博士学位論文

マルチスケールフォノン散乱による

CrSi₂系熱電材料の低熱伝導率化に関する研究

中沢駿仁

2019年9月

Reducing Thermal Conductivity for CrSi₂-Based Thermoelectric Material by Multi-Scale Phonon Scattering

Hayato Nakasawa

Department of Applied Physics, Graduate School of Engineering, Tohoku University

Introduction

CrSi₂ has attracted attention as a thermoelectric (TE) material to convert high-temperature waste heat into electricity because of its high oxidation resistance up to 973 K in air [1], in addition to less toxicity and the natural abundance of their constituents. TE performance is evaluated by the dimensionless figure-of-merit, $zT = S^2 \sigma T/\kappa$, and the power factor, PF = $S^2 \sigma$, where *S*, σ , *T*, and κ are the Seebeck coefficient, electrical conductivity, absolute temperature, and total thermal conductivity, respectively. Additionally, κ is made up of a contribution of the carrier thermal conductivity, κ_C , and the lattice thermal conductivity, κ_L . CrSi₂ has high PF_{max} of 1.8×10^{-3} Wm⁻¹K⁻² at 500 K [2], which is comparable to those of Bi₂Te₃ (1.44×10^{-3} Wm⁻¹K⁻² at 350 K [3]). However, the *zT* value of CrSi₂ was limited to 0.12 owing to a high κ_L value of 8.2 Wm⁻¹K⁻¹ at 600 K [2]. Thus, it is necessary to reduce κ_L to enhance *zT* of CrSi₂.

In the kinetic theory of gases, κ_L is expressed as *Cvl/3*, where *C*, *v*, and *l* are the heat capacity, phonon group velocity, and mean-free-path (MFP), respectively. Here, the phonon MFPs are adjustable by introducing defects. Recent computing power has enabled quantitative calculation for the phonon MFP dependence of κ_L in various materials by using the linearized phonon Boltzmann transport equation and first-principles anharmonic phonon calculation. Thus, it is important for reduction of κ_L to reveal the phonon MFP dependence of κ_L . However, there is no report on phonon MFP dependence of κ_L of CrSi₂ and the reduction of κ_L has only been performed empirically. In this study, first, phonon MFP dependence of κ_L of CrSi₂ was revealed by first principles. Next, to achieve larger reduce κ_L of CrSi₂, effects of both decreasing crystallite size (introducing of grain boundaries) and Mo substitution for Cr site (introducing of point defects) were experimentally investigated by using the calculation results.

Computational and Experimental details

First-principles calculation on harmonic and anharmonic lattice dynamics of CrSi₂ was performed based on the density functional theory using the plane-wave self-consistent field (SCF) code in the QUANTUM ESPRESSO package [3]. The generalized gradient approximation formulated by Perdew, Burke and Ernzerhof (PBE-GGA) was used as an exchange-correlation potential. For the lattice thermal conductivity calculation, phonopy and phono3py [4] software packages were used.

Samples for measuring TE properties were prepared by two methods; conventional arc-melting method and the Reduction-Diffusion (RD) method. $(Cr_{1-x}Mo_x)Si_2$ (x = 0.0.2) ingots were obtained by conventional arc-melting as follows. First, granular Cr and Mo were melted in an arc-furnace to obtain $(Cr_{1-x}Mo_x)$ (x = 0.0.2) ingots. Next, the obtained ingots were crashed into small pieces and remelted with granular Si in an arc-furnace. And then, obtained $(Cr_{1-x}Mo_x)Si_2$ (x = 0.0.2) ingots were pulverized and powdered samples were sintered by the spark plasma sintering (SPS) method to prepared dense sintered samples whose relative density are over 90%. Also, $(Cr_{1-x}Mo_x)Si_2$ (x = 0.0.35) samples were obtained

using the RD method as follows. First, powders of Cr_2O_3 , MoO_3 , and Si were mixed with LiH as a reductant in Ar. Next, the mixtures were pelletized and sealed in evacuated quartz tubes. These quartz tubes were heated at 773-1073 K for 3 hours. After heating, the product was washed in purified water to remove byproducts and residual LiH, and then dried in air at room temperature. The obtained powdered samples were sintered by SPS. The phases of obtained samples were identified by X-ray diffraction (XRD). The crystallite size was clarified using the Williamson-Hall plot and microstructure observations. The microstructures were observed with a field-emission type scanning electron microscope (FE-SEM). The *S*, σ , and κ were measured from 300 K to 1000 K. The carrier concentration was measured by Hall measurement at 300 K.

Results and discussion

• First-principles calculation for phonon

The phonon frequency and MFP dependence of κ_L of CrSi₂ was calculated to obtain insight into effective reduction of κ_L of CrSi₂. It was revealed that the phonon bands consist of three acoustic phonon modes (0-8 THz) and 24 optical phonon modes (4-14 THz). The phonon frequency dependence of κ_L indicated that phonons existing in the frequency range below 10 THz are responsible for 90% of κ_L . Moreover, the phonon MFP dependence of κ_L revealed that the phonon MFPs are shorter than 100 nm. Therefore, it is expected that κ_L can be reduced effectively and largely by scattering these phonons with MFPs below 100 nm in CrSi₂.

Effect of decreasing of crystallite size

To investigate the effect of crystallite size on the reduction of κ_L , sintered samples composed of crystallites less than 100 nm were prepared by the RD method followed by SPS. The average crystallite size in the sintered samples became larger with increasing the SPS temperature. The average crystallite size in the sintered samples at 873 K was 46.2(5) nm and its κ_L was 4.2 Wm⁻¹K⁻¹ at 600 K. This κ_L value is 48% lower than that of sample prepared by the arc-melting and SPS method. As the first-principles calculation predicted, these experimental results indicated that it is effective to reduce the κ_L of CrSi₂ by controlling its crystallite size below 100 nm. Also, in spite of the small crystallite sizes in the sintered sample prepared by the arc-melting method and SPS. These results suggest that the crystallite size in sintered samples prepared by the RD method and SPS is larger than the carrier MFPs and smaller than the phonon MFPs of CrSi₂.

• Effect of Mo substitution

To introduce defects of atomic size (< 10 nm), Mo substitution for $CrSi_2$ were performed. Single-phase ($Cr_{1-x}Mo_x$)Si₂ (x = 0.0.10) sintered samples were prepared by the arc-melting and SPS followed by annealing. The lattice parameters of these sintered samples increased with increasing Mo content x. This is because that atomic radius of Mo is larger than that of Cr. Following this result, the solubility limit of Mo in this experimental procedure using arc-melting and SPS was determined x = 0.10. The κ_L reduced by Mo substitution owing to the phonon scattering at point defects, and reached 3.8 Wm⁻¹K⁻¹ at 600 K in sintered sample of x = 0.08. This κ_L value is 53% lower than that of pure CrSi₂ sample. As a result, its zT_{max} increased from 0.12 of x = 0 to 0.23. Finally, the combination of effect of decreasing crystallite size and Mo substitution for the reduction of κ_L were investigated in (Cr_{1-x}Mo_x)Si₂ (x = 0-0.2) sintered samples prepared by the RD method and SPS. The solubility limit of Mo determined by the XRD measurement was x = 0.25. The average crystallite size for these samples was 70-80 nm. (Cr_{1-x}Mo_x)Si₂ (x = 0.05 and 0.2) sintered samples exhibited very lower κ_L compared with pure CrSi₂ sample. The κ_L of (Cr_{0.8}Mo_{0.2})Si₂ sample reached 3.4 Wm⁻¹K⁻¹ at 600 K, which is 58% lower than that of pure CrSi₂ prepared by conventional arc-melting method. The large reduction of κ_L was caused by the phonon scattering at both grain boundaries and point defects. However, the PF of (Cr_{1-x}Mo_x)Si₂ (x = 0.05 and 0.2) samples were lower than that of pure CrSi₂ because of decreasing its *S* value. As a result, the *zT* value of 0.18 at 700 K has been achieved by Mo substitution using the RD method. The PF of CrSi₂-based materials can be improved by optimizing its carrier concentration.

References

- [1] H. Lange, Phys. Stat. Sol. (b), **201** (1997) 3.
- [2] H. Nakasawa et al., Trans. Mat. Res. Soc. Jpn., 43 (2018) 85.
- [3] P. Giannozzi et al., J. Phys.: Condens. Matter, 29 (2017) 465901.
- [4] A. Togo et al., Phys. Rev. B, 91 (2015) 094306.

目次

第1章	序論	1
1.1	熱電変換	2
1.2	シリサイド	15
1.3	CrSi ₂ に関する従来の研究	17
1.4	格子熱伝導率の低減指針...........................	26
1.5	還元拡散法	31
1.6	研究の目的	34
第2章	実験・評価方法	35
2.1	試料合成	35
2.2	焼結体の作製	37
2.3	粉末 X 線回折測定	38
2.4	表面観察	41
2.5	熱電特性評価	43
2.6	Hall 効果測定	44
2.7	Raman 分光	47
2.8	第一原理計算	48
第3章	熱電特性の第一原理計算	50
3.1	フォノン輸送計算.............................	50
3.2	小括	62
第4章	結晶子サイズの低減による低熱伝導率化	63
4.1	アーク熔解法を用いた CrSi2 試料の作製と熱電特性	63
4.2	還元拡散法を用いた CrSi 2 試料の作製と熱電特性	74
4.3	考察	88
4.4	小括	91
第5章	元素置換による低熱伝導率化	93

5.1	アーク熔解法を用いた Mo 置換 CrSi ₂ 試料の作製と熱電特性	93
5.2	還元拡散法を用いた Mo 置換 CrSi ₂ 試料の作製と熱電特性	109
5.3	考察	119
5.4	小括	121
第6章	総括と今後の展望	123
6.1	本研究の成果	123
6.2	本研究の意義	125
6.3	今後の展望	125

第1章 序論

持続的な人類の発展に欠かせない再生可能エネルギーが、今日大きな注目を集め ている.中でも、太陽光や風力を利用した発電は20%を上回る変換効率を有し、そ の実用化が世界規模で推し進められている.しかし、自然エネルギーを利用する発 電では、発電に適さない地域、気候および時間帯が存在し、発電量の変動が避けられ ない.このような電力供給における不安定性から、再生可能エネルギーの活用は、原 子力や火力発電で得られるエネルギーを補完する場面に留まっているのが現状であ る.再生可能エネルギーを主な電力源として活用するには、この不安定性を克服す る必要がある.

この不安定性を克服する技術の1つとして,温度差から電力を得る熱電変換が近 年注目を集めている.熱電変換は,熱源があれば,地域,気候および時間帯に影響を 受けずに電力供給が可能な技術である.熱源の候補として,河川や地下水といった 自然界における未利用熱や,工場や自動車の排熱といった人為起源の未利用熱が挙 げられる.このような未利用熱は総量が莫大であり,再生可能エネルギーとして高 い利用価値がある.

熱電変換は未利用熱を電力に変える際に温室効果ガスを生み出さないことから, 世界的に推進すべき低炭素社会化の指針に沿う技術である.国連気候変動枠組条約 第21回締約国会議(COP21)において,2015年に採択されたパリ協定[1]を経て, 日本が国連に提出した温室効果ガス削減目標[2]を達成するためにも,熱電変換技術 の積極的かつ効率的な利用が早急に求められている.

1

1.1 熱電変換

熱電変換は、火力発電や水力発電など一般に用いられる発電技術と異なり、タービンを介すことなく、温度差を直接電力に変換できる技術である.したがって、発電時には可動する部分がなく、安全で静音である.小型化した場合も、変換効率が低下しない熱電変換は、小さな熱源を利用した小型電源やウェアラブル端末へ応用することも検討されている.

熱電変換の物性論

熱電変換の原理を以下にまとめる.熱電変換による発電では,図 1.1.1 に示す n 型半導体と p 型半導体を導体で接合した π 型モジュールが一般に用いられる.モ ジュールの一端を加熱し,他端を冷却すると半導体中の多数キャリアが加熱端から 冷却端へ拡散し,電位差が生じる.熱電変換は,このように熱エネルギーが電子や正 孔の移動を促すことで生じるキャリアの濃度勾配を利用する発電技術である.熱電 変換に必要であるこれらの半導体材料を,今後,熱電材料と記述する.

電気伝導率 σ , Seebeck 係数 S および熱伝導率 κ は, 熱電材料の評価における重要な物性値である. 熱電材料は負荷に対して直列接続で利用されるため, σ が高い材料が選択される. また, 温度差あたりの起電力に相当する S が高い材料が求められる. ここで, S が一定値であれば, 温度差が大きいほど大きな起電力が得られる. したがって, 熱電材料には κ が低く, 容易に温度差を付けることが可能な材料が選択される. このように熱電材料は, 動作温度において上記の条件を同時に満たすことが求められる.

本節では、熱電材料を設計する上で重要であるこれらの物理量をまとめる.

図 1.1.1: π型モジュールの構造.

1.1.1 電気伝導率 σ

電気伝導率 σ は電荷素量 q, キャリア密度 n および移動度 μ で表される物理量で ある. 一般に金属は n が大きいため, その σ は 10⁵ Scm⁻¹ 以上と高い [3]. 一方, 金属よりも n が小さい半導体であっても, μ の高い材料は高い σ を有する. ここで は,電子が以下 4 つの条件 [4] を満たすことを仮定し,電気伝導を理解する.

- (1) 金属中における電子は、質量 mの古典粒子として振舞う.
- (2) 電子は単位時間当たり 1/τ の確率で散乱を受ける.ここで,τは緩和時間である.
- (3) 散乱を受けない限り,電子は Newton の運動方程式にしたがう.
- (4) 散乱直後の電子は、その場所の熱速度 $v = \sqrt{3k_BT/m}$ を持ち、ランダムな方向に運動する.ここで、 k_B および T は、それぞれ Boltzmann 定数および絶対 温度である.

物質中の電子が外力 f(t) の下で全く散乱を受けない状態を考えると、時刻 t におけ る電子の運動量 p(t) は、 Δt 後の時刻 $t + \Delta t$ において $p(t) + f(t)\Delta t$ と変化する. ここで、経過時刻 Δt の間に $1/\tau$ の確率で電子が散乱される条件 (2) を考慮すると、 $p(t + \Delta t) = (1 - \Delta t/\tau) \{ p(t) + f(t)\Delta t \}$ が導かれる. この式は、 $\Delta t \rightarrow 0$ の極限で、

$$\frac{d\boldsymbol{p}\left(t\right)}{dt} = -\frac{1}{\tau}\boldsymbol{p}\left(t\right) + \boldsymbol{f}\left(t\right)$$
(1.1.1)

であり、散乱効果は速度に対する抵抗とみなすことができる.次に、電子に一様な電 場 E が印加され、外力 f(t) = qE が作用する場合を考える.電子を古典粒子とみな すと、運動量 p を電子質量 m および速度 v で、p = mv と表せる.したがって、式 (1.1.1) から電子の運動方程式は

$$\frac{dv}{dt} = -\frac{1}{\tau}v + \frac{qE}{m} \tag{1.1.2}$$

である. 定常時, dv/dt = 0の状態を考えると,

$$v = \frac{q\tau}{m}E = \mu E \tag{1.1.3}$$

として,単位電場あたりのキャリアの移動速度を与える移動度 µ が導出される.キャ リアを古典粒子とみなすドルーデモデルでは,µは τ に比例し,m に反比例する物性 値である.単位体積当たりのキャリア密度 n を用いて、電流密度 j は j = nqv と表せる.したがって、式 (1.1.3) を用いることで、電流密度が印加電圧に比例するオームの法則が導出できる.

$$\mathbf{j} = nq\mu \mathbf{E} \tag{1.1.4}$$

式 (1.1.4) における比例定数が電気伝導率 σ であり、これは $n \ge \mu$ に比例する物理量 である.

$$\sigma = nq\mu = \frac{nq^2\tau}{m} \tag{1.1.5}$$

次に、 σ を構成する諸物性であるnと μ の温度依存性を示す.

ー例として、代表的な半導体である Ge の n の温度依存性を図 1.1.2 に示す [5]. 20 K から 140 K において、n は一定値である.一方、140 K より高温では、n は温 度上昇にともない急激に増大する.nが一定値である 140 K 以下の温度領域 B を出 払い領域、温度上昇にともない n が増大する温度領域 A を真性領域と呼ぶ.真性領 域では、+分な熱エネルギーを受けた電子が価電子帯から伝導帯に励起する.した がって、n は温度上昇にともない増加する.真性半導体の場合には電荷保存則が成立 し、1 つの電子が伝導帯へ励起すると同時に、1 つのホールが生成されるため、電子 の数 n_e はホールの数 n_h に等しい.

$$n_e = n_h \tag{1.1.6}$$

半導体の理論物理 [5,6] と式 (1.1.6) を用いることで、真性領域における n は、

$$n = 2\left(\frac{2\pi mk_{\rm B}T}{h^2}\right)^{3/2} e^{-E_{\rm g}/2k_{\rm B}T}$$
(1.1.7)

と表せる. ここで、 $h \ge E_g$ は、それぞれ Planck 定数とバンドギャップである. 図 1.1.2 の n の温度依存性から Ge の E_g を見積もると、その値は 0.64 eV であり、これ は報告された値 (0.66 eV [3]) におおよそ一致する. 真性領域では、電子とホールが ともに電気伝導に寄与する両極性拡散が起こるため、双方が等しい移動度を有する 場合、 σ は $n_e \ge n_h$ の和に比例して増加することが予想される.

図 1.1.2: Ge におけるキャリア濃度の温度依存性 [5].

次に, μの温度依存性を考える.式(1.1.3)から, mとτを用いて μ は次のように 表される.

$$\mu = \frac{q\tau}{m} \tag{1.1.8}$$

m は温度依存性がほとんどないため、 μ の挙動は τ の温度依存性に左右される. μ は 一般に、温度上昇にともなう減少を示す.これは、温度上昇にともない結晶格子の振 動が激しくなり、格子振動におけるキャリアの散乱(音響フォノン散乱)が増加する ためである. Seitz [7] および Bardeen ら [8] は温度上昇にともなう μ の減少挙動に 対して、Si、Ge および Te の μ が温度の 3/2 乗に反比例する実験的事実に則した理論 式 (1.1.9) を得ている.

$$\mu = 6\frac{q}{m}\frac{v\hbar}{C^2k_{\rm B}T}\frac{M}{m^2}\frac{n}{\bar{v}}$$
(1.1.9)

ここで、v, \hbar , M および \bar{v} は、それぞれ音速、Dirac 定数、原子量および Maxwell-Boltzmann 分布にしたがう粒子の平均速度を表す.また、C は物質に固 有の調整パラメータであり、温度依存性はない [7].ここで、Maxwell-Boltzmann 分 布にしたがい算出される \bar{v} は、

$$\overline{v} = 4 \left(\frac{k_{\rm B}T}{2\pi m}\right)^{1/2} \tag{1.1.10}$$

で表され,温度の 1/2 乗に比例する.したがって,式(1.1.9)と式(1.1.10)からµが 温度の 3/2 乗に反比例することがわかる.

ここで、ダイヤモンドにおける μ の温度依存性 [9] を図 1.1.3 に示す. 温度上昇と ともに μ は減少し、700 K では、100 K の場合と比較して 10 分の 1 と小さな値であ る. 図 1.1.3 に温度の 3/2 乗に反比例する関数を赤線で加える. 100-500 K では、 μ の実験値と理論値の温度依存性はよく一致する. したがって、この温度域における μ の減少は、格子振動が主な原因である.

図 1.1.3: ダイヤモンドにおけるキャリア移動度の温度依存性 [9].

1.1.2 Seebeck 係数 S

金属および半導体材料の両端に異なる温度を与えると、起電力が生じる現象を Seebeck 効果と呼ぶ. 生じる起電力 ΔV と材料の両端の温度差 ΔT の関係は、

$$\Delta V = S \,\Delta T \tag{1.1.11}$$

で表され,この比例定数*S*が Seebeck 係数である.線形応答理論を用いた場合,*S*は Mott の式で次のように表すことができる [10, 11].

$$S = \frac{2k_{\rm B}^2}{3q\hbar^2} \left(\frac{\pi}{3n}\right)^2 mT$$
 (1.1.12)

式 (1.1.12) から, n が小さく, m が大きい材料において, S は大きいことがわかる.

1.1.3 熱伝導率 κ

熱は一般に伝導キャリアと格子振動により運ばれる.したがって、 κ に対するキャリアによる寄与 $\kappa_{\rm C}$ と、格子振動を量子化した粒子であるフォノンによる寄与 $\kappa_{\rm L}$ の総和によって、 κ は

$$\kappa = \kappa_{\rm C} + \kappa_{\rm L} \tag{1.1.13}$$

と表される.以降, KC を電子熱伝導率,KL を格子熱伝導率と記述する.

1.1.4 電子熱伝導率 κ_C

式 (1.1.14) で定義される Wiedemann–Franz 則を用いることで、 σ から $\kappa_{\rm C}$ が導出 できる.

$$\kappa_{\rm C} = \frac{\pi^2}{3} (\frac{k_{\rm B}}{q})^2 \sigma T$$
 (1.1.14)

式 (1.1.14) を用いると, 300 K における σ が 10⁴ Scm⁻¹ の場合, $\kappa_{\rm C}$ は 0.73 Wm⁻¹K⁻¹ 程度と計算される.

