Key Factors for High Diastereo- and Enantioselectivity of Umpolung Cyclizations of Aldehyde-Containing Allylpalladium Intermediates

Hirokazu Tsukamoto, ${ }^{* 1,2}$ Ayumu Kawase, ${ }^{1}$ Hirotaka Omura, ${ }^{1}$ and Takayuki Doi ${ }^{1}$
${ }^{1}$ Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
${ }^{2}$ Department of Pharmaceutical Sciences, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, Kanagawa 245-0066, Japan

E-mail: hirokazu.tsukamoto@hamayaku.ac.jp
Received: June 5, 2019; Accepted: July 16, 2019; Web Released: July 24, 2019

Abstract

Hirokazu Tsukamoto Hirokazu Tsukamoto received his Ph.D. degree from Tokyo Institute of Technology under the direction of Prof. Takashi Takahashi in 1999. He worked as a researcher for Sankyo Co., LTD (1999-2000). He joined Prof. Yoshinori Kondo's group at Tohoku University as an assistant professor (2000-2008). He worked as a research associate for Prof. Daniel Kahne at Harvard University (2008-2011). He joined Prof. Takayuki Doi's group at Tohoku University as an assistant professor (2011-2015), lecturer (2015-2018), and associate professor (2018-2019). He moved to Yokohama University of Pharmacy as a full professor (2019-present). His research field is development of novel catalytic reactions and total synthesis of biologically active compounds.

Abstract

Two palladium/chiral diphosphine-catalyzed umpolung cyclizations of aldehyde-containing allylic acetates and allenes with arylboronic acid are fully investigated to establish key factors in their high stereoselectivities. Both cyclization reactions afford cis-disubstituted pyrrolidine and tetrahydrofuran. These occur in high diastereo- and enantioselectivities through a common cationic (Z) $-\eta^{1}$-allylpalladium, toward which a ring strain generated in the cyclization step leading to trans-isomers biases the equilibrium through $\eta^{3}-\eta^{1}-\eta^{3}$-complex in the former cyclization. Varied diastereoselectivities were observed in the formation of five-membered carbocycles and six-membered heterocycles. These reflect release of a ring strain generated in the cyclization step leading to trans-isomers and a different distribution of the (Z) - and the $(E)-\eta^{1}$-allylpalladium intermediates generated by the oxidative addition of allylic acetates to $\operatorname{Pd}(0)$ or carbopalladation of allenes, respectively. A sterically demanding substituent at the center of the allyl moiety is necessary for high diastereo- and enantioselectivity. The enantioselectivity of the former cyclization was lowered by the presence of organometallic reductants or reagents, possibly causing the formation of neutral η^{1}-allylpalladium species. We used a chiral allylic acetate containing (E)-deuterium-labeled alkene to demonstrate that the electrophilic attack of the aldehyde to the allyl ligand occurred on the side where the palladium existed, consistent with the Zimmerman-Traxler transition state.

Keywords: Oxidative addition of allylic acetates | Carbopalladation of allenes | Umpolung cyclization

1. Introduction

The allylpalladium species is one of the most versatile intermediates in organic synthesis and it exists in equilibrium between η^{3} - and η^{1}-complexes 2 and $\mathbf{6}$ with electrophilic and nucleophilic properties, respectively (Scheme 1). ${ }^{1,2}$ In combination with chiral ligands, both asymmetric allylation of nucleophiles ${ }^{3}$ (Tsuji-Trost reaction) and electrophiles ${ }^{4}$ are possible. η^{3}-Allylpalladium 2 is readily formed by oxidative

Scheme 1. Pd-catalyzed umpolung allylation of aldehydes leading to homoallyl alcohol 5 through allylmetal 3a and η^{1}-allylpalladium 6.

Scheme 2. SEGPHOS-ligated Pd-catalyzed cyclizations of allene $\mathbf{9}$ and allylic acetate $\mathbf{1 3}$ leading to $\mathbf{1 1}$.
addition of allylic acetate 1 to $\operatorname{Pd}(0)$, and undergoes nucleophilic substitution to afford Tsuji-Trost reaction product and $\operatorname{Pd}(0)$, which enables the catalytic process. ${ }^{1}$ The isomerization of η^{3} - to η^{1}-complex 6 and the subsequent electrophilic substitution can lead to the umpolung allylation. Its catalytic reaction, however, needs stoichiometric metallic reductants to convert the resulting $\mathrm{Pd}(\mathrm{II})$ into $\mathrm{Pd}(0) .{ }^{2}$ The $\mathrm{Et}_{2} \mathrm{Zn}$ - or $\mathrm{Et}_{3} \mathrm{~B}$-mediated catalytic and asymmetric nucleophilic allylation of aldehyde 4 was pioneered by Zanoni, ${ }^{4 \mathrm{a}}$ while Minnaard ${ }^{4 \mathrm{~b}}$ and Zhou ${ }^{4 \mathrm{c}, 4 \mathrm{~d}}$ built upon the method and proposed that the organometallics function as reducing alkylating agents, forming η^{1}-allylpalladium 6 bearing an Et group and a chiral monophosphorus ligand. Previously, the asymmetric nucleophilic allylation was considered unfeasible because Tamaru assumed allyl-zinc andborane 3a, generated by transmetalation of η^{3}-allylpalladium $\mathbf{2}$ with $\mathrm{Et}_{2} \mathrm{Zn}$ or $\mathrm{Et}_{3} \mathrm{~B}$, were intermediates for the non-asymmetric variant. ${ }^{2 \mathrm{a}}$ The transmetalation of $\mathrm{Pd}(\mathrm{II})$ with either allylmetal $\mathbf{3 b}^{5-10}$ or a combination of organoboron reagent 7 and allene $\mathbf{8}^{11,12}$ is more suitable for the formation of η^{1}-allyl complex $\mathbf{6}$, because a reducing agent is unnecessary for its catalytic nucleophilic allylation. However, a special ligand like bis(π allyl), ${ }^{5,6} \mathrm{PCP}$ pincer, ${ }^{7,8}$ or N-heterocyclic carbene ${ }^{9,10}$ is necessary to generate η^{1}-allyl complex $\mathbf{6}$, which is in equilibrium with 2, but rarely detected. Nakamura and Yamamoto proposed η^{1} allylpalladium 6 with a chiral π-allyl ligand as the intermediate in enantioselective imine allylations. ${ }^{5}$ Consequently, any Pdcatalyzed umpolung allylations involve stoichiometric metallic reagents. Umpolung allylations not requiring metallic reagents are advantageous: neither the stoichiometric metallic byproducts nor multiple allylmetal species (leading to difficult chiral control) are generated. ${ }^{13,14}$

In contrast to the intermolecular asymmetric umpolung allylation of aldehyde and imine functionalities under palladium catalysis, the intramolecular variant remained undeveloped ${ }^{15}$ until we reported. ${ }^{12 a, 16}$ We expected that the umpolung cyclization would occur more readily because thermodynamically unstable η^{1}-allylpalladium is effectively captured by the adjacent electrophile and that the above special ligands are unnecessary. Firstly, we developed the arylative cyclization of allene-aldehyde $\mathbf{9}$ with arylboronic acid $\mathbf{7}$ under $\operatorname{Pd}(I I)$ catalysis to afford the homoallylic alcohol $\mathbf{1 1}$ in high diastereo- and enantioselectivity (Scheme 2). ${ }^{12 a}$ We proposed the highly stereoselective reaction originates from the ZimmermanTraxler transition state $\mathbf{1 0}{ }^{17-19}$ consisting of the aldehyde and

Scheme 3. Kurosawa's report on electrophilic addition of neutral (η^{1}-allyl)arylpalladium 17.
cationic η^{1}-allylpalladium ligated with $5,5^{\prime}$-bis(diphenylphos-phino)-4,4'-bi-1,3-benzodioxole (SEGPHOS, 12a), a commercially available chiral diphosphine. ${ }^{20}$ However, the η^{1}-allylpalladium derived from 9 can further react with 7, to produce neutral (η^{1}-allyl)arylpalladium, reported by Kurosawa, ${ }^{21}$ Szabo, ${ }^{7}$ Minnaard, ${ }^{4 \mathrm{~b}}$ and Zhou ${ }^{4 \mathrm{~d}}$ as nucleophilic (Scheme 3). Secondly, to explore the participation of the aryl ligand in the cyclization, we developed the $\operatorname{Pd}(0) /$ SEGPHOS or the DM-SEGPHOS-catalyzed enantioselective cyclization of allylic acetate-aldehyde $\mathbf{1 3}$ with the aid of a formate reductant. ${ }^{16}$ The successful cyclization proved that the two cyclization reactions proceed through the common cationic η^{1}-allylpalladium and that enantiodifferentiation happens in the aldehyde allylation instead of in the allylpalladium formation. Interestingly, neither Tsuji-Trost-type products $\mathbf{1 4}{ }^{22}$ and $\mathbf{1 5}^{23}$ nor reduced products $\mathbf{1 6}$ and $\mathbf{1 6}^{\prime}$ formed, although formate can reduce η^{3}-allylpalladium. ${ }^{24}$ The latter cyclization is advantageous in: 1) there is no need for metallic reagents to generate the stoichiometric metallic byproducts and multiple allylmetal species; 2) it has the ability to introduce a wide variety of substituent R (other than aryl group) into the vinyl group of the products.

The two cyclization reactions proceed through a common intermediate but yield different stereoselectivities, in some cases. Although some related cis-selective cyclizations under transition metal catalysis exist, the reason for the diastereoselectivity remains unclear. ${ }^{18,19,25}$ Herein, the two asymmetric umpolung cyclization reactions are investigated to establish the key factors responsible for the excellent stereoselectivity. In addition to preliminarily reported data, ${ }^{12 \mathrm{a}, 16}$ further experimental results are shown here to compare the effects of factors on the stereoselectivity.

