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Abstract

The objective of biometric recognition is the automatic authentication of indi-

viduals using their physiological or behavioral traits, e.g., fingerprint, iris, face,

palmprint, and voice. Nowadays, various biometric traits are being employed for

recognition in a wide range of applications, such as ATM services, authentication

in personal devices, immigration controls, surveillance operations, etc. Biometric

recognition is of great importance because it provides higher security, improves

user convenience and can reduce the cost of business operations. The current

deployment of biometric systems has reached a large population of users; and

with it, the challenges and demands for higher recognition performance have

significantly increased. In order to attain higher performance, a great deal of

research has focused on improving accuracy, speed, and robustness of recognition

methods. At the same time, recognition methods have to be practical so as to

yield high performance with limited processing and memory resources.

Biometric recognition using phase-based image matching has demonstrated

effectiveness across multiple biometric traits, such as fingerprint, iris, face, and

palmprint. Phase-based image matching employs phase features computed by

means of 2D Fourier transform of images. Recognition using phase features can

achieve higher recognition accuracy than other techniques because phase features

convey a detailed description of the biometric textures. In practice, for a wide

variety of biometric traits, highly robust recognition is possible by (i) applying

the phase-based matching technique to a set of local regions extracted from

the given images and by (ii) introducing a coarse-to-fine strategy for searching

corresponding pairs of local regions. This approach utilizes the facts that the

local regions are less sensitive to nonlinear image deformations and occlusions

frequently appeared in practical biometrics problems and that phase features

offer high discrimination capability even for local textures.

Although biometric recognition using phase-based image matching has promising

accuracy and robustness, there are two particular performance limitations. The

first limitation is its high computational cost that results from the computation

of a large number of local phase features across the given images and the



evaluation of local correlation functions defined on the local phase features. This

computational cost is impractical in large-scale one-to-many recognition scenario,

i.e., biometric identification, where an input image must be compared to all the

images registered in the system. The second limitation is that the performance

of phase-based image matching is sensitive to image quality and tends to decline

on images that include regions with poor texture. Thus, for images with

heterogeneous textures, such as periocular images, the high recognition accuracy

attained by regions with distinct textures may be degraded significantly by the

presence of regions with low-quality texture. This dissertation presents two

major contributions that address each of the aforementioned problems, and it

demonstrates practical impacts of the proposed ideas in real application scenarios:

(i) designing a palmprint identification algorithm with reduced computational

complexity and (ii) designing a periocular recognition algorithm with improved

accuracy.

The first contribution of this dissertation is to propose a phase-based palmprint

identification method that addresses the computational complexity in one-to-

many comparisons. In order to reduce the computational cost for evaluating

the vast number of phase-based correlation functions required in large-scale

biometric identification, it is necessary to separate the overall computation into

redundant and non-redundant parts. We found that the key for attaining such

separation is to efficiently encode phase features by a set of weight vectors

corresponding to a small number of common patterns. For this purpose, we

propose a compact representation of phase features using Convolutional Sparse

Coding (CSC) as well as a fast evaluation technique for phase-based correlation

functions with this coding. On the basis of the proposed techniques, this

dissertation also shows overall design of a palmprint identification algorithm

applicable to large scale identification tasks; the algorithm effectively reduces

the computation time of phase-based palmprint identification in one order of

magnitude without significant degradation of identification accuracy.

The second contribution of this dissertation is to propose a phase-based peri-

ocular recognition method with improved accuracy. The periocular region is

the region surrounding the eye, and this special biometric trait has attracted

significant attention for recognizing individuals in unconstrained scenarios with

low user cooperation; typical use cases include surveillance applications and

immigration control applications. In order to achieve high recognition perfor-

mance for phase-based image matching on periocular images, we have to deal



with the heterogeneous textures of the periocular components. We found that

texture enhancement with variance normalization significantly improves repre-

sentation capability of phase features for images with heterogeneous textures,

such as those observed in the periocular region. Experimental evaluation using

public databases demonstrates the higher recognition accuracy of the proposed

method when compared with conventional methods. The proposed method

yields state-of-the-art recognition accuracy in periocular recognition.

The contributions presented in this dissertation expand the applicability of

phase-based biometrics and open new directions for future research.
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1
Introduction

Who are you? As simple as it may sound, this question has a significant

role in today’s society. Globalization, increase in population, and technological advances

have brought an everyday growing complexity to society where this question is made and

answered constantly. Concrete examples include: Are you the owner of this smart-phone?

Are you a wanted criminal? Are you authorized to enter to this facility? In response,

your identity can be verified by what you know, by what you have or, ultimately, by what

you are. Passwords can be forgotten or guessed; cards and keys can be misplaced, stolen

or duplicated; but physical and behavioral characteristics are intrinsic to the individuals

and, therefore, reliable for their authentication. The study of techniques and systems for

recognition of individuals through measurements of such characteristics is addressed by the

field of biometric recognition, also referred to, with arguable ambiguity, as biometrics.

Nowadays, several characteristics or biometric traits are being utilized for recognition.

Among the physical traits, there are fingerprint, face, iris, palmprint, palm veins, and DNA.

Among the behavioral traits, there are voice, keystroke, and gait. There is not a single

biometric trait perfect for all application scenarios, as each trait has different strengths and

weaknesses in terms of distinctiveness, public acceptance and ease of measuring, among

other performance attributes [1]. A suitable choice of a biometric trait, as well as sensor

and system considerations, might differ from scenario to scenario. However, the measured

or sensed data for most of these cases are collected in the form of image signals.
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1.1 Biometric recognition using image matching

Biometric recognition using image matching has become widely available with the advent

of imaging technologies and computing capabilities over the past decades [2]. Currently, it

is already a common characteristic in cellphones, laptops, ATMs, border control, terminals

and network access control, voting systems, subsidies and welfare entitlement systems, and

prison access systems for inmates and visitors alike [3]. Biometric recognition increases

the strength of security, provides greater convenience for users, can reduce the cost of

business operations, and detects and deters frauds. It is easy to implement with a variety

of commercial options for sensors and processing devices, such as low-cost tablets.

The current deployment of biometric systems has already reached a large population of

users. For instance, border control of United Arab Emirates reports that around 14 billion

iris cross-comparisons are carried out every day [4]; India Unique ID program combines

fingerprint and iris recognition, and it has an enrolled population of 1.2 billion of users [5].

Despite its continuously growing popularity and success, biometric recognition is far from

being a solved problem. On the contrary, with the spread of biometric applications, the

challenges have only increased. This is because the larger the population of users is, the

higher the performance requirements for the biometric system are. These requirements can

be roughly simplified to: recognition accuracy, speed, convenience, system resources and

robustness to attacks (such as spoofing). From the system requirements, high recognition

accuracy is crucial in order to distinguish individuals with similar traits which are more

common in large populations. At the same time, speed and convenience are not less

important, but they are usually in conflict with the accuracy objective. Thus, the concept

of high-performance biometric recognition, as regarded in the title of this dissertation,

comprehend not only accuracy, but the other performance requirements as well.

Recognition involves sensing, preprocessing and image matching. The sensing step deals

with the capture of raw images that contain the intended trait. Preprocessing consists in the

extraction of the image area with the intended trait and the normalization of its properties

such as scale, rotation, and contrast. Image matching essentially consists in computing

feature vectors and comparing them to determine whether the images correspond to the trait

of a specific person. Relaxing the constraints of the sensing setup improves user comfort

and system convenience, but introduces variations that affect recognition accuracy. In

palmprint recognition, for example, contactless acquisition introduces transformations due

to the angle of the palm surface with respect to the camera and nonlinear deformations in

the palmprint texture due to hand pose variations. Likewise, unconstrained face recognition

has to deal with more complexity due to the 3D structure/shape of the face in addition to



1.1 Biometric recognition using image matching 3

occlusions related to scarves, hats and eyeglasses. In general, these problems are partially

addressed by preprocessing but their burden ultimately falls on the image matching step.

Several feature vectors have been proposed for image matching. Trait-specific features

such as minutia points can describe the ridge patterns in fingerprints. Minutiae are

deviations of a single friction ridge, such as bifurcation, termination and crossovers [6].

However, minutia points do not have equivalents across other traits and cannot describe

other important skin features like creases in palmprint. Features based on Gabor filters

can describe the intricate texture pattern of the iris. The IrisCode method encodes and

matches these features very efficiently [7]. It exhibits high recognition accuracy and fast

matching speed. This fact has inspired other methods, such as Competitive Code [8] and

Ordinal Code [9] in palmprint recognition and finger-knuckle recognition. However, these

methods are not robust enough against deformations caused by hand pose variations. Face

recognition using histograms of Local Binary Pattern (LBP) [10] showed robustness to facial

expressions and illumination conditions. This method proved to be fast and versatile across

multiple biometric traits, but its accuracy is limited. Scale-Invariant Feature Transform

(SIFT) [11] proved effective in face and palmprint recognition [12]. SIFT is very robust

against the problems of unconstrained recognition across different traits. Its accuracy

increase with the number of feature points but this number depends on the texture quality

of the image. Other methods learn the features from training data. In face recognition,

for example, subspace and manifold methods have been largely studied [13, 14]. Recently,

neural networks are being used as a general method for feature extraction on various traits

and scenarios [15, 16]. These methods require a considerable amount of training samples

which might not be available or representative of the intended scenario.

A highly accurate signal/image matching technique known as Phase-Only Correlation

(POC) has a notable potential for biometric recognition. It utilizes phase information as

feature vectors which can convey a detailed description of biometric textures. Biometric

recognition using phase-based image matching has already accomplished high recognition

accuracy and a considerable degree of robustness across different biometric traits [17].

Although it has a comparatively advantageous trade-off, it does not satisfy all the high

performance requirement sought for applications with large population of users. This

dissertation further develops the potential of phase-based image matching and contributes

to its applicability on a wide range of scenarios.
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1.2 Phase-based image matching

The research group to which the author belongs has focused on developing algorithms

using POC. POC measures similarity and translational displacement between two signals

in the form of a correlation function, i.e., POC function. The main difference with a

cross-correlation function is that a POC function is computed using the phase component

of the Fourier transform of the signals by normalizing the amplitude component or setting

it to a predetermined value. POC functions display a sharp and distinctive peak when

the signals have a consistent degree of similarity, e.g., images of the same palm. POC

was introduced by Kuglin and Hines in 1975 [18] and its importance was identified by

Oppenheim et al. 1981 [19]. Oppenheim pointed out that texture appearance or image

information is mostly contained in the phase component of the Fourier transform. From the

early 2000’s, the research group has been developing algorithms to exploit POC’s potential

for image registration. Image registration is a fundamental task in computer vision that

consists in finding the correspondence of pixels or coordinates between images. Takita et

al. 2003 [20] accomplished sub-pixel registration by fitting an analytic model of the POC

function. Then, Takita et al. 2004 [21] proposed a robust and accurate image registration

technique that employs a coarse-to-fine strategy to find corresponding points between

image pairs. These techniques allow accurate and robust 3D measurements [22] and motion

estimation [23]. Ito et al. 2004 [24], 2005 [25] and 2006 [26] proposed and developed a

variant of POC, Band-Limited POC (BLPOC), for fingerprint recognition. Miyazawa et al.

2005 [27] followed with a similar development for iris recognition. Motivated by Takita et

al. [21], Ito et al. proposed phase-based correspondence matching for palmprint recognition

[28] and for face recognition in a later work [29]. Aoyama et al. 2013 [17] formalized

this recognition method and demonstrated the versatility of phase information to describe

different biometric textures.

Biometric recognition using phase-based correspondence matching combines a coarse-

to-fine correspondence search strategy with local region matching. Local regions are less

affected by global transformations between images, illumination conditions and occlusions.

Coarse-to-fine search using resolution pyramids can solve large translational displacements

robustly. However, research on phase-based correspondence matching is far from being

complete as there are performance limitations that remain to be studied.

This dissertation addresses two important problems related to the performance limita-

tions of phase-based correspondence matching: The first problem derives from its relatively

high computational cost, and the second problem is related to the degradation in accuracy

of POC on images with poor texture. Each problem is addressed in a representative
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application scenario, i.e., palmprint identification and periocular recognition, respectively.

In addition, this dissertation includes and study on score-level fusion for recognition using

multiple biometric traits. Such multibiometric recognition can overcome the limitations

of recognition using a single trait, e.g., not universal across large populations of users,

susceptible to spoofing attacks.

1.2.1 The drawback of phase-based biometric identification

In order to clarify this problem, we first explain the operation modes of biometric recognition

systems, namely, verification mode and identification mode [30]. In the verification mode,

the identity claimed by a user is verified by comparing a test image of the user trait

with an image corresponding to the claimed identity. Identification mode, on the other

hand, is to find the identity of the user among the identities registered in the systems

by comparing a test image of the user trait with all the images registered in the system.

Operation in verification mode is also referred as one-to-one recognition, while operation in

identification mode is also known as one-to-many recognition. Clearly, the computational

cost of identification increases with the number of enrolled users while the computational

cost of the verification is constant regardless of such number.

The computation of a single POC operation is relatively efficient due to the Fast

Fourier Transform (FFT), but accurate recognition using phase-based correspondence

matching involves a considerable number of POC operations for local comparisons. The

computational cost of phase-based correspondence matching in the verification mode is

acceptable. However, in the identification mode, the computational cost is significantly

high, specially when a large number of users is enrolled in the system. As a consequence, the

identification time of phase-based correspondence matching is impractical, if not prohibitive.

To avoid this problem, conventional identification methods employ feature vectors with a

minimal description of the biometric texture. Instead, phase information conveys a very

detailed description of the biometric texture.

We address this problem in the scenario of palmprint identification due to its particular

advantages. The palms of the human hands contain ridges, creases and wrinkles over an

area larger than fingerprints [31]. Palmprint images can be captured by a simple camera

setup instead of a specialized scanner, and palmprint recognition is convenient to users in

commercial applications as their hands becomes their ID cards.
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1.2.2 The drawback of phase-based image matching with hetero-

geneous textures

The second problem is regarding the comparison of images with low-quality textures.

Although POC is effective across various biometric textures, its performance degrades

significantly when it is applied to regions with poor texture. This is because phase features

are not suitable for describing texture details that are minute and contribute poorly to

the overall pixel variance. Consequently, POC’s performance degrades on heterogeneous

texture where the poor texture regions contribute negatively to the accuracy attained by

regions with rich texture.

We address this problem in periocular recognition. The periocular region – the region

surrounding the eyes – has attracted a great deal of attention for recognition in scenarios

where iris recognition and face recognition are not reliable. Iris recognition requires high

quality images that are difficult to acquire at the distance; and it can be argue that face

recognition is strongly affected by occlusions, facial expressions, and lighting variations.

The periocular region is the part of the face with highest discrimination performance. It

has a heterogeneous texture, i.e., its components exhibits different strengths in texture

appearance. For example, while eyebrows exhibit a very distinctive texture appearance, the

facial skin might exhibit a poor texture appearance due to low contrast of minute features.

Effective periocular recognition has to deal with partial occlusions caused by eyeglasses,

specular reflections, hair and hats among others; also, it has to deal with variations in head

pose and facial expression.

1.2.3 The limitations of a single biometric trait

In the appendix of this dissertation, we consider a problem that is inherent to biometric

recognition with a single biometric trait. A single trait might not be a universal characteristic

since not everyone has it, and it can be less accurate for certain groups of people; such

as elderly, racially homogeneous populations, relatives and twins [32]. Recognition with

a single trait has limited accuracy and is susceptible to spoofing. The answer to these

limitations is to employ multiple biometric traits, i.e., multibiometric recognition. The

limitations of a single trait can be overcome by combining multiple sources of information.

For this purpose, information can be combine at any step, or level, of the recognition process.

For example, we can fuse the preprocessed images, the feature vectors, the matching scores,

or the decisions of each trait. Among these levels, fusion at score-level is more effective

since scores comprise most of the matching information in a simple scalar value. However,

an improvement over the accuracy of a single trait is not ensure since scores have different
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distributions, and the complexity of the recognition system growths with the number of

biometric traits. Phase-based correspondence matching is appealing for multibiometric

recognition due to its effectiveness across different biometric traits, although there are

still no studies considering it. Moreover, comparative research about the performance of

different recognition methods on multibiometric recognition is limited.

There is an important motivation for using the same algorithm for multiple traits,

i.e., phase-based correspondence matching, instead of specialized algorithms. Using the

same algorithm simplifies the implementation of a multibiometric system as opposed to the

implementation with specialized methods which adds hardware complexity and requirements

to the system.

1.3 Objectives and contributions

This dissertation aims to expand the performance capabilities of phase-based image matching

through two objectives. The first objective is to solve the problem of one-to-many comparison

within identification for phase-based image matching. This is to reduce the computational

complexity of identification, which increases with the number of enrolled users, so that

identification can be performed in a practical time. The second objective is to attain high

recognition accuracy in phase-based periocular recognition. For this purpose, we have to

address the performance degradation of phase image matching due to the heterogeneous

texture within periocular images. This dissertation comprises two main contributions:

• (i) A practical method for phase-based palmprint identification with sparse

representation:

This method can perform palmprint identification in a practical time with no sig-

nificant detriment of the high recognition accuracy of phase-based correspondence

matching. The method utilizes a fast phase-based image matching derived from

convolutional sparse coding of phase features. In addition, we propose an optimization

algorithm for learning the convolutional codes necessary for fast phase-based image

matching. The sparse representation also reduces the storage requirements for the

users’ biometric data. The strategy of this identification method can be extended to

similar methods in the field of correlation pattern recognition [33].

• (ii) A highly accurate method for phase-based periocular verification with

texture enhancement:

This method combines phase-based correspondence matching with a texture enhance-

ment technique based on variance normalization. Variance normalization successfully
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equalizes the heterogeneous texture within the periocular region and provides a clear

improvement over recognition without texture enhancement. This performance im-

provement can be translated in phase-based recognition using other biometric traits.

To the best of the author’s knowledge, the proposed method accomplishes the highest

recognition accuracy in the literature for two public databases.

We append to this dissertation a study on score-level fusion of multibiometric recognition

using phase-based correspondence matching (PB-CM). This study presents a comprehensive

experimental evaluation of score-level fusion for recognition using iris, face, palmprint

and finger-knuckle print. The experimental evaluation demonstrates that in comparison

with specialized methods, phase-based correspondence matching is advantageous in score-

level fusion, since it provides scores that yield a successful performance improvement for

score-fusion even with simple fusion rules.

1.4 Structure of the dissertation

This dissertation can be roughly divided into two parts. The first part comprises introduction

and background in chapters 1-3, and the second part comprises the main contributions in

chapters 4 and 5.

Chapter 2 presents the preliminaries of biometric recognition and image matching. This

chapter covers fundamental concepts, such as, biometric traits attributes and performance

metrics. It includes a brief revision of conventional recognition methods as well.

Chapter 3 describes the fundamentals of image matching using POC, and thoroughly

revises the Band-Limited POC properties. It presents a baseline algorithm for biomet-

ric recognition using phase-based image matching, namely, phase-based correspondence

matching.

Chapter 4 introduces a practical phase-based palmprint identification method using

convolutional sparse coding. The chapter presents a novel derivation of an efficient one-to-

many phase-based image matching from convolutional sparse coding of phase features. The

chapter also introduces a novel optimization algorithm for learning the sparse representation

required for the efficient one-to-many matching. This chapter includes an experimental

evaluation that demonstrated the effectiveness of the proposed method in comparison with

conventional methods.

Chapter 5 introduces a phase-based periocular recognition method that yields very high

recognition accuracy. This chapter reviews conventional methods for periocular recognition

before presenting the characteristic of the proposed method. The main characteristic is the

introduction of a texture enhancement for periocular images that improves the recognition
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performance. This chapter includes an experimental evaluation of the proposed method for

different parameters, as well as an elaborated comparative evaluation with conventional

methods.

Chapter 6 brings to an end the body of this dissertation with general discussions and

the respective conclusion.

Additionally, the Appendix presents a study on score-level fusion for multibiometric us-

ing phase-based image matching. The appendix covers the fundamentals on multibiometric

recognition, particularly, score-level fusion approaches. It includes a comprehensive experi-

mental evaluation and analysis that show the advantages of phase-based image matching

for score-level fusion of multibiometric recognition.
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2
Preliminaries of biometric

recognition

This chapter starts with a brief clarification of the term biometrics. Then it reviews the

fundamentals of biometric traits in Sec. 2.2 and biometric systems in Sec. 2.3. This chapter

also describes conventional biometric recognition methods in Sec. 2.4 and covers the basic

metrics for evaluation of recognition performance.

2.1 Biometrics

The first appearance of the term biometrics was at the beginning of the 20th century as

a synonym of biometry. Both words are derived from Greek words – bio – that means

alive and – metrics or metry – which means to measure or related to measure [31]. In

this sense, biometrics refers to the field of development of statistical and mathematical

methods applicable to data analysis problems in the biological and medical sciences [34].