1.1.5 格子熱伝導率 KL

一般的な半導体において、 κ の大部分がフォノンの寄与で、キャリアの寄与は数 % である.したがって、如何に κ_L を低減するかを見出すことが、熱電材料の性能を向上させる指針の1つである.ここで、 κ_L は単位体積当たりの比熱 C、フォノンの速度 v、平均自由行程 l および緩和時間 τ を用いて、

$$\kappa_{\rm L} = \frac{1}{3}Cvl = \frac{1}{3}Cv^2\tau \tag{1.1.15}$$

と表される. 寸法に制約がなく,不純物の混入および不完全性がない試料において, κ_L は無限大である. しかしながら,実際の試料に存在する寸法の制約や不完全性が フォノンの散乱体として働き,運動量が保存されない散乱過程が有限の κ_L を与え る. 運動量が保存されない 3 フォノン散乱,格子欠陥散乱および結晶粒界散乱にお ける τ の式を以下に示す [12].

■ 3 フォノン散乱

3 フォノン散乱は、3 つのフォノンの間でエネルギー交換が起こるフォノン-フォノン散乱過程であり、そのうち Umklapp 過程は運動量が保存しない. 3 フォノン散乱の Umklapp 過程における緩和時間 $\tau_{\rm U}$ は Slack と Galginaitis [13] により導出され、式 (1.1.16) で定義される.

$$\tau_{\rm U}^{-1} = \frac{\hbar \gamma^2}{M v^2 \theta_{\rm D}} \omega^2 T \exp\left(-\frac{\theta_{\rm D}}{3T}\right) \tag{1.1.16}$$

ここで、 γ は Grüneisen パラメータである.また、 θ_D は Debye 温度であり、以下の 式で定義される [14, 15].

$$\theta_{\rm D} = \frac{h}{k_{\rm B}} \left(\frac{3g}{4\pi} \frac{N_{\rm A}\rho}{M}\right)^{1/3} v \qquad (1.1.17)$$

ここで、g, N_A および ρ は化学組成単位あたりの原子数、Avogadro 数および体積密度である.

■ 格子欠陥散乱

結晶中に不純物や同位体等の欠陥が存在する場合,それらの欠陥においてフォノンが散乱される.このような格子欠陥散乱における緩和時間 *τ*_I は, Klemens [16] に

より導出され、原子量の違いに起因する散乱として式(1.1.18)のように定義される.

$$\tau_{\rm I}^{-1} = \frac{V\Gamma\omega^4}{4\pi\nu^3}$$
(1.1.18)

ここで、Vは原子の体積である.また Γ は散乱パラメータであり、

$$\Gamma = \sum_{i} x_i \left(\frac{M_i - \bar{M}}{\bar{M}}\right)^2 \tag{1.1.19}$$

$$\bar{M} \equiv \sum_{i} x_i M_i \tag{1.1.20}$$

と表される. x_i および M_i は散乱体 i の濃度および質量であり, \overline{M} は結晶原子の平均 質量である.

■ 結晶粒界

フォノンの*l*が結晶子サイズより大きくなると粒界で運動量が保存しない散乱が 起こる.このとき緩和時間 $\tau_{\rm B}$ は結晶子サイズを*G*として,

$$\tau_{\rm B}^{-1} = \frac{v}{G} \tag{1.1.21}$$

と表される.

式(1.1.15)における ては、各散乱過程の緩和時間の逆数和で近似的に

$$\frac{1}{\tau} = \frac{1}{\tau_{\rm U}} + \frac{1}{\tau_{\rm I}} + \frac{1}{\tau_{\rm B}} = A\omega^2 T \exp\left(-\frac{\theta_{\rm D}}{3T}\right) + B\omega^4 + \frac{v}{G}$$
(1.1.22)

$$A \equiv \frac{\hbar \gamma^2}{M v^2 \theta_{\rm D}}, B \equiv \frac{V \Gamma}{4\pi v^3}$$

と表される.ここで、温度依存性を有するのは $\tau_{\rm U}$ のみであり、 $T\exp\left(-\frac{\theta_{\rm D}}{3T}\right)$ は温度 に対する単調増加関数である.したがって、高温における τ は主に $\tau_{\rm U}$ により決定 され、 $\kappa_{\rm L}$ は、3フォノン散乱の影響による温度の単調減少を示す.また、 $\tau_{\rm I}$ もしく は $\tau_{\rm B}$ が大きな値を有する材料では、 $\kappa_{\rm L}$ の温度依存性は顕著にみられないと考えら れる.

1.1.6 最小格子熱伝導率 KL0

Cahill ら [17] は、アモルファスのような乱れた固体における κ_L が格子熱伝導率の 到達可能な最小値 κ_{L0} であること提唱し、 κ_{L0} に対する音響フォノンの寄与 $\kappa_{L0,A}$ を 算出している. 同様に、Slack [18] は κ_{L0} に対する光学フォノンの寄与 $\kappa_{L0,O}$ を算出 している. ここで、 κ_{L0} を最小格子熱伝導率と記述する.

■ 音響フォノンの寄与 *к*_{L0,A}

Cahill らのモデルにしたがうことで、 $\kappa_{L0,A}$ が第一原理的に算出できる. Cahill ら は、フォノンが調和振動により特徴付けられる単純な系を仮定し、フォノンの τ とし て、調和振動の半周期を代入することで、各原子の熱エネルギーが半周期の振動で失 われる極限状態のモデルを構築した.このモデルでは、熱輸送に寄与するフォノン の周波数域を θ_D により音響分枝に制限している.したがって、ここで導出した最小 格子熱伝導率は音響フォノンの寄与分 $\kappa_{L0,A}$ である.極限状態を仮定して得られる *l* に加え、フォノンの群速度および Einstein 比熱を用いて計算される $\kappa_{L0,A}$ は

$$\kappa_{\rm L0,A} = \left(\frac{\pi}{6}\right)^{1/3} k_{\rm B} \left(\frac{gN_{\rm A}\rho}{M}\right)^{2/3} \sum_{i} v_{i} \left(\frac{T}{\theta_{\rm Di}}\right)^{2} \int_{0}^{x \equiv \theta_{\rm Di}/T} \frac{x^{3}e^{x}}{(e^{x}-1)^{2}} dx \quad (1.1.23)$$

と表される.ここで,*i*はフォノンの分枝を表す指標であり,計算は音響フォノンの 縦波と横波に対して行われる.

■ 光学フォノンの寄与 *ĸ*_{L0,0}

単位胞に複数の原子を含む化合物の場合,光学フォノンの寄与 $\kappa_{L0,O}$ が考慮された κ_{L0} を見積もる必要がある. Slack [18] は, $\kappa_{L0,O}$ が式 (1.1.24) で表されることを提唱 している.

$$\kappa_{\rm L0,0} = \frac{k}{p\Lambda} \times \sum_{i=1}^{p-3} \omega_i \frac{y^2 e^y}{(e^y - 1)^2}, \quad y \equiv \frac{h\omega_i}{k_{\rm B}T}$$
(1.1.24)

ここで *p*, Λ および ω は, それぞれフォノン分枝の総数, 融点におけるモル体積の 三乗根および各光学フォノンの周波数である.

以降では, KL0.A および KL0.0 の和を KL0 と定義する.

1.1.7 出力因子 PF, 無次元性能指数 zT

熱電材料における評価指標である無次元性能指数 zT と出力因子 PF は, σ , S および κ を用いて,

$$zT = \frac{S^2 \sigma T}{\kappa} = \frac{PF \cdot T}{\kappa}$$
(1.1.25)

と表される.

1.1.8 熱電変換素子の変換効率 η

熱と電気の変換効率の最大値 η_{max} は *zT* を用いて算出できる.熱流が素子を通 過する場合, η は高温側から流入する熱流 J_{Qh} と得られる出力の比で表される. 輻 射による熱損失がない理想状態では,得られる出力は J_{Qh} と低温側に流出する熱流 J_{Qc} の差に等しい. η が電流密度 *j* に対して極値をとる条件 $\partial \eta / \partial j = 0$ を考えると, η_{max} は次の式で表される.

$$\eta_{\max} = \frac{J_{Qh} - J_{Qc}}{J_{Qh}} = \frac{T_h - T_c}{T_h} \frac{\sqrt{1 + zT} - 1}{\sqrt{1 + zT} + \frac{T_c}{T_h}}$$
(1.1.26)

ここで、 $T_h \ge T_c$ は、それぞれ高温側と低温側の絶対温度である. \overline{zT} は、電気伝導率の平均値 $\overline{\sigma}$ 、Seebeck係数の平均値 \overline{S} 、熱伝導率の平均値 $\overline{\kappa}$ および温度の平均値 \overline{T} により、式 (1.1.27)で表される.

$$\overline{zT} = \frac{\overline{S}^2 \overline{\sigma}}{\overline{\kappa}} \overline{T}$$
(1.1.27)

$$\overline{T} = \frac{T_{\rm h} + T_{\rm c}}{2} \tag{1.1.28}$$

$$1/\overline{\sigma} = \frac{1}{T_{\rm h} - T_{\rm c}} \int 1/\sigma dT \qquad (1.1.29)$$

$$\overline{S} = \frac{1}{T_{\rm h} - T_{\rm c}} \int S dT \tag{1.1.30}$$

$$\overline{\kappa} = \frac{1}{T_{\rm h} - T_{\rm c}} \int \kappa dT \tag{1.1.31}$$

式 (1.1.26) に示す η_{max} は \overline{zT} の単調増加関数である. 図 1.1.4 は,式 (1.1.26) から算 出した $T_{\text{c}} = 300$ K における η_{max} の T_{h} 依存性を示す. η_{max} は, $\overline{zT} \rightarrow \infty$ の場合, Carnot 効率である $(T_{\text{h}} - T_{\text{c}})/T_{\text{h}}$ に漸近する.

図 1.1.4: $T_c = 300 \text{ K}$ における最大変換効率 η_{max} の T_h 依存性.

1.2 シリサイド

本節では、シリサイドの特徴をテルライドと比較して示す. 熱電変換の分野では、 高い熱電特性を有するテルライドの研究 [19, 20] が多くなされてきた. 室温近傍の 排熱回収に使用される Bi₂Te₃ は 400 K で 1.4×10^{-3} Wm⁻¹K⁻² 程度の高い出力因 子 PF [19] を有する. また、400 K より高い温度領域で高い熱電特性を示すテルラ イドとして PbTe があり、これらの材料はともに低い κ に起因した高い zT を持つ (Bi₂Te₃: zT = 0.94 at 400 K [19], PbTe: zT = 0.8 at 600-700 K [20]). これら 2 つの 代表的なテルライドの融点と PF を表 1.2.1 にまとめる.

テルライドは高い *zT* を有する一方で, テルル単体とその酸化物は強い毒性を持つ. 特に, テルル酸化物は生命体の奇形を発生させる性質を有することが指摘されている. したがって, テルライドが熱電材料として実用化されるためには, これらの物質が周辺環境に拡散しないように, 過度な加熱による化合物の分解と酸化に充分に配慮する必要がある. このように, テルライドは安全面における大きな課題を抱えており, その高い熱電特性にもかかわらず, 広範な民生応用には至っていない.

本研究では、耐熱性を有し、高温における安全面の不安を払拭できるシリサイド に着目した.シリサイドは Clarke 数の大きなケイ素の化合物であり、それらの多 くは高い融点を持つため、高温での用途に適している.数あるシリサイドの中でも Mg_2Si , $CrSi_2$, $MnSi_\gamma$ および $FeSi_2$ は比較的 *S* が高い.これらシリサイドの融点と PF を表 1.2.2 にまとめる.特に $CrSi_2$ の PF は高く、その最大値は Bi_2Te_3 の PF に 匹敵する大きさである.また、 $CrSi_2$ は融点も高く、高温安定性も兼ねていることか ら、熱電変換の広範な普及に貢献できる有望な材料の1つである.

化合物	伝導型	融点 (K)	PFの最大値 (×10 ⁻³ Wm ⁻¹ K ⁻²)
Bi ₂ Te ₃	р	861[21]	1.4 at 350 K ^[19]
PbTe	n	$1190_{[21]}$	1.9 at 600 K _[20]

表 1.2.1: 代表的なテルライドの伝導型, 融点および出力因子の最大値.

表 1.2.2: 代表的なシリサイドの伝導型,融点および出力因子の最大値.

化合物	伝導型	融点 (K)[21]	PF の最大値 (×10 ⁻³ Wm ⁻¹ K ⁻²)		
Mg ₂ Si	n	1358 K _[22]	0.3 at 300-600 K _[23]		
CrSi ₂	р	1733 K _[24]	1.8 at 500 K _[25]		
MnSi _γ	р	1425 K _[24]	1.1 at 850 K [26]		
FeSi ₂	р	1493 K _[24]	0.03 at 590 K [27]		

1.3 CrSi₂ に関する従来の研究

CrSi₂ は 500 K 近傍において, テルライドに匹敵する高い PF を有する. また, **CrSi**₂ は 1733 K 程度の高い融点 [24] を持ち,大気中でも 973 K 程度までは酸化しな い高温安定性 [28] に優れたシリサイドの 1 つである. しかしテルライドと比較する と,**CrSi**₂ の結晶構造は単純であるため, κ が大きく, zT は 0.1 程度の小さな値に留 まっている. 図 1.3.1 に無置換の **CrSi**₂, **Bi**₂**Te**₃ および Pb**Te** の κ と zT [19, 20, 25] を示す.

図 1.3.1: 無置換 CrSi₂, Bi₂Te₃ および PbTe の κ と zT [19, 20, 25].

1.3.1 構造と組成

■ 結晶構造

CrSi₂の結晶構造を図 1.3.2 に示す. CrSi₂の結晶構造は空間群 P6₂22 に属する六 方晶である.単位格子は 3 つの化学組成単位 (1 つの Cr 原子と 2 つの Si 原子)を内 包する. Engström ら [29] は粉末 X 線回折を用いて, CrSi₂の格子定数およびその温 度依存性を報告している.報告された 300 K における格子定数およびその温度依存 性を表 1.3.1 に示す.

図 1.3.2: CrSi₂の結晶構造.

表 1.3.1: CrSi2 の 300 K における格子定数およびその温度依存性 [29].

	格子定数 (Å)	温度依存性 (Å)
a	4.4268(1)	$4.4150 + 3.5365 \times 10^{-5}T + 2.2851 \times 10^{-8}T^{-2}$
С	6.3751(2)	$6.3580 + 5.7086 \times 10^{-5}T + 2.7443 \times 10^{-9}T^2$

■ 組成の不定比性

CrSi₂ は **Cr** 1 mol と **Si** 2 mol の化学組成で構成される材料である.しかし,厳密には、1 mol の **Cr** に対して固溶する **Si** が組成幅を持つことが **Gokhale** と Abbaschian [30] によって報告されている.彼らが報告した平衡状態における **Cr-Si** 系化合物の相を表 1.3.2 に示す.1578 K 以上の温度では **Cr-Si** 組成は 66.44-66.99 at.% **Si** であることが報告されており、この組成幅は **CrSi**_{1.98}-**CrSi**_{2.03} に相当する.

■ 同位体の含有

Crには3つの安定同位体が存在する. 天然存在比率では⁵²Cr が83.7% を占める が,残り16.3%は異なる質量を示す.本研究では,同位体が混入するCrを用い,Cr の質量には標準原子量を使った. この場合,同位体を含まない特別なCrを原料とし て用いた実験と比較すると,Crに対するSiの組成比を精密に制御できていないと考 えられる.したがって,本研究では合成した試料における同位体および組成の不定 比性の議論は行わない.

表 1.3.2: 平衡状態における Cr-Si 系化合物の相 [30].

Reaction	Compositions, at.% Si		Temperature, °C	Reaction type	
$\overline{\mathbf{L} \neq \mathbf{Cr}_{3}\mathbf{Si} + (\mathbf{Cr})}.$	5 22.5	9.5	1705 ± 5	Eutectic	
L ≠ Cr ₃ Si	25		1770 ± 10	Congruent	
$L \rightleftharpoons Cr_3Si + Cr_5Si_335$	5 26.4	36	1660 ± 10	Eutectic	
$L \rightleftharpoons Cr_5Si_3$	37.5		1680 ± 20	Congruent	
$\beta Cr_5 Si_3 \rightleftharpoons \alpha Cr_5 Si_3 \dots$	36 to 41		1505 ± 20	Polymorphic transformation	
$Cr_5Si_3 + L \rightleftharpoons CrSi41$	51	50	1413 ± 5	Peritectic	
$L \rightleftharpoons CrSi + CrSi_2 \dots 56$	5 50	66.67	1390 ± 10	Eutectic	
$L \rightleftharpoons CrSi_2$	66.67		1490 ± 20	Congruent	
$L \rightleftharpoons CrSi_2 + (Si) \dots 87$	66.99	8×10^{-6}	1305 ± 10	Eutectic	
$L \rightleftharpoons (Cr)$	0		1860 ± 20	Melting point	
$L \rightleftharpoons (Si)$	100		1414 ± 2	Melting point	

1.3.2 バンド構造

CrSi₂ は p 型半導体であり、単結晶の光学遷移測定からそのバンドギャップは 0.36 eV [31] であることが報告されている. Mattheiss [32] が第一原理計算を用いて 算出した CrSi₂ のバンド構造を図 1.3.3 に示す. 価電子帯 (青線)の極大値は L 点に 位置し、この点において Fermi 準位が価電子帯の上端にかかることから、ホールが 電気伝導を担う. また、Cr の 3*d* 軌道電子がバンドギャップ近傍の電子構造を特徴 付け、Fermi 準位にかかるバンドは特に $d_{3z^2-r^2}$ 軌道が担っていることが Mattheiss により報告されている.

CrSi₂ (C40)

図 1.3.3: CrSi₂のバンド構造 [32].

1.3.3 熱電特性

CrSi2の単結晶と多結晶における熱電特性の温度依存性を示す.

く単結晶の場合>

■ 電気伝導率

Nishida [33] は単結晶 CrSi₂ における電気抵抗率と Hall 係数の温度依存性を報告 している.他の報告と比較できるように、Nishida の報告における電気抵抗率を σ に 変換して図 1.3.4 (a) に示す. CrSi₂ の σ には顕著な異方性が存在し、c 軸に垂直な方 向 c_{\perp} の σ は、c 軸に平行な方向 c_{\parallel} の約 2 倍を上回る値である.また、Nishida が報 告した Hall 係数の温度依存性を図 1.3.4 (b) に示す. c_{\perp} 方向と c_{\parallel} 方向における Hall 係数の温度依存性はよく一致することから、n には異方性が存在しない.したがっ て、 σ の異方性は μ の異方性に起因する.Nishida は、300 K 以上の温度域で CrSi₂ の μ は $\mu_{c_{\parallel}} = 4.8 \times 10^4 T^{-3/2}$ cm²V⁻¹ および $\mu_{c_{\perp}} = 9.4 \times 10^4 T^{-3/2}$ cm²V⁻¹ である ことを報告している.この μ の温度依存性の要因は、式 (1.1.9) に示す音響フォノン 散乱である.図 1.3.4 (b) に示す Hall 係数の温度依存性から、真性領域と出払い領域 の境界温度は 658 K 程度であり、この温度から両極性拡散が起こると考えられる. 658 K 以下の温度では、 σ は、 μ の減少にともない単調に減少する.一方、658 K よ り高温では両極性拡散が起こるため、 σ は増加する.

■ Seebeck 係数と出力因子

図 1.3.5 (a) に Nishida [33] が報告した単結晶 CrSi₂ の *S* を示す. *S* は異方性を有 し, c_{\parallel} 方向で高い値を示す. c_{\parallel} 方向の *S* は 600 K において約 200 μ VK⁻¹ に達する. Nishida [33] が報告した単結晶 CrSi₂ の σ と *S* から計算した PF を図 1.3.5 (b) に示 す. c_{\perp} 方向と c_{\parallel} 方向でともに, PF の極大値は 1 × 10⁻³ Wm⁻¹K⁻² を上回る. また, 400-600 K における PF は 1.5 × 10⁻³ Wm⁻¹K⁻² 程度である. c_{\parallel} 方向では 900 K を 超える高温においても, 1.5 × 10⁻³ Wm⁻¹K⁻² 程度の高い PF を示す.

図 1.3.4:報告された単結晶 CrSi₂の異なる結晶方位における (a) 電気伝導率と (b) Hall 係数の温度依存性 [33].

図 1.3.5:報告された単結晶 CrSi₂の異なる結晶方位における (a) Seebeck 係数と (b) 出力因子の温度依存性 [33].

■ 熱伝導率と格子熱伝導率

Voronov ら [34] が報告した単結晶 CrSi₂ における $\kappa \ge \kappa_L$ の温度依存性を図 1.3.6 に示す. $\kappa \ge \kappa_L$ はともに, c_{\parallel} 方向で高い. c_{\perp} 方向および c_{\parallel} 方向の κ の極小 値は, それぞれ 6.9 Wm⁻¹K⁻¹ (750 K) および 11.3 Wm⁻¹K⁻¹ (770 K) である. κ は 結晶方位とは無関係に, 300-750 K で温度の増加にともない減少する. この挙動は, 温度上昇にともなう格子振動の増大がフォノンの伝導を阻害するためである. 一方, 750 K 以上で κ が減少から増加に転じる原因は, 両極性拡散により n が増加し, κ_C が増加したためである. 結晶方位とは無関係に, 300-600 K における κ の 90% が κ_L である. 報告された κ_L の温度依存性は 1000 K まで単調な減少を示し, c_{\perp} 方向およ び c_{\parallel} 方向における κ_L の最小値は, それぞれ 5.4 Wm⁻¹K⁻¹ および 9.2 Wm⁻¹K⁻¹ で ある.

