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Lossy identification schemes derive tightly secure signature schemes via the Fiat–Shamir transformation. There
exist several instantiations of lossy identification schemes by using several cryptographic assumptions. In this
paper, we propose a new construction of the lossy identification scheme from the decisional RSA assumption
which are introduced by Groth. Our lossy identification scheme has an efficient response algorithm because it
requires no modular exponentiation.
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1. Introduction

The Fiat–Shamir transformation [7] is a general method to construct secure and efficient signature schemes from
three-move identification schemes. There exist many signature schemes constructed by using this method
[8, 9, 11, 14–16, 18, 20]. For the security of signatures derived by the Fiat–Shamir transformation, Abdalla, An,
Bellare and C. Namprempre [1] showed that the signature scheme constructed by this method is existentially
unforgeable against the chosen message attack in the random oracle model [5] if and only if the underlying
identification scheme is secure against the passive impersonation attack. Moreover, they also showed that the security
reduction of such signature schemes is loose. Namely the success probability of the reduction looses some polynomial
factor because the security reduction allows the success probability of the attacker to be multiplied by the polynomial
factor. This means that one must choose a large security parameter in order to ensure the security in practical.

In order to solve this problem, Abdalla, Fouque, Lyubaschevsky and Tibouchi [3] introduced the notion of the lossy
identification schemes. Lossy identification schemes can be transformed into signature schemes which have a tight
security reduction by the Fiat–Shamir transformation, where the tightness means that the security reduction allows no
such significant loss as the polynomial factor. They proposed some instantiations of lossy identification schemes based
on the short discrete logarithm assumption, the ring-LWE assumption and the subset sum assumption, respectively.
Following their work, Abdalla, Ben Hamouda and Pointcheval [2] constructed lossy identification schemes from the
several integer factoring-based cryptographic assumptions, such as the �-hiding assumption [6], the QR assumption, the
RSA assumption and the DCR assumption [19]. Hasegawa and Isobe [12] proposed a lossy identification scheme by
using the subgroup decision assumption [4]. They also proposed another lossy identification scheme based on the DCR
assumption by applying the construction of the subgroup decision-based scheme.

In this paper, we propose a new instantiation of lossy identification schemes. Our scheme is constructed based on the
decisional RSA assumption which is introduced by Groth [10]. We consider the decisional RSA assumption over a
specific type of composites which we call the DRSA composite. A DRSA composite N is a composite of the form
N ¼ PQ of distinct primes P and Q, where P ¼ 2pp0 þ 1 and Q ¼ 2qq0 þ 1 with distinct primes p, q, p0 and q0. In this
case, the group QRN of quadratic residues modulo N can be decomposed as QRN ¼ G1 �G2 where G1 and G2 are the
unique subgroups of order p0q0 and pq, respectively. The decisional RSA assumption intuitively says that a uniformly
random element from QRN is computationally indistinguishable to the one from the subgroup G1. Employing the the
decisional RSA assumption, Groth [10] constructed a homomorphic public key encryption, and Mei, Li, Lu and Jia [17]
proposed the chosen ciphertext secure public key encryption, respectively.

Our lossy identification scheme based on the decisional RSA assumption has an efficient response algorithm as well
as the DCR-based scheme by [12]. This is because our scheme needs no modular exponentiation in its response
algorithm. Moreover, the size of public keys of our scheme is smaller than that of the DCR-based scheme of [12], and is
as same as integer factoring-based schemes by [2]. These facts suggest that our scheme is one of the most efficient
schemes among lossy identification schemes based on the integer factoring-based assumptions.

We note that a preliminary version of this paper was appeared in ISITA2014 [13]. This is a full version.
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2. Preliminaries

In this section, we describe definitions and notions which are used in this paper. The descriptions follow those in the
literature [3, 12].

Let N and Z be the sets of natural numbers and the ring of rational integers, respectively. For any N 2 N, ZN denotes
the residue ring Z=NZ, and Z�N denotes the multiplicative group of units in ZN , respectively. � denotes Euler’s phi
function. For a finite set A, jAj denotes the number of elements in A. Let G be a group. For an element g 2 G, hgi
denotes the cyclic subgroup generated by g. Throughout the paper, we denote by � 2 N the security parameter. A
function "ð�Þ is said to be negligible if for any polynomial p, there exists a constant �0 2 N such that "ð�Þ < 1=pð�Þ for
any � � �0.