Examples of this field are data analysis for agriculture field experiments, human clinical

trials, environmental studies, and variance between and within populations. Currently,

biometry fits better this description, since biometrics acquired another meaning in the

decade of the 80’s [35]. Jain and Ross in “Handbook of Biometrics” define biometrics as

“the sciences of establishing the identity of an individual based on physical, chemical or

behavioral attributes of the person” [30]. Notwithstanding, this dissertation is concerned

only with a narrow definition for biometrics or biometric recognition: “automated methods

of recognizing a person based on a physiological or behavioral characteristic” [36]. For
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simplicity, across this dissertation, we refer to these characteristics as biometric traits or

simply as traits.

2.2 Biometric traits

Some one said long ago that it is impossible to find two leaves exactly alike;

Nature never repeats herself. Select no matter what part of the human body,

examine and compare it carefully in different subjects, and the more minute

your examination is the more numerous the dissimilarities will appear: exterior

variations, interior variations in the bony structure, the muscles, the tracing of

the veins; physiological variations in the gait, the expressions of the face, the

action and secretion of the organs, etc. (Alphonse Bertillon 1896 [37])

The excerpt above suggests a natural potential of any part of the human body to be

used as a biometric trait. Detailed and precise measurements of a relatively invariable trait

of a person can, in principle, lead to uniqueness with clear distinction from any other person.

However, we have to rise the question: Is such measurement practical, or even meaningful?

In this sense, we must consider different performance attributes that determine the strength

and weakness of biometric traits. The followings are the attributes proposed by Jain et al.

[30, 31]:

• Universality: Everyone should possess the trait and be able to use it. However, birth

defects, accidents and customs might caused the loss or impede the use of a given

biometric trait.

• Distinctiveness/Uniqueness: The traits should provide sufficient distinction to discern

between any two individuals. Traits of twins and relatives can be very similar.

• Permanence: The trait should be sufficiently invariant over a functional period of

time. Some traits can change significantly in short period of time or not be stable for

some cases such as the face of infants.

• Measurability/Collectability: The trait should be measurable in a practical way, i.e.,

easy to acquire and digitize in a convenient manner to the user.

• Performance: The computational resources required to achieve an expected accuracy

and throughput (number of transaction that can be processed per unit time) of the

biometric system should suit the application’s budget.
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• Acceptability: The user population should be willing to present the trait to the

system.

• Robustness against circumvention/spoofing: The trait should be difficult, if not

impossible, to imitate or emulate using attacks, artifacts (e.g. fake fingers), or

mimicry in the case of behavioral traits. Likewise, the trait should be difficult to

alter or obfuscate so that users cannot evade recognition. Jain et al. [31, 38] refer

to this attribute by its opposing term, circumvention. We prefer to use “robustness

against/to” in order to maintain all the attributes as positive descriptions.

Notice that these attributes can not be separated from other factors, such as, the

availability of technologies (e.g., sensor, processors) and cultural standards, which can affect

in part these attributes. Table 2.1 shows a rough comparison of the attribute for common

biometric traits.

Figure 2.1: (a) Detection of three facial traits: (b) face itself, (c) periocular region, and (d)

iris.

This dissertation focus mainly on two traits, palmprint and periocular region, which

are dealt with in Ch. 4 and Ch. 5, respectively. These traits hold high potential for

authentication systems because of their flexibility, acceptance and advantageous convenience.

The periocular region can be regarded as a middle ground between face and iris; moreover,

periocular recognition is, in the practice, a form of partial face recognition. In Appendix A,

we consider for multibiometric recognition the traits face, iris, palmprint and finger-knuckle

print. Here, we briefly describe palmprint, iris, face and periocular region.
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Table 2.1: Comparison of biometric traits [31].
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DNA ⊚ ⊚ ⊚ △ ⊚ △ ⊚
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Ear © © ⊚ © © ⊚ ©
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2.2.1 Palmprint

The palm is defined as the inner surface of our hand, from the wrist to the root of the

fingers [39]. Its print, the palmprint, is the impression of the skin patterns of the palm.

A palmprint has a wider area than fingerprints and is rich in stable and unique features,

namely, friction or papillary ridges and flexion creases [40]. Friction ridges are permanent

thickenings of the epidermis in form of furrows. The purpose of the ridges is to increase

friction with other surface on contact. Palmar flexion creases are folding lines of the skin

and subcutaneous tissues during the movement of the palm and fingers. Most of the flexion

creases generate on the fetus before the friction ridges, and are permanent through a lifetime.

Flexion creases are divided into principal lines or major creases, and wrinkles (minor creases

and secondary creases). In Fig. 2.2, we can observe the major creases: thenar crease, distal

transverse crease, proximal transverse crease and sagittal crease [39, 41]. These are also

referred by their names in palmistry, an esoteric art for divination, as follows: the life line,

the heart line, the head line and the fate line, respectively [42, 43]. The wrinkles that

form after the friction ridges do not have the same degree of permanence but are relatively

stable. This also holds for wrinkles acquired after birth by frequent or intensive grip and

grasp activities. As a consequence, palmprint have many features of different scales that

are suitable for recognition. Palmprint recognition has a major role in forensic application

since about 30% of the latents found at crime scenes are those of palms [1]. More on the

importance on palmprint recognition is presented in Ch. 4.

2.2.2 Iris

The iris is the plainly visible pigmented ring-shaped membrane surrounding the pupil of the

eye. It consists of a muscular structure between cornea and lens that regulates the amount

of light transmitted to the retina by adapting the width of the pupil [36, 44, 45]. Irises

contain intricate details of arching ligaments, striations, furrows, ridges, crypts, corona,

freckles and a zigzag collarette [45]. These details form a rich random pattern that emerges

during gestation and is unique with no detectable or known genetic dependencies [1]. Irises

are uncorrelated between left and right eye of a single individual or eyes of monozygotic

twins [45]. In this way, iris images provide such distinctive features that the iris is argued

to be the most accurate biometric trait [36]. The iris pattern is formed in the third month

of gestation, and becomes stable around the eighth month [46]. The iris stays relatively

unchanged throughout a person’s lifetime excepting cases of trauma and certain rare diseases.

Iris recognition is highly universal since, only a very small part of the population is missing

both eyes, moreover, some blind people can use it [36]. Two ophthalmologists, Leonard
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Figure 2.2: Palm’s major creases or principal lines.

Flom and Arim Safir filed the first patent describing apparatus for iris recognition on visible

features in 1987. However, the first modern automated iris recognition was patented by Dr.

John Daugman of Cambridge University in 1984 [47]. He intensively developed algorithms

and techniques to encode iris patterns and compare them in an efficient manner [1].

2.2.3 Face

The face is the frontal portion of the human head which extends from the forehead to the

chin [31]. It is a perception center of the body as it includes the eyes for seeing, nose for

smelling, mouth for tasting, ears for hearing and skin with relatively high touch sensitivity.

It also reveals in a large extent gender, age, ethnicity, and emotional state of a person (e.g.,

happiness or anger). The face has two bones, the skull and jaw, and 44 muscles that are

not attached to the bones. This enables a great liberty of movement and thus uncountable

different facial expressions [14]. Face language, to some extent, is universal. Attention on

the face for aesthetics and arts comes natural as the face can convey either hidden or visible

beauty. The face is perhaps the most natural physical characteristic of the body for human

to human recognition. Even newborns can distinguish their mother’s face from other female

faces [14]. At early stages of infancy humans have acquired the ability to process faces

and differentiate facial attractiveness and facial expressions [14]. Thus, face photographs

are incorporated for authentication in various tokens such as ID cards, passports, and
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driver’s licenses. Automatic face recognition is passive, natural and noninvasive, and its

acceptability can be considered high since people are generally willing to share in social

networks their face images with face tagging options [13, 31]. Although we humans perform

it routinely and effortlessly in our daily lives, automatic face recognition still confront many

challenges specially when face images are acquired in unconstrained setups [13].

2.2.4 Periocular region

The periocular region refers to the area of the face that includes the eyelids, eyelashes,

eyebrow, and skin surrounding the eye [48].

Early indications of the potential of periocular region come from face recognition studies:

Smeraldi and Begun 2002 [49], Savvides et al. 2006 [50] and Heisele et al. 2007 [51]. These

studies evaluated person recognition performance using not only holistic-face images, but also

images of specific parts of the face. For example, Savvides et al. [50] shows that images of the

eye-region accounts for a recognition rate of 83%, (#of matches/#of test images)× 100%,

while holistic-face images only improve this rate by 3% (i.e., 87% recognition rate). In 2009,

Park et al. [52] explicitly proposed the periocular region as a biometric trait and, since then,

it has received considerable attention (for surveys see [53, 54, 55, 56]). Although periocular

recognition has attracted much attention, there is not a formal definition of the periocular

region by formal bodies such as the U.S. Commerce Department’s National Institute of

Standards and Technology (NIST). Thus, the extent of the periocular region and whether

it includes the eye, i.e., sclera and iris, varies across different studies [54, 55]. More on the

importance of periocular recognition is presented in Ch. 5.

2.3 Biometric systems

A biometric system measures one or more biometric traits of an individual (test user) in

order to determine or verify his identity [31]. Biometric systems have two operational stages,

the enrolment stage and the recognition stage. The enrolment stage has the following steps:

(i) acquisition of the raw biometric data from the user to be enrolled, (ii) preprocessing of

the biometric data, (iii) extraction of a discriminative feature vector, and store the vector

into the system’s database, hereon referred to as the gallery. Fig. 2.3 depicts the flow of

enrollment and recognition stages for the case of periocular recognition. The recognition

stage has the following steps: (i) acquisition of the raw biometric data from an user to be

tested, (ii) preprocessing of the biometric data, (iii) extraction of a discriminative feature

vector, and (iv) comparison of the feature vector against one or a set of vectors registered

in the database. From the result of this comparison, the system (v) decides and executes
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an action [30]. The implementation of these steps leads to corresponding five modules in a

biometric systems. (i) sensing module, (ii) preprocessing module, (iii) feature extraction

module, (iv) matching module1, and (v) decision module.

Enrolment

Accept/Reject

Periocular Region 

Extraction

Periocular Image

Sensing

Feature 

Extraction
Gallery

Recognition

Sensing

Feature 

Extraction
Matching

Eye Detection

Periocular Region 

Extraction

Periocular Image

Eye Detection

Figure 2.3: Flow diagram of a biometric system for the case of periocular recognition.

2.3.1 Sensing module

The sensor module defines the human machine interface, and it is essential to the performance

of the whole system [31] as it acquires the raw biometric data of the users. In this dissertation,

we are concerned only with images acquired by a camera sensor. The sensor module includes

an imaging device (digital camera or camcorder), light source(s), and a control mechanism

to trigger the acquisition or to track the user’s trait. Imaging devices have become cheaper

and their technology is continuously improving in order to increase the image resolution,

frame rate, and sensitivity. Early systems had very constrained interfaces. For instance, iris

recognition used to employ an adjustable mechanical rack to position the users’ head. Since

this affects user convenience, a great deal of research has focused in relaxing the constraints

for user-friendliness and non-intrusiveness without affecting the recognition accuracy. This

requires careful design of the sensor module and its camera setup. A less constrained system

requires the trait to be placed in a designated space for its acquisition, e.g., standing in

front of the camera for face/iris recognition. An unconstrained system could require the

user to just walk normally through a gate or portal while being recorded, and it would grab

the best frame(s) from the video. The problem with videos is that, for the same device,

video acquisition provides lower resolution. In surveillance application, one approach to

1The term matcher is also used to refer to the matching module or to the combination of feature

extraction and matching module.
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tackle the low resolution of video is to pair a static and a pan-tilt-zoom (PTZ) camera. A

PTZ camera dynamically zooms in to obtain close-up images of the target objects while

the static camera provides the wide field of view [31].

In settings with a fixed camera, the volumetric space where the trait can be captured

(range of standoff distance) is determined by field of view and the depth of field. The depth

of field (dof) is the distance in front of and beyond the subject that appears to be in focus

[44]. When dof is increased, the luminance is decreased. This makes the picture darker and

decreases the contrast of the image. This trade-off between image quality and depth of field

is inevitable. Thus, camera setups must be fine-tuned to operate in a specific setting [44].

Another interesting case is palmprint recognition with personal devices such as cellphones

[57] and tablets. In this scenario, the device aids the user by displaying a palm guide that

overlaps the image to be acquired. Other setups take advantage of the physical mechanisms

like door level setups for finger-knuckle-print acquisition [58].

Regarding the acquisition spectrum, biometric recognition is feasible in visible light

spectrum (VIS), infrared spectrum (IR) and near-infrared wavelength (NIR). NIR and IR

illumination have the advantages in low illumination environment and do not disrupt the

user since they are not visible. Also, biometric textures such as skin and iris can be more

stable in NIR acquisition.

2.3.2 Preprocessing

The purpose of preprocessing is to standardize the images for recognition so particular

conditions of the image do not influence the recognition. In general, it comprise of the

following steps: detecting the trait in the sensed image, extracting a trait image with

the region of interest and normalizing it. This normalization involves correcting scale,

rotation, alignment and illumination (photometric normalization). This process can vary

considerably from one biometric trait to another. Thus, well defined landmarks that are

relatively stable and robust for detection, i.e., fiducial points, are defined for the traits. For

example, face landmarks such as eye corners or nose tip are known to be mildly affected by

facial expressions [59]. They assist the detection of further landmarks such as the nostril

corners, the mouth corners, the end points of the eyebrow arcs, ear lobes, chin, etc. In face

recognition, we have to normalize the position of the face according to these fiducial points.

In the case of iris recognition, we have to detect the inner boundary between the iris and

pupil and the outer boundary between the iris and sclera, and then unwrap the iris region

to a normalized rectangular block of a fixed size using polar coordinate transformation

as it is shown in Fig. 2.1(d) [60]. Here, let us cover briefly palmprint preprocessing and

periocular preprocessing.
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2.3.2.1 Palmprint preprocessing

In Ch. 4, we employ the preprocessing method proposed in [61] to extract a palm region

from a hand image. This method consists of 5 steps: (i) binarizing the images, (ii) extracting

the contour of hand and/or fingers, (iii) detecting the fiducial points, (iv) establishing a

coordinate system, and (v) extracting the central part. We detect two valleys in the contour

of the fingers: the valley defined by index and middle fingers and the valley defined by

the ring and little fingers. The points at the valley bottoms are used as fiducial points in

the step (iii) to define the coordinate system. Observe in Fig. 2.4(a) the segment between

fiducial points as a solid line and its perpendicular bisector line as a dashed line. The

region of interest is a square region whose centroid is on the bisector line. We extract this

palm/palmprint region and normalize it to a fixed size. A scale factor for the centroid

coordinate and size of the region of interest is determined by the length of the segment,

i.e., the distance between fiducial points. In this manner, this procedure normalize scale,

rotation and translation to an acceptable degree.

Figure 2.4: Palmprint preprocessing [61]. (a) Detection of the region of interest in a palm

image: fiducial points (blue ’X’ mark), center of the region of interest (red ’x’ mark) and

region of interest (black box), (b) Gray-scale preprocessed image after normalization.

2.3.2.2 Periocular region preprocessing

Periocular detection and segmentation has become a research topic by itself, which inherits

the developments of iris detection. The following are some of the existing eye detection

methods:

- Wildes 1997 [63] based on the Hough transform.
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- Smeraldi and Bigun 2002 [49] based on features extracted with a Gabor filter bank.

- Viola and Jones 2004 [64, 65] based on AdaBoost. This method performs first face

detection, and then it detects and extracts the eye regions from the face.

- Bolme et al. 2009 [66] employ a correlation filter called Average of Synthetic Exact Filter.

- Boddeti et al. 2011 [67] employ a correlation filter called Unconstrained Minimum Average

Correlation Energy filter.

- Alonso-Fernandez and Bigun 2014 [68] proposed an eye detector using symmetry filters,

computed from symmetry derivative of a Gaussian, that does not require training.

Although many studies have used the pupil or the iris as reference, it has been pointed out

[69] that, as the eye is a moving part, this reference does not ensure alignment outside the

eye. Instead, the corners of the eyes can be effective even when the eyes are closed.

The topic of Ch. 5 is periocular recognition, but we focus in the recognition itself rather

than the preprocessing. For this reason, we employ manual detection of the pupil when

needed or images that are already segmented.

2.3.3 Feature extraction

Feature vectors used for biometric recognition can be roughly classified into two categories.

(i) Global features: these are extracted from the whole preprocessed image, for example, LBP

and Gabor-coding based methods like IrisCode. (ii) Local features: these are extracted from

a set of location or key-points using a limited surrounding area, for example, SIFT features

and fingerprint minutiae. In the case of phase features for phase-based image matching,

both global and local features have been considered. While the global phase-features are

suitable for limited cases such as fingerprint recognition [24], local phase-features are more

general and applicable for a broad range of traits and scenarios.

Features extracted and registered in the system’s gallery are also referred to as templates.

We employ this term in Ch. 4 to distinguish the features extracted during recognition stage

from those extracted during enrolment stage.

2.3.4 Feature matching

Feature domain can vary broadly according to the nature of the feature, but, in general, the

measures of similarity or dissimilarity are computed as scalar values. Similarity measures

are usually inner products between vectors while dissimilarity scores are usually distance

such as Euclidean distance between vectors or Hamming distance for binary feature vectors.

If the features are normalized, their distance and inner products are normalized too. Given
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two normalized feature vectors Va and Vb, we can find a direct relation between their

Euclideaan distance Dab and inner-product V†
aVb.

Dab = 2− 2V†
aVb, (2.1)

where V†
a is the Hermitian transpose of Va. Another common kind of score is a count of

successful matching of local features, e.g., number of feature vector pairs that have high

inner product values.

In the case of correlation methods, the correlation functions consist of inner-product

values. A correlation function can be interpreted as a series of inner-products between

images for different displacements. Thus, the computational cost of these methods is high

but it is alleviated by the efficiency of the Fast Fourier Transform. We will delve deeper in

this interpretation in Sec. 3.6.

As explained in the introduction chapter, there are two operation modes for recognition

systems. The mode determines the kind of comparison in the recognition stage. In

the verification mode, the system validates the identity claimed by the test user using a

one-to-one comparison. Thus, the system compares the features of the the input image

to the features of the registered image(s) corresponding to the claimed identity. In the

identification mode, the system determines the identity of the test user through a one-to-

many comparison. Thus, the system compares the features of the input image against

the features of all registered images. Therefore, feature matching in identification is

computationally expensive when a large number of registered images.

Finally, the decision module compares the matching score(s) provided by the matching

module. In the verification mode, the score is compared with a operational threshold. If

the score is higher the system executes an action such as grant access in access control

application. In the identification mode, the module selects the registered identities specific

to the highest scores. If the score values are greater than an operational threshold, the

module executes an action, for example, notifying the identities to authorities in watch list

applications. Also, the decision module can considerate confidence measures provided by

other modules.

2.4 Conventional image matching methods for biomet-

rics

We present here an overview of three kinds of methods: methods that employ Gabor-coding,

methods that employ Local Binary Pattern (LBP) and methods that employ SIFT matching.
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The image matching techniques of these methods have been applied to a considerable variety

of biometric traits.

2.4.1 Methods based on Gabor-coding

IrisCode has been notoriously successful in iris recognition. Its commercial success derives

from its computational advantages, including high matching speed, binomial impostor score

distributions and robustness against local brightness and contrast variations. For this reason

similar algorithms have been proposed to other biometric traits [70]. The Gabor functions

are Gaussian-modulated complex exponential functions that provide the best theoretical

trade-off between spatial resolution and frequency resolution [71]. This method encodes the

iris texture pattern by convolving the unwrapped iris image (see low part of Fig. 2.1(d))

with a Gabor wavelet or filter.

0° 30° 60°

90° 120° 150°

Palmprint Image Competitive Code

(a)
(b)

Figure 2.5: Competitive code example. (a) Elliptical Gaussian filters, (b) Palmprint image

and its competitive code.

The Gabor function for polar coordinates of unwrapped image is

G(ρ, ϕ, ω, σ, β) = exp

[

−π
(

ρ2

σ2
+

ϕ2

β2

)]

exp(jωϕ), (2.2)

where ρ is the radial coordinate and ϕ is the angular coordinate.

Let I(ρ, ϕ) be the polar-coordinate normalized iris image, then the filtered image h is

h(ρ, ϕ) = hreal(ρ, ϕ) + jhimag(ρ, ϕ) =

∫

ρ

∫

ϕ

G(ρ, ϕ, ω, σ, β)I(ρ, ϕ)ρdρdϕ (2.3)

The IrisCode consists of the phase encoding of h(ρ, ϕ) into 2 bits denoted as CI,Re and
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CI,Im as follows:

CI,Re =

{

1, if hreal(ρ, ϕ) > 0,

0, if hreal(ρ, ϕ) < 0,
(2.4)

CI,Im =

{

1, if himag(ρ, ϕ) > 0,

0, if himag(ρ, ϕ) < 0.
(2.5)

This is to quantize the phase information into four different levels, one for each quadrant of

the complex plane. Thus, an IrisCode template consists of an array of two bits values for

32× 32 coordinates of (ρ, ϕ).

The normalized Hamming distance between two IrisCode templates is used as a measure

of dissimilarity between two irides C1(i) and C2(i) where i = 1, . . . , 2048. The Hamming

distance is

DHamming =
1

2048

2048
∑

i=1

C1(i)⊕ C2(i), (2.6)

where ⊕ denotes the XOR operation. This measure is usually computed with a mask to

disregard noisy or occluded regions. A coding method similar to IrisCode has been proposed

for palmprint recognition.

