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SUMMARY Kakuro is a popular logic puzzle, in which a player fills in
all empty squares with digits from 1 to 9 so that the sum of digits in each
(horizontal or vertical) line is equal to a given number, called a clue, and
digits in each line are all different. In 2016, Bultel, Dreier, Dumas, and
Lafourcade proposed a physical zero-knowledge proof protocol for Kakuro
using a deck of cards; their proposed protocol enables a prover to convince
a verifier that the prover knows the solution of a Kakuro puzzle without
revealing any information about the solution. One possible drawback of their
protocol would be that the protocol is not perfectly extractable, implying
that a prover who does not know the solution can convince a verifier with
a small probability; therefore, one has to repeat the protocol to make such
an error become negligible. In this paper, to overcome this, we design
zero-knowledge proof protocols for Kakuro having perfect extractability
property. Our improvement relies on the ideas behind the copy protocols in
the field of card-based cryptography. By executing our protocols with a real
deck of physical playing cards, humans can practically perform an efficient
zero-knowledge proof of knowledge for Kakuro.
key words: cryptography, card-based protocols, real-life hands-on cryp-
tography, Kakuro, physical zero-knowledge proof

1. Introduction

Kakuro, also known as Cross Sums, is a popular logical puz-
zle, which is played with numbers. A puzzle instance of
Kakuro consists of empty squares and numbers called clues,
as illustrated in Fig. 1(a). Each clue (which is a positive
number placed on a triangle) is associated with a line con-
sisting of consecutive squares; for example, the clue “6” in
Fig. 1(a) is associated with the (horizontal) line consisting of
three consecutive squares on the first row, and the clue “11”
is associated with the (vertical) line on the second column.
The goal of Kakuro is to fill in all empty squares with digits
obeying the following rules.

1. Fill in all empty squares with digits from 1 to 9.
2. For each (horizontal or vertical) line, the clue (which is

an integer) associated with the line must be equal to the
sum of all the digits on the line.

3. The digits on each line must be all different.

Figure 1(b) shows a solution to the puzzle in Fig. 1(a); one
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Fig. 1 Example of a Kakuro puzzle and its solution.

can easily confirm that the solution satisfies the above rules.
The example puzzle shown in Fig. 1 is pretty small; usu-

ally, Kakuro puzzles are played in larger grids, as illustrated
in Fig. 2. As in this puzzle, multiple lines may exist on the
same row or column thanks to black cells and/or triangles (on
which clues are placed). This paper solicits zero-knowledge
proof [1] schemes for Kakuro.

Because any NP problem has a zero-knowledge
proof [2] and Kakuro is known to be NP-complete [3]–
[5], we can construct a zero-knowledge proof protocol for
Kakuro (e.g. [6]), which enables a prover P to convince a
verifier V that the prover P knows the solution of a Kakuro
puzzle without revealing any information about the solution.
In contrast, an “unconventional” zero-knowledge proof pro-
tocol for Kakuro was proposed by Bultel, Dreier, Dumas,
and Lafourcade [7] in 2016. Their protocol, which we call
the BDDL protocol, uses a two-colored deck of cards, such
as red cards ♥ and black cards ♣ having the same backs
? . The BDDL protocol falls in the category of physical
zero-knowledge proofs (e.g. [8]–[10]), which are supposed

Copyright © 2019 The Institute of Electronics, Information and Communication Engineers
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Fig. 2 Typical Kakuro puzzle.

to be performed by human hands along with everyday-life
objects.

Although we will present the details of the BDDL pro-
tocol in Sect. 2.2, the protocol roughly proceeds as follows.
We assume here that the prover P and the verifier V are in
the same place.

1. The prover P puts on each empty square four identical
piles (of cards), each of which encodes the digit on that
square of the solution.

2. The verifier V confirms that the sum of all digits in
each line is equal to the given clue and that digits in
each line are all different by using shuffle actions to
the consecutive piles along with envelopes and helping
piles.

Let us look at the first phase 1: Following the solution
that the prover P knows, P puts on each empty square four
piles (of cards), all of which should be identical. However, P
is technically able to put four piles that violate the protocol,
that is, P may put four piles that are not necessarily the same.
In this case, V can be convinced even if P does not know
the solution. Therefore, the BDDL protocol is not perfectly
extractable; that is, a probability that V becomes convinced
despite for P not knowing the solution is non-zero. Thus,
V and P have to repeat the BDDL protocol to make the
probability of such an error become negligible. Because
physical zero-knowledge proof protocols are supposed to be
executed by humans, repeating a physical protocol many
times would be a burden on humans.

