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Inspired by the work of Ghadafi and Groth (ASIACRYPT 2017) on a certain type of computational hardness
assumptions in cyclic groups (which they call ‘‘target assumptions’’), we initiate an analogous work on another
type of hardness assumptions, namely the ‘‘knowledge-of-exponent’’ assumptions (KEAs). Originally introduced
by Damgård to construct practical encryption schemes secure against chosen ciphertext attacks, KEAs have
subsequently been used primarily to construct succinct non-interactive arguments of knowledge (SNARKs), and
proved to be inherent to such constructions. Since SNARKs (and their zero-knowledge variant, zk-SNARKs)
are already used in practice in such systems as the Zcash digital currency, it can be expected that the use of KEAs
will increase in the future, which makes it important to have a good understanding of those assumptions. Using a
proof technique first introduced by Bellare and Palacio (but acknowledged by them as being due to Halevi), we
first investigate the internal structure of the q-power knowledge-of-exponent (q-PKE) family of assumptions
introduced by Groth, which is thus far the most general variant of KEAs. We then introduce a generalisation of the
q-PKE family, and show that it can be simplified.
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1. Introduction

The security of most cryptographic systems cannot currently be proved unconditionally, and must be proved under
the assumption that a certain computational task is difficult (in a suitable sense). Of course, in order to increase our
confidence in the security of such systems, it is necessary to increase our confidence in the validity of the assumptions
under which their security is proved. Traditionally, this was done by assuming that a problem was difficult if a
considerable amount of research effort had been devoted to the search of efficient solutions to it without any (or much)
success. (The integer factoring or discrete logarithm problems, for instance, fall into this category — at least as far as
classical computers are concerned.) In recent years, however, new assumptions are introduced very frequently, and, as
pointed out for instance by Naor [12], it is sometimes not clear whether proving the security of a system under a new
assumption is much different from simply assuming that the system is secure.

This proliferation of new assumptions raises questions both for cryptographers, who design new cryptographic
systems, and for cryptanalysts, who attempt to ‘‘break’’ those systems by showing that the underlying assumptions are
in fact false. For the former, what are the best assumptions on which to base their constructions? And for the latter,
what are the best assumptions on which to focus their efforts? A solution to these dilemmas was proposed by Ghadafi
and Groth [8] for a class of assumptions which they call ‘‘target assumptions’’ and which includes for instance the well-
known computational Diffie-Hellman assumption [5]. Their idea was to firstly identify a large class of assumptions (the
‘‘target assumptions’’) which captures many assumptions already used in the literature as well as some which may
appear in the future. Secondly, they identify a small subclass of assumptions (called ‘‘Uber-assumptions’’) within the
large class, and show that if all the Uber-assumptions hold, then all the target assumptions hold as well. Such a result is
useful both to cryptographers and to cryptanalysts. Cryptographers can use any target assumption as the basis of their
systems, and be confident that they will remain secure as long as none of the Uber-assumptions is broken.
Cryptanalysts, meanwhile, have a higher chance of success if they focus on the Uber-assumptions, since they give a
small set of assumptions that is guaranteed to contain at least one false assumption (unless all the assumptions in the
large class are true, in which case there is no hope of proving that any assumption is false anyway). Of course, the
usefulness of such a result can be increased either by increasing the size of the large class (since then cryptographers
have more assumptions at their disposal) or by decreasing the size of the class of Uber-assumptions (since then
cryptanalysts can focus their efforts on a smaller number of assumptions). It is for this reason that Ghadafi and Groth
apply their analysis to a large class of assumptions (the ‘‘target assumptions’’), which is a generalisation of existing
assumptions.
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In this paper, we attempt to apply a similar analysis to another type of assumptions, called ‘‘knowledge-of-exponent
assumptions’’ (KEAs). Namely, we introduce a generalised class of KEAs, which we aim to make as large as possible
for the reasons explained above, and we show that it is implied by a smaller subclass. Although KEAs were originally
criticised due to their non-falsifiability [12], non-falsifiable assumptions have been proved to be inherent to
constructions of succinct non-interactive proof systems [7], and KEAs are commonly used in such constructions.
Moreover, since one KEA-based construction (the zk-SNARK construction of [6, 14]) is already being used in practice
in such systems as the Zcash digital currency [16], it can be expected that KEAs will become increasingly popular in
the future, which makes it all the more important to have a solid understanding of them.

