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New Invariants for Integral Lattices
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Let A be any integral lattice in Euclidean space. It has been shown that for every integer n > 0, there is a
hypersphere that passes through exactly n points of A. Using this result, we introduce new lattice invariants and
give some computational results related to two-dimensional Euclidean lattices of class number one.
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1. Introduction

We consider the following condition on lattices A C R%.

Definition 1.1 ([1,5]). If there is a hypersphere in R? that passes through exactly n points of A for every integer
n > 0, then A is called “universally concyclic.”

A lattice generated by (a, b), (¢,d) € R2, (ad — bc # 0), is denoted by A[(a, b), (c,d)]. In [5], Maehara introduced the
term “universally concyclic.” Then, he and others showed the following results. In [7] and [4], Schinzel, Maehara, and
Matsumoto proved that 72, that is, A[(1,0),(0, D], is universally concyclic. Moreover, if a,b,c,d € Z are such that
q = ad — bc is a prime and g = 3 (mod4), then A[(a, b),(c,d)] is universally concyclic. The equilateral triangular
lattice A[(1,0),(—1/2, \/5/2])] and the rectangular lattice A[(1,0), (0, \/§])] are universally concyclic. In [1], it was
shown that all integral lattices in R? with d > 2 are universally concyclic.

Remark 1.1. We remark that there exist some nonintegral lattices that are not universally concyclic. Maehara also
proved in [5] that if 7 is a transcendental number, then A[(1, 7), (0, 1)] cannot contain four concyclic points, and hence,
it is not universally concyclic. The rectangular lattice A[(«, 0), (0, B)] does not contain five concyclic points if and only
if (a/pB)? is an irrational number. Hence, some additional integrality conditions are necessary to ensure this property.

Let K = Q(+/—d) be an imaginary quadratic field, and let Ok be its ring of algebraic integers. Let Clg be the ideal
classes of K. In this paper, we only consider the cases |Clg| =1, namely, d is in the following set:
{1,2,3,7,11,19,43,67,163}.

We denote by dg the discriminant of K:

4 —4d if —d=2,3 (mod4)
7l =a if—d=1  (mod4).

Theorem 1.1 (cf. [9, p. 87]). Let d be a positive square-free integer, and let K = Q(~/—d). Then

7+ 7 —d if —d=2,3 (mod4)
Ok = —1+/—d
7 + Z—+2 if —d=1 (mod 4).
Therefore, we consider @O to be a lattice in R? with the basis
(1,0),(0,v/d) if —d=2,3 (mod4)
1 /d
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denoted by [1,+/—d], [1,(—1 + +/—d)/2], respectively. Note that [1,+/—1] is the Z? lattice.

The main purpose of this paper is to introduce the new lattice invariants (Definition 1.2) and to give some
computational results related to two-dimensional Euclidean lattices of class number one (Theorem 1.2).

We introduce the following new lattice invariants uc(A, n).

Definition 1.2. Let A C R be an integral lattice. For n € N, the universally concyclic number uc(A, n) (or uc(n) for
short) is defined by the square of the minimum value among the radii of the hyperspheres that pass through exactly n
points of A.

If two lattices A and A, are isomorphic, then uc(A |, n) = uc(A,, n) for all n € N. Therefore, uc(A, n) is an invariant
of the lattice A. In [3], Maehara proposed the following problem:

Problem 1.1. Determine the uc(Zz,n) forn=23,...,10.

In this paper, we determine the uc(A, n) for some n and A whose class number is one.
The following table provides the computational results.

Theorem 1.2. Let K = Q(+/—d) as in Theorem 1.1. Concyclic numbers of two-dimensional Euclidean lattices Ok of
class number one for n < 10 if 1 < d < 163 are determined as indicated in Table 1.

Table 1.
—d dyg Ok uc(3) uc(4) uc(5)
-1 —2? [1,~/—T1] 52/2.32 1/2 54/2.32
-2 -23 [1,v/-2] 32/23 3/2% 34723
-3 -3 [L,(1++/=3)/2] 1/3 7/22 72132112
—7 -7 [L(1++/-7)/2] 22/7 2377 2477
—11 —11 [1,(14++/=11)/2] 32/11 3.5/11 34/11
—-19 —19 [1,(1++/=19)/2] 52/19 5-7/19 54/19
—43 —43 [1,(1 +v/—=43)/2] 112743 11-13/43 11-13-17-23/2%-43
—67 —67 [1,(1 +~/=67)/2] 172/67 17-19/67 17-19-23.29/2% .67
—-163 —163 [1,(1 + ~/—=163)/2] 4127163 41-43/163 432.61%2/3% . 163
uc(6) uc(7) uc(8) uc(9) uc(10)
52/22 54.13-17/2- 112 5/2 52.132/2.32 54/22
32/22 36/23 3322 32.11%2/23 34/22
1 72.13-19-43/3-112 7-13/2? 72/3 7422
22 20/7 23 2877 24
32.5/11 39/11 33.5/11 32.52/11 3*.5/11
52.7/19 5.7%.11-17/3%- 19 5.7-11/19 5%.7%/19 54.7/19
112.13/43 11-13%2.17-23/3%.43 11-13-17/43 112 -13%/43 114 .13/43
172 - 19/67 17-19%.23.29/3% .67 17-19-23/67 17% - 19%/67 174 - 19/67
41%.43/163 41-43.61-71-83/22-3%.163 41-43.47/163 412 .43%/163 41-47-53-71-83/3%.163

We calculated the integer sequences uc(Z?,4n) and uc([1, (1 + v/ —3)/2], 6n) for small n, and speculated that they
have simple rules. Therefore, we have the following problem:

Problem 1.2. Determine uc(Z?,4n) and uc([1, (1 + v/—3)/2], 6n) for all n.

