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Abstract 

Purpose: Zirconia is one of the most promising implant materials due to its favorable physical, 

mechanical and biological properties. However, until now, we know little about the 

mechanism of osseointegration on zirconia. The purpose of this study is to evaluate the effect 

of Syndecan (Sdc) on osteoblastic cell (MC3T3-E1) adhesion and proliferation onto zirconia 

materials.  

Materials and methods: The mirror-polished disks 15 mm in diameter and 1.5 mm in thick 

of commercial pure titanium (CpTi), 3mol% yttria-stabilized tetragonal zirconia 

polycrystalline (3Y-TZP) and Nano-Zirconia (NanoZr) are used in this study. MC3T3-E1 cells 

were seeded onto specimen surfaces and subjected to RNA interference (RNAi) for Syndecan-

1, Syndecan-2, Syndecan-3, and Syndecan-4. At 48h post-transfection, the cell morphology, 

actin cytoskeleton, and focal adhesion were observed using scanning electron microscopy or 

laser scanning confocal fluorescence microscopy. At 24h and 48h post-transfection, cell 

counting kit-8 (CCK-8) assay was used to investigate the cell proliferation.  

Results: The cell morphology of MC3T3-E1 cells on CpTi, 3Y-TZP, and NanoZr changed 

into abnormal shape after gene silencing of Syndecan. Among the Syndecan family, Sdc-2 is 

responsible for NanoZr specific morphology regulation, via maintenance of cytoskeletal 

conformation without affecting cellular attachment. According to CCK-8 assay, Sdc-2 affects 

the osteoblastic cell proliferation onto NanoZr.  



Conclusion: Within the limitation of this study, we suggest that Syndecan affect osteoblastic 

cell adhesion on CpTi, 3Y-TZP, and NanoZr. Sdc-2 is an important Heparin-sensitive cell 

membrane regulator in osteoblastic cell adhesion, specifically on NanoZr, through the 

organization of actin cytoskeleton and affects osteoblastic cell proliferation. 
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Chapter 1. INTRODUCTION 

Ceramic dental implants attract attention from the view of metal-free and aesthetic dentistry, 

due to their non-allergic reactions, non-metal deposition, and non-tissue discoloration.[1-3] The 

first ceramic dental implant system made of aluminum oxide (Al2O3) is not recommended for 

making dental implants, due to its fragility caused by high hardness and elastic modulus. [4,5]  

In recent years, zirconia ceramics are the most promising candidate as a dental implant 

material, relying on its good mechanical properties, stable physical and biological properties, 

outstanding biocompatibility, as well as its nature-tooth-like color. Additionally, zirconia-oxide 

(ZrO2) surfaces showed a significant reduction of the presence of bacteria than titanium surfaces, 

which can protect implants from peri-implantitis.[6,7] The 3mol% yttria-stabilized tetragonal 

zirconia polycrystalline (3Y-TZP) which is primarily used as dental zirconia has solid 

mechanical properties, [8,9] however, it also has a high risk of fracture than titanium 

implant.[10–12] Therefore, Nano-Zirconia (NanoZr), a ceria-stabilized nanocomposite (10mol% 

CeO2-ZrO2 and 30vol% Al2O3) [13] , not only had superior fracture strength and fracture 

toughness but also showed excellent mechanical durability for LTD (low-temperature 

degradation) compared with 3Y-TZP, [14,15] suggesting as a potential alternative to titanium 

in dental implant. Furthermore, we recently reported that NanoZr has good biocompatibility 

due to adhesion-dependent osseointegration, however, precise molecular mechanism and key 

regulator gene(s) are remain unclear. 
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The adhesion of anchorage-dependent osteoblast cells is a critical procedure for subsequent 

cell functions and activities pertinent to new bone formation.[16] Cell adhesion is the result of 

a cell-extracellular matrix (ECM) - biomaterial binding, composed of two different phenomena. 

