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1. ABSTRACT (要約) 

Background (研究背景): Sensory inputs, including proprioceptive, somatosensory and visual 

information, are key determinants of motor output and aberrations in sensory function 

contribute to motor dysfunction. Experimental studies examined the possibility that increased 

afferent input in the form of compression, mechanical vibration and electrical stimulation could 

potentiate proprioceptive motor control. However, results are contradictory concerning the 

effects of peripheral compression on knee joint position sense, and the mechanisms that 

underlie these effects are incompletely understood. Athletes use compression garments (CGs) 

to improve sport performance, accelerate rehabilitation from knee injuries or to enhance joint 

position sense (JPS). However, its position around the knee may affect knee JPS. Furthermore, 

right- and left-side dominant individuals reveal target-matching asymmetries between joints of 

the dominant- and non-dominant upper limbs. However, it is unclear if such asymmetries are 

also present in lower limb’s joints. Although right-handed young adults perform target-

matching tasks more accurately with the non-dominant compared to the dominant limb, it is 

unclear if age affects this disparity. 

Aims (研究目的): The aim of the present thesis was therefore to examine the effects of 

peripheral compression, side-dominance and age on knee joint position sense. To that purpose, 

I determined the effects of an above-knee CG on passive knee joint position sense, and also 

examined the effects of CG position around the knee on active knee joint position sense in 

healthy populations. Moreover, the effects of side-dominance and age on passive knee joint 

repositioning behaviour is also described in the thesis. 

Materials and Methods (研究方法): To test these models, I performed a series of experiments 

using an isokinetic dynamometer (HUMAC NORM, Computer Sports Medicine Inc., 

Stoughton, MA). In each study, healthy subjects performed active or passive knee joint 

position-matching task. In those studies investigating the effect of peripheral compression on 
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knee JPS, I also determined the magnitude of tissue compression by measuring anatomical 

thigh and calf cross sectional area (CSA) in standing using magnetic resonance imaging (MRI). 

Results (研究結果): While applying an above-knee CG failed to improve passive knee JPS, 

the placement of CG around the knee joint modifies active knee JPS so that a below-knee CG 

reduced absolute repositioning errors without limiting the knee range of motion and mobility. 

Although right-side dominant participants tended to perform this passive target-matching task 

more accurately with the non-dominant leg compared to left-side dominant participants, it is 

more likely that healthy aging and leg dominance interact and produce age-specific 

modifications in JPS by producing less absolute and relative errors when matching with their 

dominant leg. 

Conclusion (結論): Overall, the present thesis help us better understand how the application 

of a CG can decrease the risk of musculoskeletal injuries during sport activities by influencing 

active knee JPS and how age and side-dominance affects passive target matching behaviour. 

In conclusion, the present thesis provides clear evidence that optimal peripheral compression, 

side-dominance and age affect knee JPS. 
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2. INTRODUCTION (研究背景) 

Proprioception is an essential element of joint stability [1-4], defined as the afferent 

information arising from peripheral areas of the body that contributes to joint stability, postural 

control, and motor control [5-7]. Activation of muscle, skin and joint receptors makes it 

possible to sense the orientation of body and body parts even in the absence of vision (for 

review, see [1]). Proprioception has three submodalities: joint position sense (JPS), kinesthesia, 

and sensation of force. Kinesthesia is the ability to appreciate and interpret joint motions [6], 

while sensation of force is the ability to appreciate and interpret force applied to or generated 

within a joint [8]. JPS is the appreciation and interpretation of information concerning one’s 

position and orientation in space [6]. Proprioceptive target matching behaviour through JPS 

measurements is a widely investigated area (for review, see [9]). In the last decade it has been 

recognized that not only primary afferent fibers innervating muscle spindles (Ia afferent fibers) 

[2, 3], but mechanoreceptors in joint capsules (thinly myelinated group III fibers, and 

unmyelinated group IV (C) fibers) [10], cutaneous tactile receptors (primary Aα afferent 

fibers, and secondary Aβ afferent fibers) [10], Golgi tendon organs (Ib afferent fibers, and 

primary Aα afferent fibers) [11], and skin stretch receptors (for review see [4]) also play a 

principal role as signalers of position sense. 

 

2.1 Effects of compression garments on knee joint position sense 

External supports in the form of braces, neoprene sleeves, and compression garments (CG) are 

commonly used with the assumption that such devices improve performance (for review, see 

[12]), reduce risks for injuries, and facilitate recovery from injuries [13]. It is speculated that 

CGs improve the sense of limb in space by stretching the skin which in turn augments the sense 

of movement [14], proprioceptive acuity [15], and by relieving muscle fatigue [15, 16]. 

Although some of the studies reported that bracing may also have some beneficial effect on 
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joint proprioception [15, 17], results are contradictory concerning the effects of compression 

on knee joint position sense (JPS), the perceived sense of knee joint position, and joint 

movement per se [18] in healthy participants [19, 20] most probably due to the type and the 

placement of the braces. Nevertheless, the favourable effects of soft tissue compression are not 

consistent because limb compression and ischemia, phenomena also produced by CGs, reduced 

the discharge rate of Ia afferents and impaired joint position sense [21]. Paralleling the 

inconsistencies of the physiological mechanisms of limb compression, the results are also 

contradictory concerning the effects of compression on knee joint position sense in individuals 

with [22, 23] and without an anterior cruciate ligament injury [19, 24, 25]. While some authors 

contend that the benefits of using CGs are related to the magnitude and uniformity of 

compression in the muscle produced by a CG [26, 27], others suggest the effectiveness of CGs 

and pressure are unrelated [13]. For instance, it was shown that CGs and sleeves could improve 

performance through proprioception-mediated effects related to an increase in afferent input 

from skin, muscle and joint receptors due to the pressure and contact afforded by the garments 

[28]. Afferent signals from tactile and muscle receptors set joint position and the cutaneous 

component of the afferent signal contributes to the neuromuscular control of the limb covered 

by the garment [29]. It is possible that the conflicting data between studies, concerning the 

proprioceptive effects of CGs on performance, may be related to the barrage of afferent input 

caused by the CG. CGs may in fact cause a sensory conflict and the abundance of afferent input 

becomes unhelpful, producing interference and ultimately reducing performance [30, 31]. It is 

therefore important to determine if the placement of the CG differentially affect neuromuscular 

control and knee JPS. 

 

As stated above, placement of the CG around the knee might be one of the main factors 

contributing to the contradictory results concerning the effects of compression on JPS. Previous 
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studies used whole knee bracing [15, 24, 32, 33] or applied a below-knee CG [17] to examine 

its effect on knee JPS. What little is known about the effects of garment position along the leg 

is inconsistent. It is thought that a below-knee compared with over the knee garment would 

minimize interference with knee range of motion and mobility of the knee [34]. However, there 

is also evidence [15, 24, 32, 33] that proprioception is enhanced when the garment is on the 

knee joint most probably due to skin stretching which in turn augments the sense of movement 

[14]. In my recent study [35], an above-knee CG failed to reduce passive target-matching 

errors. Indeed, JPS was actually more accurate without the garment. One reason could be that 

the target-matching task was performed in a passive manner in this particular study. Active 

instead of passive repositioning could increase sensory input through the fusimotor drive and 

muscle receptor activation [36]. In addition, active compared with passive repositioning 

evaluates afferent input in a more functional way due to general attenuation and selective gating 

of kinesthetic awareness during voluntary movements [20]. Compared with passive testing 

paradigms [20], in active testing conditions muscle spindles appear to play a role in the 

conscious perception of limb movement by detecting changes in muscle length [3]. Therefore, 

active compared to passive repositioning of the joint seems to be a more functional assessment 

of proprioception. Nevertheless, the methodological heterogeneity between studies makes it 

difficult to determine if CGs enhance JPS. Therefore, I also aimed to detect if placement of CG 

may affect knee JPS [37]. Overall, knee bracing may be beneficial for lower limb JPS that can 

be exploited in athletes to increase performance through positively affecting balance and in the 

rehabilitation of patients suffering from neuromuscular disfunctions, however, it is important 

to detect the possible underlying mechanism of such beneficial effects. 

 



 
   

11 
 

2.2 Effects of side-dominance on knee joint position sense 

Another source of the inconsistencies in knee JPS could be related to mixing data from 

dominant versus non-dominant limbs in the analyses. Due to the evolutionary specialization of 

the left hemisphere for skilled motor activities [38-40], 90% of healthy adults are right-hand 

dominant and perform fundamental manual motor tasks with the right hand [41-43]. This 

behavioural asymmetry is known as “right-handedness”. It was shown that right-handed 

participants perform proprioceptive target-matching tasks more accurately when using the non-

dominant left thumb [44, 45], elbow [46-48] or multiple joints of the upper limb (ankle, knee, 

shoulder, finger) [49] compared with left-handed participants performing the same task with 

the non-dominant right hand, suggesting that right hemisphere specialization underlies 

proprioceptive feedback [50, 51]. 

 

Kinesthesia is associated with a network of active brain areas (e.g. motor areas, cerebellum, 

high-order somatosensory areas) in right-handed healthy participants, providing evidence for 

a right hemisphere dominance for perception of limb movement [51]. Although the non-

preferred arm/hemisphere system is specialized for static limb position control, whereas the 

preferred arm/hemisphere system is responsible for dynamic limb trajectory control [52, 53], 

this asymmetry appears to be selective for right-handers, but not for left-handers [54]. 

Moreover, results from neuroanatomical studies also support the limb asymmetry-effects in 

knee JPS because while proximal muscles are innervated by both hemispheres, distal muscles 

are innervated predominantly by the contralateral hemisphere [55, 56]. Therefore, 

proprioceptive asymmetry may be more likely to be evident in the distal than in the proximal 

joints [44, 57]. These data suggest that right hemisphere specialization underlies proprioceptive 

feedback [50, 51]. 
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On the other hand, in a few cases left-handed individuals also had smaller target-matching task 

errors when matching with the non-dominant compared to the dominant arm [58], and some 

previous studies even failed to present target-matching asymmetry between upper limb joints 

on the right and left sides of the body. However, the results are contradictory due to the different 

experimental modalities [44, 59, 60] and the low (3-5) testing trials [59, 61]. It is however also 

possible that asymmetries in JPS predominantly result from a difference in perception and/or 

reproduction between the sensory-motor systems of the two hemispheres [62]. Most previous 

studies examined the effects of handedness on upper limb joints’ proprioception [44-49], so it 

is unclear if right hemisphere specialization for proprioceptive target-matching tasks [50, 51] 

is also evident in lower limb joints. 

 

The effects of footedness on leg proprioception has been poorly investigated, even though it 

might be a better indicator of brain lateralization [63], being less affected by external and 

societal factors than handedness [64]. Although it was shown that knee joint position sense is 

not more accurate in the non-preferred left limb under non-weight-bearing, partial weight-

bearing and full weight-bearing conditions [59], strongly right-side dominant participants 

consistently sense movements more accurately using the left joints on both the upper- and 

lower limbs [49]. Despite the large quantity of data on upper limb target-matching behaviour, 

it remains unknown whether lower limb proprioceptive asymmetry is different between right– 

and left-side dominant individuals, further work is therefore needed to systematically 

determine whether proprioceptive asymmetry is evident in lower limb. Conferring with the 

data on upper limb proprioception, answering this question would provide a deeper insight into 

the mechanism of laterality. Therefore, I determined if side-dominance affects knee joint 

target-matching asymmetries between the dominant and non-dominant legs. 
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2.3 Effects of age on knee joint position sense 

It is well known that neuromuscular function declines with age, therefore, it is reasonable to 

expect that JPS also declines with age even in the absence of disease [65]. For example, there 

is a reduction in the number of motor neurons and functioning motor units [66, 67] and the 

ability to control automatic movements also becomes impaired [68-70]. Although early studies 

failed to demonstrate age-effects on JPS [71, 72] recent studies [61, 73-75] reported age-related 

decreases in proprioception acuity and efficiency of feedback processing [76, 77]. Although 

there is some evidence for an age-related decline in JPS, it remains unknown whether age 

affects target-matching asymmetries between the right-dominant and left non-dominant knee. 

Based on the preponderance of studies showing that right-handed participants perform 

proprioceptive target-matching tasks with greater accuracy when using the left non-dominant 

limb, it is important to detect whether ageing increases the disparity in target-matching 

asymmetries between the right-dominant and left non-dominant knee. 