We write a 
$

A to denote sampling an element a uniformly at random from the set A. Let A be a probabilistic

polynomial time (PPT) Turing machine. We write y 
$

AðxÞ to denote that A outputs y on its execution for the input x.
The output y is distributed according to the internal randomness of A.

Let X and Y be two random variables over the same finite set S. The statistical distance �ðX;YÞ between X and Y is
defined by �ðX;YÞ ¼ 1

2

P
s2S jPr½X ¼ s� � Pr½Y ¼ s�j. Let X ¼ fX�g and Y ¼ fY�g be any families of distributions

indexed by the security parameter � , where X� and Y� are random variables over a finite set S� . We say that X and Y

are statistically indistinguishable if �ðX� ; Y� Þ is negligible in � . Specifically, if for any sufficiently large � ,
�ðX� ; Y� Þ � "ð�Þ holds for some function ", we say that X and Y are statistically "-close. For any PPT machine A,
we define the advantage AdvA;X;Y of A in distinguishing X and Y by AdvA;X;Yð1� Þ ¼ jPr½Að1� ;X� Þ ¼ 1� �
Pr½Að1� ;Y� Þ ¼ 1�j. We say that X and Y are computationally indistinguishable if AdvA;X;Y is negligible in � for any
PPT A. We say that X and Y are computationally "-close if AdvA;X;Yð1� Þ � "ð�Þ for any PPT A and for any
sufficiently large � .

2.1 Lossy identification schemes

A lossy identification scheme is a three-move protocol between two PPT machines, called the prover and the verifier.
A lossy identification scheme has two key generation algorithms. The one is the normal key generation algorithm KG,
which outputs a pair of a public key and a secret key on the input security parameter. Another is the lossy key
generation algorithm LKG. When a public key is generated by LKG, it has no corresponding secret key. Moreover, when
a prover uses a lossy key, he cannot convince the verifier with non-negligible probability. The formal definition of lossy
identification schemes is given as follows.

Definition 2.1 (Lossy Identification Schemes [3]). A lossy identification scheme ID is defined by a tuple
ðKG; LKG;Comm; S;Resp;VerÞ such that

. KG is the normal key generation algorithm which takes a security parameter 1� as the input and outputs a pair
ðpk; skÞ of a public key pk and a secret key sk.

. LKG is the lossy key generation algorithm which takes a security parameter 1� as the input and output a lossy
public key pk.

. Comm is the prover algorithm which takes sk as the input and outputs a commitment string cmt and a state string
st.

. S is the space from which the verifier chooses a challenge string ch. The length of the challenge ch is determined
by � .

. Resp is the prover algorithm which takes a tuple ðsk; cmt; ch; stÞ as the input and outputs a response string rsp.

. Ver is the deterministic algorithm which takes a tuple ðpk; cmt; ch; rspÞ as the input and outputs 1 or 0 to indicate
accept or reject, respectively.

The protocol ID is depicted in Fig. 1.
Note that LKG is not used in the actual execution of the protocol. LKG is used merely in the security analysis of the

protocol.

Fig. 1. Description of a lossy identification scheme ID.
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We say that a public key pk is normal when it is generated by KG. Otherwise when pk is generated by LKG, we say
that it is lossy. Note that a single key pk can be generated by both KG and LKG in general.

Following [1, 3], we associate to ID, � and each ðpk; skÞ generated by KGð1� Þ a randomized transcript generation
oracle TrID

pk;sk;� ðÞ that takes no input and outputs a random transcript ðcmt; ch; rspÞ of an ‘‘honest’’ execution of the
protocol on ðpk; skÞ. The description of TrID

pk;sk;� ðÞ is given in Fig. 2.

Definition 2.2 ([3]). A lossy identification scheme ID is said to be ð�; "S; "K ; "LÞ-lossy if it satisfies the following
conditions.