The first phase is called the attachment phase, which occurs quickly using physical and 

chemical factors, such as hydrogen bond, ionic forces and van der Walls forces. The second 

phase lasts in a long period involving numerous proteins, including ECM proteins, cytoskeleton 

proteins, and cell membrane proteins.[17,18]  

Cell membrane protein also works as a membrane receptor, primarily mediates cell 

adhesion to ECM proteins. It has been widely known that integrin is the main cell surface 

adhesion receptor which can detect the exposure of the Arg-Gly-Asp (RGD) motif of ECM 

proteins specifically. The results of competitive inhibition test using synthetic RGD peptides 

showed that RGD peptides remarkably inhibited the adhesion of osteoblast on hydroxyapatite 

but not on titanium.[19] In our previous study, we found that initial osteoblast adhesion onto 

the zirconia surface is regulated by integrins and heparin-sensitive molecules.[20] Consistently, 

some studies even indicated that the binding to integrin receptor alone is not enough to promote 

cell adhesion without the participation of heparan sulfate proteoglycans (HSPGs).[21,22] 

The major type of transmembrane HSPG species of cells is the Syndecan family.[23] 

Recent studies showed that Syndecan is considered to be a co-receptor with integrin in cell 

adhesion.[24] There are four members of the Syndecan family in mammals, consists of 
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Syndecan-1 (Sdc-1), Syndecan-2 (Sdc-2), Syndecan-3 (Sdc-3) and Syndecan-4 (Sdc-4). It is 

reported that Sdc-2 and Sdc-4 is required for generating signals for the assembly of focal 

adhesions.[25–27] However, the detail role of each Syndecan family is not studied especially 

in cell adhesion including osteoblasts.  

This study aims to elucidate the role of Syndecan family in osteoblast adhesion onto the 

zirconia surface. The dental implant biomaterials in the next generation must be designed for 

supporting osteoblast adhesion. In this study, we use osteoblast-like cell line MC3T3-E1 to 

investigate the effect of the Syndecan family in cell adhesion onto the zirconia surface. 
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Chapter 2. MATERIALS AND METHODS 

2.1 Specimen preparation 

The disks 15mm in diameter and 1.5mm in thick of commercial pure titanium (CpTi, 

Nippon Steel Co. Japan), 3Y-TZP (Yamamoto Precious Metal Co. Japan), and NanoZr 

(Yamamoto Precious Metal Co. Japan) were used in this study. Each surface of the specimens 

was mirror-polished with aluminum oxide waterproof abrasive paper (200#, 400#, 600#, 800#). 

Then the disks were cleaned by sonication with acetone, ethanol, and deionized distilled water. 

After that, the specimens were treated under UV light lasted 30 minutes for each side by using 

a 15W bactericidal lamp (Toshiba, Tokyo, Japan), followed by immersion in 75% ethanol for 

10 minutes and ultrapure water for 3 minutes. Finally, the specimens were stored in an airtight 

container for further use.  

 

2.2 Cell culture 

MC3T3-E1 cells, osteoblast-like cells from rat calvaria were obtained (ATCC CRL-2594) 

and cultured in a sterile cell culture dish with alpha-modified minimum essential medium (α-

MEM, Nacalai tesque, Kyoto, Japan) supplemented with 10% FBS (fetal bovine serum, Gibco 

Life Technologies Inc., Grans Island, NY, USA) and 1% penicillin-streptomycin (Gibco Life 

Technologies Inc.). Cells were cultured at 37°C, 5% CO2, 95% humidity, and passaged at 80% 

confluence by using 0.25% Trypsin-EDTA (Gibco Life Technologies Inc.).  
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2.3 RNA interference 

Stealth siRNAs for mouse Syndecan-1 (Catalog No. #1, MSS209928; #2, MSS209929), 

Syndecan-2 (Catalog No. #1, MSS236834; #2, MSS236835), Syndecan-3 (Catalog No. #1, 

MSS238079; #2, MSS238080), Syndecan-4 (Catalog No. #1, MSS238085; #2, MSS238086), 

and Stealth RNAi Negative Control was purchased from Invitrogen. MC3T3-E1 cells were 

seeded at a density of 5×103 cells/well or 5×104 cells/well onto CpTi, 3Y-TZP, and NanoZr, 

then transfected with 40 pmol/well of indicated siRNA or Negative Control siRNA using 

Lipofectamine RNAiMAX (Invitrogen, UK). A 24-well-plate (Plate, Thermo Fisher Scientific) 

without specimens was taken to be a control group. After 48 hours of transfection, the efficiency 

of RNA interference (RNAi) was detected by quantitative RT-PCR analysis. 

 

2.4 Quantitative RT-PCR analysis 

Total RNA was extracted from osteoblast-like cells by using SingleShot Cell Lysis Kit (Bio-

Rad Laboratories, Inc. Hercules, CA, USA), and the cDNAs were synthesized using iScriptTM 

Advanced cDNA Synthesis Kit (Bio-Rad Laboratories, Inc. Hercules, CA, USA) following the 

manufacture’s protocol. Quantitative RT-PCR analysis was then performed with CFX96TM 

Real-Time PCR Detection System (Bio-Rad, USA) using SsoAdvacnedTM Universal SYBR® 

Green Supermix (Bio-Rad, USA). The sequences of PCR primers were listed in Table 1. 

