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Abstract  

In the combination of scaffolds immersed in growth factor solutions, the release of growth 

factors mainly depends on scaffold degradation. However, the release of bone morphogenetic 

protein (BMP)-2 at an appropriate concentration during the stage of tissue regeneration would 

enhance bone regeneration. To achieve this condition, the present study was performed to 

investigate the effects of scaffolds combined with gene transfection using non-viral vectors. 

Nanohydroxyapatite-collagen (nHAC) scaffolds cross-linked with 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide hydrochloride (EDC) or ascorbic acid/copper chloride, 

and a collagen scaffold (Terdermis
®
) were prepared, loaded with BMP-2-encoding plasmid 

DNA-functionalized calcium phosphate nanoparticles (CaP), naked plasmid DNA, or BMP-2 

solution, and implanted in rats. The yield of released BMP-2 and its releasing period, 

respectively, were larger and longer from the scaffolds loaded with CaP than from those 

incubated with BMP-2 solution. In addition, the alkaline phosphatase activity induced by the 

CaP-loaded scaffolds was higher. Histological analysis showed that released BMP-2 could be 

observed on the macrophages or multinuclear giant cells surrounding the nHAC fragments or 

collagen fibres. TRAP-positive or OCN-positive sites were observed in all groups and a 

mineralization area was observed in the Terdermis
®
/CaP sample. The present study 

demonstrates that gene transfection by scaffold loaded with CaP gene transfer vectors induces 

a larger yield of BMP-2 for a longer period than by scaffolds loaded with BMP-2 solution or 

naked plasmid.  
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1 Introduction 

Cells, signalling molecules such as growth factors, and scaffolds comprise the basic elements 

necessary for tissue engineering [1]. Previously, numerous scaffolds loaded with different 

growth factors have been developed and applied in vivo for the effective regeneration of tissue, 

such as bone [2–5] and periodontal tissue [6–9]. For these applications, it was demonstrated 

that the combination of calcium phosphate-based scaffolds and bone morphogenetic protein 

(BMP)-2, a bone growth factor, enhanced the regeneration of bone and cementum in 

periodontal tissue [9]. During bone healing, several fundamental processes such as 

inflammation and angiogenesis occur at an early stage, followed by a tissue regeneration stage 

in which growth factors play an important role in tissue reconstruction [10]. In many studies, 

the combination of scaffold and growth factors has been fabricated by immersing the scaffold 

into a growth factor-containing solution [3–9]. In this method, the release of the growth factor 

from scaffolds is dependent on scaffold degradation; furthermore, activity of the growth factor 

rapidly declines in a time-dependent manner [11–13]. Thus, it is difficult to release an 

adequate quantity of the growth factors during the stage of tissue regeneration. To obtain 

sufficient growth factor yield during bone regeneration, a high dose of BMP-2 is loaded on 

the scaffolds. However, the release of BMP-2 at a high level over a short period adversely 

induces bone or tooth resorption [5,14,15]. Therefore, the release of BMP-2 at an appropriate 

concentration during the stage of tissue regeneration is considered a favourable condition to 

induce bone regeneration.  

To achieve the gradual release of growth factors, we have focused on gene transfection 

techniques. The application of scaffolds loaded with viral vectors has been successfully 

demonstrated by both in vitro and in vivo studies [16,17]. In addition, owing to the risk of 

mutation and associated pathogenicity of viral vectors [18], numerous non-viral vectors, such 

as cationic polymers [19–21], cationic peptides [22–24], and inorganic nanoparticles [25–31] 

that carry a lower risk than viral vectors [18] have been developed. Among these vectors, 
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calcium phosphate-based gene transfer is attractive because of its high biocompatibility. 

Calcium phosphate represents the main component of hard tissues including bones and teeth 

and exhibits high compatibility with various peptides, DNA, siRNA, and proteins [27]. In 

particular, we have previously developed a technique to effectively induce gene transfection 

using multi-shell calcium phosphate nanoparticles loaded with peptides [29]. In addition, a 

recent in vitro study demonstrated that the gene transfection of human mesenchymal stem 

cells by a nanohydroxyapatite-collagen (nHAC) scaffold loaded with DNA-functionalized 

calcium phosphate nanoparticles (CaP) encoding BMP-2 resulted in growth factor release 

over 10 days [30]. However, the response of cells in vivo is more complex than that of cells in 

vitro conditions. Furthermore, few in vivo studies have analysed the yield of growth factor 

consequent to non-viral gene transfection using DNA-functionalized scaffolds.  

Accordingly, the object of the present study was to investigate the yield, releasing period, 

and activity of BMP-2 produced in vivo by gene transfection using biodegradable scaffolds, 

and to compare the influence of scaffold type on BMP-2 release. 

 

2 Materials and methods 

2.1 Design of a Growth Factor Releasing System from Scaffolds  

Figure 1 shows the schematic concept of the growth factor releasing system from nHAC 

loaded with DNA-functionalized CaPs. When implanted in vivo, the scaffold is degraded with 

time. The gene transfer vectors are gradually released depending on the degradation rate of 

the scaffold and cells invading around or into the scaffold take up the vector. Then, the vector 

enters the nucleus of the cell, causing the cell to eventually release BMP-2. Thus, the 

sustained release of BMP-2 is achieved depending on the gene transfection efficiency.  

 

2.2 Preparation of Scaffolds Loaded with Functionalized Nanoparticles  
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The fabrication procedure of the nHAC scaffold loaded with DNA-functionalized 

nanoparticles was described in our previous study [30]. Briefly, for fabrication of nHAC 

scaffolds, HCl (0.01 M) solution with purified type I atelocollagen gel (1 mg·mL
−1

; 2 wt%, 

Koken Co., Japan) was mixed with KH2PO4/K2HPO4 and Tris-buffer (0.5 M, pH 7.4). 