The rest of this paper is organised as follows. In Sect. 2, after reviewing some definitions and notation, we discuss
the background surrounding KEAs in the existing literature. In Sect. 3, we investigate the internal structure of the
q-power knowledge-of-exponent (q-PKE) family of assumptions introduced by Groth [9], which is the most general
instance of KEAs in the literature thus far. In Sect. 4, we propose a generalisation of the q-PKE family which we call
‘‘rational knowledge-of-exponent assumptions’’ (RKEAs) and, as a first step towards identifying Uber-assumptions for
RKEAs, we show that all RKEAs are implied by a slightly smaller class of assumptions. Finally, in Sect. 5 we
summarise our results and point out possible directions for future work.

2. Preliminary Definitions, Notation and Background

2.1 Definitions and notation

Numbers and strings

N ¼ f0; 1; 2; . . .g, N� ¼ N n f0g. For any n 2 N�, jnj :¼ blog2ðnÞc þ 1 is the length of the usual binary representation
of n, and for simplicity we set j0j :¼ 0. (We also use jxj to denote the absolute value of a real number x, but the
meaning of such notation should always be clear from the context.) For any n 2 N, 1n is the string of length n with all
bits 1. Fp denotes the finite field with p elements, represented as the integers f0; . . . ; p� 1g with addition and
multiplication modulo p (we only consider prime finite fields). R denotes the field of real numbers.

Asymptotics

Given a function f : N! R, we say that f is positive if f ðnÞ > 0 for all n. We say that f is polynomial (in n), and we
write f ðnÞ � polyðnÞ, if there is a positive polynomial p such that f ðnÞ � pðnÞ for all n. We say that f is negligible (in
n) if for all positive polynomials p and all sufficiently large n we have f ðnÞ < 1=pðnÞ. When such is the case we write
f ðnÞ � neglðnÞ, and if n is the security parameter �, we omit it and write f � negl. Given another function g : N! R,
we note f ¼ �ðgÞ if there are two positive real numbers k1; k2 such that for all sufficiently large n we have
k1 � gðnÞ � f ðnÞ � k2 � gðnÞ.

Algorithms

We use the terminology and notation introduced by Abe and Fehr [1]. Unless otherwise stated, all the algorithms in
this paper take as input 1�, for a security parameter �, and possibly additional inputs, and run in time polynomial in �
(this implicitly requires all inputs to have size polynomial in �). Algorithms may be non-uniform, meaning that when
run on security parameter � they get as an additional input an advice string adv� (the sequence of advice strings
ðadviÞi2N is fixed for a given algorithm). Algorithms may also be probabilistic. It will always be explicitly stated
whether an algorithm is uniform or non-uniform and whether it is deterministic or probabilistic. Regardless, we
reiterate that, unless otherwise stated, algorithms always run in time polynomial in �.

To ease notation, 1� and adv� will often be omitted (e.g., if A is a non-uniform algorithm, we will often write AðxÞ
instead of Að1�; x; adv�Þ to denote its execution on input x and security parameter �). For two probabilistic algorithms
A and B we denote by AkB their joint execution on a common input and random tape, and we write ðu; vÞ  
ðAkBÞðxÞ to say that the output of A on input x is assigned to u and the output of B on the same input x and the same
random tape is assigned to v. For a set S, s S means that s is drawn from S uniformly and independently of all other
random draws.

2.2 Group generators

Throughout this paper, we will define assumptions relative to a given group generator, as defined in [8].

Definition 2.1 (Group generators). A group generator is a uniform probabilistic algorithm G which on security
parameter � outputs group parameters ðGp; gÞ, where

. p is a prime with jpj ¼ �ð�Þ;

. Gp is (a description of) a (cyclic) group of order p, with canonical representations of group elements as binary
strings and efficient algorithms for performing the group operation and deciding membership; and

. g is a random generator of Gp, chosen uniformly over all the generators.