. �-completeness: For every security parameter � and every pair of normal keys ðpk; skÞ  
$

KGð1� Þ,
Verðpk; cmt; ch; rspÞ ¼ 1 with probability at least �ð�Þ when ðcmt; ch; rspÞ  

$
TrID

pk;sk;� ðÞ.
. "S-simulatability: One can assign a PPT algorithm eTrID

pk;� to each pair ðpk; �Þ, where pk is any normal public key
which can be generated by KGð1� Þ, in a way that the distributions of the honest transcript fTrID

pk;sk;� g and of the
simulated transcript feTrID

pk;�g are statistically "S-close, where ðpk; skÞ is any pair that can be generated by KGð1� Þ.
. "K-key indistinguishability: For every security parameter � , the two distributions D0;� ¼ fpk j ðpk; skÞ  

$
KGð1� Þg

and D1;� ¼ fpk j pk 
$

LKGð1� Þg are computationally "K-close.
. "L-lossiness: Consider the experiment Exp

los-imp-pa
ID;A in Fig. 3 between an adversary A and a hypothetical

challenger. Then we say that A "L-succeeds the passive impersonation attack with respect to lossy keys
if Pr½Exp

los-imp-pa
ID;A ð�Þ ¼ 1� � "Lð�Þ. We say that the scheme ID is "L-lossy if there exists no adversary A (that may

be computationally unbounded) which "L-succeeds the passive impersonation attack with respect to lossy keys.

2.2 Decisional RSA assumption

We use four distinct odd primes p, q, p0 and q0. We call N ¼ PQ, where P ¼ 2pp0 þ 1 and Q ¼ 2qq0 þ 1 are primes,
a DRSA composite. For a DRSA composite N, QRN denotes the set of quadratic residues modulo N. Then QRN is a
cyclic group of order pqp0q0. QRN has unique subgroups G1 of order p0q0 and G2 of order pq, respectively. By the
definition of the DRSA composite, p, q, p0 and q0 are distinct primes. Therefore, it follows that QRN can be
decomposed as a direct product QRN ¼ G1 �G2.

The decisional RSA assumption in [10] is defined over Z�N of RSA composite order. In this paper, we restrict
ourselves to the case where N is a DRSA composite. The formal definition is as follows.

We first define a group generator GDRSA. GDRSA takes a security parameter 1� as the input and outputs a tuple
ðp; q; p0; q0Þ such that N ¼ PQ is a DRSA composite with P ¼ 2pp0 þ 1 and Q ¼ 2qq0 þ 1. We assume that the bit
length of each p; q; p0; q0 are ‘ð�Þ for some polynomial ‘ð�Þ � � . This requirement is needed so that both 1=pq and
1=p0q0 are negligible in � .

Definition 2.3 (Decisional RSA Assumption). Let families of distributions fXDRSA;�g and fYDRSA;�g be XDRSA;� ¼
fðN; yÞ j ðp; q; p0; q0Þ  

$
GDRSAð1� Þ;P ¼ 2pp0 þ 1;Q ¼ 2qq0 þ 1;N ¼ PQ; y 

$
G1g and YDRSA;� ¼ fðN; yÞ j

ðp; q; p0; q0Þ  
$

GDRSAð1� Þ;P ¼ 2pp0 þ 1;Q ¼ 2qq0 þ 1;N ¼ PQ; y 
$
QRNg. We say that the "DRSA-decisional RSA

assumption holds for GDRSA if fXDRSA;�g and fYDRSA;� g are computationally "DRSA-close.

3. Lossy Identification Schemes Based on the Decisional RSA Assumption

3.1 Basis

We propose a new lossy identification scheme based on the decisional RSA assumption. First, we introduce new
families of distributions f ~XDRSA;�g and f ~YDRSA;�g such that the indistinguishability between them is derived from the
decisional RSA assumption.

~XDRSA;� is defined by

Fig. 2. The description of the transcript oracle.