2. Experimental

General Procedure for Umpolung Cyclization of Aldehyde-Containing Allylic Acetates (\pm)-13a•d-g•j and Carbonates (\pm)-13b•h•i (Table 1, Entry 1, Table 2, Entry 2 and Scheme 5). To a test tube containing a solution of $\mathbf{(\pm)} \mathbf{- 1 3 a} \cdot \mathbf{b} \cdot \mathbf{d}-\mathbf{j}$ (1.0 equiv) in anhydrous $\mathrm{MeCN}(0.05 \mathrm{M})$ were added $\mathrm{Pd}\left[\mathrm{P}(o \text {-tolyl })_{3}\right]_{2}(10 \mathrm{~mol} \%)$, (S)-SEGPHOS or (S)-DMSEGPHOS ($15 \mathrm{~mol} \%$), and reductant $\left(\mathrm{HCO}_{2} \mathrm{H}-\mathrm{Bu}_{3} \mathrm{~N}\right.$ (3.0 equiv) for $\mathbf{1 3 a} \cdot \mathbf{d} \mathbf{- g} \cdot \mathbf{j}$ and $\mathrm{HCO}_{2} \mathrm{H}(1.0$ equiv) for $\mathbf{1 3 b} \cdot \mathbf{h} \cdot \mathbf{i})$ under argon. The resulting mixture was sealed with a screw cap and stirred at $50^{\circ} \mathrm{C}$. After starting material $\mathbf{1 3}$ was consumed, the mixture was concentrated in vacuo. The residue was purified by preparative TLC to afford $\mathbf{1 1 a \cdot d} \mathbf{d}$ and $\mathbf{1 1 (f - j})^{\prime}$. Enantiomeric excess of the products was determined by chiral HPLC. The relative configuration was determined by NOESY correlation. The absolute configurations were determined by modified Mosher's method ${ }^{26}$ using its (R) - and (S)-MTPA esters, which were obtained by condensation of the products (DCC, DMAP and DCM) with (R) - and (S)-Mosher's acids, respectively.

General Procedure for Phenylative Cyclization of AlleneAldehydes 9a•e-j with Phenylboronic Acid (Table 4, Entry 1 and Scheme 6). To a test tube containing a solution of $\mathbf{9 a \cdot e}-\mathbf{j}(1.0$ equiv) in anhydrous $\mathrm{MeCN}(0.1 \mathrm{M})$ were added $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$, (S)-SEGPHOS ($10 \mathrm{~mol} \%$), and $\mathrm{PhB}(\mathrm{OH})_{2}$ (1.5 equiv) under argon. The resulting mixture was sealed with a screw cap and stirred at $50^{\circ} \mathrm{C}$. After starting material 9 was consumed, the mixture was cooled down to room temperature and then treated with PS-DEAM MP resin ${ }^{\mathrm{TM}}$ (polymer-bound diethanolamine, $1.8 \mathrm{mmol} / \mathrm{g}, 3.0$ equiv) and CHCl_{3} to remove an excess of $\mathrm{PhB}(\mathrm{OH})_{2}$. The mixture was agitated at room temperature for 2 h , then filtered, and washed with CHCl_{3} thoroughly. The filtrate was concentrated in vacuo. The residue was purified by preparative TLC to afford $\mathbf{1 1 a} \cdot \mathbf{e}-\mathbf{j}$ and $\mathbf{1 1}(\mathbf{f}-\mathbf{j})^{\prime}$. Enantiomeric excess of the products was determined by chiral HPLC.

Phenylative Cyclization of Allene-Aldehyde 9a in THF by Gradual Addition of $\mathbf{P h B}(\mathbf{O H})_{2}$ (Scheme 4). To a solution of $9 \mathbf{a}(12.0 \mathrm{mg}, 0.045 \mathrm{mmol})$ in anhydrous THF $(0.1 \mathrm{M})$ were added $\mathrm{Pd}(\mathrm{OAc})_{2}(1.0 \mathrm{mg}, 4.5 \mu \mathrm{~mol})$ and (S)-SEGPHOS $(2.8 \mathrm{mg}, 4.6 \mu \mathrm{~mol})$ under argon. To the stirring solution was added $0.1 \mathrm{M} \mathrm{PhB}(\mathrm{OH})_{2}(8.3 \mathrm{mg}, 0.068 \mathrm{mmol})$ solution in anhydrous THF with a syringe pump over 2 h at $50^{\circ} \mathrm{C}$. The resulting mixture was stirred at the same temperature for another 5 h . The mixture was cooled down to room temperature and then treated with PS-DEAM MP $\operatorname{resin}^{\mathrm{TM}}(1.8 \mathrm{mmol} / \mathrm{g}, 3.0$ equiv $)$ and CHCl_{3} to remove an excess of $\mathrm{PhB}(\mathrm{OH})_{2}$. The mixture was agitated at room temperature for 2 h , then filtered, and washed with CHCl_{3} thoroughly. The filtrate was concentrated in vacuo and the residue was purified by preparative TLC ($50 \% \mathrm{EtOAc} /$ hexane) to afford ($3 S, 4 S$)-11a ($8.0 \mathrm{mg}, 0.023 \mathrm{mmol}, 52 \%$, 95% ee).

Two-Step Conversion of 131^{\prime} into 11 k via 11 l (Scheme 8). Reductive Cyclization of 131^{\prime} : To a test tube containing a solution of 131' $(E: Z=1: 2.5,8.4 \mathrm{mg}, 0.023 \mathrm{mmol})$ in anhydrous $\operatorname{MeCN}(0.05 \mathrm{M})$ were added $\mathrm{Pd}\left[\mathrm{P}(o \text {-tolyl })_{3}\right]_{2}(1.7 \mathrm{mg}, 2.4$ $\mu \mathrm{mol}$), ((S)-DM-SEGPHOS ($2.5 \mathrm{mg}, 3.5 \mu \mathrm{~mol}$), and $\mathrm{HCO}_{2} \mathrm{H}-$ $\mathrm{Bu}_{3} \mathrm{~N}(2.6 \mu \mathrm{~L}-16.0 \mu \mathrm{~L}, 0.069 \mathrm{mmol})$ under argon. The resulting mixture was sealed with a screw cap and stirred at $50^{\circ} \mathrm{C}$ for 1.5 h . Then the mixture was concentrated in vacuo. The residue was purified by preparative TLC ($20 \% \mathrm{EtOAc} /$ toluene) to afford 111 ($4.4 \mathrm{mg}, 0.015 \mathrm{mmol}, 64 \%$). Enantiomeric excess of 111 (87% ee) was determined by chiral HPLC (Daicel Chiralpak AD-H, i-propanol $/$ hexane $=10: 90,0.5 \mathrm{~mL} / \mathrm{min}$, $\lambda=254 \mathrm{~nm}): \quad t_{\mathrm{R}}(3 R, 4 R)=33.0 \mathrm{~min} \quad$ (minor enantiomer), $t_{\mathrm{R}}(3 S, 4 S)=35.8 \mathrm{~min}$ (major enantiomer).

Reduction of Cl Group in 111: To a test tube containing a solution of $111(15.9 \mathrm{mg}, 0.053 \mathrm{mmol}, 87 \%$ ee) in anhydrous DMA $(0.2 \mathrm{~mL})$ were added $\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}(2.0 \mathrm{mg}, 5.2 \mu \mathrm{~mol})$, dppf $(3.2 \mathrm{mg}, 5.8 \mu \mathrm{~mol})$, and $\mathrm{HCO}_{2} \mathrm{Na}(5.4 \mathrm{mg}, 0.079 \mathrm{mmol})^{27}$ under argon. The resulting mixture was sealed with a screw cap and stirred at $80^{\circ} \mathrm{C}$ for 10 h . The mixture was treated with water and the aqueous layer was extracted with EtOAc twice. The combined organic layers were washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by preparative TLC ($20 \% \mathrm{EtOAc} /$ toluene) to afford the reduced product identical to $(3 S, 4 S)-11 \mathrm{k}(13.1 \mathrm{mg}, 0.049$ $\mathrm{mmol}, 93 \%$). Chiral HPLC of the product (87% ee) showed that optical purity of $\mathbf{1 1 1}$ was retained during the reduction.

One-Pot, Two-Step Conversion of $\mathbf{1 3 n}^{\prime}$ into $\mathbf{1 1 m}$ via 11 n (Scheme 9). To a test tube containing a solution of $\mathbf{1 3} \mathbf{n}^{\prime}$ (14.2 $\mathrm{mg}, 0.038 \mathrm{mmol}$) in anhydrous $\mathrm{MeCN}(0.05 \mathrm{M})$ were added $\mathrm{Pd}\left[\mathrm{P}(o \text {-tolyl })_{3}\right]_{2}(2.7 \mathrm{mg}, 3.8 \mu \mathrm{~mol})$, (S)-SEGPHOS $(3.5 \mathrm{mg}, 5.7$ $\mu \mathrm{mol})$, and $\mathrm{HCO}_{2} \mathrm{H}-\mathrm{Bu}_{3} \mathrm{~N}(4.3 \mu \mathrm{~L}-25.9 \mu \mathrm{~L}, 0.114 \mathrm{mmol})$ under argon. The resulting mixture was sealed with a screw cap and stirred at $50^{\circ} \mathrm{C}$ for 24 h . The mixture was treated with PBu_{3} $(2.0 \mu \mathrm{~L}, 8.1 \mu \mathrm{~mol})$ and $\mathrm{HCO}_{2} \mathrm{H}-\mathrm{Bu}_{3} \mathrm{~N}(2.9 \mu \mathrm{~L}-17.3 \mu \mathrm{~L}, 0.077$ $\mathrm{mmol})$. After being stirred at $50^{\circ} \mathrm{C}$ for another 6 h , the mixture was concentrated in vacuo. The residue was purified by preparative TLC ($20 \% \mathrm{EtOAc} /$ toluene) to afford $\mathbf{1 1 m}(5.7 \mathrm{mg}, 0.025$ $\mathrm{mmol}, 66 \%)$. After conversion of $\mathbf{1 1 m}(5.7 \mathrm{mg}, 0.025 \mathrm{mmol})$ to 4-(prop-1-en-2-yl)-1-tosylpyrrolidin-3-ol ($5.8 \mathrm{mg}, 0.021 \mathrm{mmol}$, 82%) [1) TFA, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2\right) \mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$], enantiomeric excess of $\mathbf{1 1 m}(94 \%$ ee) was determined by chiral HPLC.