The following equation correspond to the elliptical Gabor function:

G(x, y, θ, ω, σ, β) =
1

2πσβ
exp

[

−π
(

x′2

σ2
+

y′2

β2

)]

exp(jωx′), (2.7)

and the proxy coordinates x′ and y′ are given by:

x′ = (x− x0) cos(θ) + (y − y0) sin(θ), (2.8)

y′ = −(x− x0) sin(θ) + (y − y0) cos(θ), (2.9)

where x0 and y0 are the coordinates for the center of the filter (usually (0, 0)).

Algorithms inspired by IrisCode utilize multiple Gabor or Gabor-like filters with different

orientation, scales and frequencies. The palmprint algorithm Competitive Code proposed

by Kong et al. 2004 [8], for example, uses the negative real part of a Gabor function to

produce NG filters.

Gcomp
i (n1, n2) =

1

2πσ2
− real(G(n1, n2, θi, ω, σ, β)) for i = 1, . . . , NG (2.10)

where θi = (i− 1)π/NG and real(z) returns the real part of its argument z. Usual values for

NG are six or twelve directions. Competitive Code uses the winner takes all rule to encode

the dominant direction. Let I(n1, n2) be a palmprint image, the coding CC(n1, n2) is

CC(n1, n2) = argmin
i

[I(n1, n2) ∗Gcomp
i (n1, n2)] , (2.11)
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Table 2.2: Efficient 3-bit direction encoding for Competitive Code templates

Index i Direction 3-bit code

1 0◦ 000

2 30◦ 001

3 60◦ 011

4 90◦ 111

5 120◦ 110

6 150◦ 100

where ∗ denotes 2D convolution operation.

The distance metric for Competitive Code is the circular difference between the encoded

directions. This can be computed efficiently as a Hamming distance for six directions

encoded by 3-bits as presented in Table 2.2.

Double-Orientation Code (DOC) is a recent variation of the Competitive Code that was

proposed by Fei et al. 2016 [72] to address the sensitiveness of Competitive Code to noise

and small rotations. DOC templates consist of two orientation templates, one with the

strongest direction and another with the second strongest direction. It employs a non-linear

operator to determine the distance between codes.

Another coding algorithm that has shown good performance is the Ordinal Code

proposed by Sun et al. 2005 [9]. The ordinal filters are defined as follows:

Gordi
i (n1, n2) = real(G(n1, n2, θi, ω, σ, β))− real(G(n1, n2, θi + π/2, ω, σ, β)), (2.12)

where i = 1, . . . , NG, θi = (i − 1)π/NG and NG = 3. The trait (e.g. palmprint) image is

convoluted by each filter. An Ordinal Code template consists of the sign of each convoluted

image. Ordinal Code templates are compared by Hamming distance between the codes.

We employ Competitive Code, Ordinal Codes and DOC in Ch. 4. Also, we employ Ordinal

Code for iris recognition in Appendix A.

2.4.2 LBP

The LBP operator describes the small scale appearance of images, and it was initially

proposed for texture classification [73]. The operator assigns a label to every pixel of

an image by comparing the pixel to its neighborhood. Each comparison determines a

bit of the label. Early binary patterns use a simple neighborhood of 9 × 9-pixels, but

interpolation can be used to define a circular neighborhood [10]. Fig. 2.6(a) shows the case
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Figure 2.6: Local Binary Pattern. (a) Local binary pattern extraction from a pixel with a

square neighborhood, (b) circular neighborhood, (c) LBP and histogram extraction example.

for simple neighborhood and Fig. 2.6(b) depicts the interpolation locations for the circular

neighborhood. An example of a binary pattern is depicted in Fig. 2.6(c).

After LBP encoding of each pixel, the binary pattern of the trait image is divided into

several blocks and a histogram of local binary patterns in each window is computed [31].

The number of bins in the histogram is 8 for the basic LBP. The final feature vector consists

of the collection of histograms of all the individual blocks. Finally, two face-images can

be matched by computing the similarity (or distance) between their histogram vectors

[31]. Fig. 2.6(c) displays a histogram for the lena image. We employ LBP for periocular

recognition in Ch. 5.

2.4.3 SIFT

Scale-Invariant Feature Transform (SIFT) was proposed by D. Lowe in 2004 [11]. Since

then, it has become one of the most popular schemes used in object recognition [31]. SIFT

features consist in a key-point coordinate, a governing direction, a scale or size value, and a

Histogram of Gradients (HOG) as feature descriptor. The computation of SIFT features

consists of two steps: key-point extraction and descriptor calculation. The key-point,

direction and scale define the frame or area from where the histogram is computed.
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In Fig. 2.7, we illustrate an example of SIFT features. The computation and matching

of SIFT features is described in the following 5 steps:

• Scale space construction: Convolve the preprocessed image with a filter bank of

Gaussian functions with different scales. This decomposition is known as the Gaussian

scale space. Maxima at the scale space have a wide range of projection over affine

transformations for which some degree of invariance is expected. For this reason,

these maxima are used as key-points.

• Key-point localization: Estimate the key-points from the difference of neighbor-

hood planes of the Gaussian scale space, i.e., the Difference of Gaussians (DoG) of

the image.

• Orientation assignment: For every key-point, take a patch centered at it and

compute a HOG by grouping the orientation of gradients into 10 bins. The direction

with the maximum bin is assigned as the dominant direction.

• Descriptor computation: For every key-point, compute an HOG using a frame nor-

malized at the dominant orientation. This HOG is computed by grouping orientation

gradients into 8 bins.

• Feature matching The key-points provide tolerance against pose variations, but

their number can be arbitrarily large in the order of hundreds. Thus, finding the cor-

respondences between the useful key-points from two different images is a challenging

task [31]. The strategy in computer vision is to employ a random sample consensus

(RAMSAC) approach. Nonetheless, in biometrics, preprocessing provides a region of

interest stable enough that key-point correspondence problem can be simplified by

implementing simple constraints [74].

We employ methods based on SIFT matching in Ch. 5 for periocular recognition and in

Appendix A for palmprint recognition.

2.5 Recognition performance metrics

Every biometric system is a classifier that makes predictions from biometric data. To

measure the system performance is to estimate how often theses predictions are correct or

wrong. Thus, a performance metric measures either the rate of success or the rate of errors

that the system makes. Ultimately, the prediction depends on the matching score provided

by the matcher. As explained above, the matching score is an assessment of the similarity
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(a)

(b)

(c)

Figure 2.7: Matching of SIFT features. a) Yellow markers indicate key-points, their scale

and their main direction, b) histograms of gradients depicted in green color, c)correspondences

obtained from feature matching.
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between a probe image and a registered image. There are two classes of matching scores,

genuine class and imposter class. Genuine scores are generated by matching trait images

of the same person, i.e., genuine image pair. Impostor scores are generated by matching

trait images of different persons. For high rate of success, it is desired small intra-class

variations, i.e., small variance of score distributions and large inter-class variations, i.e.,

large distance between the means of the genuine and impostor distributions. Basically,

every performance metric measures these qualities of the classes’ distributions.

In verification mode, the system predicts if the score belongs to the genuine class or to

the impostor class. In identification mode, the predicts the identity or possible identities

of the test user. This is to predict which scores are likely to belong to the genuine class.

Due to this difference between verification and identification, different metrics are usually

dedicated to each recognition mode.

2.5.1 Verification metrics

In the case of verification mode, the decision module predicts whether the images are from

the same trait(s) of a user by comparing the score with an operational threshold value. If

the score1 is greater than the threshold value, the system assumes a match, and it accepts

the user. Otherwise, the system assumes a non-match, and it rejects the user. In this way,

the threshold value determines how strict or forgiving is the system to accept a user. Four

cases are possible when the decision module receives a score s and made a decision based

on a threshold T .

• Hit[75], or match: the score is greater than the threshold and is genuine, s > T, s ∈
genuine.

• False alarm[75], or false match: the score is greater than the threshold and is an

imposter, s > T, s ∈ imposter.

• Miss[75], or false non-match: the score is lower than the threshold and is genuine,

s < T, s ∈ genuine.

• Correct rejection [75], or non-match: the score is lower than the threshold and is an

imposter, s < T, s ∈ imposter.

Notice that false matches and false non-matches are two kind of errors that the decision

module can make. These errors go by other names: false match is also known as False

Accept (FA) or Type I error; false non-match is also known as False Reject (FR) errors or

1similarity score
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Figure 2.8: Probabilistic distribution of matching scores for performance assessment. (a)

Score distributions, (b) FAR and FRR, (c) Operative values for EER estimation.
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Type II errors. Fig. 2.8(a) shows an example of the score distribution. Notice the areas

between the distributions and threshold, their sizes are the expectations for the two types

of error.

The rate or probability estimation of each error goes also by different names. The rate

of FA is known as False Match Rate (FMR), False Accept Rate and False Acceptance Rate

(FAR). The rate of FR is known as False Non-Match Rate (FNMR), False Reject Rate and

False Rejection Rate (FRR). The empirical estimation of FAR and FRR are given by

FAR(%) =
1

Nimposter

∑

si∈Imposter

I(si − T ) × 100%, (2.13)

FRR(%) =
1

Ngenuine

∑

si∈Genuine

I(T − si) × 100%, (2.14)

where I(x) =

{

1, if x ≥ 0,

0, if x < 0.
(2.15)

In Eq. 2.13 and Eq. 2.14, Ngenuine and Nimposter denote the number of genuine scores and

the number of imposter scores, respectively.

Although these terms are widely used interchangeably in the literature, strictly speaking

FMR and FNMR are not exactly the same as FAR and FRR. FAR and FRR consider the

Fail To Enroll (FTE) error rate and the Fail To Compare (FTC) error rate (see Ch. 5 in

[76] and Ch. 2 in [14] for details). We do not take into account such system-level errors in

our evaluation but we still make use of the FAR and FRR convention. Fig. 2.8(b) shows

the FAR and FRR for the score distributions shown in Fig. 2.8(a). There is a trade-off

between these two error rates since we cannot set a threshold that minimize one kind of

error without increasing the other.

Matching scores can have different meanings and distributions for different systems, so

the measures of FRR or FAR for a given threshold are not comparable. Nonetheless, the

trade-off between FAR and FRR is a useful characteristic of the system. This trade-off

is described by the Receiver Operating Characteristic (ROC) curve shown in Fig. 2.9(a).

The important benefit of the ROC curve is that it distinguishes between discriminability

and decision bias. The former is the inherent property of the recognition system that we

want to describe and the latter is due to the operation setting [75]. Characteristic values of

the ROC curve are the Equal Error Rate (EER) and FRR@0.1%FAR. The former is the

value at which FAR and FRR are equal, the later is the FRR value when FAR is 0.1%.

These two metrics are appropriate for comparative evaluation of verification performances.

In general, there is not a value of T for which FAR and FRR are equal; so, for operative

estimation of EER, we employ the consecutive threshold values T = t1 and T = t2 where

(FAR(t1) − FRR(t1)) > 0 > (FAR(t2) − FRR(t2)) (shown in Fig. 2.8(c)). One option is
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Figure 2.9: Curves plot for performance evaluation of biometric systems. (a) ROC curve,

(b) CMC curve.

to estimate EER by linear interpolation. Another option is the estimator introduced by

Maio et al. [77] that chooses between two estimations of EER, EER at t1 and t2. These

estimations and the choice for EER are given as follows:

EER(t1) =(FAR(t1) + FRR(t1))/2, (2.16)

EER(t2) =(FAR(t2) + FRR(t2))/2, (2.17)

EER =

{

EER(t1), if EER(t1) < EER(t2),

EER(t2), if EER(t2) < EER(t1).
(2.18)

2.5.2 Identification metrics

In the case of identification mode, the decision module provides the identity of the top

matches. Whereas in verification we have genuine class and importer class scores, in

identification we have the identification rank. The identification rank is defined as the

rank of user’s correct identity in the top matches [31]. The identification performance

is measured by the rank-n identification rate which indicates the frequency of a correct

identification within the top rank-n. The rank-n identification rate for different values of n

is shown in the Cumulative Match Characteristic (CMC) curve. It displays the chance of a

correct identification within the top ranked match results. An example of a CMC curve is

shown in Fig. 2.9(b).
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2.6 Summary

This chapter reviewed the attributes of biometric traits required for recognition applications.

It covered the modules of a biometric system, and recognition methods that employ, for

image matching, Gabor-based coding, LBP and SIFT features. These methods are applicable

to various biometric traits for recognition. We presented the performance metrics to be

used in this dissertation. These include verification metrics, e.g., equal error rate, and

identification metrics. This chapter laid the foundation on biometric recognition necessary

for the discussions in the rest of this dissertation. The next chapter covers the fundamentals

on phase-based image matching and describes a baseline recognition method that is the

center of discussion for Ch. 4 and 5.
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3
Phase-based image matching for

biometric recognition

In this chapter, we cover the fundamentals of phase-based image matching and introduce

biometric recognition using phase-based correspondence matching. We start with a review

of cross-correlation and move to Phase-Only Correlation (POC) in Sec. 3.2. We cover

POC with spectral weighting and Band-Limited POC in Sec. 3.3 and Sec. 3.4, respectively.

Then, we observe the effect of these techniques under deformations and noise. In Sec. 3.8,

we describe phase-based correspondence matching which employs a coarse-to-fine strategy

for accurate and robust image matching. This recognition method is the center of the

discussion for this dissertation.

Hereafter, the symbol ⌊.⌋ means rounding towards minus infinite, and the symbol ⌈.⌉
means rounding towards infinite.

3.1 Cross-correlation

Let us consider the problem of localizing a target f(n1, n2), i.e., pattern image, inside an

image J(n1, n2). Let the image J(n1, n2) have a size height × width and let the pattern

image f(n1, n2) have a smaller size L1 × L2, where height > L1 and width > L2. We

denote as fpad(n1, n2) a zero-padded image of f(n1, n2). The support of coordinates for

fpad(n1, n2) is given by n1 = −L−
1 , . . . , L

+
1 and n2 = −L−

2 , . . . , L
+
2 where L−

1 = ⌈(L1 − 1)/2⌉,
L+
1 = ⌊(L1 − 1)/2⌋, L−

2 = ⌈(L2 − 1)/2⌉ and L+
2 = ⌊(L2 − 1)/2⌋. The pattern can be
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Figure 3.1: Target localization with cross-correlation function and with phase-only filtering.

(a) Degraded image: red square ground true for the target location, blue square target

localization on padded image. (b) Pattern image or target object. (c) Spatial pattern of POF

(reversed impulse response). (d) Zero-padded pattern image and the displacement (δ1, δ2)

necessary for alignment. (e) Cross-correlation function and (d) correlation function with POF

detected by the circular cross-correlation function

rcross(n1, n2) = fpad(n1, n2)⊗ J(n1, n2), (3.1)

where ⊗ denotes 2D circular cross-correlation. The reason for using circular cross-correlation

instead of cross-correlation is a practical one. Circular cross-correlation can be computed

efficiently by the means of the Discrete Fourier Transform (DFT) algorithm Fast Fourier

Transform (FFT) (except when L1 and L2 are very small). The maximum value of

rcross(n1, n2) is expected to be at the coordinates where f(n1, n2) is localized in J(n1, n2).

The maximum value itself indicates a measurement of the intensity of the pattern in

J(n1, n2). Thus, it indicates a rough measurement of similarity as well. If we consider

the image as vectors, the function rcross(n1, n2) can be interpreted as an inner product

were one of the image is circularly translated by (n1, n2). Fig. 3.1(e) shows an example of

rcross(n1, n2) for the standard lena image with additive Gaussian noise, Fig. 3.1(a), with

pattern image f(n1, n2) Fig. 3.1(b), and its padded version fpad(n1, n2).
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As a first step towards the phase-based image matching, we consider the Phase-Only

Filter (POF) proposed by Horner and Gianino in 1984 [78]. Given the 2D Discrete Fourier

Transform (2D DFT) F (k1, k2) of a pattern image f(n1, n2), the POF, here denoted as

XPOF(k), is

XPOF(k1, k2) =
F (k1, k2)

|F (k1, k2)|
= e−θF (k1,k2), (3.2)

where θF (k1, k2) is the phase component of F (k1, k2) and F (k1, k2) denotes the complex

conjugate of F (k1, k2). Let x
POF(n1, n2) be the reversed impulse response of XPOF(k1, k2),

i.e., the POF pattern, and let xPOF
pad denote its zero-padded version. Then, the filtered image

can be expressed as the following correlation function:

rPOF(n1, n2) = xPOF
pad (n1, n2)⊗ J(n1, n2). (3.3)

Fig. 3.1(c) shows the xPOF(n1, n2) for the x(n1, n2) shown in Fig. 3.1(b), and Fig. 3.1(f)

show the respective POF correlation function rPOF(n1, n2). Notice that rPOF(n1, n2) has a

well define peak shape. This improves over the measurement of similarity using rcross(n1, n2),

but it still depends on the local intensity of I(n1, n2).

3.2 Phase-Only Correlation (POC)

Now, let us consider the problem of aligning an image pair and measuring their similarity.

Let us have two images f(n1, n2) and g(n1, n2) of size L1 × L2 where the ranges of image

coordinates are given by n1 = −L−
1 , . . . , L

+
1 and n2 = −L−

2 , . . . , L
+
2 . The coordinates

limits are given by L−
1 = ⌈(L1 − 1)/2⌉, L+

1 = ⌊(L1 − 1)/2⌋, L−
2 = ⌈(L2 − 1)/2⌉ and

L+
2 = ⌊(L2 − 1)/2⌋. Let f(n1, n2) = g(n1 + δ1, n2 + δ2) for −L−

1 + δ1 ≤ n1 ≤ L+
1 and

−L−
1 + δ2 ≤ n2 ≤ L+

2 .

The 2D Discrete Fourier Transforms (DFTs) of f(n1, n2) and g(n1, n2) be denoted by

F (k1, k2) and G(k1, k2) so that

F (k1, k2) = AF (k1, k2)e
θF (k1,k2), (3.4)

G(k1, k2) = AG(k1, k2)e
θG(k1,k2), (3.5)

where k1 = −L−
1 , · · · , L+

1 , k2 = −L−
2 , · · · , L+

2 . The normalized (cross-)correlation spectrum

or cross-phase spectrum is:

R(k1, k2) =
F (k1, k2)G(k1, k2)
∣

∣

∣F (k1, k2)G(k1, k2)
∣

∣

∣

, (3.6)

= ej(θG(k1,k2)−θF (k1,k2)). (3.7)
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It is assumed that |F (k1, k2)| 6= 0 and |G(k1, k2)| 6= 0, otherwise they should be replaced

with a positive constant. Notice that (θG(k1, k2)− θF (k1, k2)) ≈ −2π
L1L2

(δ1k1 + δ2k2). Then,

the Phase-Only Correlation (POC) function rPOC(n1, n2) is defined as the 2D Inverse DFT

(2D IDFT) of R(k1, k2),

rPOC(n1, n2) =
1

L1L2

∑

k1,k2

R(k1, k2)W
−k1n1

L1
W−k2n2

L2
, (3.8)

where
∑

k1,k2
denotes

∑L+
1

k1=−L−
1

∑L+
2

k2=−L−
2

. The twiddle factors are given by WL1
= e

−j 2π
L1

and WL2
= e

−j 2π
L2 . The POC function indicates a distinctive sharp peak when image blocks

f(n1, n2) and g(n1, n2) are similar. When they are dissimilar, the peak height, denoted as α,

drops significantly. The peak location indicates the translational displacement δ = [δ1, δ2]

between image blocks [18]. POC can be defined using two POF since XPOF(k1, k2) is just

the phase component of f(n1, n2). For this reason, POC has been referred to as Symmetric

Phase-Only Matched Filtering [79].

Fig. 3.2 presents a comparison between the POC function and the POF correlation

function for the three following cases: Similar images with small translational displacement,

similar images with large translational displacement, and dissimilar images. Note that POC

improves over POF with a more defined peak shape and regular lower values in the rest of

the function.

3.2.1 Windowing

In order to have a suitable Fourier representation, F (k1, k2) and G(k1, k2), of f(n1, n2) and

g(n1, n2), two considerations must be made. First, the inherent wraparound effect of DFT

produces abrupt border changes. These changes are a sort of discontinuities that have a

strong influence over the transformed signal. This makes it necessary to apply a window

function, i.e., windowing, in order to smooth the borders. Fig 3.3 illustrates the abrupt

changes of the wraparound effect and the smooth transition when a Hann window is applied.

Second, the level of brightness, or DC component of an image, does not contribute to

the description of the image information, such as texture details or structures, because it is

a constant component across the image. Thus, it should be subtracted before windowing.