 

3. THESIS AIMS, OBJECTIVES, AND HYPOTHESES (研究目的) 

3.1 Effects of above-knee CG on passive knee JPS 

I aimed to determine the effects of an above-knee CG on passive joint position sense in the 

right dominant and left non-dominant knee. The second aim was to determine the magnitude 

of soft tissue compression produced by an above-knee CG using magnetic resonance imaging 

(MRI). Based on the preponderance of studies showing positive effects of CG on motor 

performance and proprioception, I hypothesized that 1) an above-knee CG may reduce knee 

joint position sense errors, 2) it may affect the dominant- and non-dominant leg’s position sense 

differently and 3) the pressure produced by the garment reduces the cross-sectional area (CSA) 

of the thigh. 
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3.2 Effects of CG placement around the knee on active knee JPS 

Second, I aimed to determine if the position of a CG around the knee affects healthy adults’ 

knee JPS measured by an active repositioning task. Based on the contradictory results of studies 

showing different effects of CG on proprioception according to the position of the CG around 

the knee, I hypothesized that active target-matching errors of the knee joint would be more 

accurate when the CG is positioned below the knee. In line with my previous study, I also 

aimed to determine the magnitude of soft tissue compression produced by the above- and 

below-knee CGs using magnetic MRI. 

 

Moreover, I aimed to determine if subjects performed target-matching task more accurately 

with their non-dominant left leg. Concerning the effects of leg dominance on proprioception I 

expected that proprioception tends to be worse in dominant as compared to non-dominant leg 

and below-knee CG improves proprioception. Along these lines, I hypothesized that CG has a 

preferential effect on proprioception so that the leg with poorer proprioception, i.e., dominant 

vs. non-dominant, would benefit most from wearing the garment [30, 31, 78, 79]. However, it 

is unclear if such benefits would vary with the position of the CG, i.e., above, below or on the 

knee. In this study, subjects therefore wore the CGs on their right dominant or the left non-

dominant lower limb to detect if the position of the CG may affect the dominant- and non-

dominant leg’s position sense differently. 

 

3.3 Effects of side-dominance on passive knee JPS 

Furthermore, I aimed to determine if side-dominance affects knee joint target-matching 

asymmetries between the dominant and non-dominant legs. I hypothesized that right-side 

dominant participants perform knee joint target-matching tasks more accurately with their non-

dominant leg compared with left-side dominant participants. 
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3.4 Effects of age on passive knee JPS 

Finally, I aimed to determine the effects of age on passive JPS in the right-dominant and left 

non-dominant knee. Based on the preponderance of studies showing that right-handed 

participants perform proprioceptive target-matching tasks with greater accuracy when using 

the left non-dominant limb, I hypothesized an age-related increase in the asymmetry in target-

matching accuracy so that young compared with older participants would perform knee joint 

target-matching tasks more accurately with their left non-dominant leg as compare with the 

right-dominant leg. 

 

4. MATERIALS AND METHODS (研究方法) 

4.1 Participants 

Sample size calculations (G*Power 3.1.7 [80]), assuming type I error of 0.05 and power of 

0.80, were done for each study using effects sizes from previous studies.  

 

In each study, strongly right- or left side-dominant healthy participants were enrolled. Side-

dominance was determined based on hand and leg dominance. Handedness was determined 

using the Edinburgh Handedness Inventory [81], a scale that is used to measure the degree of 

hand laterality in daily activities such as writing, drawing, throwing, using scissors, brushing 

teeth, opening a box, striking a match and using a pair of scissors knife, spoon, and a broom. 

Leg dominance was determined by one- or two-foot item skill tests such as kicking a ball or 

stepping up on a chair [82]. Laterality index for both handedness and footedness were 

calculated by summing the number of tasks performed with the right limb and the number of 

tasks performed with the left limb (L) as follows: (R - L)/(R + L). 
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None of the participants had a history of neurological or orthopaedic disorders. To determine 

general cognitive function, and lower extremity function, each participant completed the mini-

mental state examination (MMSE) and the short physical performance battery (SPPB). After 

giving both verbal and written explanation of the experimental protocol, participants signed 

the informed consent document in accordance with the declaration of Helsinki. 

 

4.2 Experimental design 

4.2.1 Position sense measurements 

Selection of the leg first used (right dominant, left non-dominant) was randomized. Position 

sense was measured on an isokinetic dynamometer (HUMAC NORM, Computer Sports 

Medicine Inc., Stoughton, MA) (Fig. 1). Participants wore a blindfold to eliminate visual cues. 

Moreover, during a passive target-matching task, white noise in the headphones eliminated 

auditory cues. Participants sat on the dynamometer seat in an upright position. One leg hanged 

freely over the edge of the dynamometer seat and the other leg was attached to the 

dynamometer’s lever arm. Based on the manufacturer’s instructions, external straps were 

provided for optimal stabilization to avoid compensation at the lower extremities, pelvis, and 

trunk while the load cell ensemble was set perpendicular to the limb being tested. The center 

of the knee joint was aligned with the dynamometer’s head and the hip angle was kept constant 

(90° of hip flexion) during the measurement. 

 

4.2.1.1 Passive target-matching task 

JPS was measured based on a passive limb positioning protocol [83]. First, participants 

performed a test trial to become familiar with the task. In a random order, the dynamometer 

moved the leg passively from the start position of 90° knee flexion to the target angles, 30°, 

45° and 60° of knee flexion (Fig. 2). Participants were asked to focus on the position of the leg. 
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The dynamometer was programmed to move the participant’s leg attached to the lever arm 

passively at 4°/s toward the target angle, which was then held for 5 s before the dynamometer’s 

lever arm with the subject’s leg attached to it, returned to the initial starting position. After 5 s, 

the knee joint was passively extended again at 4°/s and participants were instructed to press the 

stop button at the target previously practiced. Participants received no feedback about their 

performance through the measurement. To maintain attentional alert, after every 5 trials 

participants counted backwards by seven, starting from a two-digit number selected at random 

by the investigator. Each target angle was repeated five times that were then averaged to 

calculate a mean absolute error for each target for each participant and leg. 

 

4.2.1.2 Active target-matching task 

In one of my study [37], I measured limb proprioception by an active limb positioning protocol. 

After one familiarization trial, I collected data in a random order at seven targets, 30, 35, 40, 

45, 50. 55 and 60° of knee flexion, to reduce learning effects. The initial starting position was 

90° of knee flexion. Participants were instructed to focus on the position of the leg. The 

dynamometer was programmed to move the participant’s leg attached to the lever arm 

passively at 4°/s toward the target angle, which was then held for 5s before the dynamometer’s 

lever arm with the subject’s leg attached to it, returned to the initial starting position. Following 

a 5s interval the participant attempted to actively reposition the leg at the same joint angle. The 

participant was required to hold the leg at the perceived target angle for 4s and then return it to 

the starting position. Participants received no feedback about their performance through the 

measurement. Each target angle was repeated twice. To maintain attentional alert, after every 

5 trials participants counted backwards by seven, starting from a two-digit number selected at 

random by the investigator. 
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4.2.2 Compression garment 

The application (EXP, CON) and the placement (AK, BK, WK) of the CG were randomized. 

A standard unisex compression sleeve (D&M Co., Tokyo, Japan) (Fig. 3) was worn by the 

participants. The compression garment extended between the proximal two-thirds and the distal 

two-thirds of the femoral shaft in AK garment position; between the superior aspect of the 

tibial tuberosity and the proximal two-thirds of the tibial shaft in BK garment position; and 

between the distal two-thirds of the femoral shaft and the superior aspect of the tibial tuberosity 

in WK garment position (Fig. 4). Participants wore the same best fitting CG of the three 

available sizes (S, M, L) for each garment position based on the company’s recommendations. 

Participants had no history of wearing CG before the experiment. 

 

4.2.3 MRI measurement 

On the day after the proprioception measurement, participants underwent an MRI measurement 

to determine the effects of the CG on calf and/or thigh CSA. The measurement was done in the 

standing position (G-Scan Brio, ESAOTE, Genova, Italy) by rotating the participant by ~87º 

without creating the feeling of instability. 3D SHARC images of 4 mm thickness were acquired 

under repetition time (TR) of 28.0 ms and echo time (TE) of 14.0 ms, with a pixel size of 

~0.35×0.35 mm2, using a dedicated thigh surface coil. First, participants lay in scanner and 

were moved from a supine to a standing position. The acquisition time was about 40 ± 5 min, 

including preparation, positioning and scanning with and without wearing the CG only on the 

right dominant leg. For AK garment position, thigh CSA was measured at ~15cm above the 

upper edge of the patella guided by the contour of the rectus femoris muscle. For BK garment 

position, calf CSA was measured where the circumference was the greatest without the CG. 

The images were digitized to determine CSA by the ImageJ software [84] as described 

previously [85]. 
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4.3 Data analyses 

JPS was evaluated using three types of error: 1) absolute error, i.e. the measure of the 

magnitude of the error, without directional bias; 2) constant error, i.e. the measure of the 

deviation from the target with directional bias and 3) variable error, i.e. the measure of the 

consistency in performance, determined as the standard deviation from the mean of the relative 

errors. Although most of the previous studies have measured only absolute repositioning error 

[86, 87], evaluating variable and constant errors might provide a different information on the 

integrity of the sensorimotor system by reflecting how accurately the target is represented in 

the nervous system [88, 89]. 

 

In my studies, any deviation from the target position, discounting direction, was defined as the 

absolute position error: 

1) Eabsolute = | Xparticipant - Xtarget | 

 

For constant error, the difference between reproduced and actual target angle was used, 

considering the direction of the error: 

2) Econstant = ( Xparticipant - Xtarget ) 

 

The variable error was calculated as the overall standard deviation (SD) of constant error from 

14 trials, irrespective of the target range: 

3) Evariable = !∑(	%constant	 − ∑*constant

+ )2 

 

In one of my study [90] I also calculated relative errors, i.e. % of error, considering the range 

of motion between the initial position and the target angle. 

Erelative = (Eabsolute / distance initial – target (°) ) * 100 
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4.4 Statistical analyses 

All data were checked for normal distribution using the Shapiro–Wilk test. In case of non-

normality, variables were log transformed. The analyses were done on the transformed data 

using SPSS Statistics Package (version 22.0, SPSS Inc., Chicago, IL) but the non-transformed 

data are reported. Series of repeated measures analysis of variance (rANOVA) were done. 

When significant differences were detected, the multiple comparison test (Bonferroni 

correction) was performed. Compound symmetry was evaluated with the Mauchly's test and 

the Greenhouse-Geisser correction was used when required. The effects of CG on thigh CSA 

of the thigh was examined with a paired samples t-test. In order to determine if position sense 

errors were associated with the magnitude of compression produced by the CG, Pearson’s 

correlation was computed. Cohen’s effect size, d, was also computed as appropriate. 

Additionally, effect sizes of repetition factors were expressed using partial eta squared (ηp2) 

[91]. Statistical significance was set at p < 0.05. Results were interpreted by 95% confidence 

intervals. 

 

5. RESULTS (研究結果) 

5.1 Effects of above-knee CG on passive knee JPS 

Table 1 shows the descriptive data for proprioceptive target-matching. rANOVA showed a 

main effect of target angles (F2, 22  =  26.569; p < 0.001; ηp2 = 0.707) and condition (F1, 23  =  

7.151; p = 0.014; ηp2 = 0.237). The main effect of leg (F1, 23  =  0.954; p = 0.339; ηp2 = 0.040) 

and the interaction effects of target angles × leg (F2, 22  =  0.083; p = 0.921; ηp2 = 0.007), target 

angles × condition (F2, 22  =  0.876; p = 0.430; ηp2 = 0.074), condition × leg (F1, 23  =  0.429; p = 

0.519; ηp2 = 0.018), and target angles × condition × leg (F2, 22  =  0.687; p = 0.513; ηp2 = 0.059) 

were not significant. A post-hoc analysis using the Bonferroni correction revealed that 

accuracy of passive target matching was greater at 60° compared with 30° and 45° (p < 0.001; 
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Fig. 5). Furthermore, position errors were less in CON condition compared with EXP condition 

(p = 0.014, Fig. 6). 

 

The analysis of the direction of error (constant error) showed the same results. There was a 

condition main effect (F1,23 = 8.759, p = 0.007, ηp2 = 0.276) with the post-hoc analysis revealing 

less JPS errors in CON compared with EXP condition, however, no differences were found 

between the dominant- and non-dominant leg (F1,23 = 0.025, p = 0.875, ηp2 = 0.001). The results 

also indicated that subjects tended to mostly underestimate the target position in each condition. 

Finally, variable position errors also showed a condition main effect (F1,23 = 5.782, p = 0.025, 

ηp2 = 0.201) so that participants target-matching accuracy was less variable in CON compared 

with EXP condition. Similar to absolute- and constant JPS errors, I found no differences 

between the two leg in variable JPS errors (F1,23 = 0.727, p = 0.403, ηp2 = 0.031). 