Relative gene expression was calculated compared with the expression of GAPDH mRNA by 
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using comparative CT (DDCT) relative quantification method of qRT-PCR.  

 

2.5 Cell morphology analysis 

After RNA interference and incubation for 48 hours, the cells (5×103 cells/well) were fixed 

with 2.5% glutaraldehyde (Wako Pure Chemical Industries) for 30 minutes. Then dehydrated 

at a graded concentration of ethanol (15 minutes once at 50%, 60%, 70%, 80%, 90%, 95%; 2 

minutes twice at 100%) and dried. After sputter coating with gold-palladium, the surfaces were 

observed with accelerating voltage of 15kV and 100×, and 1,000× magnification by scanning 

electron microscopy (SEM, JSM-6390LA, JEOL Ltd, Tokyo, Japan). 

To investigate the actin cytoskeleton, the cells (5×103 cells/well) were fixed with 4% 

paraformaldehyde (Wako Pure Chemical Industries) for 30 minutes at room temperature, rinsed 

with PBS, permeabilized with 0.2% (v/v) Triton X-100 and blocked using 1% BSA (Bovine 

Serum Albumin, Sigma Aldrich Co., St Louis, MO, USA) for 30 minutes. The cells were then 

stained with Rhodamine-Phalloidin (Cytoskeleton Inc., Denver, Co, USA) for 30 minutes at 

room temperature, followed by rinses with PBS, finally stained with DAPI Fluoromount-G 

(DAPI, Southern Biotech Co., Birmingham, AL, USA) for 5 minutes. The cell cytoskeleton and 

nucleus were observed by laser scanning confocal fluorescence microscopy (LSCM, TCS SP8, 

Leica Microsystem Co., Tokyo, Japan). The cell spread area ratio was traced in all samples, the 
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ratio of cell spread area between si-Sdc group and si-NegCont group was integrated using an 

image analysis software (ImageJ, National Institutes of Health, USA).  

For immunostaining of vinculin protein, cells (5×103 cells/well) were first incubated with 

rabbit-anti-mouse vinculin monoclonal antibody overnight and then treated by a goat-anti-

rabbit secondary antibody (Invitrogen, Thermo Fisher Scientific, MA, USA). Finally, samples 

were observed using LSCM. 

 

2.6 Cell proliferation analysis 

After 24h and 48h post-transfection of Syndecan, the cell counting kit (CCK-8, Dojindo, 

Kumamoto, Japan) reagent (50µL) was added into each well diluted by 500µL α-MEM medium 

and incubated for 1 hour. A blank control well containing only CCK-8 reagent and α-MEM 

medium was set. Subsequently, 100µL of the reaction solution was transferred into a 96-well-

plate in triplicate. The optical density was measured with a microplate reader (Bio-Rad iMark 

Microplate Reader, Hercules, CA, USA) at a wavelength of 450nm.  

 

2.7 Statistical analysis 

All of the experiments were repeated at least three times using independent sample. 

Statistical analysis was performed using one-way ANOVA followed by the Student-Newman-

Keuls (SNK) multiple comparison test. The significant level was set at 0.05. 
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Chapter 3. RESULTS 

3.1 Quantitative RT-PCR 

The results of the qRT-PCR analysis (Figure 1A) showed that Syndecan-1 was attenuated 

than that of the Negative Control group (P<0.05) by both #1 and #2 RNA interference. The 

knockdown effect is occurred specifically against Sdc-1 without affecting other Syndecans, 

indicating that off-targeting effects was not observed among Syndecan family members. 

Significantly increased expression in response to knockdown of other gene were observed in 

some samples. The transfection efficiency remained consistently on four kinds of materials 

(Figure 1B-D). Similar results were obtained in all other members of the Syndecan family (Sdc-

2, Sdc-3, and Sdc-4). These results suggested that RNA interference was successfully 

performed among Syndecan family members. The result also indicated that the all Syndecan 

family members are widely expressed in MC3T3-E1 cells. 