Let the DC components of the images, f(n1, n2) and g(n1, n2), be assigned as fDC and

gDC , respectively, and let w(n1, n2) denote a window function. If we do not subtract

the DC components, the windowed function would become (f(n1, n2) − fDC)w(n1, n2) +

fDCw(n1, n2), where we can see that the second term is independent of the image texture

or content. This would cause a bias or artifact peak at (0, 0) in the POC function since we

would be comparing in the POC function fDCw(n1, n2) and gDCw(n1, n2) too. Therefore,
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Figure 3.2: Examples of POC functions and POF correlation functions. (a) Image pair

comparison with small translational displacement. (b) Image pair comparison with large

translational displacement. (c) Image pair without similarity: face images of different persons

(impostor case).
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suitable frequency representations F (k1, k2) and G(k1, k2) of the blocks are given by the

following expressions:

F (k1, k2) =
∑

n1,n2

[

f(n1, n2)− fDC
]

w(n1, n2)W
k1n1

L1
W k2n2

L2
, (3.9)

G(k1, k2) =
∑

n1,n2

[

g(n1, n2)− gDC
]

w(n1, n2)W
k1n1

L1
W k2n2

L2
, (3.10)

where k1 = −L−
1 , . . . , L

+
1 , k2 = −L−

2 , . . . , L
+
2 , and

∑

n1,n2
denotes

∑L+
1

n1=−L−
1

∑L+
2

n2=−L−
2

.

Another interpretation of the windowing operation is a low-pass or smooth filtering on the

Fourier domain.

In this dissertation, we employ the 2D Hann window function1, i.e.,

w(n1, n2) =
1 + cos

(

2πn1

L1

)

2

1 + cos
(

2πn2

L2

)

2
, (3.11)

where n1 = −L−
1 , . . . , L

+
1 , n2 = −L−

2 , . . . , L
+
2 . However, in order to argue the choice of a

window function over another, we have to delve deeper into the implications of applying a

window function.

(a) (b)

Figure 3.3: Wrap around effect of the periodic expansion of the lena image. (a) Periodic

image expansion and (b) periodic image expansion after applying a Hann window. Observe

the smooth transition in the image border when the window function is applied.

Observe that equations 3.9 and 3.10 can be interpreted as a transformation with non-

orthogonal basis functions (or basis vectors) bk1,k2(n1, n2). These basis functions are formed

1Hann window is attributed to Julius von Hann, an Australian meteorologist, but due to historical

reasons this window function is widely known as Hanning window (pp. 468 in [80]).
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by the Fourier basis (complex exponential functions) with an envelop given by the window

function w(n1, n2), i.e.,

bk1,k2(n1, n2) =w(n1, n2)W
k1n1

L1
W k2n2

L2
, (3.12)

=w(n1, n2) exp

(

−j2π
(

k1n1

L1

+
k2n2

L2

))

.

For clarity, let us explore the characteristics of these basis functions in the 1D case, i.e.,

bk(n) =w(n) exp

(

−j2πkn
L

)

, (3.13)

where k, n, and L are the frequency variable, the spatial variable, and the length of the

signal, respectively. In general, w(n) is one lobe shaped with maximum at the center

of the support, i.e., n = 0, where n = −⌈(L− 1)/2⌉ , . . . , ⌊(L− 1)/2⌋. The effect of the

window function is a trade-off between the spatial resolution and the frequency resolution

of the basis functions. Observe in Fig. 3.4 the effect on the spectral resolution of five

window functions on two basis vectors (k = 3 and k = 7). These window functions are the

rectangular window (no window case), the Tukey window, the Hann window, the Gaussian

window (σ = L/5), and the Bartlett window. While the rectangular window provides high

frequency resolution (observed as one frequency component in Fourier domain), the other

windows have a spread around the specific frequency component. The Tukey window is

a sort of middle ground between the rectangular window and Hann window due to its

flat region, but it has a wide spread of the frequency component. Tukey window is better

suited for long values of L when high spatial resolution is not needed, e.g., when addressing

border artifacts in deconvolution problems. Like the Tukey window, the Hann window

values are zero in the extremes. In the Fourier domain, the spread for the Hann window

is very compact since it only extends to the direct neighbors k ± 1. Therefore, the Hann

window has the smallest loss in frequency resolution. The Gaussian window can have an

envelope shape similar to the Hann window at the center by setting a parameter σ, but the

values at the borders are not zero. Gauss window has a spread in Fourier domain that is

larger than the Hann window. The values at the borders can be decreased by changing

σ, but this results in a narrow envelope. The Bartlett window yields zero values at the

border, but it has a discontinuous derivative at the center and a wider spread across the

spectrum. We can state from these observations that the Hann window is the most suitable

for addressing the border effect of the periodic expansion in image matching.
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Figure 3.4: Effect of window functions on two basis functions (1D case, L = 33). Spatial

domain: the blue line is the real part of the basis functions, the red line is the imaginary part

of the basis functions, and the green line indicates the envelope/window function. Sequence

data indicates the Fourier transform of the function.
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3.3 Spectral weighting

For natural images, typically most of the energy is concentrated in the low spatial frequency

components. As the cross-phase spectrum R(k1, k2) is flat, there is no distinction between

the contribution of the low frequency band and the high frequency band. However, the high

frequency band has lower Signal-to-Noise Ratio (SNR) than the low frequency band. Thus,

it affects the reliability of POC. The POC function can be very distorted (noisy) due to the

low signal-to-noise ratio in high frequency domain. This problem has been addressed with

a spectral weighting function to decrease the influence of high frequency components [20].

For this purpose, let us define the weighted cross-phase spectrum RPOC(k1, k2) as follows:

RPOC(k1, k2) = H(k1, k2)
F (k1, k2)G(k1, k2)
∣

∣

∣
F (k1, k2)G(k1, k2)

∣

∣

∣

, (3.14)

= H(k1, k2)e
jθG(k1,k2)−θF (k1,k2), (3.15)

The spectral weighting function H(k1, k2) improves POC performance by decreasing the

influence of phase ambiguity in low-energy high-frequency components. Usual choices of

H(k1, k2) are a rectangular low-pass filter function and a Gaussian function [20]. In general,

a Gaussian function is expected to be closer to the SNR distribution in the spectrum for

natural images. Then, we redefine the POC function rPOC(n1, n2) so as to include spectral

weighting as,

rPOC(n1, n2) =
1

N1N2

∑

k1,k2

RPOC(k1, k2)W
−k1n1

N1
W−k2n2

N2
. (3.16)

Notice that for the choice H(k1, k2) = 1, Eq. 3.16 becomes Eq. 3.8.

3.4 Band-Limited Phase-Only Correlation (BLPOC)

Another strategy to deal with low SNR in the high frequencies is – to omit the high

frequency components. The idea is to focus only on the essential frequency band when

calculating the correlation function. This approach is called Band-Limited POC (BLPOC)

[24] since it limits the frequency band to a smaller size B1 × B2 where B1 < L1 and

B2 < L2. This is different to employ a low-pass filter as a weighting function because the

limited band becomes the function support in the 2D IDFT computation. Therefore, we

define a band-limited cross-phase spectrum RBLPOC with support k1 = −B−
1 , . . . , B

+
1 and

k2 = −B−
2 , . . . , B

+
2 where B−

1 = ⌈(B1 − 1)/2⌉, B+
1 = ⌊(B1 − 1)/2⌋, B−

2 = ⌈(B2 − 1)/2⌉
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and B+
2 = ⌊(B2 − 1)/2⌋. Then, the BLPOC function r(n1, n2) is the following 2D IDFT of

R(k1, k2):

r(n1, n2) =
1

B1B2

∑

k1,k2

′
R(k1, k2)W

−k1n1

B1
W−k2n2

B2
, (3.17)

where
∑′

k1,k2
denotes

∑B+
1

k1=−B−
1

∑B+
2

k2=−B−
2

. The resulting BLPOC function r(n1, n2) is

defined for a support n1 = −B−
1 , . . . , B

+
1 and n2 = −B−

2 , . . . , B
+
2 . The BLPOC function

is particularly effective for matching a variety of biological textures and is useful for

biometric authentication [81]. In the same way as with POC, the location of the correlation

peak
[

δBL
1 , δBL

2

]

indicates the translational displacement between images but with a factor,

δ1 = δBL
1 L1/B1 and δ2 = δBL

2 L2/B2. The reduction in spatial resolution of the measured

displacement and similarity can be addressed using a subpixel estimation of α, and (δ1, δ2).

3.5 Subpixel estimation

In this section, we present a subpixel estimation of the correlation peak’s location and

height [82]. We derive it from the 1D case. For this purpose, within the scope of this

subsection, we define a specific meaning for the following variables: t, T , r(n) and α. Let

us have an underlying continuous signal fc and two discrete sampled sections f(n) and g(n)

of size L as follows:

f(n) =fc(t)|t=nT , (3.18)

g(n) =fc(t− δT )|t=nT , (3.19)

where n ∈ Z, δ is a delay (or translational displacement) between the two signals, and T

denotes a sampling interval.

Let us denote the DFT of f(n) and g(n) as F (k) and G(K), respectively. The cross-phase

spectrum R(K) of f(n) and g(n) is given by

R(K) =
F (k)G(K)
∣

∣

∣F (k)G(K)
∣

∣

∣

≈ ej(θG(k)−θF (k)), (3.20)

≈e−j 2πk
N

δ, (3.21)

rPOC(n) ≈ 1

L

⌊(L−1)/2⌋
∑

k=−⌈(L−1)/2⌉

e−j 2πk
L

δej
2π
L
nk, (3.22)

≈ 1

L

sin(π(n− δ))

sin
(

π
L
(n− δ)

) , (3.23)
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Here, r(n) denotes the (1D-)POC function of f(n) and g(n).

We can simplify Eq. 3.23 with the following approximation:

r(n) =α
sin(π(n− δ))

π(n− δ)
, (3.24)

rBL(n) =α
sin(π(n− δBL))

π(n− δBL)
, (3.25)

where r(n) and rBL(n) are the closed-form peak models of the 1D-POC and 1D-BLPOC

functions, respectively. Eq. 3.24 is a continuous version for r(n) when the argument is

changed as n← t/T . The continuous model is illustrated in Fig. 3.5.

p-2 p-1 p δ p+1 p+2
-0.2

0

0.2

0.4

0.6

α

0.8

1

Figure 3.5: POC peak model

The approximations in Eq. 3.24 and Eq. 3.25 hold better for small values of δ, e.g.,

|δ| < 1, so the effect of translational displacement and window can be neglected. For

simplicity, let us assume that the peak value of r(n) is at p which can be ⌊δ⌋ or ⌈δ⌉. Then,
the values of r(n) for n close to p are the highest and, therefore, they have the highest

SNRs.



46 3. PHASE-BASED IMAGE MATCHING FOR BIOMETRIC RECOGNITION

3.5.1 Three values estimation

Given the three values r(p− 1), r(p) and r(p+ 1), we can estimate δ and α by solving the

following system of equations:

r(p− 1)π(p− 1− δ) =α sin(π(p− 1− δ)), (3.26)

r(p+ 1)π(p+ 1− δ) =α sin(π(p+ 1− δ)), (3.27)

r(p)π(p− δ) =α sin(π(p− δ)). (3.28)

We can solve the system by, first, adding Eq. 3.26 and Eq. 3.27, and, second, replacing the

right side with Eq. 3.28 as follows

π (r(p+ 1)− r(p− 1)− (δ − p)(r(p+ 1) + r(p− 1))) = −2α sin(π(δ − p)), (3.29)

π (r(p+ 1)− r(p− 1)− (δ − p)(r(p+ 1)− r(p− 1))) = −2r(p)π(p− δ). (3.30)

Then, we have δ from 3.30 and α from 3.28 as follows:

δ =p+
r(p+ 1)− r(p− 1)

r(p+ 1) + 2r(p) + r(p− 1)
, (3.31)

α =
r(p)π(δ − p)

sin(π(δ − p))
. (3.32)

Careful considerations must be made when using these equations regarding the denominator

in Eq. 3.31 and the value of δ in Eq. 3.32. The denominator should not be close to zero.

This can happen when dissimilar images are compared since the values of the POC function

becomes noise.

3.5.2 Two values estimation

One simpler and robust estimation for δ, can be derived from the two highest consecutive

values of r(n), i.e., r(p) and the greatest value among r(p+ 1) and r(p− 1). In this way,

Eq. 3.28 can be combined with Eq. 3.27 or Eq. 3.26, accordingly.

(r(p+ 1) + r(p))π(p− δ) + r(p+ 1)π = 0, if r(p+ 1) ≥ r(p− 1), (3.33)

(r(p− 1) + r(p))π(p− δ)− r(p− 1)π = 0, if r(p+ 1) < r(p− 1). (3.34)

The resulting estimation of δ is as follows:

δ =















p+
r(p+ 1)

r(p+ 1) + r(p)
, if r(p+ 1) ≥ r(p− 1),

p− r(p− 1)

r(p− 1) + r(p)
, if r(p+ 1) < r(p− 1).

(3.35)

Special care must be taken regarding the denominator since the second highest value

(r(p+ 1) or r(p− 1)) must be positive. Otherwise, the estimation of α according Eq. 3.32

can be misleading.
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3.5.3 Subpixel estimation for BLPOC

We can translate Eq. 3.31, Eq. 3.32 and Eq. 3.35 to the case of 1D-BLPOC rBL(n) by

simply changing r(n) and δ by rBL(n) and δBL, respectively.

α =
rBL(p)π(δBL − p)

sin(π(δBL − p))
. (3.36)

We have to consider the change in resolution of the BLPOC function for the displacement

estimation.

δ =
L

B
δBL (3.37)

Three values estimation:

δBL =p+
rBL(p+ 1)− rBL(p− 1)

rBL(p+ 1) + 2rBL(p) + rBL(p− 1)
, (3.38)

Two values estimation:

δBL =















p+
rBL(p+ 1)

rBL(p+ 1) + rBL(p)
, if rBL(p+ 1) ≥ rBL(p− 1),

p− rBL(p− 1)

rBL(p− 1) + rBL(p)
, if rBL(p+ 1) < rBL(p− 1),

(3.39)

where B is the bandwidth used for BLPOC. We refer to these estimations as the Peak

Evaluation Formula PEF [82].

3.5.4 Subpixel estimation for images

For the 2D-case, let us denote the peak height estimation by α2D and the displacement

estimations by δ1 and δ2. In order to compute δ1 and δ2, we make two independent 1D

estimations around the peak value r(p1, p2), i.e., r(n)← r(n, p2) and r(n)← r(p1, n). Then,

PEFs for α2D are

POC case:

α2D =r(p1, p2)
π(δ1 − p1)

sin(π(δ1 − p1))

π(δ2 − p2)

sin(π(δ2 − p2))
, (3.40)

BLPOC case:

α2D =rBL(p1, p2)
π(δBL

1 − p1)

sin(π(δBL
1 − p1))

π(δBL
2 − p2)

sin(π(δBL
2 − p2))

. (3.41)

We employ Eq. 3.41 in the similarity evaluation of local blocks in Ch. 4 and Ch. 5. An

alternative to PEF is to fit a 2D model to the neighborhood of the peak. This is useful in

accurate registration in stereo vision [20].
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3.6 Phase feature vectors

Here, we define the phase feature vector as a step towards describing a biometric recognition

algorithm using phase-based image matching. So far, we presented (BL)POC as a technique

to compare two images. Now, we take a look into the question – which are the feature vectors

being compared during (BL)POC matching? Each value of the r(n1, n2) or r
POC(n1, n2)

corresponds to the inner product between two vectors that are derived from the original

functions and their circular translated versions. The BLPOC function as defined in Eq.

3.17, for example, can be written as follows:

r(n1, n2) =
1

B1B2

X†Yn1,n2
, (3.42)

where X† denotes the Hermitian transpose of X. The vectors X and Yn1,n2
consist of the

values for the respective functions, X(k1, k2) and Y (k1, k2), as follows:

X =





























X(−B−
1 ,−B−

2 )
...

X(B+
1 ,−B−

2 )
X(−B−

1 ,−B−
2 + 1)

...
X(B+

1 ,−B−
2 + 1)

...
X(B+

1 , B
+
2 )





























;Yn1,n2
=



































Y (−B−
1 ,−B−

2 )W
B−

1
n1

B1
W

B−
2
n2

B2

...

Y (B+
1 ,−B−

2 )W
−B+

1
n1

B1
W

B−
2
n2

B2

Y (−B−
1 ,−B−

2 + 1)W
B−

1
n1

B1
W

(B−
2
−1)n2

B2

...

Y (B+
1 ,−B−

2 + 1)W
−B+

1
n1

B1
W

(B−
2
−1)n2

B2

...

Y (B+
1 , B

+
2 )W

−B+
1
n1

B1
W

−B+
2
n2

B2



































. (3.43)

The definition of vectors above apply for POC by changing the support from B1 ×B2 to

L1 × L2, respectively. From Eq. 3.17, we see that the functions X(k1, k2) and Y (k1, k2) are

X(k1, k2) =
F (k1, k2)

|F (k1, k2)|
, (3.44)

Y (k1, k2) =
G(k1, k2)

|G(k1, k2)|
. (3.45)

These expressions are conceptually equivalent to the phase only filter POF described in Eq.

3.2. However, we use them here to define the phase feature vectors X and Yn1,n2
.

A characteristic of phase feature is that they are uncorrelated under translation, i.e.,

1

B1B2

Y†
n1,n2

Ym1,m2
=

{

1 if n1 = m1 and n1 = m1,

0 otherwise.
(3.46)

An equivalent property is that the auto-correlation functions of the spatial representations

for X or Y can be expressed as a Kronecker delta.
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In a biometric system, the phase features X are stored in the system’s gallery during

enrolment and the phase features Y are extracted from a test image during recognition.

The number of users that can be enrolled in a system is limited by the storage capacity

and the space required by phase features X. Naturally, a significant storage reduction of X

is obtained by taking advantage of the spectrum symmetry and by including only the band

required for the calculation of the BLPOC functions. Since X(k1, k2) has a predetermined

module, its phase angles θF (k1, k2)
1 are better for storage. Quantization of the phase angles

has been proposed, so as to effectively reduce the storage requirement [17, 83, 84].

Given Nbits for quantization, the function QNbits(θ) that encodes the phase value of

X(k1, k2) is,

QNbits
(θF (k1, k2)) =

⌊

θF (k1, k2)2
Nbits−1

π
+

1

2

⌋

. (3.47)

The quantization level θqF (k1, k2) for θF (k1, k2) can expressed by,

θqF (k1, k2) = QNbits
(θF (k1, k2))

2π

2Nbits

, (3.48)

qX(k1, k2) = ejθqF (k1,k2). (3.49)

For clarity, we omit (k1, k2) for the angle quantities. The quantization error can be stated

as follows

X(k1, k2)− qX(k1, k2) = 1− cos(θF − θqF ) + j sin(θF − θqF ), (3.50)

where j denotes the imaginary unit and θF − θqF ∈ [−π/2Nbits , π/2Nbits ]. Then, the maxi-

mum of the magnitude of the quantization error Max(ǫ) is given by

Max(ǫ) = max(|X(k1, k2)− qX(k1, k2)|), (3.51)

=
√

2− 2 cos (π/2Nbits), (3.52)

, where max() returns the maximum possible value. The variance of the magnitude of the

quantization error Var(ǫ) is given by

Var(ǫ) = Var(|X(k1, k2)− qX(k1, k2)|) (3.53)

= Var(
√

2− 2 cos (θF − θqF )), (3.54)

=
2Nbits+1

π

( π

2Nbits
− sin

( π

2Nbits

))

, (3.55)

= 2− 2Nbits+1

π
sin
( π

2Nbits

)

. (3.56)

The standard deviation of the module magnitude of the quantization error Std(ǫ) is by

definition Std(ǫ) =
√

Var(ǫ). These statistics describe how the error decreases with the
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Table 3.1: Relation of the quantization error with the number of bits. Maximum and

variance of the magnitude of the quantization error, i.e., Max(ǫ) and V ar(ǫ), respectively.

Nbits 1 2 3 4 5 6

Max(ǫ) 1.414 0.765 0.390 0.196 0.098 0.0049

Var(ǫ) 0.727 0.199 0.051 0.013 0.003 0.0008

Std(ǫ) 0.853 0.447 0.226 0.113 0.057 0.0283

number of bits. Table 3.1 shows numerical values for these statistics. Particularly, the

variance decreases drastically with few bits. Taking into account the standard deviation of

|X(k1, k2)− qX(k1, k2)| rather than the maximum value, quantization with four bits can

be considered an encoding accurate enough for image matching; although, quantization

with just two bits has exhibited good performance [17]. Therefore, phase quantization has

little to non-detriment of the recognition performance if two or more bits are used.

Using 4-bit quantization, a phase vector X of 32 × 32 (B1 × B2) can be stored in

32× (32/2)× 4/8 = 256 bytes. In addition to lower storage requirements, another practical

advantage of BLPOC over POC for biometric recognition is that BLPOC is faster since it

requires a 2D IDFT on functions with a smaller support.

3.7 Robustness of phase-based image matching

In this section, we review a comparison of the techniques described above. We illustrate

the effects of noise, and rotation and difference in scale on phase-based image matching in

Fig. 3.6, Fig. 3.7 and Fig. 3.8, respectively. One way to compare the correlation functions

is by comparing the peak heights. As the correlation functions are normalized, the peak

heights are an indication of how robust they are to the case being evaluated.

