, but we continue to use the same notation
½R̂; �̂; �̂�.

The marked torus ðR̂; �̂Þ carries a unique holomorphic differential 	̂ whose Â-period is normalized to be 1. The
B̂-period


ðR̂; �̂Þ :¼
Z
B̂

	̂

of 	̂ is known as the modulus of the marked torus ðR̂; �̂Þ. The length and area on ðR̂; �̂Þ are measured by the flat metric
j	̂j that is induced by 	̂. We may and do assume that the cycles Â and B̂ are both geodesic curves. The marked torus
ðR̂; �̂Þ is realized as the quotient space

C=�; � :¼ fmþ n
 j m; n 2 Zg:

The modulus of a closing ½R̂; �̂; �̂� of ðR; �Þ is defined to be 
ðR̂; �̂Þ and denoted by 
½R̂; �̂; �̂�.
Denote by C ¼ CðR; �Þ the family of closings ½R̂; �̂; �̂� of ðR; �Þ and consider the set
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M ¼MðR; �Þ :¼ f
 2 C j 
 ¼ 
½R̂; �̂; �̂�; ½R̂; �̂; �̂� 2 CðR; �Þg:

We simply call MðR; �Þ the moduli set of the closings of the marked open torus ðR; �Þ. It is obvious that MðR; �Þ is
included in the upper halfplane H :¼ f
 2 C j Im 
 > 0g, since

Im 
ðR̂; �̂Þ > 0

for all 
ðR̂; �̂Þ.
In [35] and [36] we have proved the following theorem.

Theorem 5.1. The moduli set MðR; �Þ of the closings of ðR; �Þ is a closed disk in H:

MðR; �Þ ¼ f
 2 H j j
 � 
�j � �1g

where 
� 2 H and �1 is a real number with 0 � �1 < Im 
�. The disk reduces to a single point if and only if R is of class
OAD. (R 2 OAD means that R carries no nonconstant analytic functions with a finite Dirichlet integral. Cf. [1] or [28].)

To each boundary point


t :¼ 
� þ �1 e
�ðt�1Þi=2; �1 < t � 1

of MðR; �Þ there corresponds a unique closing ½R̂t; �̂t; �̂t� of ðR; �Þ. The set R̂t n �̂tðRÞ has a vanishing area and consists
of straight arcs which are parallel to the geodesic on ðR̂; �̂Þ with inclination �t=2.

On the other hand, for any interior point 
 of the moduli disk there are uncountably many closings ½R̂; �̂; �̂� of ðR; �Þ
with 
 ¼ 
½R̂; �̂; �̂�; while the marked torus ðR̂; �̂Þ is unique, there exist uncountably many different embeddings
�̂ : ðR; �Þ ! ðR̂; �̂Þ.

Remark 5.2. The classical contributions by H. Grötzsch ([6], [7]) and M. Heins ([11]) should be here appreciated.
Their results can be also viewed as the study of the set of closings of an open torus. They are concerned with the cross
ratio of four branch points of the two-sheeted covering of Ĉ and the algebraic moduli respectively — instead of the
(transcendental) moduli of the closings in our study.

Remark 5.3. Some of the topics above can be similarly discussed also for g > 1. In fact, we can define the set CðR; �Þ
analogously for any homologically marked open Riemann surface ðR; �Þ of finite genus. The moduli set MðR; �Þ shall
be now replaced with the set RðR; �Þ of Riemann period matrices (cf. [43], for instance). We have observed the
diagonal of the Riemann period matrices in [36] and [37] to show the relationship between the degeneracy of the
Riemann surface ðR; �Þ and the uniqueness of its closing. This yields a new generalized span for higher genera, which
we do not discuss in the present paper, however. The set RðR; �Þ is studied also in [31], [32], and [33].

Remark 5.4. We note that a torus is alternatively represented by an algebraic equation. Based on this fact [12] studied
the conformal welding of a slit torus and a slit sphere along the slits. A special case of such welding is the Rankine
ovoid in hydrodynamics, which is discussed in [13]. Cf. [44], too.

Remark 5.5. Even in the case g ¼ 0 our observation afford insight into the slit mappings. One of such examples can
be found in [40], where another proof of a theorem of Maitani ([20]) is given.