 

3.2 Cell morphology and cell adhesion 

Cell morphology and actin cytoskeleton of 48h post-transfection were showed by SEM and 

LSCM (Figure 2 and Figure 3). As described above, we screened target genes whether both 

RNAi for #1 and #2 shows same reaction or not. Cell morphology of MC3T3-E1 cells tended 

to be irregularly triangular and thinner than the Negative Control group on different surfaces. 

On the NanoZr surface, the cells were small and spherical after Syndecan-2 knockdown. 
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Moreover, the osteoblastic cells appeared more micro-filaments than the Negative Control 

group on each surface, and these long-spreading micro-filaments built more communication 

branches on cell-to-cell contacts. After staining vinculin protein, we found that vinculin existed 

in every transfected group (Figure 4). These changes in cell morphology seem to be more 

obvious on zirconia and titanium in comparison to the plate. Additionally, after the RNA 

interference of Syndecan, the focal adhesion was not impaired.  

 

3.3 Cell proliferation 

As Figure 5A shows, on the surface of NanoZr, the absorbance value of cells in si-Sdc2 (#1, 

#2) group showed significantly lower than the Negative Control group after 24h transfected 

(P<0.05). The absorbance values between the Negative Control group and transfected groups 

showed no significant difference on the surface of CpTi, 3Y-TZP, or Plate. Similarly, at 48h 

time point, the absorbance value of cells in si-Sdc2 (#1, #2) group on NanoZr showed 

significantly lower than the Negative Control group (Figure 5B). Meanwhile, compared with 

two time points, the absorbance value of cells increases on every material. It suggests that the 

MC3T3-E1 cells still growing on all the surfaces from 24h to 48h even after Syndecan gene 

silencing. 
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Chapter 4. DISCUSSION 

Zirconia dental implant has great advantages in metal-free dentistry and esthetic dentistry. 

3Y-TZP, a form of zirconia-oxide, is widely used in dentistry as prosthetic devices decades ago. 

In 1985, Tsukuma [28,29] reported that ceria-stabilized tetragonal zirconia (Ce-TZP) shows a 

high toughness and a complete resistance to LTD in comparison to those of Y-TZP.[30] In 1998, 

a Ce-TZP based nanostructured composite (NanoZr) was developed.[31] As an oxide ceramic 

material, zirconia dental implant treatment can provide an aesthetic outcome in patients relying 

on its satisfactory color and excellent biocompatibility.  

Osteoblasts are anchorage-dependent cells, and the attachment of osteoblasts to the substrate 

material is the physiological basis for cell proliferation, cell migration, and cell 

differentiation.[32] To evaluate the biocompatibility or biological activity of dental implant 

material, the prerequisite point is its ability to actively induce osteoblasts to attach to the 

material surface.[33] However, the mechanism of osteoblast cell adhesion onto zirconia is still 

incompletely understood. In the presented study, we try to investigate the molecular mechanism 

of osteoblast-like cell adhesion onto the zirconia surface.  

In response to interaction signals, osteoblast changes both cell shape and cell adhesion to 

material surfaces, which determined by rearrangements of the actin cytoskeleton.[34] After 

silencing Syndecans, osteoblast changes both its shape and adhesion state (Figure 3). MC3T3-

E1 cells can’t spread completely on CpTi, 3Y-TZP, and NanoZr with low expression of 
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Syndecan 1-4. Osteoblasts became irregularly triangular or elongated in shape with the 

formation of filopodia (Figure 3C). Markedly, osteoblasts on the NanoZr surface after 

transfected with Syndecan-2 showed loss of its normal spindle shape and cell polarity (Figure 

3D). It suggests that Syndecan-2 is responsible for NanoZr specific morphology regulator. 

Syndecans 1–4 are a family of transmembrane proteins composed of a core protein and 

glycosaminoglycan chains. Although the four syndecans have common functions, they have 

different tissue distributions and appear to be connected to different signaling pathways. 

Syndecan-2 is the most abundant syndecan of mesenchymal cell types. In contrast to other 

syndecans, syndecan-2 expression increases during osteoblast differentiation. Mechanistically, 

syndecan-2 exerts multiple functions in cells of the osteoblast lineage as it serves as a co-

receptor for fibroblast growth factors and Wnt proteins and controls cell adhesion, proliferation, 

differentiation and apoptosis.[35] Moreover, the chemical composition of NanoZr is different 

from the CpTi and 3Y-TZP, as well as its physical properties, such as, surface energy or micro 

current. These might be the possible reasons of syndecan-2 specifically regulates the 

osteoblastic cell adhesion on NanoZr. 