Fig. 3.6(b) and Fig. 3.6(c) show the phase difference of cross-phase spectra for different

levels of noise, Fig. 3.6(a). The linearity of the phase difference is robust against noise at

low frequencies. Observe that for the worst case (SNR=1dB), there is not much difference

with or without window (Fig. 3.6(d)). Fig. 3.6(e) shows that Weighted POC with window

has the greatest peak heights; however, BLPOC with window has the greatest heights when

PEF is used.

Fig. 3.7(b) and Fig. 3.7(c) show the phase difference of cross-phase spectra for 1°, 3°, 5°,

10°and 15°of rotation between the images, Fig. 3.7(a). Observe that windowing increases

1Note that θX(k1, k2) = θF (k1, k2).
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Figure 3.6: Effect of noise on POC and BLPOC functions: (a) image g(n1, n2) for different

levels of noise, (b) image f(n1, n2) and phase difference of the image pairs, (c) image after

applying Hann window f(n1, n2)w(n1, n2) and phase difference of the image pairs, (d) weighted

POC function and BLPOC function, (e) peak height comparison for POC and BLPOC

variations.



52 3. PHASE-BASED IMAGE MATCHING FOR BIOMETRIC RECOGNITION

 1°  3°  5° 10 ° 15 °
0

0.2

0.4

0.6

0.8

1

 1°  3°  5° 10 ° 15 °
0

0.2

0.4

0.6

0.8

1

Plain POC
Weighted POC 
POC with windowing
Weighted POC  with windowing
Plain BLPOC
BLPOC with windowing

Weighted POC  with windowing

Weighted POC  with windowing and subpixel estimation

BLPOC with windowing

BLPOC with windowing and subpixel estimation

Rotation 15ºRotation 10ºRotation 5ºRotation 3ºRotation 1º(a)

(b) Phase information of correlation spectrum

(c) Phase information of correlation spectrum with Hann window

-π

0

π

Peak height comparison Peak height by subpixel estimation

Weighted POC function BLPOC function

with windowing with windowing

(d) 

(e) 

result

Rotation 15º

Rotation degrees Rotation degrees

P
ea

k 
h
ei

g
h
t

P
ea

k 
h
ei

g
h
t

-π

0

π

Figure 3.7: Effect of rotation on POC and BLPOC functions: (a) image g(n1, n2) for

different rotations, (b) image f(n1, n2) and phase difference of the image pairs, (c) image

after applying Hann window f(n1, n2)w(n1, n2) and phase difference of the image pairs, (d)

weighted POC function and BLPOC function, (e) peak height comparison for POC and

BLPOC variations.
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notably the linearity of the phase difference in the lower band used for BLPOC, black

square in Fig. 3.7(c). This is confirmed in the peak heights presented in Fig. 3.7(e). There,

we can observe that BLPOC with window and POC with window and spectral weighting

are notably more robust than the other cases.

Fig. 3.8(b) and Fig. 3.8(c) show the phase difference of cross-phase spectra for the

cases with the following scale factors 0.98, 0.95, 0.90, 0.85 and 0.80 in one of the images

(Fig. 3.8(a)). Similar to the rotation cases, windowing increases notably the linearity of the

phase difference in the lower band used for BLPOC (black square in Fig. 3.8(c)). This is

confirmed in the peak heights presented in Fig. 3.8(e). Here, again, BLPOC with window

and POC with window and spectral weighting are notably more robust than the other

cases.

Regarding the accuracy, it is difficult to say which is better: POC or BLPOC. The

tests in this section suggest similar, if not better accuracy for BLPOC. However, what

actually makes one of them more accurate than the other one is the resulting SNR and its

distribution. In the end, there should not be a significant difference if suitable parameters

are given for both cases.

In the rest of this dissertation, we focus on BLPOC and refer to BLPOC with window

and PEF as BLPOC for the sake of simplicity.

3.8 Phase-Based Correspondence Matching (PB-CM)

Let us formalize the image matching problem for biometric recognition. The problem is

to accurately measure the similarity between two biometric images after preprocessing.

In real situations, these images are not perfectly normalized by the preprocessing step.

Thus, they vary in scale and rotation. In addition, it is natural for the biometric images to

contain occlusions and global deformations. For example: in palmprint images and face

images, global deformations are caused by variations in hand-pose and facial expressions,

respectively; in face and periocular images, occlusions can be caused by glasses, masks,

hats, scarves, etc. Accurate authentication in biometrics requires addressing these problems

in the image matching task. We can deal with them by using a block-wise image matching

approach based on BLPOC. The idea is to compare multiple local image blocks extracted

from the given image pair since occlusions and transformations are less pronounced at the

scale of small image blocks. For these comparisons to be accurate, it is necessary that local

blocks are at corresponding locations in the two images. In this way, global deformations

are approximated by minute translations of local block images, and the similarity between

the images is assessed as the collective similarity between the block groups.
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Figure 3.8: Effect of scale variation on POC and BLPOC functions: (a) image g(n1, n2)

for different scales, (b) image f(n1, n2) and phase difference of the image pairs, (c) image

after applying Hann window f(n1, n2)w(n1, n2) and phase difference of the image pairs, (d)

weighted POC function and BLPOC function, and (e) peak height comparison for POC and

BLPOC variations.
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In order to find the corresponding position for a local block using (BL)POC, it is

necessary to have an initial estimate so the resulting image blocks have an overlap, e.g.,

examples in Fig. 3.1 and Fig. 3.2. The problem is that this estimate is not ensured by

preprocessing. The naive approach is to sweep several positions until find a high correlation

peak. A better approach is to consider that correspondence estimation is more reliable in

low resolution, since the translation displacement is smaller. Therefore, we can combine a

block-wise image matching approach with a coarse-to-fine search strategy using multi-scale

image pyramids as proposed by Takita et al. 2004 [21]. Ito et. al. 2009 [28] proposed this

technique for palmprint recognition and it was later refined and extended to other biometric

traits by Aoyama et al. 2013 [17]. This technique is called Phase-Based Correspondence

Matching (PB-CM) and it consists of two main steps: correspondence search and similarity

evaluation.

3.8.1 Correspondence search

Given a pair of preprocessed images, a reference image I, which is to be registered in

the system’s gallery, and a probe image J , the problem considered here is to find a set

of corresponding block pairs between the two images in preparation for evaluating their

similarity. Let P be a set of Nb image block locations (i.e., block-center coordinates)

on the reference image I, where P = {p1, . . . ,pNb
} ⊆ Z

2 determined in advance. The

correspondence search problem is to find the set of corresponding block locations Q =

{q1, . . . , qNb
} ⊆ Z

2 on the probe image J . The search of Q comprises three main steps

explained as follows:

(i) Generate multi-resolution image pyramids

We indicate the resolution layer of the image pyramids by the superscript l where

l = 0, . . . , lmax. That is I
l for the reference image and J l for the probe image. We generate

the image pyramids by setting I(= I0) and J(= J0) and applying the following equations:

I l(n1, n2) =
1

4

1
∑

j1=0

1
∑

j2=0

I l−1(2n1 + j1, 2n2 + j2), (3.57)

J l(n1, n2) =
1

4

1
∑

j1=0

1
∑

j2=0

J l−1(2n1 + j1, 2n2 + j2), (3.58)

for all l = 1, . . . , lmax. In Ch. 5, image matching is improved by applying texture

enhancement to the image pyramid.

(ii) Determine the set of local block locations in the reference image pyramid

Let P l = {pl
1, . . . ,p

l
Nb
} denote the set of local block locations on the the l-th layer

reference image I l. The set of block locations P 0 = {p0
1 . . . ,p

0
Nb
} on the original reference
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image I0 are given in advance as P 0 = P and p0
t = pt. Then, the lower-resolution

coordinates can be automatically computed as

pl
t =

⌊

1

2l
p0
t

⌋

, (3.59)

where t = 1, . . . , Nb and l = 1, . . . , lmax.

(iii) Estimate the corresponding block locations

BLPOC

BLPOC

Correspondence search

Similarity evaluation

Figure 3.9: Sketch of phase-based correspondence search.

Let Ql = {ql
1, . . . , q

l
Nb
} denote the set of corresponding block locations on the l-th layer

probe image J l. These coordinates are estimated using a coarse-to-fine recursion. For a pl
t

in the l-th layer, we find its corresponding block location ql
t(∈ Ql) from the upper layer pairs

(pl+1
t , ql+1

t ), recursively, with a three steps procedure: (i) compute the BLPOC function

between blocks at pl+1
t and ql+1

t , (ii) derive their displacement δl+1
t , and (iii) determine ql

t

the corresponding location of pl
t by

ql
t = 2

(

ql+1
t + δl+1

t

)

,

(t = 1, . . . , Nb),
(3.60)

where l < lmax. This recurrence starts from the coarsest layer l = lmax, where we assume

the simplest approximation:
qlmax

t = plmax

t ,

(t = 1, . . . , Nb).
(3.61)

The recurrence ends at the original resolution layer l = l0. As a result, we obtain the set of

coordinates Q = Q0 on the probe image that corresponds to the set of coordinates P on the
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Figure 3.10: Sketch of three layers PB-CM.

reference image. Fig. 3.9 depicts the coarsest-to-fine strategy for estimating corresponding

points q1
t on J1 and q0

t on J0.

3.8.2 Similarity evaluation

Once Q = Q0 is obtained, the next step is to compute the BLPOC function for the Nb

block pairs (pl+1
t , ql+1

t ). For all the block pairs (p0
t ,q

0
t ), we compute BLPOC functions and

derive their block-wise similarities (i.e., BLPOC peak values α0
t ). By taking an average of

these block-wise similarities, we have an overall matching score between the image pair I

and J . We revise other alternatives to average in Ch. 5.3.

3.8.3 Design with local phase array

Aoyama et al. 2013 [17] proposed a design of PB-CM with three resolution layers (top layer,

middle layer and bottom layer). He presented an array of hierarchical features suitable for

system implementation. He also presented a similarity measure different to the average of

peak heights.

The top layer (coarsest resolution) of Aoyama’s design is use as a single block image to
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compute a global translational displacement δGlobal. Then, q1
t and q0

t become

q1
t = p1

t + δGlobal
t , (3.62)

q0
t = 2(q1

t + δ1
t ), (3.63)

(t = 1, . . . , Nb). (3.64)

Notice that Eq. (3.63) is equivalent to Eq. (3.60). Thus, the middle layer is used for a local

registration and the bottom layer for similarity evaluation like in the original PB-CM. Fig.

3.10 illustrates the recognition method.

The discussion of this dissertation revolves around this algorithm, its strengths, and its

drawbacks. We use Aoyama’s design (although, with average of peak heights for similarity

measure) in Appendix A for score-level fusion of multibiometric recognition. In Ch. 4 and

Ch. 5, we consider designs with two layers which are reviewed in each chapters respectively.

3.9 Summary

In this chapter we have described the fundamentals of phase-based image matching. We

described Phase-Only-Correlation (POC) and the advantages of a correlation function

computed using the phase component of the Fourier transform. POC functions serve two

purposes: to measure a translation-invariant similarity between images and to estimate

their displacement. We reviewed two approaches to decrease the influence of low SNR in

high-frequency components. These are POC with spectral weighting and Band-Limited

POC (BLPOC). BLPOC has lower resolution deriving the displacement between images

but this can be compensated with a subpixel estimation. We revise the robustness of the

correlation functions under affine transformations and the effect of noise. We described

a baseline biometric recognition method, namely, Phase-Based Correspondence Matching

(PB-CM). This method yields high accuracy and robustness against deformations because

it combines block-wise phase-based image matching with a coarse-to-fine strategy. This

recognition method is the baseline in which this dissertation is centered. Ch. 4 addresses the

computational complexity in identification, i.e., one-to-many recognition. Ch. 5 addresses

the degradation in recognition accuracy that arises in periocular recognition.



4
Phase-based palmprint identification

with sparse representation

This chapter presents a phase-based palmprint identification method that addresses the

computational complexity of phase-based image matching in the one-to-many comparisons

required for identification. Sec. 4.3 tackles the problem at the block level while Sec. 4.5

tackles the problem for full block-wise comparisons. The remaining sections are dedicated

to experiments and discussions.

4.1 Introduction

In biometric recognition, the identification mode is intended to answer the question, who is

this person?, whereas the verification mode answer, is this person who he or she claims to

be?. Identification mode has an important role in law enforcement and security applications

where suspects are tested against a black list of subjects. Equally important is its role

in industrial and military applications where access is granted according to a white list

of users. Another important role of the identification mode is in the enrolment stage of

systems that perform verification. During enrolment, it is necessary to confirm that the

user is not enrolled already (i.e., de-duplication checks).

The biometric traits commonly used for identification mode are iris, face, fingerprint and

palmprint. Among these, the palmprint is a very appealing trait for commercial applications

due to its balance between person recognition capability and simplicity of image data

collection. The palmprint comprises a wide area, rich in stable and discriminative features
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including principal lines, wrinkles and ridges. A palmprint image can be captured by using

a camera under an unconstrained environment while causing little to no discomfort to users

[85]. Moreover, the palm of the hand can be placed with high ease. This is because the

hand is the part of the upper body with the largest feasible range of motion in space, and

all tasks that require dexterity are performed using the hand. Relative to face and iris

identification, palmprint identification increases privacy by granting access to users without

requiring them to clear their faces from hats, scarves, eyeglasses, or burkas.

On large-scale databases, identification requires an exhaustive one-to-many comparison.

Hence, the response time of the system is expected to increase significantly with large number

of enrolled users, especially when computational power is limited [34]. In order to circumvent

the bottleneck of an exhaustive one-to-many comparison of biometric identification systems,

approaches such as coarse classification or ‘binning’ have been proposed. By binning a

biometric database into classes, the overall workload for an identification attempt can be

reduced [86]. However, it is difficult that the traits registered are equally distributed among

these classes. For example, there is a natural classification of six category of palms, but the

largest class account for 78% of the palms [87]. This is not a significant reduction of the

workload. Also, binning is equivalent to combining recognition systems. Hence, classification

errors might significantly increase the FRR of the system [86]. As a consequence, it is crucial

to choose a suitable or fast identification method in order to deal with the computational

cost derived from large number of users.

Inspired by the success in iris recognition [7], Gabor-coding based methods have been

proposed and successfully applied to palmprint recognition [8, 9, 61, 72]. Representative

methods describe the palm texture by encoding the orientation of line features or ordinal

features across the palm surface, to have compact codes for identifying individuals, such

as Competitive Code [8], Double-Orientation Code [72] and Ordinal Code [9]. Compared

with the other conventional methods, these filter-coding based methods exhibit short

computation times and low storage requirements [40]. These characteristics make them

suitable for one-to-many comparison required in identification mode. However, for advanced

palmprint recognition systems with contactless image acquisition, Gabor-coding based

methods are not necessarily adequate since they lack the ability to cope with nonlinear

palmprint deformations and imperfect preprocessing that results from hand pose variations.

Phase-based image matching techniques [17, 28, 84] have demonstrated efficient verifi-

cation performances for palmprint images by combining hierarchical correspondence search

[21] with Band-Limited Phase-Only Correlation (BLPOC) [88]. As described in Sec. 3.6 and

Sec. 3.8, phase-based correspondence matching utilizes phase features extracted from local

image blocks through 2D DFT. These local phase features are used to compute BLPOC

functions that provide us accurate and robust similarity evaluation between images. In a
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real system, local phase features of users are to be enrolled in the system’s gallery (which

in this chapter we refer as phase templates). However, these phase templates are large in

size and the BLPOC functions are computationally expensive, especially for one-to-many

comparisons. This results in a long computation time which is prohibitive to identification

with a large number of users. We can conclude that the phase-based matching approaches

have excellent palmprint recognition accuracy at the cost of computational complexity and

template size.

In this chapter, we propose a palmprint identification method which employs Convolu-

tional Sparse Coding (CSC) [89] of phase templates for computationally efficient phase-based

image matching. By introducing a compact CSC representation of phase templates, we

can significantly reduce the computational complexity of BLPOC. We found that the

proposed method can reduce computation time and storage requirements without significant

degradation of recognition performance. By means of experiments on the PolyU palmprint

database [90] and the CASIA palmprint database [91], we demonstrate the effectiveness of

the proposed method and its advantages over conventional methods.

This chapter comprises three main contributions:

• (i) A novel phase-based hierarchical block matching algorithm with reduced compu-

tational complexity using CSC of phase templates: given a compact representation

of phase templates in sparse codes, this technique efficiently computes the BLPOC

functions for one-to-many comparisons. It vastly reduces the number of 2D-IDFTs by

applying convolution filters to phase features instead of BLPOC matching.

• (ii) An efficient CSC optimization algorithm that accomplishes the required compact

representation of phase templates. Effective optimization is made possible with an

approach based on the Matching Pursuit algorithm.

• (iii) An experimental evaluation of the proposed method in comparison with conven-

tional Gabor-coding methods.

Sec. 4.2 presents the configuration of the basic setting of phase correlation used in this

chapter. Sec. 4.3 introduces a basic framework for one-to-many image matching based on

phase correlation with sparse representation of templates. Sec. 4.4 is dedicated to a CSC

optimization algorithm. Sec. 4.5 describes an overall palmprint identification algorithm.

Sec. 4.6 presents the experimental evaluation, and Sec. 4.7 summarizes this chapter.
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4.2 Review of BLPOC matching

In Ch. 3, we presented the fundamentals of phase-based image matching which is effective to

assess similarity in various biometric images, including palmprint images. Particularly, the

block-wise approach of phase-based correspondence matching described therein is suitable

to address nonlinear image distortions caused by hand pose variations. Here, we revisit

the phase features described in Sec. 3.6 so as to introduce the concept of phase templates

and the respective correlation functions. This is a necessary modification for the sparse

representation to be proposed in the next section.

Consider two preprocessed palmprint images, a reference image I and a probe image

J . We extract two block images of size L1 × L2; one from I and one from J as in Sec.

3.8. Denote f(n1, n2) as a block centered at a point p on I, and denote g(n1, n2) (called a

probe block) as a block centered at a point q on the reference image. The ranges of image

coordinates are given by n1 = −L−
1 , . . . , L

+
1 and n2 = −L−

2 , . . . , L
+
2 . Hereon, f(n1, n2) is

called reference block and g(n1, n2) is called probe block. F (k1, k2) and G(k1, k2) are the

Fourier representation given by 3.9 and 3.10.

We define the phase template X(k1, k2) of a reference block f(n1, n2) as

X(k1, k2) = H(k1, k2)
F (k1, k2)

|F (k1, k2)|
, (4.1)

where H(k1, k2) is a spectral weighting function like the one defined for Eq. 3.14. On the

other hand, the phase feature Y (k1, k2) of the probe block g(n1, n2) is given by 3.45, which

we repeat here for clarity,

Y (k1, k2) =
G(k1, k2)

|G(k1, k2)|
. (4.2)

In addition to applying spectral weighting, we restricts for X(k1, k2) and Y (k1, k2) the

range of K1 and K2 to a limited band B1 × B2, where B1 < L1 and B2 < L2. We can

compute a band-limited cross-phase spectrum with spectral weighting R(k1, k2) as

R(k1, k2) = X(k1, k2)Y (k1, k2), (4.3)

where k1 = −B+
1 , . . . , B

+
1 and k2 = −B−

2 , . . . , B
+
2 . Thus, the resulting BLPOC function

(with spectral weighting) is

r(n1, n2) =
1

B1B2

∑

k1,k2

′
R(k1, k2)W

−k1n1

B1
W−k2n2

B2
, (4.4)

which stays equivalent to the vector form expressed in Eq. 3.42. Remember that r(n1, n2)

is defined for n1 = −B−
1 , . . . , B

+
1 and n2 = −B−

2 , . . . , B
+
2 . As explained in Ch. 3, the



4.2 Review of BLPOC matching 63

0

0.1

10
15

0.2

10

0.3

0 5

0.4

0
-5-10 -10

-15
n
1

n
2

r(n
1
,n
2
)

a

Reference image

I(n
1
,n
2
)

Probe image

J(n
1
,n
2
)

Reference block

f(n
1
,n
2
)

Probe block

g(n
1
,n
2
)

BLPOC function

Weighted cross-power spectrum

R(k
1
,k
2
)

Phase template

X(k
1
,k
2
)

p q

Phase feature

Y(k
1
,k
2
)

Figure 4.1: Computation flow of BLPOC function between two image blocks extracted from

the same person. Note that only real parts of X(k1, k2), Y (k1, k2) and R(k1, k2) are visualized

in order to demonstrate the effects on spectral weighting in Fourier domain.
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BLPOC function exhibits a sharp peak when the images are similar. The peak height

measures the similarity between blocks, and the location of the correlation peak
[

δBL
1 , δBL

2

]

indicates the translational shift between block images but with a factor, δ1 = δBL
1 L1/B1

and δ2 = δBL
2 L2/B2. Fig. 4.1 shows a computation flow of BLPOC function between two

block images extracted from the same person.