図 1.3.6:報告された単結晶 CrSi₂の異なる結晶方位における (a) 熱伝導率と (b) 格子 熱伝導率の温度依存性 [34].

<多結晶の場合>

Nakasawa ら [25] が報告した多結晶 CrSi₂ における熱電特性の温度依存性を単結 晶の報告値 [33, 34] とともに図 1.3.7 に示す. 多結晶 CrSi₂ の σ は、単結晶の c_{\parallel} 方 向よりも高く、 c_{\perp} 方向よりも低い. また、多結晶 CrSi₂ の S、 κ および κ_{L} は、単結 晶の c_{\parallel} 方向よりも低く、 c_{\perp} 方向よりも高い. 多結晶 CrSi₂ の PF は 500 K において 最大値を示し、その値は単結晶の PF の最大値と比較して約 20% 大きく、 1.8×10^{-3} Wm⁻¹K⁻² である. 300-700 K において、多結晶 CrSi₂ の κ の 90% は κ_{L} で構成され ることがわかる. 単結晶 CrSi₂ の zT は、PF [33] と κ [34] が異なる文献の値である ことを踏まえた上で、これらの値を用いて算出した. 多結晶 CrSi₂ の zT は、単結晶 c_{\perp} 方向とおおよそ一致する温度依存性を示し、その zT の最大値は 700 K において 0.12 であることが報告されている.

図 1.3.7: CrSi₂ において報告された単結晶 [33, 34] と多結晶 [25] の熱電特性の温度 依存性.

1.4 格子熱伝導率の低減指針

CrSi₂ は高い σ と *S* を有するため、PF が他のシリサイドと比較して高い. 一方 で、 κ が高いため、zT は小さな値に留まっている. **CrSi**₂ の κ は、その 90% が κ_L で 構成される. したがって、実用化に必要な zT を得るためには κ_L の低減が必須であ る. 以下に、 κ_L の低減指針を示す.

1.4.1 結晶子サイズの低減

式 (1.1.15) に示した *κ*_L は,フォノンの波数を反映した形式で書き換えることが可能であり,式 (1.4.1) で表される [35].

$$\kappa_{\rm L} = \frac{1}{3\Omega} \sum_{q,j} C_j(q) v_j^2(q) \tau_j(q)$$
(1.4.1)

ここで、 $C_j(q)$ 、 $v_j(q)$ および $\tau_j(q)$ は、それぞれ波数ベクトル q とフォノン分枝 *j* で特徴付けされた比熱、群速度および緩和時間である.また、 Ω は系の体積であ る.式(1.4.1)に示すように、実際の材料では、多様な q のフォノンが異なる $C_j(q)$ 、 $v_j(q)$ および $\tau_j(q)$ を有し、 κ_L に寄与する.したがって、フォノンの l も同様に様々 な値であり、その値は材料ごとに大きく異なる.

フォノンの*l*よりも小さな結晶子で構成される焼結体の結晶粒界において、フォ ノンは式 (1.1.21) に示す運動量の保存しない散乱を受ける.結晶子サイズの低減が フォノンの熱伝導に影響を与える様子を図 1.4.1 に示す.粗大な結晶子で構成される 焼結体では、*l*の長いフォノン Cのみが結晶粒界で散乱される.一方で、微細な結晶 子で構成される焼結体では、フォノン Cに加えてフォノン Bも散乱される.このよ うに、結晶子サイズに比べて大きな*l*のフォノンは結晶粒界で散乱を受けて、物質中 を伝搬することができない.したがって、結晶子サイズを低減することで、熱伝導に 寄与するフォノンの数を制限し、 κ_L を低減できる.ここで、微細化できる結晶子の サイズは 10 nm 程度が下限であることから、結晶子サイズの低減は、10 nm より大 きな*l*のフォノンを散乱する手段として有効と考えられる.

第一原理計算を用いて算出できるフォノン輸送特性の1つに累積格子熱伝導率 κ_{cum}があり、この算出によって、どの結晶子サイズがκ_Lの低減に対して有効か予測 できる. κ_{cum} は、 κ_{L} の総和に対する特定のフォノンの寄与を、すべてのフォノンに 対して累積したものである. Nissimagoudar ら [36] が第一原理計算を用いて算出し た InSe における κ_{cum} の *l* 依存性を図 1.4.2 に示す. InSe において、主に熱伝導に寄 与するフォノンは 10¹-10⁴ nm の *l* を有する. したがって、10⁴ nm 以下の大きさの結 晶子で試料を構成し、フォノンを結晶粒界において散乱することが低熱伝導率化に 有効であると考えられる. また、この κ_{cum} の *l* 依存性から、100 nm 以上の *l* のフォ ノンを効果的に散乱した場合、単結晶の κ_{L} ($\kappa_{L} = 27.5 \text{ Wm}^{-1}\text{K}^{-1}$) よりも約 80% 低 い値 ($\kappa_{L} = 5 \text{ Wm}^{-1}\text{K}^{-1}$ 程度) が実現すると予測される.

図 1.4.1: フォノンの l が結晶子サイズにより制限を受ける機構.

図 1.4.2: InSe の累積格子熱伝導率の平均自由行程依存性 [36].

1.4.2 元素置換

試料に原子レベルで構造の乱れを導入する元素置換において,置換元素は 10 nm 以下のlのフォノンも散乱する散乱体となる.近年, CrSi₂ において報告された重 元素置換による κ_L の低減を以下にまとめ,報告された置換試料の κ_L と zT を図 1.4.3 に示す.

$< Cr(Ge_{0.015}Si_{0.985})_2 >$

Nagai ら [37] は、アーク熔解法と放電プラズマ焼結を用いて作製した Cr(Ge_{0.015}Si_{0.985})₂ 試料の熱電特性を報告している. Si サイトに対する Ge の固溶限 は 1.5% であり、Ge 置換量の増加とともに κ_L は単調に減少する. Cr(Ge_{0.015}Si_{0.985})₂ 試料の κ_L は 600 K で 4.0 Wm⁻¹K⁻¹ である. 置換にともない PF は増加し、 Cr(Ge_{0.015}Si_{0.985})₂ の組成において、zT の最大値 zT_{max} は 600 K で 0.25 である.

$< (Cr_{0.7}Mo_{0.3})Si_2 >$

Ohishi ら [38] は、アーク熔解法と放電プラズマ焼結を用いて作製した (Cr_{0.7}Mo_{0.3})Si₂ 試料の熱電特性を報告している. Cr サイトに対する Mo の固溶 限は 30% であり、Mo 置換量の増加とともに κ_L は単調に減少する. (Cr_{0.7}Mo_{0.3})Si₂ 試料の κ_L は 670 K で最小値 3.0 Wm⁻¹K⁻¹ である. Mo 置換の場合、置換量の増加 にともなう σ 増加および S の減少が生じることが報告されている. (Cr_{0.7}Mo_{0.3})Si₂ の組成において、 zT_{max} は 770 K で 0.23 である.

$< (Cr_{0.9}W_{0.1})Si_2 >$

Mohamad ら [39] は、アーク熔解法と放電プラズマ焼結を用いて作製した ($Cr_{0.9}W_{0.1}$)Si₂ 試料の熱電特性を報告している. Cr サイトに対する W の固溶限 は 10% であり、W 置換量の増加とともに κ_L は単調に減少する. ($Cr_{0.9}W_{0.1}$)Si₂ 試 料の κ_L は 670 K で最小値 3.6 Wm⁻¹K⁻¹ である. ($Cr_{0.9}W_{0.1}$)Si₂ の組成において、 zT_{max} は 670 K で 0.19 である.

図 1.4.3:報告された CrSi₂, Cr(Ge_{0.015}Si_{0.985})₂, (Cr_{0.7}Mo_{0.3})Si₂ および (Cr_{0.9}W_{0.1})Si₂の格子熱伝導率 K_L と無次元性能指数 zT の温度依存性 [25, 38, 37, 39].

1.5 還元拡散法

■ ソフト化学法

従来の無機材料の合成には,粉末状の試薬を原料として使い,その混合物を高温 で焼成する固相反応法が用いられてきた.元素の拡散には大きなエネルギーが必要 であるため,一般的な固相反応法による材料合成は高温・長時間の熱処理を要する. 熱電材料において,熱電特性は微細組織の制御により向上すると理論的に報告され ているが [40],一般的な固相反応法では高温・長時間の熱処理が粒子の粗大化をも たらすため,微細組織の制御は難しい.

近年,インターカレーション法,ゾルゲル法,液相析出法および電気化学法など高 温の熱処理が不要な無機材料の合成法が注目されている.これらに代表される合成 法は投入するエネルギーが一般的な固相反応法と比較して小さいため,ソフト化学 法と呼ばれる.

■ 還元拡散法

ソフト化学法の1つに,金属水素化物を還元剤として用い,比較的低温で固相反応を実現できる還元拡散(RD:Reduction-Diffusion)法がある. RD法は主に,水素貯蔵合金,磁性体および酸素欠損試料の合成[41,42]に用いられてきた. RD法を利用した合成では,結晶子サイズを100 nm以下に抑えた粉末合成が可能であることが報告されている[41].還元反応を利用する RD法では,原料として酸化物試薬を使用することが可能である.酸化物試薬は,金属試薬を扱う場合に問題となる酸化に対する心配がなく,金属のような展性や延性がないため,十分な粉砕行程を経て微細化した原料を準備できるという長所がある.

RD 法を用いた合成の一例として, Deheri ら [41] が報告した強磁性体 Nd₂Fe₁₄B の微細粉末の合成手順を図 1.5.1 に示す.まず,塩化物と酸化物の原料を用いて,前 駆体となる Nd, Fe および B を含むゲルを合成した (Step 1).合成した前駆体は Step 2 で焼成され,酸化物粉末が生成された.その後,CaH₂を用いた RD 法 (Step 3) に よって酸化物粉末を還元することで,所望の Nd₂Fe₁₄B の粉末が得られることを報 告している.

図 1.5.1: 還元拡散法を用いた Nd₂Fe₁₄B 粉末の合成の流れ [41].

ゾルゲル法により得られた Nd-Fe-B 酸化物粉末と, RD 法により得られた Nd₂Fe₁₄B の粉末の二次電子像 [41] をそれぞれ図 1.5.2 (a) および (b) に示す. ゾ ルゲル法により得られた Nd-Fe-B 酸化物粉末は粒径が約 100 nm 程度である. また, RD 法により得られた Nd₂Fe₁₄B 粉末のサイズは 65 nm と Nd-Fe-B 酸化物粉末より も微細であることが報告されている.

図 1.5.2: (a) ゾルゲル法により得られた Nd-Fe-B 酸化物粉末と (b) 還元拡散法により得られた Nd₂Fe₁₄B の粉末 [41]. (a) の粉末は (b) の前駆体として用いられた.

1.6 研究の目的

本研究では、毒性の低い元素で構成され、高温安定性を有するシリサイドの1つである CrSi₂ に着目した. CrSi₂ は、他のシリサイドと比較して高い PF を有するが、 κ_L が高いため、zT は 0.1 程度と低い値に留まっている. そこで本研究では、CrSi₂ における κ_L の低減と zT の向上を目的とした. この目的を効率的に達成するため、 CrSi₂ の κ_L に寄与するフォノンの lを第一原理計算で明らかにする理論的研究と、 その結果を踏まえた低熱伝導率化の指針に基づいて、 κ_L の低減に有効なサイズの散 乱体を導入する実験的研究を行った.

第3章 フォノン輸送計算

 $CrSi_2$ における低熱伝導率化の指針を示すことを目的として,第一原理計算に基づ くフォノン輸送計算を行い, κ_L に寄与する主なフォノンのlを示す κ_{cum} のl依存性 を算出した.

第4章 結晶子サイズの低減による低熱伝導率化

CrSi₂ 焼結体を構成する結晶子サイズを低減し,結晶子サイズより大きな*l*のフォ ノンを効果的に散乱することで,低熱伝導率化を図った.この方法で低熱伝導率化 を実現するため, **RD** 法による試料作製および作製条件の検討を行い,試料を構成す る結晶子サイズを制御した.また,得られた試料の結晶子サイズの定量評価および *K*_Lの測定を行い,低熱伝導率化に対する結晶子サイズ低減の有効性を議論した.

第5章 元素置換による低熱伝導率化

結晶子サイズ以下の小さい*l*を持つフォノンを効果的に散乱することを目的として、元素置換を行った.この目的を達成するため、アーク熔解法を用いた元素置換および RD 法を用いた元素置換の双方を行った.本研究では、置換量の増加にともなう *κ*_Lの変化を観測しやすいよう、Cr サイトに対する固溶限が 30% と大きいことが報告されている Mo を置換元素として選択した.

第2章 実験·評価方法

2.1 試料合成

本研究では、アーク熔解法または RD 法を用いた試料合成を行った.

アーク熔解法

アーク熔解法を用いたインゴットの作製には、モノアーク熔解炉 (GMAC-1100) を 使用した.タングステン製の電極から発生するアーク放電により、化学量論組成で 秤量した試薬を Ar 雰囲気中で熔解した.アーク熔解の温度は印加電流により調節し た.また、熔解の前に、炉内に備わっている Ti ゲッターをアーク熔解することで残 留酸素を奪い、インゴットの酸化を防いだ.均一なインゴットを得るため、インゴッ トの熔解は上下を反転させて繰り返し6度行った.使用した試薬の詳細を表 2.1.1 に 示す.

表 2.1.1: アーク熔解法による CrSi2 系試料の合成に用いた試薬.

試料	純度	製造元
Si	5N	高純度化学研究所
Cr	3N	高純度化学研究所
Mo	3N	高純度化学研究所

還元拡散法

RD 法は原料粉末から直接的に化合物粉末を得る手法の1つであり、これまで磁性 材料の合成等に利用されてきた. RD 法による CrSi₂ 粉末の合成手順を以下に示す.

出発原料として Cr₂O₃ 粉末と Si 粉末を用い,また還元剤として LiH を用いて CrSi₂ 粉末を合成した.原料粉末と還元剤を Ar 雰囲気のグローブボックス内で混合 し,その混合物を直径 8 mm・高さ 6-8 mm のペレットに成型した.得られたペレットを石英管に真空封入し,773-1073 K の範囲の所定の温度で 3 時間加熱した.加熱 後の試料を精製水で洗浄し,副生成物を除去した.RD 法による CrSi₂ 粉末の合成を 表す化学反応式を式 (2.1.1) に示す.また,試料合成に用いた試薬の詳細を表 2.1.2 に 示す.

$$\frac{1}{2}Cr_2O_3 + \frac{19}{8}Si + \frac{3}{2}LiH \to CrSi_2 + \frac{3}{8}Li_4SiO_4 + \frac{3}{4}H_2$$
(2.1.1)

表 2.1.2:還元拡散法による CrSi2 系試料の合成に用いた試薬.

試料	純度	粒径	製造元
Cr_2O_3	99.9%	ca.3 µm	高純度化学研究所
MoO ₃	99.9%	表記無	高純度化学研究所
Si	99.9%	ca.5 µm	高純度化学研究所
LiH	95%	表記無	和光純薬工業株式会社

2.2 焼結体の作製

焼結体の作製には、放電プラズマ焼結 (Spark Plasma Sintering: SPS) を用いた.図 2.2.1 に SPS による焼結体作製の様子を示す. SPS は試料に圧力を加えながら、パン チとダイに直接電流を通電して加熱する焼結手法である.本手法は、冷間プレスや ホットプレスでは得難い緻密な焼結体が短時間で作製できるといった利点を有する. 本研究では、富士電波工機株式会社の SPS-520S 放電プラズマ焼結装置を用いて焼 結体を作製した.100 MPa 以上の圧力を必要とする SPS には、炭化タングステン製 (WC) のパンチとダイを用いた.100 MPa 未満の圧力での SPS には、黒鉛製 (C) の パンチとダイを用いた.

図 2.2.1: SPS による焼結体作製の様子.

粉末 X 線回折測定 2.3

2.3.1 測定原理

本研究では BRUKER D8 ADVANCE を用いて, 粉末 X 線回折 (XRD: X-ray diffraction)による測定と評価を行った、XRD は結晶性物質の同定、定量分析および 構造解析の手段として広く普及している評価手法であり,波長が数 Å 程度の X 線を 粉末試料に照射することで生じる回折現象を利用したものである. X線が原子に衝 突すると、核外電子はX線の電場によってX線波長と同じ振動数で振動する.電子 が振動すると、その振動周期と同じ周期を持つ電磁波が電子から放出し、電子を中 心として球面上に広がる (Thomson 散乱). ここで発生する波は X 線と同じ波長の X 線で互いに一定の位相関係を持つ.結晶は原子の集団が周期的に配列することで空 間格子を構成しており、その周期は~1nm程度である. その周期と同程度もしくは より短い波長のX線が入射した場合、結晶格子は回折格子の役割を果たし、特定の 方向へ散乱される波が干渉して強め合う.したがって、干渉条件を考慮することで、 原子面の面間隔 d, X 線の入射角 θ および波長 λ の関係式 (2.3.1) が導出できる.

$$2d\sin\theta = \lambda \tag{2.3.1}$$

 $\left\{ \begin{array}{ll} \theta : \ \mathbb{R}$ 子面からの X 線の入射角 $\lambda : X 線の波長 (CuK_{\alpha} 線, 0.15406 nm) \end{array} \right.$

セラミックスや金属などの実用的な材料においては,材料の特性が結晶粒の大き さや構造の乱れの影響を強く受ける場合がある.したがって、結晶子の観測と評価 は製品の品質管理において非常に重要であり、XRD によって、結晶子サイズを評価 する手法が確立されている.

2.3.2 結晶構造解析

結晶構造パラメータの精密化には Rietveld 解析を用いた. Rietveld 解析とは,粉 末 X 線回折や中性子回折で得られた回折パターンから構造パラメータを精密化し, 格子定数やサイトの占有率を導出する方法である.本手法では,構造モデルを仮定 して強度分布を計算し,実測した回折パターンに対して非線形最小二乗法で構造パ ラメータを含む複数の変数を精密化する.精密化する変数の初期値は Le Bail 法 [43] を用いたパターン分解により算出した. Rietveld 解析の進行状況および実測値と理 論値の一致のほどを判断する指標として,以下に示す信頼因子 [44] が用いられる.

$$R_{\rm wp} = \left(\frac{\sum_{i} w_i (y_i - I_i(x))^2}{\sum_{i} w_i y_i^2}\right)^{\frac{1}{2}}$$
(2.3.2)

$$R_{\rm p} = \frac{\sum_{i} |y_i - I_i(x)|}{\sum_{i} y_i}$$
(2.3.3)

$$R_{\rm e} = \left(\frac{N-P}{\sum_i w_i y_i^2}\right)^{\frac{1}{2}}$$
(2.3.4)

$$gof = \frac{R_{\rm wp}}{R_{\rm e}} = \left(\frac{\sum_{i} w_i (y_i - I_i(x))^2}{N - P}\right)^{\frac{1}{2}}$$
(2.3.5)

ここで、 w_i , y_i および $I_i(x)$ は統計的重み、実測強度および理論回折強度であり、N と P はそれぞれ全データ点数と精密化するパラメータの数である. 重み付けされた XRD パターンの信頼因子である R_{wp} が最重要パラメータであり、非線形最小二乗 法の精度を反映したその分子は実測値と理論値の一致のほどを示す. R_e は観測値が 含む統計的誤差を考慮した信頼因子であり、 R_e と R_{wp} の比である gof (Goodness of Fit) がフィッティングの整合性を示す実質的な尺度として役立つ. 本研究では結晶 構造解析を行うプログラムとして、Jana2006 [45] と RIETAN-FP [46] を用いた.

2.3.3 Williamson-Hall プロット

Williamson-Hall プロットを用いて,XRDパターンの積分幅と回折角度から1µm 以下の結晶子サイズを定量的に評価できる.ここで,評価できる結晶子サイズはX 線回折装置の分解能と装置定数に左右される.Williamson-Hallの式は

$$\beta \frac{\cos \theta}{\lambda} = \frac{1}{D} + 4\epsilon \frac{\sin \theta}{\lambda}$$
(2.3.6)

で表される [19, 47]. ここで β , θ , λ , D および ϵ は, それぞれ回折ピークの積分幅, Bragg 回折角, 照射 X 線の波長, 平均結晶子サイズおよび歪みを表す.式 (2.3.6) は sin θ = 0 の場合,

$$\frac{\beta}{\lambda} = \frac{1}{D} \tag{2.3.7}$$

であり、この式を用いることで、積分幅に対する歪み影響を差し引いた結晶子サイズの定量評価が可能である。図 2.3.1 には、XRD の標準試料である CeO₂ の回折パターンから得られる Williamson-Hall プロットを示す。Williamson-Hall プロットから得られた CeO₂ の β は 1.39(3)×10⁻³ であり、本研究では、この値を用いて装置に由来する β の広がりを差し引き、結晶子サイズを評価した。

図 2.3.1:標準試料 CeO₂の Williamson-Hall プロット.