In this work, we propose protocols that achieve perfect
extractability; thus, the verifier V will never be convinced
whenever the prover P does not know the solution. Our im-

provement comes from the ideas behind the copy protocols
in the field of card-based cryptography†. Specifically, we
first provide a copy protocol which enables V to duplicate
a pile of cards put by P without revealing any information
about the encoded number, and hence, we can attain perfect
extractability because all piles on each square are guaran-
teed to be identical. Therefore, our improved protocol is
more efficient since it needs no repetition. Table 1 shows a
comparison of performances of the BDDL protocol and our
protocol where we assume that a Kakuro puzzle contains n
squares and ` clues. Both the protocols use nine envelopes
when shuffling piles of cards. Moreover, we propose an-
other protocol that uses cards numbered from 1 to 9 (e.g.,
1 , 2 , . . . , 9 ).

The remainder of this paper is organized as follows.
In Sect. 2, we introduce the existing protocol. In Sect. 3,
we present our improved protocol. In Sect. 4, we propose
another protocol based on the numbered cards. Section 5
concludes this paper.

2. Preliminaries

In this section, we briefly review zero-knowledge proofs, and
then explain the BDDL protocol [7], which is the existing
physical zero-knowledge proof scheme for Kakuro.

2.1 Zero-Knowledge Proof

A zero-knowledge proof is an interactive proof between a
prover P and a verifier V [1]. They are assumed to be
†Card-based cryptography enables us to perform secure multi-

party computations by using a deck of cards (e.g., [11]–[15]).
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Table 1 Card-based zero-knowledge proof protocols for Kakuro.

# of Cards # of Shuffles Extractability Error

BDDL[7] 81` + 18n 2` at most 1/4

Ours (§3) 81`+81 3` + 1 0

given an instance y of a problem, and P knows a witness
w of the solution while V does not know w. In addition,
computational power ofV is bounded so thatV cannot obtain
w from y . Under these assumptions, P wants to convince V
that P knows w without revealing any information about w.
A zero-knowledge proof should satisfy the following three
properties.

Completeness If P knows w, V is convinced.
Extractability If P does not know w, V is convinced only

with a small probability.
Zero-knowledgeness V does not obtain any information

about w.

The probability that V is convinced even though P does
not know w is called the extractability error. If we have a
zero-knowledge proof protocol whose extractability error is
δ > 0, repeating the protocol t times allowsV to detect that P
does not know w with a probability of 1 − δt , which is over-
whelming. Therefore, we can establish a zero-knowledge
proof of knowledge practically by the repetition even if a
protocol has extractability error, i.e., it is not perfectly ex-
tractable.

However, as for physical zero-knowledge proofs, a pro-
tocol is expected to be executed by human hands, and hence,
it is difficult to repeat the protocol many times. Thus,
constructing a zero-knowledge proof protocol with no ex-
tractability error, i.e., a perfectly extractable protocol, would
be much desired.

2.2 The BDDL Protocol

Given a Kakuro puzzle, the BDDL protocol [7] enables the
prover P to convince the verifier V that P knows the solution
of the puzzle; as mentioned in the previous section, the
BDDL protocol uses a two-colored deck of cards

♣ ♣ · · · ♣ ♥ ♥ · · · ♥

whose backs are identical ? .
Before going into the details of the protocol, wemention

the encoding scheme to be used. A digit x, 1 ≤ x ≤ 9, is
encoded with a “pile” consisting of x black cards and (9 − x)
red cards, as follows:

♣ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ = 1,

♣ ♣ ♥ ♥ ♥ ♥ ♥ ♥ ♥ = 2,

♣ ♣ ♣ ♥ ♥ ♥ ♥ ♥ ♥ = 3,
...

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ = 9.

We denote a pile of nine face-down cards encoding a digit x
according to the above scheme by

?︸︷︷︸
x

,

and we call it a face-down pile of x.
Given a Kakuro puzzle whose solution is known to the

prover P, the BDDL protocol proceeds as follows.