Subsequently, CaCl2 solution (0.1 M) was added to the mixture at 4 °C to effect the 

mineralization of collagen fibrils. After incubation for 12 h at 37 °C, white precipitate of 

mineralized collagen was collected by centrifugation. The pellet was resuspended in distilled 

water and transferred to a 96-well plate to obtain a cylindrical shape (diameter: 6.4 mm) by 

centrifugation at 698.75 g. Then, the formed scaffolds were cross-linked by 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide hydrochloride (EDC) (Kanto Chemical, Japan) (1 wt%) 

in ethanol (80 vol%) or ascorbic acid (80 vol%)/copper chloride (0.05 mM) solution (AA/CC) 

for 1 h. The prepared scaffolds were quenched with 1% glycine and rinsed with distilled water 

several times to remove any remaining activated carbodiimide hydrochloride. Subsequently, 

nHAC was processed by freeze-drying for 12 h (0.08 mbar, −80 °C), resulting in shrinkage by 

approximately 0.3 mm in diameter, irrespective of cross-linking agents. After freeze-drying, 

the nHAC was sliced to be 2 mm thick. Thus, the volume of the scaffolds was 60.4 mm
3
 (3.1 

mm × 3.1 mm × 3.14 × 2 mm). The prepared nHAC scaffolds were classified according to 

cross-linking agent and termed as EDC-nHAC and AACC-nHAC, respectively. The collagen 

scaffold, Terdermis
®
 (Olympus Terumo Biomaterials Co, Japan), was also tested. To obtain 

the same volume, Terdermis
®
 was cut to the size of 5.5 mm × 5.5 mm × 2 mm (60.5 mm

3
).  

For the preparation of DNA-functionalized CaP nanoparticles, aqueous solutions of 

pUC57-BMP-2 (GenScript, USA) (1 mg·mL
−1

; 9.6 µL) and protamine (Wako, Japan) (10 

mg·mL
−1

; 4.8 µL) were mixed. Plasmid DNA was purified from Escherichia coli using the 

Plasmid Giga kit (QIAGEN, Germany). Plasmid DNA and protamine complex were added to 

an aqueous CaP nanoparticle dispersion (36 µL), which was prepared by mixing equal 

volumes of an aqueous solution of calcium nitrate (18 mM, pH 9.0) and diammonium 
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hydrogen phosphate solution (10.8 mM, p H 9.0) using a peristaltic pump. Subsequently, 

calcium nitrate (18 µL) and diammonium hydrogen phosphate (18 µL) solutions were added 

into the prepared dispersion and mixed, followed by the addition of an aqueous solution of 

protamine sulphate (10 mg·mL
−1

; 9.6 µL). The obtained CaP nanoparticle suspension was 

purified at 193,548 g for 30 min in order to remove excess polymer and peptide. After 

removal of the supernatant, the CaP nanoparticles were redispersed in fresh distilled water for 

10 s using an ultrasonicator (UR-20P, Tomy, Japan; frequency: 21 kHz). Figure 1b shows the 

schematic image of the CaP nanoparticle gene vector. The multi-shell structure of the CaP 

nanoparticles was demonstrated in our previous reports [25, 29, 30]. 

nHACs loaded with DNA-functionalized CaP (nHAC/CaP) were generated by the 

injection of CaP nanoparticle dispersions into the nHAC with a volume of 60.4 mm
3
. The 

prepared nHAC/CaP was classified by the concentration of CaP nanoparticles as follows: 

nHAC only, nHAC/CaP 2, nHAC/CaP 4, nHAC/CaP 10, nHAC/CaP 20, and nHAC/CaP 40, 

respectively.  

As control samples, for nHAC scaffold loading with naked plasmid DNA without CaP, 

nHAC was injected with 9.8 µL plasmid DNA encoding BMP-2 (1 mg·mL
−1

) 

(nHAC/Plasmid); for nHAC scaffold including BMP-2 solution, nHAC was immersed in 

BMP-2 solution (Promokine, Heidelberg, Germany) (3 ng·mL
−1

) for 10 min prior to 

implantation according to our previous report (nHAC/solution) [5].  Finally, the prepared 

scaffolds were subjected to a re-freeze-drying process for 12 h (0.08 mbar, −80 °C) and stored 

at −80 °C for 3 weeks until implantation. Terdermis
®
 loaded with CaP was fabricated by 

immersing the formed Terdermis
® 

into the various concentrations of CaP nanoparticle 

dispersions and classified as follows: Terdermis
® 

only, Terdermis
®
/CaP 2, Terdermis

®
/CaP 4, 

Terdermis
®
/CaP 10, Terdermis

®
/CaP 20, and Terdermis

®
/CaP 40, respectively. Additionally, 

for Terdermis
® 

 loading with naked plasmid DNA without CaP, formed Terdermis
® 

 was also 

injected with 9.8 µL plasmid DNA encoding BMP-2 (1 mg·mL
−1

) (Terdermis
®
/Plasmid); for 
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Terdermis
® 

 including BMP-2 solution, formed Terdermis
®
 was immersed into BMP-2 

solution (3 ng·mL
−1

) for 10 min (Terdermis
®
/solution). The components of the prepared 

scaffolds are shown in Table 1. Characterization of the fabricated scaffolds was performed 

using scanning electron microscopy (JSM-7800F, JEOL, Japan) following carbon-palladium 

alloy sputtering.  

 

2.3 Surgical Procedures 

All animal experimental protocols were reviewed and approved by the Institutional Animal 

Experiment Committee of Tohoku University (Approval number: 2015shidou-046) prior to 

beginning the animal experiments. In total, 96 male Wistar rats (8 weeks old) were used for 

this experiment in accordance with the guide for the care and use of laboratory animals of 

Tohoku University. The rats were anesthetized with an intraperitoneal injection of 

medetomidine (Domitor
®

, 0.375 mg·kg
−1

 body weight; Nippon Zenyaku Kogyo, Japan), 

midazolam (Sandoz
®
, 2 mg·kg

-1
 body weight; Sandoz, Japan), and butorphanol tartrate 

(Vetorphale
®
, 2.5 mg·kg

−1
 body weight; Meiji Seika Co., Japan). The prepared scaffolds were 

implanted into subcutaneous tissue of the back of the rats. After implantation, the flap was 

rigidly sutured to prevent infection and loss of the scaffolds. The rats were sacrificed using an 

overdose of sodium pentobarbital (Somnopentyl
®
, Kyoritsu Seiyaku Co., Japan) at 4, 7, 14, 

21, or 28 days after surgery, and the tissue surrounding the implants was extracted. Each 

extracted tissue was subjected to different procedures for the following analyses.  