2.4 表面観察

2.4.1 走查型電子顕微鏡 (SEM)

試料の表面観察には走査型電子顕微鏡 (Scanning Electron Microscope: SEM)を用 いた.SEM は真空中で試料に電子ビームを照射した際に得られる二次電子,反射電 子および特性 X 線を検出する装置である [48].SEM の原理を図 2.4.1 に示す.二次 電子は、入射電子により励起された試料内部の電子であり、その発生深さは 10 nm 程度と浅い.したがって、試料の微細な凹凸の観察に利用される.反射電子は、入射 電子が試料を構成する原子に衝突した際に跳ね返された電子であり、反射電子の数 は試料の平均原子番号に依存する.したがって、反射電子像は原子番号の違いを反 映したコントラストを示す.また、エネルギー分散型 X 線分光 (EDX)を用いて検出 される特性 X 線は、その試料に含まれる元素とその割合の特定に利用される.本研 究では、東北大学工学研究科技術部が管理する日本電子株式会社製の JSM-6500F を 使用し、二次電子像と反射電子像による微細構造観察を行った.

図 2.4.1: SEM の原理図.

2.4.2 電子線後方散乱回折分析 (EBSD)

試料表面の配向性と結晶子サイズの評価には,東北大学工学研究科技術部が管理 する日本電子株式会社製の新型電界放出形走査電子顕微鏡 JSM-7100F を用い,試料 へ電子線を照射した際に発生するチャネリングパターンを解析する電子線後方散乱 回折分析 (EBSD) を行った.発生するチャネリングパターンは結晶方位により異な る.したがって,結晶構造パラメータを用いたチャネリングパターンの解析によっ て,試料の結晶方向を評価できる.

本研究では、EBSD を用いて得られた極点図と Image Quality (IQ) マップを利用し て議論を行う. IQ マップは電子線照射部の結晶の質を数値化し、数値に応じた配色 を行うことで試料の結晶性を示す像である.熱処理温度が高く、結晶性の優れた試 料においてはほとんどコントラストが生じない.一方、結晶性の低い試料や結晶粒 界を持つ試料では電子線照射部で結晶情報が得られず、その IQ マップは結晶性を有 する部分とのコントラストを持つ.本研究では、このコントラストを利用して結晶 粒界を観測し、結晶子サイズを可視化する. EBSD 法の分解能は 30 nm 程度であり、 これ以下の結晶子を観察する際には、図 2.4.2 に示すチャネリングパターンの直接観 察を行った.

図 2.4.2:電子線の照射時に得られるチャネリングパターンの一例.

2.5 熱電特性評価

2.5.1 電気伝導率と Seebeck 係数

 $\sigma \geq S$ の測定には、株式会社 ULVAC 製 ZEM-3 を用いた.測定には $1.5 \times 1.5 \times 8$ mm 程度の大きさに切り出した焼結体を用いた.冷却端と加熱端の温度差が保たれるよう Ni 製の均熱キャップで試料を覆い、直流 4 端子法を用いた σ の測定と温度差起電力法を用いた S の測定を行った.直流 4 端子法は、正負の電流を流して Ohmic 判定を行うとともに浮遊起電力を打消し、 σ を正確に測るための手法である.

$$\sigma = \frac{dI}{dV}\frac{l}{wt} \tag{2.5.1}$$

式 (2.5.1) における *I* は試料に流れる電流, *V* は端子間に生じる電圧差であり, *w*, *t*, *l*は, それぞれ試料の幅, 高さ, 電圧端子間距離である. 温度差起電力法は, 上部 プローブ温度 T_a と下部プローブ温度 T_b の間に生じる温度差 $\Delta T = T_a - T_b$ と試料 に生じる起電力 ΔV から, 式 (2.5.2) にしたがって *S* を求める方法である. 温度差 $\Delta T = 0$, 10, 20, 30, 40 K における起電力をプロットし, 算出された直線近似の傾 きから *S* を導出した.

$$S = \lim_{\Delta T \to 0} \frac{\Delta V}{\Delta T}$$
(2.5.2)

 $\sigma \ge S$ はすべての試料において SPS の加圧方向に平行な方向に測定した.また,lは 3.5 mm に統一した.

2.6 Hall 効果測定

Hall 効果測定 [49] を行うことで得られるホール係数 $R_{\rm H}$ から,多数キャリア密度 n を評価できる. 図 2.6.1 に示すように試料の長軸方向に電流 I を印加し,短軸方向 に磁束密度 B を印加した場合,フレミングの左手の法則から,試料上側に多数キャリアが蓄積し,Hall 電圧 $V_{\rm H}$ が発生する. この $V_{\rm H}$ の符号から多数キャリアがホール または電子のどちらであるかを判断し,その値から式 (2.6.1) と式 (2.6.2) を用いるこ とで n を算出できる.

$$V_{\rm H} = R_{\rm H} \frac{IB}{D} \tag{2.6.1}$$

$$R_{\rm H} = \frac{1}{qn} \tag{2.6.2}$$

ここで D は磁東方向の試料厚さである.また, σ の測定値と算出した n から,式 (1.1.5) を用いて μ を求めることが可能である.本研究では,Hall 効果測定に日本カ ンタムデザイン株式会社製の PPMS (AC Transport ユニット)を用いた.

図 2.6.1: Hall 係数の測定原理.

2.6.1 熱伝導率

κはレーザーフラッシュ法で測定した.この方法は、レーザー照射後の試料温度の時間経過から熱拡散率および比熱を求める非定常法である.本手法には、株式会社 ULVAC-RIKO 製の熱定数測定装置 TC-7000H を用いた.κの算出には式 (2.6.3) を 用いた.

$$\kappa = \alpha C \rho \tag{2.6.3}$$

ここで、 α , *C* および ρ は、それぞれ熱拡散率、比熱および密度である。本手法で測定可能な α の範囲は 10^{-3} - $10 \text{ cm}^2 \text{s}^{-1}$ である。ただし、 α が小さい場合には熱損失が大きく、測定値は大きな測定誤差を含む。

レーザー照射後の経過時間 t と試料裏面の温度上昇 T を図 2.6.2 に示す. 温度上昇 に要する時間よりもレーザー照射時間が十分短い場合, α は式 (2.6.4) で与えられる.

$$\alpha = 1.388 \frac{d^2}{\pi t_{1/2}} \tag{2.6.4}$$

ここで $t_{1/2}$ は、レーザー照射後に試料の裏面温度が最大値 T_{max} に到達するまでの時間の半分を表す.レーザーを照射することで加えられた熱量が Q である場合、温度上昇の最大値 T_{max} は ρ 、 C および試料厚さ d を用いて式 (2.6.5) で表せる.

$$T_{max} = \frac{Q}{C\rho d} \tag{2.6.5}$$

したがって,正確な Q が得られれば,式 (2.6.3)を用いて κ が導出できる.

本研究では、レーザー照射により瞬時に温度上昇を引き起こすことを目的として、 試料裏面にカーボンブラックを塗布した.また、試料の形状は厚さ 1-2 mm、直径 10 mm の円柱に統一した. κ はすべての試料において SPS の加圧方向に平行な方向 に測定した.また、秤で測定した試料の重さとのぎすで採寸した体積から ρ を算出 した.

図 2.6.2: レーザー照射後の試料裏面の温度の時間変化.

2.7 Raman 分光

格子振動に関する情報を得る手法の1つに Raman 分光がある. 顕微 Raman 分光 の原理図を図 2.7.1 に示す. Raman 分光は,励起光が結晶内の格子振動に作用する ことで生成または消滅するフォノンのωを,観測される Raman 散乱光から把握する 手法 [50] である. Raman スペクトルの半値幅は,結晶性,配向や歪みといった多様 な情報を反映する. 一般に用いられる励起光の波数は非常に小さなオーダーである ため, Raman 分光で観測されるスペクトルは,Brillouin ゾーンの中心である Γ 点近 傍におけるフォノンのものに限定される.

本研究では、Raman 分光によって得られるフォノンの ω を測定し、作製試料にお けるフォノンの v を相対的に評価した.東北大学工学研究科技術部が管理する日本 分光株式会社製の顕微レーザー Raman 分光装置 NRS-5100 を用いて測定した.ま た、励起光の波長は 532.13 nm を、グレーティングは最も大きい 1800 nm⁻¹ を選択 し、焼結体を室温で測定した.用いたレーザーの出力は 7.2 mW であり、得られた Raman スペクトルの分解能は 4.14 cm⁻¹ であった.

図 2.7.1: 顕微 Raman 分光の原理図.

2.8 第一原理計算

経験的なパラメータや任意定数を用いない第一原理計算により,材料の電子輸送特性とフォノン輸送特性が推定可能である.電子輸送特性は,結晶中の電子の Schrödinger 方程式を計算することで得られ,計算には結晶構造パラメータおよび 交換相関ポテンシャルが必要である.また,フォノン輸送特性は,線形フォノン Boltzmann 輸送方程式を計算することで得られ,同様に,計算には結晶構造パラメー タおよび交換相関ポテンシャルが必要である.本研究で行ったフォノン輸送計算の 方法論を以下にまとめる.

2.8.1 フォノン輸送計算

■ 格子動力学

κ_Lの算出には結晶中の原子間相互作用を記述する力定数 Φ の導出が必要である. 本研究では格子動力学計算 [51] を行い,力定数の調和項および非調和項を算出した.原子が平行位置から *u* だけ移動した場合,系に働く力 *F* は *u* の Taylor 展開で式(2.8.1)のように表される.

$$F_{i} = -\frac{\partial U}{\partial u_{i}} = -\sum_{j} \Phi_{ij} u_{j} - \frac{1}{2} \sum_{j,k} \Phi_{ijk} u_{j} u_{k} + \dots$$
(2.8.1)

ここで,*i*,*j*および*k*は原子の指標であり, Φ_{ij} および Φ_{ijk} はそれぞれ力定数の調 和項および非調和項である.力定数の調和項からはv(q)が,非調和項から $\tau(q)$ が 導出できる.

■ 有限変位法

力定数を算出するため,原子間相互作用を取り込める十分な大きさのスーパーセルを用意し,セル中の原子に微小変位を与え,その際に得られる力定数を算出する. 力定数の調和項は式 (2.8.2) で表される.

$$\Phi_{ij} = -\frac{\partial^2 U}{\partial u_i \partial u_j} \tag{2.8.2}$$

式 (2.8.2) が成立するには,原子変位は十分小さい必要があり,本研究では微小変位の値には 0.06 bohr を用いた.

■ 計算条件

東北大サイバーサイエンスセンターの並列計算機 (LX 406Re-2) を使用してフォ ノン輸送計算を行った.また、第一原理計算プログラムは Quantum ESPRESSO [52, 53] を用いた.汎用コードの phonopy [54] を用いて力定数の調和項を算出し, phono3py [55] を用いて力定数の非調和項を算出した. Quantum ESPRESSO を用い た構造最適化には $3 \times 3 \times 3$ の supercell を用い,力定数の算出には $2 \times 2 \times 2$ の supercell を用いた.

第3章 熱電特性の第一原理計算

3.1 フォノン輸送計算

本章では、第一原理計算に基づくフォノン輸送計算を行い、 $CrSi_2$ の力定数の調和 項および非調和項を算出した.その計算結果を用いて、明らかにした $CrSi_2$ のフォ ノン分散関係、 κ_{L0} 、 κ_{L} および κ_{cum} を示す.さらに、算出した κ_{cum} のl依存性に基 づき、 κ_{L} の低減に有効な手法を提案する.

3.1.1 フォノンの分散関係

力定数の調和項から算出した CrSi₂のフォノン分散関係およびフォノン状態密度 (DOS) をそれぞれ図 3.1.1 (a) および図 3.1.1 (b) に示す.得られた分散関係は 3 つの 音響分枝と 24 の光学分枝から構成される.音響フォノンは 0-8 THz 程度,光学フォ ノンは 4-14 THz 程度の周波数域に存在し,8-10 THz において Cr 原子の振動に起因 するフォノンが,12-14 THz において Si 原子の振動に起因するフォノンが主に DOS を占有することがわかった.図 3.1.2 に Γ -A 点の分散関係の拡大図を示す. Γ 点近 傍における音響フォノンの ω は波数の増加にともなう単調増加を示した.音響フォ ノンの分散関係から, $v = \omega/q$ を用いて算出した音速を Nakamura [56] が報告した 実験値とともに表 3.1.1 に示す.算出した音速は、実験値と比較して誤差の範囲で あった.

表 3.1.1: フォノン輸送計算に基づき算出した CrSi₂ の音速と Nakamura [56] が報告 した実験値の比較.

		<本研究 >	
	結晶方位	計算值 (ms ⁻¹)	実験値 [56] (ms ⁻¹)
VTA	[001]	$5.44(6) \times 10^3$	5.471×10^{3}
v_{TA}	[110]	$5.34(16) \times 10^3$	5.702×10^{3}
v_{LA}	[001]	$8.31(3) \times 10^3$	8.795×10^{3}
v_{LA}	[110]	$7.43(18) \times 10^3$	8.634×10^{3}

図 3.1.1:フォノン輸送計算に基づき算出した CrSi₂の(a)フォノン分散関係と(b) フォノン状態密度.

図 3.1.2: フォノン輸送計算に基づき算出した CrSi₂ の Γ-A 点におけるフォノン分散 関係.

3.1.2 格子熱伝導率の到達最小値

表 3.1.1 の音速を用いて,算出した Debye 温度 θ_D は 776 K であった. この θ_D の 値を用いて,式 (1.1.23) にしたがって算出した $\kappa_{L0,A}$ を図 3.1.3 (a) に示す. $\kappa_{L0,A}$ は 300 K で 1.5 Wm⁻¹K⁻¹ 程度であり,温度上昇にともない 2 Wm⁻¹K⁻¹ に漸近する挙 動を示した.この温度依存性は,式 (1.1.23) に含まれる Einstein 比熱が, Dulong-Petit の法則にしたがって一定値に漸近するために生じる.得られた $\kappa_{L0,A}$ の値を文献値 [11, 38] とともに表 3.1.2 にまとめる.

次に、Slack [18] が導出した理論式 (1.1.24) にしたがって、CrSi₂ の κ_{L0} に対する光 学フォノンの寄与 $\kappa_{L0,0}$ を求めた。光学分枝における各光学フォノンの ω は、第一原 理計算から導出した値を用いた。また、融点におけるモル体積の三乗根 A は、CrSi₂ の融点 [24] における格子定数を用いて算出した [29]. 算出した $\kappa_{L0,0}$ を図 3.1.3 (b) に示す。また、光学フォノンの寄与 $\kappa_{L0,0}$ と音響フォノンの寄与 $\kappa_{L0,A}$ の和である κ_{L0} も図 3.1.3 (b) に示す。300-1000 K で $\kappa_{L0,0}$ は変化せず、0.31 Wm⁻¹K⁻¹ であっ た。また、 κ_{L0} は 300 K において 1.79 Wm⁻¹K⁻¹、600 K において 2.18 Wm⁻¹K⁻¹ であった。第一原理計算により得られた 300 K と、600 K における $\kappa_{L0,0}$ および κ_{L0} を表 3.1.2 にまとめる。

さらに、伝導キャリアが輸送する熱伝導率 $\kappa_{\rm C}$ を考慮して、Mikami ら [57] が報告 した $\kappa_{\rm C}$ [57] と $\kappa_{\rm L0}$ の和を、 $\kappa_{\rm L0}$ とともに図 3.1.3 (c) に示す. $\kappa_{\rm C}$ は 0.82 Wm⁻¹K⁻¹ 程度 [57] であり、 $\kappa_{\rm C}$ と $\kappa_{\rm L0}$ の和は 300 K において 2.64 Wm⁻¹K⁻¹、600 K におい て 2.94 Wm⁻¹K⁻¹ であった.音響フォノンおよび光学フォノンの熱伝導への寄与に 加えて、キャリアの寄与を考慮したこの値が CrSi₂ において予想される到達可能な κ の最小値である. κ がこの値に到達した場合に達成可能な zT の値を図 3.1.3 (d) に示す. $\kappa_{\rm C}$ と PF には文献値 ($\kappa_{\rm C}$ = 0.82 Wm⁻¹K⁻¹、PF = 1.82 × 10⁻³ Wm⁻¹K⁻² at 650 K [57]) を用いた.達成可能な zT の最大値は 650 K で 0.39 に到達する.また、 300-700 K における \overline{zT} は 0.30 であり、この値から、式 (1.1.26) を用いて見積もられ る $\eta_{\rm max}$ は 5% を上回る.

図 3.1.3:フォノン輸送計算により算出した $CrSi_2$ の (a) 最小格子熱伝導率 κ_{L0} に対 する音響フォノンの寄与 $\kappa_{L0,A}$, (b) 光学フォノンの寄与 $\kappa_{L0,O}$, (c) 報告された電子熱 伝導率 κ_C [57],および (d) PF の報告値 [57] を用いて導出した到達可能な zT.

3.1.3 格子熱伝導率を構成する諸物性

300 K における CrSi₂ のフォノンの自己エネルギーの虚部 Γ と, 2 Γ の逆数で与え られる τ [58] の ω 依存性を図 3.1.4 (a) と (b) に示す. CrSi₂ におけるフォノンの τ は、0.1-100 ps 程度の長さであり、 τ の ω 依存性から、長い τ のフォノンは 2 THz 以 下の音響フォノンおよび 8-10 THz の光学フォノンであることがわかった. 次に、vの ω 依存性を図 3.1.4 (c) に示す. v の ω 依存性から、大きなv を有するフォノンは 音響フォノンのみではないこと、1000 ms⁻¹ 程度のv を有するフォノンは 4 THz 以 上の周波数域にも存在することが明らかになった. フォノンの l は τ とv の外積で 表され、図 3.1.4 (b) と (c) に示す τ とv の ω 依存性から導出された l の ω 依存性を 用いて、 κ_{L} 、 κ_{cum} および κ_{cum} の l 依存性を明らかにした.

図 3.1.4: フォノン輸送計算に基づき算出した 300 K における CrSi₂の (a) フォノン の自己エネルギーの虚部 Γ, (b) 緩和時間 τ および (c) 群速度 v の周波数依存性.

3.1.4 格子熱伝導率

フォノン輸送計算により算出した CrSi₂ における単結晶と多結晶の κ_{L} の温度依存 性を図 3.1.5 に示す.単結晶の κ_{L} の計算値は温度域によらず, c 軸に垂直な方向と 比較して c 軸に沿った方向で高い.これは, Voronov ら [34] が報告した実験結果と 一致する.多結晶の κ_{L} は,算出した単結晶の κ_{L} から有効媒質理論 (EMT [59])を用 いて導出した.計算結果は, κ_{L} が温度上昇とともに低減する実験値の挙動 [34, 25] をよく再現する一方で,得られた計算値は実験値 [34, 25] よりも 30% 程度低い値で あった.第一原理計算により導出した κ_{L} におけるこの過小評価は,交換相関ポテン シャルに簡便な汎関数を用いた場合に生じることが報告されている [55, 60].本計算 は,代表的な交換相関ポテンシャルとして汎用される PBE-GGA を使用して行った が,複数の汎関数を混成したポテンシャルを用いることで,不一致を改善できること が近年報告されている [61].第一原理計算により得られた 300 K および 600 K にお ける κ_{L} を表 3.1.2 にまとめる.

図 3.1.5: フォノン輸送計算に基づき算出した CrSi₂ における単結晶と多結晶の格子 熱伝導率 κ_L の温度依存性.

表 3.1.2:フォノン輸送計算に基づき算出した格子熱伝導率 κ_L, その到達最小値 κ_{L0} の音響フォノン成分 κ_{L0,A} および光学フォノン成分 κ_{L0,O} と文献値 [11, 25, 34, 38] の 比較.

			物性值 (Wm ⁻¹ K ⁻¹)	
К _{Lcµ}	Calc.	This work	10.0 (at 300 K)	5.2 (at 600 K)
$\kappa_{Lc_{\parallel}}$	Exp.	Voronov et al. [34]	14.5 (at 300 K)	10.4 (at 600 K)
$\kappa_{\mathrm{L}c_{\perp}}$	Calc.	This work	6.99 (at 300 K)	3.5 (at 600 K)
$\kappa_{\mathrm{L}c_{\perp}}$	Exp.	Voronov et al. [34]	10.5 (at 300 K)	6.9 (at 600 K)
$\kappa_{Lc_{poly}}$	Calc.	This work	7.92 (at 300 K)	4.0 (at 600 K)
$\kappa_{Lc_{poly}}$	Exp.	Nakasawa et al. [25]	11.7 (at 300 K)	8.2 (at 600 K)
K _{L0,A}	Calc.	This work	1.48 (at 300 K)	1.87 (at 600 K)
KL0,A	Calc.	Katsura [11]	-	1.73 (高温極限)
KL0,A	Calc.	Ohishi et al. [38]	0.44 (at 300 K)	-
к _{L0,O}	Calc.	This work	0.31 (at 300 K)	0.31 (at 600 K)
κ _{L0}	Calc.	This work	1.79 (at 300 K)	2.18 (at 600 K)

3.1.5 累積格子熱伝導率

300 K における CrSi₂ の κ_{cum} を図 3.1.6 に示す. 算出した κ_{cum} は表 3.1.2 に示す κ_{L} の計算値で規格化して比較を行った. 図 3.1.6 (a) に示す単結晶における κ_{cum}/κ_{L} の ω 依存性から, κ_{L} を主に担うフォノンが 10 THz 以下の ω を有することがわかる. [001] 方向 (c_{\parallel}) の κ_{L} は, その 95% が 11 THz 以下のフォノンの寄与であり, [100] 方向 (c_{\perp}) の κ_{L} は, その 95% が 10 THz 以下のフォノンの寄与である. κ_{cum}/κ_{L} の 増加量に着目すると, [001] 方向および [100] 方向は, それぞれ 8-10 THz および 2-8 THz において増加量が大きい. CrSi₂ のフォノン DOS において, Cr 原子の振動に 起因するフォノンが 8-10 THz に大きな DOS (図 3.1.1) を有することを踏まえると, [001] 方向の κ_{L} 低減には Cr サイトの部分置換が有効であるといえる.