 Interestingly, the vinculin staining results showed that the focal adhesion still exists under 

the condition of Syndecan knockdown (Figure 4). Vinculin is known as an important marker of 

focal adhesion.[36] therefore MC3T3-E1 cells can still organize focal adhesion under the low 

expression of Syndecan, but the living condition was impaired. These results suggest that 
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cellular membrane interface Syndecan-2-mediated cytoskeletal conformation regulates signal 

transduction of cell viability from zirconia surface. 

Generally, F-actin preforms in three forms: when assembled in long bundles, it becomes 

finger-like protrusions of the plasma membrane called filopodia; when assembled as a 

meshwork, it becomes sheet-like protrusion known as ruffles or lamellipodia; when arranged 

in bundles contacting with attachment plaques, actin stress fibers exert force against the 

substratum.[37] According to the LSCM results, osteoblastic cells showed more filopodia but 

few lamellipodia after the RNA interference of Syndecan. The filopodia owned longer 

protrusions, it might be a possible reason for increasing communicating branches between cell-

to-cell contacts. Based on the above results, Syndecan-2 may play a role in cell adhesion by 

affecting the organization of actin cytoskeleton, and by controlling the formation of 

lamellipodia through a Heparin-dependent mechanism on NanoZr. 

According to the cell proliferation results from 24h to 48h culturing, the absorbance values 

continued growing on the CpTi, 3Y-TZP, NanoZr, and Plate. The absorbance values of cells 

on CpTi is higher than that on NanoZr, it has been reported that in a long-term animal 

experiment, the zirconia implants could osseointegrate to the same extent as titanium 

implants.[38] Intriguingly, at times point 24h and 48h, the absorbance value of MC3T3-E1 cells 

in si-Sdc-2 (#1, #2) groups showed significantly lower than the Negative Control group (P<0.05) 

on NanoZr. It shows that Syndecan-2 affects the cell proliferation of MC3T3-E1 on NanoZr. It 
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is notable that Syndecan affects cell morphology on CpTi and 3Y-TZP, but little on cell 

proliferation. Based on these results, we suppose that Syndecan-2, a Heparin-sensitive protein, 

specifically affects cell proliferation of osteoblasts via cell morphology regulation on NanoZr. 

Further, these results suggest that Syndecan-2 mediates mechanobiological regulation of 

osteoblast integrity on NanoZr. 

From qPCR results, we observed when silencing Syndecan-2, the expression level of 

Syndecan-4 increased. Similarly, silencing of Sdc-1 and Sdc-4 increased Sdc-2 expression on 

NanoZr (Figure 1D). However, cell morphology or cytoskeleton, and proliferation on NanoZr 

were not affected in the same condition (Figure 3D, 5A, 5B), suggesting that the basal 

expression level of Sdc-2 is necessary and sufficient for the maintenance of Syndecan-2 

function in our experimental model. This suggests that overexpression of wild-type Sdc-2 may 

not work as gain-of-function phenotype. Based on protein sequence homology, Syndecan-2 and 

Syndecan-4 are from one subfamily. Consistent with our results, it has been reported that 

Syndecan-2 might be regulating its close family member, Syndecan-4.[39] This raise the 

possibility that increased expression of Syndecan-4 (in the absence of Syndecan-2) modifies 

cellular activity. However, it is often the case that a silencing of some gene affects expression 

of other gene(s) in various mechanism even in same gene family.[40,41] The ideal situation is 

single-knockdown of Syndecan-2, from this point of view, it might be a limitation of this 

experiment. 
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In the future study, the examination of the relationship between Syndecan and Integrin on 

cell adhesion onto the NanoZr surface, as well as the Heparin-related signaling pathway on cell 

adhesion is needed to be investigated. 
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Chapter 5. CONCLUSION 

Within the limitation of this study, the results suggested that Syndecan1- 4 can be expressed 

on osteoblastic cells and affects the cell adhesion on CpTi, 3Y-TZP, and NanoZr in varying 

degrees. Syndecans may play a role in cell morphology and cell adhesion by re-organization 

the actin cytoskeleton, and possibly by transferring signals from cell to material surface in a 

Heparin-dependent mechanism. Syndecan-2 may affect the osteoblastic cell adhesion more 

remarkable on NanoZr, it could also partially regulate osteoblastic cell proliferation. 
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Tables and Figures 
 

 

 

Table 1   Primer sequences used in qRT-PCR 

Gene Primers 

Syndecan-1  

 

Syndecan-2 

 

Syndecan-3 

 