Umpolung Cyclization of (+)-13u under Pd(0)-Dppe Catalysis (Scheme 14). To a solution of (S, E)-13u (20.8 $\mathrm{mg}, 0.084 \mathrm{mmol})$ in anhydrous $\mathrm{MeCN}(0.05 \mathrm{M})$ were added $\mathrm{Pd}\left[\mathrm{P}(o-\text { tolyl })_{3}\right]_{2}(6.0 \mathrm{mg}, 8.4 \mu \mathrm{~mol})$, dppe $(5.0 \mathrm{mg}, 13 \mu \mathrm{~mol})$, and $\mathrm{HCO}_{2} \mathrm{H}-\mathrm{Bu}_{3} \mathrm{~N}(9.5 \mu \mathrm{~L}-59 \mu \mathrm{~L}, 0.25 \mathrm{mmol})$ under argon. The resulting mixture was sealed with a screw cap and stirred at $50^{\circ} \mathrm{C}$ for 1 d . Then the mixture was concentrated in vacuo. The residue was purified by preparative TLC ($10 \% \mathrm{EtOAc} /$ toluene $)$ to afford $\left(1 R^{*}, 2 R^{*}\right)$ - $\mathbf{1 1} \mathbf{u}$ and $\left(1 S^{*}, 2 R^{*}\right)-\mathbf{1 1} \mathbf{u}^{\prime}(d r=2: 1,24.9$ $\mathrm{mg}, 0.072 \mathrm{mmol}, 86 \%$) as a faster- and slower-moving component, respectively. $\left(1 R^{*}, 2 R^{*}\right)-\mathbf{1 1} \mathbf{u}$ was further purified by chiral HPLC (Daicel Chiralpak OD-H, i-propanol/hexane $=$ $1: 10,0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, recycled 3 times) to afford ($1 S$, $2 S) \mathbf{- 1 1 u}$ (pseudo enantiomer) $\left(t_{\mathrm{R}}=26.2 \mathrm{~min}\right)$ and $(1 R, 2 R) \mathbf{- 1 1 \mathbf { u }}$ $\left(t_{\mathrm{R}}=29.5 \mathrm{~min}\right) .{ }^{1} \mathrm{H}$ NMR analysis showed the respective inversion and retention of the alkene geometries in $(1 S, 2 S)$ - and $(1 R, 2 R) \mathbf{- 1 1} \mathbf{u} .\left(1 S^{*}, 2 R^{*}\right)-\mathbf{1 1} \mathbf{u}^{\prime}$ was further purified by chiral HPLC (Daicel Chiralpak AS-H, i-propanol/hexane $=1: 10$, $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, recycled 2 times) to afford $(1 R, 2 S)$ $\mathbf{1 1 \mathbf { u } ^ { \prime }}\left(t_{\mathrm{R}}=10.1 \mathrm{~min}\right)$ and $(1 S, 2 R) \mathbf{- 1 1 \mathbf { u } ^ { \prime }}$ (pseudo enantiomer) $\left(t_{\mathrm{R}}=11.5 \mathrm{~min}\right) .{ }^{1} \mathrm{H}$ NMR analysis showed the respective retention and inversion of the alkene geometries in $(1 R, 2 S)$ - and $(1 S, 2 R)-\mathbf{1 1} \mathbf{u}^{\prime}$.

3. Results and Discussion

Effect of Reductant on the Allylic Acetate-Aldehyde Cyclization. The effects of the reaction conditions on the stereoselectivity of the reductive cyclization of allylic acetatealdehyde 13a were investigated and data are presented in Table 1. As expected, the choice of the reductant crucially influenced the enantioselective cyclization. Hydride sources like formic acid in combination with tributylamine ${ }^{28}$ (Entry 1) and triethylsilane (Entry 2) gave ($3 S, 4 S$)-11a in high yield with excellent diastereo- and enantioselectivity. ${ }^{29}$ Interestingly, the reduction of acetate ${ }^{24}$ to $\mathbf{1 6}$ or $\mathbf{1 6}^{\prime}$ (Scheme 2) was absent under the reaction conditions. Meanwhile, organometallic reagents including $\mathrm{Et}_{3} \mathrm{~B}$ and $\mathrm{Et}_{2} \mathrm{Zn}$ employed in the intermolecular variant ${ }^{4}$ lowered the yield and the optical purity of 11a (Entries 3 and 4). The use of THF as a solvent instead of acetonitrile allowed partial enantioselectivity recovery by the borane reagent, whereas that with zinc generated only a trace amount of the product (Entries 5 and 6). Additionally, the $\mathrm{Et}_{2} \mathrm{Zn}$ failed to promote the cyclization reaction even under Minnaard's reaction conditions. ${ }^{4 b}$

Table 1. Effects of the reductant on the enantioselectivity of allylic acetate-aldehyde cyclization.

Entry	Reductant	Solvent	Time (h)	Yield $(\%)$	$E e$ $(\%)^{[\mathrm{a}]}$
$1^{[\mathrm{b}]}$	$\mathrm{HCO}_{2}{\mathrm{H}-\mathrm{Bu}_{3} \mathrm{~N}}^{\mathrm{CH}_{3} \mathrm{CN}}$	4	87	95	
2	$\mathrm{Et}_{3} \mathrm{SiH}$	$\mathrm{CH}_{3} \mathrm{CN}$	6	78	94
3	$\mathrm{Et}_{3} \mathrm{~B}^{[\mathrm{cc}]}$	$\mathrm{CH}_{3} \mathrm{CN}$	72	41	49
4	$\mathrm{Et}_{2} \mathrm{Zn}^{[\mathrm{d}]}$	$\mathrm{CH}_{3} \mathrm{CN}$	36	11	79
5	$\mathrm{Et}_{3} \mathrm{~B}^{[\mathrm{cc}]}$	THF	72	43	83
6	$\mathrm{Et}_{2} \mathrm{Zn}^{[\mathrm{d]}}$	THF	36	trace	-

[a] Enantiomeric excess of cis-isomer 11a was determined by chiral HPLC. [b] reported in ref. 16. [c] 5 equiv of $E t_{3} B$ was used. [d] 3.5 equiv of $\mathrm{Et}_{2} \mathrm{Zn}$ was used.

Table 2. Effects of the leaving group on the reductive cyclization.

		$\xrightarrow[\substack{\text { Additive } \\ \text { (c) } \\ \mathrm{CH}_{3} \mathrm{CN}(0.05 \mathrm{M}), 50^{\circ} \mathrm{C}}]{\substack{\left.10 \mathrm{~mol} \% \text { Pd[P(o-tolyl) })_{3}\right]_{2} \\ 15 \mathrm{~mol} \%(S) \text {-SEGPHOS }}}$		 (3S, 4S)-11a	
Entry	X	Additive	Time (h)	Yield (\%)	$\begin{gathered} E e \\ (\%)^{[a]} \end{gathered}$
1	$\mathrm{OCO}_{2} \mathrm{Et}$	$\begin{gathered} \mathrm{HCO}_{2} \mathrm{H}-\mathrm{Bu}_{3} \mathrm{~N} \\ \text { (3 equiv) } \\ \hline \end{gathered}$	4	84	95
$2^{[b]}$	$\mathrm{OCO}_{2} \mathrm{Et}$	$\begin{aligned} & \hline \mathrm{HCO}_{2} \mathrm{H} \\ & \text { (1 equiv) } \end{aligned}$	7	70	90
$3^{[b]}$	OCHO	None	72	54	91
4	OCHO	$\begin{gathered} \mathrm{HCO}_{2}{\mathrm{H}-\mathrm{Bu}_{3} \mathrm{~N}}_{\text {(1 equiv) }} \end{gathered}$	17	66	93
5	OCHO	$\mathrm{HCO}_{2} \mathrm{H}$ (1 equiv)	24	$60^{[\text {[c] }}$	91
6	OCHO	$\begin{gathered} \mathrm{AcOH} \\ \text { (1 equiv) } \end{gathered}$	108	$29^{[d]}$	$n d^{[6]}$

[a] Enantiomeric excess of cis-isomer 11a was determined by chiral HPLC. [b] reported in ref. 16. [c] (-)-Trans-isomer was also obtained in 15% yield. [d] (-)-Trans-isomer was also obtained in 3% yield. [e] nd $=$ not determined.

Similar to acetate 13a, carbonate 13b underwent cyclization even without an amine, because of in situ basic alkoxide generation from the leaving group through decarboxylation ${ }^{30}$ (Table 2, Entries 1 and 2). The slightly lower reaction rate and the product yield are attributed to the lower concentration of the reductant. Similarly, an in situ generated hydride from the leaving group of formate $\mathbf{1 3 c}$ enabled omission of the external reductant, but seemed insufficient for the reaction rate (Entry 3). ${ }^{24}$ The sluggish reaction was therefore accelerated using an external formate salt (Entry 4). These results highlight the necessity of a high concentration of the reductant for a rapid catalytic cycle. Although formic acid also promoted the reductive cyclization of carbonate $\mathbf{1 3 b}$ and formate $\mathbf{1 3 c}$, the trans-

Table 3. Effects of the solvent on the enantioselectivity of allylic acetate-aldehyde cyclization.