Fig. 3. The description of Exp
los-imp-pa
ID;A .
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~XDRSA;� ¼ fðN; g; yÞ j ðp; q; p0; q0Þ  
$

GDRSAð1
� Þ;

P ¼ 2pp0 þ 1;Q ¼ 2qq0 þ 1;N ¼ PQ; g 
$

G1; y 
$
G1g ð3:1Þ

where G1 is the set of all generators of G1. ~YDRSA;� is defined by

~YDRSA;� ¼ fðN; g; yÞ j ðp; q; p0; q0Þ  
$

GDRSAð1
� Þ;

P ¼ 2pp0 þ 1;Q ¼ 2qq0 þ 1;N ¼ PQ; g 
$

G1; y 
$
QRN nG1g: ð3:2Þ

Note that a generator of G1 can be uniformly sampled efficiently with overwhelming probability [10]. Namely, the
uniform sampling of a generator fails with some negligible probability �. The decisional RSA assumption implies the
indistinguishability between ~XDRSA;� and ~YDRSA;� as shown in the following lemma.

Lemma 3.1. Let �0ð�Þ ¼ 1=ð22��2ð1� �ð�ÞÞÞ. Assume that the "DRSA-decisional RSA assumption holds for GDRSA.
Then the families of distributions f ~XDRSA;�g and f ~YDRSA;�g defined as above are computationally "0DRSA-close for GDRSA,
where "0DRSAð�Þ ¼ "DRSAð�Þ=ð1� �ð�ÞÞ þ �0ð�Þ.

Proof. We first recall that N ¼ PQ ¼ ð2pp0 þ 1Þð2qq0 þ 1Þ, jZ�N j ¼ �ðNÞ ¼ 4pqp0q0, jQRN j ¼ jZ�N j=4 ¼ pqp0q0 and
jG1j ¼ p0q0. Since ðP;QÞ is generated by GDRSAð1� Þ, it follows that 2‘�1 � p; q; p0; q0 � 2‘ � 1 and hence
22‘�1 < P;Q < 22‘þ1, where ‘ ¼ ‘ð�Þ.

Let Y 0DRSA;� ¼ fðN; yÞ j ðp; q; p0; q0Þ  
$

GDRSAð1� Þ;P ¼ 2pp0 þ 1;Q ¼ 2qq0 þ 1;N ¼ PQ; y 
$
QRN nG1g. We first

show that the distribution fY 0DRSA;�g is computationally close to fXDRSA;�g under the DRSA assumption by the following
technical claim.

Claim 3.2. If the "DRSA-decisional RSA assumption holds for GDRSA, then fXDRSA;�g and fY 0DRSA;�g are computationally
"0-close where "0ð�Þ ¼ "DRSAð�Þ þ 1=22��2.

Proof. Let U be the uniform distribution over QRN and let U0 be the uniform distribution over QRN nG1. Then, the
statistical distance �ðU;U0Þ between U and U0 over QRN is

2�ðU;U0Þ ¼
X

x2QRN

jPr½U ¼ x� � Pr½U0 ¼ x�j

¼
X
x2G1

jPr½U ¼ x� � Pr½U0 ¼ x�j þ
X

x2QRNnG1

jPr½U ¼ x� � Pr½U0 ¼ x�j

¼
X
x2G1

1

jQRN j
� 0

����
����þ

X
x2QRNnG1

1

jQRN j
�

1

jQRN nG1j

����
����

¼ jG1j �
1

jQRN j
þ 1�

jQRN nG1j
jQRN j

¼ p0q0
1

pqp0q0
þ 1�

pqp0q0 � p0q0

pqp0q0

¼
2

pq
;

and hence �ðU;U0Þ ¼ 1=pq.
Since 2‘�1 � p; q, it holds that 22‘�2 � pq. Then we have �ðU;U0Þ ¼ 1=pq � 1=22‘�2 � 1=22��2. This implies that

the statistical distance between fYDRSA;�g and fY 0DRSA;�g is bounded by 1=22��2. Then fXDRSA;�g and fY 0DRSA;� g are
computationally "0-close for "0ð�Þ ¼ "DRSAð�Þ þ 1=22��2 by the triangle inequality. �

We now return to the proof of Lemma 3.1. We prove the lemma by contraposition. Assume that f ~XDRSA;�g and
f ~YDRSA;� g are not computationally "0DRSA-close. Then there exists a PPT adversary A such that