Syndecan-4 

 

GAPDH 

F 5′ AAC CAA ATC TGG ACG GCA AA 

R 5′ CTA CTT ACG GGC CGC CAA A 

F 5′ TGT AGG ACC AGA CCA AGA AAA CAG 

R 5′ TTC TCT GGC GCC TGC TCT AG 

F 5′ CGT AGG CCA CTG TCA TTG TCA 

R 5′ TGG TTA GAG GAG CCA GAT GCA 

F 5′ CTT CCT CCA GGC GCT CTA GA 

R 5′ CAC GTA GTC TGA AGT GAA CCG AGT T 

F 5′ GGT GAA GGT CGG TGT GAA CG 

R 5′ CTC GCT CCT GGA AGA TGG TG 
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Figure 1. The expression level of Syndecan of MC3T3-E1 cells on four different surfaces (Plate, 

CpTi, 3Y-TZP and NanoZr) at 48h post RNAi.  

Notes: MC3T3-E1 cells were transfected with a Negative Control siRNA or with siRNA that 

targets Syndecan-1 (#1, #2), Syndecan-2 (#1, #2), Syndecan-3 (#1, #2) and Syndecan-4 (#1, 

#2). Two different sequences of each of Syndecan were used respectively. (A) The expression 

level of Syndecans after transfected with si-Sdc1 (#1 and #2). (B) The expression level of 

Syndecans after transfected with si-Sdc2 (#1 and #2). (C) The expression level of Syndecans 

after transfected with si-Sdc3 (#1 and #2). (D) The expression level of Syndecans after 

transfected with si-Sdc4 (#1 and #2). The results shown are the means of three independent 

experiments. * A statistical significant compared to the Negative Control group (p < 0.05, one-

way ANOVA).  
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Figure 2. SEM observation of cell morphology of MC3T3-E1 cells cultured on different 

surfaces after 48h RNA interference treatment.  

Notes: (A) Plate; (B) CpTi; (C) 3Y-TZP; (D) NanoZr. MC3T3-E1 cells were transfected with 

a Negative Control siRNA or with siRNA that targets Syndecan-1 (#1, #2), Syndecan-2 (#1, 

#2), Syndecan-3 (#1, #2) and Syndecan-4 (#1, #2). Two different sequences of each of 

Syndecan were used respectively. Magnification: 100x and 1000x. 
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Figure 3. Observation of actin cytoskeleton and nucleus of MC3T3-E1 cells cultured on 

different material surfaces after 48h RNA interference treatment.  

Notes: (A) Plate; (B) CpTi; (C) 3Y-TZP; (D) NanoZr. MC3T3-E1 cells were transfected with 

a Negative Control siRNA or with siRNA that targets Syndecan-1 (#1, #2), Syndecan-2 (#1, 

#2), Syndecan-3 (#1, #2) and Syndecan-4 (#1, #2). Two different sequences of each of 

Syndecan were used respectively. Magnification: 400x. The graph shows the MC3T3-E1 cell 

spread area ratio between si-Sdc group and si-NegCont group. * A statistical significant 

compared to the Negative Control group (p < 0.05, one-way ANOVA).  
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Figure 4. Organization of actin stress fibers and focal adhesion of MC3T3-E1 cells cultured on 

different material surfaces after 48h RNA interference treatment. 

Notes: (A) NanoZr; (B) Plate, 3Y-TZP, CpTi. MC3T3-E1 cells were transfected with a 

Negative Control siRNA or with siRNA that targets Syndecan-1 (#1, #2), Syndecan-2 (#1, #2), 

Syndecan-3 (#1, #2) and Syndecan-4 (#1, #2). Two different sequences of each of Syndecan 

were used respectively. Magnification: 400x. 
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Figure 5. Cell proliferation of MC3T3-E1 cells cultured on different material surfaces (Plate, 

CpTi, 3Y-TZP and NanoZr) after RNAi.  

Notes: MC3T3-E1 cells were transfected with a Negative Control siRNA or with siRNA that 

targets Syndecan-1 (#1, #2), Syndecan-2 (#1, #2), Syndecan-3 (#1, #2) and Syndecan-4 (#1, 

#2). Two different sequences of each of Syndecan were used respectively. (A) Absorbance 

value at 24h post RNAi; (B) absorbance value at 48h post RNAi. The result shows the means 

of three independent experiments. * A statistical significant compared to the Negative Control 

group (p < 0.05, one-way ANOVA).  
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