Entry	Solvent	Time (h)	Yield $(\%)$	Dr $(\text { cis:trans })^{[a]}$	$E e$ $(\%)^{[b]}$
$1^{[\mathrm{c}]}$	$\mathrm{CH}_{3} \mathrm{CN}$	4	87	$>20: 1$	95
2	THF	3	71	$>20: 1$	95
3	DMF	6	69	$>20: 1$	95
4	DCM	1.5	83	$19: 1$	95
5	MeOH	48	70	$3.7: 1$	90

[a] Diastereomeric ratio was determined by ${ }^{1} \mathrm{HNMR}$ analysis of a mixture of diastereomers. [b] Enantiomeric excess of cisisomer was determined by chiral HPLC. [c] reported in ref. 16.

Table 4. Effects of the solvent on the enantioselectivity of allene-aldehyde cyclization.

	$\underset{\mathrm{Ta}_{\mathrm{a}}}{\mathrm{TsN}_{\mathrm{o}}}$	$\xrightarrow[\substack{\text { PhB (OH) })_{2}(1.5 \text { equiv) } \\ \text { Solvent (} 0.1 \mathrm{M}), 50^{\circ} \mathrm{C}}]{10 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAC})_{2}} 10$			
Entry	Solvent	Time (h)	Yield (\%)	$\begin{gathered} D r \\ (\text { cis:trans })^{[\mathrm{ax}]} \end{gathered}$	$\begin{gathered} E e \\ (\%)^{[b]} \end{gathered}$
$1^{[\mathrm{c}]}$	$\mathrm{CH}_{3} \mathrm{CN}$	2	93	cis only	97
2	THF	2.5	81	18:1	77
3	DMF	5	84	>20:1	82
4	DCM	3	81	>20:1	86
5	MeOH	48	39	15:1	67

[a] Diastereomeric ratio was determined by ${ }^{1} \mathrm{HNMR}$ analysis of a mixture of diastereomers. [b] Enantiomeric excess of cisisomer 11a was determined by chiral HPLC. [c] reported in ref. 12a.
diastereomer ${ }^{18,18 b, 19 \mathrm{c}}$ was also obtained as a minor product of the 13c (Entries 2 vs. 5). Since acetic acid also lowered the diastereoselectivity (Entry 6), protic media hinders the cyclic transition state for high stereoselectivity. ${ }^{18 \mathrm{~d}}$ Variants of the reaction conditions enabled reductive cyclization of other substrates (vide infra).

Comparison of Solvent Effect. Since the reaction conditions for the reductive cyclization were adapted to those for the arylative cyclization of allene-aldehydes, ${ }^{12 \mathrm{a}}$ acetonitrile, the best solvent for the latter was chosen as the solvent. Although the enantioselectivity of the allylic acetate-aldehyde cyclization was unaffected by the aprotic solvent, that of allenealdehyde cyclization was partially affected (Table 3 vs. Table 4). It is noteworthy that the protic media (i.e., methanol), again caused low diastereoselectivity particularly in the former cyclization (Table 3, Entry 5).

Excess organometallic reagent likely decreases enantioselectivity through the formation of neutral η^{1}-allylpalladium species like $\mathbf{1 7}$ in Scheme 3. The loss of enantioselectivity observed in the THF (Table 4, Entry 2) was dramatically suppressed by gradual addition of phenylboronic acid to maintain

Scheme 4. Effects of gradual addition of $\mathrm{PhB}(\mathrm{OH})_{2}$ on the enantioselectivity of the arylative cyclization of $\mathbf{9 a}$.
its low concentration (Scheme 4). The use of acetonitrile as a solvent prevents cationic η^{1}-allylpalladium intermediates from further transmetalation because of its high coordination ability to the palladium center.

Comparison of Diastereoselectivities. The best reaction conditions for the reductive cyclization of sulfonamide-tethered allylic acetate 13a (Tables 1 and 3, Entry 1), converted Bocprotected nitrogen-tethered 13d into 11d in 53% yield and 90% ee (data not shown). We presumed reduced electrophilicity of the adjacent carbonyl group due to the weak electronwithdrawing carbamate, causing lower chemical yield. Gratifyingly, slightly modified conditions involving more σ-donating DM-SEGPHOS (12b) than SEGPHOS (12a) produced 11d in much better yield, with retention of high enantioselectivity (Scheme 5). The σ-donating phosphines aid the allyl ligand to become nucleophilic rather than electrophilic. The DMSEGPHOS ligand also served effectively for reductive cyclization of other substrates $\mathbf{1 3 e - i}$ (Scheme 5). The oxygen-tethered substrate 13e converted to cis-disubstituted tetrahydrofuran 11e in high diastereo- and enantioselectivities. Unfortunately, the diastereomeric ratio of five-membered carbocycles $\mathbf{1 1 f}$ and $\mathbf{1 1} \mathrm{g}$, and six-membered heterocycles $\mathbf{1 1 h}$ and $\mathbf{1 1 i}$ were cis/trans $=$ 1.5:1-3.0:1, although diastereomers $\mathbf{1 1 f} \mathbf{- i}$ and $\mathbf{1 1 (f} \mathbf{- i})^{\prime}$ possess high optical purities. The modified Mosher's method ${ }^{26}$ revealed the same absolute configuration for each pair of diastereomers at the α-position of the hydroxyl group, and the opposite stereochemistry substituted by the α-styryl group. It should be noted that the treatment of the acetate counterparts of $\mathbf{1 3 h}$ and 13 i with formic acid and tributylamine accompanied the formation of side-products 19^{31} and 20 , respectively, which were derived from base-promoted β-elimination of sulfonamide followed by reduction of η^{3}-allylpalladium and Tsuji-Trost type reaction, respectively (Figure 1). The base-free conditions employed for the cyclization of the carbonate 13b (Table 2, Entry 2) completely suppressed the side reactions and converted carbonates $\mathbf{1 3 h}$ and $\mathbf{1 3 i}$ into cis- and trans-products $\mathbf{1 1 h}$ \mathbf{i} and $\mathbf{1 1 h} \mathbf{- i} \mathbf{i}^{\prime}$. Moreover, the cyclization of tertiary allylic acetate 13j produced a $2: 1$ diastereomeric mixture of a quaternary carbon-containing pyrrolidine $\mathbf{1 1} \mathbf{j}$ and $\mathbf{1 1} \mathbf{j}$ ' in $\mathbf{9 0 \%}$ and $\mathbf{7 0 \%}$ ee, respectively. The diastereoselectivity was significantly below that of secondary allylic acetate 13a (Table 1, Entry 1).

These products are also obtained by the phenylative cyclization of allene-aldehydes 9e-i (Scheme 6). Regardless of the tethered atom and the length in the substrates, the latter cyclization showed superior diastereoselectivity than the former, generating cis-disubstituted tetrahydrofuran 11e, fivemembered carbocycles $\mathbf{1 1 f}$ and $\mathbf{1 1 g}$, and six-membered heterocycles $\mathbf{1 1 h}$ and $\mathbf{1 1 i}$, exclusively or preferentially (Scheme 5 vs . 6). The two cyclizations showed comparably high enantioselectivities. In contrast, the phenylative cyclization of methyl-

$(\pm)-13 e$
(3S, 4S)-11e

condition $\mathrm{A}: 10 \mathrm{~mol} \% \mathrm{Pd}\left[\mathrm{P}(o \text {-tolyl })_{3}\right]_{2}, 15 \mathrm{~mol} \%(S)$-DM-SEGPHOS, reductant, $\mathrm{CH}_{3} \mathrm{CN}(0.05 \mathrm{M}), 50^{\circ} \mathrm{C}$. ${ }^{a}$ reductant $=3$ equiv $\mathrm{HCO}_{2} \mathrm{H}-\mathrm{Bu}_{3} \mathrm{~N}$. ${ }^{b}$ reductant $=$ 1 equiv $\mathrm{HCO}_{2} \mathrm{H} .{ }^{c}(S)$-SEGPHOS was used as a ligand. ${ }^{d}$ reported in ref. 16.

Scheme 5. The reductive cyclizations of aldehyde-containing allylic acetates $\mathbf{1 3 d} \mathbf{- q} \cdot \mathbf{j}$ and carbonates $\mathbf{1 3 h} \cdot \mathbf{i}$.

19

20

Figure 1. Side-products 19 and 20 obtained from the acetate counterparts of $\mathbf{1 3 h}$ and $\mathbf{1 3 i}$ under basic conditions.
substituted allene $\mathbf{9 j}$ was more diastereoselective, but less enantioselective than the reductive equivalent of $\mathbf{1 3 j}$ to yield common products $\mathbf{1 1} \mathbf{j}$ and $\mathbf{1 1} \mathbf{j}$ ' containing a quaternary carbon.

Diastereoselectivities of the Reductive Cyclizations of Isomeric Primary Allylic Acetate-Aldehydes. Further experiments to understand the differences in the diastereoselectivities of two types of the cyclizations were still required, because the

condition $\mathrm{B}: 10 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}, 15 \mathrm{~mol} \%(\mathrm{~S})$-SEGPHOS, 1.5 equiv $\mathrm{PhB}(\mathrm{OH})_{2}, \mathrm{CH}_{3} \mathrm{CN}(0.1 \mathrm{M}), 50^{\circ} \mathrm{C}$.

