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An Extremal Problem for Univalent Functions
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For a real constant b, we give sharp estimates of log|f(z)/z| + barg[f(z)/z] for subclasses of normalized
univalent functions f on the unit disk.
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1. Introduction

Let 4 denote the class of analytic functions f on the unit disk D = {z € C : |z] < 1} normalized so that f(0) = 0 and
f'(0) = 1. The subclass 4 of + consisting of all univalent functions has attracted much interest for many years in the
univalent function theory. In the present paper, we are primarily interested in the extremal problem to find the value of

V. (¢, F) = supRe [e" log @:|
feF Z
for a subclass ¥ of 4 and z € D. Here and hereafter, g(z) = log[f(z)/z] =log|f(z)/z| + iarg[f(z)/z] will be
understood as the holomorphic branch of logarithm determined by g(0) = 0. It is often more convenient to consider the
quantities

(b, F) = sup{log
feF

@' + barg@}
Z z

and

(b, F) = inf{log @
< feF Z

+barg@}.
z

Then, we have the obvious relation
(cos t)CD;’(—tan t,F) if cost >0,

1.1
(cost)®_(—tant, ) if cost < 0. (4.1

v.(t, F) = {
Therefore, the first problem is essentially equivalent to finding the values of q);t(b, F) (except for the case when
e = +i). We also consider the quantities

W(t, F) = sup W, (¢, F)
zeD

and

Ot (b, F) = sup d* (b, F) and ® (b, F) = inf b~ (b, F).
zeD < D <

The above extremal problems will reduce to geometric ones, once we know about the shape of the variability region
W (F) of log[f(z)/z] for a subclass F of 4§ and a fixed point z € I defined by

W(F) = {log]? fe }‘}.

Indeed, for instance, we have

W, (t, F) = sup Re[e''w] = sup (ucost — vsint).
weW. (F) u+iveW.(¥)

We note that W.(F) = W.(F) for r = |z| if & is rotationally invariant; in other words, if the function e~ f(¢z)
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belongs to ¥ whenever f € ¥ and 6 € R. The union
W) =)

zeD

is called the full variability region of log[f(z)/z] for F.
In the present paper, we will discuss those regions of variability and the corresponding extremal problems for typical
subclasses of 4.

2. Univalent Functions

Grunsky [4] gave a description of W, (&) (see also [3,§10.9]).
Theorem A (Grunsky). For z € D with r = |z|, the variability region W,(8) of log[f(z)/z] for & is the closed disk

147
1—r

'w — log < log

1—1r2

In particular, we see that for a fixed z € D with |z] = r and a real constant ¢,

1
W, (t,8) = (cost)log — 2 + log : = (1 —cost)log(l +r) — (1 4+ cost)log(l — r).

1—

For more general extremal problems, the reader may refer to the monograph [1] by Alexsandrov.
In particular, letting r — 1~ in the above, we obtain W,(t,4) - 400 if cost> —1 and W,(m, &) =
2log(1 +r) — 2log2 = log4. Hence, in view of (1.1), we obtain ®* (b, 8) = +oo for b € R and

—00 if b#£0,
—log4 if b=0.
More precisely, as a corollary of the Grunsky theorem, we have the following.

Corollary. The full variability region W(8) of log[f(z)/z] for 8 is the half-plane {w : Rew > —log4}.

D (D, 8) = {

Proof. Since 4 is rotationally invariant, W,(8) = W,(8) for r = |z|. For a fixed n € R, the intersection of the disk W,(4)
with the horizontal line Im w = 7 is the segment with the endpoints

1 2
—log(1 — ) + \/<log 1 + r) — 2+ i
—r

for r so close to 1 that |n| <log[(1 4+ r)/(1 — r)]. Since

| 2
—log(1 — %) — \/(log l—H) —n* — —log4
—r
1 2
—log(1 —r?) + \/<10g 1 + r) —n? — 400
—r

as r — 17, we see that {w € W(8) : Imw = n} = {x +in : x > —log4}. The proof is now complete. ([

whereas

3. Starlike Functions and Convex Functions

For the subclasses 4" and K of 4 consisting of starlike and convex functions respectively, Marx [8, Satz B, C]
obtained essentially the following result.
Theorem B (Marx). For z € D with r = |z|, the variability region W,(8%) of log[ f(z)/z] for 8" is given as
{=2log(1 =) : ¢l =1}
and W,(K) of log|f(2)/z] for X is
1
{—log(1 =0):[¢] =r} = EWZM*)-

Note that W,(8*) is nothing but the image of the disk || < r under the mapping log[k(z)/z], where k(2) is the Koebe
function; namely, k(z) = (L Similarly, W,(X) is the image of the disk |{| < r under the mapping log[/(z)/z], where

1-2)°"
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I(z) = z/(1 — 7) is an extremal convex function. It is easy to see that the regions W,(8*) and W,(K) are convex and
symmetric with respect to the real axis.