68 KRAIEM et al.



As in [8], given a group Gp, a generator g, and an element x 2 Fp, we will denote by ½x� the element of Gp with
discrete logarithm x relative to the generator g and the group operation of Gp, i.e., ½x� :¼ g � g � � � � � g for x terms.
Thus the generator g is [1] and the identity element is [0]. We will also denote the group operation additively, so that we
have ½xþ y� ¼ ½x� þ ½y� and ½kx� ¼ k½x� (where k½x� :¼ ½x� þ ½x� þ � � � þ ½x� for k terms).

2.3 KEA1

The first knowledge-of-exponent assumption, which we call KEA1 following [2], was introduced in [4]. Roughly, it
says that given a pair ð½1�; ½��Þ of elements of Gp, the only way to generate a pair ð½k�; ½k��Þ is the obvious way: pick k

in some fashion, and compute ½k� ¼ k½1� and ½k�� ¼ k½��. In other words, any algorithm (adversary) which outputs
such a pair must ‘‘know’’ k. This is formalised by saying that there must exist another algorithm, called an extractor,
which, also given ð½1�; ½��Þ, outputs k.

Assumption 2.2 (KEA1). Let G be a group generator. We say that KEA1 holds (relative to G) if for every non-
uniform probabilistic algorithm A (the adversary) there is a non-uniform probabilistic algorithm �A (the extractor)
such that

Pr½ðGp; ½1�Þ  G;� Fp; � :¼ ðGp; ½1�; ½��Þ;
ðð½u�; ½v�Þ; kÞ  ðAk�AÞð�Þ :
ð½v� ¼ �½u�Þ ^ ð½u� 6¼ k½1�Þ� � negl:

Remark 2.3. In [6, 14], KEAs are augmented to take into account any prior information the adversary may possess.
Namely, the adversary has an additional auxiliary input z, and the condition must hold for all z generated independently
of �. (Of course, the extractor is given z as well.)

2.4 The discrete logarithm assumption (DLA)

As in [2], we remark that if the discrete logarithm problem is easy (in groups generated by G), then KEA1 trivially
holds (in G), for in that case we can trivially construct a KEA1-extractor �A for any A as follows. Since �A is given
A’s input and random coins, it can compute A’s output ð½u�; ½v�Þ, and furthermore, since the discrete logarithm problem
is easy, it can compute u from ½u�. It then outputs u, and if the discrete logarithm computation was successful (which
happens with high probability since the discrete logarithm problem is easy), it will be successful as well.

Therefore, KEAs are only interesting in groups where the discrete logarithm problem is (believed to be) hard, which
are the groups commonly used in cryptographic systems. We will thus assume throughout that the discrete logarithm
problem is hard in the group generators we will consider, and we formalise this assumption as follows.

Assumption 2.4 (DLA). We say that DLA holds (relative to the group generator G) if for every non-uniform
probabilistic algorithm A we have

Pr½ðGp; ½1�Þ  G;� Fp : AðGp; ½1�; ½��Þ ¼ �� � negl:

2.5 KEA2 and KEA3

KEA2 was introduced in [10, 11], and subsequently proved false (under the DLA) in [2]. [2] then introduced KEA3
in order to recover the results of [10, 11], and proved that KEA3 implies KEA1.

Roughly, KEA2 states that given ð½1�; ½x�; ½��; ½�x�Þ, there are only two ways to produce a pair ð½k�; ½k��Þ: generate k

in some fashion and output either ðk½1�; k½��Þ or ðk½x�; k½�x�Þ. Intuitively, it is easy to see why this assumption should be
false under the DLA: what about an adversary which generates k1; k2 and outputs ðk1½1� þ k2½x�; k1½�� þ k2½�x�Þ? KEA2
asserts that such an adversary should know either k1 þ k2x or k1x

�1 þ k2, but it seems impossible to compute them
without computing x and breaking the DLA. KEA3 addresses this issue in the obvious manner, by asserting that the
only way to generate a pair ð½k�; ½k��Þ is as above: generate k1; k2 and output ðk1½1� þ k2½x�; k1½�� þ k2½�x�Þ. We now
turn to the formalisation of both assumptions.