 

2.4 Degradation Magnitude and New Mineralization of the nHAC Scaffold 

The extracted tissue was immediately fixed in formalin solution (10%) for micro-computed 

tomography and histological processing. To determine the magnitude of nHAC degradation 

and newly formed mineralization, the extracted tissue including nHAC was scanned by micro-

computed tomography (ScanXmate-E090, Camscan Techno Co, Japan) (60 kV; 80 µA). The 
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volumes of the samples were measured using 3D structural analysis software (TRI/3D-VEI, 

Patoc System Engineering. Co. Ltd., Japan). The volumes of non-implanted EDC- or AA/CC-

nHACs were regarded as controls. The degradation magnitude was calculated as the 

percentage of the sample against non-implanted scaffold. For measurement of the newly 

formed mineralization volume or the remaining scaffold volume, the tissue volume of the 

specimens was calculated. The mean value of these samples was established as a measured 

value. The volume of the remaining Terdermis
®
 scaffolds could not be measured by micro-

computed tomography owing to the low X-ray mass absorption coefficient of collagen. Thus, 

the degradation of Terdermis
®
 was only observed in the histological sections.  

 

2.5 Histological Evaluation  

After micro-CT analysis, the extracted tissue was decalcified in 17.7% EDTA 

(OSTEOSOFT
®
, Merck Millipore, Japan) and then embedded in paraffin. The tissue sections 

(5-µm thick) were stained with haematoxylin and eosin (H-E) and Masson Trichrome. 

Tartrate-resistant acid phosphatase (TRAP) activity or osteocalcin (OCN) activity was 

identified using a TRAP/ALP stain kit (WAKO, Japan) or Anti-Rat Osteocalcin, Monoclonal 

antibody (Clone 6-7H)
®
 (TaKaRa Bio, Japan, 1:2000 dilution in phosphate buffered saline 

(PBS)) in accordance with the respective manufacturer instruction.  

For identification of type 1 or type 2 macrophages, the tissue sections were stained with 

Anti CD86 (Proteintech, Japan, 1:500 dilution in PBS) or Anti CD206 (Proteintech, 1:500 

dilution in PBS) antibody, respectively. For the evaluation of BMP-2 release, the decalcified 

sections were immunohistochemically stained with an anti-BMP-2 antibody (Anti-BMP-2, 

Rabbit-Poly (anti-Bone Morphogenic Protein2) 
®

, Novus Biological, USA, 1:250 dilution in 

PBS). Briefly, tissue sections were incubated with the anti-BMP-2 antibody at 4 °C overnight. 

After an extensive wash with PBS solution, bound antibodies were detected with the 

Histofin
®
 Simple Stain MAX PO (R) reagent (Nichirei Biosciences, Tokyo, Japan), using 
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diaminobenzidine tetrahydrochloride as the substrate. For measurement of the newly formed 

mineralization area and the remaining scaffold area, three H-E-stained sections were taken 

from scaffold/Cap 40 after implantation; one approximately from the centre of the scaffold, 

and the other two at 100 μm from either side of the centre. The mean value of these three 

sections was established as a measured value. For calculation of the ratio of BMP-2 staining 

cells/ total cells, three areas (200 µm × 200 µm) were selected from the BMP-2-stained 

sections. Histological measurements were obtained using Image J (National Institutes of 

Health). The prepared sections were observed under a light microscope. 

 

2.6 Biochemical Evaluation 

 To determine the yield of released BMP-2, the extracted tissue (250 mg) was freeze-dried 

and crushed according to a method reported by Yamamoto et al [12]. The crushed tissue was 

dissolved in RIPA Lysis Buffer
®
 solution (Santa Cruz Biotechnology, Inc., USA) (600 µL) 

and homogenized by ultrasonic treatment for 10 s, followed by centrifugation at 16,099 g for 

15 min. The supernatant was subjected to enzyme-linked immunosorbent assay (ELISA) for 

quantification of BMP-2 using the Human BMP-2 ELISA Development Kit
®
 (Promokine). 

The absorbance of the reaction mixture at 450 nm and 650 nm was measured according to 

manufacturer instruction using a microplate reader (Spectra MAX 190, Molecular Devices, 

Japan).  

For the determination of alkaline phosphatase (ALP), or OCN activity, the homogenized 

solution was also prepared as described above. After centrifugation, the supernatant was 

analysed using LabAssay ALP (Wako) or the Osteocalcin EIA kit (Funakoshi, Tokyo, Japan) 

in accordance with the respective manufacturer protocol.  

 

2.7 Statistical Analysis 
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All the values in biochemical measurements are shown as the means ± standard deviation. 

Statistical analyses were performed using JMP Pro 13.1.0 software (SAS Institute, Cary NC, 

USA). A linear mixed model was used to infer the BMP-2 concentration, as well as ALP and 

OCN activity. Sample type, observation time, and their interaction term were set as 

explanatory variables. Statistical differences between each group were assessed using the 

Tukey-Kramer HSD multiple comparison test. 

 

3 Results 

3.1. SEM observation of prepared scaffolds 

Figure 2 shows scanning electron microscopy images of the scaffolds. The EDC- and AA/CC-

nHAC scaffolds exhibited porosity with a pore size of 50–500 μm (Figure 2a, b). Both EDC- 

and AA/CC-nHAC scaffolds showed a rough surface composed of needle shape-like crystals 

(Figure 2d, e), which we previously demonstrated were composed of hydroxyapatite [5]. 

Terdermis
®
 also exhibited porosity with a pore size of 100–500 μm (Figure 2c), although the 

surface was relatively flat without crystals (Figure 2f). When loaded with CaP, spherical 

shape-like nanoparticles with a diameter of 200–400 nm were observed as being scattered 

over all the surface on both nHAC and Terdermis
®

 scaffolds (Figure 2g-i).  