AdvA;f ~XDRSA;� g;f ~YDRSA;� gð1
� Þ ¼ jPr½Að ~XDRSA;� Þ ¼ 1� � Pr½Að ~YDRSA;� Þ ¼ 1�j > "0DRSAð�Þ;

for infinitely many � .
We shall construct a PPT adversary B such that

AdvB;fXDRSA;� g;fY 0DRSA;�
gð1� Þ ¼ jPr½BðXDRSA;� Þ ¼ 1� � Pr½BðY 0DRSA;� Þ ¼ 1�j > "0ð�Þ ¼ "DRSAð�Þ þ

1

22��2

for all those � in order to claim that fXDRSA;�g and fY 0DRSA;�g are not computationally "0-close. By Claim 3.2, this shows
that "DRSA-decisional RSA assumption for GDRSA fails.

Let ðN; yÞ be a tuple drawn according to XDRSA;� or Y 0DRSA;� . On input ðN; yÞ, B behaves as follows:

Step 1. Choose a generator g 
$

G1.
Step 2. Invoke A on the input ðN; g; yÞ and outputs the output of A.
We show the correctness of B. In Step 1, a generator g of G1 can be sampled uniformly at random from G1 with the
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probability 1� �ð�Þ. In Step 2, the tuple ðN; g; yÞ distributes according to ~XDRSA;� if and only if the tuple ðN; yÞ
distributes according to XDRSA;� , and ðN; g; yÞ distributes according to ~YDRSA;� if and only if the tuple ðN; yÞ distributes
according to YDRSA;� respectively, provided that g is actually a generator of G1. Thus we have

AdvB;fXDRSA;� g;fY 0DRSA;� gð1
� Þ ¼ jPr½BðXDRSA;� Þ ¼ 1� � Pr½BðY 0DRSA;� Þ ¼ 1�j

� jPr½Að ~XDRSA;� Þ ¼ 1� � Pr½Að ~YDRSA;� Þ ¼ 1�j � Pr½g is a generator of G1�
> "0DRSAð�Þ � ð1� �ð�ÞÞ ¼ "

0ð�Þ:
�

3.2 Protocol

We now construct a lossy identification scheme IDDRSA ¼ ðKG; LKG;Comm; S;Resp;VerÞ as follows. Comm and Ver

are performed over the group Z�N . On the other hand, Resp is performed over the ring Z�ðNÞ.

. KG takes a security parameter 1� as the input. KG generates ðp; q; p0; q0Þ  
$

GDRSAð1� Þ, and chooses a generator

g 
$

G1 of G1 and a 
$
Z�ðNÞ. KG sets N ¼ ð2pp0 þ 1Þð2qq0 þ 1Þ and y ¼ ga, and outputs pk ¼ ðN; g; yÞ and

sk ¼ ððp; q; p0; q0Þ; g; aÞ.
. LKG takes a security parameter 1� as the input. LKG generates ðp; q; p0; q0Þ  

$
GDRSAð1� Þ, and chooses a generator

g 
$

G1 of G1, a generator f of G2, a 
$
Z�ðNÞ and b 

$
Z�pq. LKG sets N ¼ ð2pp0 þ 1Þð2qq0 þ 1Þ and y ¼ ga f b,

and outputs pk ¼ ðN; g; yÞ.
. Comm takes a tuple ððp; q; p0; q0Þ; gÞ as the input. Comm picks a random string r 

$
Z�ðNÞ and sets A ¼ gr. Comm

outputs the commitment string cmt ¼ A and the state string st ¼ r.
. The space S of the verifier’s challenges is ZN . The challenge string ch is w 

$
ZN .

. Resp takes a tuple ða;w; rÞ as the input and computes s ¼ awþ r mod �ðNÞ. Resp outputs the response string
rsp ¼ s.

. Ver takes a tuple ððN; g; yÞ;A;w; sÞ as the input and outputs 1 if Ayw ¼ gs holds, or outputs 0 if otherwise.
The protocol IDDRSA is depicted in Fig. 4.