Assumption 2.5 (KEA2). Let G be a group generator. We say that KEA2 holds (relative to G) if for every non-
uniform probabilistic adversary A there is a non-uniform probabilistic extractor �A such that

Pr½ðGp; ½1�Þ  G; x; � Fp; � :¼ ðGp; ½1�; ½x�; ½��; ½�x�Þ;
ðð½u�; ½v�Þ; kÞ  ðAk�AÞð�Þ :
ð½v� ¼ �½u�Þ ^ ð½u� 6¼ k½1�Þ ^ ð½u� 6¼ k½x�Þ� � negl:

Assumption 2.6 (KEA3). Let G be a group generator. We say that KEA3 holds (relative to G) if for every non-
uniform probabilistic adversary A there is a non-uniform probabilistic extractor �A such that
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Pr½ðGp; ½1�Þ  G; x; � Fp; � :¼ ðGp; ½1�; ½x�; ½��; ½�x�Þ;
ðð½u�; ½v�Þ; ðk1; k2ÞÞ  ðAk�AÞð�Þ :
ð½v� ¼ �½u�Þ ^ ð½u� 6¼ k1½1� þ k2½x�Þ� � negl:

3. The q-power Knowledge-of-exponent Assumptions

In this section we investigate the internal structure of the q-power knowledge-of-exponent (q-PKE) family of
assumptions, which was introduced in [9] as a generalisation of KEA1 and KEA3. These assumptions are as follows.

Assumption 3.1 (q-PKE). Let G be a group generator, and q 2 N. We say that q-PKE holds (relative to G) if for
every non-uniform probabilistic adversary A there is a non-uniform probabilistic extractor �A such that

Pr

"
ðGp; ½1�Þ  G; x; � Fp; � :¼ ðGp; ½1�; ½x�; . . . ; ½xq�; ½��; ½�x�; . . . ; ½�xq�Þ;

ðð½u�; ½v�Þ; ðk0; . . . ; kqÞÞ  ðAk�AÞð�Þ :

ð½v� ¼ �½u�Þ ^ ½u� 6¼
Xq
i¼0

ki½xi�

 !#
� negl:

Remark 3.2. We can allow the parameter q to be any function of the security parameter �; in that case, the experiment
on security parameter � has � :¼ ðGp; ½1�; ½x�; . . . ; ½xqð�Þ�; ½��; ½�x�; . . . ; ½�xqð�Þ�Þ. Of course, since our algorithms run in
time polynomial in �, we can assume that qð�Þ � polyð�Þ. To ease notation, we will always simply write q.

Remark 3.3. It is shown in [9] that, for any q, q-PKE holds in the generic group model [3, 13, 15].

We note that KEA1 is 0-PKE and that KEA3 is 1-PKE. As previously mentioned, it was shown in [2] that 1-PKE
implies 0-PKE; the proof there readily extends to show that, for any q, q-PKE implies 0-PKE. We nevertheless include
a detailed proof of the latter result, in order to acquaint the reader with all the details of the proof technique that will be
used later in this paper.

Theorem 3.4 (Generalisation of Proposition 2 from [2]). Let G be a group generator, and q 2 N. If q-PKE holds for
G, then 0-PKE holds for G.

Proof. Let A be an adversary against 0-PKE; we first construct an adversary B against q-PKE that uses A in a black-
box manner. B has input

ðGp; ½1�; ½x�; . . . ; ½xq�; ½��; ½�x�; . . . ; ½�xq�Þ;
it runs A on input ðGp; ½1�; ½��Þ and with its own random tape, and outputs the pair ð½u�; ½v�Þ output by A. Since q-PKE
holds, there is an extractor �B for B with negligible error probability �; we construct an extractor �A for A that uses �B
in a black-box manner. �A proceeds as follows on input ðGp; ½1�; ½��Þ.

. x Fp.

. � :¼ ðGp; ½1�; ½x�; . . . ; ½xq�; ½��; ½�x�; . . . ; ½�xq�Þ.

. ðk0; . . . ; kqÞ  �Bð�Þ.

. Output
Pq

i¼0 kix
i.