 

3.2. In vivo release of BMP-2 from scaffolds 

Figure 3 shows the yield of BMP-2 in the tissue surrounding the scaffold. In the EDC-

nHACs loaded with DNA-functionalized CaP (EDC-nHAC/CaP) group, for nHAC/CaP 40 

samples, the released BMP-2 yield was 5.4 ± 0.6 ng·mL
−1

 at 4 days and constantly over 5.0 

ng·mL
−1

 at any time point, whereas for the other nHAC/CaP groups, the released BMP-2 

yield increased in a time dependent manner (Figure 3a). The BMP-2 yield of nHAC only 

(without CaP) was lower than that of nHAC/CaP at any time point. Although the BMP-2 

concentration of nHACs incubated in BMP-2 solution (EDC-nHAC/solution) or nHAC 
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loaded with naked plasmid DNA (EDC-nHAC/Plasmid) was as high as 3.0 ± 0.7 , 3.1 ± 0.2 

ng·mL
−1

 at 7 days, respectively, it subsequently decreased, becoming significantly lower than 

that of nHAC/CaP after 21 days. In the AA/CC-nHAC/CaP group, for nHAC/CaP 40 samples, 

the released BMP-2 yield was 6.2 ± 0.8 ng·mL
−1

 at 4 days and also constantly over 5.0 

ng·mL
−1

 at any time point, whereas for the other nHAC/ CaP groups, the concentration of 

BMP-2 increased with time, as was seen for EDC-nHAC/CaP (Figure 3b). For nHAC/solution 

or nHAC/plasmid, the peak of BMP-2 concentration was 2.5 ± 1.5 or 3.6 ± 1.5 ng·mL
−1

 at 7 

days, respectively, which then decreased. The BMP-2 concentration in nHAC/CaP was 

significantly higher than that of nHAC/solution after 21 days. In the Terdermis
®
 group, only 

the BMP-2 concentration of Terdermis
®
/CaP 40 was over 4.5 ng·mL

−1
 at any time point and 

was significantly higher than that of the other Terdermis
®
 /CaP groups from 21 days (Figure 

3c). The BMP-2 concentration of the other Terdermis
®
/CaP and Terdermis

®
/solution groups 

decreased in a time-dependent manner, although those of the Terdermis
®
/CaP groups were 

significantly higher than that of the Terdermis
®

 only sample until 14 days. For 

Terdermis
®
/plasmid, the BMP-2 concentration was not significantly different from that of the 

Terdermis
®
 only sample at any time point. 

Figure 3d shows the comparison of the released BMP-2 concentration from different 

scaffolds combined with CaP 40. The peak of BMP-2 concentrations of EDC-or AA/CC-

nHAC/CaP 40 were 7.7 ± 0.6 ng·mL
−1

 at 21 days or 7.1 ± 1.7 ng·mL
−1

 at 14 days, 

respectively, which were significantly higher than that of Terdermis
®
/CaP 40

 
(4.6 ± 1.4 

ng·mL
−1

 and 5.2 ± 1.7 ng·mL
−1

 at 21 and 14 days, respectively). In contrast, the peak of 

BMP-2 concentration of Terdermis
®
/CaP 40 was 6.1 ± 1.4 ng·mL

−1
 at 7 days, although this 

was not significantly different from that of either EDC- or AA/CC-nHAC/CaP 40 (5.8 ± 0.3 

or 5.5 ± 0.2 ng·mL
−1

, respectively) at 7 days.  

Figure 4a shows the degradation ratio of both nHAC scaffolds without CaP nanoparticles 

implanted in rat subcutaneous tissue. The degradation of both nHAC scaffolds was dependent 
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on the time after implantation. EDC-nHAC was degraded to half of its original volume by 7 

days and only 9% remained at 28 days. Analogously, the AA/CC-nHAC was degraded to half 

volume by 7 days and only 13% remained at 28 days. Figure 4b and 4c show the relationship 

of the BMP-2 concentration released from nHAC/CaP 40, nHAC/CaP 10, or nHAC/solution 

to the remaining percentage of EDC-nHAC and AA/CC-nHAC scaffolds, respectively. The 

coefficient of determination (R
2
) in EDC-nHAC/CaP 10 and AA/CC-nHAC/CaP 10 samples 

was 0.87 and 0.92, respectively. The slopes of both nHAC/CaP 10 samples were −0.1 and 

showed that the yield of released BMP-2 was in inverse proportion to the degradation of 

nHAC scaffolds, whereas those of EDC-nHAC/solution and AA/CC-nHAC/solution samples 

were 0.04 and 0.03 and showed direct proportions. The coefficient of determination (R
2
) in 

EDC-nHAC/CaP 40 and AA/CC-nHAC/CaP 40 samples was 0.25 and 0.17, respectively, 

representing low values. The slope of the EDC- or AA/CC-nHAC/CaP 40 sample was −0.02 

or 0.02 and indicated constant release independent of the degradation of the nHAC scaffold.   

For the Terdermis
®

 only scaffold, numerous collagen fibres could be seen at 28 days 

following histological examination, which indicated that the collagen fibres of the Terdermis
®
 

scaffold were retained at every point in this study (data not shown).  

 

3.3. ALP and OCN activity 

Figure 5 shows ALP activity in the tissue surrounding the scaffold. ALP activity for EDC-

nHAC/CaP increased over time (Figure 5a). EDC-nHAC/solution or EDC-nHAC/plasmid 

showed ALP activity of approximately 0.2–0.5 nmol･mL
−1

 at any time point, which was 

significantly lower than that of nHAC/CaP after 14 days. In the AA/CC-nHAC/CaP, ALP 

activity increased with time, as was seen for EDC-nHAC/CaP (Figure 5b). The ALP activity 

of nHAC only was substantially lower than that of nHAC/CaP. For AA/CC-nHAC/solution or 

AA/CC-nHAC/plasmid, the ALP activity was approximately 0.3 or 0.5 nmol･mL
−1 

at 7 and 
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14 days, respectively, and then decreased. For the Terdermis
®
/CaP scaffolds, in only the CaP 

40 sample, ALP activity increased up to 28 days, whereas in the other CaP groups, ALP 

activity increased up to 14 days and then decreased (Figure 5c).    

Figure 6 shows OCN activity in the tissue surrounding the scaffold at 28 days after 

implantation of EDC-nHAC/CaP 40, AA/CC-nHAC/CaP 40, and Terdermis
®
/CaP 40. 

The OCN concentration of EDC-nHAC/CaP 40, AA/CC-nHAC/CaP 40, and Terdermis
®
/CaP 

40 was 1.2 ± 0.2, 1.5 ± 0.2, and 1.4 ± 0.3 ng·mL
−1

, respectively, which was significantly 

higher than that of subcutaneous tissue only sample (0.2 ± 0.05 ng·mL
−1

).  