Let x(n1, n2) and y(n1, n2) be the (band-limited) 2D IDFTs ofX(K1, K2) andX(K1, K2),

respectively. Unlike f(n1, n2) and g(n1, n2), these spatial representations have size B1×B2,

thus, for x(n1, n2) and y(n1, n2), n1 = −B−
1 , . . . , B

+
1 and n2 = −B−

2 , . . . , B
+
2 . Then, note

that the BLPOC function r(n1, n2) can be expressed in the spatial domain as the following

cross-correlation:

r(n1, n2) = x(n1, n2)⊗ y(n1, n2). (4.5)

In general, however, it is unnecessary to calculate x(n1, n2) and y(n1, n2) explicitly since

the BLPOC function r(n1, n2) is efficiently calculated by the band-limited 2D-IDFT of

R(k1, k2) as seen in Eq. (4.4). Hereon we will only use the band-limited versions of phase

templates, phase features and cross-phase spectrum, i.e., X(k1, k2), Y (k1, k2) and R(k1, k2),

with k1 = −B+
1 , . . . , B

+
1 and k2 = −B−

2 , . . . , B
+
2 .

4.3 Phase-based image matching with CSC

So far, we described BLPOC matching between one probe block and one reference block.

However, biometric identification, unlike verification, requires one-to-many comparison, in

which the same probe block must be compared with a set of reference blocks from different

reference images registered in the gallery database.

Let Y (k1, k2) denote a phase feature extracted from the probe image J , and let us denote

by {X1(k1, k2), · · · , XNu
(k1, k2)} a collection of Nu phase templates in the frequency domain.

These phase templates are extracted from the reference images {I1, · · · , INu
} registered into

the gallery database, and Nu indicates the number of users registered in the system. The

problem considered here is to find a computationally efficient way of calculating the Nu

BLPOC functions {r1(n1, n2), · · · , rNu
(n1, n2)} for evaluating the similarities between the

probe’s phase feature Y and the reference’s phase templates {X1(k1, k2), · · · , XNu
(k1, k2)}.

This section describes a basic idea of reducing the computational complexity of BLPOC

functions as well as the data amount to be stored into the gallery database by introducing

sparse representation of phase templates.
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4.3.1 CSC representation of phase templates

Consider here the spatial-domain representations {x1(n1, n2), · · · , xNu
(n1, n2)} of phase

templates {X1(k1, k2), · · · , XNu
(k1, k2)}. They contain a form of enhanced palmprint

textures in a normalized form, which are higly discriminative as revised in Sec. 3.6.

Our experimental observation shows that these enhanced textures can be decomposed into a

fewer number of primitive patterns, to be later used as atoms for sparse representation [89].

These primitive patterns repeat across registered phase templates at different locations.

As a result, the i-th phase template xi(n1, n2) can be approximated by combining atoms

with specific positions and intensities in the form of a sum of circular convolutions between

atoms and sparse codes:

xi(n1, n2) ≈
Nd
∑

j=1

zi,j(n1, n2) ∗ dj(n1, n2), (4.6)

where n1 = −B−
1 , · · · , B+

1 and n2 = −B−
2 , · · · , B+

2 . Note that we use i = 1, · · · , Nu and

j = 1, · · · , Nd if not otherwise specified. Being dj(n1, n2) the impulse response of the j-th

convolution filter (or the j-th atom), the set of filters {d1(n1, n2), · · · , dNd
(n1, n2)} is called

the convolutional dictionary for the sparse representation, where Nd indicates the number of

filters. The function zi,j(n1, n2) is the j-th code for the i-th phase template. In our design,

the codes are sparse so that a collection of code functions {zi,1(n1, n2), · · · , zi,Nd
(n1, n2)}

has only Nc non-zero coefficients as

Nd
∑

j=1

∑

n1,n2

′
lim
p→0
|zi,j(n1, n2)|p =

Nd
∑

j=1

‖zi,j‖0 = Nc, (4.7)

where
∑′

n1,n2
denotes

∑B+
1

n1=−B−
1

∑B+
2

n2=−B−
2

. In Eq. (4.7), zi,j is a vector whose elements are

the values zi,j(n1, n2) and ‖zi,j‖0 is the L0-norm
1 of the vector, i.e., the number of non-zero

elements of the vector [92]. The synthesis of phase templates (Eq. (4.6)) can be rewritten

in the frequency domain as

Xi(k1, k2) ≈
Nd
∑

j=1

Zi,j(k1, k2)Dj(k1, k2), (4.8)

where Dj(k1, k2) and Zi,j(k1, k2) are the 2D DFTs of dj(n1, n2) and zi,j(n1, n2), respectively.

In the following, we describe how BLPOC functions can be represented using CSC

formulas (Eqs. (4.6) and (4.8)). We call this CSC-based approximation as CSC-BLPOC.

1Standard notations are l0-norm and l1-norm, but they can be confused with the pyramid layer l.
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4.3.2 CSC-based approximation of BLPOC functions

Here we write equations in both domains: spatial domain and frequency domain for clarity

purposes. Substituting the approximation Eq. (4.6) of xi(n1, n2) into the definition of

BLPOC function Eq. (4.5) (or equivalently, Eq. (4.8) into Eq. (4.3)), we have

ri(n1, n2) ≈
[

Nd
∑

j=1

zi,j(n1, n2) ∗ dj(n1, n2)

]

⊗ y(n1, n2), (4.9)

Ri(k1, k2) ≈
[

Nd
∑

j=1

Zi,j(k1, k2)Dj(k1, k2)

]

Y (k1, k2). (4.10)

These equations can be rewritten as

ri(n1, n2) ≈ r̂i(n1, n2) =

Nd
∑

j=1

zi,j(n1, n2)⊗ cj(n1, n2), (4.11)

Ri(k1, k2) ≈ R̂i(k1, k2) =

Nd
∑

j=1

Zi,j(k1, k2)Cj(k1, k2), (4.12)

where cj(n1, n2) and Cj(k1, k2) are defined as

cj(n1, n2) = dj(n1, n2)⊗ y(n1, n2), (4.13)

Cj(k1, k2) = Dj(k1, k2)Y (k1, k2). (4.14)

The function r̂i(n1, n2) is an approximation of ri(n1, n2) using CSC, which we call CSC-

BLPOC function. We use the symbol α̂ and [δ̂BL
1 , δ̂BL

2 ] to denote the height and location of

the correlation peak for the CSC-BLPOC function. Since cj(n1, n2) is the cross-correlation

function between the j-th atom dj(n1, n2) and y(n1, n2), we call cj(n1, n2) atomic correlation

function. As a result, we can understand Eq. (4.11) as a decomposition of a BLPOC

function into a set of Nd atomic correlation functions {c1(n1, n2), · · · , cNd
(n1, n2)}.

4.3.3 Computational advantage of CSC-BLPOC

The purpose of using CSC-BLPOC is to reduce the computational cost of evaluating

Nu BLPOC functions {r1(n1, n2), · · · , rNu
(n1, n2)} corresponding to Nu phase templates

{X1(k1, k2), · · · , XNu
(k1, k2)}. CSC-BLPOC functions can be computed from only Nd

(≪ Nu) atomic correlations regardless of number of phase templates Nu. Furthermore, such

computation can be very fast by taking advantage of the codes’ sparsity. To confirm the

above, we rewrite Eq. (4.11) as

r̂i(n1, n2) =
∑

(j,m1,m2)∈ζi

zi,j(m1,m2)c̃j(n1 +m1, n2 +m1), (4.15)
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Algorithm 1 Computation of BLPOC functions

for i ∈ {1, · · · , Nu} do
(i) Compute Ri(k1, k2) by Eq. (4.3)

(ii) Compute ri(n1, n2) by Eq. (4.4)

end for

Algorithm 2 Computation of CSC-BLPOC functions

for j ∈ {1, · · · , Nd} do
(i) Compute Cj(k1, k2) by Eq. (4.14)

(ii) Compute cj(n1, n2) in the same way as Eq. (4.4)

end for

for i ∈ {1, · · · , Nu} do
(iii) Compute r̂i(n1, n2) by Eq. (4.15)

end for

where c̃j(n1, n2) is a 2D periodic extension of cj(n1, n2) (centered at (0,0) and with the 2D

period of (B1, B2)). Note that the set ζi = {(j,m1,m2)|zi,j(m1,m2) 6= 0} contains only Nc

triplets having nonzero values of zi,j(n1, n2). For better understanding of the computational

advantage of CSC-BLPOC, we summarize the computational flow for both BLPOC and

CSC-BLPOC cases. Given a phase feature Y (k1, k2) extracted from a probe image and a

set of phase templates {X1(k1, k2), · · · , XNu
(k1, k2)} extracted from Nu reference images

in the gallery, BLPOC and CSC-BLPOC are computed as shown in Algorithm 1 and 2,

respectively.

In the case of CSC-BLPOC, we assume that the filters and the sparse codes are computed

in advance through the CSC optimization algorithm described in the next section. Thus, the

filters in frequency domain {D1(k1, k2), · · · , DNd
(k1, k2)} are given, and Nu sets of sparse

codes {zi,1(n1, n2), · · · , zi,Nd
(n1, n2)} are given as shown in Algorithm 2. Additionally, if

we assume |δ̂BL
1 | < M1 and |δ̂BL

2 | < M2 for the BLPOC peak positions, we can further

reduce the computation of r̂i(n1, n2) to a limited search range: n1 = −M1, · · · ,M1 and

n2 = −M2, · · · ,M2.

In order to clarify the computational saving by CSC-BLPOC, we give a rough comparison

of the computation cost between BLPOC and CSC-BLPOC as shown in Table 4.1. For

simplicity, we use a square image block size and a square search range, i.e., B = B1 = B2

and M = M1 = M2. Also, we assume that one complex multiplication corresponds to four

real multiplications. We can see a clear similarity between the computation of BLPOC

functions and the computation of atomic correlation functions (i.e., the step (i) and (ii) in

CSC-BLPOC). If Nd ≪ Nu, the computation of atomic correlation functions is much faster
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Table 4.1: Computational cost of BLPOC functions and CSC-BLPOC functions.

Method # of operations

BLPOC (i) 4NuB
2 real multiplications

(ii) 8NuB
2 log2 B real multiplications

CSC-BLPOC (i) 4NdB
2 real multiplications

(ii) 8NdB
2 log2 B real multiplications

(iii) NuNc(2M + 1)2 real multiplications

than the computation of BLPOC functions, where Nd is the number of atoms, Nu is the

number of phase templates and the speed-up factor is Nu/Nd. The remaining step (iii) in

CSC-BLPOC can be, in a sense, regarded as an overhead of CSC-based computation. For

instance, assuming Nu = 360, B = 32, M = 8, Nd = 16 and Nc = 32, the number of real

multiplications for computing the BLPOC functions is 16,220,160, while that for computing

CSC-BLPOC functions is 4,050,176, and hence CSC-BLPOC is more than 4 times faster

than BLPOC.

The concept of CSC-BLPOC computation can be extended to other correlation methods

such as [93, 94] in the field of correlation pattern recognition [33].

4.4 CSC optimization algorithm

4.4.1 Problem statement

In this section, we propose an efficient optimization algorithm for deriving compact CSC

representation of phase templates to be registered in the gallery. Let x̂i(n1, n2) denote the

CSC approximation of the spatial-domain phase template xi(n1, n2) given by

x̂i(n1, n2) =

Nd
∑

j=1

zi,j(n1, n2) ∗ dj(n1, n2). (4.16)

The optimization problem considered in this section is to find adequate codes and filters

to minimize reconstruction error subject to two constraints: (i) the number of non-zero

coefficients in the code functions {zi,1(n1, n2), . . . , zi,Nd
(n1, n2)} is small constant Nc and (ii)

the energy of filter’s impulse response dj(n1, n2) is normalized to 1. Formally, the problem
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is described as follows:

argmin
dj(n1,n2),zi,j(n1,n2)

Nu
∑

i=1

∑

n1,n2

′
|xi(n1, n2)− x̂i(n1, n2)|2 (4.17)

subject to

Nd
∑

j=1

‖zi,j‖0 = Nc for i = 1, · · · , Nu,

∑

n1,n2

′
|dj(n1, n2)|2 = 1 for j = 1, · · · , Nd.

The sparsity constraint, i.e.,
∑Nd

j=1 ‖zi,j‖0 = Nc, is a distinct characteristic in our

biometric problem. In order to achieve a regular data structure for phase templates in the

gallery, we force the code to have the same size Nc for every template. Since this kind of

L0-norm constraint is difficult to solve, most of the researches on CSC relax this constraint

to L1-norm constraint [95, 96, 97, 98, 99]. However, we found that, for a small Nc as is

required here, the ideal L0-norm constraint can be efficiently addressed through the use of

a specially designed CSC optimization algorithm based on Matching Pursuit (MP) [100]

technique, which is described next.

4.4.2 Basic strategy for optimization

If we fix the codes in Eq. (4.17), the filter optimization becomes a convex problem.

Conversely, if we fix the filters, the code optimization is a combinatorial NP-hard problem

due to the L0-norm. This code optimization is usually relaxed into a convex problem by

changing the L0-norm constraint to the L1-norm constraint such as
∑Nd

j=1 ‖zi,j‖1 ≤ Nc. The

relaxed code optimization is known in the field of statistics as Least Absolute Shrinkage and

Selection Operator (LASSO) regression and in the field of signal processing as basis pursuit.

Taking advantage of biconvex nature of the relaxed problem, a common practice in CSC

optimization is to alternate between code optimization for fixed filters and filter optimization

for fixed codes. Following this strategy, Bristow et al. 2013 [95] advocate for applying

Alternating Direction Method of Multipliers (ADMMs) [101] to both code optimization

and filter optimization. Following, Bristow et al. [98] reviewed the development of the CSC

algorithms, and presented a framework for ADMM and proximal gradient methods such as

Fast Iterative Shinkage-Thresholding (FISTA) [102]. Related works using ADMM follow

this lead, [96, 97], and more recently Heide et al. [99] presented a framework with proximal

operators.

In these algorithms, code optimization starts from a dense solution and iteratively prune

coefficients from the codes until a certain degree of sparsity is obtained. They do not

control the exact number of coefficients. These algorithms can attain good solutions for
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low sparsity but not for high sparsity. Therefore, they can not be applied with success to

our problem defined by Eq. (4.17), where strict L0-norm constraint with small Nc, i.e.,

highly sparse condition, must be addressed. Clearly, it is quite difficult to address the

general class of L0-norm problems directly. But, for problems with small Nc, we found that

MP technique can be applied efficiently to code optimization. For smaller Nc, MP ensures

better reconstruction accuracy close to the global optimum, as is theoretically analyzed in

[103].

From the above mentioned point of views, we propose a new optimization method that

alternately performs MP for code optimization and Ordinary Least Squares (OLS) for filter

optimization. The proposed approach can be regarded, in a sense, as an extension of the

Method of Optimal Directions (MOD) [104] to convolutional version of dictionary learning.

Input , 

Output , 

Initialization

Code initialization

Sparse code optimization

Filter optimization

′

′

Yes

Yes

No

No

Inner loop

Outer loop

Figure 4.2: Flow diagram of the CSC optimization algorithm.
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Algorithm 3 Initialization

Set N ′
c to 2

for j ∈ {1, · · · , Nd} do
Initialize dj(n1, n2) by random values generated from the normal distribution with

µ = 0 and σ2 = 1

Apply a Hanning window to dj(n1, n2)

Compute the filter energy ej by

ej =
∑

n1,n2

′
|dj(n1, n2)|2

Normalize dj(n1, n2) by dj(n1, n2)/
√
ej

end for

4.4.3 Incremental CSC optimization algorithm

The overall structure of our proposed algorithm is depicted in Fig. 4.2. The basic procedures

for the inner loop are code optimization based on MP and filter optimization using OLS as

described above. Although relatively good performance is expected by alternating between

MP and OLS, the quality of the solution significantly depends on the initial setting of filters

dj(n1, n2). We address this drawback by adding an outer loop to start the optimization with

the simplified sparsity constraint and to repeat the optimization by gradually increasing

the number of non-zero elements until it reaches Nc. For this purpose, we introduce a new

counter N ′
c for controlling the number of non-zero elements for the inner loop. We found

that the result of optimization with the L0-norm sparsity N ′
c can be used as a good initial

condition for the case of N ′
c +1. This incremental approach drastically improves the quality

of the final solution. The initialization of N ′
c and filters dj(n1, n2) is shown in Algorithm 3,

where dj(n1, n2) are initialized only once when the algorithm starts.

At the beginning of every outer iteration, the codes zi,j(n1, n2) are to be initialized to 0 in

ordinary MP algorithm. However, we observe through a set of preliminary experiments that

reconstruction accuracy can be improved by skipping the code initialization and refining

the code values after the counter N ′
c reaches a certain value. We determine such value of

N ′
c by empirical observations. The code initialization is shown in Algorithm 4.

4.4.4 Sparse code optimization

Let us define the residual atomic correlation cresi,j (n1, n2) as follows:

cresi,j (n1, n2) = dj(n1, n2)⊗ {xi(n1, n2)− x̂i(n1, n2)} , (4.18)
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Algorithm 4 Code initialization

Require: N ′
c and zi,j(n1, n2)

Ensure: zi,j(n1, n2)

if N ′
c ≤ 10 and # of inner-loop iterations ≤ 8 then

for i ∈ {1, · · · , Nu} and j ∈ {1, · · · , Nd} do
zi,j(n1, n2)← 0

end for

end if

where x̂i(n1, n2) is computed by (4.16). Then, Sparse code optimization step in Fig. 4.2 is

shown in Algorithm 5.

4.4.5 Filter optimization

The filter optimization problem in Fig. 4.2 (derived from (4.17)) is solved easily in the

frequency domain, similar to the recent CSC studies [95, 96, 97, 99]:

argmin
Dj(k1,k2)

Nu
∑

i=1

∣

∣

∣

∣

∣

Xi(k1, k2)−
Nd
∑

j=1

Dj(k1, k2)Zi,j(k1, k2)

∣

∣

∣

∣

∣

2

. (4.19)

Notice that Eq. (4.19) can be solved independently for each frequency component with

OLS. For simplicity, we use a vector form for a given frequency defined as follows:

Xk1,k2 =











X1(k1, k2)
X2(k1, k2)

...
XNu

(k1, k2)











, (4.20)

Dk1,k2 =











D1(k1, k2)
D2(k1, k2)

...
DNd

(k1, k2)











, (4.21)

Zk1,k2 =











Z1,1(k1, k2) · · · Z1,Nd
(k1, k2)

Z2,1(k1, k2) · · · Z2,Nd
(k1, k2)

...
. . .

...
ZNu,1(k1, k2) · · · ZNT ,Nd

(k1, k2)











. (4.22)

In this way, the problem becomes B1 × B2 OLS sub-problems of size Nd ×Nd as follows:

argmin
Dk1,k2

‖Xk1,k2 − Zk1,k2Dk1,k2‖22 . (4.23)
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Algorithm 5 Sparse code optimization

Require: N ′
c, xi(n1, n2), zi,j(n1, n2) and dj(n1, n2)

Ensure: zi,j(n1, n2)

for i ∈ {1, · · · , Nu} do
Count the number of non-zero elements N ′′

c by
∑Nd

j=1 ‖zi,j‖0
if N ′′

c < N ′
c then

while N ′′
c < N ′

c do

Compute cresi,j (n1, n2) by Eq. (4.18)

Find {j′, n′
1, n

′
2} maximizing the absolute value of the residual atomic correlation

functions by

{j′, n′
1, n

′
2} ← argmax

j,n1,n2

∣

∣cresi,j (n1, n2)
∣

∣

Update zi,j′(n
′
1, n

′
2) by

zi,j′(n
′
1, n

′
2)← cresi,j′(n

′
1, n

′
2)

N ′′
c ← N ′′

c + 1

end while

else

Compute cresi,j (n1, n2) by Eq. (4.18)

Update all the non-zero elements in zi,j(n1, n2) by

zi,j(n1, n2)← zi,j(n1, n2) + ηcresi,j (n1, n2) (0 < η < 1)

end if

end for
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The OLS solution is as follows:

Dk1,k2 =
(

Z†
k1,k2

Zk1,k2

)−1

Z†
k1,k2

Xk1,k2 , (4.24)

where † is the Hermitian transpose.

This OLS solution differs from [95, 96, 97, 99] in that no spatial constraint was imposed

and thus, the terms related to spatial constraint are avoided. However, as the filters resulting

from OLS are not normalized or bounded, their values might diverge after consecutive

optimization steps; nonetheless, this is addressed by re-scaling the sparse codes accordingly.

Thus, filter optimization, shown in Algorithm 6, produces the optimized filters dj(n1, n2)

and scaled codes zi,j . Note that the outputs of the CSC optimization algorithm are available

both in the spatial and frequency domain, i.e., zi,j(n1, n2) and Dj(k1, k2).

Algorithm 6 Filter optimization

Require: xi(n1, n2) and zi,j(n1, n2)

Ensure: dj(n1, n2) and zi,j(n1, n2)

Compute 2D DFT of xi(n1, n2) and zi,j(n1, n2)

Obtain Dj(k1, k2) by Eq. (4.24)

for j ∈ {1, · · · , Nd} do
Compute the filter energy ej by

ej =
∑

k1,k2

′
|Dj(k1, k2)|2 /(B1B2)

Normalize Dj(k1, k2) by Dj(k1, k2)/
√
ej

Scale zi,j(n1, n2) by zi,j(n1, n2)
√
ej

end for

Compute 2D DFT of Dj(k1, k2)

4.5 Palmprint identification with Phase-Based Hier-

archical Block Matching

Now we are ready to design a complete palmprint identification algorithm on the basis

of fundamental discussions of the previous sections. In the previous section, we discussed

a computationally efficient way of calculating phase-based similarities between a probe

block extracted from the probe image J and a set of Nu reference blocks extracted from

the reference images {I1, · · · , INu
} in the gallery. This one-to-many block-wise image
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comparison makes an implicit assumption that all palmprint images are aligned in position

with perfectly normalized hand pose. However, in real situation, palmprint images contain

global translations, rotations and nonlinear deformations.