Scheme 6. Highly diastereoselective phenylative cyclizations of allene-aldehydes $\mathbf{9 e} \mathbf{e}$.
use of secondary allylic acetates $\mathbf{1 3 a}$ and $\mathbf{1 3 g}$ renders the ratio of the anti- and $s y n-\eta^{3}$-allylpalladium intermediates kinetically generated in situ obscure. The stereo-defined η^{3}-allylpalladiums were prepared predominantly from the (Z) - and the (E) primary allylic acetates $\mathbf{1 3 a}{ }^{\prime}$ and $\mathbf{1 3 g}^{\prime}$ (Scheme 7). ${ }^{32}$ Interestingly, both of the nitrogen-tethered isomers (Z) - and (E) - $\mathbf{1 3 a}^{\prime}$ converted into cis-diastereomer 11a exclusively or preferentially, although the latter substrate caused a slight decrease in the optical purity of 11a. In contrast, the (Z) - and the (E)-allylic acetates $\mathbf{1 3} \mathbf{g}^{\prime}$ containing a carbon-tether also underwent cyclization to produce diastereomeric mixtures of $\mathbf{1 1 g}$ and $\mathbf{1 1} \mathbf{g}^{\prime}$, but with reverse selectivity, i.e., $4.3: 1$ and 1:2.4, respectively. It is noteworthy that minor diastereomers derived from primary allylic acetates $\mathbf{1 3} \mathbf{g}^{\prime}$ showed enantiomers of lower purity than those from secondary allylic acetate 13g (Scheme 5).

Substituent Effect on the Allylic Acetate-Aldehyde Cyclization. Since the arylative cyclization of allene-aldehydes accompanies the introduction of a sterically demanding aryl group into the allene central carbon, ${ }^{12 a}$ the steric effect of the substituent at the C-2 in the allylpalladium moiety on the

condition A: $10 \mathrm{~mol} \% \operatorname{Pd}\left[\mathrm{P}(\mathrm{o}-\mathrm{tolyl})_{3}\right]_{2}, 15 \mathrm{~mol} \%(\mathrm{~S})$-DM-SEGPHOS,
3 equiv $\mathrm{HCO}_{2} \mathrm{H}-\mathrm{Bu}_{3} \mathrm{~N}, \mathrm{CH}_{3} \mathrm{CN}(0.05 \mathrm{M}), 50^{\circ} \mathrm{C}$. a reported in ref. 16.
Scheme 7. Reductive cyclizations of (Z)- and (E)-primary allylic acetates $\mathbf{1 3} \mathbf{a}^{\prime}$ and $\mathbf{1 3 g}^{\prime}$.

Table 5. Effect of the reaction conditions on the cyclization of allylic acetate- or carbonate-aldehydes.

$\underset{\substack{\text { TsN }}}{\underbrace{\mathrm{x}}_{(\pm)-13 \mathrm{~K}}}$	$\xrightarrow[\substack{\text { Reductant } \\ \mathrm{CH}_{3} \mathrm{CN}(0.05 \mathrm{M}), 50^{\circ} \mathrm{C}}]{\substack{10 \mathrm{~mol} \% \mathrm{Pd}\left[\mathrm{P}(\mathrm{o} \text {-tolyl })_{3}\right]_{2} \\ 15 \mathrm{~mol} \% \text { 12a or } 12 \mathrm{~b}}}$				
Entry	X	12	Reductant	$\begin{aligned} & \text { Yield }{ }^{[a]} \\ & \text { of } \mathbf{1 1 k} \end{aligned}$	$\begin{aligned} & \text { Yield }^{[a]} \\ & \text { of } \mathbf{1 1 k} \mathbf{k}^{\prime} \end{aligned}$
$1^{[b]}$	OAc	12a	$\begin{gathered} \mathrm{HCO}_{2} \mathrm{H} \\ -\mathrm{Bu}_{3} \mathrm{~N} \\ (3 \text { equiv }) \end{gathered}$	$\begin{aligned} & 26 \%, \\ & 66 \% \text { ee } \end{aligned}$	$\begin{aligned} & 6 \%, \\ & 55 \% \text { ee } \end{aligned}$
$2^{[b]}$	OAc	12b	$\begin{gathered} \mathrm{HCO}_{2} \mathrm{H} \\ -\mathrm{Bu}_{3} \mathrm{~N} \\ \text { (3 equiv) } \end{gathered}$	$\begin{aligned} & 39 \%, \\ & 66 \% \text { ee } \end{aligned}$	$\begin{aligned} & 7 \%, \\ & 55 \% \text { ee } \end{aligned}$
3	$\mathrm{OCO}_{2} \mathrm{Me}$	12b	$\begin{aligned} & \hline \mathrm{HCO}_{2} \mathrm{H} \\ & \text { (1 equiv) } \end{aligned}$	$\begin{aligned} & 68 \%, \\ & 65 \% \text { ee } \end{aligned}$	$\begin{aligned} & 15 \%, \\ & 57 \% \text { ee } \end{aligned}$

[a] Enantiomeric excess of $\mathbf{1 1 k}$ and $\mathbf{1 1} \mathbf{k}^{\prime}$ was determined by chiral HPLC. [b] $\mathbf{1 4 k}$ was obtained in 40% and 37% yields in Entries 1 and 2, respectively.
diastereo- and enantioselectivities was unclear. In contrast to the phenyl-substituted substrate 13a, the reaction of 2unsubstituted allylic acetate $\mathbf{1 3 k}(X=O A c)$ in the presence of tributylammonium formate produced Tsuji-Trost type O allylation product $\mathbf{1 4} \mathbf{k}^{33}$ along with a diastereomeric mixture of cyclized products $\mathbf{1 1} \mathbf{k}$ and $\mathbf{1 1} \mathbf{k}^{\prime}$ (Table 5, Entry 1). While the substitution of SEGPHOS (12a) with the σ-donating DM-SEGPHOS (12b) did not prevent the formation of sideproduct $\mathbf{1 4 k}$ (Entry 2), the combination of the carbonate $\mathbf{1 3 j}$ ($\mathrm{X}=\mathrm{OCO}_{2} \mathrm{Me}$) and the formic acid caused suppression, generating $\mathbf{1 1} \mathbf{k}$ and $\mathbf{1 1} \mathbf{k}^{\prime}$ in the highest combined yield (Entry 3). These results indicated that the presence of an amine promoted the formation of enolate, that is susceptible to electrophilic allylation with the less hindered η^{3}-allylpalladium. It is note-

Scheme 8. Alternative approach leading to $\mathbf{1 1 k}$.

Scheme 9. Reductive cyclizations of $\mathbf{1 3 m}$ and $\mathbf{1 3 n}$ ' producing 11m.
worthy that the enantiomeric ratio of the cis-product 11 k was below that of the phenyl-substituted 11a but was still good (er = ca. 4.7:1). The lower enantioselectivity reflects a lower difference in the activation energies of the Zimmerman-Traxler transition states $\mathbf{1 0}$ and $\mathbf{1 0}^{\prime}(\mathrm{R}=\mathrm{H})$ (Scheme 2). ${ }^{34}$ Gratifyingly, the enantiomerically enriched product 11 k was obtained by the reduction of chloro-substituted $\mathbf{1 1 1},{ }^{27}$ which was prepared by the diastereo- and enantioselective cyclization of isomeric allylic acetate $\mathbf{1 3 1}^{\prime}$ (Scheme 8). ${ }^{16}$

The methyl-substituted allylic carbonate $\mathbf{1 3 m}$ also underwent reductive cyclization to yield 4-(1-methyletheny)-pyrrolidin-3-ol derivative $\mathbf{1 1} \mathbf{m}$, but with low enantioselectivity (79% ee; Scheme 9, top). Instead, the use of di-carbonate $\mathbf{1 3 n} n^{\prime}$ solved the problem and produced the $\mathbf{1 1 m}$ in 94% ee after one-pot reduction of in situ generated mono-carbonate 11n (Scheme 9, bottom). A (methoxycarbonyloxy)methyl group in $\mathbf{1 3 n} \mathbf{n}^{\prime}$ acted as a surrogate for the methyl group and improved the enantioselectivity in the cyclization step.

The substitution of an aldehyde with a methyl ketone also caused great loss in enantioselectivity (Scheme 10). This loss is ascribed to steric repulsion between the methyl group and pseudoequatorial phenyl group in the SEGPHOS ligand in transition state $\mathbf{1 0}$ shown in Scheme 2. This phenomenon is consistent with previous observations on the arylative cyclization of allene-ketone. ${ }^{12 \mathrm{a}}$

Plausible Mechanism of the Allylic Acetate-Aldehyde Cyclization. The diastereoselectivities observed in the reduc-

Scheme 10. Reductive cyclization of allylic acetate-methyl ketone 130.