単結晶 $CrSi_2$ における κ_{cum}/κ_L の l 依存性を図 3.1.6 (b) に示す. l 依存性は結晶方 位による差異が小さく、 κ_L を主に担うフォノンは 1-100 nm の l を有することを示し た. したがって、フォノンの l より微細な結晶子を導入して $CrSi_2$ の低熱伝導率化を 図る場合、その結晶子サイズは 100 nm を下回る必要がある. また、10 nm 以上の lのフォノンをすべて散乱した場合、 κ_L は、単結晶の場合の 3 分の 1 以下に低減可能 であることがわかる.

図 3.1.6 (c) および (d) には、多結晶 CrSi₂ における κ_{cum}/κ_{L} の ω 依存性および *l* 依存性を示す. ω 依存性から、 κ_{L} を担うフォノンの 90% が 10 THz 以下の ω を有することがわかる. また、*l* 依存性から、 κ_{L} を主に担うフォノンは 1-100 nm の *l* を有すすることがわかる.

図 3.1.6: フォノン輸送計算に基づき算出した 300 K における単結晶 CrSi₂ の規格化 した累積格子熱伝導率 κ_{cum}/κ_{L} の(a)周波数依存性,(b)平均自由行程依存性,多結 晶における κ_{cum}/κ_{L} の(c)周波数依存性および(d)平均自由行程依存性.

次に、300 K および 600 K における多結晶 CrSi₂ の κ_{cum}/κ_{L} を比較して図 3.1.7 に 示す. ω 依存性からは、300 K と 600 K の値に大きな違いはなく、 κ_{L} を主に担う フォノンは温度によらず 10 THz 以下の ω を有することがわかった. 一方で、600 K における κ_{cum}/κ_{L} の l 依存性は、300 K の値と比較して低サイズ側にシフトした. こ の結果は、微細組織制御により達成される κ_{L} の低減割合は、300 K よりも 600 K に おいて小さいことを示唆する.

図 3.1.7:フォノン輸送計算に基づき算出した 300 K および 600 K における多結晶 CrSi₂の規格化した累積格子熱伝導率 *κ*_{cum}/*κ*_Lの(a) 周波数依存性と(b) 平均自由行 程依存性.

3.2 小括

第3章では、 $CrSi_2$ の低熱伝導率化に有効な指針を提案することを目的として、第 一原理計算に基づいたフォノン輸送計算を行い、 κ_{L0} 、 κ_L および κ_{cum} を算出した. 得られた計算結果および指針を以下にまとめる.

■ 最小格子熱伝導率

算出した $CrSi_2 \circ \kappa_{L0}$ は、650 K において 2.2 $Wm^{-1}K^{-1}$ であり、この値を用いて 予想される *zT* の最大値は 0.39 であった、この結果から、 $CrSi_2$ は κ_L を低減するこ とで *zT* の向上が可能な材料であるといえる.

■ 格子熱伝導率

CrSi₂におけるフォノン輸送計算により算出した単結晶と多結晶の *K*_L は、報告された実験値よりも 30% 程度低い値であった.この原因は、交換相関ポテンシャルに代表的な PBE-GGA を用いた点にあると考えられる.一方で、算出した *K*_L の異方性および温度依存性は、実験結果をよく再現した.

■ 累積格子熱伝導率

算出した κ_{cum} から、 $CrSi_2$ の熱伝導に寄与する主なフォノンは 100 nm 以下の $l \approx$ 有することがわかった.したがって、100 nm 以下の lのフォノンを効果的に散乱す る散乱体の導入が κ_L の低減に効果的である.ここで、結晶子サイズは 10 nm 程度ま で低減が可能であるため、結晶子サイズの低減は、 $CrSi_2$ に存在する 10-100 nm の lのフォノンを散乱し、 κ_L の低減を実現できる有効な手法であると考えられる.

第4章 結晶子サイズの低減による低熱伝導 率化

算出した κ_L のフォノン l 依存性から,散乱体のサイズを制御することで κ_L を低減 することが可能と考えられる.第4章では,散乱体として結晶粒界を選択して,lが 100 nm 以下のフォノンを効果的に散乱することによって CrSi₂ の κ_L を低減し,zTを向上することを目的とした. κ_L の結晶子サイズ依存性を実験的に明らかにするた め,アーク熔解法を用いた焼結体と RD 法を用いた微細な結晶子を有する焼結体を 作製し,それらの熱電特性を比較した.各焼結体の結晶子サイズを複数の手法で評 価し,測定した熱電特性に対して結晶子のサイズを踏まえた考察を行った.

4.1 アーク熔解法を用いた CrSi₂ 試料の作製と熱電特性

一般的な CrSi₂ の合成 [25, 37, 38] には,アーク熔解,粉砕および焼結の一連の手法が用いられる. CrSi₂ の熱電特性の基準値を得る目的で,この手法で CrSi₂ 焼結体を作製し,その結晶子サイズと熱電特性を評価した.

4.1.1 実験手順

■ アーク熔解と粉砕

化学量論組成で秤量した Cr と Si のグレインを熔解し, CrSi₂ インゴットを作製した. 作製には第2章に示す手順を用いた. アーク熔解後,得たインゴットを大気中で 60 分間粉砕した.

■ SPS と評価

粉砕後の粉末試料を真空中において 1473 K, 50 MPa で 5 分間 SPS し, 焼結体を 作製した.得られた焼結体を 1.5×1.5×8 mm の直方体と直径 10 mm,厚さ 1.8 mm の円柱に成形した.これら直方体および円柱状の試料をそれぞれ電気輸送特性およ び熱輸送特性の評価に用いた.また,得られた焼結体の一部を再度粉砕し,XRD に よる相の同定に用いた.さらに,焼結体の一部を表面研磨し,SEM による表面観察 と EBSD による配向性の評価に用いた.

4.1.2 粉砕後のインゴットの相同定と表面観察

粉砕後の $CrSi_2$ インゴットの粉末 XRD パターンと SEM による二次電子像の観察 結果を図 4.1.1 に示す. 粉砕時間が異なる 4 つの粉末試料において,得られた回折 ピークはすべて $CrSi_2$ に由来するものであった.二次電子像から,15 分間と 30 分 間粉砕した粉末試料は 10 µm 以上の結晶粒を有することがわかる.一方,45 分間と 60 分間粉砕した粉末試料は 10 µm 以上の結晶粒をほとんど含まず,大部分の結晶粒 は 5 µm 以下であった.

図 4.1.1: (a) 15 分間, (b) 30 分間, (c) 45 分間および (d) 60 分間の粉砕を行った粉末 試料の粉末 XRD パターンと二次電子像.
4.1.3 焼結体の相対密度

焼結体の作製には、CrSi₂ インゴットを 60 分間粉砕した粉末試料を用いた.図
4.1.2 に示す CrSi₂ 焼結体における加圧方向の変位の SPS 温度依存性から、873 K の
SPS 温度から緻密化が始まり、おおよそ 1423 K で完了することがわかる.このことは、高密度な CrSi₂ 焼結体の作製には 1423 K 以上の SPS 温度が必要であることを示唆する.1473 K の SPS で得られた CrSi₂ 焼結体の相対密度は 94% であった.

図 4.1.2: CrSi2 焼結体における加圧方向の変位の SPS 温度依存性.

4.1.4 焼結体の相同定

1473 K の SPS で得られた CrSi₂ 焼結体の粉末 XRD パターンを図 4.1.3 に示す. XRD パターンから, SPS 後の試料は単相であることがわかった. XRD パターンの Rietveld 解析を行い, 精密化した格子定数およびフィッティングの整合度合 *gof* を, Engström ら [29] と Nishida [33] が報告した格子定数とともに表 4.1.1 に示す.得ら れた格子定数は先行研究の結果 [29, 33] とおおよそ一致した.

図 4.1.3: アーク熔解法と SPS により作製した CrSi2 焼結体の粉末 XRD パターン.

表 4.1.1: アーク熔解法と SPS により作製した CrSi₂ 焼結体の, Rietveld 解析を用い て精密化した格子定数と *gof*. 比較のため,報告された格子定数 [29, 33] も同時に示 す.

		<i>a</i> (Å)	<i>c</i> (Å)	gof	相対密度 (%)
アーク熔解法	本研究	4.42780(7)	6.3683(1)	1.31	94
アーク熔解法	Engström 6 [29]	4.4268(1)	6.3751(2)	-	-
溶融合成法	Nishida [33]	4.424	6.347	-	-

4.1.5 焼結体の熱電特性評価

アーク熔解法と SPS により作製した CrSi₂ 焼結体の熱電特性の温度依存性を図 4.1.4 に示す. PF は 500 K で最大値 $1.8 \times 10^{-3} \text{ Wm}^{-1} \text{K}^{-2}$ であった. これは,報告 された CrSi₂ 焼結体の文献値 [37, 38, 57] とおおよそ一致する値である.また, *zT* の最大値は 700 K で 0.12 であった.ここで,報告された単結晶 CrSi₂ の熱電特性 [33, 34] から EMT [59, 62] を用いて算出される無配向 CrSi₂ の熱電特性と比較して, 作製した焼結体の 300 K と 600 K における熱電特性をそれぞれ表 4.1.2 と表 4.1.3 に 示す.アーク熔解法と SPS により作製した CrSi₂ 焼結体の熱電特性は,EMT によっ て予想される無配向試料の値とおおよそ一致することから,この焼結体は配向のな い多結晶試料であると考えられる.本研究において,参照すべき多結晶 CrSi₂ の熱 電特性は,この焼結体の値を用いる.

表 4.1.2: アーク熔解法と SPS により作製した CrSi₂ 焼結体の 300 K における熱電特性. 比較のため有効媒質理論 [59, 62] から算出した無配向 CrSi₂ の熱電特性と算出 に用いた単結晶 CrSi₂ の熱電特性 [33, 34] も示す.

	$\sigma ({\rm Scm^{-1}})$	$S (\mu V K^{-1})$	$\kappa (\mathrm{Wm}^{-1}\mathrm{K}^{-1})$	$\kappa_{\rm L} ({\rm Wm^{-1}K^{-1}})$
本研究	1110	110	12.6	11.7
無配向 [62, 59]	1200	100	13.8	13.0
単結晶 c∥	940 [33]	117 [<mark>33</mark>]	15.5 [34]	14.5 [34]
単結晶 c_{\perp}	1880 [<mark>33</mark>]	72.7 [33]	11.0 [34]	10.5 [34]

表 4.1.3: アーク熔解法と SPS により作製した CrSi₂ 焼結体の 600 K における熱電特性. 比較のため有効媒質理論 [59, 62] から算出した無配向 CrSi₂ の熱電特性と算出 に用いた単結晶 CrSi₂ の熱電特性 [33, 34] も示す.

	$\sigma ({\rm Scm^{-1}})$	$S (\mu V K^{-1})$	$\kappa(\mathrm{W}\mathrm{m}^{-1}\mathrm{K}^{-1})$	$\kappa_{\rm L} ({\rm Wm^{-1}K^{-1}})$
本研究	510	180	8.95	8.18
EMT [62, 59]	540	160	8.88	7.98
単結晶 c∥	340 [33]	192 [<mark>33</mark>]	11.8 [34]	10.4 [34]
単結晶 c_{\perp}	660 [33]	144 [33]	7.6 [34]	6.9 [34]

図 4.1.4:アーク熔解法と SPS により作製した CrSi₂ 焼結体の熱電特性の温度依存性.

4.1.6 表面観察

アーク熔解法と SPS により作製した CrSi₂ 焼結体の反射電子像を図 4.1.5 に示す. 反射電子像には、組成の不均一分布や第二相に由来するコントラストはみられない ことから、得られた焼結体は均一な単相試料であると判断できる.また、図 4.1.6 に 示す IQ マップから、この CrSi₂ 焼結体は多結晶試料であり、10 μm 以上の結晶子を 有することが明らかになった.

図 4.1.5: アーク熔解法と SPS により作製した CrSi2 焼結体の反射電子像.

図 4.1.6: アーク熔解法と SPS により作製した CrSi₂ 焼結体の IQ マップ.

4.1.7 配向性の評価

アーク熔解法と SPS により作製した CrSi₂ 焼結体の極点図を図 4.1.7 に示す.ここで,TD は板幅向軸,RD は圧延方向軸を示す.図 4.1.7 において,左上の極点図の圧延面法線軸 ND は <001> であり,紙面に垂直に位置する.得られた極点図には、<001>、<110> および <111> の極点位置に偏った強度はみられない.このことから,作製した CrSi₂ 焼結体は,SPS 時の加熱と加圧に由来した配向がないことがわかった.

図 4.1.7: アーク熔解法と SPS により作製した CrSi2 焼結体の極点図.

4.2 還元拡散法を用いた CrSi₂ 試料の作製と熱電特性

アーク熔解法と SPS により作製した CrSi₂ 焼結体と比較して,微小な結晶子サイズで構成される焼結体を作製するため,比較的低温で固相反応を実現できる RD 法に着目した. RD 法と SPS により作製した焼結体の結晶子サイズと熱電特性を評価し,結晶子サイズの低減が熱電特性に与える影響を調査した.

4.2.1 実験手順

■ RD 法を用いた粉末作製

第2章に示す手順で, RD 法を用いた CrSi₂ 粉末試料の合成を行った. 773 K, 823 K, 873 K および 1073 K の4 通りの温度で粉末試料を合成した.

■ SPS と評価

合成後の粉末試料を精製水で洗浄し,表4.2.1 に示す条件で SPS した. 焼結体を 1.5×1.5×8 mmの直方体および直径 10 mm,厚さ 1.8 mmの円柱状に成形し,それ ぞれ電気輸送特性および熱輸送特性の評価に用いた.また,焼結体の一部を再度粉 砕し,XRD による試料同定に用いた.RD 法により合成した粉末試料およびその焼 結体の粉末 XRD パターンから Williamson-Hall プロットを導出し,結晶子サイズの 定量評価を行った.さらに,焼結体の一部を表面研磨し,EBSD 分析による結晶子サ イズの評価に用いた.

合成温度	SPS 温度	SPS 圧力	SPS 時間	相対密度
(K)	(K)	(MPa)	(min)	(%)
1073	1073	50	20	95
1073	973	50	20	90
873	923	50	60	72
873	873	300	20	92

表 4.2.1: SPS 条件と焼結体の相対密度.

4.2.2 粉末試料の相同定と平均結晶子サイズの定量評価

RD 法を用いて合成した CrSi₂ 粉末試料の粉末 XRD パターンを図 4.2.1 に示す. 773 K の合成で得られた粉末試料は CrSi₂ 相を含まず, Si 相, 原料の Cr₂O₃ が還元 されて生成した Cr 相および未同定相で構成される.一方, 823 K 以上の合成で得ら れた粉末試料の XRD パターンには,所望の CrSi₂ 相のピークがみられた. これらの 結果は, RD 法を用いて CrSi₂ 相を得るには 823 K 以上の加熱が必要であることを 示す. 873 K と 1073 K の合成では,ともに単相の CrSi₂ 粉末が得られた. 主相とし て CrSi₂ 相が得られたすべての粉末試料において,Williamson-Hall 法で結晶子サイ ズを評価した結果を表 4.2.2 に示す. 平均結晶子サイズは,すべての粉末試料で 100 nm 以下であり, 873 K で合成した粉末試料において最小値 33.1(5) nm を示した.

図 4.2.1:還元拡散法を用いて合成した CrSi₂ 粉末試料における粉末 XRD パターンの合成温度依存性.

表 4.2.2:還元拡散法を用いて合成した CrSi₂ 粉末試料の XRD 回折ピークの積分幅 βと Williamson-Hall プロットで評価した平均結晶子サイズの合成温度依存性.

合成温度 (K)	積分幅 <i>β</i>	平均結晶子サイズ (nm)
1073	$1.37(1) \times 10^{-3}$	56.0(4)
873	$2.32(4) \times 10^{-3}$	33.1(5)
823	$2.28(1) \times 10^{-3}$	33.6(2)

4.2.3 表面観察

RD 法を用いて 1073 K と 873 K の温度で合成した CrSi₂ 粉末試料の表面観察を 行った結果を図 4.2.2 (a)-(d) に示す. 図 4.2.2 (a) は 2000 倍に拡大した 1073 K の合 成粉末試料の二次電子像, (b), (c) および (d) はそれぞれ 2000 倍, 3000 倍および 22000 倍に拡大した 873 K の合成粉末試料の二次電子像である. ひとつひとつの結 晶粒は 1 µm 以下の大きさであり, 図 4.2.2 (a) と (b) の比較では, 合成温度による結 晶粒サイズの違いは確認できなかった. 図 4.2.2 (c) に代表される 5-20 µm の二次粒 子は 1 µm 以下の微細な結晶粒により形成される. 図 4.2.2 (d) の像から, 最小の結 晶粒サイズは 70 nm 程度と見積もられる. これは Williamson-Hall 法で評価した平 均結晶子サイズと同程度のオーダーであるが, その値よりも 2-3 倍大きな値である. このことから, 二次電子像で観察された 70 nm 程度の結晶粒は, 複数の結晶子から 形成された 2 二次粒子であると判断できる.

図 4.2.2:1073 K で合成した CrSi₂ 粉末試料の (a) 2000 倍に拡大した二次電子像および (b) 2000 倍, (c) 3000 倍, (d) 22000 倍に拡大した 873 K 合成粉末試料の二次電子像.

4.2.4 焼結体の緻密化

RD 法と SPS で得られた CrSi₂ 焼結体は表 4.2.1 に示す条件で作製された.これ らの条件で得られた焼結体の相対密度も表 4.2.1 に示す.1073 K と 973 K で SPS し た場合,熱電特性の測定条件を満たす相対密度が 90% 以上の緻密な焼結体が得られ た.一方,それ以下の温度の SPS では保持時間を延長した場合も,相対密度 90% 以 上の焼結体が得られなかった.したがって,873 K の焼結体は,WC 製のダイとパン チを用いた 300 MPa を印加する高圧 SPS で作製し,その相対密度は 92% であった.

4.2.5 焼結体の相同定と格子定数

RD 法と SPS により作製した CrSi₂ 焼結体の粉末 XRD パターンを図 4.2.3 に示 す. すべての焼結体は, SPS 温度によらず単相 CrSi₂ であった. 焼結体の格子定数 と gof を表 4.2.3 に示す. アーク熔解法と SPS を用いて作製した焼結体の格子定数 と比較して, RD 法を用いて作製した全ての焼結体の a 軸長は, わずかに大きな値で あった. このため, 単位胞の体積は, RD 法と SPS で作製した焼結体において 0.07% 大きい. この差異が, E_g や Fermi 準位に影響を与えることが考えられる.

表 4.2.3: RD 法と SPS により作製した CrSi₂ 焼結体の XRD パターンを Rietveld 解 析し,精密化した格子定数と *gof*.

	<i>a</i> (Å)	<i>c</i> (Å)	gof
RD 法 1073 K	4.42979(4)	6.36319(6)	1.67
RD 法 973 K	4.43009(4)	6.36189(6)	1.19
RD 法 873 K	4.42945(4)	6.36405(7)	1.65

4.2.6 平均結晶子サイズの定量評価

RD 法と **SPS** により作製した **CrSi**₂ 焼結体の Williamson-Hall プロットを図 4.2.4 に示す. また, 焼結体の粉末 XRD パターンから Williamson-Hall 法で評価 した平均結晶子サイズの **SPS** 温度依存性を表 4.2.4 にまとめる. 表 4.2.4 から, **SPS** 温度の増大にともない平均結晶子サイズは増大することがわかる. 平均結晶子サイ ズは 873 K の焼結体において最小であり、その値は 46.2(5) nm であった.

図 4.2.3: RD 法と SPS により作製した CrSi₂ 焼結体の粉末 XRD パターンにおける SPS 温度依存性.

図 4.2.4: RD 法と SPS により作製した CrSi₂ 焼結体の粉末 XRD パターンから導出 した Williamson-Hall プロットの SPS 温度依存性.

表 4.2.4: RD 法と SPS により作製した CrSi₂ 焼結体の粉末 XRD パターンから Williamson-Hall 法で評価した平均結晶子サイズの SPS 温度依存性.