 

3.4. Histological observation of implanted scaffolds incorporating CaP 

Figure 7 shows the immunohistochemical analysis of the back subcutaneous tissue at 4 

and 28 days after implantation of EDC-nHAC/CaP 40, AA/CC-nHAC/CaP 40, and 

Terdermis
®
/CaP 40. In either EDC- or AA/CC-nHAC/CaP, the nHAC scaffold was degraded 

into small pieces and mononuclear cells or multinuclear giant cells were observed around or 

inside of the graded nHAC pieces at 4 days (Figure 7a, b), some of which were strongly 

positive for BMP-2 staining (Figure 7d, e). The nHAC scaffold at 28 days was degraded into 

smaller pieces than that of 4 days (Figure 7g, h, j, k). For Terdermis
®
, surrounding 

mononuclear cells or intra-collagen fibres were stained as BMP-2-positive at 4 days (Figure 

7f), whereas fibroblast-like cells surrounding collagen and collagen fibres were stained at 28 

days (Figure 7l). For EDC- or AA/CC-nHAC/CaP 10, surrounding mononuclear cells or intra-

collagen fibres were stained as BMP-2-positive, respectively, as was seen for EDC-or 

AA/CC-nHAC/CaP 40 (Figure 7p, q). For Terdermis®, few fibroblasts and collagen fibres in 

the implanted area were stained (Figure 7r). 

Figure 8 and 9 show the histological findings of the back subcutaneous tissue at 28 days 

after implantation of EDC-nHAC/CaP 40, AA/CC-nHAC/CaP 40, and Terdermis
®
/CaP 40. 

No severe inflammation, necrosis, or drainage was observed in any group. nHAC scaffolds 
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were degraded into small size and the cells infiltrated into the inside or intra-degraded nHAC 

pieces in EDC-or AA/CC-nHAC/CaP 40 samples (Figure 8a,b, c, d, g, h). In either EDC-or 

AA/CC-nHAC/CaP 40 samples, ectopic bone formation could not be clearly observed (Figure 

8a, b, d, e), as mononuclear cells or multinuclear giant cells stained with TRAP (Figure 9a, b) 

and OCN (Figure 9d, e) were observed around or inside of nHAC. CD206- as well as CD86-

positive cells were observed around the degraded nHAC fragments in both EDC- and AA/CC-

nHAC/CaP40 samples (Figure 8j, k, m, n). Finally, for Terdermis
®
/CaP 40, the retained 

collagen fibres were observed and fibroblast-like cells were observed (Figure 8c, f, i). The 

mineralization area was observed around the location where the mononuclear and multi-

nuclear giant cells stained by TRAP (Figure 9c) or OCN (Figure 9f) were found. CD206-as 

well as CD86-positive cells were also observed around the mineralization area (Figure 8o, l). 

The tissue volumes of EDC-nHAC/CaP 40, AA/CC-nHAC/CaP 40, and Terdermis
®
/CaP 

40 at 28 days after implantation, as measured by micro-CT, were 6.4 ± 2.9, 0.9 ± 0.1, and 4.5 

± 2.5 mm
3
, respectively. The tissue volume of AA/CC-nHAC/CaP 40 was significantly 

smaller than that of EDC-nHAC/CaP 40 or Terdermis®/CaP 40, whereas there was no 

significant difference between the tissue volumes of EDC-nHAC/CaP 40 and Terdermis
®
/CaP 

40. Table 2 shows the newly formed mineralization area and the remaining scaffold area, as 

measured by histological analysis at 28 days. The remaining scaffold area did not 

significantly differ between nHAC/CaP 40 samples, and ectopic bone or mineralization was 

not distinctly observed in HAC/CaP 40 samples. In comparison, ectopic mineralization was 

observed in only the Terdermis
®
/CaP 40 sample upon histological observation. Micro-CT 

analysis also supported this result (Figure 10).  

Table 3 shows the ratio of BMP-2 staining cell number/total cell number at 28 days. The 

ratio of BMP-2 staining cells/total cell number did not significantly differ between 

nHAC/CaP 10 and CaP 40. The ratio of Terdermis
®
/CaP 40 was significantly higher than that 

of Terdermis
®
/CaP 10, whereas was no significant difference was observed between 
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scaffold/CaP40 groups. In comparison with that at 4 and 28 days after implantation, the ratio 

of BMP-2 staining cells/total cell number did not significantly differ between Terdermis
®
/CaP 

10 and CaP 40. 

 

4. Discussion 

In the present in vivo study, we investigated the yield, releasing period, and activity of BMP-2 

released from cells transfected with DNA-functionalized CaP loaded on various scaffolds. 

BMP-2 is well known to strongly induce bone formation as well as the differentiation and 

proliferation of osteoblasts [2, 3]. Because the BMP-2 protein is generally released from 

natural bone tissue, the prepared scaffolds were implanted in the subcutaneous tissue of the 

back of rats in this study so that only BMP-2 released from the scaffold could be detected, 

thus eliminating the influence of endogenous BMP-2 secreted from the host bone. In addition, 

to provide a dose-equivalent control for the released BMP-2 yield from CaP-loaded scaffolds, 

we utilized scaffolds that had been incubated with BMP-2 solution (3 ng·mL
−1

), representing 

the amount of BMP-2 released by transfected cells as determined in a previous in vitro study 

[30].  

The peaks of released BMP-2 concentration from EDC-nHAC/solution and AA/CC-

HAC/solution scaffolds were observed at 7 or 4 days, respectively. During the 7-day period, 

AA/CC- and EDC-nHAC scaffolds were rapidly degraded by up to 50%, following which the 

degradation rate decreased. This suggests that BMP-2 is released along with nHAC scaffold 

degradation following scaffold preparation by immersion in BMP-2 solution. This result is in 

accordance with those of other studies [11,12], which demonstrated that the retained yield of 

exogenous growth factor was dependent on the biodegradable property of the scaffold. In 

comparison, the peaks of the released BMP-2 concentrations in the Terdermis
®
/solution 

groups were observed during the period from 4 to 14 days, although according to histological 

observation, the collagen scaffold was retained until 28 days following implantation. As SEM 
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observation demonstrated high porosity of Terdermis
®
, the BMP-2 protein absorbed on 

Terdermis
®
 might therefore have been easily released in an early stage.  