Scheme 11. Plausible mechanism for the reductive cyclizations of $\mathbf{1 3}$ and (Z) - and (E)-13'.
tive cyclization of allylic acetate-aldehydes (Schemes 5 and 7) provide clues to the generation and participation of allylpalladium intermediates in the cyclization (Scheme 11). Oxidative addition of allylic acetate $(\pm)-\mathbf{1 3}$ to $\operatorname{Pd}(0)$ produces anti- and syn $-\eta^{3}$-allylpalladiums 21 and $\mathbf{2 1}^{\prime}$, that are in equilibrium with the (Z) - and the $(E)-\eta^{1}$-allylpalladiums 22 and $\mathbf{2 2}^{\prime}$, respectively. A sterically demanding substituent R in the allylic moiety favors the $a n t i-\eta^{3}$-allylpalladium 21 over the syn-complex 21' kinetically and thermodynamically through η^{1}-allylpalladium 23. ${ }^{35}$ Contrarily, $\mathrm{S}_{\mathrm{N}} 2$ - or $\mathrm{S}_{\mathrm{N}} 2^{\prime}$-type oxidative addition of the (Z) - and the (E)-allylic acetates $\mathbf{1 3}^{\prime}$ to $\operatorname{Pd}(0)$ predominantly generates anti- and syn- η^{3}-allylpalladium 21 and 21', respectively. ${ }^{32}$ Among the four six-membered transition states with R groups oriented toward the upper left to avoid a steric repulsion with the pseudoequatorial phenyl group in the (S)-SEGPHOS ligand (see Scheme 2), chair-like transition states 24 and 25 are much more favorable than boat-like $\mathbf{2 4}$ ' and $\mathbf{2 5}^{\prime}$. The Zimmerman-Traxler transition states $\mathbf{2 4}$ and $\mathbf{2 5}$ generate ($1 R$, $2 R$)- and ($1 R, 2 S$)-cyclopentanols $\mathbf{1 1}$ and $\mathbf{1 1}^{\prime}(\mathrm{X}=$ carbon), respectively, whereas minor transition states $\mathbf{2 5}$ ' and $\mathbf{2 4}^{\prime}$ provide counter enantiomers to reduce the optical purity of each diastereomer overall. Based on the experimental results on the formation of five-membered carbocycles $\mathbf{1 1 g}$ and $\mathbf{1 1 g}^{\prime}$ (Schemes 5 and 7), the ratios of $(1 R, 2 R)-\mathbf{1 1 g}$ to $(1 S, 2 R)-\mathbf{1 1 g}^{\prime}$ and those of $(1 R, 2 S)-\mathbf{1 1} \mathbf{g}^{\prime}$ to $(1 S, 2 S) \mathbf{- 1 1 g}$ are estimated at $99 /$ $1-97 / 3$ and $94 / 6-92 / 8$, respectively and reflect the degree of contribution of the transition states $\mathbf{2 4} / \mathbf{2 4}$ and $\mathbf{2 5} / \mathbf{2 5}$. The relatively lower optical purities of the minor diastereomers trans- $\mathbf{1 1} \mathbf{g}^{\prime}$ and cis-11g prepared from the (Z)- and the (E) allylic acetates $\mathbf{1 3 g} \mathbf{g}^{\prime}$ (Scheme 7) are attributed to partial participation of the boat transition states $\mathbf{2 4}^{\prime}$ and $\mathbf{2 5}$. The reverse diastereoselectivity observed in the cyclizations of the (Z)- and

Scheme 12. Diastereoselective cyclizations of 13p and 13q leading to spiro compounds $\mathbf{1 1 p}$ and 11q.
the $(E)-\mathbf{1 3} \mathbf{g}^{\prime}$ indicates that the isomerization of each η^{3} allylpalladium to a primary η^{1}-allylpalladium and the subsequent cyclization, are faster than the syn-anti isomerization through the secondary η^{1}-allylpalladium 23. In addition to higher activation energies for transition states $\mathbf{2 5}$ and $\mathbf{2 5}^{\prime}, \mathrm{S}_{\mathrm{N}} 2^{\prime}-$ type oxidative addition of (Z) - and (E)-allylic acetates $\mathbf{1 3 g}^{\prime}$, which results in the direct formation of secondary η^{1} allylpalladium 23 (an intermediate between 21 and 21^{\prime} formed via σ-bond rotation), may account for the incomplete diastereoselectivity observed with a different relative ratio (4.3:1 vs. 1:2.4, Scheme 7).

To support the interpretation above, cyclic allylic acetates $\mathbf{1 3 p}$ and $\mathbf{1 3 q}$ were employed as the substrates because of the provision of the geometrically fixed allyl complexes $\mathbf{2 1 p} \cdot \mathbf{q}$ and $\mathbf{2 2 p} \cdot \mathbf{q}$ (Scheme 12). Expectedly, the diastereoselective transformation of $\mathbf{1 3 p}$ and $\mathbf{1 3 q}$ into spiro compounds $\mathbf{1 1 p}$ and $\mathbf{1 1 q}$ was observed. The result demonstrates that the geometry of the η^{3}-allylpalladium intermediate considerably affects the diastereoselectivity of the reductive cyclization reaction.

Meanwhile, the formation of five-membered heterocycles accompanies a ring strain in the trans-fused $\mathbf{2 5}$ and $\mathbf{2 4}^{\prime}$. This is explained by the shorter carbon-nitrogen and carbon-oxygen relative to carbon-carbon bonds, that raises the acitavation energy of $\mathbf{2 5}$ and $\mathbf{2 4}$ and dramatically increases the ratio of the cis- $\mathbf{1 1}$ to trans- $\mathbf{1 1}$ ' (Scheme 11). Again, the slight reduced optical purity of the cis-11a is attributed to participation of the boat transition state $\mathbf{2 5}^{\prime}$ through the syn- η^{3}-allylpalladium 21', generated in higher quantities from (E)-allylic acetate $\mathbf{1 3 a}^{\prime}$ than the (Z)-isomer 13a' (Scheme 7). As illustrated in Scheme 5, an elongation of the tether by a carbon releases the strain and increases the amount of the trans-adduct $\mathbf{1 1 h}^{\mathbf{\prime}}$ and $\mathbf{1 1 i}^{\prime}$. Low diastereoselectivity observed in the cyclization of tertiary allylic acetate 13j (Scheme 5) indicates that the methyl substituent would block the isomerization between anti- and syn-η^{3}-allylpalladiums with a little difference in thermodynamic stabilities, which must be intermediated by tertiary η^{1}-allylpalladium $\mathbf{2 3 '}^{\prime}$ (Scheme 13) formed unlikely. ${ }^{32}$ In addition, a small R group ($\mathrm{R}=\mathrm{H}$, Me; Scheme 11) reduces thermodynamic stability of the anti- η^{3}-allylpalladium 21 and the difference in activation energies of the Zimmerman-Traxler transition states $\mathbf{1 0}$ and $\mathbf{1 0}^{\prime}$ (Scheme 2) yielding lower diastereo- and enantioselectivity (Table 5, Entry 3).
Plausible Mechanism of the Allene-Aldehyde Cyclization. The arylative cyclization of allene-aldehyde 9 proceeds through $(Z)-\eta^{1}$-allylpalladium $22(\mathrm{R}=\mathrm{H}, \mathrm{Me})$, that is kinetically

Scheme 13. Plausible mechanism for the phenylative cyclizations of 9 .

Table 6. Substituent effect on the stereoselectivity of allenealdehyde cyclization.

[a] Diastereomeric ratio was determined by ${ }^{1} \mathrm{HNMR}$ analysis of a mixture of diastereomers. [b] Enantiomeric excess of 11 and $\mathbf{1 1}^{\prime}$ was determined by chiral HPLC. [c] reported in ref. 12a.
formed by carbopalladation of the terminal double bond in 9 from the less hindered face (Scheme 13). ${ }^{36,37}$ This retains the high cis-selectivity even during the formation of cyclopentanols $\mathbf{1 1 f}$ and $\mathbf{1 1 g}$, six-membered heterocycles $\mathbf{1 1 h}$ and 11i, and pyrrolidine $\mathbf{1 1} \mathrm{j}$ containing a tertiary carbon (Scheme 6).

The above reaction mechanism suggests that substitution by R larger than a methyl group in Scheme 13 renders the arylative cyclization of 1,1-disubstituted allenes less stereoselective. The isobutyl group in $9 \mathbf{r}$ in fact caused a significant reduction in diastereo- and enantioselectivity (Table 6, Entries 1,2 vs. 3). The low diastereoselectivity stems from the competitive carbopalladation producing $(E)-\eta^{1}$-allylpalladium $\mathbf{2 2}^{\prime}$ (Scheme 13). In the case of the 1,1 -disubstituted allene, the $(E)-\eta^{1}$-allylpalladium $\mathbf{2 2}^{\prime}$ failed to undergo the isomerization into (Z) $-\eta^{1}$-allylpalladium 22, because it proceeds through an unlikely tertiary η^{1}-allylpalladium $\mathbf{2 3}^{\prime} .{ }^{32}$ Instead, the ring strain

Scheme 14. Reductive cyclization of deuterium-labeled chiral allylic acetate $(S, E)-\mathbf{1 3} \mathbf{u}$ under Pd^{0}-dppe catalysis.
in the chair-TS $25(\mathrm{X}=\mathrm{NTs})$ relatively lowers the activation eneregies of boat TS-25' to generate ($1 S, 2 S$) - $\mathbf{1 1}$, which accounts for the low enantioselectivity of cis-11. Although the reason for the trans-isomers $\mathbf{1 1} \mathbf{j}^{\prime}$ and $\mathbf{1 1} \mathbf{r}^{\prime}$ being much less enantiomerically enriched than $c i s$-isomers $\mathbf{1 1 j}$ and $\mathbf{1 1 r}$ (Table 6, Entries 2 and 3) remains unclear, a disturbance in the chair TS-25 caused by an alkyl group at the axial position rather than the boat TS-24' contributed. In contrast, the phenylative cyclization of the $9 \mathbf{s}$ and 9 t homologues dramatically restored enantioselectivity and retained diastereoselectivity due to release of the ring strain in TS-25 (Table 6, Entries 2 vs. 5, 3 vs. 6 and Scheme 13).