We claim that �A has (negligible) error probability �.
We run the 0-PKE experiment. Firstly, A is run on input ðGp; ½1�; ½��Þ, and we let ð½u�; ½v�Þ be its output. Then �A is

run, again on input ðGp; ½1�; ½��Þ and with the same random tape as A, and it runs �B on input � and with its own
random tape. Now, observe that � is distributed identically to the input to �B in the experiment for q-PKE, and so,
letting ðð½u0�; ½v0�Þ; ðk0; . . . ; kqÞÞ be the output of Bk�B on input � and with the same random tape as that of A, we have

ð½v0� ¼ �½u0�Þ ^
Xq
i¼0

ki½xi� 6¼ ½u0�

 !

with probability �. Since B on input � runs A on input ðGp; ½1�; ½��Þ and with the same random tape as that with which
A was run originally, we have ð½u0�; ½v0�Þ ¼ ð½u�; ½v�Þ. Observing that

Xq
i¼0

ki½xi� ¼
Xq
i¼0

kix
i

 !
½1�

completes the proof. �

70 KRAIEM et al.



As mentioned, the above result shows in particular that 1-PKE implies 0-PKE. A natural question is then to ask
whether this can be generalised to show that in general (qþ 1)-PKE implies q-PKE. The difficulty in showing
this along the lines of the proof of Theorem 3.4 is that the q-PKE-extractor is given the group elements
ð½1�; ½x�; . . . ; ½xq�; ½��; ½�x�; . . . ; ½�xq�Þ, and seemingly cannot produce the group elements ð½1�; ½x�; . . . ; ½xqþ1�;
½��; ½�x�; . . . ; ½�xqþ1�Þ that are expected by the (qþ 1)-PKE-extractor. (Indeed, the widely-believed computational
Diffie-Hellman exponent (CDHE) assumption [17] asserts that this is infeasible.) We circumvent this difficulty by
assuming that, for a random group element ½r�, ð½1�; ½x�; . . . ; ½xq�; ½xqþ1�Þ and ð½1�; ½x�; . . . ; ½xq�; ½r�Þ are indistinguish-
able. If such is the case, the q-PKE-extractor can generate a random ½r� and use it to generate group elements that are
indistinguishable from those expected by the (qþ 1)-PKE-extractor. This assumption is a decisional version of the
Diffie-Hellman exponent assumption, which we now define.�

Assumption 3.5 (q-decisional Diffie-Hellman exponent (q-DDHE)). Let G be a group generator, A be a non-uniform
probabilistic adversary, q 2 N�, and b 2 f0; 1g, and consider the following experiment Exp

q-ddhe-b
G;A ð�Þ.

. ðGp; ½1�Þ  G; x; r Fp.

. If b ¼ 0, then � :¼ ðGp; ½1�; ½x�; . . . ; ½xq�; ½r�Þ; else, � :¼ ðGp; ½1�; ½x�; . . . ; ½xq�; ½xqþ1�Þ.

. b0  Að�Þ.

. Output b0.
We let

Adv
q-ddhe
G;A ð�Þ :¼ jPr½Exp

q-ddhe-1
G;A ð�Þ ¼ 1� � Pr½Exp

q-ddhe-0
G;A ð�Þ ¼ 1�j

be the advantage of A (in q-DDHE) relative to G, and we say that q-DDHE holds in G if every adversary has negligible
advantage, i.e., if for every non-uniform probabilistic adversary A, we have Adv

q-ddhe
G;A � negl.

Theorem 3.6. Let G be a group generator, and q 2 N�. If q-DDHE and (qþ 1)-PKE hold for G, then q-PKE holds
for G.

Proof. Let A be an adversary against q-PKE; we first construct an adversary B against (qþ 1)-PKE that uses A in a
black-box manner. B has input

ðGp; ½1�; ½x�; . . . ; ½xqþ1�; ½��; ½�x�; . . . ; ½�xqþ1�Þ;

it runs A on input

ðGp; ½1�; ½x�; . . . ; ½xq�; ½��; ½�x�; . . . ; ½�xq�Þ

and with its own random tape, and outputs the pair ð½u�; ½v�Þ output by A. Since (qþ 1)-PKE holds, there is an extractor
�B for B with negligible error probability �; we construct an extractor �A for A that uses �B in a black-box manner.
�A proceeds as follows on input ðGp; ½1�; ½x�; . . . ; ½xq�; ½��; ½�x�; . . . ; ½�xq�Þ.

. r Fp.