1. The prover P does the following for each line of the
puzzle; assume that the line consists of k squares, and
let x1, x2, . . . , xk be the solution digits on the squares in
this order. Note that k satisfies 1 ≤ k ≤ 9.

• For every i-th square on the line, P puts two (iden-
tical) piles of xi on the square. We now have

?︸︷︷︸
x1

?︸︷︷︸
x1

?︸︷︷︸
x2

?︸︷︷︸
x2

· · · ?︸︷︷︸
xk

?︸︷︷︸
xk

on the line consisting the k squares.
• Let {y1, . . . , y9−k } := {1, 2, . . . , 9} − {x1, . . . , xk }.

P puts on the associated triangle† a pile of yj for
every j, 1 ≤ j ≤ 9− k, that is, P puts (9 − k) piles
that do not appear as digits on the line. We now
have

?︸︷︷︸
y1

?︸︷︷︸
y2

· · · ?︸︷︷︸
y9−k

on the triangle. Notice that because there are horizontal
lines and vertical lines, four piles in total have been put
on each square.

2. The verifier V does the following for each line.

• V randomly picks a pile on every square of the line;
V also picks all the piles on the associated triangle.
Now, V has nine piles, and V puts each pile into
an identical envelope. All the nine envelopes are
shuffled and then all cards are taken out of every
envelope to check whether the nine piles encode
all distinct digits.

• V randomly picks a pile on every square of the
line, accumulate all the cards in the picked piles,
and then shuffles all the cards. Then, V reveals
the shuffled cards to check whether the number of
black cards is equal to the clue.

One can verify that the BDDL protocol above satisfies

†For a line, the associated triangle means the triangle whose
clue is associated with the line.
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the three properties of a zero-knowledge proof, i.e., com-
pleteness, extractability, and zero-knowledgeness [7]. As
for extractability, let us consider a situation where V is con-
vinced with the highest probability despite illegal input by
P. Such a situation was shown to occur when three piles
of the same digit and another pile of a different digit were
put by P on each square; in this case, a probability that V is
convinced is at most 1/4 [7]. Thus, the BDDL protocol does
not achieve perfect extractability.

Denote the number of squares by n and the number
of lines by `. Then, the number of cards put on the table
after Step 1 of the BDDL protocol is 81` + 18n. In order
for P to be able to put such a number of cards, 81` + 81`
cards suffice; if we adjust the numbers of black and red cards
taking the values of all clues into account, we can reduce
the number of required cards so that 81` + 18n cards are
sufficient. Furthermore, the number of required shuffles is
2`. See Table 1 again.

3. Our Improved Protocol

In this section, we improve upon the BDDL protocol in-
troduced in the previous section so that we have a protocol
achieving perfect extractability. To this end, we make use of
the ideas behind the copy protocols in card-based cryptog-
raphy.

We first provide a copy protocol for duplicating a se-
quence of nine distinct piles in Sect. 3.1. Using the copy
protocol as a sub-protocol, we present our improved proto-
col in Sect. 3.2. Furthermore, we verify the validity of our
improved protocol in Sect. 3.3.

3.1 Duplicating Commitments

Remember that the BDDL protocol presented in Sect. 2.2
uses a sequence of nine distinct piles in the first item of
Step 2 to confirm whether the consecutive piles (put by P)
in a line are all different. We call such a sequence of nine
piles a line commitment, and consider how to duplicate a line
commitment.

We hereinafter regard a line commitment

?︸︷︷︸
x1

?︸︷︷︸
x2

?︸︷︷︸
x3

?︸︷︷︸
x4

?︸︷︷︸
x5

?︸︷︷︸
x6

?︸︷︷︸
x7

?︸︷︷︸
x8

?︸︷︷︸
x9

as a permutation

*.
,

1 2 3 4 5 6 7 8 9

x1 x2 x3 x4 x5 x6 x7 x8 x9

+/
-
,

which belongs to the symmetric group of degree nine, de-
noted by S9.

Given a line commitment, which corresponds to a per-
mutation π ∈ S9, along with additional cards, the following
procedure enables V to make two copied line commitments.

1. Using nine additional face-up piles, V puts a line com-
mitment corresponding to the identity permutation id,

as follows:

? ? · · · ? (π)

1 2 · · · 9 id

→
? ? · · · ? (π)

? ? · · · ? (id),

where x represents a (face-up) pile of x, 1 ≤ x ≤ 9,
and a permutation with parentheses indicates that cards
are face-down.