Facial Selectivity of the Reductive Allylation of Aldehyde. The Zimmerman-Traxler transition states involved in these cyclization reactions necessitate nucleophilic attacks of the allylpalladium intermediates to the intramolecular aldehyde from the side occupied by the palladium. To trace the facial selectivity, the chiral allylic acetate (S, E)-13u hosting (E)-deuterium-labeled alkene was utilized for cyclization under achiral diphosphine (dppe)-ligated palladium catalysis (Scheme 14). The oxidative addition of allylic acetate (S, E) $\mathbf{1 3 u}$ to $\operatorname{Pd}(0)$ provided a mixture of the anti-21u and the syn$\mathbf{2 1 \mathbf { u } ^ { \prime }}$ via a well-known inversion of the configuration. ${ }^{38}$ The η^{3} η^{1} isomerization of the anti-21u and the syn-21 \mathbf{u}^{\prime} produced (Z) and $(E)-\eta^{1}$-allylpalladium $\mathbf{2 2} \mathbf{u}$ and $\mathbf{2 2} \mathbf{u}^{\prime}$, respectively, generating $(1 R, 2 R) \mathbf{- 1 1} \mathbf{u}$ and $(1 S, 2 R) \mathbf{- 1 1 \mathbf { u } ^ { \prime }}$ retaining the alkene geometry. In addition, the σ-bond rotations shown in Scheme 14 are faster than the cyclizations and cause the formation of pseudoenantiomers of $(1 S, 2 S) \mathbf{- 1 1} \mathbf{u}$ and $(1 R, 2 S) \mathbf{- 1 1} \mathbf{u}^{\prime}$ with inversion of the alkene geometry (fast epimerization is requisite for the asymmetric variant). In fact, each pseudo-diastereomer from the crude pseudo-racemic mixture was isolated by preparative TLC and separated by chiral HPLC to eventually produce four stereoisomers. The absolute configurations were determined by a modified Mosher's method ${ }^{26}$ using MTPA esters of $(1 R, 2 R)$ -

11f and ($1 R, 2 S$)-11f ${ }^{\prime}$ (Scheme 5), which were parent nonlabeled counterparts of $\mathbf{1 1 u}$ and $\mathbf{1 1} \mathbf{u}^{\prime} .{ }^{1} \mathrm{H} N \mathrm{NR}$ analysis of the isomers revealed that each pair of pseudo-enantiomers $\left(1 R^{*}\right.$, $\left.2 R^{*}\right) \mathbf{- 1 1} \mathbf{u}$ and $\left(1 R^{*}, 2 S^{*}\right) \mathbf{- 1 1} \mathbf{u}^{\prime}$ has the reverse alkene geometry. The distribution of these products was consistent with our prediction.

4. Conclusion

This study has uncovered the differences between two asymmetric umpolung cyclizations of aldehyde-containing allylpalladium intermediates generated in situ by the oxidative addition of allylic acetate and carbopalladation of allene. In the former cyclization, the use of organometallic reductants like $\mathrm{Et}_{2} \mathrm{Zn}$ and $\mathrm{Et}_{3} \mathrm{~B}$ instead of formate and silane lowered the yield and the optical purity of products. The effects of solvent on the enantioselectivity were not observed in the former cyclization, but in the latter. The enantioselectivity lowered by THF for the latter cyclization was completely restored by gradual addition of phenylboronic acid. This again indicates that the presence of an excess organometallic reagent in the formation of a neutral (η^{1}-allyl)palladium complex causes loss of enantioselectivity. Although the cyclization reactions produced common cisdisubstituted five-membered heterocycles including pyrrolidine and tetrahydrofuran, in excellent yields with high diastereo- and enantioselectivity, different stereoselectivities were observed in the formation of five-membered carbocycles, six-membered heterocycles, and pyrrolidine containing a tertiary carbon. Comparison between nitrogen- or carbon-tethered primary (Z)or (E)-allylic acetates $\mathbf{1 3 a}{ }^{\prime}$ and $\mathbf{1 3 g}^{\prime}$, which leads to geometrically defined η^{3}-allylpalladium, disclosed that the highly stereoselective formation of five-membered heterocycles in the former cyclization can be ascribed to a ring strain in the transition state to give trans-disubstituted one, and isomerization of (E) - to (Z)- η^{1}-allylpalladium through $\eta^{3}-\eta^{1}-\eta^{3}$-complex. The other different behaviors are attributed to the geometry of allylpalladium species; these behaviors depend on how the allylpalladium species is generated. The former cyclization commences with the oxidative addition of secondary allylic acetate to create geometrically obscure η^{3}-allylpalladium. The latter cyclization begins with carbopalladation of allene from the less hindered side, directly forming primary (Z) $-\eta^{1}$-allylpalladium. The stereochemistry of products provided useful information about allylpalladium intermediates which are difficult to isolate and characterize. The Zimmerman-Traxler transition state was supported by the chirality transfer reaction of the optically active allylic acetate with deuterium-labeled alkene. Further studies on another method that generates allylpalladium intermediates via allylic C-H activation are underway.

This work was partly supported by The Research Foundation for Pharmaceutical Sciences, SUNTORY FOUNDATION for LIFE SCIENCES, Platform Project for Supporting Drug Discovery and Life Science Research (Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS)) from AMED under Grant Number JP18am0101095 and JP18am0101100, and JSPS KAKENHI Grant Numbers JP24590004 and JP15H05837 in Middle Molecular Strategy. The authors would like to thank Enago (www.enago.jp) for the English language review.

Supporting Information

Detailed experimental procedures, spectroscopic data, and copies of NMR spectra (PDF). This material is available on https://doi.org/10.1246/bcsj. 20190167.

References

1 a) P. W. Jolly, Angew. Chem., Int. Ed. Engl. 1985, 24, 283. b) J. Tsuji, in Handbook of Organopalladium Chemistry for Organic Synthesis, ed. by E. Negishi, Wiley, New York, 2002, Vol. 2, p. 1669. doi:10.1002/0471212466.ch70. c) L. Acemoglu, J. M. J. Williams, in Handbook of Organopalladium Chemistry for Organic Synthesis, ed. by E. Negishi, Wiley, New York, 2002, Vol. 2, p. 1689. doi:10.1002/0471212466.ch71. d) G. Poli, G. Prestat, F. Liron, C. Kammerer-Pentier, Top. Organomet. Chem. 2012, 38, 1.

2 a) Y. Tamaru, J. Organomet. Chem. 1999, 576, 215. b) J. A. Marshall, Chem. Rev. 2000, 100, 3163. c) K. J. Szabó, Chem.Eur. J. 2004, 10, 5268. d) Y. Yamamoto, I. Nakamura, Top. Organomet. Chem. 2005, 14, 211. e) H. C. Malinakova, Lett. Org. Chem. 2006, 3, 82. f) G. Zanoni, A. Pontiroli, A. Marchetti, G. Vidari, Eur. J. Org. Chem. 2007, 3599. g) M. Jeganmohan, C.-H. Cheng, Chem. Commun. 2008, 3101. h) K. Spielmann, G. Niel, R. M. de Figueiredo, J.-M. Campagne, Chem. Soc. Rev. 2018, 47, 1159.

3 a) B. M. Trost, D. L. Van Vranken, Chem. Rev. 1996, 96, 395. b) B. M. Trost, D. R. Fandrick, Aldrichimica Acta 2007, 40, 59. c) B. M. Trost, M. L. Crawley, Chem. Rev. 2003, 103, 2921. d) B. M. Trost, M. L. Crawley, Top. Organomet. Chem. 2011, 38, 321. e) T. Hayashi, J. Organomet. Chem. 1999, 576, 195. f) T. Hayashi, Acc. Chem. Res. 2000, 33, 354.

4 a) G. Zanoni, S. Gladiali, A. Marchetti, P. Piccinini, I. Tredici, G. Vidari, Angew. Chem., Int. Ed. 2004, 43, 846. b) G. P. Howell, A. J. Minnaard, B. L. Feringa, Org. Biomol. Chem. 2006, 4, 1278. c) S.-F. Zhu, Y. Yang, L.-X. Wang, B. Liu, Q.-L. Zhou, Org. Lett. 2005, 7, 2333. d) S.-F. Zhu, X.-C. Qiao, Y.-Z. Zhang, L.-X. Wang, Q.-L. Zhou, Chem. Sci. 2011, 2, 1135. e) X.-C. Qiao, S.-F. Zhu, W.-Q. Chen, Q.-L. Zhou, Tetrahedron: Asymmetry 2010, 21, 1216. f) T.-Z. Zhang, L.-X. Dai, X.-L. Hou, Tetrahedron: Asymmetry 2007, 18, 251. g) J.-J. Jiang, D. Wang, W.-F. Wang, Z.-L. Yuan, M.-X. Zhao, F.-J. Wang, M. Shi, Tetrahedron: Asymmetry 2010, 21, 2050.

5 a) K. Nakamura, H. Nakamura, Y. Yamamoto, J. Org. Chem. 1999, 64, 2614. b) R. A. Fernandes, A. Stimac, Y. Yamamoto, J. Am. Chem. Soc. 2003, 125, 14133. c) R. A. Fernandes, Y. Yamamoto, J. Org. Chem. 2004, 69, 735. d) R. A. Fernandes, Y. Yamamoto, J. Org. Chem. 2004, 69, 3562.

6 a) H. Nakamura, H. Iwama, Y. Yamamoto, J. Am. Chem. Soc. 1996, 118, 6641. b) H. Nakamura, M. Bao, Y. Yamamoto, Angew. Chem., Int. Ed. 2001, 40, 3208.

7 a) N. Solin, J. Kjellgren, K. J. Szabó, J. Am. Chem. Soc. 2004, 126, 7026. b) N. Solin, O. A. Wallner, K. J. Szabó, Org. Lett. 2005, 7, 689. c) O. A. Wallner, K. J. Szabó, Chem.-Eur. J. 2006, 12, 6976. d) J. Li, A. J. Minnaard, R. J. M. K. Gebbink, G. van Koten, Tetrahedron Lett. 2009, 50, 2232.