. � :¼ ðGp; ½1�; . . . ; ½xq�; ½r�; ½��; . . . ; ½�xq�; ½�r�Þ.

. ðk0; k1; . . . ; kqþ1Þ  �Bð�Þ.

. Output ðk0 þ kqþ1r; k1; . . . ; kqÞ.
We claim that �A has negligible error probability.

We run the q-PKE experiment. Firstly, A is run on input ðGp; ½1�; ½x�; . . . ; ½xq�; ½��; ½�x�; . . . ; ½�xq�Þ, and we let
ð½u�; ½v�Þ be its output. Then �A is run, again on input ðGp; ½1�; ½x�; . . . ; ½xq�; ½��; ½�x�; . . . ; ½�xq�Þ and with the same
random tape as A, and it runs �B on input � and with its own random tape. We claim that, letting
ðð½u0�; ½v0�Þ; ðk0; . . . ; kqþ1ÞÞ be the output of Bk�B on input �, we have

ð½v0� ¼ �½u0�Þ ^ kqþ1½r� þ
Xq
i¼0

ki½xi� 6¼ ½u0�

 !

with negligible probability. Intuitively, this follows from the fact that, under q-DDHE, � is indistinguishable from the
input to Bk�B in the (qþ 1)-PKE experiment. To show it formally, we consider the following adversary Z against
q-DDHE, which uses B and �B in a black-box manner.

Z proceeds as follows on input ðGp; ½1�; ½x�; . . . ; ½xq�; ½z�Þ (where x is random and z is either xqþ1 or random).
. � Fp.
. � :¼ ðGp; ½1�; . . . ; ½xq�; ½z�; ½��; . . . ; ½�xq�; ½�z�Þ.
. ðð½u�; ½v�Þ; ðk0; k1; . . . ; kqþ1ÞÞ  ðBk�BÞð�Þ.
. If ½v� ¼ �½u� and kqþ1½z� þ

Pq
i¼0 ki½xi� 6¼ ½u�, output 1; else, output 0.

If z ¼ xqþ1, the q-DDHE experiment for Z is exactly the (qþ 1)-PKE experiment for Bk�B, and so Z outputs 1 with
(negligible) probability �. On the other hand, if z is random, then � is distributed identically to the input to Bk�B when

�Unfortunately, since our proof relies on a decisional assumption, it does not apply in the bilinear setting, which is the setting in which q-PKE was

introduced in [9] and subsequently used in [6, 14].
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it is run by �A in the q-PKE experiment. Let � be the probability that Z outputs 1 in that latter case; then j�� �j is
negligible since q-DDHE holds, and since � is negligible as well, so is �.

Finally, since B on input � runs A on input ðGp; ½1�; ½x�; . . . ; ½xq�; ½��; ½�x�; . . . ; ½�xq�Þ and with the same random tape
as that with which A was run originally, we have ð½u0�; ½v0�Þ ¼ ð½u�; ½v�Þ. Observing that

kqþ1½r� þ
Xq
i¼0

ki½xi� ¼ ðk0 þ kqþ1rÞ½1� þ
Xq
i¼1

ki½xi�

completes the proof. �

4. Rational KEAs (RKEAs)

In this section, we propose a definition of a large class of assumptions, with the goal of capturing not only the KEAs
that have appeared in the literature thus far, but also those that are likely to appear in the future. We then show that this
large class is implied by a slightly smaller subclass.

4.1 Definition of RKEAs

Along the lines of the definition of target assumptions in [8], we generalise the PKE family of assumptions by
allowing arbitrary rational functions of several variables instead of just powers of x. We call the resulting class of
assumptions rational knowledge-of-exponent assumptions (RKEAs). Analogously to the target assumptions of [8],
RKEAs are parameterised by three integersy d (the maximal degree of the polynomials involved), m (the number of
variables) and n (the number of rational functions). We first define a very general notion of non-interactive knowledge
assumptions (NIKAs) analogous to the non-interactive computational assumptions of [8]. (The intuitive meanings of
the quoted terms should be clear from the previous examples of KEAs.)

Definition 4.1 (Non-interactive knowledge assumptions (NIKAs)). A non-interactive knowledge assumption consists
of an instance generator I, a verifier V, and a knowledge verifier V, defined as follows.