2. V accumulates two piles in each column and put them in
an envelope without changing their order and then the
nine envelopes are shuffled. After the shuffle, V takes
the piles from each envelope. Now, for a uniformly
distributed random permutation r ∈ S9, we have



?
?

������

?
?

������

· · ·

· · ·

������

?
?



(π)
(id)

→
? ? · · · ? (rπ)

? ? · · · ? (r).

3. V reveals the line commitment in the first row to confirm
that the piles z1, z2, · · · , z9 in the line commitment are
all different, where

rπ = *.
,

1 2 . . . 9

z1 z2 . . . z9

+/
- .

Next, V generates the same line commitment as the top
row and places at the top so that we have

z1 z2 · · · z9

? ? · · · ?

rπ

(r)

→

z1 z2 · · · z9

z1 z2 · · · z9

? ? · · · ?

rπ

rπ

(r) .

4. Turn over all the face-up cards so that we have two line
commitments to rπ. In a similar manner to Step 2, V
accumulates three piles in each column and put them in
an envelope without changing their order and then the
nine envelopes are shuffled. After the shuffle, V takes
the piles from each envelope. Now, for a uniformly
distributed random permutation r ′ ∈ S9, we have



?
?
?

���������

?
?
?

���������

· · ·

· · ·

· · ·

���������

?
?
?



(rπ)

(rπ)

(r)
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→

? ? · · · ?

? ? · · · ?

? ? · · · ?

(r ′rπ)

(r ′rπ)

(r ′r) .

5. Finally, V reveals the line commitment in the bottom
row and thenV sorts the columns by applying (r ′r)−1 to
each row so thatwe obtain two copied line commitments
to π:

? ? · · · ?

? ? · · · ?

1 2 · · · 9

(π)

(π)

id .

It should be noted that the revealed cards can be reused
in the next “copy” task.

Note that, in this copy protocol,V can not only duplicate
given piles on the line but also can convince that the piles
encode all distinct digits, as seen in Step 3. Thus, if we
slightly change Step 3 so that only one line commitment to
rπ is put, we can have a protocol for checking whether all
piles are different. We will also use this in our main protocol
in the next subsection.

The construction of our copy protocol partially borrows
the idea given in [16] and [17], namely, indexing a pile with
cards, regarding a sequence of piles as a permutation and
how to generate the inverse of a permutation.

3.2 Description of Our Improved Protocol

Given a Kakuro puzzle, which has `h horizontal lines and `v
vertical lines with `h ≥ `v , our protocol proceeds as follows.
(If `h < `v , interchange the words ‘horizontal’ and ‘vertical’
and interchange ‘`h’ and ‘`v’ in the protocol description
below.)

1. The prover P holds 81(`h + `v) cards.
2. P puts on each empty square a pile of the digit of

the solution. For every vertical line, P puts on the
associated triangle all piles that do not appear in the
line. After the placement, there are 81`v cards put on
the table.

3. Next, for every horizontal line, P puts on the asso-
ciated triangle all piles that do not appear in the line.
This operation is performed with remaining 81`h cards;
however, the cards which were not used must be secret
from the verifier V .

4. P and V do the following.

• For each horizontal line, take all piles on the line
and the associated triangle to create a line com-
mitment, and apply the (modified) copy protocol
(without duplication) shown in Sect. 3.1 to confirm
that the digits are all different.

• P collects the cards which were not used in Step 3
and the cards which are on the associated triangles
of the horizontal lines, and then, these cards are

shuffled. These cards can be reused for the later
applications of the copy protocol.

• For each vertical line, take all piles on the line and
the associated triangle to create a line commitment,
and apply the copy protocol shown in Sect. 3.1 to
make two copied line commitments (and confirm
that the digits are all different).

5. For each line, V picks a pile on every square of the line,
accumulate all the cards in the picked piles, and then
all the cards are shuffled. Finally, V reveals the shuffled
cards to check whether the number of black cards is
equal to the associated clue.

As described in Step 1, the number of cards to execute
this protocol is 81`+81 (where ` = `h+`v is the total number
of clues). The number “81” comes from the reusable cards
noted in Step 5 in our copy protocol shown in Sect. 3.1.
The number of required shuffles is 3` + 1. Our protocol
is implementable with fewer cards than the BDDL protocol
(when n ≥ 5) as shown in Table 1.

