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This paper presents optimal design using Adaptive Mesh Refinement (AMR) with shape optimization method.
The method suppresses time periodic flows driven only by the non-stationary boundary condition at a sufficiently
low Reynolds number using Snapshot Proper Orthogonal Decomposition (Snapshot POD). For shape optimization,
the eigenvalue in Snapshot POD is defined as a cost function. The main problems are non-stationary Navier–
Stokes problems and eigenvalue problems of POD. An objective functional is described using Lagrange
multipliers and finite element method. Two-dimensional cavity flow with a disk-shaped isolated body is adopted.
The non-stationary boundary condition is defined on the top boundary and non-slip boundary condition
respectively for the side and bottom boundaries and for the disk boundary. For numerical demonstration, the disk
boundary is used as the design boundary. Using H1 gradient method for domain deformation, all triangles over a
mesh are deformed as the cost function decreases. To avoid decreasing the numerical accuracy based on squeezing
triangles, AMR is applied throughout the shape optimization process to maintain numerical accuracy equal to that
of a mesh in the initial domain. The combination of eigenvalues that can best suppress the time periodic flow is
investigated.

KEYWORDS: Adaptive Mesh Refinement, adjoint method, cavity flow, proper orthogonal decomposi-
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1. Introduction

This paper presents solution of a shape optimization problem achieved using Adaptive Mesh Refinement (AMR) for
suppressing a moderate time periodic flow. Recently, Nakazawa [1] specifically examined construction of a shape
optimization method based on Snapshot Proper Orthogonal Decomposition (Snapshot POD). The method can suppress
a time periodic flow at a sufficiently low Reynolds number. In an earlier study [1], AMR was not applied. It therefore
remains unclear whether the cost function decreases sufficiently to take its minimum value, or not. Consequently, in
this study, AMR is applied after the mesh is reshaped by the sensitivity at each reshaping step. Then the combination of
eigenvalues which can best suppress the time periodic flow is investigated. The particular history, background, and
procedure of the suggested shape optimization problem with AMR are described below.

With the rapid development of computer technology and numerical methods, shape optimization based on
computational fluid dynamics (CFD) is playing an important role in fluid mechanics and aerodynamics design. Shape
optimization problems in fluid dynamics were first addressed by O. Pironneau [2, 3] for the respective domains in which
the stationary Stokes and Navier–Stokes equations are defined. Subsequently, J. Haslinger and R. A. Makinen [4], B.
Mohammadi and O. Pironneau [5], and M. Moubachir and J. P. Zolesio [6] constructed fundamental frameworks of
flow-field shape-optimization problems. Recently, many researchers are examining the topic [7–10]. Efficient but
accurate numerical methods must be used for such flow computations within an optimization process. Nevertheless,
controlling the associated complex fluid flow behavior is difficult when generating an efficient mesh before knowing the
new solution in a shape optimization problem. Therefore, most shape optimization algorithms are based on a fixed
computational mesh. A computational grid represents a compromise between accuracy and efficiency. A solution might
be the use of AMR.

From finite element theory, meshes with equilateral triangles are well known to be more suitable for isotropic
problems. However, the notion of equilaterality involves lengths through scalar products in a given metric. Therefore,
anisotropic meshes might be regarded as isotropic with respect to a different metric. We can adapt the mesh to follow
the solution if the metric is defined using a posteriori error estimation. An unstructured grid environment is the natural
framework for the introduction of general adaptivity and the anisotopy concept. Castro-Diaz and Hecht [11] described
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numerical procedures related to AMR with the metric. Alauzet et al. [12] presented its mathematical proof in
continuous and discrete spaces of the domain. Castro-Diaz et al. [13], Mohammadi and Hecht [14], and Frey et al. [15]
used it for flow-field shape optimization. The present study also applies it to the author-suggested shape optimization
problem.