As an application of the Marx theorem, we can solve the corresponding extremal problem. We present it only for
starlike functions since we have only to take the half for convex functions.

Theorem 3.1. For a fixed z € D with |z| = r and a real number b,

br
®F(b, 8) = log(1 + b?) — 2log(v/A — r) + 2b arctan ——
2 ( ) 2( ) 2( ) NS

and

br
@ (b, 8%) = log(l + b*) — 2log(~/A + r) — 2b arctan — ,
S (b, 89 g( ) g( ) NS

where A =1+ b*(1 — r2).
Proof. By Theorem B, we have for z € D with |z] = r,

f(2)

(b, 8) = sup{log ~

fes*

+ barg@} = sup{—2log |1 — & — 2barg(l — &)}.
< |&l<r

By making use of the maximum principle for harmonic functions,

DS (b, 8%) = sup{—2log |1 — & — 2barg(l — &)}.
[&l=r

The same argument yields

@ (b.4) = inf (~2log|1 — & — 2barg(l — ).

For & = re®, let
rsin @

¢(0) = —2log |1 — re’| — 2b arg(l — re?y = —log(1 + r?> — 2rcos ) + 2b arctan 5"
— rcos

We need to find the supremum and infimum of ¢(0) over R. Since ¢ is periodic with period 27, it is enough to find
(local) maxima and minima in the interval [0, 27). A simple calculation yields
sin® — bcos @ + br

'(0) = —2r -
90 " 1 —2rcosf + r?

Thus extremal values of ¢(f) are attained at the points 6 satisfying
sinf —bcos6d 4 br = 0.

By solving the above equation, we have 0 = 6, 6,, where

br+ VA , b A — br
cosy = ————, sinfh)=————
14 b? 1+ b2
and
Pr—Jn —by/A — br
cosh = —, sinbhp= ——+—.
14 b2 14 52

We note that such 6y, 6, exist uniquely on [0, 2r) since

Prava\T (EVE-br\"_
1+ b2 1+ b2 o

Thus
br

<I>Z+(b, 8%) = max{¢(6,), p(62)} = log(1 + bz) — 210g(\/Z — r) + 2barctan N

and
- . br
&7 (b, 8") = min{$(61), $(02)} = log(1 + b —2 log(v' A + r) — 2b arctan ﬁ .

The proof is now completed. (|
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We observe that
<I>;r(b, 8+ o (b, 8% = —2log(1 — rz),

which is independent of the parameter b. Since

9 o+ (b, 8% 9 (b, 8 = 2arctan —— "
_ X = — — , = Z arctan 5
b * b * 1+ b2 —p22

we can see that ®F (b, 8) is increasing in b > 0 and decreasing in b < 0. In particular,
(b, 85) > D10, 8%) = —2log(1 — 1)
and
O (b, 8%) < ®_(0,8") = —2log(1 + r).
Letting » — 17, we obtain the following corollary.
Corollary 3.2. For a real number b,

Ot (b, 8) =400 and D (b, 8) =log(l + b*) — log4 — 2barctan b.

Theorem 3.1 and Corollary 3.2 assure the following result.

Corollary 3.3. For a fixed z € D with |z| = r and a real number b,
+ Lot * - 1 - *
<1>Z(b,<7<)=5<1>z(b,5), d)z(b,JC)=§d>Z(b,5)

and

1
Ot (b, K) = +o00, D (b, K) = E1og(1 + b*) —log2 — barctan b.

4. Close-to-convex Functions

Biernacki [2] determined the variability region W_(C) of log[f(z)/z] for the class C of linearly accessible functions
(now known as close-to-convex functions). That is, W,(C) = {—log[2u?/(u + v)] : |u — 1] < |z|,|v — 1| < |z|}. He also
showed that W(C) C {w : [Im w| < 3m/2}. Since that is somewhat implicit, Kato and the authors [5] offered another
expression for it; that is, W,(C) = h(D,) for r = |z|, where D, = {z : |z| < r} and h(z) = log(l + ze*%) — 3log(1 + 2),
¢ = arg(1 + z/3). See Fig. 1 for the pictures of the regions W,(8), W,.(8*) and W,(C). It is, however, still difficult to
compute CD?E(b, C©) for z € D. Thus, our main concern in the present paper will be determination of the quantity
®*(b, @) because we have a relatively simple expression of W(C).

Lemma 4.1 (Theorem 1.4 in [5]). The full variability region W(C) for close-to-convex functions is the unbounded
Jordan domain whose boundary is the Jordan arc —y((—2m,2m)). Here,
log(1 + 3e™) if 1t <m
y(®) =

. t
log(1 — €") + mm’ if m<|t| < 2m.