SPS 温度 (K)	平均結晶子サイズ (nm)
1073	61.4(4)
973	53.3(18)
873	46.2(5)

4.2.7 結晶子サイズと分布

RD 法と SPS により作製した CrSi₂ 焼結体の結晶子サイズとその分布を EBSD 分析を用いて評価した. 873 K, 973 K および 1073 K で SPS した焼結体の IQ マップを 図 4.2.5 (a), (b) および (c) に示す. 得られた IQ マップのコントラストから, これら の焼結体は 1 µm 以下の結晶子で構成されることがわかる. また, SPS 温度の高い焼 結体において, 結晶子サイズは大きいことがわかった. 図 4.2.5 (d) は EBSD により 観測した結晶子サイズの分布を示す. さらに, サイズ分布に対数正規分布を適用し, 得られたフィッティング結果を実線で図 4.2.5 (d) に示した. フィッティングの結果, 873 K, 973 K および 1073 K で作製した焼結体の平均結晶子サイズは、それぞれ 32 nm, 45 nm および 56 nm であることがわかった. この結果は, Williamson-Hall 法 で評価した平均結晶子サイズは幅広く分布しており, その分布における標準偏差 はそれぞれ, 0.479, 0.386 および 0.115 であった. ここで, EBSD の測定限界は 30 nm 近傍に存在するため, 焼結体に存在する 30 nm 以下の結晶子は観測できていな い. したがって, 873 K で作製した焼結体の平均結晶子サイズは、本手法では観測できない 30 nm 以下に存在し, 過大評価されている可能性がある.

図 4.2.5: RD 法により合成した CrSi₂ 粉末試料を (a) 873 K, (b) 973 K および (c) 1073 K で SPS した焼結体の IQ マップ. (d) EBSD 分析により評価した結晶子サイズの分布.サイズ分布には対数正規分布を適用し,フィッティングした結果を実線で示した.

4.2.8 熱電特性の評価

RD 法と SPS により作製した CrSi₂ 焼結体の $\kappa \ge \kappa_L$ の温度依存性を図 4.2.6 に 示す. 比較のため,第4章1節で得られたアーク熔解法で作製した焼結体の $\kappa \ge \kappa_L$ の温度依存性も図 4.2.6 に示す. RD 法と SPS により作製した CrSi₂ 焼結体の中 で,平均結晶子サイズが小さい焼結体ほど, $\kappa \ge \kappa_L$ は低く,平均 46.2(5) nm の結晶 子で構成される 873 K で SPS した焼結体の κ は,300 K において 6.95 Wm⁻¹K⁻¹, 600 K において 5.06 Wm⁻¹K⁻¹ であった.アーク熔解法と SPS で作製した焼結体 と比較して,その κ_L は 300 K において 47% 低い 6.13 Wm⁻¹K⁻¹,600 K において 48% 低い 4.21 Wm⁻¹K⁻¹ であった.また,この焼結体の κ_L は 1000 K において 2.56 Wm⁻¹K⁻¹ に到達した.この値は報告された無置換 CrSi₂ 試料の κ_L の中で最も低 い.RD 法を用いることで結晶子サイズの低減による κ_L の低減が実現し,結晶子サ イズ低減による κ_L 低減効果は 40% を上回る大きさであることがわかった.

図 4.2.6: RD 法と SPS で作製した焼結体の (a) 熱伝導率および (b) 格子熱伝導率の 温度依存性. 比較のため, アーク熔解法と SPS で作製した焼結体の κ と κ_L の温度依 存性も示す.

RD 法と **SPS** で作製した焼結体の *σ*, *S*, **PF** および *zT* の温度依存性を図 4.2.7 に 示す. 比較のため, アーク熔解法と **SPS** で作製した焼結体の熱電特性の温度依存性 も図 4.2.7 に示した. また, 表 4.2.5 にこれらの焼結体の 300 K における *σ* と *S* を まとめる.

まず, RD 法により合成した CrSi₂ 粉末試料を用いて異なる SPS 条件で作製した 3 つの焼結体の σ を比較する. これら 3 つの焼結体の σ は,結晶子サイズの低減に よる影響がみられず,300 K において 1050-1200 Scm⁻¹ であり,その最小値は,650 K 近傍で 540-580 Scm⁻¹ であった. 結晶子サイズと σ に相関がみられないこの結果 は,電気伝導を担うキャリアの *l* が結晶子サイズと比較して十分に小さいことを示唆 する. 次に,アーク熔解法および SPS で作製した焼結体の σ と比較を行うと, σ が 最小値を示す温度が異なることがわかる.このことは,実験方法が異なる焼結体に おいて,バンド構造や Fermi 準位が異なる可能性を示唆する.

続いて, RD 法により合成した CrSi₂ 粉末試料を用いて異なる SPS 条件で作製した 3 つの焼結体の S を比較する. これら 3 つの焼結体の S は, 300-500 K でおおよ そ同程度の値であり, 300 K において 110-120 VK⁻¹ であった. 一方で, 600 K にお ける S の最大値は, 作製条件が異なる焼結体で異なる値である. この結果は, 作製 条件が異なる焼結体において, バンド構造や Fermi 準位が異なる可能性を示唆する.

RD を用いて結晶子サイズの低減を行った焼結体において, PF の最大値は 1.5 × 10^{-3} Wm⁻¹K⁻² 以上の高い値を示した.結晶子サイズの低減により,特に大きく κ_L が低減した 873 K 焼結体で zT は大きく向上し, 600 K において $zT_{max} = 0.18$ を達成した. この値はアーク熔解法と SPS で作製した焼結体と比較して 1.5 倍大きい.

表 4.2.5: RD 法と SPS で作製した焼結体の 300 K における熱電特性.	比較のため,
アーク熔解法と SPS で作製した焼結体の熱電特性の温度依存性も示す.	

	σ (Scm ⁻¹)	$S (\mu V K^{-1})$	$\kappa (\mathrm{Wm}^{-1}\mathrm{K}^{-1})$	$\kappa_{\rm L} ({\rm Wm^{-1}K^{-1}})$
アーク熔解法	1110	110	12.6	11.7
RD 法 1073K	1200	118	13.3	12.3
RD 法 973K	1150	111	9.23	8.35
RD 法 873K	1080	120	6.95	6.13

図 4.2.7: RD 法と SPS で作製した焼結体の (a) 電気伝導率, (b)Seebeck 係数, (c) 出 力因子および (d) 無次元性能指数の温度依存性.比較のため,アーク熔解法と SPS で作製した焼結体の熱電特性の温度依存性も示す.

4.3 考察

4.3.1 *κ*_L

■ フォノン輸送計算の結果と実験値の比較

RD 法と SPS で作製した焼結体における κ_L の結晶子サイズ依存性を,フォノン輸送計算で算出した κ_{cum} / κ_L の l 依存性とともに図 4.3.1 に示す.値の比較には,300 K における計算値と実験値を用いた.図 4.3.1 において,実線が計算値であり,丸印が実験値である.焼結体の結晶子サイズがフォノンの l を制限するという考えに基づき,結晶子サイズと l を同一視して,図 4.3.1 の横軸に用いた.それぞれ黒の丸印と赤の丸印は,Williamson-Hall 法で評価した平均結晶子サイズと EBSD 分析で評価した平均結晶子サイズである.実験値と κ_{cum} / κ_L の l 依存性を比較するため,すべての l のフォノンが熱伝導に寄与した場合の κ_L により,実験値を規格化する必要がある.実験値を規格化する際の κ_L は,単結晶 CrSi₂ の熱電特性 [33] から EMT [59] で導出した無配向 CrSi₂ の値 (13.0 Wm⁻¹K⁻¹)を用いた.

結晶子サイズを 100 nm 以下に低減することで、 κ_L が低減した実験結果は、lの低減にともない κ_L が低減する計算結果とよく一致した. このことは、100 nm 以下の結晶子によるフォノンの散乱が CrSi₂ の低熱伝導率化に有効とした指針が妥当であることを示している.一方で、 κ_L の減少率は計算と実験で異なり、計算で予測したサイズよりも大きな結晶子において、 κ_L の実験値は急激に減少した. 結晶子サイズに分布が存在すること示す EBSD 分析の結果を踏まえると、実験値と計算値の間に生じたこの差は、平均値より小さい結晶子が κ_L の低減に寄与した結果であると考えられる.

図 4.3.1:フォノン輸送計算により算出した 300 K における累積格子熱伝導率のフォ ノンの *l* 依存性 (実線) と実験的に得られた格子熱伝導率の結晶子サイズ依存性 (丸 印)の比較. 黒の丸印および赤の丸印には,それぞれ, Williamson-Hall 法で評価し た平均結晶子サイズおよび EBSD 分析で評価した平均結晶子サイズ分布を用いた.

4.3.2 σ

■ キャリアのµ

RD 法と SPS で作製した CrSi₂ 焼結体は, アーク熔解法と SPS を用いて作製した CrSi₂ 焼結体と比較して, 1000 分の1 程度と微細な結晶子を有するにもかかわらず, 表 4.2.5 に示すように,得られた σ の値は同程度であった.結晶子サイズの低減に ともなう σ の挙動を考察するため, RD 法と 873 K の SPS により作製した焼結体 の $R_{\rm H}$, n および μ を評価した結果を表 4.3.1 に示す.比較のため,アーク熔解法と SPS により作製した焼結体の値も示す.比較には,300 K の測定値を用いた. RD 法 と SPS で作製した焼結体の n は,r ーク熔解法と SPS で作製した焼結体の値と誤差 の範囲で一致した. RD 法と SPS で作製した焼結体の μ は,r ーク熔解法と SPS で 作製した焼結体の値と比較して,6%減少したが, $\kappa_{\rm L}$ の減少と比較するとその減少値 は小さい.この結果は,CrSi₂ におけるキャリアの平均自由行程 $l_{\rm e}$ は焼結体に導入 した 46.2(5)-61.4(4) nm の結晶子よりも小さいため,キャリアが散乱されないことを 示唆する.Sharp ら [63] は, $l_{\rm e}$ が式 (4.3.1)のように表せることを報告している.

$$l_e = \frac{3\mu}{4q} (2\pi m^* k_{\rm B} T)^{1/2}$$
(4.3.1)

ここで、 m^* として報告された単結晶 CrSi₂の値 ($m^* = 3m-5m$ [33])、 μ として測定値 ($\mu = 9.6 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$)を用いると、300 K における CrSi₂の l_e は 1.55-2.29 nm である. したがって、本研究において焼結体に導入した結晶子は、 l_e の 20 倍以上と非常に大きいため、キャリアの散乱には寄与せず、結果として、 σ は結晶子サイズの違いによらず同程度の値を示したと考えられる.

表 4.3.1: RD 法と SPS により作製した焼結体の 300 K における R_H, n および μ. 比 較のため,アーク熔解法と SPS により作製した焼結体の値も示す.

	$R_{\rm H}~(\rm cm^3 C^{-1})$	$n ({\rm cm}^{-3})$	$\mu (\mathrm{cm}^2 \mathrm{V}^{-1} \mathrm{s}^{-1})$
RD 法 873K	$9.5(3) \times 10^{-3}$	$6.5(2) \times 10^{20}$	10.3(3)
アーク熔解法	$8.6(3) \times 10^{-3}$	$7.2(6) \times 10^{20}$	9.6(3)

4.4 小括

第4章では、熱伝導に寄与するフォノンの散乱体として結晶粒界を選択し、結晶 子サイズを100 nm 以下に低減することによって $CrSi_2 \circ \kappa_L \circ \kappa_$

■ 単相 CrSi₂ 焼結体の作製

アーク熔解で得られたインゴットを 60 分間粉砕した後,1473 K,50 MPa で 5 分間 SPS することで、相対密度 94%の緻密な単相 CrSi₂ 焼結体が得られることがわかった. RD 法を用いた場合、873 K 以上の合成で単相 CrSi₂ 粉末試料が得られ、その粉末試料を 973 K 以上、50 MPa の SPS 条件、または 873 K,300 MPa の SPS 条件で SPS することで相対密度が 90%以上の緻密な単相 CrSi₂ 焼結体が得られることがわかった.

■ 結晶子サイズ

Williamson-Hall 法および BESD 分析で結晶子サイズを評価した結果, RD 法と SPS で作製した CrSi₂ 焼結体は, 100 nm 以下の平均サイズの結晶子で構成されてい ることがわかった. 873 K, 300 MPa で SPS して作製した焼結体の平均結晶子サイ ズが最も小さく, 46.2(5) nm であった.

■ 熱電特性

作製した焼結体の σ およびSには、焼結体を構成する結晶子サイズの低減にとも なう大きな差異がみられなかった.一方、結晶子サイズの減少とともに κ_L は低減 し、RD 法を用いて得られた粉末試料を 873 K で SPS して作製した CrSi₂ 焼結体で は、PF の維持と κ_L の低減を同時に達成し、目的としたzTの向上を達成した.その zT_{max} はアーク熔解法と SPS で作製した焼結体と比較して 1.5 倍大きく、600 K にお いて $zT_{max} = 0.18$ を達成した.

■ *K*_L の結晶子サイズ依存性

RD 法と SPS を用いた試料作製で結晶子サイズを制御することによって、フォノンの l を低減し、 $CrSi_2$ の低熱伝導率化を実現した.実際に、 $CrSi_2$ 焼結体を構成する結晶子サイズを 100 nm 以下に低減した場合、 κ_L が低減することを実験的に明らかにした.このことは、100 nm 以下の結晶子によるフォノンの散乱が $CrSi_2$ の低熱伝導率化に有効とした指針が妥当であることを示している.また、測定値と実験値の比較から、平均値より小さい結晶子が κ_L の低減に寄与するため、計算で予測したサイズよりも大きな結晶子において、 κ_L の実験値は急激に減少することがわかった.

第5章 元素置換による低熱伝導率化

CrSi₂に対して元素置換を行い、 κ_L の低減に成功した先行研究 [37, 38] が報告されている. その中でも、Mo で Cr サイトを置換した先行研究 [38] において、30% と大きな Mo の固溶限が報告されている.本研究では、置換量の増加にともなう κ_L の変化を観測しやすいよう、Cr サイトに対する固溶限が 30% と大きいことが報告されている Mo を置換元素として選択した.第3章で算出した κ_{cum} は、100 nm 以下のlのフォノンが主に CrSi₂の熱伝導に寄与することを示した.また、第4章では、46.2(5) nm に低減した焼結体の結晶子によって、同程度のlのフォノンが効果的に散乱され、低熱伝導率化が実現することを示した.本章では、CrSi₂の κ_L のさらなる低減を目的として、試料に原子レベルで構造の乱れを導入する元素置換を行い、結晶子サイズの低減では達成できない 10 nm 以下のlのフォノンを散乱することを試みた.

5.1 アーク熔解法を用いた Mo 置換 CrSi₂ 試料の作製と 熱電特性

元素置換にともなう κ_L の低減を検証することを目的として, Cr サイトを Mo で置換した ($Cr_{1-x}Mo_x$)Si₂ 焼結体の作製と評価を行った.元素置換が κ_L に与える影響と、結晶子サイズが κ_L に与える影響とを切り分けて議論するため, 焼結体の作製にはアーク熔解法と SPS を用いた.

5.1.1 実験手順

■ アーク熔解

 $(Cr_{1-x}Mo_x)Si_2 のインゴット (x = 0.02, 0.04, 0.06, 0.08, 0.1, 0.2)$ を得るため、2段階のアーク熔解を行った.はじめに、母材料である $Cr_{1-x}Mo_x$ を得るため、原料試薬の Cr と Mo のグレインを化学量論組成で秤量し、Ar 雰囲気の炉においてアーク熔解した.得られた $Cr_{1-x}Mo_x$ を粗く砕き、化学量論組成で秤量した Si のグレインと合わせて再びアーク熔解した.

■ SPS と単相化

得られたインゴットを大気中で 60 分間粉砕した後,1473 K,50 MPa で SPS を 5 分間行った.単相化を図るため,SPS した焼結体を石英管に真空封入し,1273 K で 12 時間熱処理した.その後,得られた焼結体を 1.5×1.5×8 mm の直方体と直径 10 mm,厚さ 1.8 mm の円柱に成形した.直方体および円柱状の試料を,それぞれ電気 輸送特性および熱輸送特性の評価に用いた.また,得られた焼結体の一部を再度粉 砕し,XRD による試料同定に用いた.

5.1.2 熱処理前後の焼結体の相同定

アーク熔解法と SPS により作製した ($Cr_{1-x}Mo_x$)Si₂ 焼結体 (x = 0.1, 0.2) の熱処 理前の粉末 XRD パターンを,無置換 CrSi₂ 焼結体のものと比較して図 5.1.1 に示 す. ($Cr_{1-x}Mo_x$)Si₂ 焼結体 (x = 0.1, 0.2) の粉末 XRD パターンには,六方晶に由来 するピークが観測された. ($Cr_{0.9}Mo_{0.1}$)Si₂ 焼結体は単相であり, ($Cr_{0.8}Mo_{0.2}$)Si₂ 焼 結体は,第二相として α -MoSi₂ (空間群 *I*4/*mmm*) を有することがわかった.また, ($Cr_{1-x}Mo_x$)Si₂ 焼結体 (x = 0.1, 0.2) の回折ピークは無置換 CrSi₂ 焼結体のものと比 較して大きな半値幅を示した.例えば,無置換 CrSi₂ 焼結体における 112 ピークの 半値幅は 0.13° であるのに対して, ($Cr_{0.9}Mo_{0.1}$)Si₂ 焼結体における 112 ピークの半 値幅は 0.30° であった.

 $(Cr_{1-x}Mo_x)Si_2$ 焼結体 (x = 0.1, 0.2) を 1273 K で熱処理した後の粉末 XRD パター ンを図 5.1.2 に示す. 熱処理後の ($Cr_{0.8}Mo_{0.2}$)Si₂ 焼結体の XRD パターンにみられ る第二相のピークは, 熱処理前と比較してその強度は低減したが, 消失しなかった. 一方, x = 0.1 以下の組成域では単相の焼結体が得られたことから, この実験条件に おける Mo の固溶限は 10% 程度であると判断できる.

図 5.1.1: アーク熔解法と SPS により作製した ($Cr_{1-x}Mo_x$)Si₂ 焼結体 (x = 0, 0.1, 0.2) の熱処理前の粉末 XRD パターン. 比較のために無置換 CrSi₂ 焼結体の粉末 XRD パターンをともに示す.

図 5.1.2:アーク熔解法と SPS により作製した (Cr_{1-x}Mo_x)Si₂ 焼結体 (x = 0, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2)の熱処理後の粉末 XRD パターン.比較のために無置換 CrSi₂ 焼結体の粉末 XRD パターンをともに示す.

5.1.3 格子定数と密度

SPS 後に熱処理を行った ($Cr_{1-x}Mo_x$)Si₂ 焼結体 (x = 0.02, 0.04, 0.06, 0.08, 0.1)の 粉末 XRD パターンを用いて, Le Bail 解析で精密化した格子定数を図 5.1.3 に示す. また,表 5.1.1 には格子定数と焼結体の相対密度を示す.精密化した格子定数は, Ohishi ら [38] が報告した値とよく一致し,a 軸長とc 軸長はともに, Mo 置換量xの 増加にともない線形に増加した.これは, Cr サイトを置換した Mo が, Cr よりも大 きな原子半径を有するためである.XRD パターンと格子定数のx 依存性から,作製 したx = 0.1 以下の焼結体は所望の Mo 置換量の試料であると判断した.作製したす べての焼結体の相対密度は,熱電特性の評価が可能である 90% 以上の値であった.

図 5.1.3: SPS 後に熱処理を行った ($Cr_{1-x}Mo_x$)Si₂ 焼結体 (x = 0, 0.02, 0.04, 0.06, 0.08, 0.1)の格子定数. Ohishi ら [38] が報告した ($Cr_{1-x}Mo_x$)Si₂ の値をともに示した.

表 5.1.1: SPS 後に熱処理を行った ($Cr_{1-x}Mo_x$)Si₂ 焼結体 (x = 0, 0.02, 0.04, 0.06, 0.08, 0.1)の格子定数と相対密度.

x	<i>a</i> (Å)	<i>c</i> (Å)	相対密度 (%)
0	4.42780(3)	6.3683(6)	94
0.02	4.43325(6)	6.3692(1)	90
0.04	4.43986(7)	6.3740(1)	97
0.06	4.4390(1)	6.3742(2)	94
0.08	4.43934(9)	6.3762(1)	94
0.1	4.4467(3)	6.3837(5)	94

5.1.4 熱電特性

$\bullet \sigma \& S$

SPS 後に熱処理を行った (Cr_{1-x}Mo_x)Si₂ 焼結体 (x = 0.02, 0.04, 0.06, 0.08, 0.1) の $\sigma \geq S$ の温度依存性を図 5.1.4 に示す.また,図 5.1.5 は、300 K、500 K および 700 K における熱電特性の Mo 置換量 x 依存性を示す. (Cr_{1-x}Mo_x)Si₂ 焼結体の σ は 無置換 CrSi₂ 焼結体と比較して高い.300 K から 700 K の全温度域における σ は、 x = 0.06 の焼結体で最も大きく、その値は 1600 Scm⁻¹ に達した.この値は無置換 CrSi₂ 焼結体の σ の約 1.6 倍である.一方で、x > 0.06 の焼結体の σ は、x の増加に ともない減少した.図 5.1.5 (b) に示す S の x 依存性から、(Cr_{1-x}Mo_x)Si₂ 焼結体の S は無置換 CrSi₂ 焼結体と比較して、20-40 μ VK⁻¹ 程度低いことがわかる.

図 5.1.4: SPS 後に熱処理を行った ($Cr_{1-x}Mo_x$)Si₂ 焼結体 (x = 0, 0.02, 0.04, 0.06, 0.08, 0.1) の (a) σ と (b) S の温度依存性.