The original motivation is explained below. Although flow stabilization presents the important challenge of choosing
which research field best addresses flow control, few reports of the relevant literature describe flow stabilization by
shape optimization. Nakazawa [16] reported that minimization and maximization problems of dissipation energy are
solved in two-dimensional cavity flow, where the stationary Navier–Stokes problem is used as the main problem and
where the dissipation energy is used as the cost function. After shape optimization, linear stability analysis is conducted
in the initial and the optimal domains. The critical Reynolds numbers are, respectively, decreasing and increasing.
Next, for controlling flow stability more directly, Nakazawa and Azegami [17] reported a pioneering shape
optimization method used to stabilize the disturbances. The method is based on linear stability theory. Particularly, the
real part of the leading eigenvalue is used as the cost function. The stationary Navier–Stokes problem and the
eigenvalue problem of the linear stability analysis are cited as main problems for obtaining the cost function. However,
the methods explained above are not available for the case in which the non-stationary boundary condition is defined
because the stationary Navier–Stokes problem should be solved as described in an earlier report [16].

To address the challenge explained above, the author constructed a shape optimization method [1] using Snapshot
POD, in which the eigenvalue in Snapshot POD is defined as the cost function. A remarkable feature of this suggested
shape optimization problem is that a time periodic flow driven solely by the non-stationary boundary condition at a
sufficiently low Reynolds number is developed or suppressed efficiently. That is possible because the eigenvalue (cost
function) shows the L2 norm of the velocity vector, which takes the time average or the time fluctuation by
decomposing the time periodic flow into primary components. A brief summary of the shape optimization problem is
presented below.

The sum of eigenvalues in POD is defined as the cost function. For this study, the non-stationary Navier–Stokes
problem and the eigenvalue problem in POD are used as the main problems. The main problems are transformed from
strong forms to weak forms with trial functions based on a standard application of finite element method (FEM). The
functional is described using Lagrange multipliers with FEM. Next, its first variation, which is the same as the material
derivative, is derived to evaluate sensitivity using adjoint variable method. An initial domain is reshaped iteratively to
obtain an optimal domain. Then the H1 gradient method [18] is used for stable domain deformation. However, AMR is
not applied. It is therefore unclear that the cost function is decreasing sufficiently to take the minimum value. Thereby,
this paper uses AMR after the mesh is reshaped by the sensitivity, where the new mesh is generated with respect to the
metric as constructed for an earlier study [11, 12]. Subsequently, the combination of eigenvalues which can most
suppress the time periodic flow is investigated.

For numerical demonstrations with FreeFEM++ [19] for all numerical calculations, the same problem is addressed
as explained below. Two-dimensional cavity flow with a disk-shaped isolated body is adopted. The non-stationary
boundary condition is defined for the top boundary and non-slip boundary condition for the boundaries not only of the
side and bottom, but also of the disk. The disk boundary is used as the design boundary. Therefore, the disk is reshaped
by a shape optimization process as the cost function decreases, where the domain variation is obtained using sensitivity
analysis and some cost functions combining eigenvalues with various primary components. After numerical
calculations, the eigenvalues of Snapshot POD are compared in the initial domain and the optimal domain. Results
confirm the effectiveness of using AMR for the suggested shape optimization problem. Mathematical aspects and
specific details of such an optimization problem are explained elsewhere in the relevant literature [1].

2. Formulation of the Problem

2.1 Initial domain

Letting �0 be a fixed bounded Lipschitz domain in Rd (d 2 N), and letting � be an open subset of �0, with a
position vector denoted as x 2 Rd, then, as described herein, a two-dimensional cavity flow with a disk-shaped isolated
body � is adopted as the initial domain. For d ¼ 2, the initial domain is � � �0 � R2 as

� ¼ �Mn ��m; ð2:1Þ
�M ¼ fðx; yÞ; 0 < x < 1; 0 < y < 1g; ð2:2Þ
�m ¼ fðx; yÞ; jðx; yÞ � ð0:5; 0:5Þj < 0:1g; ð2:3Þ

regarding the boundary as

�top ¼ fðx; yÞ; 0 � x � 1; y ¼ 1g; ð2:4Þ
�wall ¼ @�Mn�top: ð2:5Þ

For domain reshaping, the boundary of the disk @�m is regarded as the design boundary.
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2.2 Domain variation

We consider domain deformation � as �! �ð�Þ, where � is Rd-valued function. For j"j � 1, mapping � is
represented by � ¼ �0 þ "’ in W1;1ð�;RdÞ. Then we designate it by the identity map �0ð�Þ ¼ � and the domain
variation ’.