When combined with CaP, the largest yield of released BMP-2 in the EDC-nHAC/CaP, 

AA/CC-nHAC/CaP, and Terdermis
®
/CaP groups was 8.3, 7.3 and 6.1ng·mL

−1
 at 28, 28 and 7 

days, respectively. These values were higher than those reported in a previous report (0.2–2.0 

ng/implant BMP-2)
 
[21], suggesting that the efficiency of gene transfection by nHAC/CaP 

was better than that of the previously utilized vector. The larger yield of BMP-2 obtained in 

the present study might also be attributable to the low cytotoxicity of the scaffold (nHAC) and 

the CaP vector. In particular, the released BMP-2 yields of all the scaffold groups including 

Cap were significantly higher than that of the scaffold including naked plasmid DNA. The 

effective protection of exogenous plasmid DNA from degradation by DNase or inflammatory 

reactions [27] provided by the multi-CaP shell might also have contributed to the increased 

yield. Notably, the released BMP-2 concentration in both the EDC- and AA/CC-nHAC/CaP 

groups increased with the progression of scaffold degradation and the yield of released BMP-

2 was significantly higher than those of the nHAC only and nHAC/solution groups.  

To evaluate the effect of gradual BMP-2 release from the scaffolds in present study, we 

analysed ALP as a marker for the early stage of bone formation [12]. The ALP activity in the 

nHAC/CaP groups and Terdermis
®
/CaP40 was significantly higher than that of the scaffold 

only and scaffold/solution groups at 21 and 28 days. Specifically, the increase of ALP activity 

suggested the occurrence of a biochemical step of bone formation. Thus, the result indicated 

that the BMP-2 released following gene transfection exhibited a biochemical activity and 

stimulated the cells surrounding nHAC to differentiate into osteoblasts. 

According to histological analysis, the mononuclear cells or multi-nuclear giant cells 

attached to the degraded nHAC fragments, mineralization area, or collagen. The mononuclear 

cells were stained with CD 86 or CD 206, which indicates that these cells were consistent 

with macrophages, whereas the multi-nuclear giant cells were histopathologically consistent 
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with foreign body giant cells. Furthermore, some of these cells were stained with an anti-

BMP-2 antibody. These results indicated that the CaP vector was successfully transfected into 

the macrophages or foreign body giant cells upon scaffold degradation and that these cells 

subsequently translated and released BMP-2. Alternatively, in the Terdermis
®
/CaP group, 

macrophages or fibroblasts were stained with an anti-BMP-2 antibody during 

immunohistochemical assessment, indicating that fibroblasts or macrophages infiltrated into 

Terdermis
®
 took up CaP nanoparticles, resulting in gene transfection followed by BMP-2 

expression. 

In general, two mechanisms are considered to mediate the uptake of CaP vectors or 

growth factors combined with scaffolds. In the first pathway, the cells invade the scaffold and 

take up the growth factor vector [32]. In this case, the pore size is associated with the success 

of gene transfection of the surrounding cells but not with the degradation speed of the main 

scaffold. In the second pathway, the growth factors or vectors are released with the 

degradation of the scaffold allowing the cells surrounding the degraded scaffold to take up the 

growth factor vector [33, 34]. In this case, the degradation speed of the main scaffold affects 

the efficacy of gene transfection of the surrounding cells. Therefore, the former mechanism of 

CaP and growth factor uptake may be utilized for the Terdermis
®
 scaffold whereas the nHAC 

scaffolds may incorporate both mechanisms based on the results obtained in this study. 

However, the detail mechanism(s) of the transfection pathway into cells was not clear in this 

study. We previously demonstrated that the gene transfection pathway or efficiency was 

dependent on cell type or vector concentration [35].  

Macrophages have several phenotypes, with type 1 macrophages (M1) being stained with 

CD 86 and type 2 macrophages (M2) with CD 206. M1 is associated with inflammation and 

the secretion of pro-inflammatory cytokines, whereas M2 is associated with matrix deposition, 

tissue remodelling, healing promotion, and the secretion of pro-regenerative cytokines [36]. In 

the present study, a larger quantity of M1 than M2 macrophages was observed around the 
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degraded nHAC fragments or collagen in all scaffold/CaP 40 samples. This suggests that the 

implanted area may be in a regeneration stage. Consistent with this, new mineralization was 

formed in the Terdermis
®
/CaP 40 sample at 28 days after implantation. However, no ectopic 

mineralization was observed in the other Terdermis
®
/CaP, Terdermis

®
/solution, or 

Terdermis
®
/plasmid samples in the present study. The suitability of collagen as a scaffold for 

BMP-2 to facilitate ectopic bone formation has been demonstrated by numerous studies 

[2,4,12,13,34]. However, whereas constant higher concentration of BMP-2 release might 

induce ectopic mineralization, low concentration of released BMP-2 might not be sufficient to 

support ectopic hard tissue formation. 

In nHAC/CaP 40 groups, ectopic bone or mineralization was not obviously observed upon 

H-E and Masson Trichrome staining in either group. However, TRAP- as well as OCN-

positive cells were observed in both groups, suggesting the occurrence of hard tissue 

formation in these groups. In comparison, Oda et al. reported the generation of ectopic bone-

like tissue by hydroxyapatite fibre combined with naked pEGFPN1 plasmid (10 μg) encoding 

BMP-2 in rat beginning at 12 weeks [37], which suggests that ectopic bone formation might 

be clearly observed in the current study over a longer time period. Furthermore, the volume of 

hard tissue calculated based on micro-CT 3D image for EDC-nHAC/CaP 40 was significantly 

larger than that for AA/CC-nHAC/CaP 40. Notably, cross-linking agents have been reported 

to influence cellular activity, such as adhesion, apoptosis, and proliferation [38, 39]. 

Consistent with this, more M1 macrophages surrounded fragments in AA/CC-nHAC/CaP40 

than EDC-nHAC/CaP samples based on immunohistochemical observation, which might 

result in smaller hard tissue volume on micro-CT 3D imaging of the respective samples. 

Moreover, as Wilson et al reported that copper ions hinder bone resorption [40], it is also 

possible that the different cross-linking agent might have induced different metabolism with 

regard to hard tissue formation.   
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In the scaffold with CaP having a higher concentration of CaP nanoparticles (40 µL), 

however, the yield of released BMP-2 was approximately 6.0–8.0 ng·mL
−1 

at any time point. 