8 a) O. A. Wallner, V. J. Olsson, L. Eriksson, K. J. Szabó, Inorg. Chim. Acta 2006, 359, 1767. b) J. Aydin, K. S. Kumar, M. J. Sayah, O. A. Wallner, K. J. Szabó, J. Org. Chem. 2007, 72, 4689.

9 N. T. Barczak, R. E. Grote, E. R. Jarvo, Organometallics 2007, 26, 4863.
10 W. Wang, T. Zhang, M. Shi, Organometallics 2009, 28,

11 a) C. D. Hopkins, H. C. Malinakova, Org. Lett. 2004, 6, 2221. b) C. D. Hopkins, L. Guan, H. C. Malinakova, J. Org. Chem. 2005, 70, 6848. c) C. D. Hopkins, H. C. Malinakova, Org. Lett. 2006, 8, 5971. d) X. Yu, X. Lu, Org. Lett. 2009, 11, 4366. e) X. Yu, X. Lu, J. Org. Chem. 2011, 76, 6350.

12 a) H. Tsukamoto, T. Matsumoto, Y. Kondo, Org. Lett. 2008, 10, 1047. b) X. Zhang, X. Han, X. Liu, Org. Lett. 2015, 17, 3910.
13 Ru-catalyzed carbonyl allylation with carbon monoxide as reductant: a) Y. Tsuji, T. Mukai, T. Kondo, Y. Watanabe, J. Organomet. Chem. 1989, 369, C51. b) T. Kondo, H. Ono, N. Satake, T. Mitsudo, Y. Watanabe, Organometallics 1995, 14, 1945. c) S. E. Denmark, S. T. Nguyen, Org. Lett. 2009, 11, 781. d) C.-M. Yu, S. Lee, Y.-T. Hong, S.-K. Yoon, Tetrahedron Lett. 2004, 45, 6557.

14 Ir-catalyzed enantioselective intermolecular carbonyl allylation with isopropanol as a reductant: a) I. S. Kim, M.-Y. Ngai, M. J. Krische, J. Am. Chem. Soc. 2008, 130, 6340. b) I. S. Kim, M.-Y. Ngai, M. J. Krische, J. Am. Chem. Soc. 2008, 130, 14891.

15 Bimetal-catalyzed non-asymmetric cyclization: a) B. M. Trost, K. D. Moeller, Heterocycles 1989, 28, 321. b) N. Maezaki, H. Fukuyama, S. Yagi, T. Tanaka, C. Iwata, J. Chem. Soc., Chem. Commun. 1994, 1835. c) W. Oppolzer, F. Flachsmann, Helv. Chim. Acta 2001, 84, 416. d) V. C. Nguyen, Y.-T. Kim, Y.-K. Yu, H.-Y. Kang, Bull. Korean Chem. Soc. 2005, 26, 711. e) A. G. Campaña, B. Bazdi, N. Fuentes, R. Robles, J. M. Cuerva, J. E. Oltra, S. Porcel, A. M. Echavarren, Angew. Chem., Int. Ed. 2008, 47, 7515. f) A. Millán, A. G. Campaña, B. Bazdi, D. Miguel, L. Álvarez de Cienfuegos, A. M. Echavarren, J. M. Cuerva, Chem.-Eur. J. 2011, 17, 3985.

16 H. Tsukamoto, A. Kawase, T. Doi, Chem. Commun. 2015, 51, 8027.

17 a) Y. Yamamoto, N. Asao, Chem. Rev. 1993, 93, 2207. b) S. E. Denmark, J. Fu, Chem. Rev. 2003, 103, 2763.
$18 \mathrm{Pd}^{0}$-catalyzed arylative cyclization with aryl iodides and distannane or In: a) S.-K. Kang, S.-W. Lee, J. Jung, Y. Lim, J. Org. Chem. 2002, 67, 4376. b) Y.-H. Ha, S.-K. Kang, Org. Lett. 2002, 4 , 1143. See also silylative and stannylative cyclization: c) S.-K. Kang, Y.-H. Ha, B.-S. Ko, Y. Lim, J. Jung, Angew. Chem., Int. Ed. 2002, 41, 343. d) C.-M. Yu, J. Youn, M.-K. Lee, Org. Lett. 2005, 7, 3733. e) S.-K. Kang, Y.-T. Hong, J.-H. Lee, W.-Y. Kim, I. Lee, C.-M. Yu, Org. Lett. 2003, 5, 2813.
$19 \mathrm{Ni}^{0}$-catalyzed alkylative cyclization with organozinc reagents: a) J. Montgomery, M. Song, Org. Lett. 2002, 4, 4009. b) M. Song, J. Montgomery, Tetrahedron 2005, 61, 11440. c) S.-K. Kang, S.-K. Yoon, Chem. Commun. 2002, 2634.
20 H. Shimizu, I. Nagasaki, K. Matsumura, N. Sayo, T. Saito, Acc. Chem. Res. 2007, 40, 1385.
21 a) H. Kurosawa, A. Urabe, Chem. Lett. 1985, 1839. b) H. Kurosawa, A. Urabe, K. Miki, N. Kasai, Organometallics 1986, 5, 2002.

22 J.-E. Bäckvall, J.-O. Vågberg, K. L. Granberg, Tetrahedron Lett. 1989, 30, 617.
23 a) Y. T. Han, N.-J. Kim, J.-W. Jung, H. Yun, S. Lee, Y.-G. Suh, Arch. Pharmacal Res. 2011, 34, 1437. b) J. Agarwal, C. Commandeur, M. Malacria, S. Thorimbert, Tetrahedron 2013, 69 , 9398.

24 J. Tsuji, T. Mandai, Synthesis 1996, 1.
25 Rh-catalyzed ones: a) X.-X. Guo, T. Sawano, T. Nishimura, T. Hayashi, Tetrahedron: Asymmetry 2010, 21, 1730. Ru-catalyzed one: b) ref 13d.
26 The absolute configurations of major enantiomers were
determined by Mosher's method. a) I. Ohtani, T. Kusumi, Y. Kashman, H. Kakisawa, J. Am. Chem. Soc. 1991, 113, 4092. b) J. A. Dale, D. L. Dull, H. S. Mosher, J. Org. Chem. 1969, 34, 2543. c) J. A. Dale, H. S. Mosher, J. Am. Chem. Soc. 1973, 95, 512.

27 C. Zhang, X. Li, H. Sun, Inorg. Chim. Acta 2011, 365, 133.
28 a) N. A. Cortese, R. F. Heck, J. Org. Chem. 1978, 43, 3985. b) S. Cacchi, E. Morera, G. Ortar, Tetrahedron Lett. 1984, 25, 4821.

29 The lower catalyst loading ($5 \mathrm{~mol} \%$) resulted in longer reaction time (12 h) and lower yield (76% of $\mathbf{1 1 a}$).
30 a) J. Tsuji, I. Shimizu, I. Minami, Y. Ohashi, Tetrahedron Lett. 1982, 23, 4809. b) J. Tsuji, I. Shimizu, I. Minami, Y. Ohashi, T. Sugiura, K. Takahashi, J. Org. Chem. 1985, 50, 1523. c) J. Tsuji, I. Minami, Acc. Chem. Res. 1987, 20, 140.

31 a) G. Kresze, U. Wagner, Liebigs Ann. Chem. 1972, 762, 93. b) C. Zhang, S.-Q. Zhang, H.-J. Cai, D.-M. Cui, Beilstein J. Org. Chem. 2013, 9, 1045.
32 M. Kawatsura, Y. Uozumi, M. Ogasawara, T. Hayashi, Tetrahedron 2000, 56, 2247.
33 a) F. Cambeiro, S. López, J. A. Varela, C. Saá, Angew. Chem., Int. Ed. 2014, 53, 5959. b) Y. Wang, W.-Y. Zhang, S.-L.

You, J. Am. Chem. Soc. 2019, 141, 2228.
34 Even in case of $\mathrm{R}=\mathrm{H}$, a leaning toward the left and right in Zimmerman-Traxler transition states $\mathbf{1 0}$ and $\mathbf{1 0}^{\prime}$, respectively would favor 10.
35 a) J. W. Faller, M. E. Thomsen, M. J. Mattina, J. Am. Chem. Soc. 1971, 93, 2642. b) J. W. Faller, M. T. Tully, K. J. Laffey, J. Organomet. Chem. 1972, 37, 193.

36 Regioselective carbopalladation of allenes usually produce C2-carbon-substituted π-allylpalladium(II): a) B. Cazes, Pure Appl. Chem. 1990, 62, 1867. b) S. Ma, Pure Appl. Chem. 2006, 78, 197. c) S. Ma, Acc. Chem. Res. 2003, 36, 701. d) R. W. Bates, V. Satcharoen, Chem. Soc. Rev. 2002, 31, 12. e) R. Zimmer, C. U. Dinesh, E. Nandanan, F. A. Khan, Chem. Rev. 2000, 100, 3067. f) G. Balme, E. Bossharth, N. Monteiro, Eur. J. Org. Chem. 2003, 4101.

37 a) T. Bai, L. Xue, P. Xue, J. Zhu, H. H.-Y. Sung, S. Ma, I. D. Wiliams, Z. Lin, G. Jia, Organometallics 2008, $27,2614$. b) M. Yoshida, K. Matsuda, Y. Shoji, T. Gotou, M. Ihara, K. Shishido, Org. Lett. 2008, 10, 5183. c) T.-H. Huang, H.-M. Chang, M.-Y. Wu, C.-H. Chang, J. Org. Chem. 2002, 67, 99.

38 T. Hayashi, T. Hagihara, M. Konishi, M. Kumada, J. Am. Chem. Soc. 1983, 105, 7767.