3.3 Lossy properties of IDDRSA

We evaluate the parameters ð�; "S; "K ; "LÞ described in Definition 2.2 for IDDRSA. For a tuple ðp; q; p0; q0Þ generated by
GDRSA, we set N ¼ ð2pp0 þ 1Þð2qq0 þ 1Þ, n ¼ pq and n0 ¼ p0q0. For any natural number k, let Uk denote the uniform
distribution over Zk, U

0
k denote the uniform distribution over Zk n f0g, and let U�k denote the uniform distribution over

Z�k , respectively. We have the following lemmas.

Lemma 3.3. There exist negligible functions �1 and �2 such that for any ðp; q; p0; q0Þ generated by GDRSA,
(1) ðN � �ðNÞÞ=N < �1ð�Þ,
(2) ðpq� �ðpqÞÞ=pq < �2ð�Þ,
(3) 1=pqþ 1=N < �1ð�Þ,

for all sufficiently large � .

Proof. (1) We have �ðNÞ ¼ ðP� 1ÞðQ� 1Þ ¼ 4pqp0q0 and N ¼ ð2pp0 þ 1Þð2qq0 þ 1Þ > 4pqp0q0. We may assume
without loss of generality that p < q < p0 < q0. Then,

N � �ðNÞ
N

¼
ð2pp0 þ 1Þð2qq0 þ 1Þ � 4pqp0q0

ð2pp0 þ 1Þð2qq0 þ 1Þ
<

2ðpp0 þ qq0Þ þ 1

4pqp0q0

¼
1

2qq0
þ

1

2pp0
þ

1

4pqp0q0
<

1

2p2
þ

1

2p2
þ

1

4p4

Fig. 4. Description of the lossy identification scheme IDDRSA.
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¼
1

p2
þ

1

4p4
�

2

p2
: ð3:3Þ

Since 2‘ð�Þ�1 � p, we have 2=p2 � 1=22‘ð�Þ�1. Thus by letting �1ð�Þ ¼ 1=22‘ð�Þ�1, we have ðN � �ðNÞÞ=N < �1ð�Þ.
(2) As in (1), we may assume without loss of generality that p < q. Then,

pq� �ðpqÞ
pq

¼
pq� ðp� 1Þðq� 1Þ

pq
¼

pþ q� 1

pq

<
pþ q

pq
¼

1

q
þ

1

p
<

2

p
: ð3:4Þ

Since 2‘ð�Þ�1 � p, we have ðpq� �ðpqÞÞ=pq < �2ð�Þ, by letting �2ð�Þ ¼ 1=2‘ð�Þ�2.
(3) As in (1), we may assume without loss of generality that p < q. Since N > pq, we have

1

pq
þ

1

N
<

2

pq
<

2

p2
: ð3:5Þ

Thus we have 1=pqþ 1=N < �1ð�Þ. �

We now use the following convention. Let S and T be sets with S 	 T and D be a distribution over S. Then we
naturally regard D as a distribution over T in a way that Pr½D ¼ x� ¼ 0 for any x 2 T n S. For any natural numbers
k1 < k2, we regard Zk1

¼ f0; 1; . . . ; k1 � 1g as a subset of Zk2
¼ f0; 1; . . . ; k2 � 1g.

Lemma 3.4. Let �1 and �2 be as given in Lemma 3.3. For sufficiently large � ,
(1) �ðU�ðNÞ;UNÞ < �1ð�Þ, where U�ðNÞ and UN are regarded as distributions over ZN ,
(2) �ðU0pq;U�pqÞ < �2ð�Þ, where U0pq and U�pq are regarded as distributions over Zpq n f0g.

Proof. For any natural numbers k1 < k2, it holds that �ðUk1
;Uk2
Þ ¼ 1� k1=k2, where Uk1

and Uk2
are regarded as

distributions over Zk2
[12, Lemma 3(2)].