. ðpub; privÞ  I: I is a uniform probabilistic algorithm which, on input 1� (where � is a security parameter),
outputs a pair of public/private information ðpub; privÞ. We omit the input 1� as usual.

. 0=1 Vðpub; priv; solÞ: V is a uniform deterministic algorithm which, on input ðpub; privÞ and a purported
solution sol, outputs 1 if the solution is ‘‘correct’’ and 0 otherwise.

. 0=1 Vðpub; priv; sol; secÞ: V is a uniform deterministic algorithm which, on input ðpub; priv; solÞ and a
purported ‘‘secret’’ sec, outputs 1 if the secret is ‘‘correct’’ and 0 otherwise.

We say that the assumption holds if for any non-uniform probabilistic algorithm A (the adversary) there is a non-
uniform probabilistic algorithm �A (the knowledge extractor, or just the extractor) such that

Pr½ðpub; privÞ  I; ðsol; secÞ  ðAk�AÞðpubÞ :
Vðpub; priv; solÞ ¼ 1 ^ Vðpub; priv; sol; secÞ ¼ 0� � negl:

We call the above probability the error probability of �A relative to A, and express it as a function of the security
parameter �; thus the assumption holds if for every adversary A there is an extractor �A with negligible error
probability relative to A. We also say that �A is successful (relative to A) if the condition above does not hold, i.e., if
�A ‘‘successfully extracts’’ A’s secret (hence the error probability is the probability that the extractor is not successful).

Definition 4.2 (Rational knowledge-of-exponent assumptions (RKEAs)). Given d;m; n 2 N� and a group generator
G, we say that an NIKA ðI;V;VÞ is a ðd;m; nÞ-RKEA if there is a uniform probabilistic algorithm Icore such that I, V
and V are of the following forms.

. ðpub; privÞ  I:
– ðGp; ½1�Þ  G.

–
��

aiðXÞ
biðXÞ

�n
i¼1
; pub0; priv0

�
 IcoreðGpÞ, where the ais and bis are polynomials in m variables and of total degree at

most d.
– x Fm

p conditioned on biðxÞ 6¼ 0 for all i.
– � Fp.
– pub :¼

�
Gp;

��
aiðxÞ
biðxÞ

��n
i¼1
;
��

��aiðxÞ
biðxÞ

��n
i¼1
;
�

aiðXÞ
biðXÞ

�n
i¼1
; pub0

�
.

– Return ðpub; priv :¼ ð½1�; x; �; priv0ÞÞ.
. 0=1 Vðpub; priv; sol ¼ ð½u�; ½v�ÞÞ: if ½v� ¼ �½u�, return 1; else, return 0.
. 0=1 Vðpub; priv; sol; sec ¼ ðk1; . . . ; knÞÞ: if

Pn
i¼1 ki

�
aiðxÞ
biðxÞ

�
¼ ½u�, return 1; else, return 0.

Remark 4.3. We note that in an RKEA, the knowledge verifier V does not use the private information priv, thus
RKEAs would also satisfy an alternative definition of NIKAs where V is not given priv.

yAgain, we can allow d;m; n to be any functions of the security parameter �, and assume that they are polynomial in �.
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Example 4.4 (q-PKE). q-PKE is a ðq; 1; qþ 1Þ-RKEA, meaning that Icore generates qþ 1 rational functions
consisting of polynomials in one variable and of degree at most q. Namely, we have aiðxÞ ¼ xi�1 and biðxÞ ¼ 1 for all
i ¼ 1; . . . ; qþ 1.

4.2 Simplifications of RKEAs

Definition 4.5 (Simple RKEAs). We say that an RKEA is simple if biðXÞ ¼ 1 for all i ¼ 1; . . . ; n, i.e., all the rational
functions output by Icore are just polynomials.

Theorem 4.6. For any ðd;m; nÞ-RKEA A ¼ ðIA;VA;VAÞ there is an ðnd;m; nÞ-simple RKEA B ¼ ðIB;VB;VBÞ such
that B implies A.

Proof. The algorithm Icore
B of B proceeds as follows on input Gp.