In this paper, we give a partial answer of Problem 1.2. Namely, we give an exact upperbound of uc(Z?,2/*?) and

uc([1, (1 + v/=3)/2],6 - 2.

Theorem 1.3. Let ¢ and m be nonnegative integers, let p; (i = 1,2, ...) be the i-th smallest prime that is congruent to
1 (mod4) (set po :=1), and let q; (j = 1,2,...) be the j-th smallest prime that is congruent to 1 (mod 3) (set qo :=1).
(1) There exists a circle that passes through exactly 272 points (x,y) of Z*:

1\? N\ 14
(+=2) +(-2) =2l

1 L
Z2,2l+2 < _ )
uc( ) < ngk

Therefore, we have
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(2) The number of the integer solutions of the following equation

1++-3 1-+v-3 ) N
Xty ——F— | Xty—F | =xtxty =]_[qk

2 2 0

Izl = (i[o 61k>

passes through exactly 6 - 2™ points of [1,(1 + ~/—=3)/2]. Therefore, we have

is 6 - 2™, This means that the circle

0=

w1, (1+v/=3)/21,6 - 2" < [ [ aw-
k=0

In Sect. 2, we give the computational algorithm used in Theorem 1.2. In Sect. 3, we provide the proof of
Theorem 1.3. In Sect. 4, we present further problems.
All the computer calculations in this paper were done by Mathematica [8] and C Programming Language [6].

2. Algorithm

In this section, we give the algorithm used to find the square of the minimum value among the radii of the
hyperspheres that pass through exactly n points of A.

Assume that A is one of Ok in Theorem 1.2. Let £ be a positive integer, and let R C A be the set of (x,y) that
satisfies x% + y2 < (2, y>0andy > —Jdxifd = 2,3,7,11,19,43,67,163 (if d = 1, then let R be the set of (x, y) that
satisfies x> +y? < £2,x > 0 and y > 0). We shall try to create a hypersphere by taking three vertices on R. Notice that a
hypersphere is determined uniquely by taking three vertices over A.

First, we shall explain how to plot the three vertices on R. Let (x;,y;) be the i-th vertex (i =1,2,3). Set
(x1,¥1) = (0,0), and let (x,y,) vary such that it plots every vertex (x,y) € A such that y/x < /d on R. Then, we let
(x3,y3) vary such that it plots every vertex (x,y) € A, except for (x,y) € A such that y = 0 on R. This algorithm will
provide every hypersphere passing through (0, 0) that can be generated by any (x,y) € A on R.

Next, we shall explain how to obtain the coordinates for the center and the square of the radius of a hypersphere. Let
(x0,¥0) be the center of a hypersphere, and let D be the square of the radius of the hypersphere. Then,

X0 = —(32)3 + (=3 — 3)y3 + X32)/(2x2y3 — 2X3y2),

Yo = (X2y3 — X33 + X023 — X3x3)/(2x2y3 — 2232,

2
p_ [Vrt+xve
2x00y3 —2x3y2 )

where o = y3 — 2y2y3 + y3y3 + 2033 — 2x0x3y3 + X33 — 2x3y2y3 + X33 + xF — 2x003 + 133,

Next, we explain how to enumerate the number of lattice points (x,y) € A such that (x — x0)* + (y— yo)2 =D.
Let x4 € A move from [xo — /D] to [xo+ /D] + 1, where [ ] is the Gauss symbol. For the equation (xs —
x0)® + (vq — yo)2 =D, solve for y;: ys=yo=% \/—xi + 2x0x4 + D — x%. Set ¢, =0. If x4=0(mod1) and
ys =0(mod~/d), or if x,=1/2(mod1) and y;=+/d/2(mod~/d), then ¢, =c,+ 1 (in the case of d=
3,7,11,19,43,67,163). If x4, = 0(mod 1) and y, = 0 (mod «/3), then ¢, = ¢, + 1 (in the case of d = 1,2). It is seen
that ¢, denotes the number of lattice points (x,y) € A such that (x — x0)° 4+ (v — yo)* = D after moving x4 from
[xo — +/D] to [xo + v/D] + 1. Therefore, we can obtain the hypersphere that passes through exactly cp points.

Using the above method, since we can find the hyperspheres that pass through exactly ¢, points for any n € N, we
can obtain the square of the minimum value of the radius by selecting the smallest radius of any of the hyperspheres
that pass through exactly n points of A.