We assume �1 as a scalar-valued function describing a physical state in �, and �2 as its corresponding adjoint
variables. For such � ¼ f�1; �2g, we introduce the following functional in � and �ð�Þ:

Lð�; �ðxÞÞ ¼
Z

�

Gðx; �ðxÞÞ dx; ð2:6Þ

Lð�ð�Þ; �ð�ðxÞÞÞ ¼
Z
�ð�Þ

Gð�ðxÞ; �ð�ðxÞÞ�ðdxÞ; ð2:7Þ

where G represents a real-valued given energy function.
For domain deformation, the Jacobi matrices are written as

ðr�TÞT ¼ ðr�T
0 Þ

T þ "ðr’TÞT þ oð"2Þ: ð2:8Þ

The determinant is obtained as

detððr�TÞTÞ ¼ 1þ "r � ’þ oð"2Þ: ð2:9Þ

Therefore,

�ðdxÞ ¼ detððr�TÞTÞ dx
¼ ð1þ "r � ’þ oð"2ÞÞ dx: ð2:10Þ

The density function Gð�ðxÞ; �ð�ðxÞÞ in �ð�Þ is deduced as

Gð�ðxÞ; �ð�ðxÞÞ ¼ Gðx; �ðxÞÞ þ " _Gðx; �ðxÞÞ þ oð"2Þ
¼ Gðx; �ðxÞÞ þ "ðG0ðx; �ðxÞÞ þ ’ � rGðx; �ðxÞÞÞ þ oð"2Þ: ð2:11Þ

Next, from Eqs. (2.10) and (2.11), the functional in �ð�Þ can be rewritten as

Lð�ð�Þ; �ð�ðxÞÞÞ ¼
Z
�ð�Þ

Gð�ðxÞ; �ð�ðxÞÞ�ðdxÞ

¼ Lð�; �ðxÞÞ þ "
Z

�

fG0ðx; �ðxÞÞ þ ’ � rGðx; �ðxÞÞ þ Gðx; �ðxÞÞr � ’g dxþ oð"2Þ: ð2:12Þ

The first variation of the functional is expressed as

lim
"!0

Lð�ð�Þ; �ð�ðxÞÞÞ � Lð�; �ðxÞÞ
"

¼ _Lð�; �ðxÞ;’Þ

¼
Z

�

fG0ðx; �ðxÞÞ þ ’ � rGðx; �ðxÞÞ þ Gðx; �ðxÞÞr � ’g dx

¼
Z

�

fG0ðx; �ðxÞÞ þ r � ð’Gðx; �ðxÞÞÞg dx: ð2:13Þ

Finally, based on the divergence theorem, we have

_Lð ��; �ðxÞ;’Þ ¼
Z

�

G0ðx; �ðxÞÞ dxþ
Z
@�

Gðx; �Þ� � ’d�; ð2:14Þ

where _ð�Þ and ð�Þ0 respectively represent the material derivative and the Fréchet derivative with respect to �, and where �
denotes the outward unit normal vector on the boundary. Additional details about _ð�Þ and ð�Þ0 are presented as Eqs. (15)
and (16) of [18].