The slope in the relationship between released BMP-2 and scaffold in the scaffold/CaP 40 

groups was 0.02 or −0.02, which indicated that high yields of BMP-2 were constantly 

released independent of the degradation of nHAC scaffolds, although the slope in the scaffold 

with CaP (under 20 µL) was −0.1. These results suggested that the maximum limit of BMP-2 

release by local gene transfection might be reached in vivo, although the released BMP-2 

yield by the CaP gene transfection vector was in inverse proportion to scaffold degradation in 

CaP (under 20 µL). CaP vectors in the scaffold were taken up by the gathered cells such as 

macrophages or foreign body giant cells in time-dependent manner, whereas in 40 µL CaP 

with 9.8 µL plasmid DNA, more CaP nanoparticles could be taken up by the gathered cells 

from in an early stage and sufficient volume of CaP nanoparticles could be retained in the 

stage of tissue regeneration, resulting in constant BMP-2 release. The number of gathered 

cells in a local area might be associated with maximum BMP-2 releasing yield. The ratio of 

BMP-2 staining cells/total cell number did not significantly differ between all scaffold/CaP 40 

samples in the present study.   

 

5. Conclusions  

In the present study, we determined the degree of BMP-2 release from the scaffolds in rat 

subcutaneous tissue after the implantation of scaffolds. We demonstrated successful gene 

transfection in vivo using DNA-functionalized CaP combined with nHAC or Terdermis
®
. We 

revealed that BMP-2, which resulted from gene transfection mediated by the CaP loaded on 

the scaffolds, was effectively released into the implanted area and that the released yield of 

BMP-2 was dependent on the loading CaP concentration. The BMP-2 releasing period of 

scaffolds with CaP was longer than that of scaffolds that had been immersed in BMP-2 

solution or naked plasmid for all scaffolds. In particular, histological evidence demonstrated 
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that DNA-functionalized CaP combined with Terdermis
®
 formed ectopic mineralization and 

that DNA-functionalized CaP combined with both nHAC led to the occurrence of ectopic 

hard tissue formation in subcutaneous tissue at 28 days. In summary, the combination of 

collagen-based scaffolds and multi-shell CaP nanoparticles loaded with exogenous DNA is 

expected to comprise a novel gene therapy strategy for tissue regeneration.   
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Table 1. Final concentrations of calcium phosphate (CaP), DNA-BMP-2, and BMP-2 protein 

in the nanoparticle dispersions (μg/scaffold).  

 

 

 

 

 

 

 

 

 

 

 

a) As reported by Matui et al. [41].  

  

Sample 
Cross-linking 

agent 
CaP DNA BMP-2 

nHAC/CaP 40 
EDC 

or 

AA/CC 

40.8 9.8 0 

nHAC/CaP 20 19.08 4.18 0 

nHAC/CaP 10 9.54 2.09 0 

nHAC/CaP 4 3.81 0.84 0 

nHAC/CaP 2 1.91 0.42 0 

nHAC only 0 0 0 

nHAC/ Solution 0 0 0.003 

nHAC/Plasmid 0 9.8 0 

Terdermis
®
/CaP 40 

Heat treatment 

for 3 h 

at 110 C
 a)

 

 

40.8 9.8 0 

Terdermis
®
/CaP 20 19.08 4.18 0 

Terdermis
®
/CaP 10 9.54 2.09 0 

Terdermis
®
/CaP 4 3.81 0.84 0 

Terdermis
®
/CaP 2 1.91 0.42 0 

Terdermis
®
 only 0 0 0 

Terdermis
®
/Solution 0 0 0.003 

Terdermis
®
/Plasmid 0 9.8 0 
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Table 2. Newly-formed mineralization area and the remaining scaffold area in scaffold/CaP 

40 at 28 days after implantation. 

 EDC-nHAC/CaP 40 AA/CC-nHAC/CaP 40 Terdermis
®

 

Newly formed mineralization area (mm
2
) 0  ± 0 0 ±0 3.4 ± 0.3* 

Remaining scaffold area (mm
2
) 1.9  ± 1.7 1.4 ± 0.9 1.2 ± 0.1 

The newly formed mineralization area and the remaining scaffold area were measured by 

histological analysis. *Significant differences (P < 0.05) compared to EDC-nHAC/CaP 40. 
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Table 3. Ratio of BMP-2 staining cells number/total cell number of scaffold/CaP 40 or 10 at 4 

and 28 days after implantation.  

Sample Observation time 

(days) 

BMP-2 staining 

cells/40,000 μm
2
 

Total cells/ 

40,000 μm
2
 

BMP-2 staining 

cells/Total cells 

EDC-nHAC/CaP 40 
4 175 ± 10 251 ± 20 70 ± 6 

28 167 ± 33 266 ± 36 75 ± 3 

EDC-nHAC/CaP 10 28 207 ± 61 297 ± 58   69 ± 10 

AA/CC-nHAC/CaP 40 
4 211 ± 50 324 ± 74 66 ± 7 

28 157 ± 60 224 ± 43 68 ± 7 

AA/CC-nHAC/CaP 10 28 174 ± 12 234 ± 39 75 ± 3 

Terdermis®/CaP 40 
4    110 ± 33 *   141 ± 41*     75 ± 3 * 

28    121 ± 12 *    180 ± 26 *     68 ± 7 * 

Terdermis®/CaP 10 28 10 ± 8   74 ± 26 13 ± 6 

*Significant differences (P < 0.05) compared to the same scaffold/CaP 10. 
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Figure captions 

Figure 1. Schematic of the growth factor releasing system from the scaffolds. nHAC and CaP 

were fabricated separately. a) The fabricated DNA releasing scaffold is degraded by 

surrounding cells or collagenase in vivo in a timely manner and CaP nanoparticles are 

released around the tissue. The nanoparticles are taken up by the surrounding cells that then 

release special growth factor proteins. b) Schematic of the CaP nanoparticle fabrication 

procedure.   

 

Figure 2. Scanning electron micrographs of the sample microstructures. EDC-nHAC without 

(a) and d)) and with (g)) CaP nanoparticles. AA/CC-nHAC without (b) and e)) and with (h)) 

CaP nanoparticles. Terdermis
®
 without (c) and f)) and with (i)) CaP nanoparticles.  