6. The Span of a Marked Open Torus

The preceding theorem gives a natural generalization of the various classical results. For instance, the particular
cases t ¼ 0 and t ¼ 1 correspond to Koebe’s extremal horizontal and vertical slit mappings, respectively. Among other
things are the similarity to the results due to de Possel, Grunsky, and Schiffer (cf. [4], [8], [30]). Namely, the moduli
disk MðR; �Þ plays a rôle similar to the coefficients disk KðR; pÞ in Sect. 4. To see the theorem we first recall that each
½R̂; �̂; �̂� 2 CðR; �Þ carries a canonical metric induced by the holomorphic differential ’̂ on R̂ whose Â-period is
normalized to be one, �̂ ¼ fÂ; B̂g. For example, the total area of a closing ½R̂; �̂; �̂� 2 CðR; �Þ is given by

�½R̂; �̂; �̂� :¼
ZZ

R̂

j’̂j2;

which is known to be equal to Im 
½R̂; �̂; �̂�.
We now define the complementary area of the closing ½R̂; �̂; �̂� 2 CðR; �Þ as

�1½R̂; �̂; �̂� :¼
ZZ

R̂n�̂ðRÞ
j’̂j2 ¼

ZZ
R̂

j’̂j2 �
ZZ

R

j��ð’Þj2;

and furthermore we set for 
 2MðR; �Þ

A1ð
Þ :¼ supf�1½R̂; �̂; �̂� j 
½R̂; �̂; �̂� ¼ 
g:

Then we have
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Theorem 6.1. The area function Að
Þ vanishes on the boundary circle @MðR; �Þ. The maximum complementary area
of the closings of ðR; �Þ is attained at the center 
� of MðR; �Þ and is equal to �1=2.

Remark 6.2. In fact, we can give the function A in a closed form:

A1ð
Þ ¼
�2

1 � r2

2�1

;

where r :¼ j
 � 
�j. It can be also shown that the range of �1½R̂; �̂; �̂� for ½R̂; �̂; �̂� 2 CðR; �Þ with 
 ¼ 
½R̂; �̂; �̂� fixed is
exactly the closed interval ½0;A1ð
Þ�. This result for g ¼ 1 suggests a counterpart for g ¼ 0. See, for the details, [38].

While the above theorem has a well known prototype in the classical theory of univalent functions, the theorem
below shows another feature of the moduli disk. Before stating the theorem we recall that H carries a hyperbolic metric
and any (euclidean) disk in H can be also regarded as a hyperbolic disk.

Theorem 6.3. The area ratio

�1=� ¼
ZZ

R̂n�̂ðRÞ
j’̂j2

� �, ZZ
R̂

j’̂j2
� �

is maximized at the hyperbolic center of the (hyperbolic) moduli disk. The maximum area ratio is equal to tanhð�1=2Þ.

Remark 6.4. The area ratio above does not depend on the choice of �.

On the analogy of the Schiffer span we call

�1 ¼ �1ðR; �Þ :¼ Imð
1 � 
0Þ ¼ 2�1

the span of the marked open torus ðR; �Þ. It is generally not easy to know exactly the span of an open torus. But if it has
only one ideal boundary component, we have estimates of its span. See, e.g., [2], [13], [21], and [42]. Cf. also [22].

We are now interested in the problem how the set of closings changes when ðR; �Þ varies. In case of g ¼ 1, this
problem can be formulated in terms of the span. Corresponding to the results of Hamano ([9] for g ¼ 0, we can discuss
the subharmonicity of �1ðR; �Þ when the open torus ðR; �Þ varies holomorphically. To be more precise, we confine
ourselves to those open tori which are the interior of compact bordered Riemann surfaces of genus one. Let

D 3 s! ðRðsÞ; �ðsÞÞ

be a smooth family of marked open tori ðRðsÞ; �ðsÞÞ, where RðsÞ is the interior of a compact bordered Riemann surface
of genus one and �ðsÞ a canonical homology basis of RðsÞ modulo dividing cycles. We consider the span �1ðRðsÞ; �ðsÞÞ
as the function of s 2 D:

�1ðsÞ :¼ �1ðRðsÞ; �ðsÞÞ:

One of our recent results then reads:

Theorem 6.5. If

fðs; pÞ j s 2 D; p 2 RðsÞg

is a two-dimensional pseudo-convex domain, then the span �1ðsÞ is a subharmonic function on D. Furthermore, if the
span is a harmonic function on D in particular, it is constant on D.

The proof is based on a variational formula for the Laplacian of �1ðsÞ, s 2 D. The details will appear elsewhere as a
joint work with S. Hamano and H. Yamaguchi.
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The preannounced paper referred to in Introduction and Section 6 is: Hamano, S., Shiba, M., and Yamaguchi, H., ‘‘Hyperbolic span and

pseudoconvexity,’’ Kyoto J. Math., 57: 165–183 (2017), where the hyperbolic span of an open torus introduced in [38] played an important rôle.
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