 

The MRI data revealed that the garment reduced CSA by 3.2cm2 or 2% (CON: 187.5 ± 

14.4cm2, EXP: 184.3 ± 13.9cm2, p = 0.010, Cohen’s d = 0.68). The magnitude of compression 

produced by the CG did not correlate with the position sense errors (p > 0.05). 

 

5.2 Effects of CG placement around the knee on active knee JPS 

Table 2 shows the descriptive data for proprioceptive target matching. I found evidence for less 

absolute target-matching errors when CG was placed below the knee. Statistical analysis, 

performed by ANOVA revealed a significant main effect of CG position (F3,12 = 4.8, p = 0.021, 

ηp2 = 0.54), with the post-hoc analysis showing a significantly smaller error in BK position 

compared with the CON condition (p = 0.026, Fig. 7A). The analysis of the direction of error 

(constant error) showed significantly larger underestimation in WK compared to CON 

condition (p = 0.029, Fig. 7B). The results also indicated that subjects tended to mostly 
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underestimate the target position in each condition (AK, BK and CON: 75%; WK: 94%). 

Finally, variable position errors also showed a CG position main effect (F3,12 = 9.6, p = 0.002, 

ηp2 = 0.71). Post-hoc testing using Bonferroni correction revealed that subjects tended to 

perform the active target-matching task with significantly lower variability in WK position 

compared to BK (p = 0.023) and CON (p = 0.004) conditions (Fig. 7C). 

 

Furthermore, I failed to find differences between subjects’ dominant and non-dominant leg in 

the absence of the CG, as shown by non-significant pairwise comparisons of 

Experimental_CON and Control_CON for all types of repositioning errors (all p > 0.05) (Fig 

8). Exploratory rANOVAs failed to detect modulation of the effect of placement of CG on 

target-matching behaviour by leg dominance, that is, interactions between CG position and 

groups were not significant, regardless of type of the error (all p > 0.05). 

 

Evidentially, the MRI data revealed that the garment reduced thigh CSA by D4.5cm2 or 3% 

(CON: 144.4 ± 16.8cm2, AK: 139.9 ± 17.2cm2, p < 0.001, Cohen’s d = 0.27) and calf CSA by 

D1.3cm2 or 1% (CON: 95.5 ± 10.2cm2, BK: 94.1 ± 10.2cm2, p = 0.016, d = 0.13). 

 

5.3 Effects of side-dominance on passive knee JPS 

Table 3 shows the proprioceptive target-matching data for both legs. There were differences in 

proprioceptive target-matching asymmetries based on side-dominance (F2, 21 = 7.819, p = 

0.003; Wilk's Λ = 0.573, partial η2 = 0.43). Side-dominance affected knee joint absolute 

position errors in the non-dominant leg (F1, 22 = 12.398; p = 0.002; partial η2 = 0.36) but not in 

the dominant leg (F1, 22 = 2.196; p = 0.153; partial η2 = 0.09). Subsequent t-tests showed that 

RD participants produced less (p = 0.002) absolute position errors with the non-dominant leg 

(2.82 ± 0.72º) compared with participants in the LD group (3.53 ± 0.32º; Cohen’s d = 1.27) 
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(Fig. 9A). Furthermore, LD group (p = 0.003) produced less absolute position error with the 

left-dominant (2.92 ± 0.38º) compared to the right non-dominant (3.53 ± 0.32º; Cohen’s d = 

1.73) leg (Fig. 9B). No significant interactions were found between the position target angles 

in the dominant and in the non-dominant leg neither in RD (F2,33 = 0.015, p = 0.985; F2,33 = 

1.024, p = 0.370; respectively), nor in LD groups (F2,33 = 0.254, p = 0.777; F2,33 = 0.216, p = 

0.807; respectively). 

 

5.4 Effects of age on passive knee JPS 

Table 4 shows the descriptive data for each type of proprioceptive target-matching errors in 

each leg, target angles, and age group. A three-way rANOVA with age as a between subject 

variable and leg, and target angles as within subjects variables revealed a significant effect of 

age (F1, 22 = 8.5, p = 0.008, ηp2 = 0.279) but no overall effect of leg (F1, 22 = 0.2, p = 0.895, ηp2 

= 0.001) or target angles (F2, 44 = 0.9, p = 0.410, ηp2 = 0.040) and no age group by leg (F1, 22 = 

3.2, p = 0.085, ηp2 = 0.129) or age group by target angles (F2, 44 = 1.6, p = 0.206, ηp2 = 0.069) 

interactions for the mean absolute repositioning errors. 

 

When analyzing relative JPS errors, no significant effect of age (F1, 22 = 3.8, p = 0.063, ηp2 = 

0.149) or leg (F1, 22 = 0.2, p = 0.676, ηp2 = 0.008), but an overall effect of target angles (F2, 44 = 

5.1, p = 0.012, ηp2 = 0.190) were found without the interaction with age (F2, 44 = 1.5, p = 0.232, 

ηp2 = 0.065) or leg (F2, 44 = 15.4, p = 0.963, ηp2 = 0.390). To further explore the significant 

effect of block on overall performance, planned Bonferroni post-hoc test was conducted and 

revealed lower relative JPS errors when matching 45° (8.6 ± 0.6%) as compared with 60° (12.1 

± 1%), irrespective of leg or age (Fig. 10). 
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The analysis of the direction of error (constant error) revealed a significant effect of age (F1, 22 

= 10.2, p = 0.004, ηp2 = 0.317, Fig. 10) but no overall effect of leg (F1, 22 = 1.1, p = 0.305, ηp2 

= 0.048) or target angles (F2, 44 = 2.4, p = 0.102, ηp2 = 0.099). Furthermore, age group by leg 

(F1, 22 = 4.4, p = 0.047, ηp2 = 0.167) and leg by target angles (F2, 44 = 3.8, p = 0.031, ηp2 = 0.148) 

interactions were found. Post-hoc analyses showed that although both young and older subjects 

performed target-matching task more accurately with their non-dominant leg, young adults 

tended to overestimate-, while older subjects tended to underestimate more with their dominant 

(3 ± 0.9°, -1.9 ± 0.9°, respectively) compared to their non-dominant knee joint (1.1 ± 0.9°, -1.2 

± 0.9°, respectively) (Fig. 11). 

 

Finally, a two-way rANOVA with age as a between subject variable and leg as a within subjects 

variable revealed a significant effect of age (F1, 22 = 8.0, p = 0.010, ηp2 = 0.267) but no overall 

effect of leg (F1, 22 = 1.9, p = 0.177, ηp2 = 0.081) and no age group by leg (F1, 22 = 0.008, p = 

0.929, ηp2 < 0.000) interaction for the variable position errors. Older subject tended to perform 

the passive target-matching task with significantly larger variability (5.1 ± 0.3°) as compared 

with young adults (3 ± 0.9°). 

 

6. DISCUSSION (考察) 

The present thesis aimed to determine the effects of peripheral compression, side-dominance 

and age on passive or active knee JPS (Fig. 12). Specifically, I detected that applying an above-

knee CG fails to improve passive knee JPS in a target-matching task and that the CG 

compressed the thigh significantly but minimally by 3.2cm2 or 2% [35]. Contrary to 

expectations, absolute and constant JPS errors were less without than with the garment. 

Moreover, subjects tended to have lower variable error in the absence of the garment. These 
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data do not support the idea that CG improves healthy adults’ joint position sense but support 

the notion that the type of CG I used can compress soft tissue of the thigh. 

 

I also detected that the placement of CG relative to the knee modifies active knee JPS [37]. In 

agreement with my hypotheses, I found that subjects had less absolute repositioning error when 

wearing a below-knee CG. On the other hand, results also indicated that subjects constantly 

produced less JPS errors in the absence of the CG, but tended to perform the active target-

matching task with significantly lower variability when the CG was applied on the knee joint. 

Furthermore, CG reduced thigh CSA by 4.5cm2 or 3% and calf CSA by 1.3cm2 or 1%. However, 

contrary to my hypothesis, no differences occurred in target-matching behaviour between the 

dominant and non-dominant leg, and CG position did not interact with leg dominance. 

 

In contrast with previous studies [46-48], which reported more accurate target-matching in the 

non-dominant compared with dominant joints, my results revealed no differences in accuracy 

between dominant and non-dominant legs [92]. On the other hand, I found that right-side 

dominant compared to left-side dominant participants were more accurate in the target-

matching task with the non-dominant leg. 

 

Although right-side dominant participants tend to perform this passive target-matching task 

more accurately with the non-dominant leg compared to left-side dominant participants, it is 

more likely that healthy aging and leg dominance interact and produce age-specific 

modifications in JPS by producing less absolute and relative errors when matching with their 

dominant leg. I found significant age-effect when analyzing absolute, constant, and variable 

errors. Both older and young subjects performed target-matching tasks more accurately with 

their non-dominant as compared to the non-dominant leg hence age did not affect JPS 
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asymmetry between the two knees. However, in contrast to young participants’ overestimation 

of the target angles, older adults tended to underestimate target angles more with their dominant 

compared to their non-dominant knee joint. Moreover, older subjects tended to perform the 

passive target-matching task with greater variability. 

 

Overall, findings described in the thesis help us better understand how the application of a CG 

can decrease the risk of musculoskeletal injuries during sport activities by influencing active 

knee JPS and how age and side-dominance affects passive target-matching behaviour. I will 

discuss the main findings and focus on the parameters that may affect JPS, and the practical 

implications of the findings. 

 

6.1 Which is more suitable: passive or active target-matching task? 

It is important to discuss the reason of heterogeneity in experimental modalities within the 

thesis. While three [35, 37, 92] out of my 4 studies presented in this thesis provide information 

about passive knee joint repositioning behaviour, one of my study [90] was investigating JPS 

errors during active target matching tasks. Because there were previously no data on the effects 

of CGs on passive proprioception, I wished to address this gap in the literature in my study 

which aimed to detect the effects of an above-knee CG on JPS. Moreover, using passive target 

matching tasks eliminate input from muscle contractions that could influence the perception of 

joint position, and it may also contribute to the different target matching behaviour between 

young and old participants. This method was therefore more likely to use in my two other 

studies [90, 92] because I involved elderly subjects as well. Along these lines, voluntarily 

moving the leg (active repositioning) measures 1) movement and 2) stopping (position) of the 

leg, so that movement precedes the stopping action. However, in my study that aimed to detect 

the age-specific modifications on knee JPS [90] I was particularly interested in the effects of 
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age on the ability to sense purely joint position per se without the added influence of voluntarily 

moving the limb on joint position. For this reason I used a passive JPS task. Although this 

method eliminates input from muscle contractions that could influence the perception of joint 

position, it may also contribute to the different target matching behaviour between young and 

older participants. MMSE scores (27.1 ± 1.4) suggest that older participants were cognitively 

healthy, however, is might be not sufficient enough to remove such confounding factors like 

reaction time and cognitive process that could impact JPS, as participants had to push a button 

while their knee was passively extended at 4°/s. Moreover, memory can be also a confounding 

factor and it is therefore impossible to detect if the age-related difference is due to 

proprioceptive differences or ability to remember [93]. A contralateral concurrent matching 

paradigm would therefore have been a better test for JPS in older individuals. Nevertheless, I 

found lower relative JPS errors when matching at 45° (ROM: 45°) as compared with 60° 

(ROM: 30°), irrespective of leg or age. 

 

On the other hand, because sensory input may increase fusimotor drive and muscle receptor 

activation during active repositioning trials [36], such trials may also be more appropriate for 

functional assessment of afferent pathways due to a general attenuation and selective gating of 

kinesthetic awareness during active voluntary movements [20]. Muscle spindle activation 

appears to be higher during conscious perception of active rather than passive limb movements 

by detecting changes in muscle length during voluntary contractions [3]. Therefore, it seems 

that active vs. passive repositioning measurement paradigms are more suitable to assess CGs 

effects on proprioception. However, when the leg is moved and held in the target angle, the 

effects of gravity are presumably counteracted by the dynamometer but when the subject 

actively moves and holds the target angle the muscle force is required to maintain leg position 

vary with joint angle. Thus, the quadriceps muscle activity associated with target position is 



 
   

28 
 

quite different in the active movement compared with when the dynamometer moves and holds 

limb position in the target, which in turn may also contribute to the observed position sense 

errors. A different target angle can produce a different moment effect, which may 

proportionally influence the activity of the quadriceps muscle. 