Hence, for given a small local block on a full-size palmprint image, the problem is to

find the corresponding block location on another palmprint image. In real-world palmprint

identification, this problem of block-wise correspondence search must be addressed before

block-wise similarity evaluation.

We described in Sec. 3.8 a Phase-Based Correspondence Matching algorithm (PB-CM)

[17, 28] that involve a coarse-to-fine search strategy. PB-CM has achieve very high recogni-

tion accuracy in palmprint and finger-knuckle biometrics. However, the correspondence

matching algorithm is suitable for one-to-one comparison required in verification mode

and not for one-to-many comparison required in identification mode. The goal of the

next section is to modify the correspondence matching algorithm so as to perform one-to-

many comparison with reduced computational complexity using the proposed CSC-based

correlation technique proposed in Sec. 4.3.

4.5.1 Phase-Based Correspondence Matching

Let us revisit the correspondence matching algorithm described in Sec. 3.8. Given a

reference image I (registered in the gallery) and a probe image J , the algorithm comprises

a correspondence search step (Sec. 3.8.1) and a similarity evaluation step (Sec. 3.8.2).

The execution of this algorithm involves two types of phase feature computation, (i) one

for a set of image blocks extracted from I at predetermined locations and (ii) one for a

set of image blocks extracted from J at corresponding block locations. The locations of

the reference blocks on the reference images I1, · · · , INu
are predetermined when we enroll

the reference blocks (or, more precisely, register the phase templates (Eq. (4.1)) of the

blocks) in the gallery. Hence, the phase templates of every reference block are computed

only once during enrolment, i.e., they are computed off-line. A major problem regarding

the computational efficiency arises when we apply this correspondence matching algorithm

to the one-to-many comparisons required for identification. The problem stems from the

fact that the corresponding locations of the probe blocks on J vary depending on the

reference images I1, · · · , INu
. Thus, in order to compare a single probe image J with a set

Nu reference images, we must repeat the feature computation from J for the corresponding

locations of each reference image. This means that the total number of different probe blocks

is very large, as much as the total number of reference blocks enrolled in the gallery. As a

consequence, the number of 2D DFT computations to be performed on-line for generating

the phase features of probe blocks (Eq. (4.2)) is significantly large in identification mode.
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4.5.2 Phase-Based Hierarchical Block Matching (PB-HBM)

We address the aforementioned problem by modifying the original correspondence matching

algorithm to have fixed locations also for the probe blocks. The modified algorithm,

which we call Phase-Based Hierarchical Block Matching (PB-HBM) algorithm, has reduced

computational complexity compared with the correspondence matching algorithm [17, 28].

In addition, since the PB-HBM algorithm is based on one-to-many block comparisons, we

can apply CSC-BLPOC technique proposed in Sec. 4.3 for further reducing computational

cost and gallery data size. For simplicity, we first explain how to evaluate the similarity

between a single image pair, a probe image J and a reference image I. PB-HBM starts

with defining Nb reference blocks on I, finds their best match (corresponding) blocks on

J , and evaluates their block-wise similarity. The corresponding blocks are selected from

predetermined candidate blocks on J .

Let P = {p1, · · · ,pNb
} ⊆ Z

2 denote the set of locations (i.e., coordinates) for the Nb

reference blocks on I, and let Qcand ⊆ Z
2 denote the set of locations for candidate blocks

on J , where we assume the number of candidate locations in Qcand is sufficiently large, i.e.,

|Qcand| ≥ Nb. Given the set P on I, the problem is to find a set of corresponding block

locations Q(⊆ Qcand) on J .

Template
extraction

Template
extraction

Reference image

Coarse reference image
1

0

1

0

Phase templates

, 0
0 ( 1, 2)

, 1
1 ( 1, 2)

CSC optimization
algorithm

CSC optimization
algorithm

0( 1, 2)

1( 1, 2)
Filters

Filters

Gallery

, , 0
0 ( 1, 2)

, , 1
1 ( 1 , 2)

Figure 4.5: Enrolment for palmprint identification using two-layer Phase-Based Hierarchical

Block Matching with Convolutional Sparse Coding (PB-HBM-CSC)

To solve this problem, we shall adopt a coarse-to-fine strategy similar to that of the

steps (i) and (ii) of the correspondence search of PB-CM in Sec.3.8.1. This is two set of

images I l and J l for layers l = 0, · · · , lmax where I0 = I and J0 = J . I l and J l for l > 0 is

given by Eq. (3.57) and Eq. (3.58) from Sec. 3.8.1. Likewise, the reference block locations
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P l = {pl
1, · · · ,pl

Nb
} on the l-th layer reference image I l are given in advance by Eq. (3.59).

Remember that for the original image layer l = 0, we have p0
t = pt.

Given the reference block pl
t on I l, the problem considered here is to find the corre-

sponding block ql
t on J l, for all t = 1, · · · , Nb, with a coarse-to-fine search starting from

l = lmax to l = 0. We reduce the computational complexity of the coarse-to-fine search by

restricting the corresponding blocks to a set of predetermined locations Ql
cand on J l.

The procedure to recursively find the corresponding block pairs (pl
t, q

l
t) from the upper

layer pairs (pl+1
t , ql+1

t ) consists of the following steps: (i) compute BLPOC function between

the blocks at pl+1
t and ql+1

t , (ii) derive their displacement δl+1
t , and (iii) update their

positions to have (pl
t, q

l
t) with higher resolution, where pl

t is given by Eq. (3.59) and ql
t is

derived as

ql
t = argmin

q∈Ql
cand

∥

∥q − 2
(

ql+1
t + δl+1

t

)∥

∥

2
. (4.25)

For simplicity, we start the above recursion with the initial setting:

qlmax

t = plmax

t . (4.26)

As a result of this procedure, we can obtain the set of Nb pairs (p
0
t , q

0
t ) of corresponding

blocks at the original image layer. For all the block pairs (p0
t , q

0
t ), we compute BLPOC

functions and derive their block-wise similarities (i.e., BLPOC peak values α0
t ). By taking

an average of these block-wise similarities, we have an overall matching score between the

image pair I and J .

Algorithm 7 Enrolment procedure for PB-HBM

Require: Nu reference images

Ensure: 2NuNb phase templates X l
i,pl

t

(k1, k2)

for i ∈ {1, · · · , Nu}) do
Generate an image pyramid, I1i and I0i (= Ii), by Eq. (3.57)

for l ∈ {0, 1} do
for t ∈ {1, · · · , Nb} do
Obtain a reference block location pl

t on I li by Eq. (3.59)

Compute the local phase template X l
i,pl

t

(k1, k2) by Eq. (4.1)

Store the phase template into the gallery

end for

end for

end for

We must address the trade-off between recognition accuracy and computational cost,

since a higher number of reference blocks Nb implies not only higher recognition accuracy
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but also higher computational cost in PB-HBM. Another key parameter to be considered

in PB-HBM is lmax, where higher lmax implies higher robustness in recognition, but at an

increased computational cost. In the experiments presented in this section, we found that

two resolution layers (coarse l = 1 and original l = 0) are sufficient, and hence lmax = 1.

We describe how to apply PB-HBM to the identification mode where a probe image

J is compared with Nu reference images {I1, I2, · · · , INu
} enrolled in the gallery. In

identification, the block-wise comparisons within PB-HBM are performed in the Fourier

domain for computational efficiency. As discussed in Sec. 5.3, this involves the comparisons

of phase templates with phase features computed from the reference blocks and probe

blocks, respectively. In this way, phase templates can be prepared in advance and phase

features are computed once before the comparisons. Fig. 4.4 illustrates the overall flow

of palmprint identification using two-layer PB-HBM and for contrast two-layer PB-CM is

illustrated as well in Fig. 4.3. The enrolment process, which is common for PB-CM and

PB-HBM, is depicted at the left side of the gallery database while the identification process

depicted at the right side. In the enrolment process, we construct an image pyramid for

each reference image Ii, extract the phase templates X l
i,pl

t

(k1, k2) from I li at fixed locations

pl
t and store them into the gallery, where i = 1, · · · , Nu, l = 0, 1 and t = 1, · · · , Nb. A

detailed description of the enrolment procedure is shown in Algorithm 7.

In the identification process, we construct an image pyramid of J , extract the phase

features Y l
q (k1, k2) from J l at fixed locations q in Ql

cand and compare them with the phase

templates stored into the gallery. These are a total of 2NuNb comparisons which are

carried out by computing BLPOC functions between phase features and phase templates.

A detailed description of the identification procedure is shown in Algorithm 8.

PB-HBM computes only a phase feature for each candidate location which is a vast

reduction compared with correspondence matching [17, 28], where a phase feature is

computed for each phase template. Finally, we combine PB-HBM and CSC-BLPOC into

our final proposed algorithm, namely, PB-HBM-CSC.

4.5.3 Phase-Based Hierarchical Block Matching with Convolu-

tional Sparse Coding (PB-HBM-CSC)

Fig. 4.5 and Fig. 4.6 illustrate the overall process of PB-HBM-CSC. Fig. 4.5 illustrates

the enrolment process where we store the sparse representation of phase templates into

the gallery. During enrolment, first, we extract all the phase templates X l
i,pl

t

(k1, k2). Next,

for each layer, we apply the CSC optimization algorithm described in Sec. 4.4 to all the

phase templates of that layer. Then, we store the obtained convolution filters Dl
j(k1, k2)

and sparse codes zl
i,j,pl

t

(n1, n2) into the gallery. A detailed description of the enrolment
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Algorithm 8 Identification procedure for PB-HBM

Require: A probe image J

Ensure: Matching scores for reference images Ii

Generate an image pyramid, J1 and J0(= J), by Eq. (3.58)

for l ∈ {0, 1} do
for each candidate block location q(∈ Ql

cand) on J l do

Compute the phase feature Y l
q (k1, k2) by Eq. (4.2)

end for

end for

for i ∈ {1, · · · , Nu} do
for t ∈ {1, · · · , Nb} do
Obtain p0

t and p1
t by Eq. (3.59)

Find the corresponding block location q1
t on J1 be equal to p1

t on I1i by Eq. (4.26)

Compute the BLPOC function for the block pair (p1
t , q

1
t ) to derive δ1

t , where we

use Eq. (4.3) and (4.4) with X l
i,p1

t
(k1, k2) stored in the gallery and the Y l

q1t
(k1, k2)

prepared above

Determine q0
t from q1

t and δ1
t using Eq. (4.25)

Compute the BLPOC function for the block pair (p0
t , q

0
t ) to derive the peak value

α0
t , where we use Eq. (4.3) and (4.4) with X0

i,p0
t
(k1, k2) and Y 0

q0t
(k1, k2)

end for

Compute the matching score between Ii and J as an average of α0
t for t = 1, · · · , Nb

end for

process is shown in Algorithm 9. Fig. 4.6 illustrates the identification process. At the

beginning of this process, we extract the phase features Y l
q (k1, k2) and compute their atomic

correlation functions clj,q(k1, k2) for all q in Ql
cand. Then, we compute the CSC-BLPOC

functions between atomic correlation functions and sparse codes. A detailed description of

the identification process is shown in Algorithm 10.

By applying CSC-BLPOC to PB-HBM, we reduce the number of 2D-IDFTs required

for identification. While PB-HBM requires 2NuNb 2D-IDFTs for the computation of

BLPOC functions, PB-HBM-CSC only requires Nd(Nb + |Qcand|) (where Nd ≪ Nu) for the

computation of atomic correlation functions.

As a final remark, the coarse-to-fine strategy allows us to limit the search range of

CSC-BLPOC function (defined by M1 and M2 in Sec. 4.3.3) which is important for the

total computational saving of CSC-BLPOC.
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Algorithm 9 Enrolment procedure for PB-HBM-CSC

Require: Nu reference images Ii

Ensure: Dl
j(k1, k2) and zl

i,j,pl
t

(n1, n2)

Compute the local phase templates X l
i,pl

t

(k1, k2) following the enrolment procedure for

PB-HBM

for l ∈ {0, 1} do
Compute sparse codes zl

i,j,pl
t

(n1, n2) and convolution filters Dl
j(k1, k2) by applying the

CSC optimzation algorithm in Sec. 4.4 to the phase templates X l
i,pl

t

(k1, k2)

Store convolution filters and sparse codes into the gallery

end for

Algorithm 10 Identification procedure for PB-HBM-CSC

Require: A probe image J

Ensure: Matching scores for reference images Ii

Generate an image pyramid, J1 and J0(= J), by Eq. (3.58)

for l ∈ {0, 1} do
for each candidate block location q(∈ Ql

cand) on J l do

Compute the phase feature Yq(k1, k2) by Eq. (4.2)

for each convolution filter Dl
j do

Compute the atomic correlation functions cj,q(k1, k2) using Yq(k1, k2) by Eq. (4.14)

end for

end for

end for

for i ∈ {1, · · · , Nu} do
for t ∈ {1, · · · , Nb} do
Obtain p0

t and p1
t by Eq. (3.59)

Find the corresponding block location q1
t on J1 be equal to p1

t on I1i by Eq. (4.26)

Compute the CSC-BLPOC function for the block pair (p1
t , q

1
t ) to derive δ1

t , where

we use Eq. (4.15) with z1
i,j,p1

t
(n1, n2) stored in the gallery and the c1

j,q1t (k1,k2)
prepared

above

Determine q0
t from q1

t and δ1
t by Eq. (4.25)

Compute the CSC-BLPOC function for the block pair (p0
t , q

0
t ) to derive the peak

value α̂0
t , where we use Eq. (4.15) with z0

i,j,p0
t
(n1, n2) and c0

j,q0t (k1,k2)

end for

Compute the matching score between Ii and J as an average of α̂0
t for t = 1, · · · , Nb

end for
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4.6 Experiments and discussion

This section presents experimental evaluation of the proposed and conventional methods

for palmprint identification and clarifies the major advantages of the proposed method.

4.6.1 Methods

The following is a list of palmprint identification methods to be evaluated in the experiments:

(i) Competitive Code (CompCode) [8],

(ii) Ordinal Code (OrdiCode) [9],

(iii) Double Orientation Code (DOC) [72].

(iv) Phase-Based Correspondence Matching (PB-CM) [28],

(v) Phase-Based Hierarchical Block Matching (PB-HBM) described in Sec. 4.5.2,

(vi) Phase-Based Hierarchical Block Matching with Convolutional Sparse Coding (PB-

HBM-CSC) described in Sec. 4.5.3,

The methods (i)–(iii) are based on features extracted using Gabor and ordinal filters, while

the methods (iv)–(vi) are based on local phase features. As for the conventional methods

to be compared, we selected (i)–(iii) (Sec. 2.4), since they are very fast (which is essential

for identification mode) and have favorable recognition accuracy. The method (iv) can

be regarded as a baseline for the methods (v) and (vi). The method (v) is a modified

version of method (iv), where correspondence matching is carried out on a predetermined

set of candidate blocks with fixed locations. The method (vi) reduces the computational

complexity of method (v) by introducing CSC for phase template representation.

4.6.2 Palmprint databases

We employ two public databases for our experiments: the PolyU palmprint database [90]

and the CASIA palmprint database [91]. The images in the PolyU database show only

minute displacements and deformations, since the subjects’ hands are being fixed during

the image acquisition. Conversely, the images in the CASIA database show various kind

of transformations due to contactless image acquisition. Although these databases have

a variable number of images per palm, we use a fixed number of images per palm in our

experiments. For the PolyU database, we use 3,740 images from 374 palms (hence 10 images

per palm) while for the CASIA database, we use 4,800 images from 600 palms (hence 8
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Table 4.2: Parameters for Gabor-coding based methods.

(i) CompCode

Parameter Value

Number of orientations 6

Radial frequency µ 0.1833 radians per pixel

Elliptical Gaussian envelope with

standard deviations (σ, β)
(2.8090, 1.4045)

(ii) OrdiCode

Parameter Vale

Number of orientations 3

Filter’s horizontal scale δx 0.9363

Filter’s vertical scale δy 2.8090

(iii) DOC

Parameter Value

Number of orientations 6

Radial frequency µ 0.0916 radians per pixel

Gaussian envelope with standard deviation σ 5.6179

images per palm). Within both databases, one image per palm is used for enrolment and

the rest for testing. We utilize the preprocessing method presented in [61] to extract and

normalize the region of interest from these palmprint images as mentioned in Sec. 2.3.2,

where the image size after preprocessing is 160× 160 pixels.

4.6.3 Parameters

Table 4.2 summarizes the parameters for the conventional algorithms (i)–(iii) according to

[72, 105]. Table 4.3, on the other hand, summarizes the parameters for the phase-based

methods (iv)–(vi). In addition, we discard texture-less reference/probe blocks in matching

operation to improve the recognition accuracy of methods (iv)–(vi). The AC energy1 of a

image block f(n1, n2) is calculated by

eAC =
∑

n1,n2

(

f(n1, n2)− fDC
)2

, (4.27)

1equivalent to pixel variance times block size
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Table 4.3: Parameters for phase-based methods.

(iv) PB-CM, (v) PB-HBM and (vi) PB-HBM-CSC

Parameter Value

Number of reference blocks Nb 49 blocks

Spacing between adjacent reference blocks 11 pixels

Image block size L1 × L2 64× 64 pixels

Phase template/feature size B1 × B2 32× 32 coefficients

Spectral weighting function H(k1, k2)

is a Gauss function with variance σ2

σ2 = 0.0796 for the coarse resolution

σ2 = 0.1137 for the original resolution

Search-range for the BLPOC

function (M1,M2)

(8, 8) for the coarse resolution

(5, 5) for the original resolution

(v) PB-HBM and (vi) PB-HBM-CSC

Parameter Value

Number of candidate blocks |Qcand| 169 blocks

Spacing between adjacent candidate blocks 8 pixels

(vi) PB-HBM-CSC

Parameter Value

Number of filters Nd for CSC 16 filters

Number of coefficients Nc for CSC 32 coefficients

ǫ 0.67/N ′
c

where fDC indicates the DC component of f(n1, n2) as well as Eq. (3.9). If an AC energy

is below a quality threshold thrAC = 1.2, i.e., textureless, we do not use this image block in

correspondence matching.

4.6.4 Evaluation of identification performance

The performance of the above methods is evaluated by the rank-1 identification error and

by the average computation time (excluding preprocessing time). All the methods are

implemented by using MATLAB 7.14 and executed on a system with Intel Xeon E5-2680

2.70 GHz, 128 GB and CentOS 6.8.

Table 4.4 summarizes the results of our experiments together with the results reported

in [72] for conventional methods. The difference between our results for (i)–(iii) and

the reported values in [72] can be due to the difference in the preprocessing step. For
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Table 4.4: Experimental results of identification errors and computation times.

Method
Identification error rate [%] Computation time [sec.]

PolyU CASIA PolyU CASIA

(i) CompCode 2.16 (3.57 in [72]) 9.86 0.21 0.31

(ii) OrdiCode 0.74 (4.81 in [72]) 8.07 0.21 0.32

(iii) DOC 0.71 (2.55 in [72]) 11.71 0.79 1.50

(iv) PB-CM 0 0.0238 9.21 14.9

(v) PB-HBM 0 0.0476 1.37 2.20

(vi) PB-HBM-CSC 0 0.0476 0.75 0.95

both databases, the phase-based methods exhibit significantly lower identification errors

compared with the conventional methods. PB-HBM and PB-HBM-CSC have the same

identification errors, which are slightly higher than that of PB-CM. This difference in error

rate is attributed to the use of predetermined block locations in PB-HBM and PB-HBM-

CSC. The computation time of PB-HBM is more than six times faster than that of PB-CM,

since the number of phase feature extractions is vastly reduced. The introduction of CSC

further reduces the computation time by half with respect to the computation time of

PB-HBM. This demonstrates that PB-HBM-CSC is effectively faster than PB-CM.
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Figure 4.7: CMC curve evaluated using the CASIA database for all methods and magnified

view of CMC curves for identification rates higher than 99.94%.

Fig. 4.7 shows the Cumulative Match Characteristic (CMC) curves for our experiments

with CASIA database, where the CMC curve presents the probability of observing the

correct identity within the top nrank ranks (Sec. 2.5). As for the conventional methods,

OrdiCode outperforms CompCode and DOC as is observed in the left plot of Fig. 4.7.
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Table 4.5: Registered data per image for each method.

Method Bit length of element # of elements Total size [bytes]

(i) CompCode 3 32× 32 384

(ii) OrdiCode 3 32× 32 384

(iii) DOC 3 32× 32× 2 768

(iv) PB-CM 4 32× 16× 49× 2 25,088

(v) PB-HBM 4 32× 16× 49× 2 25,088

(vi) PB-HBM-CSC 32+16 32× 49× 2 18,816

However, none of them reach 100% identification rate within the top 30 ranks. The right

plot of Fig. 4.7 shows a magnified view of the CMC curves for identification rates higher

than 99.94%. We observe that the phase-based methods have similar accuracy and reach

100% identification rate within the top 14 ranks.

