O-5. The Genome of the Zoonotic Malaria Parasite Plasmodium simium Reveals Adaptions to Host-switching

Tobias MOURIER¹, Denise Anete Madureira de ALVARENGA², Abhinav KAUSHIK¹, Anielle de PINA-COSTA^{3,4,5}, Francisco J. GUZMÁN-VEGA⁶, Olga DOUVROPOULOU¹, Qingtian GUAN¹, Sarah FORRESTER⁷, Filipe Vieira Santos de ABREU^{3,10}, Cesare Bianco JÚNIOR^{3,8}, Julio Cesar de SOUZA JUNIOR⁹, Zelinda Maria Braga HIRANO⁹, Maria de FÁTIMA FERREIRA-DA-CRUZ^{3,8}, Ricardo Lourenço de OLIVEIRA^{3,10}, Stefan T. AROLD^{6,11}, Daniel C. JEFFARES⁷, Patrícia BRASIL^{3,4}, Cristiana Ferreira Alves de BRITO², Richard CULLETON¹², Cláudio Tadeu DANIEL-RIBEIRO^{3,8} and Arnab PAIN^{1,13}

¹Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST)

²Grupo de Pesquisa em Biologia Molecular e Imunologia da Malária, Fundação Oswaldo Cruz (Fiocruz) ³Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz

⁴Laboratório de Pesquisa Clínica em Doenças Febris Agudas, Instituto Nacional de Infectologia Evandro Chagas, Fiocruz ⁵Centro Universitário Serra dos Órgãos (UNIFESO)

⁶Computational Bioscience Research Center, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST)

⁷Department of Biology and York Biomedical Research Institute, University of York, Wentworth Way ⁸Laboratório de Pesquisa em Malária, IOC, Fiocruz

⁹Universidade Regional de Blumenau (FURB), Centro de Pesquisas Biológicas de Indaial (CEPESBI)/ Projeto bugio ¹⁰Laboratório de Mosquitos Transmissores de Hematozoários. Instituto Oswaldo Cruz (IOC), Fiocruz ¹¹Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier

¹²Malaria Unit, Department of Pathology, Institute of Tropical Medicine (NEKKEN), Nagasaki University

¹³Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE),

Hokkaido University

Plasmodium simium, a malaria parasite of non-human primates in the Atlantic forest region of Brazil was recently shown to cause zoonotic infections in humans. Phylogenetic analyses based on of six P. simium isolates from humans and two isolates from brown howler monkeys revealed that P. simium is monophyletic within the broader diversity of South American Plasmodium vivax, consistent with the hypothesis that P. simium first infected non-human primates as a result of a host-switch of P. vivax from humans. Very low levels of genetic diversity within P. simium and the absence of P. simium-P. vivax hybrids suggest that the P. simium population emerged recently with a subsequent period of independent evolution in Platyrrhini monkeys. We find that Plasmodium Interspersed Repeat (PIR) genes, Plasmodium Helical Interspersed Subtelomeric (PHIST) genes and Tryptophan-Rich Antigen (TRAg) genes in P. simium are divergent from P. vivax orthologues and are enriched for non-synonymous single nucleotide polymorphisms, consistent with the rapid evolution of these genes. Analysis of genes involved in erythrocyte invasion revealed several notable differences between P. vivax and P. simium, including large deletions within the coding region of the Duffy Binding Protein 1 (DBP1) and Reticulocyte Binding Protein 2a (RBP2a) genes of P. simium. Sequence analysis of P. simium isolates from non-human primates (NHPs) and zoonotic human infections revealed a deletion of 38 amino acids in DBP1 present in all human-derived isolates, whereas NHP isolates were multi-allelic at this locus. We speculate that these deletions in key erythrocyte invasion ligands along with other significant genetic changes may have facilitated zoonotic transfer to humans. NHPs are a reservoir of parasites potentially infectious to humans that must be considered in malaria eradication efforts. The P. simium genome is an important resource for understanding the mechanisms of malaria parasite zoonoses.