 

Along this line, I discussed that a lack of improvement in JPS that I found in my first study 

[35] may be due to an ineffective modulation of Ia afferents by the CG when the knee joint 

was moved passively during the repositioning task, I therefore used an active repositioning task 

in the study in which I aimed to detect if placement of CG may affect knee JPS [37]. However, 

just like in my previous study, I have to interpret that the compression applied by the above-

knee CGs was insufficient to afford significant physiological changes regardless of 

repositioning paradigm (active or passive) per se. 

 

Taken together, using active target-matching tasks seems to be more suitable for the functional 

assessment of proprioception, however, when the study aims to involve elderly participants, 

measuring passive target-matching behaviour may be a better choice. Nevertheless, when an 

isokinetic dynamometer is used to assess JPS, reaction time and cognitive process could impact 

the results as participants had to push a button while their knee was passively extended at 4°/s. 

Even if elderly participants are cognitively healthy, this may explain part of the difference 

between young and older adults. Therefore experimenters need to consider these factors when 

choosing between active vs. passive experimental modalities. 

 

6.2 Which type of error to use? 

 Unlike most previous studies, I evaluated not only the absolute but also the constant and 

variable errors, making it possible to detect the direction and the variability of the errors, 
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respectively [37, 90]. Besides the often used mean absolute position error, I found it important 

to calculate the constant and variable errors as well: 

 

Any deviation from the target position was defined as the absolute position error: 

Absolute error = | positionparticipant - positiontarget | 

 

For constant error, the difference between reproduced and actual target angle was used: 

Constant error = ( positionparticipant - positiontarget ) 

 

The variable error was calculated as the overall standard deviation (SD) of constant error from 

14 trials, irrespective of the target range: 

Variable error = !∑(	%constant	 − ∑*constant

+ )2 

Detecting the constant error may help us better understand whether participants tend to use a 

constant motor control strategy through the different trials, while calculating the variability of 

active target-matching behaviour as it may contribute to the central organization of voluntary 

movement [94]. Although variability in movements is essential for flexibility and stability [95], 

the neuromuscular system gets noisier and less adaptable when increasing beyond its optimal 

level [96], increasing the chance of injury. 

 

Taken together, giving the direction of errors at each angle and overall constant and variable 

error measures across all target angles is very important to detect JPS. For example, if a subject 

consistently undershoots all angles by about 5° they would have a -5° overall constant error 

and near zero variable error. In contrast, if a subject overshoots some target angles and 

undershoots others, they would have a near 0° constant error and a very large variable error, 
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indicating very poor JPS. Good position sense is indicated by low constant and variable errors. 

Therefore, I strongly encourage researchers to analyze not only absolute but also constant and 

variable errors to clearly detect target-matching behaviour. 

 

6.3 Placement of CG affects knee JPS 

One of the main aim of this thesis was to detect if placement of a CG affects knee JPS. My 

study [35] was the first to report on the effects of above-knee CG on passive JPS errors. 

Contrary to the expectations the garment did not improve proprioception in a passive knee joint 

position sense test. In fact, in the right-dominant leg the absolute and constant JPS errors were 

actually less when it was passively moved without the CG. While no previous studies 

investigated the effect of above-knee CGs on passive joint position sense, many previous 

studies examined the effects of CGs on physical performance and proprioceptive position-

matching errors during the task. Using a knee CG during exercise can presumably reduce 

microtrauma and muscular damage [97] and improve comfort [98]. In addition to knee CGs, 

which cover the knee joint, athletes started to use below-knee and above-knee CGs with the 

expectation of improving proprioception without affecting range of motion. Indeed, wearing a 

below-knee CG improved position sense in an active joint repositioning task [17]. Wearing an 

above-knee CG also decreased muscle oscillation in the sagittal plane during a 

countermovement jump test (CMJ) [99] and increased mean power output during 10 repeated 

vertical jumps performed by volleyball players [100]. Nevertheless, wearing an above-knee, 

whole leg, or a below-knee CG did not improve maximal muscular strength, jump performance, 

subjective feelings, and thigh/calf circumferences [101]. 

 

A previous study [17] presented that wearing a below-knee (BK) CG improved position sense 

in an active joint repositioning task, therefore I raised the hypothesis that placement of the CG 
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may have an influence on knee JPS. Indeed, I found that compression by the BK garment used 

in my study [37] seems to enhance healthy adults’ knee joint proprioceptive acuity compared 

with the control condition, in the absence of the garment (BK: 4.2 ± 1.0° vs. CON: 5.2 ± 0.8°). 

Although subjects tended to underestimate the target positions in each CG conditions, JPS data 

considering the direction of the errors (constant error) showed that subjects constantly 

produced less JPS errors in the absence of the garment (CON: -1.6 ± 3.7°) compared with the 

condition when CG compressed the whole knee joint (WK: -2.7 ± 3.4°). Moreover, participants 

tended to perform the active target-matching task with significantly lower variable error when 

a whole-knee CG was applied (4.0 ± 0.9°) compared to BK (4.6 ± 1.2°) and CON (5.6 ± 1.4°) 

conditions. Although the differences were minimal (1 to 2 degrees), this outcome may help us 

better understand how the application of a whole-knee CG can decrease the risk of 

musculoskeletal injuries during sport activities. 

 

Although a previous study [101] investigated if exercise performance and muscle damage are 

affected by a CG wearing at different areas of the lower limb (above-knee, whole leg, below-

knee), my study was the first to report on the effects of the position of a CG on active knee 

joint position sense. While often studied [15, 24, 32, 33], practitioners suspected that knee 

bracing would limit ROM and athletes started to place CGs above or below the knee with the 

expectation to improve proprioception without affecting range of motion. The results of the my 

study are in line with this expectation and with a previous study [17] showing that the position 

of the CG does affect absolute JPS errors so that below-knee CG vs. the absence of CG 

improves JPS. This favorable effect may be related to an increase in Golgi tendon organ 

activation and feedback from proprioceptors to muscle [15, 17, 19]. If there is true deformation 

of the muscle due to compression applied by the CG, such a mechanical effect could excite 

Golgi tendon organs which in turn inhibit the synergistic agonist motoneuron via disynaptic 
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connections through the Ib inhibitory interneurons and excite the motoneurons in the antagonist 

muscle via di- or trisynaptic connections. The absolute force threshold for tendon organs may 

be as little as 4 mg [102]. Therefore, high compression forces due to CGs could conceptually 

interfere with limb movement if used for active JPS measurements. Thus, it is possible that 

subjects may use a constant motor control strategy without the application of a CG, which 

resulted in less variability in JPS errors in each of my study. In my study, I found small but 

significant reductions in CSA of the thigh and calf (D4.5cm2 or 3%, D1.3cm2 or 1%, 

respectively) due to the compression produced by the CGs that might have been just sufficient 

to induce negative effects on knee JPS. This idea is supported by the results, showing that 

subjects constantly produced less JPS errors in the absence of the garment. 

 

In a target-matching task, any error in JPS derives from two possible sources: 1) not sensing 

the start or 2) not sensing the target position of the limb due to the incorrect sensing of the 

movement threshold and/or the magnitude of movement. In my studies, no feedback was given 

to the subjects about their performance, it is therefore possible that the process was slow for 

the subject to learn the correct sensing of limb positioning and needed many more trials to 

reduce the error effect. Thus, it was important to determine if CG placement may affect the 

variability of active target-matching behaviour as variability may contribute to the central 

organization of voluntary movement [94]. Variability in movements is essential for flexibility 

and stability [95]. However, when increased beyond its optimal level, the neuromuscular 

system gets noisier and less adaptable [96]. On the other hand, when it is reduced below its 

optimal value, the individual cannot have all the beneficial effects of redundancy in the motor 

system [103]. Therefore, each condition leads to an increased chance of injury. It is possible 

that compression produced by the CG may induce a fatigue effect through blood flow 

restriction transiently bringing about the state of deafferentation. Poor or a lack of feedback 
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due to compression-induced deafferentation effect could increase variability under the 

conditions of my studies. This is in line with my data, showing that subjects tended to perform 

the active target-matching task with significantly lower variable error in WK position 

compared to BK and CON conditions, suggesting that the compression, applied by the CG 

when it was placed on the knee, had favorable effects on the variability of target-matching 

errors compared to the CON condition (in the absence of the garment), without inducing 

deafferentation through the compression of the muscle. Although the differences were minimal 

(1 to 2 degrees), this outcome may help us better understand how the application of a whole-

knee CG can decrease the risk of musculoskeletal injuries during sport activities. 

 

6.4 Under-garment force level affects knee JPS 

Besides the position of the garment, pressure is also an important factor contributing to the 

inconsistencies [104] between studies that make it difficult to determine whether CGs could 

improve proprioceptive acuity [17, 19, 25]. I interpret the 2% compression of the thigh as 

insufficient to afford meaningful physiological changes regardless of a compression effect per 

se. However, the same amount of compression on the knee joint or below the knee produced 

less variable or absolute JPS errors, respectively [37]. A previous study [17] reported that 

interface pressure measurements of the garments they have used produced average pressures 

ranging between 10-15 mmHg. We may interpret that such amount of compression is feasible 

to produce beneficial effects on knee JPS, however, a previous review suggested no 

relationship between the magnitude of compression by CGs and motor performance [13]. 

 

Moreover, even cutaneous effects seem trivial, suggesting that CG, as employed in [35], 

influences Ia afferent functions ineffectively when the joints are moved passively. However, 

sensory input may increase fusimotor drive and muscle receptor activation, during active 
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repositioning trials [36], such trials may therefore also be more appropriate for functional 

assessment of afferent pathways due to a general attenuation and selective gating of kinesthetic 

awareness during active voluntary movements [20]. Muscle spindle activation appears to be 

higher during conscious perception of active rather than passive limb movements by detecting 

changes in muscle length during voluntary contractions [3]. While there were previously no 

data on the effects of CGs on passive proprioception and I wished to address this gap in the 

literature, it seems that active vs. passive repositioning measurement paradigms are more 

suitable to assess CGs effects on proprioception. Therefore, I wished to determine whether 

compression via CG would affect active JPS differently when it covers different areas of the 

leg. Results from my study [37] indicate that the pressure level by an above-knee and a below-

knee CG was sufficient to significantly modify thigh and calf CSA, respectively, which in turn 

influenced knee joint active repositioning behaviour. Nevertheless, future studies need to 

resolve the inconsistencies reported previously [15, 17, 19] and separate compression and 

placebo effects [105] by detecting the physiological mechanisms underlying the effect of 

compression on target-matching behaviour through the application of under-garment pressure 

sensors during the experiment. 

 

6.5 Differences in position sense acuity in different target angles 

I found that target matching was more accurate at 60° compared to 30° and 45° of knee flexion 

[35]. This idea is supported by the results of my other study [37], however, JPS errors were 

lower at a more flexed knee joint position only when the absolute values were used, which 

were calculated without considering the range of motion bias. Although I randomized the target 

positions, it is still possible that the short path and time from the starting position of 90° to 60° 

required participants to explore the target in a narrower range, reducing the probability for 

error. In this more flexed knee position compared with 30° and 45°, the quadriceps is also more 
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stretched, resulting in greater background Ia discharge and feedback, reducing error. It is 

however possible that these results were due to the increase in ROM from a constant initial 

position so that the short path and time from the starting position of 90° to 60° required 

participants to explore the target in a narrower range, reducing the probability for error. 

 

In contrast, without the application of a CG, I found that relative target matching errors were 

less at a more extended knee joint position, i.e., 45° (8.6 ± 0.6%) compared with 60° (12.1 ± 

1%), irrespective of leg or age (Fig. 10), suggesting that our findings are not related to the 

Weber–Fechner law [106], which states that linear increments in sensation S are proportional 

to the logarithm of stimulus magnitude I, such that S = k × log(I). 

 

Nevertheless, kinesthetic movement reproduction [107], that implies knowledge of the starting 

position and movement path for accuracy, as a proxy for JPS might be more sensitive than 

target matching tasks with constant initial knee angles [17, 35] to determine the effects of 

interventions and CGs on JPS in healthy humans. This experimental set up therefore more 

likely to be used in future studies that aim to investigate target matching accuracy without a 

potential bias of memory. 

 

6.6 Effects of side-dominance on JPS 

To the best of my knowledge, my study [92] was the first, which determined whether target-

matching was more accurate when using the non-dominant leg, just as it was shown in thumb 

[44, 45], elbow [46-48], or in multiple joints of the upper limb (ankles, knees, shoulders, and 

fingers) [49] in right-handed individuals; and in elbow [58] in left-handed individuals. In 

contrast to my hypothesis, I found no asymmetry in the knee joint target-matching task in right-

side dominant participants. However, my results showed that right-side dominant participants 



 
   

36 
 

were able to produce less absolute position errors with their non-dominant leg compared to 

left-side dominant young participants, suggesting that the non-dominant arm/contalateral 

hemisphere specialization for the utilization of proprioceptive feedback [50, 51] seems to be 

selective only for right-handers, but not for left-handers [54]. 