図 5.1.5 : (a) 300 K, (b) 500 K および (c) 700 K における (Cr_{1-x}Mo_x)Si₂ 焼結体 (x = 0, 0.02, 0.04, 0.06, 0.08, 0.1) の σ と S の Mo 置換量 x 依存性.

■ PF

SPS 後に熱処理を行った ($Cr_{1-x}Mo_x$)Si₂ 焼結体 (x = 0.02, 0.04, 0.06, 0.08, 0.1)の PF を図 5.1.6 に示す. ($Cr_{1-x}Mo_x$)Si₂ 焼結体 (x = 0.04, 0.06, 0.08)の PF は 450 K ま で,無置換 CrSi₂ 焼結体と同程度であった. 500 K 以上では,その PF は無置換 CrSi₂ 焼結体の値を上回った. ($Cr_{1-x}Mo_x$)Si₂ 焼結体 (x = 0.04, 0.06, 0.08)の PF は 550 K 付近で最大値をとり,その値は 1.9×10^{-3} Wm⁻¹K⁻² であった. 一方, S が大きく低 減した x = 0.1の焼結体の PF は,無置換 CrSi₂ 焼結体より低い値であった.

図 5.1.6: アーク熔解法と SPS を用いて作製した (Cr_{1-x}Mo_x)Si₂ 焼結体 (x = 0, 0.02, 0.04, 0.06, 0.08, 0.1) の PF の温度依存性と各温度 300 K, 500 K および 700 K における Mo 置換量 x 依存性.
■ *к*_L, *к*_C, *к* および *zT*

 $(Cr_{1-x}Mo_x)Si_2$ 焼結体 (x = 0.04, 0.06, 0.08) の κ_L , κ_C , κ および zT を図 5.1.7 に 示す. Mo で置換を行うことで, $\kappa \ge \kappa_L$ の低減がみられた. $(Cr_{1-x}Mo_x)Si_2$ 焼結体 の κ_L は, Mo 置換量 x の増加にともない減少する一方で, κ_C は x によらず, おおよ そ 1 Wm⁻¹K⁻¹ であった. 600 K における κ_L は, x = 0.04, 0.06 および 0.08 でそれ ぞれ 6.1 Wm⁻¹K⁻¹, 5.1 Wm⁻¹K⁻¹ および 3.8 Wm⁻¹K⁻¹ であり, これらの値は無置 換のものと比較して, それぞれ 26%, 38% および 53% 低い. さらに, これらの焼 結体の PF は無置換のものと同程度と高いため, その zT は無置換 CrSi₂ 焼結体を上 回った. 特に, (Cr_{0.92}Mo_{0.08})Si₂ 試料の zT_{max} は高く, 700 K で無置換 CrSi₂ 焼結体 の 1.9 倍に相当する $zT_{max} = 0.23$ を達成した.

図 5.1.7: アーク熔解法と SPS を用いて作製した ($Cr_{1-x}Mo_x$)Si₂ 焼結体 (x = 0, 0.04, 0.06, 0.08) の (a) κ_L , κ_C , (b) κ および (c) zT の温度依存性.

5.1.5 考察

$\square \sigma \succeq S$

Mo 置換にともなう σ の増加および S の減少は, Ohishi ら [38] によって報告され ているが, その原因は明らかにされていない. これに対する考察を行うため, CrSi₂ と同様の結晶構造を有する β-MoSi₂ (空間群 P6₂22 [64]) の電子構造を, WIEN2k を 用いた第一原理計算で明らかにした. CrSi₂ と比較して, β-MoSi₂ のバンド構造を図 5.1.8 に示す. β-MoSi₂ は価電子帯の L 点に Fermi 準位が位置する p 型半導体であ ることがわかる. β-MoSi₂ のバンドギャップは 0.08 eV であり, M 点に位置する伝 導帯バンドのエネルギーは CrSi₂ のものと比較して低い. また, Fermi 準位近傍にお ける β-MoSi₂ のバンドの曲率は CrSi₂ のものと比べて大きいため, β-MoSi₂ のホー ル有効質量 m^* は CrSi₂ のものより小さい. したがって, 式 (1.1.8) および式 (1.1.12) から, β-MoSi₂ は CrSi₂ より高い μ と低い S を示すと判断できる. この計算結果を 踏まえると, 実験的に得られた x の増加にともなう σ の増加および S の減少は, Cr サイトを Mo で置換することで, m^* が減少した結果と考察できる.

しかし、Mo 置換にともなう σ の変化は単調ではなく、x = 0.06 を境に増加から減 少に転じた (図 5.1.4 (a)). この原因を考察するため、焼結体の Hall 効果測定を行っ た結果を図 5.1.9 に示す. 測定結果から算出した μ の値は x = 0.06 を境に減少した. ここで、 μ は τ にも依存する物理量であるため、Mo 置換を行った焼結体において、 μ が減少に転じた原因として τ の x 依存性が関与する可能性が考えられる. τ の x依存性を予想するため、(Cr_{1-x}Mo_x)Si₂ 焼結体 (x = 0.04-0.1)の反射電子像の観察を 行った結果を図 5.1.10 に示す. 得られた反射電子像は、原子番号の違いに起因する コントラストを示すことから、Mo で置換を行った焼結体には組成の不均一分布が存 在することがわかった. 反射電子像に存在する数 10 μ m 程度の灰色部は、その周囲 の黒色部よりも Mo 元素の含有量が大きく、それらは x の増大にともない、増加す る様子がみられた. この結果を踏まえると、 μ の値が x = 0.06を境に減少に転じる 原因は、Mo 置換量 xの増大にともない、増加する Mo の不均一さがキャリアの散乱 因子として働くためと考えられる.

図 5.1.8: 電子構造計算により得られた (a) CrSi₂ と (b) β-MoSi₂ のバンド構造.

図 5.1.9:作製した (Cr_{1-x}Mo_x)Si₂ 試料 (x = 0, 0.04, 0.06, 0.08)の移動度とキャリア 密度の Mo 置換量 x 依存性.

図 5.1.10: SEM により測定した (Cr_{1-x}Mo_x)Si₂ 試料 (x = 0.04, 0.06, 0.08, 0.1)の反 射電子像.

$\blacksquare \kappa_L$

(Cr_{0.92}Mo_{0.08})Si₂ 焼結体の κ_L は 300 K で 6.0 Wm⁻¹K⁻¹ と, アーク熔解法と SPS で作製した無置換 CrSi₂ 焼結体の値 (11.7 Wm⁻¹K⁻¹ at 300 K) と比較して, 48% 低 い値を達成した. この κ_L の低減は, 置換原子がフォノンの散乱体として働き, *l* を低 減したことに加え,重元素 Mo で置換を行ったことによるフォノン群速度 v の低減の 双方に起因すると考えられる. ここで,元素置換による v の低減がどの程度であるか 把握することを目的として行った (Cr_{0.92}Mo_{0.08})Si₂ 焼結体および無置換 CrSi₂ 焼結 体の Raman 分光測定の結果を図 5.1.11 に示す. また,これらの焼結体の Raman スペクトルにおけるピーク位置および振動の起源を表 5.1.2 にまとめる. 表 5.1.2 から, おおよそ 9.2 THz に観測される Cr 原子の振動に起因するピークが, Mo で置換した ことで 0.4% だけ低周波数側にシフトすることがわかった. このことから, CrSi₂ の フォノン分散は, Cr サイトを Mo で 8% 置換することで 0.4% だけ低周波数側にシ フトし, v もおおよそ 0.4% 低減することが推定される. したがって, Mo 置換にと もなう v の減少は小さいことから,元素置換により得られた κ_L の低減は,主に *l* の 低減に起因するものと判断できる.

スペクトルの起源	CrSi ₂	(Cr _{0.92} Mo _{0.08})Si ₂	差異 (%)
Si 原子振動	8.98 THz	8.98 THz	0
Cr 原子振動	9.24 THz	9.20 THz	0.4
Si 原子振動	10.60 THz	10.60 THz	0
Si 原子振動	11.89 THz	11.89 THz	0
Si 原子振動	12.33 THz	12.31 THz	0.1
Si 原子振動	13.48 THz	13.48 THz	0

表 5.1.2: (Cr_{0.92}Mo_{0.08})Si₂ 焼結体および無置換 CrSi₂ 焼結体の Raman スペクトルの ピーク位置および振動の起源.

図 5.1.11: (Cr_{0.92}Mo_{0.08})Si₂ 焼結体および無置換 CrSi₂ 焼結体の Raman スペクトル.

5.2 還元拡散法を用いた Mo 置換 CrSi₂ 試料の作製と熱 電特性

前節の研究結果から、置換元素がフォノンの散乱体として働くため、Mo 置換により CrSi₂の κ_L を低減できることがわかった.また、第4章では、焼結体を構成する結晶子サイズを制御することで 100 nm 以下のlのフォノンを散乱し、CrSi₂の低熱伝導率化を実現できることがわかった.一方で、結晶子サイズの低減と元素置換の散乱機構を単独で用いた場合、それぞれ達成した κ_L の最小値は、2.56 Wm⁻¹K⁻¹ (at 1000 K)と 3.55 Wm⁻¹K⁻¹ (at 700 K)であって、最小格子熱伝導率 κ_{L0} (2.2 Wm⁻¹K⁻¹)にはまだ達していない.これは、さらなる低減の余地が CrSi₂の κ_L に存在することを示唆している.

したがって、本節では、結晶子サイズの低減と元素置換の散乱機構を併用し、 κ_L の最小値を実現することを目的とした.そこで、RD 法を用いた Mo 置換 CrSi₂ 焼結体の作製および評価を行った.

5.2.1 実験手順

■ 粉末合成

第3章で示した原料に加えて、 MoO_3 を用いた RD 法によって $(Cr_{1-x}Mo_x)Si_2$ 粉 末試料 (x = 0.05 - 0.35)の合成を行った.合成は 1073 K で 3 時間行い、合成後に得 られたペレットは精製水を用いて洗浄した.

■ SPS と評価

RD 法によって得られた Mo 置換 CrSi₂ 粉末試料を 1073 K, 50 MPa の条件で 5 分間 SPS した.単相化を図るため,作製した焼結体を石英管に真空封入し,1273 K で 12 時間熱処理した.熱処理後の焼結体を,1.5×1.5×8 mm の直方体と直径 10 mm,厚さ 1.8 mm の円柱に成形し,それぞれ電気輸送特性および熱輸送特性の評価に用いた.また,得られた焼結体を一部粉砕し,粉末 XRD による試料同定に用いた.焼結体の粉末 XRD パターンから,Williamson-Hall プロットによる結晶子サイズの定量評価を行った.さらに,焼結体を一部研磨し,SEM による表面観察と EBSD による結晶子サイズの評価を行った.

5.2.2 熱処理前後の焼結体の相同定

RD 法と SPS により作製した (Cr_{1-x}Mo_x)Si₂ 焼結体 (x = 0.05-0.35) の粉末 XRD パターンを図 5.2.1 に示す. 作製した (Cr_{1-x}Mo_x)Si₂ 焼結体は, CrSi₂ の回折ピーク とおおよそ一致する位置に低角度側に裾を引くピークを示した. このような XRD ピークの広幅化は, 置換した元素の不均一分布に起因することが報告されている [26]. したがって, これらの焼結体は Mo 元素の不均一分布を有することが予想さ れるため, 1273 K で 12 時間熱処理し, 均一化を図った. 熱処理した焼結体の粉末 XRD パターンを図 5.2.2 に示す. 熱処理した焼結体の XRD ピークは比較的鋭く, 熱処理により不均一さが改善したと考えられる. 一方で, x = 0.10 以上において, 熱 処理後の焼結体は, 第二相として Si が不足した場合に生成する CrSi (空間群 *P*2₁3) を有することがわかった. さらに, x = 0.3 以上において, 第二相として α -MoSi₂ が 存在することがわかった.

図 5.2.1: RD 法と SPS により作製した (Cr_{1-x}Mo_x)Si₂ 焼結体 (x = 0.05-0.35) におけ る熱処理前の粉末 XRD パターンの Mo 置換量 x 依存性.

図 5.2.2: RD 法と SPS により作製した (Cr_{1-x}Mo_x)Si₂ 焼結体 (x = 0.05-0.35) におけ る熱処理後の粉末 XRD パターンの Mo 置換量 x 依存性.

RD 法と SPS により作製した (Cr_{1-x}Mo_x)Si₂ 焼結体 (x = 0.05-0.25)の格子定数を 図 5.2.3 に示す. ここで,格子定数の精密化には,熱処理後の焼結体の粉末 XRD パ ターンを用いた.表 5.2.1 には格子定数と焼結体の相対密度を示す.格子定数は,文 献値 [24] とよく一致し, x の増加にともない a 軸長と c 軸長は単調に増加した.こ の格子定数の変化は, Mo が Cr よりも大きな原子半径を有するために生じる.この 格子定数の x 依存性と XRD パターンから, x = 0.25 以下の焼結体は所望の Mo 置換 量の試料であると判断した.したがって,所望の置換に成功した (Cr_{1-x}Mo_x)Si₂ 焼 結体 (x = 0.05-0.25) において,アーク熔解法と SPS で作製した (Cr_{1-x}Mo_x)Si₂ 焼結 体の場合と同様に,元素置換による κ_L の低減が期待される.

図 5.2.3: RD 法と SPS により作製した (Cr_{1-x}Mo_x)Si₂ 焼結体 (*x* = 0.05-0.25) におけ る熱処理後の格子定数の Mo 置換量 *x* 依存性. 実線は参考文献 [24] の値を示す.

表 5.2.1: RD 法と SPS により作製した (Cr_{1-x}Mo_x)Si₂ 焼結体 (x = 0-0.25) における 熱処理後の格子定数とその焼結体の密度.

	0	0	2	
x	格子定数 a (Å)	<i>c</i> (Å)	絶対密度 (gcm ⁻³)	相対密度 (%)
0	4.42958(1)	6.36324(2)	4.84	97
0.05	4.44078(2)	6.37106(3)	4.79	96
0.1	4.44868(2)	6.37883(4)	4.37	87
0.15	4.46404(1)	6.38790(3)	4.95	99
0.2	4.46850(2)	6.39167(3)	4.68	94
0.25	4.47953(2)	6.40416(3)	3.88	78

5.2.3 表面観察

RD 法と SPS により作製した ($Cr_{0.85}Mo_{0.15}$)Si₂ 焼結体の IQ マップを図 5.2.4 に示 す.得られた IQ マップから,熱処理前後の焼結体はともに,100 nm - 2 μ m 程度の 大きさの結晶子を有することがわかる.したがって,熱処理による結晶子サイズの 顕著な変化はないと判断した.熱処理後の焼結体における結晶子サイズは,無置換 CrSi₂ 焼結体を同条件で作製した場合 (図 4.2.5) と同程度であった.

5.2.4 結晶子サイズの定量評価

熱処理後に測定した ($Cr_{1-x}Mo_x$)Si₂ 焼結体 (x = 0, 0.05, 0.1, 0.2)の XRD パター ンから, Williamson-Hall 法により評価した平均結晶子サイズを表 5.2.2 にまとめる. ($Cr_{1-x}Mo_x$)Si₂ 焼結体 (x = 0.05, 0.1, 0.2)の平均結晶子サイズは,おおよそ 70 nm 程 度であり,同条件で作製した無置換 CrSi₂ 焼結体のそれよりも 10 nm 程度大きかっ た. ($Cr_{1-x}Mo_x$)Si₂ 焼結体 (x = 0.05, 0.1, 0.2)は 100 nm 以下の平均結晶子サイズを 有するこの結果から, RD 法と SPS で作製した無置換 CrSi₂ 焼結体の場合と同様に, 結晶子サイズの低減による κ_L の低減が期待される.

図 5.2.4: RD 法を用いて得られた粉末試料を SPS して作製した (Cr_{0.85}Mo_{0.15})Si₂ 焼 結体の熱処理前後の IQ マップ.

表 5.2.2:熱処理後に測定した ($Cr_{1-x}Mo_x$)Si₂ 焼結体 (x = 0, 0.05, 0.1, 0.2)の XRD パターンから, Williamson-Hall 法により評価した平均結晶子サイズ.

平均結晶子サイズ (nm)
61.4(4)
75.3(7)
70.8(5)
70(10)

5.2.5 熱電特性

RD 法と SPS により作製した $(Cr_{1-x}Mo_x)Si_2$ 焼結体 (x = 0, 0.05, 0.2) の熱電特性を図 5.2.5 に示す. $(Cr_{1-x}Mo_x)Si_2$ 焼結体の σ は x の増加にともない増加し, x = 0.2 において, その最大値は 300 K で 1870 Scm⁻¹ であった. この 300 K における σ は, 無置換 CrSi₂ 焼結体のそれと比較して 1.5 倍と大きな値である. 一方で, $(Cr_{1-x}Mo_x)Si_2$ 焼結体の S は x の増加にともない減少し, x = 0.2 において, 300 K で 65 μ VK⁻¹ であった. この 300 K における S は, 無置換 CrSi₂ 焼結体のそれと比較して 6 割程度の小さな値である. これらの熱電特性の x 依存性は, 第5章 1 節に示す Mo 置換による m^* の減少に起因する. Mo 置換により S が減少したため, x の増加ともに PF_{max} は減少し, x = 0.2 の焼結体における PF_{max} は 1.3×10^{-3} Wm⁻¹K⁻² であった.

 $(Cr_{1-x}Mo_x)Si_2$ 焼結体 (x = 0.05, 0.2) の κ_C は, 300 K において 1.4 Wm⁻¹K⁻¹ で あり, 無置換 CrSi₂ 焼結体と比較して 1.5 倍程度大きい. $\kappa \ge \kappa_L$ は x の増加ととも に減少し, x = 0.2 において, κ_L は 300 K で 5.0 Wm⁻¹K⁻¹, 600 K で 3.4 Wm⁻¹K⁻¹ であった. 600 K における κ_L は, RD 法と SPS で作製した無置換 CrSi₂ 焼結体と比 較して 57% 低く, アーク熔解法と SPS で作製した無置換 CrSi₂ 焼結体と比較して 58% 低い. (Cr_{0.8}Mo_{0.2})Si₂ 焼結体の zT_{max} は, 700 K において 0.18 であった.

図 5.2.5: RD 法と SPS により作製した (Cr_{1-x}Mo_x)Si₂ 焼結体 (x = 0, 0.1, 0.2) の熱電 特性の温度依存性.

5.3 考察

RD 法と SPS により作製した (Cr_{1-x}Mo_x)Si₂ 焼結体 (x = 0.05, 0.2) の κ_L を, RD 法と SPS により作製した無置換 CrSi₂ 焼結体,およびアーク熔解法と SPS により 作製した (Cr_{1-x}Mo_x)Si₂ 焼結体 (x = 0, 0.04, 0.06, 0.08) の κ_L と比較するため,これ らの焼結体の 600 K における $1/\kappa_L$ の散乱パラメータ Γ 依存性を図 5.3.1 に示す. Γ の導出には,Klemens [16] が提唱した式 (1.1.19) を用いた.また,Ohishi ら [38] が 報告したアーク熔解法と SPS により作製した (Cr_{1-x}Mo_x)Si₂ 焼結体における $1/\kappa_L$ の散乱パラメータ Γ 依存性も算出して図 5.3.1 に示す.置換元素による格子欠陥が フォノンを散乱する場合, $1/\kappa_L$ は Γ に対する線形増加を示すことが報告されている [65].Ohishi らの報告における $1/\kappa_L$ は Γ の増加に比例して増加した.

一方、本研究におけるアーク熔解法と SPS により作製した ($Cr_{1-x}Mo_x$)Si₂ 焼結体 の $1/\kappa_L$ は、x = 0.04 まで線形増加するが、x > 0.06 では比例関係よりも大きく増加 した. x = 0.08 の焼結体の $1/\kappa_L$ は、 Γ に対する線形関係から推測される x = 0.08 の 場合の $1/\kappa_L$ と比較して 40% 大きく、この結果は、置換元素によるフォノンの散乱 に加えて、これらの焼結体が内包する Mo 元素の不均一分布によるフォノンの散乱 が κ_L の低減に寄与していることを示唆する.

本研究で RD 法と SPS により作製した ($Cr_{1-x}Mo_x$)Si₂ 焼結体における $1/\kappa_L$ の Γ 依存性は, どの x においても, Ohishi ら [38] の報告値と比較して 4% 以上大きく, この結果は, 置換元素によるフォノンの散乱に加えて, 結晶子サイズの低減が κ_L の 低減に寄与していることを示唆する.

また, RD 法と SPS により作製した無置換 $CrSi_2$ 焼結体における $1/\kappa_L$ は,結晶子 サイズの低減にともない増加した.

図 5.3.1:本研究で報告した無置換 CrSi₂ 焼結体と (Cr_{1-x}Mo_x)Si₂ 焼結体の 600 K に おける $1/\kappa_L$ の散乱パラメータ Γ 依存性. 灰色および緑色のプロットは, それぞれ RD 法を用いて作製した無置換および Mo 置換試料の値である.赤色のプロットは, アーク熔解法で作製した Mo 置換試料の値である.比較のため, Ohishi ら [38] が報 告したアーク熔解法で作製した Mo 置換試料の値も示した.