Considering the initial domain � and the design boundary @�m, � ¼ 0 on @�m, we have the first variation as

_Lð� [ @�m; �ðxÞ;’Þ ¼
Z

�

G0ðx; �ðxÞÞ dxþ
Z
@�m

Gðx; �ðxÞÞ� � ’d�: ð2:15Þ

For sensitivity analysis, the adjoint variable method is used to derive a main problem and an adjoint problem by
setting Z

�

G0ðx; �ðxÞÞ dx ¼ 0: ð2:16Þ

After solving the main and the adjoint problems, the sensitivity is evaluated by substituting the main and adjoint
variables into Eq. (2.15).
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2.3 Main problems

For a shape optimization problem considering Snapshot POD, this paper presents the main problems: a non-
stationary Navier–Stokes problem, and an eigenvalue problem in Snapshot POD. Below, the mapping � of the position
vector x from the initial domain � to the optimal domain �ð�Þ is assumed as given. An initial domain � and the
boundaries are found. Furthermore, the flow of a viscous incompressible fluid is assumed to occupy a bounded domain
� in Rd. The velocity u and pressure p are assumed to be satisfied in this domain �. The Reynolds number Re is
defined with the reference length j�topj and the reference speed, which is the maximum value of the x-direction velocity
component on �top.

2.3.1 Non-stationary Navier–Stokes problem

Problem 1 (Non-stationary Navier–Stokes). Find ðu; pÞ : �ð�Þ � ð0;TÞ ! R
d � R such that

Du

Dt
¼ �rpþ

1

Re
�u in �ð�Þ � ð0;TÞ; ð2:17Þ

r � u ¼ 0 in �ð�Þ � ð0; TÞ; ð2:18Þ
u ¼ uD cosð2�tÞ on @�� ð0; TÞ; ð2:19Þ
u ¼ u0 in �ð�Þ at t ¼ 0; ð2:20Þ

where

uD ¼ 0 on �wall [ �ð@�mÞ and uD ¼ ð16x2ðx� 1Þ2; 0Þ on �top; ð2:21Þ

and u0 represents a stationary solution of the stationary Navier–Stokes problem.
Letting ðw; qÞ be adjoint variables with respect to the velocity and the pressure, then by discretizing in the time

direction with the finite difference method, a set of necessary variables is found as �1 ¼ fu; p;w; qg, where hereinafter
u ¼ fungN2

n¼N1
, p ¼ fpngN2

n¼N1
, w ¼ fwngN2

n¼N1
, and q ¼ fqngN2

n¼N1
. The variational form of the non-stationary Navier–

Stokes problem is defined as

L1ð�; �1Þ ¼ �
XN2

n¼N1

Z
�

Gn
1ðx; �1Þ dx

� �

¼ 0; 8ðw; qÞ ð2:22Þ

by setting m ¼ N2 � N1 þ 1 with N1 ¼ T1

�t
and N2 ¼ T2

�t
for time step size �t, at time t ¼ T1; T2. The density function

Gn
1ðx; �1Þ is presented as

Gn
1ðx; �1Þ ¼

unþ1ðxÞ � unðXnÞ
�t

� wnþ1

� pnþ1r � wnþ1 � qnþ1r � unþ1 þ
1

Re
ðrunþ1ÞT : ðrwnþ1ÞT; ð2:23Þ

where Xn ¼ x��tun, using the characteristic finite element scheme presented by Notsu [20].

2.3.2 Snapshot Proper Orthogonal Decomposition

We define a Snapshot POD analysis from time t ¼ T1 to T2, where a weight function is prepared to extract arbitrary
primary components from all primary components.

The correlation coefficient matrix R 2 Rm�m is formed as

~u ¼ ½uN1 ; . . . ;uN2	 2 Rd�m ð2:24Þ

as

RðN1;N2; ~u; ~uÞ ¼
Z

�

~uT ~udx:

Let eigenvalues and eigenvectors of R be ! 2 Rm and û 2 Rm�m,

! ¼ ½!1; . . . ; !i; . . . ; !m	; !i 2 R;
û ¼ ½û1; . . . ; ûi; . . . ; ûm	; ûi 2 Rm;

� ¼ ~uû!�
1
2 2 Rd�m;

!�
1
2 ¼ diagð!�

1
2

i Þi
where RðN1;N2; ~u; ~uÞ is a positive-semidefinite matrix satisfying the eigenvalue 0 � !, and where �i represents the
POD basis for the i-th primary component as
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� ¼ ½�1; . . . ;�i; . . . ;�m	 2 Rd�m:

Using the definitions, we define snapshot POD analysis as described below.