(1) By letting k1 ¼ �ðNÞ and k2 ¼ N, we have

�ðU�ðNÞ;UNÞ ¼ 1�
�ðNÞ
N
¼

N � �ðNÞ
N

< �1ð�Þ:

(2) It holds that �ðU0pq;U�pqÞ ¼ �ðUpq�1;U�ðpqÞÞ. Thus, by letting k1 ¼ �ðpqÞ and k2 ¼ pq� 1, we have

�ðU0pq;U
�
pqÞ ¼ 1�

�ðpqÞ
pq� 1

< 1�
�ðpqÞ
pq
¼

pq� �ðpqÞ
pq

< �2ð�Þ:

�

Theorem 3.5. Assume that the "DRSA-decisional RSA assumption holds for GDRSA. Then the protocol IDDRSA is
ð1; 2�1; "0DRSA þ �2; �1Þ-lossy, where "0DRSA is as in Lemma 3.1, and �1 and �2 are the negligible functions in Lemma 3.3.

Proof. 1-completeness: 1-completeness immediately follows from the construction of IDDRSA.
2�1-simulatability: We construct a transcript simulator eTr

IDDRSA

pk;� ðÞ. Let pk ¼ ðN; g; yÞ be generated by KGð1� Þ. Then
eTr

IDDRSA

pk;� ðÞ picks w; s 
$
ZN and outputs ðA;w; sÞ, where A ¼ gsy�w. Clearly, Verðpk;A;w; sÞ ¼ 1 for this tuple ðA;w; sÞ.

Let � be the statistical distance between the distribution of the genuine transcript ðA;w; sÞ generated by Tr
IDDRSA

pk;sk;� ðÞ and
the one of the simulated transcript generated by eTr

IDDRSA

pk;� ðÞ. We note that s is regarded as a random variable over ZN ,
although s is distributed over Z�ðNÞ in the genuine transcript.

We shall show that � � 2�1. We denote by �A the statistical distance between the distribution of A in the genuine
transcript and the one in the simulated transcript. �w and �s are similarily defined, respectively. Then we have
� � �A þ�w þ�s by the triangle inequality. Since w is uniformly distributed over ZN in both of the genuine and
simulated transcripts, we have �w ¼ 0. In the genuine transcript, s ¼ awþ r mod �ðNÞ is uniformly distributed over

Z�ðNÞ since r 
$
Z�ðNÞ. On the other hand, s in the simulated transcript is uniformly distributed over ZN . Then,

Lemma 3.4(1) implies that �s ¼ �ðU�ðNÞ;UNÞ < �1. We next evaluate �A. In the genuine transcript, A ¼ gr is

uniformly distributed over the subgroup G1 ¼ hgi since r 
$
Z�ðNÞ and the order p0q0 of G1 divides �ðNÞ ¼ 4pqp0q0.

Consider the distribution of A in the simulated transcript. We have A ¼ gsy�w ¼ gsðgaÞ�w ¼ gs�aw. Since s and w are
drawn from ZN uniformly and independently at random, c ¼ s� aw mod N is uniformly distributed over ZN .
Therefore, the distribution of the simulated A is identical to the distribution of gc with c 

$
ZN . Hence we have

�A ¼ �ðU�ðNÞ;UNÞ, and Lemma 3.4(1) implies that �A < �1. Thus we have � � �A þ�w þ�s < 2�1.
ð"0DRSA þ �2Þ-key indistinguishability: We first evaluate the distribution of normal keys. The distribution of public keys
generated by KGð1� Þ and ~XDRSA;� are identical by their definitions.

We next consider the distribution of lossy keys. We show that the distribution of lossy keys and ~YDRSA;� are
statistically �2-close. Since QRN ¼ G1 �G2 with G1 ¼ hgi and G2 ¼ h f i, jG1j ¼ p0q0 and jG2j ¼ pq, any element
x 2 QRN is uniquely expressed as x ¼ ga f b with a 2 Zp0q0 and b 2 Zpq. Thus we have that x 2 G1 if and only if b ¼ 0.

Now, for the lossy key, y ¼ ga f b with b 
$
Z�pq. Therefore, the statistical distance �ðU0pq;U�pqÞ equals the statistical
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distance between the distribution of lossy keys and ~YDRSA;� . By Lemma 3.4(2), we have �ðU0pq;U�pqÞ < �2. Namely, the
distribution of lossy keys and ~YDRSA;� are statistically �2-close.