Original magnifications of a)-c) 250×, d)-i) 4,000 ×. Scale bars = 50 μm and 1 μm, 

respectively. Both nHAC samples and Terdermis
®

 show porosity with a size of approximately 

100–500 μm. Spherical shape-like particles with a size of approximately 200–400 nm are seen 

to be scattered on the nHAC or Terdermis surface.  

 

Figure 3. Released BMP-2 concentration around the implanted site of EDC-nHAC a), 

AA/CC-nHAC b), and Terdermis
®
 c) including CaP or BMP-2 solution at 4, 7, 14, 21, and 28 

days following implantation. CaP injected into the scaffold at 40 (  ), 20 ( ), 10 (  ), 4 

(  ), and 2 µL ( ) concentration; scaffold only ( ) concentration; scaffold including 

plasmid encoding BMP-2 ( ); scaffold including BMP-2 solution (3 ng·mL
−1

) ( ). 

Significant differences (p < 0.05) between the groups at each time point are denoted by 

different superscript letters at the same time point (i.e., bars with the same letter are not 
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significantly different). d) Comparison of the released BMP-2 concentration from each 

scaffold/CaP 40. *Significant differences (p < 0.05) between the groups at each time point.  

 

Figure 4 In vivo time profiles of the remaining ratio of EDC-nHAC (●) and AA/CC-nHAC 

(▲) following implantation into the back of rats over 28 days a). Correlation diagrams with 

the percentage of remaining nHAC and the releasing yield of BMP-2 from EDC-nHAC/CaP 

40 (●), EDC-nHAC/CaP 10 (▲), or EDC-nHAC/solution (◆) b) and AA/CC-nHAC/CaP 40 

(●), AA/CC-nHAC/CaP 10 (▲), or AA/CC-nHAC/solution (◆) c) after implantation into the 

back.  

 

Figure 5. ALP activity of tissues surrounding the implanted site of nHACs cross-linked with 

EDC (a), nHACs cross-linked with AACC (b), and Terdermis
®
 (C) including CaP or BMP2 

solution at 4, 7, 14, 21, and 28 days after implantation. CaP injected into the scaffold at 

40( ), 20 ( ), 10 ( ), 4 ( ), and 2 µL ( ) concentration; scaffold only (  ) 

concentration; scaffold including plasmid encoding BMP-2( ); scaffold including BMP-2 

solution (3 ng·mL
−1

) ( ). Significant differences (p < 0.05) between the groups at each time 

point are denoted by different superscript letters at the same time point (i.e., bars with the 

same letter are not significantly different).  

 

Figure 6. OCN activity of tissues surrounding the implanted site of each scaffold and tissue 

only at 28 days after implantation. *Significant differences (p < 0.05) between the groups. 

 

Figure 7. Immunohistochemical staining with BMP-2; images of scaffold implantation sites 

at 4 and 28 days after implantation in the back of rats are shown. The left column shows the 

histology of EDC-nHAC/CaP 40 at 4 days, stained by haematoxylin and eosin (H-E) (a), and 

BMP-2 stain (d). EDC-nHAC/CaP 40 at 28 days stained by H-E (g) and BMP-2 stain (j). 
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EDC-nHAC/CaP 10 at 28 days stained by H-E (m), and BMP-2 stain (p). Centre column 

shows AACC-nHAC/CaP 40 at 4days stained by H-E (b), and BMP-2 stain (e). AA/CC-

nHAC/CaP 40 at 28 days stained by H-E (h) and BMP-2 stain (k). AA/CC-nHAC/CaP 10 at 

28 days stained by H-E (n) and BMP-2 stain (q). Right column shows Terdermis
®
/CaP 40 at 4 

days stained by H-E (c), and BMP-2 stain (f). Terdermis
®
/CaP 40 at 28 days stained by H-E 

(i), and BMP-2 stain (l). Terdermis
®
/CaP 10 at 28 days stained by H-E (0), and BMP-2 stain 

(r). White arrowhead indicates BMP-2-positive area. Asterisks indicate the retained nHAC. 

Scale bars: 50 µm. 

 

Figure 8. Histologic images of scaffold implantation sites at 28 days after implantation in the 

back of rats. Histology of EDC-nHAC/CaP 40 (left column; a, d, g), AACC-nHAC/CaP 40 

(centre column, b, e, h), and Terdermis
®
/CaP 40 (right column, c, f, i) stained by 

haematoxylin and eosin (H-E) with low magnifications (a-c), H-E with high magnification (d-

f), Masson Trichrome (g-i), CD 206 (j-l), and CD 86 (m-o). Asterisks indicate the retained 

scaffold. White arrows indicate newly formed mineralization. Black arrows head indicate 

CD206-positive cells. White arrows head indicate the CD86-positive cells. Scale bars: 200 

µm (a-c) and 50 µm (d-o).  

 

Figure 9. Immunohistochemical image of scaffold implantation sites at 28 days after 

implantation in the back of rats. The left column shows the Histology of EDC-nHAC/CaP 40 

(left column, a, d), AACC-nHAC/CaP 40 (centre column, b, e), and Terdermis
®
/CaP 40 (right 

column, c, f) stained by TRAP stain (a-c) and OCN (d-f). TRAP-positive cells (black arrows) 

can be observed around the degraded scaffolds. White arrows indicate the OCN-positive area. 

White arrows indicate newly formed mineralization. Asterisks indicate the retained nHAC. 

Scale bars: 50 µm.  
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Figure 10. Micro-CT images of EDC-nHAC/CaP40 a), AA/CC-nHAC/CaP40 b), and 

Terdermis
®
/CaP40 c) at 28 days after implantation in the back of rats. Scale bars: 2 mm. 
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Highlight 
 
① DNA-functionalized CaP gene transfection vector combined with nano-hydroxyapatite-

collagen or collagen scaffolds induce the successful gene transfection in vivo.  

② Released yield of BMP-2, which resulted from gene transfection, was dependent on the 

loading CaP concentration.  

③ BMP-2 releasing period of scaffolds with CaP gene transfection vector was longer than 

that of scaffolds that had been immersed in BMP-2 solution.  
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