Problem 2 (Snapshot Proper Orthogonal Decomposition). Let the solution u of Problem 1 be given. Find ! 2 Rm

and û 2 Rm�m for N1;N2 2 N such that

diag!û� RðN1;N2; ~u; ~uÞû ¼ 0: ð2:25Þ

For the optimization problem, let �2 ¼ f!; û;�;ug be the set of necessary variables used in Problem 2, where � is an
adjoint variable for the eigenvectors û.

� ¼ ½�1; . . . ;�i; . . . ;�m	; �i 2 Rm: ð2:26Þ

For the shape optimization problem studied here, Snapshot POD is a main problem. It plays a role as one of a
constration function. Therefore, the following functional is defined as

L2ð�; �2Þ ¼ �G2ðx; �2Þ; ð2:27Þ

where

G2ðx; �2Þ ¼ � � ½�j!kfdiag!û� Rûg	; ð2:28Þ

where �j!k represents the weight function used to extract j to the k primary components in 1 to the m primary
components.

�j!k ¼ diagð0; . . . ; 0; 1
j

; . . . ; 1
k

; 0; . . . ; 0Þ

3. Shape Optimization Problem

The shape optimization problem using Snapshot POD with the weight function �j!k is constructed next, with the
Lagrange function first defined to deduce the first variation. Next, based on the Kuhn–Tucker condition, the main and
adjoint problems are solved to obtain the main and adjoint variables, which are substituted into the first variation to
evaluate sensitivity for the shape optimization problem as summarized in Sect. 2.2.

3.1 Lagrange function and its material derivative

We formulate the following minimization problem of the cost function f as

f ð!Þ ¼
XN2

i¼N1

�j!k!i; ð3:1Þ

where �j!k represents the weight function introduced into Sect. 2.3.2.

Problem 3 (Shape Optimization). After letting f ð!Þ be defined as Eq. (3.1), we find �ð�Þ such that

min
�
f f ð!Þ; fðun; pnÞgN2

n¼N1
; ð!; ûÞg: ð3:2Þ

By application of the Lagrange multiplier method, Lagrange function L for the shape optimization problem in this
study can be expressed as

Lð�; �1; �2Þ ¼ f ð!Þ þ L1ð�; �1Þ þ L2ð�; �2Þ: ð3:3Þ

3.2 Main and adjoint problems

Based on the adjoint variable method, the main problems of Problem 3 are introduced into Problem 1 and
Problem 2. Also, the adjoint problems of Problem 3 are given as presented below.

Problem 4 (Adjoint Problem for �). Given eigenfunction û of Problem 2, then find � 2 Rm�m such that

û� ¼ I; ð3:4Þ
and û;� are the unitary matrix from Problem 4. Therefore, � is obtained as the inverse matrix or the transposed matrix
of û:

� ¼ û�1 ¼ ûT: ð3:5Þ

Problem 5 (Adjoint Problem for �). Let the solution u of Problem 1 be given. Find �T 2 Rm�m such that
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diag!�T ¼ RðN1;N2; ~u; ~uÞ�T: ð3:6Þ

In fact, solving Problem 5 is unnecessary because � has already been obtained in Problem 4.

Problem 6 (Adjoint Problem for ð �u; �pÞ). With � and the time-averaged solution ð �u; �pÞ of Problem 1, and with the
eigenvalue and the eigenfunction ð!; ûÞ of Problem 2 with û ¼ �T as given, find ð �w; �qÞ : �! R

d � R such that

ðr �uTÞ �w� ð �u � rÞ �wþ r �q�
1

Re
� �wþ �A ¼ 0 in �; ð3:7Þ

r � �w ¼ 0 in �; ð3:8Þ
�w ¼ 0 on @�; ð3:9Þ

where

�A ¼ 2
XN2

i¼N1

�j!k��
T
!; �u ¼

XN2

n¼N1

un; �! ¼ �!�
1
2 : ð3:10Þ

3.3 Sensitivity of the shape optimization problem

Here, based on the adjoint variable method, we evaluate the sensitivity of the shape optimization problem on the
design boundary @�m, as