Note that the region W(C) is contained in the parallel strip {w : [Im w| < 37/2} as was already shown by Biernacki
[2]. By making use of the above lemma, we now describe O, C).

Theorem 4.2. Let b be a real number. Then, ®+(b, C) = +00 and

log— Y rcian ——2 if 1b] < b
0g ———— — barctan —— i < by,
ooy 3rVI_8 V1= 802 ’

1
3 log(1 + b — log2 — |b|(arctan |b| + ) if |b| > bo.
Here, by = 0.24001 ... is the unique solution to the equation

3b
b arctanb—arctani—i-n) =log(3 ++/'1 — 8b%) —log 2
( /1 — 8b2 & &
in0<b<1/22.
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Fig. 1. The regions W,(8) (bounded by the blue line), W,(8*) (red) and W,(C) (green) for r = 0.999.

Proof. Since 8* C @, Corollary 3.2 yields ®* (b, C) > ®*(b, 8*) = +oo for every b.

We next consider ®~ (b, C). For brevity, we put ®(b) = &~ (b, C) throughout the proof.

In order to prove the theorem, we translate our problem into a geometric one concerning the curve y given in
Lemma 4.1. First of all, we note that y is symmetric in the sense that y(—t) = y(¢). Therefore, it is enough to consider
the case 0 <t < 2m unless otherwise stated. We now study the regularity of the curve y(f) at t = . A direct
computation shows that the left and right tangent vectors /(™) = 3i/2 and y/(zx") = i/2 have the same direction.
Therefore, by a re-parametrization, we see that the boundary of W(C) is of class C I We remark, however, that it is not
of class C?. Indeed, this can be confirmed by observing that exp(y([0, r])) and exp(y([r, 27r])) are (half-)circles with
different radii.

We next study convexity of the curve y. In [5], we already saw that the curve y is not convex. More precisely, we
compute

1+3cost .
— if0<t<m,
d arg v/ (1) [1+ 3e”|
dt gY 1 —cost .
_— if m <t <2m.
[1— e

Therefore, the curve y is convex in 0 < ¢ < arccos(—1/3) and & <t< 27 and concave in arccos(—1/3) <t < . Itis
important in the sequel to find the exact form of the convex hull 2 of €2, where €2 is an unbounded Jordan domain
bounded by the curve y with 0 € Q2. The newly added boundary 92 — 9€2 consists of the line segment joining the two
points of tangency of a common tangent line to y on two parts 0 < ¢ < arccos(—1/3) and 7 < ¢ < 2, and its reflection
in the real axis.

We should thus find the common tangent line. Let y(x) and y(v) be the points of tangency of the common tangent
line, where 0 < u < arccos(—1/3) and 7 < v < 2. Necessary conditions are described by

arg y/(u) = arg y/(v) = arg[y(v) — y(w)]. 4.1
Since y'(v) = €V/?/(2sin(v/2)), we have

v , , b
§=argy(v)=argy(u)=u+5—a, 4.2)

where
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(1 + 3¢ . 3sinu
o =ar e'"') = arctan ———— .
g 1+3cosu
Simple computations give us
Re[y(v) — y(0)] = 1 —ev 11 1 —cosv
e[y(v) — =lo —| = —log——
VI O = ORI 3| ~ 2 %85 1 3cosu
and
) . v+
Im[y(v) — y(u)] = arg(l — ") + & — arg(1 + 3¢") = —a.
Hence, the second equation in (4.1) yields the relation
T—2
an - = v e . 4.3)
2 log(l — cosv) —log(5 + 3 cosu)
In view of (4.2), we have
1+t t 3
tan v_ cot(o — u) = +lanatanu =— +, cos 4.4)
2 tano — tanu sinu
and
. 3+ 2
1—cosv= 2s1n23 =2cos’ (e —u) = ﬂ.
2 54 3cosu

Substituting these and (4.2) into (4.3), we obtain

3+cosu_ u+m—2u

sinu log(3 + cosu) — log(5 + 3 cosu)

It is easy to see that (3 + cosu)/sinu > 242, since 0 < u < arccos(—1/3).
We summarize the above observations as follows. The slope of the tangent line to y increases from —oo to —(3 +
cosu)/sinu = tan(v/2) (< —2+/2) as ¢ moves from 0 to u. The tangent line to y at 7 = u is tangent, at the same time,
to y at t = v. The part y((u, v)) is thus contained in the interior of 2. The slope of the tangent line to y increases
from tan(v/2) to 0 as ¢ moves from v to 2.
By Lemma 4.1, 2 is the domain {—w : w € W(C)}. Then,
o) = inf (Rew+bImw)=— sup (X+bY)=— max (X + bY)
weW(C) X+iYeQ X+iYeQ
Here, we recall that 2 is contained in the region X < log4, |Y| < 37w/2. Hence, the supremum was able to be replaced
by the maximum above by taking the points over the closure of 2.