 

A great review paper on laterality [108] pointed out that the evolutionary differentiation of the 

left and right hemispheres resulting in hemispheric specialization was likely out of necessity 

permitting quick processing of multiple forms of ecologically relevant stimuli in environments 

with increasing complexity. Although several previous studies aimed to detect the genetic 

contributions to laterality [109-112], the heritability of laterality of the brain and behaviour 

[113-116], and further environmental and gene-by-environment interaction effects [117-120], 

further studies are needed to detect and fully understand the biological characteristic of 

laterality. While adaptive explanations for the evolution and development of human 

handedness  has been also proposed by several studies (for review see [121]), further research 

is needed to resolve the extent of co-lateralization of functions in the human brain [122]. For 

instance, silent word generation lateralizes to the left cerebral hemisphere in both left- and right 

handed participants (76% and 96% of participants, respectively), but right-hemisphere 

participation is frequent (10%) in normal left-handed subjects [123]. The degree of language 

laterality could however not be linked to face laterality, handedness or language performance 

[124]. Talking about laterality in proprioception, the lack of asymmetry between the dominant 

and non-dominant legs in my study might be most probably due to the specific organization of 

the motor system [55, 56]. Second, position sense tends to be better for the more proximal than 

distal joints [125], reflecting differences in the number of muscle spindles present in the joints 

[57]. It has been argued that proprioceptive asymmetry may be evident only at distal joints, not 

at proximal joints due to the specific organization of the motor system. While proximal 
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musculature is innervated by both hemispheres, more distal musculature has been thought to 

be innervated largely by the contralateral hemisphere [55, 56]. Nevertheless, future studies 

need to detect the possible underlying mechanisms of target-matching asymmetry, if any, 

existing between left- and right-side dominant participants’ dominant and non-dominant lower 

limb joints by performing fMRI and EEG data acquisition during JPS measurements. 

 

In my study, right-side dominant participants produced less absolute position errors (2.82 ± 

0.72º) with the non-dominant leg compared to left-side dominant young participants (3.54 ± 

0.33º), suggesting that the non-dominant arm/contalateral hemisphere specialization for the 

utilization of proprioceptive feedback [50, 51] seems to be selective only for right-handers, but 

not for left-handers [54]. In right-handed healthy participants, kinesthesia is associated with a 

network of active brain areas including motor areas, cerebellum, and the right fronto-parietal 

areas including high-order somatosensory areas, providing evidence for a right hemisphere 

dominance for perception of limb movement [51]. The results from previous studies are 

controversial whether handedness is related to activation asymmetries in different parts of the 

brain. For example, there is a strong relationship between handedness and activation 

asymmetries in the motor [126, 127] and somatosensory cortex [128]; others found that motor 

cortex asymmetry was less pronounced in left than right-handers [129, 130] and the size of 

hand sensory representation from thumb to little finger was similar in the two hemispheres 

[131]. Although weaker lateralization in left-handed than right-handed individuals is often 

suggested, reversed asymmetries were also reported for the left-handed population [58]. The 

nature of side-dominance, including handedness is a consequence of brain lateralization 

through complex motor control processes (for reviews, see [132, 133]). Left-handedness is a 

marker of atypical cerebral lateralization, therefore left-handed individuals have cognitive 

functions distributed more evenly across the left and right cerebral hemispheres. This can be 
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one of the reasons why left-handed individuals are less likely to exhibit the functional 

asymmetries seen in right-handed individuals. Moreover, right-handed individuals have lower 

left than right hand thresholds, however, the asymmetry is based on cerebral lateralization, 

therefore left-handed participants may not exhibit the same central and peripheral asymmetry 

[134]. Nevertheless, in my study [92] neither right- nor left-handed participants produced target 

matching asymmetries between their dominant- and non-dominant leg. 

 

6.7 Effects of age on JPS 

In line with the well-documented age-related deterioration in neuromuscular and central 

nervous system function [66, 67, 135] that could affect JPS, I also found an age-effect on 

proprioception as measured by a passive target-matching task [90]. However, my results 

showed that age altered the above mentioned target-matching asymmetry by performing knee 

joint target-matching tasks more accurately with their right-dominant vs. left non-dominant 

leg. 

 

Although the effects of age on proprioceptive target-matching asymmetry is a poorly 

investigated area, a previous study found similar asymmetries in kinesthetic awareness of the 

wrist joint in elderly with better right dominant than left non-dominant hand performance 

[136], which might be due to a lifetime of dominant hand use. It is possible that bilateral 

activation of sensorimotor areas [137] may be a hallmark of the aging process, reflecting 

neurodegenerative processes such as a reduction in cortical inhibition and/or compensation for 

less efficient contralateral function [138, 139]. In line with this, growing number of studies 

have documented age-related shifts in lateralization patterns. Specifically, functions that show 

strongly lateralized patterns in young adults are often found to elicit bilateral activity in older 

adults (for reviews see [140, 141]). This age-related decrease in neural asymmetry might be 
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explained with the recruitment of more neural processing resources, leading to more 

widespread brain activation during cognitive tasks. This increase in activation is thought to act 

in a compensatory way, reducing age-related decline in function [142-144]. An alternative 

explanation suggests that bihemispheric patterns seen in older adults reflect dedifferentiation, 

wherein there is a loss of specificity in neural representations of cognitive processes resulting 

in less efficient processing [145]. This idea suggests that cognitive abilities that are distinct in 

young adults become more generalized with age, and evidence for this comes from increased 

correlations between cognitive abilities seen with advancing age [146]. Despite these findings, 

the effects of age on brain laterality is still a matter of debate. Handedness have been proven 

to have an influence on language lateralization, which continues to evolve with age [123, 147, 

148]. It is therefore would be interesting to detect how brain laterality changes with age in 

terms of lower limb joints’ proprioception, and to determine whether such changes in 

hemispheric asymmetry, if any, would correlate with handedness and language lateralization. 

 

The age-related increased deterioration on limb-target control found in my study [90] may be 

explained by impaired proprioceptive acuity [149] and feedback processing efficiency [76, 77]. 

Nevertheless, results from some previous studies showed no age-effects on JPS [150, 151]. 

One reason for the inconsistent data among studies is the differences in the methods used to 

measure JPS. For example, low (3-5) trial numbers [59, 61] can reduce the sensitivity of the 

target-matching tests, therefore may be insufficient to determine parameters in proprioceptive 

tests [152]. Another reason could be related to the excessive inter-subject variability in JPS 

[73, 153]. Individual JPS values at the hip and knee joints can range from 0.6° up to 8.8° [154, 

155] making the detection of an age-effect inconsistent. Age, musculoskeletal dysfunctions, 

neurological impairments, and physical activity history can all affect JPS and increase 

between-subject variation [156]. Although I also found considerable inter-subject variability 
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in JPS (Fig. 13), my data nonetheless yielded statistically significant age-effect on JPS by 

increasing the number of repetition in the trials and by assigning sufficient number of subjects 

compared with previous studies.  

 

In agreement with some [49, 157] but not all studies [59, 92], my data show that target-

matching is more accurate in the non-dominant compared with the dominant knee joint in both 

older and young participants. Neuroanatomical organization would also favor the limb 

asymmetry-effects in knee JPS because while proximal muscles are innervated by both 

hemispheres, distal muscles are innervated predominantly by the contralateral hemisphere [55, 

56]. Therefore, proprioceptive asymmetry may be more likely to be evident in the distal than 

in the proximal joints [44, 57]. As stated above, differences in methodology (e.g., number of 

testing trials, active vs. passive repositioning, degree of joint loading) among studies may 

contribute to the lack of asymmetry in proprioceptive matching tasks. Although both age 

groups performed target-matching task more accurately with their non-dominant leg, young 

adults tended to overestimate while older subjects tended to underestimate the target more with 

the dominant (3 ± 0.9°, -1.9 ± 0.9°, respectively) compared to their non-dominant leg (1.1 ± 

0.9°, -1.2 ± 0.9°, respectively). This somewhat unexpected result may be related to an age-

related increase in the involvement of cortical and cognitive control of joint motions in general 

and JPS in particular [158, 159]. Older adults even without overt cognitive and motor 

dysfunctions tend to execute the simplest motor tasks with overactivation of putative brain 

areas and activation of remote areas [158], leading to an altered JPS. 

Movement variability is essential for flexibility and stability [95]. However, when increased 

beyond its optimal level, the neuromuscular system gets too noisy and less adaptable [96]. On 

the other hand, when it is reduced below its optimal value, the individual cannot have all the 

beneficial effects of redundancy in the motor system [103]. Therefore, each condition leads to 
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an increased chance of injury. In my study, I found that older subjects tended to perform the 

passive target-matching task with significantly higher variability. Although the age-differences 

in variable JPS errors were minimal (1 to 2 degrees), the variability data may help us better 

understand how an increased variability in JPS by aging can increase the risk of 

musculoskeletal injuries during daily life or sport activities. To the best of my knowledge, my 

study was the first calculating variable knee JPS errors for different age groups, it is therefore 

difficult to judge if such age-differences in variable JPS errors may provide evidence for 

increased risk of musculoskeletal injuries. 

 

Along these lines, I need to consider that an age-related decline in proprioception of the lower 

extremity joints can modify gait [160, 161]. The data are inconsistent concerning the 

relationship between neural feedback and gait patterns in patients with sensory impairments as 

in some [162] but not all cases [163] there was an effect of JPS on gait. Furthermore, knee JPS 

was more accurate in stroke patients who had no history of falls or were one-time fallers 

compared with repeat fallers [164]. To the best of my knowledge, there is no data in the 

literature on the relationship between knee JPS and gait performance in healthy adults, 

however, results from clinical studies suggest a weak but significant correlation between gait 

patterns/falls and knee JPS error, placing my data into a functional perspective. My data 

provide evidence for altered knee JPS through ageing reflecting age-specific adaptations in the 

neuromuscular system that may contribute to the altered gait patterns in the elderly. 

 

Taken together, unlike upper limb joints, I found no asymmetry between the dominant and 

non-dominant knee joint in healthy young participants. Furthermore, my data also provide 

evidence for changes in knee JPS asymmetry through ageing reflecting age-specific 

adaptations in the neuromuscular system that may contribute to the altered gait patterns in the 
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elderly. Although to the best of my knowledge, there is no data in the literature on the 

relationship between knee JPS and gait performance in healthy adults, results from clinical 

studies suggest a weak but significant correlation between gait patterns/falls and knee JPS 

error, placing my data into a functional perspective. Overall, it seems that healthy aging and 

leg dominance interacts and produce age-specific modifications in JPS suggesting a possible 

interaction between age and background Ia discharge and feedback. 

 

6.8 Limitations and future recommendations 

Findings presented in this thesis have some limitations. First, active vs. passive repositioning 

is functionally a more relevant method to assess the afferent paths. However, when the leg is 

moved and held in the target angle, the effects of gravity are presumably counteracted by the 

dynamometer but when the subject actively moves and holds the target angle the muscle force 

is required to maintain leg position vary with joint angle. Thus, the quadriceps muscle activity 

associated with target position is quite different in the active movement compared with when 

the dynamometer moves and holds limb position in the target, which in turn may also contribute 

to the observed position sense errors. I strongly recommend researchers to consider these 

factors when choosing between passive vs. active experimental modalities. 

 

Second, in motion analysis of the joints, neutral position of the joint should be the initial 

starting position. In the knee joint, the neutral position is 0° (full knee extension). I used 90° 

knee flexion initial position because the isokinetic dynamometer I used in my studies would 

not make it possible to start our target-matching task from 0°. Future studies may consider 

placing the subjects to the dynamometer lying on their chest with the face down position. 

Nevertheless, this uncomfortable position may also influence the results, therefore, using an 
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electro-goniometer, and two dimensional video analysis might be the best option to measure 

knee JPS in standing position [165]. 

 

The next limitation is related with studies in which I applied CGs [35, 37]. Inconsistencies 

between studies make it difficult to determine if CGs could improve physical performance [26, 

27] and proprioceptive acuity [17, 19, 25]. Experimental set up, participants’ training status, 

exercise type, garment design (e.g., knee or thigh-high stockings, waist-down tights, arm 

sleeves, whole body garments), the duration of exposure to CG, timing of wear (during and/or 

after exercise), and inflation pressure are factors contributing to the inconsistencies [104]. MRI 

data revealed that participants CSA was significantly reduced when wearing above-knee or 

below-knee CG suggesting that the pressure level by the CG was sufficient enough to produce 

significant changes in thigh and calf CSA. Moreover, although I also recorded the average 

forces under the garments, it was performed only after the experiment in our laboratory. 