�G1ðx; �1ð�ÞÞ ¼ �
1

Re
r �uT : r �wT:

4. Adaptive Mesh Refinement

In this section, AMR distributed in Freefem++ [19] is summarized as explained below.
Letting �ðxÞ be a data function describing any physical state in the domain for finite element method, then a Taylor

expansion of the data function �ðxÞ with respect to any interior point x in an element over a mesh can be expressed as

�ðxÞ ¼ �ðxc þ t�xÞ

¼ �ðxcÞ þ fðr�Þjx¼xcg
Tðt�xÞ þ

1

2
ðt�xÞTfðrr�Þjx¼xcgðt�xÞ þ oðð�xÞ3Þ

¼ �hðxÞ þ
1

2
ðt�xÞTfðrr�Þjx¼xcgðt�xÞ þ oðð�xÞ3Þ; ð4:1Þ

for t 2 ½0; 1	, where xc represents the position vector at a node of an element in a mesh, and where �h denotes the linear
approximation for �. The interpolation error eðxÞ at a displacement t�x from node xc can be expressed as

eðxÞ ¼
Z 1

0

f�ðxÞ � �hðxÞgdt
����

����


Z 1

0

1

2
ðt�xÞTfðrr�Þjx¼xcgðt�xÞ

� �
dt

����
����

�
1

2
ð�xÞTjrr�jx¼xc ð�xÞ

Z 1

0

t2dt

¼
1

6
ð�xÞTjrr�jx¼xc ð�xÞ ð4:2Þ

As described herein, after the domain is reshaped every reshaping step, an isotropic meshing is regarded as maintaining
the same numerical accuracy as the initial domain over the mesh throughout this optimization process. Therefore, the
Hessian matrix rr� is the identity matrix for the case in which � ¼ 1

2
ð�xÞTð�xÞ is used. Finally, the maximal

interpolation error over a mesh is written as

eðxÞ ¼
1

6
h2

max; ð4:3Þ

where hmax represents the maximal length for all edges. The author only works with one variable � for meeting the fixed
error tolerance "h that must be equidistributed over the mesh as

sup
x2�ð�Þ

j�ðxÞ � �hðxÞj �
1

6
"h: ð4:4Þ

The procedure of AMR distributed in Freefem++ is the following for i ¼ 1 � � �Nnodes, where Nnodes 2 N represents the
number of the nodes.

152 NAKAZAWA and NAKAJIMA



Step 1 Set i ¼ 1 and "h arbitrarily.
Step 2 Let di stand for the length of the edge ai.
Step 3 Compare "h and di:

– If di > "h and i � Nnodes, then the edge ai must be cut into two edge and return to Step 2.
– If di � "h and i � Nnodes, then replace i with iþ 1 and return to Step 2.
– Otherwise stop.

Additional details related to the numerical procedure are reported elsewhere in the literature [11] along with a
mathematical proof in continuous and discrete spaces of the domain [12].

5. Numerical Schemes

The Taylor–Hood (P2-P1) element pair for the velocity and pressure is used to discretize all equations spatially.
FreeFEM++ [19] is used for all numerical calculations.

The stationary solution ðu0; p0Þ is obtained to solve the stationary Navier–Stokes problem using the Newton–
Raphson method. The non-stationary solution fðun; pnÞgNn¼1 is obtained to solve Problem 1 with the UMFPACK solver
presented in [21] for every time step from n ¼ 1 to N. For the material derivative term, the characteristic curve method
is used. Using it, Notsu and Tabata [20] proved its mathematical proof and numerical availability. The solver for the
characteristic curve method is distributed in Freefem++ [19]. After obtaining the non-stationary solution fðun; pnÞgNn¼1,
the correlation coefficient matrix R is formed for snapshot POD. The eigenvalue problem for the matrix R is solved in
Problem 2 using lapack solver.