Since 2 is symmetric in the real axis, we have ®(—b) = ®(b). Hence, we may assume that b > 0 in the proof of
Theorem 4.2. When b = 0, obviously ®(0) = —y(0) = —log4, which agrees with the assertion of the theorem. In the
sequel, we thus assume that b > 0. For a given b > 0, let Zy = X + iY¥p be a point in Q at which X + bY takes its
maximum over all X + i¥ € Q. It is obvious that Z; € dQ with Yy > 0 and that the line X + bY = X, + bYy (= —D(b))
is tangent to the curve y at Zy. Since Z; is a support point for the functional X 4+ bY over 2, Zy = y(¢) for some ¢ with
O<t<wuorv<=<t<2m where u and v are as above.

When ¢ < u (< 7), we have Xy = log |1 + 3¢'| = %log 2(5 + 3cost), Yy = arg(1 + 3e'). Also, since the slope of the
line X + bY = —®(b) is —1/b, we have the relation

1 Im y/(¢) _ 3+cost

b  Rey(t)  —sint ’

which yields
_ sint
~ 3+4cost’
Thus we have obtained the following equation of cost
cos’ 1+ b*(3 +cost)? = 1.
Since in this case 0 < b < 24/2 and cost > —1/3, we have
—3b* + V1 — 82
1+ b2

COSt =

and
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an . 3sint 3b(3 + cost) 3b
an = = = .
0 14+ 3cost 14+ 3cost V1 —8b2
Hence,
1+ b2 3b
o) = —(Xy + bYy) =log——————— — barctan ——— =: p(b)
o = T e Ji—se T

as is stated in the theorem.
When ¢ > v (> 7), we have Xy = log|l — e| = log[2sin(¢/2)] and Y, = arg(e’” — 1) = (¢t + 7)/2. Similarly, we

have the relation —% = (1 — cost)/sint = tan(z/2), which is equivalent to b = —cot § = tan 5*. Therefore,
2
O(b) = —(Xo + bYy) = —log ——— — b(arctan b + 7)) =: g(b).
P TR TR 4

Let by = sinu/(3 + cosu) = —cot(v/2). Then by must satisfy the relation p(by) = g(bo). Indeed, by is a unique solution
to the equation p(b) =g(b) in 0 < b < 1 /2+/2, since

3b
'(b) — p'(b) = —(n + arctan b — arctan ) <0,
K P A1 —8b?

q(0) — p(0) =1log?2 > 0 and

li (q(b) b)) =1 3 V2 (2 t ! + > 0.270 0

im - =log-——|2arctan—=+ 7 ) = —0.270--- < 0.

b—>(1/23/2) 1 u 8278 22

The proof of Theorem 4.2 has been completed. (|

In view of the relation (1.1), we obtain the following.

Corollary 4.3. For a real constant t with cost < 0,

3tant
—(cost)log[—(3 + v1 — 8tan?f)cos f] — (sin¢) arctan ———if [tan?| < by,
e = | ~cosnlogl=G +V ) Ginparctan e if tant| < bo
—(cost)log[—2cost] — [sint|(|mr — | + 7) if |tant| > by,

where by is given in Theorem 4.2.

5. Application to Power Deformations

As an application of the main theorem, we consider power deformations of a univalent function. Let ¢ = a + bi be a
complex number. The power deformation of a function f € § with exponent c is defined by

£ = z(’?) — zexp(cloglf(2)/2)).

See [6] and [7] for details about the power deformation. We now have
|fe(@)] = |zl exp(alog | f(z)/z] — barg[ f(z)/z]).
Therefore, as a corollary of Theorem 4.2, we obtain the following.

Theorem 5.1. Let ¢ = a + bi be a complex number. If a > 0,

| var + b? b arct 3b 'f‘b'<b
alog —————— — barctan —— if |- ,
inflog <@ _ VIR =y J&& — 812 al =7
fee Z a 2 12 b b
zeD 3 log(a” + b°) — alog2a — |b|<arctan —‘ + 71) if ‘—' > by,
a a
and, if a < 0,
i va* + b? + barct 3b " b <b
alo arctan ——— if |- ,
suplog@| — f 3ar o —a» Ji& — 82 al ="
fee z a 5 2 b L. |b
2eD 3 log(a” + b°) — alog(—2a) — |b|| arctan P +n) if P > by,

where by is given in Theorem 4.2.
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