Because errors were measured when the subject actively repositioned the leg, muscle 

contractions of the quadriceps may affect the measured pressure under the garment. 

Nevertheless, a previous review found no relationship between the effects of CGs worn during 

or after exercise and the magnitude of inflation pressures in the garment [13]. In line with this, 

future studies need to consider analyzing the potential correlations between JPS performance 

and the subjective feelings of the participants in regards to wearing the CG. 

 

I also need to acknowledge that having a control group in which participants did not wear CG 

is not enough because skin receptors may also influence JPS. The research by Collins et al. 

[166] showed that stretching the skin over the anterior aspect of the thigh and patella contribute, 

along with muscle spindles, to knee position sense. In my studies, the CGs compressed the skin 

all around the thigh or calf and would, altering the output of many cutaneous receptors instead 
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of only cutaneous receptors in a particular region of the skin. Thus, it is difficult to predict if 

only the CG had an effect on JPS.  Therefore, future studies need to have an extra control group 

in which a garment, without any compression is applied, to distinguish the contribution of skin 

receptors to knee JPS. Because the results of the thesis are limited to knee joint, future studies 

need to detect if side-dominance, age and peripheral compression may have an influence on 

passive or active ankle and hip JPS. 

 

The interpretations of my results are based on significant differences, nevertheless, differences 

in each type of JPS errors were minimal taking my data into consideration whether such 

minimal detectable differences have any physiological/functional importance. Because the 

magnitude of differences in JPS errors between groups and conditions of 1-3 degrees I observe 

are similar to effects of 1-3 degrees after the application of external supports [15, 17, 33, 35, 

167], or other experimental manipulations [92] or between different age groups [75], it is likely 

that my results are not due to measurement error. 

 

Future studies need to resolve the inconsistencies reported previously [15, 17, 19] and separate 

compression and placebo effects [105]. There is a need to probe the physiological mechanisms 

underlying the effect of compression on proprioceptive acuity both in healthy adults and 

patients with neuromuscular diseases. Also, it is difficult to assess the changes in 

proprioception after applying a CG if target-matching accuracy is already good before the 

investigated condition. Therefore, there is a need to use a more challenging task to avoid ceiling 

effects. Results from a previous study [107] suggested a preference for proprioceptive 

identification of joint position rather than kinesthetic movement reproduction, so kinesthetic 

movement reproduction, that implies knowledge of the starting position and movement’s range 

for accuracy, seems to be physiologically more challenging. 
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Although my results extend the literature by showing that right hemisphere specialization under 

proprioceptive target-matching tasks may be not evident in the knee joints, future studies need 

to recruit subjects with ambidexterity (subjects equally using both the left and the right 

hands/legs) or “crossed laterality” (subjects with right hand-left leg or left hand-right leg 

dominance) to reliably determine the relationships between handedness and footedness and its 

influence on joint proprioception. Future researches should also be initiated to determine 

whether age influences differently knee joint target-matching asymmetries between right and 

left-side dominant individuals.  

 

Furthermore, I strongly encourage researchers to perform neuroanatomical studies to evaluate 

the underlying physiological mechanisms for both upper and lower limb joint position sense 

through aging that would be further informative for physiotherapists, and trainers, who wish to 

maintain balance function in old age. I also recommend to determine the effects of age on the 

functional relevance of JPS in walking, running, jumping, stair climbing and changing 

directions while ambulating. Additionally, future studies should involve larger sample sizes to 

enhance statistical power. 

 

Finally, unlike most of the previous studies, I elucidated not only the absolute but also the 

constant and variable errors. Giving the direction of errors at each angle and overall constant 

and variable error measures across all target angles is very important to detect JPS. For 

example, if a subject consistently undershoots all angles by about 5° they would have a -5° 

overall constant error and near zero variable error. In contrast, if a subject overshoots some 

target angles and undershoots others, they would have a near 0° constant error and a very large 

variable error, indicating very poor JPS. Good position sense is indicated by low constant and 
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variable errors. Therefore, I strongly encourage researchers to analyze not only absolute but 

also constant and variable errors to clearly detect target-matching behaviour.  

 

7. CONCLUSIONS (結論) 

The present thesis examined the effects of peripheral compression, side-dominance and age on 

passive or active knee JPS. In agreement with the hypothesis and data from other previous 

studies, the thesis confirms that a below-knee CG seems to enhance healthy adults’ knee joint 

proprioceptive acuity compared with the control condition, in the absence of the garment. 

However, variable error were significantly lower when the CG was applied on the knee, which 

may reflect that how the application of a whole-knee CG can decrease the risk of 

musculoskeletal injuries during sport activities. My thesis also provides information of how 

the application of a whole-knee CG can decrease the risk of musculoskeletal injuries during 

sport activities that also have the potential to be clinically meaningful. I found evidence that an 

above-knee CG fails to improve passive knee JPS, and also showed no asymmetry in passive 

target-matching behaviour between the dominant and non-dominant leg that seems to be altered 

by healthy aging. Moreover, placement of CG relative to the knee modifies active knee JPS in 

healthy young adults. Although the findings of this thesis cannot be directly extended to 

practical use in athletes or patient population, they could serve as a bias for future fundamental 

and clinical studies aiming to detect the effects of, side-dominance and age on the functional 

relevance of JPS in walking, running, jumping, stair climbing and changing directions while 

ambulating. In conclusion, the findings described in this thesis are a few steps towards 

understanding the biomechanical mechanisms that underlie knee joint position sense in healthy 

adults. 
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9. FIGURES (図) 

 

Fig. 1. Set-up for the proprioception measurements (Galamb et al. 18). Participants were seated in the 

dynamometer chair in an upright position. One leg hanged freely over the edge of the chair and the other leg was 

fixed to the attached free-moving arm, with a flexion angle of approximately 90°. Subjects wore blindfolds for 

both tasks to eliminate vision and headphones with white noise in the motion sense task to eliminate auditory 

cues. 
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Fig. 2. Schematic illustration of initial- and target angles.  
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Fig. 3. A standard unisex compression sleeve (D&M Co., Tokyo, Japan) used in my studies.  
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Fig. 4. Placement of CGs. The compression garment extended between the proximal two-thirds and the distal 

two-thirds of the femoral shaft in AK garment position; between the superior aspect of the tibial tuberosity and 

the proximal two-thirds of the tibial shaft in BK garment position; and between the distal two-thirds of the femoral 

shaft and the superior aspect of the tibial tuberosity in WK garment position. Participants wore the same best 

fitting CG of the three available sizes for each garment position. 
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Fig. 5. Differences in mean absolute knee joint position error at three target angles. Participants performed 

a passive knee target matching task with the knee joint more accurately at 60° compared to 30° and 45°. 

* p < 0.001. 
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Fig. 6. The effects of an above-knee compression garment (CG) on mean absolute position errors at the 

knee joint. Participants performed a position-matching task more accurately in the Control (CON) condition 

compared with the Experimental (EXP) condition, resulting in a significant effect of above-knee CG. 

† condition main effect (p = 0.014). 
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Fig. 7. Overall active repositioning errors in the knee joint. Comparison of absolute (Panel A), constant (Panel 

B) and variable (Panel C) errors between each garment position (AK: above-knee compression garment; BK: 

below-knee compression garment; WK: whole-knee compression garment, CON: without compression garment) 

considering all seven target angles. * p ≤ 0.05. Vertical bars denote +1SD 
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Fig. 8. Target-matching behaviour of the experimental and control leg in the absence of the compression 

garment, regardless of group. Comparison of absolute (Panel A), constant (Panel B) and variable (Panel C) 

errors between each garment position. Vertical bars denote +1SD 
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Fig. 9. Side-dominance influences knee joint proprioceptive target-matching asymmetries. (A) Right-side 

dominant participants (RD; filled bar) produced less absolute errors during position target-matching test with the 

non-dominant leg compared to left-side dominant participants (LD; open bar). (B) Left--side dominant 

participants (LD) produced less absolute mean errors with the left dominant (filled bar) compared to the right non-

dominant (open bar) leg. 
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Fig. 10. Relative joint position sense (JPS) errors for young and older adults in the right-dominant and the left 

non-dominant leg. The three target angles (30°, 45° and 60°) are shown next to each other. The boxplots show the 

median, the upper, and lower quartiles and the min and max value of the age groups. 

* p < 0.05 
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Fig. 11. Constant JPS errors in young and older subjects’ right-dominant and left non-dominant knee. There were 

a significant age group x leg (†). The boxplots show the median, the upper, and lower quartiles and the min and 

max value of the age groups. 

* p < 0.05 
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Fig. 12. Summary of findings in proprioceptive motor control 
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Fig. 13. Variable JPS errors in young and older subjects. The boxplots show the median, the upper, and lower 

quartiles and the min and max value of the age groups. 

* significant main effect of age (p < 0.05) 
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10. TABLES (表) 

Table 1: Mean absolute position errors obtained from a proprioceptive 
target matching task in the right dominant and left non-dominant legs in 
both conditions 

  EXP CON 

  Mean (± SD) Mean (± SD) 

Overall † 5.4 (0.9) 4.7 (1.0) 

Dominant leg 30° 7.1 (4.0) 6.7 (4.6) 

 45° 6.1 (2.8) 5.0 (2.5) 

 60° 4.0 (2.2) 2.9 (1.8) 

Non-dominant leg 30° 7.1 (4.0) 6.4 (3.1) 

 45° 5.5 (2.6) 4.5 (2.6) 

 60° 2.9 (1.9) 3.0 (1.8) 

Values are absolute position errors (degrees). EXP: with above-knee compression 
garment; CON: without above-knee compression garment. 
† significant condition main effect (p < 0.05). 
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Table 2: Effects of garment position on absolute, constant and 
variable errors for the right dominant (CompDom) and left non-
dominant (CompNon-Dom) groups 

 CompDom CompNon-Dom 
Absolute error   

AK 5.4 (1.6) 4.4 (1.1) 
BK 4.2 (1.3) 4.3 (0.7) 
WK 4.8 (1.5) 3.5 (1.0) 
CON 5.4 (0.5) 5.0 (0.9) 

Constant error   
AK -4.3 (5.1) -2.6 (3.5) 
BK -2.0 (3.4) -1.0 (1.6) 
WK -4.0 (4.4) -1.4 (1.4) 
CON -3.1 (4.6) -0.2 (1.6) 

Variable error   
AK 4.4 (0.9) 4.9 (1.2) 
BK 4.1 (0.9) 5.2 (1.2) 
WK 3.9 (0.7) 4.1 (1.2) 
CON 4.9 (1.3) 6.3 (1.0) 

Values are mean (SD) of position sense errors in degrees. AK: above-knee 
compression garment; BK: below-knee compression garment; WK: whole-knee 
compression garment; CON: without compression garment 
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Table 3: Mean absolute position errors obtained from a 
proprioceptive target-matching task in the dominant and non-
dominant legs 

 Dominant leg Non-dominant leg 
 Mean (± SD) Mean (± SD) 

  RD 3.49 (1.03) 2.66 (0.45) 
*LD 2.92 (0.38) 3.53 (0.32) 

Values are absolute position errors (degrees). RD: participants with right-
side dominance (n = 12); LD: participants with left-side dominance (n = 
12). Asterisk represents significant difference between dominant and non-
dominant legs (p < 0.05). 
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Table 4: Effects of age on passive knee joint position sense in 
the right dominant and left non-dominant knee 

  Young Older 
Absolute JPS errors (°) TA   

Overall*  3.7 (0.2) 4.6 (0.2) 

Dominant 30° 3.9 (0.3) 4.9 (0.6) 

 45° 3.9 (0.5) 3.2 (0.4) 

 60° 3.9 (0.3) 5.0 (0.7) 

Non-Dominant 30° 3.9 (0.3) 5.2 (0.5) 

 45° 4.1 (0.6) 5.0 (0.5) 

 60° 2.4 (0.3) 4.5 (0.7) 

Relative JPS errors (%) TA*   

Overall  9.1 (0.6) 10.9 (0.7) 

Dominant 30° 8.9 (1.4) 9.5 (0.9) 

 45° 8.7 (1.1) 7.1 (0.9) 

 60° 11.8 (1.1) 13.2 (1.2) 

Non-Dominant 30° 9.4 (2.0) 9.5 (0.5) 

 45° 7.4 (0.7) 11.2 (1.1) 

 60° 8.3 (1.5) 15.1 (2.9) 