3.3 The Validity

One can easily confirm the three properties of zero-
knowledge proof of our improved protocol presented in
Sect. 3.2, as follows.

Completeness If P puts a line commitment according to the
solution, V is absolutely convinced that the piles on the
lines are all different in Step 3 in Sect. 3.2. In addition,
since the number of black cards in the piles put by P on
each line is equal to the clue, by confirming that, V is
absolutely convinced.

(Perfect) extractability Since V uses the duplicated piles
for the verification, the piles (put by V ) in a square are
guaranteed to be identical. Therefore, if P does not
know the solution, V always finds an illegal input.

Zero-knowledgeness We assume a simulator S which sim-
ulates the conversation with V . S does not know the
solution of a Kakuro puzzle while S is permitted to ex-
change piles with other piles during the shuffle action.
If we let S act as follows, the conversation of S and the
one of P are indistinguishable from V (here, we only
show zero-knowledgeness of our copy protocol because
the other part of our improved protocol is quite similar
to the BDDL protocol presented in Sect. 2.2).

• Using nine additional piles, V puts a line commit-
ment to the identity permutation id as follows.

? ? · · · ? (π)

1 2 · · · 9 id

→
? ? · · · ? (π)

? ? · · · ? (id).
• V accumulates two piles in each column and put
them in an envelopewithout changing its order and
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then V shuffles the nine envelopes. At this time, S
exchanges the envelopes with other envelopes con-
taining any distinct nine piles. After the shuffle, V
takes the piles from each envelope. From now on,
V continues the same procedure of the protocol.

4. Our Numbered-Card Protocol

In this section, we propose another physical zero-knowledge
proof protocol forKakuro that has perfect extractability prop-
erty. Unlike the previous sections, this protocol uses a deck
of cards numbered from 1 to 9 such as 1 2 · · · 9 with
identical back ? . Note that cards having the same number
need to be identical.

Given a Kakuro puzzle whose solution is known to the
prover P, our numbered-card protocol proceeds as follows,
although we omit the details of the copy protocol of the
numbered-card version because it is quite similar to the one
in Sect. 3.1, i.e., just replacing a pile with a numbered card.

1. P and V do the following.

• The prover P puts on each empty square a card
having the number of the solution.

• For every horizontal line, P puts on the associated
triangle all cards that do not appear in the line.

• For each horizontal line, take all piles on the line
and the associated triangle to create a line com-
mitment, and apply the copy protocol shown in
Sect. 3.1.

2. P and V do the following for each line.

• Assume that the line consists of k squares. P gen-
erates all possible combinations of k cards where
the sum of numbers is equal to the corresponding
clue except for the combination of the solution. P
puts each k cards into an identical envelope and
places them on the associated triangle. At this
time, P needs to put them so that V does not know
the order of each k cards.

• V picks a card on every square of the line, shuffle
the cards and puts them into an envelope; if there
are some envelopes on the associated triangle, V
also picks all the envelopes. All the envelopes
are shuffled and then all the cards are taken out
to check whether there are all combinations of k
cards such that the sum of numbers is equal to the
clue.

Although P has to calculate all combinations satisfying
the condition in the first item of Step 2, the number of pos-
sible combinations is restricted because Kakuro deals with
a number from 1 to 9. The case where P has to put the
largest number of cards on an associated triangle is when
P has to consider c = 25 and k = 5 (where c is the clue
number). In this case, there are possible 12 piles of 5 cards,
and hence, P has to put on the associated triangle a number
55 ( = 5 × 12 − 5) of cards except the solution. This is the

worst case; the number of required cards for this protocol
depends much on a puzzle instance.

One can easily confirm the three properties of zero-
knowledge proof of this protocol because it is quite similar to
those of our improved protocol presented in Sect. 3.3 except
a candidate list. As for zero-knowledgeness, it is obvious that
S can easily exchange envelopes with the ones corresponding
to the candidate list during the shuffle.

This protocol is designed for the standard Kakuro,
which handles numbers 1 to 9, implying that the size of
any candidate list is bounded by a constant.

5. Conclusion

In this paper, by applying the ideas behind the copy protocols
in card-based cryptography, we proposed two card-based
physical zero-knowledge proof protocols for Kakuro with
perfectly extractability. Our protocols do not need to be
repeated, and hence, they are efficient.
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