Based on the theory of the optimization problem considered herein, the adjoint problem of Problem 6 is solved to
obtain ð �w; �qÞ with UMFPACK solver [21]. After evaluating the sensitivity, for domain deformation, the H1 gradient
method is used with UMFPACK solver [21]. Finally, AMR is applied after moving meshes every reshaping step, where
the adaptive mesh solver is distributed in Freefem++, as discussed in [19].

6. Numerical Calculations and Discussion

In this section, some parameters for numerical calculations are decided in Sect. 6.1. Numerical calculation results are
discussed in Sect. 6.2.

6.1 Spatial and temporal discretization, adaptive mesh refinement

For comparisons with numerical calculations in [1], the same numerical accuracy evaluation is used as explained
below. Velocity and pressure are discretized in the spatial direction using finite element method, with respective nodes
and elements of ðNnodes;NelementsÞ ¼ ð21945; 43290Þ. For discretization in time, the time step size �t ¼ 0:001 is used to
take time integrations of Problem 1 at Re ¼ 100. Velocity vectors are sampled from T1 ¼ 3 to T2 ¼ 6 for Snapshot
POD. Additional details of numerical accuracy are presented in Appendix A of an earlier report [1].

For AMR in the case of � ¼ 1
2
xTx, the maximum interpolation error eðxÞ in triangles over mesh is evaluated with the

longest edge length hmax in the initial mesh. From the discussion presented in Sect. 4, the interpolation error is satisfied
throughout the shape optimization process.

6.2 Numerical results

As explained in this subsection, the three cases of �1!1 and �1!4 and �2!4 are regarded as a better combination of
eigenvalues in Snapshot POD. In fact, in the domain of interest, the power spectral density from the first to the fourth
primary components was reported as higher than 99% [1]. Therefore this discussion addresses only the primary
components up to the fourth.

The optimal meshes with and without AMR are presented in Fig. 1 for �1!1 and Fig. 2 for �1!4 and Fig. 3 for �2!4.
As these figures show, AMR apparently accommodates more complex domain deformation than the case without
AMR, especially on and near the boundary with high curvature. The POD basis is shown in Appendix A.

Next, values of the cost functions are compared for three cases of eigenvalue combinations. Normalized cost
functions f k= f 0 for �1!1 and �1!4 and �2!4 are presented in Figs. 4, 5, and 6. Apparently, the cost function with AMR
can converge to a greater degree than without AMR throughout the shape-reshaping step.

Finally, we show eigenvalues !1 and
P4

i¼2 !i in the initial and the optimal domains with AMR in Tables 1 and 2,
and 3 for three cases. Subsequently, we discuss efficiencies to suppress the time periodic flow. In fact, the first primary
component eigenvalue !1 and the eigenvalues over the second primary component

P4
i¼2 !i represent the L2 norm of

the time average velocity and the time fluctuation velocity vectors obtained by decomposing the time periodic flow into
primary components. Results clarify that the case of �2!4 decreases

P4
i¼2 !i more than any other case. This result

suggests that �2!4 can best suppress the amplitude of the time periodic flows.
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7. Conclusions

As described herein, the author combines AMR with a shape optimization method for suppressing moderate time
periodic flow fields at a sufficiently low Reynolds number considering Snapshot POD formulated in [1]. Particularly,
the sum of eigenvalues in Snapshot POD is defined as the cost function. The non-stationary Navier–Stokes problem and
the eigenvalue problem in Snapshot POD are used as main problems. The main problems are transformed from strong
forms to weak forms with trial functions based on a standard framework of the finite element method (FEM). The

(a) Without AMR (b) With AMR

Fig. 1. For �1!1, optimal meshes (a) without and (b) with AMR.

(a) Without AMR (b) With AMR

Fig. 2. For �1!4, optimal meshes (a) without and (b) with AMR.

(a) Without AMR (b) With AMR

Fig. 3. For �2!4, optimal meshes (a) without and (b) with AMR.