5.4 小括

第5章では,結晶子サイズの低減のみでは散乱できない大きさの1のフォノンを効 果的に散乱し,低熱伝導率化を実現することを目的として,元素置換を行った.目的 達成のため,1節ではアーク熔解法を用いて,フォノンの散乱体として置換元素のみ を導入し,2節では RD 法を用いて,フォノンの散乱体として置換元素に加えて,結 晶粒界を導入した.

■ アーク熔解法を用いた Mo 置換 CrSi₂ 試料

アーク熔解法を用いた (Cr_{1-x}Mo_x)Si₂ 焼結体 (x = 0.02-0.2)の作製と熱電特性の評価を行った. 試料内の Mo の均一化を図るために熱処理した焼結体は, Mo 置換量x = 0.02-0.1の組成で単相であった. Mo で置換を行うことで m^* が減少したため, (Cr_{1-x}Mo_x)Si₂ 焼結体の S は, x 増加にともない減少することが実験および計算から 明らかになった. σ は, x = 0.06 まで x 増加にともない増加し, x > 0.06 では減少し た. $x \le 0.06$ の焼結体で観測された σ の増加は, m^* が減少したことに起因する. x > 0.06の焼結体で観測された σ の減少は, Mo の不均一さが x の増加にともない増大 するため, τ が減少することに起因すると考えられる. κ および κ_L は, Mo 置換量の 増加にともない減少し, (Cr_{0.92}Mo_{0.08})Si₂ 焼結体の 600 K おける κ_L は, $r - \rho$ 熔解 法を用いて作製した無置換 CrSi₂ 焼結体の κ_L と比較して 53% 低く, 3.8 Wm⁻¹K⁻¹ であった. この焼結体の zT は 700 K で 0.23 に達した.

■ 還元拡散法を用いた Mo 置換 CrSi₂ 試料

RD 法を用いた ($Cr_{1-x}Mo_x$)Si₂ 焼結体 (x = 0.05 - 0.35) の作製と熱電特性の評価を 行った. 試料内の Mo の均一化を図るために熱処理した焼結体は, Mo 置換量 x =0.05 の組成で単相であった. 一方, x = 0.1 以上の組成域では第二相として CrSi が, x = 0.25 以上の組成域では第二相として α -MoSi₂ が焼結体に存在することがわかっ た. 熱処理した焼結体の XRD パターンから, Williamson-Hall 法により評価した平 均結晶子サイズは, 平均で 70 nm 程度であった. したがって, これらの焼結体で は, 元素置換の効果に加えて, 結晶子サイズの低減による κ_L の低減が期待される. 実際に, 結晶子サイズの低減と元素置換を併用し, フォノンを効果的に散乱した ($Cr_{0.8}Mo_{0.2}$)Si₂ 焼結体の κ_L は, アーク熔解法を用いた無置換 CrSi₂ 焼結体の κ_L と 比較して 58% 低く,600 K で 3.4 Wm⁻¹K⁻¹ であった.この焼結体の zT は 700 K で 0.18 に達した. RD 法を用いた $(Cr_{1-x}Mo_x)Si_2$ 焼結体では,結晶子サイズの低減 と元素置換を併用し、マルチスケールのフォノンを散乱することで、低熱伝導率化を 達成した.しかし、 $(Cr_{1-x}Mo_x)Si_2$ 焼結体の S は、無置換 CrSi₂ 焼結体と比べて低 く、そのため PF は低い.したがって、 $(Cr_{1-x}Mo_x)Si_2$ 焼結体の PF の向上が重要な 課題であり、その実現によってさらなる zT の向上が期待される.

第6章 総括と今後の展望

本研究では、熱電変換の広範な普及を実現するため、低毒性で環境に調和したシ リサイドに着目した.シリサイドの中でも $CrSi_2$ は、比較的高い PF を有する.しか し、その κ_L は大きく、zT は 0.1 程度と低い.したがって、本研究では $CrSi_2$ の zTを向上するため、第一原理計算により低熱伝導率化の指針を見出し、実験的に結晶子 サイズの制御と元素置換を行うことで低熱伝導率化の実現と zT の向上を図った.

6.1 本研究の成果

■ 低熱伝導率化の指針

フォノン輸送計算により CrSi₂ の κ_{cum} を算出し、熱伝導に寄与するフォノンの l は 100 nm 以下であることを明らかにした.この結果に基づき、100 nm 以下の結晶 子の形成、および置換元素の導入を κ_{L} の低減指針として提案した.

■ 結晶子サイズの低減

結晶子サイズを制御した粉末試料を作製するため、合成に RD 法を用いた. RD 法 における合成条件を検討することで、 $CrSi_2 \ o \ \kappa_L \ o$ 低減に有効と考えられる 100 nm 以下の結晶子が得られた. 次に、SPS 条件を検討して作製した焼結体は、微細な結晶 子 (46-61 nm) で構成され、結晶子サイズの低減にともなう κ_L の低減を示した. 特 に、873 K で SPS した $CrSi_2$ 焼結体の κ_L は、アーク熔解法と SPS で作製した焼結 体 ($\kappa_L = 8.2 \ Wm^{-1}K^{-1}$ at 600 K) と比較して、48% 低い 4.2 $Wm^{-1}K^{-1}$ (600 K) を達 成した.

この実験では, RD 法を用いた 100 nm 以下の結晶子で構成される CrSi₂ 焼結体の 作製とその評価を行うことで,計算から予想される低熱伝導率化の指針を支持する 実験結果を得た.また, RD 法を用いた材料合成は,他材料に適用可能な汎用性を持 ち,熱電材料分野において,低熱伝導率材料を合成する優れた手法といえる.

■ 元素置換

フォノン輸送計算から,結晶子サイズの低減では到達が困難である 10 nm 以下の lのフォノンも熱伝導に寄与していることが明らかになった.それらのフォノンも含 めた散乱を実現するため,MoでCrサイトを置換した.元素置換が κ_L に与える影響 を検証するため,アーク熔解法で作製した (Cr_{0.92}Mo_{0.08})Si₂ 焼結体では,導入した Mo が熱伝導に寄与する 100 nm 以下のフォノンを効果的に散乱したため,その κ_L は,従来法で作製した無置換焼結体と比較して,53% 低い 3.8 Wm⁻¹K⁻¹ (600 K) を 達成した.

CrSi₂の κ_L の低減に有効な散乱体のサイズは 100 nm 以下であり,100 nm 以下の 結晶子の形成,および置換元素の導入はともに有効な散乱体として機能することが実 験的に明らかになった.この2つの手法を併用することで、マルチスケールのフォ ノンを包括的に散乱した低熱伝導率化が実現できると考え、RD 法を用いた Mo 置 換 CrSi₂ 焼結体を作製した.RD 法を用いて得られた粉末試料を SPS して作製した (Cr_{0.8}Mo_{0.2})Si₂ 焼結体では、導入した置換元素に加えて 100 nm 以下の結晶子が効果 的にフォノンを散乱したため、その κ_L は、アーク熔解法で作製した無置換 CrSi₂ 焼 結体と比較して、58% 低い 3.4 Wm⁻¹K⁻¹ (600 K) であった.

6.2 本研究の意義

本研究では $CrSi_2$ のフォノン輸送計算を行い,その κ_L の低減に有効な散乱体のサ イズを提示した.本研究のように $CrSi_2$ の低熱伝導率化の指針を明らかにした研究 はこれまで存在せず,得られた計算結果は高い価値がある.さらに,その計算結果を 踏まえた材料設計を,結晶子サイズと元素置換量の制御によって行い, $CrSi_2$ の低熱 伝導率化を効率的に実現した.

本研究の意義は、低熱伝導率化の指針を計算によって提示することに留まらず、合成手法を検討することで、その指針に立脚した低熱伝導率化を実験的に達成した点にある.フォノン輸送計算と実験を一貫して行い、それらを総合した成果を報告した例は数少なく、本研究における実験結果は、フォノン輸送計算の妥当性と熱電材料の探索や設計におけるその有効性を示した.さらに、本研究では、熱電材料分野において適用された例がない RD 法を用いて、低熱伝導率化を達成した. RD 法は、他の材料系にも適用可能な汎用性が高い合成手法であるため、熱電材料分野における RD 法の活用可能性を提示した本研究は価値があり、本研究成果を踏まえて、今後、さらに優れた熱電材料が RD 法で作製されることが期待される.

6.3 今後の展望

本研究で実行したマルチスケール散乱体の導入によって、 $CrSi_2$ 系材料の κ_L は κ_{L0} に近づいたが、まだ到達していない. RD 法を用いた Mo 置換焼結体の結晶子は 70 nm 程度であって、フォノン輸送計算の結果と比較すると、結晶子サイズの低減よる κ_L の低減の余地がまだ存在する. したがって、今後は、RD 法の合成条件または SPS の条件をより細かく検討した ($Cr_{1-x}Mo_x$)Si₂ 焼結体の作製を行うことで、結晶子サイズのさらに緻密な制御が達成され、さらなる κ_L の低減が実現可能と考える.

また、本研究では Mo 置換で PF が変化することが明らかになり、その原因を考察 した. PF はキャリア密度の最適化によって向上が可能である. したがって、本研究 で実証した *KL* の低減手法を、キャリア密度の最適化といった従来の PF の向上手法 と組み合わせることによって、環境に調和した CrSi₂ 系熱電材料の特性が飛躍的に 向上し、熱電変換の広範な普及が実現することが期待される.

参考文献

- UNFCCC, Paris agreement, (2015a), URL: https://www.mofa.go.jp/mofaj/files/ 000197312.pdf.
- [2] UNFCCC, Japan's intended nationally determined contribution, (2015b), URL: https://www.mofa.go.jp/mofaj/files/000090898.pdf.
- [3] C. Kittel, Introduction to Solid State Physics 8th edition, Wiley, (1976).
- [4] 寺崎一郎『熱電材料の物質科学』,内田老鶴圃 (2017).
- [5] 坂田亮『熱電変換―基礎と応用』, 裳華房 (2005).
- [6] 菅義夫(編)『熱電半導体』, 槙書店 (1966).
- [7] F. Seitz, Phys. Rev., 73 (1948) 549.
- [8] J. Bardeen and W. Shockley, Phys. Rev., 80 (1950) 72.
- [9] F. Nava, C. Canali, C. Jacoboni, L. Reggiani, and S. F. Kozlov, Solid State Commun., 33 (1980) 475.
- [10] 竹内恒博『日本熱電学会誌』, 第8卷 (2011) 17.
- [11] 桂ゆかり『日本熱電学会誌』,第11巻(2014)18.
- [12] P. Bhattacharya, R. Fornari, and H. Kamimura, Comprehensive Semiconductor Science and Technology, Elsevier Science, (2011).
- [13] G. A. Slack and S. Galginaitis, Phys. Rev., 133 (1964).
- [14] R. Hill, Proc. Phys. Soc. A, 65 (1992) 1951.
- [15] O. L. Anderson, J. Phys. Chem. Solids, 24 (1963) 909.
- [16] P. G. Klemens, Phys. Rev., 119 (1960) 507.
- [17] D. G. Cahill, S. K. Watson, and R. O. Pohl, Phys. Rev. B, 46 (1992) 46.
- [18] G. A. Slack, J. Phys. Chem. Solids, 34 (1973) 321.
- [19] F. Yu, J. Zhang, D. Yu, J. He, Z. Liu, B. Xu, and Y. Tian, J. Appl. Phys., 105 (2009) 094303.
- [20] A. Bali, I. Kim, P. Rogl, and R. C. Mallik, J. Electron. Mater., 43 (2014) 1630.
- [21] Support Book, 高純度化学研究所, (2017).
- [22] 梶川武信『熱電変換技術ハンドブック』, エヌ・ティー・エス (2008).
- [23] Y. Hayashibara, K. Hayashi, I. Ando, M. Kubouchi, Y. Ogawa, W. Saito, and Y. Miyazaki, Mater. Trans., 59 (2018) 1041.
- [24] H. Lange, Phys. Stat. Sol. (b), 201 (1997) 3.
- [25] H. Nakasawa, T. Takamatsu, Y. Iijima, K. Hayashi, and Y. Miyazaki, Trans. Mat. Res. Soc. Japan, 43 (2018) 85.
- [26] Y. Kikuchi, Y. Miyazaki, Y. Saito, K. Hayashi, K. Yubuta, and T. Kajitani, Jpn. J. Appl. Phys., 51 (2012) 085801.
- [27] M. Ito, H. Nagai, S. Katsuyama, and K. Majima, J. Alloys Compd., 315 (2001) 251.

- [28] J. Ma, Y. Gu, L. Shi, L. Chen, Z. Yang, and Y. Qian, J. Alloys Compd., 376 (2004) 176.
- [29] I. Engström and B. Lönnberg, J. Appl. Phys., 63 (1988) 4475.
- [30] A. B. Gokhale and G. J. Abbaschian, Bulletin of Alloy Phase Diagrams, 8 (1987) 474.
- [31] V. Bellani, G. Guizzetti, and A. Piaggi, Phys. Rev. B, 46 (1992) 9380.
- [32] L. F. Mattheiss, Phys. Rev. B, 43 (1991) 549.
- [33] I. Nishida, J. Mater. Sci., 7 (1972) 1119.
- [34] B. K. Voronov, L. D. Dudkin, and N. N. Trusova, Characteristic features of the physicochemical structure of chromium disilicide, Springer, (1972).
- [35] S. Volz, J. Shiomi, M. Nomura, and K. Miyazaki, Journal of Thermal Science and Technology, 1 (2016) 00529.
- [36] A. S. Nissimagoudar, J. Ma, Y. Chen, and W. Li, J. Phys.: Condens. Matter, 29 (2017) 335702.
- [37] H. Nagai, T. Takamatsu, Y. Iijima, K. Hayashi, and Y. Miyazaki, Jpn. J. Appl. Phys., 55 (2016) 111801.
- [38] Y. Ohishi, A. Mohamad, Y. Miyazaki, H. Muta, K. Kurosaki, and S. Yamanaka, J. Phys. Chem. Solids, 87 (2015) 153.
- [39] A. Mohamad, Y. Ohishi, Y. Miyazaki, H. Muta, K. Kurosaki, and S. Yamanaka, Mater. Trans., 57 (2016) 1059.
- [40] L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B, 47 (1993) 12727.
- [41] P. K. Deheri, V. Swaminathan, S. D. Bhame, Z. Liu, and R. V. Ramanujan, Chem. Mater., 22 (2010) 6509.
- [42] J. J. Vajo, F. Mertens, C. C. Ahn, R. C. Bowman, and B. Fultz, J. Phys. Chem. B, 108 (2004) 13977.
- [43] A. Le-Bail, H. Duroy, and J. L. Fourquet, Mater. Res. Bull., 23 (1988) 447.
- [44] F. Izumi, Multi Purpose Pattern Fitting System RIETAN-FP (2016).
- [45] V. Petříček, M. Dušek, and L. Palatinus, Crystalline Materials, 229 (2014) 345.
- [46] F. Izumi and K. Momma, Solid State Phenom., 130 (2007) 15.
- [47] G. K. Williamson and W. H. Hall, Acta Metall., 1 (1953) 22.
- [48] 『SEM と友だちになろう』, 日立ハイテクノロジーズ (2010).
- [49] 松浦秀治『応用物理』, 第85卷(2016)601.
- [50] 小林浩一『光物性入門』, 裳華房 (1997).
- [51] 只野央将『第一原理フォノン伝導計算』, エヌ・ティー・エス (2017).
- [52] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M.

Wentzcovitch, J. Phys.: Condens. Matter, 21 (2009) 395502.

- [53] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. D. Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio Jr., A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H. Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H. V. Nguyen, A. O. de-la Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, and S. Baroni, J. Phys.: Condens. Matter, **29** (2017) 465901.
- [54] A. Togo and I. Tanaka, Scr. Mater., 108 (2015) 1.
- [55] A. Togo, L. Chaput, and I. Tanaka, Phys. Rev. B, 91 (2015) 094306.
- [56] M. Nakamura, Metall. Mater. Trans. A, 25 (1994) 331.
- [57] M. Mikami and Y. Kinemuchi, J. Alloys Compd., 690 (2017) 652.
- [58] A. A. Maradudin and A. E. Fein, Phys. Rev., 128 (1962) 2589.
- [59] J. Sonntag, J. Phys.: Condens. Matter, 21 (2009) 175703.
- [60] K. Mizokami, A. Togo, and I. Tanaka, Phys. Rev. B, 97 (2018) 224306.
- [61] J. Linnera and A. J. Karttunen, Phys. Rev. B, 96 (2017) 014304.
- [62] R. Landauer, J. Appl. Phys., 23 (1952) 779.
- [63] J. W. Sharp, S. J. Poon, and H. J. Goldsmid, Phys. Stat. Sol. (a), 187 (2001) 507.
- [64] T. Yamada and H. Yamane, Intermetallics, 19 (2011) 908.
- [65] Y. Nishino, S. Deguchi, and U. Mizutani, Phys. Rev. B, 74 (2006) 115115.

謝辞

この研究を博士論文としてまとめることができたのは,研究生活全般にわたり丁 寧なご指導ならびにご教示を賜りました宮崎譲教授,林慶准教授,髙松智寿助教のお 力添えのおかげです.心より深く感謝いたします.また,本論文審査にあたり,藤原 巧教授,淡路智教授,土浦宏紀准教授には有益なご指導ならびにご助言をいただきま した.深く御礼申し上げます.加えて,この博士論文の作成にお力添えくださいま した皆様,深く感謝申し上げます.

宮崎讓教授には、研究活動に関する有益な助言を数多くいただきました.研究の まとめ方、発表資料の作り方および発表の仕方に対して、宮崎教授は特に時間を割い て指導してくださいました.そのようなご指導があって、初めて発表を行った国際 学会では、自信を持って発表できたことを覚えています.また、論文の作成に際して は、日本語および英語の基礎から丁寧にご教示いただき、大変勉強になりました.最 後に、試薬から計算機の使用と大きな費用を本研究に投じてくださいましたことに 心より感謝申し上げます.そのようなご支援のもとで不自由を感じることなく、自 らの研究を遂行することができました.

林慶准教授には、本博士論文に加えて、原著論文の作成において大変お世話になり ました.得られた結果を解釈する場面においては、林准教授に意見をいただくこと で新たな見解を数多く得ることができました.林慶准教授の妥協を許さない姿勢を 受けて、原著論文は充実した内容とすることができました.深く感謝申し上げます.

髙松智寿助教には研究指導教員として、本研究に関する知識やノウハウをたくさ ん与えていただきました.丁寧なご指導だけでなく、実験環境の整備にも大きな力 添えをいただきました.また、博士論文審査会に際しては、多くの時間を割いて発表 資料の添削をしていただきました.おかげで安心して発表に臨むことができました. 深く感謝申し上げます.

土浦宏紀准教授には、フォノン輸送計算に際して、有益なご助言を数多くいただき ました.計算に関して意見をいただくために訪問した際の、板書を交えた丁寧な説 明は大変勉強になりました.おかげでフォノン輸送計算を遂行することができまし た.深く感謝申し上げます. 東北大学情報部サイバーサイエンスセンターの山下毅技術専門職員には、並列計 算機を用いた計算に際して、大きなお力添えをいただきました.サイバーシステム およびプログラミングに関して、多くのことをご教授いただき、それらを計算の高効 率化に役立てることができました.深く感謝申し上げます.

株式会社リコー飯島喜彦共同研究員には,研究面だけでなく社会生活面において も,企業視点の貴重な意見をいただきました.研究グループのゼミでは,研究に関す る多くのアドバイスをいただき,それらを基に博士論文をまとめることができまし た.深く感謝申し上げます.

清水嘉専門技術職員には実験道具の製作・加工をしていただきました.日常の事務 手続きも滞りなく行っていただいたおかげで,快適な研究生活を送ることができました.本研究において,莫大な HDF ファイルの変換に協力していただきました.その おかげで,図 3.1.4 (a) と (b) を作図することができました.深く感謝申し上げます.

東北大学工学研究科技術部合同計測分析班の宮崎孝道専門技術職員には,SEMの 使い方やデータの考察まで丁寧にご指導いただきました.また,東北大学工学研究 科技術部合同計測分析班の根本真奈一般技術職員には,Raman分光装置の使い方や データの考察まで丁寧にご指導いただきました.深く感謝申し上げます.

宮崎研究室の先輩,同輩,後輩の皆さまには研究生活全般において支えていただき ました.また,家族や友人たちには研究生活を送る上で,公私共に心の支えとなって いただきました.

ご協力してくださいました皆様に、ここに感謝の意を表します.

2019年9月 中沢 駿仁

研究成果

原著論文

 "Homoepitaxial growth of ZnO films with reduced impurity concentrations by helicon-wave-excited-plasma sputtering epitaxy using a crystalline ZnO target prepared by hydrothermal technique"
K. Furusawa, H. Nakasawa, Y. Ishikawa and S. F. Chichibu

Jpn. J. Appl. Phys., 53 (2014) 100301.

- "Thermoelectric properties of Mo and Ge co-substituted CrSi₂"
 <u>H. Nakasawa</u>, T. Takamatsu, Y. Iijima, K. Hayashi and Y. Miyazaki
 Trans. Mat. Res. Soc. Jpn., **43** (2018) 85.
- "Lattice dynamics and lattice thermal conductivity of CrSi₂ calculated from first principles and the phonon Boltzmann transport equation" <u>H. Nakasawa</u>, K. Hayashi, T. Takamatsu and Y. Miyazaki J. Appl. Phys., **126** (2019) 025105.