Combining these facts with Lemma 3.1, The statistical distance between the distribution of KG and the one of LKG is
ð"0DRSA þ �2Þ-close. This implies ð"0DRSA þ �2Þ-key indistinguishability.
�1-lossiness: Let A be any passive impersonation adversary, and let SuccAð�Þ denote the event that the experiment
Exp

los-imp-pa
IDDRSA;A

ð�Þ returns 1. We shall prove that �3ð�Þ � Pr½SuccAð�Þ�.
Let pk ¼ ðN; g; yÞ be any lossy public key generated by LKG on the input 1� . Then y ¼ ga f b, where a 2 Z�ðNÞ and

b 2 Z�pq.
We evaluate the probability Pr½SuccA� that the event SuccA occurs by estimating the number of the verifier’s

challenges for which A can produce a correct response. Since h f i ¼ G2, f is of order jG2j ¼ pq. If the verifier’s
challenge w 2 ZN is a multiple of pq, then we have f w ¼ 1 and hence yw ¼ gaw f bw ¼ gaw 2 G1. Namely, if the
challenge w is a multiple of pq, the lossy key pk acts as normal keys. This means that there exists such a ‘‘bad’’

challenge w in ZN with the period pq. Thus we may consider the distribution of yw with w 
$
Zpq instead of with

w 
$
ZN .

We show that there exist overwhelmingly many challenge strings in Zpq such that A cannot produce a correct
response for the challenge, even if A is computationally unbounded and A can arbitrarily determine his commitment
string. We use the following lemma.

Lemma 3.6. Let pk ¼ ðN; g; yÞ be any lossy public key, where y ¼ ga f b with a 2 Z�ðNÞ and b 2 Z�pq. Then for any
commitment value A 2 QRN (not necessarily A 2 G1), there exists at most one challenge value w 2 Zpq such that there
exists a response s 2 Zpq satisfying Verðpk;A;w; sÞ ¼ 1.

Proof. Assume that w1;w2 2 Zpq are challenges such that Verðpk;A;w1; s1Þ ¼ 1 and Verðpk;A;w2; s2Þ ¼ 1 for some
s1; s2 2 Zpq. Then we have that

A ¼ gs1y�w1 ¼ gs2y�w2 : ð3:6Þ

Since y ¼ ga f b, it follows from Eq. ð3.6Þ that

gðs1�s2Þ ¼ yw1�w2 ¼ gaðw1�w2Þ f bðw1�w2Þ;

and hence

f bðw1�w2Þ ¼ gðs1�s2Þ � gaðw2�w1Þ: ð3:7Þ

Since g 2 G1 and f 2 G2, the element in Eq. ð3.7Þ is in G1 \G2 ¼ f1g. b is chosen from Z�pq. Thus f bðw1�w2Þ ¼ 1

implies w1 � w2 
 0 (mod pqÞ. We have w1 ¼ w2 from w1;w2 2 Zpq. �

By Lemma 3.6, there is at most one challenge in Zpq for which A can produce a correct response s regardless of the
choice of the commitment A even if A is computationally unbounded. Therefore, we have

Pr½SuccAð�Þ� � dðN=pqÞe=N � 1=pqþ 1=N < �1ð�Þ ð3:8Þ

for any fixed y ¼ ga f b. �

4. Concluding Remarks

In this paper, we have proposed a new construction of lossy identification scheme based on the decisional RSA
assumption. Our decisional RSA-based scheme IDDRSA has the efficient response algorithm Resp as well as the DCR-
based scheme IDDCR in [12], because Resp executes one modular addition and one modular multiplication but no
modular exponentiation. Note that other lossy identification schemes based on integer factoring-based assumptions in
[2] need modular exponentiation in their response algorithms. Moreover, the size of public keys of IDDRSA is smaller
than IDDCR, and as same as integer factoring-based schemes by [2]. This is because IDDRSA runs over the group Z�N while
IDDCR runs over the group Z�N2 . These facts means that IDDRSA is one of the most efficient scheme among lossy
identification schemes based on integer factoring-based assumptions.
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