Constant JPS errors (°) TA   

Overall*  2.1 (0.4) -1.6 (0.5) 

Dominant 30° 2.5 (1.2) -0.9 (1.2) 

 45° 3.0 (0.8) -1.6 (1.4) 

 60° 3.6 (0.3) -3.1 (1.5) 

Non-Dominant 30° 0.2 (0.7) -0.8 (1.0) 

 45° 2.4 (0.9) 0.0 (1.2) 

 60° 0.8 (0.8) -2.9 (1.4) 

Variable JPS errors (°)    

Overall*  4.0 (0.2) 5.1 (0.3) 

Dominant  3.9 (0.2) 4.9 (0.4) 

Non-Dominant  4.2 (0.3) 5.2 (0.3) 

Absolute, relative, constant and variable position errors in each group, leg 
and target angles. JPS: joint position sense, TA: target angles.  
* significant Group main effect (p < 0.05) 

 
 
 
 
 
 
 



   

SUPPLEMENTARY MATERIALS 
S1_Data_EXP #1. Supporting data for the experimental condition in the right dominant leg 

Subject MVC 60° MVC 80° 30°_1 30°_2 30°_3 30°_4 30°_5 45°_1 45°_2 45°_3 45°_4 45°_5 60°_1 60°_2 60°_3 60°_4 60°_5 
Sub #1 231 245 30 36 34 32 30 52 45 53 52 54 60 66 61 60 64 

Sub #2 264 244 31 33 31 35 30 51 51 51 55 47 67 64 61 61 60 

Sub #3 207 259 38 32 45 39 36 58 53 57 45 54 61 66 64 62 62 

Sub #4 126 151 48 37 45 57 38 59 54 48 53 67 68 68 70 67 63 

Sub #5 233 325 34 44 34 32 41 53 61 49 58 55 65 67 67 65 63 

Sub #6 188 214 36 43 43 35 36 49 47 46 46 50 65 64 63 62 62 

Sub #7 146 195 36 32 38 44 31 54 55 46 55 47 66 69 63 69 61 

Sub #8 85 106 38 33 32 31 33 61 46 45 46 46 61 61 61 61 61 

Sub #9 283 330 40 36 31 49 35 49 55 47 46 49 61 64 61 63 61 

Sub #10 190 260 40 31 33 45 36 55 47 47 57 46 60 60 60 61 61 

Sub #11 106 84 33 30 30 30 43 50 45 46 54 47 64 60 60 62 60 

Sub #12 140 197 30 32 40 32 32 54 45 48 50 45 61 68 60 63 60 

Sub #13 107 134 48 31 38 41 43 46 47 45 51 48 62 69 65 61 61 

Sub #14 231 301 30 41 45 49 42 52 49 47 45 45 66 60 62 61 61 

Sub #15 96 153 30 30 40 30 44 49 46 56 48 55 70 70 63 66 61 

Sub #16 156 175 54 44 55 46 41 59 50 57 57 55 68 68 69 64 61 

Sub #17 183 233 38 37 37 40 39 45 49 50 51 53 64 64 66 67 68 

Sub #18 110 130 34 38 33 40 41 52 55 56 51 45 62 68 66 65 65 

Sub #19 107 168 31 38 32 37 31 45 60 45 57 45 71 73 66 66 61 

Sub #20 79 111 41 35 38 30 30 47 49 48 50 45 60 60 60 61 60 

Sub #21 57 71 37 34 38 36 36 50 51 51 49 54 67 66 64 67 60 

Sub #22 107 140 30 30 35 41 39 58 57 45 50 45 66 69 67 68 60 

Sub #23 144 179 30 36 37 31 30 51 55 51 47 55 60 60 63 64 63 

Sub #24 183 248 39 45 51 45 33 53 63 58 57 55 67 69 69 61 70 



   

S1_Data_EXP #2. Supporting data for the experimental condition in the left non-dominant leg 

Subject MVC 60° MVC 80° 30°_1 30°_2 30°_3 30°_4 30°_5 45°_1 45°_2 45°_3 45°_4 45°_5 60°_1 60°_2 60°_3 60°_4 60°_5 
Sub #1 180 190 30 30 30 33 30 54 47 45 52 49 60 60 60 60 63 

Sub #2 182 220 40 30 42 34 34 54 55 48 49 52 64 61 60 61 61 

Sub #3 144 194 32 50 47 47 46 55 46 53 46 62 64 60 62 61 64 

Sub #4 111 127 42 55 49 44 31 58 51 45 51 52 60 66 64 63 68 

Sub #5 285 255 43 53 44 41 41 53 51 55 54 52 64 66 65 62 61 

Sub #6 189 204 38 39 33 33 33 49 48 47 48 50 64 65 63 62 65 

Sub #7 130 202 31 39 37 40 36 46 47 46 49 51 62 63 63 61 69 

Sub #8 114 160 30 31 31 31 31 46 46 46 46 46 61 61 61 62 61 

Sub #9 294 316 42 34 36 33 33 51 51 45 46 45 61 61 66 60 61 

Sub #10 203 278 32 33 44 41 40 58 52 55 55 61 62 61 65 62 61 

Sub #11 107 117 32 36 31 31 30 49 49 45 45 47 60 64 60 60 60 

Sub #12 164 176 44 32 33 31 30 53 52 45 48 51 62 60 61 62 61 

Sub #13 119 138 31 43 45 40 42 53 45 55 53 55 62 69 68 60 60 

Sub #14 194 225 30 37 41 39 34 53 45 47 49 48 66 60 60 61 61 

Sub #15 194 226 36 30 38 41 34 52 45 53 48 47 69 60 62 61 60 

Sub #16 197 191 40 45 48 42 39 59 58 47 58 50 68 61 67 65 60 

Sub #17 133 183 37 38 32 30 40 48 52 52 51 54 63 65 61 63 61 

Sub #18 107 149 33 43 30 40 34 51 47 50 46 58 65 64 62 62 61 

Sub #19 141 178 30 35 37 37 34 45 50 47 47 48 63 61 60 60 60 

Sub #20 98 144 31 39 30 50 35 45 57 46 47 51 64 67 60 60 63 

Sub #21 50 66 40 31 37 47 45 50 58 45 46 51 64 63 63 60 65 

Sub #22 91 118 41 30 30 40 30 52 48 55 52 52 67 60 60 63 62 

Sub #23 168 194 43 43 39 44 40 58 53 57 57 54 67 68 71 72 73 

Sub #24 100 146 39 32 44 32 30 52 53 46 47 47 63 63 67 61 61 

 



   

S2_Data_CON #1. Supporting data for the control condition in the right dominant leg 

Subject MVC 60° MVC 80° 30°_1 30°_2 30°_3 30°_4 30°_5 45°_1 45°_2 45°_3 45°_4 45°_5 60°_1 60°_2 60°_3 60°_4 60°_5 
Sub #1 157 198 32 30 36 31 30 48 45 49 45 47 60 61 61 60 60 

Sub #2 232 255 30 34 45 34 32 45 47 47 45 48 63 61 63 60 60 

Sub #3 210 259 37 38 33 32 37 48 53 49 51 52 66 61 62 60 64 

Sub #4 111 127 59 51 59 48 36 65 46 57 49 53 66 60 64 60 60 

Sub #5 281 319 38 39 41 42 39 45 58 55 55 54 64 61 63 69 66 

Sub #6 182 206 37 39 35 35 36 46 47 47 47 48 64 63 62 61 63 

Sub #7 137 193 31 31 34 31 35 54 46 48 50 47 64 67 62 61 61 

Sub #8 108 132 43 45 42 48 48 50 47 51 56 58 66 67 67 71 72 

Sub #9 290 348 40 33 40 31 44 51 48 50 47 45 61 61 61 60 61 

Sub #10 226 264 31 33 35 32 35 50 51 50 45 50 66 61 65 61 61 

Sub #11 79 106 45 44 30 31 31 50 51 50 47 51 60 61 60 60 61 

Sub #12 144 210 45 37 36 41 34 48 56 55 50 46 70 65 61 65 61 

Sub #13 103 136 30 36 34 39 35 50 49 49 51 45 62 61 64 63 64 

Sub #14 254 317 30 39 40 40 31 45 49 51 51 49 61 60 60 60 61 

Sub #15 121 221 30 44 34 46 36 47 50 47 46 52 60 64 65 60 61 

Sub #16 161 182 58 50 40 47 38 61 55 58 55 54 68 68 65 60 68 

Sub #17 167 213 32 33 37 32 35 45 53 52 47 45 69 68 66 63 65 

Sub #18 92 125 42 30 30 30 36 49 50 51 53 52 66 61 61 61 62 

Sub #19 102 193 31 31 36 30 39 45 50 46 45 52 64 62 62 60 61 

Sub #20 84 132 37 36 35 42 31 51 54 51 46 45 66 60 61 61 60 

Sub #21 71 89 39 32 37 43 30 50 50 52 53 49 69 68 62 62 61 

Sub #22 103 160 35 31 31 30 38 51 51 47 52 45 68 60 60 60 61 

Sub #23 168 163 31 32 31 30 39 59 51 55 55 55 69 61 64 64 62 

Sub #24 176 199 38 41 34 31 32 52 46 51 49 52 66 65 67 63 60 

 



   

S2_Data_CON #2. Supporting data for the control condition in the left non-dominant leg 

Subject MVC 60° MVC 80° 30°_1 30°_2 30°_3 30°_4 30°_5 45°_1 45°_2 45°_3 45°_4 45°_5 60°_1 60°_2 60°_3 60°_4 60°_5 
Sub #1 151 186 31 30 30 31 30 49 45 45 45 48 65 61 60 60 60 

Sub #2 171 231 40 32 36 35 42 45 49 49 49 48 66 61 60 64 60 

Sub #3 144 194 42 44 31 41 39 60 58 52 45 46 67 67 68 63 61 

Sub #4 178 146 43 46 45 36 42 45 51 55 57 49 60 73 66 69 63 

Sub #5 260 260 40 38 36 36 38 57 54 50 53 53 64 65 65 66 62 

Sub #6 184 207 41 40 41 39 40 51 50 49 51 49 61 62 63 64 61 

Sub #7 119 191 35 31 33 35 38 46 48 46 47 48 63 65 61 61 61 

Sub #8 107 126 31 31 31 31 31 45 46 46 45 46 61 61 61 61 61 

Sub #9 267 313 31 40 31 39 33 52 46 47 45 53 64 61 61 68 71 

Sub #10 216 259 31 41 43 50 36 52 47 46 53 55 62 61 62 62 70 

Sub #11 107 134 41 30 35 30 31 45 52 46 45 48 61 60 60 60 60 

Sub #12 142 190 33 37 41 30 35 46 51 45 48 50 62 61 60 61 60 

Sub #13 106 125 34 35 36 36 34 45 50 49 50 45 60 60 63 64 64 

Sub #14 197 217 30 31 36 39 30 56 55 51 50 50 70 64 63 61 60 

Sub #15 201 287 30 38 33 42 32 51 50 45 47 45 66 60 60 61 60 

Sub #16 186 258 39 44 30 45 47 49 46 51 48 51 61 60 60 60 60 

Sub #17 94 118 33 38 35 33 37 48 50 53 49 51 60 63 60 63 64 

Sub #18 98 157 39 30 31 39 43 46 45 47 50 46 62 61 68 64 67 

Sub #19 156 197 37 41 34 43 40 45 46 47 50 45 60 60 60 64 60 

Sub #20 102 153 44 34 40 35 32 45 55 54 58 46 65 64 60 64 60 

Sub #21 69 84 42 33 30 40 37 51 52 47 56 47 69 62 66 60 65 

Sub #22 102 132 34 39 35 35 30 46 45 49 51 49 60 64 69 60 64 

Sub #23 148 170 33 40 31 44 48 51 55 67 55 58 69 64 69 68 65 

Sub #24 114 134 35 37 35 36 34 49 49 48 47 49 67 65 61 64 63 

 



   

S1_Data_CompDom #1. Supporting data for the for the right dominant (CompDom) group 

Condition Subject 30°_1 30°_2 35°_1 35°_2 40°_1 40°_2 45°_1 45°_2 50°_1 50°_2 55°_1 55°_2 60°_1 60°_2 
A

K
 

Sub #1 30 35 36 32 38 32 41 29 44 40 48 48 44 51 

Sub #2 31 32 31 34 31 31 38 41 42 51 46 46 53 53 

Sub #3 23 24 22 24 22 28 32 26 32 42 43 49 43 47 

Sub #4 27 27 30 34 35 40 50 41 46 51 53 49 50 59 

Sub #5 26 27 44 34 35 44 45 44 48 46 54 57 64 60 

Sub #6 23 31 36 31 29 46 35 36 46 35 53 47 50 54 

Sub #7 32 35 35 38 45 44 55 56 58 58 58 57 65 61 

Sub #8 27 31 27 31 35 39 36 37 37 39 49 41 50 51 

B
K

 