154 NAKAZAWA and NAKAJIMA



functional is described using the Lagrange multiplier method with FEM. Next, its material derivative is derived to
evaluate the sensitivity using adjoint variable method. The initial domain is reshaped iteratively until the cost function
satisfies the terminal condition, where the H1 gradient method is used for stable domain deformation. This study uses
AMR. Every mesh is reshaped by sensitivity, where the new mesh is generated in the case of � ¼ 1

2
xTx and the
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Fig. 4. For �1!1, normalized cost functions f k= f 0 with reshaping step k ¼ 135 at Re ¼ 100.
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Fig. 5. For �1!4, normalized cost functions f k= f 0 with reshaping step k ¼ 55 at Re ¼ 100.
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Fig. 6. For �2!4, the normalized cost function f k= f 0 with reshaping step k ¼ 45 at Re ¼ 100.
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maximum interpolation error eðxÞ in triangles over mesh is evaluated with the longest edge length hmax in the initial
mesh. Thereby, based on a discussion of Sect. 4, the interpolation error is satisfied throughout the shape optimization
process. A two-dimensional cavity flow with a disk-shaped isolated body is used for a numerical demonstration.
Numerical results reveal that the optimal domain with AMR can decrease the L2 norm of the time average and that the
time fluctuation affects flow fields !1 and

P4
i¼2 !i, to a greater degree than in the initial domain. Suppressing time-

dependent flow efficiently requires that one ascertain a combination of the eigenvalues (POD modes) to decrease the L2

norm of the time fluctuation velocity vector
P4

i¼2 !i.

Appendix: POD Basis

Figures A·1–A·7 are stream functions of POD basis �i at the i primary components of i ¼ 1{4.

Table 3. For �2!4, eigenvalues !1 and
P4

i¼2 !i in the initial and optimal domains with AMR.

!i � �ð�Þ with AMR

!1 0.15202 0.150981P4
i¼2 !i 0.0285624359 0.0247816991

Table 2. For �1!4, eigenvalues !1 and
P4

i¼2 !i in the initial and optimal domains with AMR.

!i � �ð�Þ with AMR

!1 0.15184 0.14410P4
i¼2 !i 0.02931 0.02930

Table 1. For �1!1, eigenvalues !1 and
P4

i¼2 !i in the initial and optimal domains with AMR.

!i � �ð�Þ with AMR

!1 0.15180 0.15181P4
i¼2 !i 0.02931 0.02930

(a) i= 1 (b) i= 2

(a) i= 3 (b) i= 4

Fig. A�1. Stream functions of POD basis at the i-th primary components from i ¼ 1 to 4 at Re ¼ 100 in the initial domain �.
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(a) i= 1 (b) i= 2

(a) i= 3 (b) i= 4

Fig. A�2. For �1!1, stream functions of the POD basis at the i-th primary components from i ¼ 1 to 4 at Re ¼ 100 in the optimal
domain �ð�Þ without AMR.

(a) i= 1 (b) i= 2

(a) i= 3 (b) i= 4

Fig. A�3. For �1!1, stream functions of POD basis at the i-th primary components from i ¼ 1 to 4 at Re ¼ 100 in the optimal
domain �ð�Þ with AMR.
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(a) i= 1 (b) i= 2

(a) i= 3 (b) i= 4

Fig. A�4. For �1!4, stream functions of POD basis at the i-th primary components from i ¼ 1 to 4 at Re ¼ 100 in the optimal
domain �ð�Þ without AMR.

(a) i= 1 (b) i= 2

(a) i= 3 (b) i= 4

Fig. A�5. For �1!4, stream functions of POD basis at the i-th primary components from i ¼ 1 to 4 at Re ¼ 100 in the optimal
domain �ð�Þ with AMR.
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(a) i= 1 (b) i= 2

(a) i= 3 (b) i= 4

Fig. A�6. For �2!4, stream functions of POD basis at the i-th primary components from i ¼ 1 to 4 at Re ¼ 100 in the optimal
domain �ð�Þ without AMR.

(a) i= 1 (b) i= 2

(a) i= 3 (b) i= 4

Fig. A�7. For �2!4, stream functions of POD basis at the i-th primary components from i ¼ 1 to 4 at Re ¼ 100 in the optimal
domain �ð�Þ with AMR.
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