3. Proof of Theorem 1.3

First, we claim that the circle (2x — 1)*> + 2y — 1)> = 2]_[ﬁ=0 Pr passes through exactly 2¢+2 points of Z2. By
Fermat’s 4n + 1 Theorem, for all p;, there exists a;, b; € Z such that p; = a} + b;. Therefore, p; = (a; + ib)(a; — iby).
Notice that a; + ib; and a; — ib; are irreducible elements over Z[i]. Since 2 = 12412, 2 = (1 +i)(1 — i). Hence
wo =2Ti_opr = 1+ (1 = D[Tico px = (1 + DA — i) [Te_olax + ibx)(ax — iby), where w € Z[i]. We consider the
number of possible outcomes for w. We can express w as follows:

o = u(l + D1 — )" "(ay + b)) (a; — ib)' 7 - (ap + iby)(ay — iby)' ™, where u = £1,+i, and ¢, = 0,1 (n =
0,1,...,9).
It is easily seen that the choice of (1 + i) or (1 — i) does not depend on the number of possible outcomes of w, since
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the absolute value of the real part and the imaginary part of (1 + i) and (1 — i) is the same.

Consequently, the number of p0551ble outcomes of w is 4 - 212 = 2¢*2 over Z[i]. From this, the number of
(X,Y) € Z? such that X> + Y2 = 2]_[k o Pk is 2672

Next, we claim that they all correspond to the lattice point (x,y) € 7?* such that Qx — 1) + 2y — 1)> =2 ]_[k o0 Dk
Since X2, Y2 = 0,1 (mod4) and 2 [Ji_, px = 2(mod4), X2 + Y2 = []i_, px implies that X2 = 1 and ¥? = 1 (mod 4).
Moreover, it implies that X = 1 and Y = 1 (mod2). Therefore, the number of lattice points (x,y) € Z*> such that
(2x — 1> 4+ (2y — 1) = 2]]4_, px is equivalent to the number of (X,Y) € Z? such that X* + Y2 = 2] ]i_, pr» 2x —

=—-1l=1(=X)(mod2) and 2y — 1 = —1 = 1(= Y) (mod 2).

Thus, the number of lattice points (x,y) € Z* such that (2x — 1)> + 2y — 1)> = 2 []r_, px is just 262,

Next, we claim that the number of the integer solutions of the following equation

c iy YN ey oY) e s 2—ﬁ
y B y ) = yTy = 1l qdk
is 6 - 2™,
The proof is similar to the first part. Set ¢ = 1 + +/—3/2. Then, for all g;, there exists a;, b; € Z such that

V=3b; b~/ =3b;
q,-=a?+a,-b,-+b?=< N )(a,+ )

2 2 2 2
= (a; + bi)(a; + bi?).

Notice that a; + b;¢ and a; + b;¢ are irreducible elements over Z[¢], and 1T = ]_[k 0k = ]_[k olar + b)) (ax + bio),
where 1 € Z[{]. We consider the number of possible outcomes for 7. We can express t as follows: 7=
u(ay + biO)M (ay + b0 M (@ + b (ap + bp)' ™M, where u = 1,44, 42, u, = 0,1 (n=1,...,m).

As a consequence, the number of possible outcomes of t is 6 - 2" over Z[¢]. From this, the number of x + y¢ € Z[¢]
such that x> + xy + y* = [Tito gk is 6 - 2™. Now, since it can be seen that Z[¢] is equivalent to [1, (1 + V=3)/2], the

circle
1
m 2
|zl = (]_[ qk>
k=0

passes through exactly 6 - 2™ points of [1, (1 + +/—3)/2].

Remark 3.1. We remark that the conditions in Theorem 1.3 “the i-th smallest prime” and “the j-th smallest prime”
do not use in the proof of Theorem 1.3. For example, the number of solutions (points of Z?) is determined by the
number of primes appearing in the product

l4
[1pe
k=0
On the other hand, we need these conditions in order to answer Problem 1.3.

4. Further Problems

(1) Find a law in the table of Theorem 1.2.
(2) For n = {3,...,10}, determine the uc(A,n) for A = 73 and Z*.
(3) Let

er = —(1,0,0,0)

1
V12

7
e 0,1,0,0
2 = 12( )

i
13 —=-(0,0,1,0)
NG

19
V12

Then, we define the two lattices, L; ;= (u; | i=1,...,4) and L, := (vj | i = 1,...,4), where

ey = ——=(0,0,0,1).
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u1=3e1—e2—e3—e4 V1=—3e1—e2—e3—e4
u —e;+3e;+e3—ey v, =e; —3e;+e3—ey
uz; =e; —e+3e3+ ey Vi ==¢€; —ey — 3e;+ ey
uy=e;+e —e3+3eq, | va=e;+e; —e3 —3eq.

In [2], it was shown that the theta series of L; and L, are the same, namely, the number of lattice vectors of norm

m are the same for all m. However, these two lattices are nonisomorphic, and the proof of this fact is not easy [2].

Therefore, we have the following problem: Determine the uc(L,, n) and uc(L,, n) for some n, and show that L, and L,
are nonisomorphic.
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