Sub #1 31 29 33 29 44 36 39 43 44 50 51 53 60 56 

Sub #2 29 28 32 28 44 43 49 43 50 50 58 53 57 62 

Sub #3 26 27 33 36 28 38 42 37 38 43 43 49 54 48 

Sub #4 28 24 30 32 45 43 42 39 41 43 52 56 48 58 

Sub #5 29 29 39 32 45 37 41 45 47 43 60 55 64 56 

Sub #6 20 26 33 26 34 41 40 34 46 38 54 64 57 52 

Sub #7 30 30 47 43 42 51 47 47 59 52 68 61 60 60 

Sub #8 26 29 37 33 37 43 41 40 46 45 52 55 50 55 

W
K

 

Sub #1 21 20 28 34 32 30 34 43 42 38 46 52 49 51 

Sub #2 33 32 33 37 34 36 39 49 47 47 53 53 56 51 

Sub #3 24 25 26 31 31 30 28 27 36 39 41 38 52 52 

Sub #4 25 30 31 35 36 35 33 47 45 39 53 46 59 52 

Sub #5 30 24 39 34 40 42 43 42 48 43 52 51 57 52 

Sub #6 26 20 21 25 36 42 39 39 50 42 54 52 51 62 

Sub #7 31 30 34 42 40 44 48 55 54 64 59 63 63 62 

Sub #8 29 25 31 31 43 36 42 38 45 45 56 50 58 56 

 



   

S1_Data_CompDom #2. Supporting data for the for the right dominant (CompDom) group 

Condition Subject 30°_1 30°_2 35°_1 35°_2 40°_1 40°_2 45°_1 45°_2 50°_1 50°_2 55°_1 55°_2 60°_1 60°_2 
Ex

pe
rim

en
ta

l_
C

O
N

 
(R

ig
ht

) 
Sub #1 33 30 31 33 27 39 41 45 40 40 49 52 54 57 

Sub #2 34 31 33 46 42 35 45 42 49 45 48 45 63 48 

Sub #3 24 24 24 39 25 25 33 32 37 39 38 41 52 46 

Sub #4 23 20 29 24 36 37 41 35 52 46 52 49 66 60 

Sub #5 31 30 35 39 37 34 45 41 47 48 54 50 57 60 

Sub #6 23 25 28 39 38 32 46 32 44 37 47 53 64 58 

Sub #7 31 32 45 42 49 45 59 53 55 53 59 58 64 66 

Sub #8 20 26 23 41 25 35 34 50 49 49 54 57 64 53 

C
on

tro
l_

C
O

N
 

(L
ef

t)  

Sub #1 23 27 32 35 48 39 38 39 46 41 56 52 64 61 

Sub #2 26 26 28 38 36 26 44 42 38 45 50 46 57 53 

Sub #3 23 22 25 35 35 30 31 31 46 42 43 38 54 53 

Sub #4 27 32 31 34 41 37 48 49 47 44 48 47 64 59 

Sub #5 22 30 39 40 48 48 59 38 53 50 61 53 67 54 

Sub #6 24 30 29 29 32 34 41 40 53 50 46 58 57 64 

Sub #7 36 37 35 45 51 45 54 52 55 52 56 60 64 63 

Sub #8 37 20 30 39 39 34 45 42 52 39 47 49 63 62 

 

 

 

 

 

 



   

S2_Data_CompDom #1. Supporting data for the for the left non-dominant (CompNon-Dom) group 

Condition Subject 30°_1 30°_2 35°_1 35°_2 40°_1 40°_2 45°_1 45°_2 50°_1 50°_2 55°_1 55°_2 60°_1 60°_2 
A

K
 

Sub #1 37 31 46 27 30 32 33 40 30 46 30 40 46 32 

Sub #2 33 30 40 41 42 40 49 46 54 42 53 64 53 52 

Sub #3 25 24 35 43 33 40 50 40 50 48 48 46 45 52 

Sub #4 27 28 33 34 46 40 44 43 55 48 55 52 64 64 

Sub #5 23 24 39 46 40 45 48 45 49 50 57 56 59 52 

Sub #6 20 24 31 38 33 35 51 54 50 54 64 63 56 54 

Sub #7 25 32 32 35 37 39 45 40 45 42 47 48 55 57 

Sub #8 26 32 32 35 35 42 36 35 41 49 55 42 52 50 

B
K

 

Sub #1 30 25 34 27 37 40 36 30 43 30 39 37 47 43 

Sub #2 40 36 35 45 43 41 40 49 49 45 56 50 55 48 

Sub #3 29 33 31 32 42 37 41 39 49 50 45 49 58 49 

Sub #4 27 29 31 40 44 38 48 47 48 42 48 58 59 53 

Sub #5 26 33 25 40 48 36 55 47 49 51 54 52 54 60 

Sub #6 27 28 32 35 46 46 42 49 56 49 50 49 55 56 

Sub #7 31 33 37 39 43 35 43 44 55 59 53 58 60 56 

Sub #8 28 28 29 33 43 45 49 42 44 41 55 54 52 41 

W
K

 

Sub #1 21 20 26 27 26 33 45 29 36 30 45 34 44 40 

Sub #2 27 28 31 43 43 41 41 47 49 50 55 53 56 60 

Sub #3 28 29 36 31 41 37 45 42 45 49 50 53 49 51 

Sub #4 32 34 32 40 36 43 45 44 46 49 56 58 58 54 

Sub #5 41 24 43 28 38 39 45 44 51 50 54 55 60 54 

Sub #6 28 30 29 35 36 39 39 45 46 47 51 47 53 53 

Sub #7 32 30 41 41 41 39 46 43 47 44 56 55 54 60 

Sub #8 35 31 42 34 35 42 40 42 46 48 50 55 55 44 

 



   

S2_Data_CompDom #2. Supporting data for the left non-dominant (CompNon-Dom) group 

Condition Subject 30°_1 30°_2 35°_1 35°_2 40°_1 40°_2 45°_1 45°_2 50°_1 50°_2 55°_1 55°_2 60°_1 60°_2 
Ex

pe
rim

en
ta

l_
C

O
N

 
(L

ef
t) 

Sub #1 27 23 29 23 32 30 28 40 37 47 45 48 46 33 

Sub #2 37 37 42 44 45 44 41 47 50 51 57 58 54 49 

Sub #3 32 32 34 38 33 35 39 48 47 50 53 48 50 45 

Sub #4 34 38 38 41 43 45 53 54 44 51 55 64 48 42 

Sub #5 36 23 43 37 38 28 50 53 48 54 60 59 65 49 

Sub #6 28 23 37 37 39 41 49 49 46 51 52 60 57 48 

Sub #7 23 31 38 34 40 41 43 43 44 58 56 65 58 42 

Sub #8 30 33 45 34 38 47 44 45 52 45 57 58 56 42 

C
on

tro
l_

C
O

N
 

(R
ig

ht
) 

Sub #1 24 22 25 26 32 30 32 27 38 42 44 46 49 47 

Sub #2 37 46 40 43 40 49 42 40 51 56 56 47 62 54 

Sub #3 30 29 35 32 39 32 48 39 44 43 52 46 55 48 

Sub #4 21 21 45 35 38 36 42 37 46 47 45 55 53 52 

Sub #5 28 23 41 45 28 50 51 48 48 47 60 51 56 60 

Sub #6 22 22 35 29 29 39 41 40 45 52 43 55 63 59 

Sub #7 31 28 40 31 43 40 46 41 40 45 55 57 64 57 

Sub #8 32 29 31 29 34 36 35 40 41 36 55 47 57 48 

 

 

 

 

 
 



   

S1_Data_Dom. Supporting data for the for JPS errors in the right dominant leg in each age group 

Subject 30°_1 30°_2 30°_3 30°_4 30°_5 45°_1 45°_2 45°_3 45°_4 45°_5 60°_1 60°_2 60°_3 60°_4 60°_5 
Young #1 43 43 42 37 33 47 46 45 53 51 64 66 62 67 67 

Young #2 35 31 32 31 29 53 49 45 46 47 68 62 58 62 61 

Young #3 30 27 29 37 32 45 43 47 40 40 58 64 66 64 65 

Young #4 43 37 41 34 36 50 47 45 53 46 66 66 62 63 65 

Young #5 30 36 39 39 33 50 53 55 51 56 65 63 62 67 65 

Young #6 26 22 24 29 30 46 45 44 44 48 62 62 62 55 52 

Young #7 34 37 27 25 31 48 47 54 48 43 67 65 61 62 63 

Young #8 40 30 30 31 31 52 49 50 49 53 70 68 65 62 60 

Young #9 40 28 42 32 30 48 51 45 57 51 69 65 57 63 64 

Young #10 29 27 38 37 32 46 52 45 42 49 61 61 54 59 63 

Young #11 22 28 27 26 24 51 47 46 49 51 65 64 63 62 61 

Young #12 38 35 31 25 30 42 47 39 52 44 68 61 60 59 64 

Older #1 26 28 49 38 36 54 45 43 44 48 66 64 59 58 59 

Older #2 15 18 18 21 15 43 30 32 31 36 60 50 46 51 45 

Older #3 22 19 25 21 26 39 34 33 37 36 48 48 42 65 40 

Older #4 17 24 36 41 31 52 52 42 45 44 52 63 60 49 60 

Older #5 27 27 25 30 26 43 39 44 38 39 62 54 61 56 61 

Older #6 27 27 28 19 32 39 44 44 39 50 62 48 60 58 54 

Older #7 25 27 21 36 24 45 48 43 47 44 60 59 58 54 63 

Older #8 26 25 42 29 32 52 51 49 55 45 62 59 61 71 71 

Older #9 28 33 36 30 29 44 44 45 44 45 58 39 50 52 50 

Older #10 30 25 29 31 34 43 44 47 50 46 62 61 65 63 63 

Older #11 32 25 27 25 29 40 43 45 38 39 56 57 56 55 48 

Older #12 31 44 27 31 37 49 45 44 43 46 61 66 62 60 50 

 



   

S2_Data_Non-Dom. Supporting data for the for JPS errors in the left non-dominant leg in each age group 

Subject 30°_1 30°_2 30°_3 30°_4 30°_5 45°_1 45°_2 45°_3 45°_4 45°_5 60°_1 60°_2 60°_3 60°_4 60°_5 
Young #1 44 28 31 29 32 48 44 47 43 45 69 66 61 63 63 

Young #2 28 28 29 26 28 54 39 44 52 44 60 59 61 58 58 

Young #3 32 32 21 27 35 44 43 52 46 47 62 64 59 60 59 

Young #4 37 32 30 29 27 47 44 48 50 43 63 60 59 59 60 

Young #5 54 41 42 33 49 55 57 50 47 52 71 68 70 72 66 

Young #6 30 27 31 27 23 43 39 43 49 42 60 51 57 57 54 

Young #7 40 35 24 25 29 50 51 50 54 47 65 62 61 60 63 

Young #8 26 32 24 34 30 51 58 60 49 52 67 63 68 67 64 

Young #9 33 34 45 30 31 51 53 45 42 45 61 53 60 59 63 

Young #10 27 30 35 33 37 48 43 52 51 46 62 58 63 56 60 

Young #11 27 24 40 25 23 47 40 43 44 46 61 64 62 60 60 

Young #12 26 30 32 30 21 42 47 41 46 48 58 62 61 56 58 

Older #1 24 29 13 32 30 51 47 49 44 39 57 58 67 54 54 

Older #2 34 28 40 25 20 50 43 35 43 49 49 60 58 60 58 

Older #3 21 23 27 29 23 45 48 43 34 33 47 50 46 51 48 

Older #4 29 28 32 31 41 36 45 47 52 51 62 59 61 60 63 

Older #5 22 23 29 21 22 35 33 38 46 37 54 52 54 51 51 

Older #6 28 32 36 40 34 51 40 54 54 53 55 60 60 61 62 

Older #7 22 35 24 38 24 54 41 42 49 46 61 60 62 57 63 

Older #8 19 29 45 32 25 56 53 52 47 54 63 65 63 69 65 

Older #9 31 34 34 31 29 45 46 48 43 39 58 61 51 47 41 

Older #10 32 24 47 36 32 51 47 47 49 48 63 65 63 65 58 

Older #11 36 26 32 30 27 43 47 42 40 42 56 56 55 55 58 

Older #12 24 35 23 28 22 48 39 44 28 44 59 51 54 59 41 
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