.
��

aiðXÞ
biðXÞ

�n
i¼1
; pub0A; priv0A

�
 Icore

A ðGpÞ.
. ciðXÞ :¼ aiðXÞ �

Q
j 6¼i bjðXÞ for all i ¼ 1; . . . ; n.

. pub0B :¼
��

aiðXÞ
biðXÞ

�n
i¼1
; pub0A

�
; priv0B :¼ priv0A.

. Return ðfciðXÞgni¼1; pub0B; priv0BÞ.
Let A be an adversary against A; we first construct an adversary B against B which uses A in a black-box manner.

B’s input is

pubB ¼ ðGp; f½ciðxÞ�gni¼1; f½� � ciðxÞ�g
n
i¼1; fciðXÞg

n
i¼1; pub0BÞ;

it runs A on input

Gp; f½ciðxÞ�gni¼1; f½� � ciðxÞ�g
n
i¼1;

aiðXÞ
biðXÞ

� 	n

i¼1

; pub0A


 �
and with its own random tape, and outputs the pair output by A. Since we assume that B holds, there is an extractor �B
for B with negligible error probability �; we construct an extractor �A for A which uses �B in a black-box manner.
�A’s input is

pubA ¼ Gp;
aiðxÞ
biðxÞ

� � 	n

i¼1

;
� � aiðxÞ
biðxÞ

� � 	n

i¼1

;
aiðXÞ
biðXÞ

� 	n

i¼1

; pub0A


 �

and its random tape is the same as that of A. �A runs �B on input

�B ¼ Gp;
aiðxÞ
biðxÞ

� � 	n

i¼1

;
� � aiðxÞ
biðxÞ

� � 	n

i¼1

; fciðXÞgni¼1; pub0B


 �

and with its own random tape, and outputs the values ðk1; . . . ; knÞ output by �B. We claim that �A is an extractor for A
with (negligible) error probability at most �þ dn

p
z.

We run the NIKA experiment for A. Firstly, A is run on input pubA, and we let ð½u�; ½v�Þ be its output. Then, �A is
run, again on input pubA and with the same random tape as A, and it runs �B on input �B and with its own random tape,
outputting the output ðk1; . . . ; knÞ of �B. We claim that �B is distributed identically to pubB except with negligible
probability. To see this, observe that IA generates the polynomials aiðXÞ and biðXÞ as well as the vector x independently
of the generator [1] output by G. Further, assuming that

Qn
i¼1 biðxÞ 6¼ 0, the only difference between pubB and �B is

the choice of generator; namely, if choosing the generator [1] yields the input pubB, then choosing the generator
½
Qn

i¼1 biðxÞ� yields �B.
By the Schwartz–Zippel lemma, the probability that

Qn
i¼1 biðxÞ ¼ 0 is at most dn

p
. Thus, letting ð½u0�; ½v0�Þ be the pair

output by B we have

ð½v0� ¼ �½u0�Þ ^
Xn
i¼1

ki
aiðxÞ
biðxÞ

� 
6¼ ½u0�

 !

with probability at most �þ dn
p

. Observing that B, when run on input �B, runs A on input pubA and with the same
random tape as that with which A was run originally shows that ð½u0�; ½v0�Þ ¼ ð½u�; ½v�Þ, which completes the proof.

�

5. Conclusions and Directions for Future Work

We have shown that, under a variant of the decisional Diffie-Hellman assumption, the q-PKE family of assumptions
increases in strength as q grows. We have also introduced a more general class of KEAs than had previously appeared
in the literature, and showed that it can be slightly simplified. All our results were obtained using the proof tech-

z�þ dn
p

is negligible (in �) because � is negligible by assumption, d and n are polynomial, and p is exponential since it is an integer of polynomial

size.
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nique from [2]. Many directions for future work remain open, which might require the introduction of new proof
techniques:

. Can an analogue of Theorem 3.6 be proved in the bilinear setting, where in particular decisional assumptions do
not hold?

. Is the q-PKE family strictly increasing? That is, can it be shown in some sense that q-PKE does not imply
(qþ 1)-PKE?

. Can RKEAs be simplified further as in [8]? In particular, can Uber-assumptions be found?

. Can RKEAs be generalised further, for instance by allowing V and V to be of a more general form?
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