Phase templates

Fine layer

PolyU Database

Coarse layer

Reconstructed

phase templates

CASIA Database

Fine layerCoarse layer

Figure 4.8: Phase templates in spatial domain and its reconstructed versions with Nd = 16

and Nc = 32.

Table 4.5 compares the data size required to enroll a reference image in the gallery for each

method. The phase-based methods (iv)–(vi) enroll a reference image as Nb×(# of layers) =

49× 2 phase templates. In the case of PB-HBM and PB-CM, we adopt 4-bit quantization

of phase components for storage efficiency [17, 60, 84]. In the case of PB-HBM-CSC, a

non-zero element of the sparse codes can be stored using 6 bytes, i.e., 32 bits for a coefficient

value and 16 bits for its position and filter index. As is observed in Table 4.5, the data size

required to enroll a reference image for PB-HBM-CSC is smaller than those required for

PB-HBM and PB-CM. This data size is still considerable higher than those for conventional
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methods. Even so, we can say that 1,000 users can be easily enrolled in an embedded

system storage since it requires only 19 Megabytes.

4.6.5 CSC representation

We applied the CSC algorithm to the phase templates in order to obtain a compact CSC

approximation and proposed PB-HBM-CSC, which is a computationally efficient phase-

based palmprint identification algorithm. Here, we take a look into the CSC approximation

of phase templates.
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Figure 4.9: Mean square error (%) of the CSC reconstruction of phase templates for number

of coefficients Nc = 16, 24, 32, 40 and number of filters Nd = 12, 16, 20.

In general, we have to select the parameter (Nc, Nd) taking into account the balance

between computation time and identification accuracy. An interesting observation is that

our setting, which is (Nd, Nc) = (16, 32), exhibits good identification accuracy as shown in

Table 4.4 in spite the fact that this setting does not correspond to the lowest reconstruction
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PolyU

CASIA

Coarse layer Fine layer

Figure 4.10: Impulse response of filters used in PB-HBM-CSC with Nd = 16 and Nc = 32.

error in Fig. 4.9. Therefore, a highly accurate CSC reconstruction is not necessary to

obtain high identification accuracy.

Fig. 4.8 shows examples of phase templates and corresponding phase templates recon-

structed from CSC representation, where Nc = 32 and Nd = 16. The CSC approximation is

similar to apply a low-pass filter to phase templates. The reconstruction error is evaluated

using Mean Squared Error (MSE), which is calculated by

MSE(%) =
1

Nu

Nu
∑

i=1

∑

n1,n2

′
|xi(n1, n2)− x̂i(n1, n2)|2 × 100%, (4.28)

where x̂i(n1, n2) is the phase template reconstructed by Eq. (4.16). Fig. 4.9 shows

reconstruction errors for a variety of (Nc, Nd).

Fig. 4.10 shows the impulse response of filters used in PB-HBM-CSC. Note here that

our CSC algorithm attained a reduced spatial support for the patterns in the impulse

responses. This confirms that the structure of phase templates is composed of localized

primitive patterns.

4.7 Summary

Motivated by the high accuracy of phase-based palmprint recognition, we proposed a palm-

print identification method that employs a sparse representation of local phase templates.

This method addresses the large computational complexity of phase-based image matching

in the one-to-many comparison required for identification mode by taking advantage of a

compact representation of phase templates in convolutional codes. We also presented a con-

volutional sparse coding algorithm based on matching pursuit that provides such a compact

representation. Experimental evaluation demonstrated that the proposed identification

method effectively reduces the computation time of phase-based palmprint identification in

one order of magnitude without significant degradation of the identification accuracy. In
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future work, we will extend the identification framework of the proposed method to other

biometric traits, such as face, finger-knuckle-print, periocular region, and iris.

This chapter contains pre-prints of an article submitted on October 3rd 2018 for

publication to the IEEE Transactions on Image Processing.
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5
Phase-based periocular recognition

with texture enhancement

5.1 Introduction

Reliable authentication of individuals in unconstrained scenarios is increasingly being re-

quired for applications, such as immigration control, entrance-exit management, surveillance,

law enforcement, forensics, etc. [106]. Capturing high-resolution images in less-constrained

environments with relaxed cooperation is crucial for user experience in terms of convenience

and acceptability [107], and it is relatively easy using state-of-the-art imaging technology.

Traditionally, iris and face have been intended for unconstrained scenarios. Face recognition

performance has greatly improved in the last decades [13], and iris recognition has arguably

the highest performance in controlled settings [70]. However, face recognition applicability

is limited since face recognition methods have to deal with factors such as facial expressions,

lighting variations, and occlusions in order to achieve accurate authentication. Likewise, iris

recognition methods have to deal with different factors, especially, partial occlusions due to

specular reflections and eyelashes, non-frontal gaze, motion blur, and defocus blur. Such

impairments degrade recognition performance or sometimes prevent recognition at all.

On the other hand, over the last years, the periocular region – the extended region

around the eye – has received considerable attention [53, 54, 55]. As mentioned in Sec. 2.2,

periocular region includes many distinctive components, such as iris, sclera, skin, eyefolds,

eyelashes and eyebrows [54]. These components are indicated in Fig. 5.1 for an image

sample from the UBIPr database [69]. They allow highly accurate recognition comparable
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Iris
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Eyefolds

Skin
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Figure 5.1: Components in the periocular region. Image sample from the UBIPr database.

with iris recognition in non-controlled scenarios [67, 108, 109]. In addition, existing sensing

setups for face recognition and iris recognition can be used to perform periocular recognition

as well.

Images captured from the periocular region usually exhibit nonlinear deformations due

to variations in facial orientation and expression as well as partial occlusion by eyeglasses,

hair, etc. These problems have to be addressed through highly accurate image matching

techniques in order to achieve an efficient performance. This chapter proposes a periocular

recognition algorithm based on the Phase-Based Correspondence Matching (PB-CM) de-

scribed in Sec. 3.8, which has demonstrated efficient performance in face, palmprint, and

finger knuckle recognition [17]. PB-CM employs local block matching using phase features

obtained from 2D discrete Fourier transform of image blocks. It combines phase features

with image resolution pyramids to deal with deformations caused by variations in facial

expressions and head pose.

A major problem of PB-CM is that its performance is significantly degraded when it is

applied to regions with poor texture such as the skin under the eye. Addressing this problem,

we combine phase-based correspondence matching with a texture enhancement technique to

make a highly robust recognition algorithm for periocular images. Experimental evaluation

using three public databases demonstrates an efficient performance of the proposed algorithm

in periocular recognition compared with conventional algorithms.

Contributions of this chapter are summarized as follows: (i) a new periocular image

recognition algorithm using phase-based correspondence matching, (ii) a technique for

improving its recognition performance through variance normalization, and (iii) systematic

experimental evaluation of the algorithms using three public databases. In the next section,

we present an overview of related works and the motivation of the proposed method.
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Table 5.1: Overview of periocular recognition works with traditional features.

Work Feature Database

Miller et al. 2010 [110] LBP FGRC[111], FERET[112]

Woodard et al. 2010 [113] LBP, color histograms FGRC, MBGC[114]

Park et al. 2011 [115] LBP, HOG, SIFT FGRC

Padole et al. 2012 [69] LBP, SIFT UBIPr[69]

Ross et al. 2012 [74]
HOG, m-SIFT,

PDM(FOSTDF)
FOCS[116]

Uzair et al. 2015 [117] LBP, PCA, raw pixel UBIPr, MBGC v2 [114]

Behera et al. 2017 [118] LBP, HOG Cross-Eyed 2016 [119]

5.2 Conventional methods for periocular recognition

As explained in 2.3, the recognition process comprises sensing, preprocessing, feature

extraction and feature matching. During preprocessing, the system extracts the periocular

region using eye or corner-of-eye detection, and normalizes the periocular image, as explained

in Sec. 2.3.2. From the preprocessed periocular images, the system extracts discriminative

feature vectors which are used in the later stage for comparison.

Previous works on periocular recognition applied traditional features used in biometric

recognition, specially in face recognition. See Table 5.1 for a list of previous works. Examples

of such works employ Histograms of Oriented Gradients (HOG) [74, 115, 118], Local Binary

Patterns (LBP) [69, 110, 113, 115, 117, 118], Principal Component Analysis (PCA) [117]

and Scale-Invariant Feature Transform (SIFT) [69, 74, 115], among others. Recognition

methods that employ these features are relatively robust to imperfect alignment and changes

in facial expression. However, their performance is limited since they do not fully exploit

the texture information within the periocular region.

Among recent periocular recognition methods, we find those based on Convolutional

Neural Networks (CNNs) [120, 121, 122] and those based on a correlation filter known as

Fusion Optimal-Trade-off Synthetic Discriminant Function (FOTSDF) [48, 74, 123, 124].

For comparison purposes, we put our attention on two of these methods, Semantic-Assisted

CNN (SCNN) [120] and Periocular Probabilistic Deformation Model (PPDM) [48]. One

major disadvantage of these state-of-the-art methods is that they require training data.

CNN approaches require large training datasets for generalization which are not available,

and the approaches that employ FOTSDF rely on image samples of target users for training

and parameter selection.
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(b) Corresponding points using phase-based correspondence matching

(a) Corresponding points using mSIFT

Enrolled image

Enrolled image Probe image

Probe image

Figure 5.2: Correspondence matching examples for two periocular images of the same person

(genuine pair): (a) using m-SIFT features matching and (b) using PB-CM. Red dots indicate

corresponding locations successfully estimated, and blue dots indicate failed estimations.

In this chapter, we propose Phase-Based Correspondence Matching (PB-CM) with

texture enhancement for periocular recognition. As explained in 3.8, PB-CM can handle

various nonlinear transformations by comparing local blocks at their corresponding location

in a similar way to SIFT feature matching. Compared with SIFT feature matching,

Fig. 5.2(a), PB-CM utilizes precise corresponding locations for an accurate similarity

evaluation, Fig. 5.2(b). PB-CM employs phase features which have shown to be effective

for representing various biometric textures, such as fingerprint, iris, face, palmprint, and

finger-knuckle-print [81]. However, the skin below the eyes has usually a weak texture

and does not yield the same recognition performance as other parts of the periocular

region. We found out that we can enhance the skin texture with variance normalization and

improve the discriminative capacity of the phase features in periocular recognition. In this

manner, the novel combination of PB-CM with texture enhancement makes intensive use

of the available periocular texture. This allows our method to compete favorably against

advanced periocular recognition approaches such as FOTSDF-based [48] and CNN-based

[120] methods.
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Original image Enhanced image

(i) (ii) (iii)

Patch after

Synthesis

Normalization Aggregation

Figure 5.3: Texture enhancement with variance normalization. Consists of three steps: (i)

extract one patch per pixel, (ii) normalize the variance of each patch and (iii) combine them

into a new image.

5.3 Periocular image matching based on phase fea-

tures

In this section we describe the proposed texture enhancement strategy and our modifications

to PB-CM. We present three similarity measures as well.

5.3.1 Texture enhancement

Phase-based image matching has shown to be effective for recognizing popular biometric

traits, such as fingerprint [24], iris [83], palmprint [28, 84], [58, 125] and finger knuckle

[58, 125], which contain homogeneous texture components. When we apply phase-based

image matching to periocular recognition, however, we have to deal with heterogeneous

texture components contained in periocular images. For example, while the appearances

of eyebrows have very distinctive textures, the skin around the eyes might have poor

textures, which deteriorate the recognition performance. It is necessary to enhance the

periocular images so as to make the poor texture more visible and make the whole image

more homogeneous. Therefore, we employ variance normalization, also known as contrast

normalization [89], which adjusts the local variance of pixel intensity across the whole image
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to the same level.

Variance normalization consists of three steps as illustrated in Figure 5.3.

(i) Extract local patches: Extract a small (e.g., 7 × 7) local patch from the original

image for every pixel.

(ii) Normalize the patches: For all the patches, subtract their DC components and

normalize their variance. A given patch ν(n1, n2) is normalized as follows:

ν̂(n1, n2) =
ν(n1, n2)− νDC

max

(

η,

√

1

|C|
∑

(n′
1
,n′

2
)∈C

(ν(n′
1, n

′
2)− νDC)2

) , (5.1)

where C is the set of patch coordinates, η is a small constant to cancel noise, max(., .)

is a function that returns the maximum value among the arguments, and νDC is the DC

component which is given by

νDC =
∑

(n1,n2)∈C

ν(n1, n2)

|C| . (5.2)

Notice that as long as the variance of ν(n1, n2) is greater than η, the variance of ν̂ is equal

to 1, i.e.,

1

|C|
∑

(n1,n2)∈C



ν̂(n1, n2)−
∑

(n1,n2)∈C

ν̂(n1, n2)

|C|





2

= 1. (5.3)

(iii) Synthesize a new image from normalized patches: construct a new image

by aggregating the patches using their original pixel coordinates. The intensity of each

pixel in the new image is the addition of overlapping neighbor patches.

The general formulation of the steps (i) and (ii) is called Divisive Normalization Trans-

form (DNT), and it is effective to reduce the statistical dependencies [126]. DNT has been

applied to image processing tasks such as image compression [127] and contrast enhancement

[128] among others.

In order to illustrate the effect of texture enhancement on the BLPOC function, Fig. 5.4

depicts an example of BLPOC matching without texture enhancement (left side) and another

example with texture enhancement (right side). Both examples show the image blocks

(f(n1, n2) and g(n1, n2)), the phase features (X(k1, k2) and Y (k1, k2)), and the respective

BLPOC functions (r(n1, n2)). The BLPOC function without enhancement exhibits multiple

peaks, and the location of the highest peak does not correspond to the correct translational

displacement between the two image blocks. On the other hand, the BLPOC function

with texture enhancement produces a single peak, which location indicates the correct

translational displacement between the two image blocks.
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Figure 5.4: Effect of texture enhancement on the BLPOC function for comparison of a

genuine block pair with poor texture (left: without texture enhancement, right: with texture

enhancement).

The spatial representation of phase feature can be regarded as an enhanced texture.

While variance normalization equalizes the pixel variance across the image, phase feature

computation equalizes the frequency components of the Fourier spectrum. The combination

of both enhancements is the main novelty of this chapter. Variance normalization is

important for phase-based image matching because it improves the representation of the

texture appearance across the spectrum. Thus, phase features that are computed after

variance normalization have high discrimination (for small texture details) at a wider range
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of frequency bands than those computed without it.

In order to assess the similarity of periocular images with phase-based image matching,

we introduce the texture enhancement step into PB-CM as follows.

5.3.2 Correspondence search

We modify the PB-CM algorithm described in section 3.8 in order to dedicate it to periocular

image matching. Our experimental observation shows that correspondence search with two-

level resolution pyramid (lmax = 1), should suffice to a wide range of periocular recognition

applications. Instead, Global or local registration in third layer resolution is challenging

due to the presence of occlusions and variations in gaze. Nonetheless, detection of eyes

and facial landmarks is very mature and can ensure reliable global alignment of periocular

images. We include a texture enhancement step in the coarse-to-fine correspondence search

described in Sec. 3.8.1. After generating the multi-resolution pyramids (step (i) in Sec.

3.8.1) of the preprocessed images I and J , we apply the texture enhancement described

above to each resolution layer. Then, we place the set P of Nb locations for reference blocks

and estimate the set Q of corresponding locations (step (ii) and (iii) in Sec. 3.8.1). We

also introduce a new similarity evaluation metric rank-n score for periocular recognition

described in the next subsection.

5.3.3 Similarity evaluation

We evaluate the similarity between the images, I and J , through a block-wise comparison

between corresponding blocks. This is to compute the BLPOC functions between the set

of blocks at locations P on I and the set of blocks at locations Q on J , so as to find the

correlation peak values. So far, we assumed that all the blocks in Q = q1, . . . , qNb
are valid

in that they precisely correspond to the blocks in P = p1, . . . ,pNb
.

In a real situation, however, we have to consider that some blocks in Q are meaningless

since periocular images can present different kinds of occlusions, such as glasses, hair, hats

and specular reflections, which significantly disturb the matching operation. In particular,

specular reflections have a considerable impact on recognition performance [129], which we

actually confirmed through experiments. To address this problem, we detect the specular

reflections with a simple thresholding operation and discard the blocks (in P and Q) that

are mostly covered by reflections. To be precise, in our experiments, a block is discarded

when reflections occupies more than 50% of the block area.
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Figure 5.5: Overall of the proposed periocular recognition method. (a) Enrolment procedure

of phase-based correspondence matching with texture enhancement. (b) Verification procedure

of phase-based correspondence matching with texture enhancement.
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We first define reflection masks MI and MJ for the enrolled image I and the probe

image J , respectively, through thresholding:

MI(n1, n2) =

{

1, if I(n1, n2) < 252,
0, otherwise,

(5.4)

MJ(n1, n2) =

{

1, if J(n1, n2) < 252
0, otherwise.

(5.5)

where 1 indicates valid pixels and 0 indicates possible specular reflections.

In order to weaken the effect of abrupt intensity changes caused by specular reflections,

we fill the area with reflections by interpolating inward from the pixel values on the outer

boundary of such area1.

Using the reflection masks, we can select valid blocks for which more than half of the

pixels are valid. Fig. 5.6 depicts the block selection for two images with considerable

specular reflections(Fig. 5.6(a)). We can observe how the effect of the specular reflection

on the glasses is reduced in Fig. 5.6(c). After the block selection, we can determine the

valid block pairs (pt, qt) where both of two blocks are valid in I and J , respectively. Let V

be the set of all the indices t for the valid block pairs (pt, qt), i.e., V = {t|(pt, qt)} is a valid

block pair, where pt ∈ P and qt ∈ Q. Then, the correlation peak value αt of the BLPOC

function between the block pair (pt, qt) is said to be valid if and only if the block pair is

valid, i.e., t ∈ V .

We consider three measures for similarity (i.e., matching scores) between I and J using

the valid correlation peak values. The first measure is the straightforward average of the

valid peak values αt as

Saverage =
1

|V |
∑

t∈V

αt. (5.6)

The second measure is the n-rank of peak values ordered from highest to lowest:

Srank = αtn , (5.7)

where the valid peak values are sorted as αt1 ≥ · · · ≥ αtn ≥ · · · ≥ αt|V |
. The third measure

is the number of peak values that are greater than a threshold value Thr as

Sthr =
∑

t∈V

h(αt), (5.8)

where

h(x) =

{

1, if x ≥ Thr,
0, otherwise.

1For example MATLAB provides the regionfill function for this purpose.
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Original images
Reflection mask 

and block selection
Modified image and 

selection of common blocks

(a) (b) (c)

Figure 5.6: Block center selection using thresholding to detect reflections: (a) The original

image pair. (b) The reflection masks and block locations with selected locations indicated by

red dot and the discarded locations indicated by blue dots. (c) The image after filling the

areas that have reflections and the final block locations used for matching

5.4 Overall periocular recognition algorithm

Finally, we describe our proposed algorithm for periocular recognition using PB-CM with

texture enhancement. Fig. 5.5 shows the overall of the recognition method. The enrolment

procedure is depicted in Fig. 5.5(b) and described by Algorithm 11. During enrolment,

we register a given periocular image as an array of local phase features extracted from its

multi-resolution image pyramid with texture enhancement. A phase feature extracted from

the enhanced enrolled image I l at position pl
t is denoted by X l

t(k1, k2).

The verification procedure is depicted in Fig. 5.5(a) and described by Algorithm 12.

During verification, given a probe image J , we extract a set of phase features from its multi-

resolution image pyramid with texture enhancement. We compare these phase features

with the phase features in the gallery using correspondence search and similarity evaluation.

Here, Y l
t (k1, k2) denotes a phase feature extracted from the enhanced probe image J l at a

position qt.

Regarding the data size of phase features stored in the gallery, we stored only a reduced

portion by taking advantage of the spectrum symmetry and including only the band required

for BLPOC computation. In addition, we applied quantization to the phase angles (see

[17, 84] and Sec. 3.6 for details). Phase quantization has shown little to non-detriment of
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Algorithm 11 Enrolment procedure

Require: An image I to be enrolled

Ensure: A set of phase features X l
t(k1, k2) for I

Generate the reflection mask MI(n1, n2) by Eq. (5.4)

Fill the area with specular reflections on I as described in Sec. 5.3.3

Generate a two-layer resolution pyramid and apply texture enhancement, so to obtain I0

and I1, as described in Sec. 3.8.1 and Sec. 5.3.1

for t ∈ {1, 2, . . . , Nb} do
if the block at location p0

t has more than 50% of valid pixels according to MI(n1, n2)

then

Extract a block from I0 at p0
t

Compute the phase feature X0
t (k1, k2) by (3.44)

Extract a block from I1 at p1
t

Compute the phase feature X l
t(k1, k2) by (3.44)

end if

end for

Store the computed phase features in the system’s gallery

the recognition performance by carefully considering the number of bits used.

5.5 Experimental evaluation

This section describes a performance evaluation of the proposed method and two baseline

methods, one based on LBP [73] and the other based on SIFT [11], using three publicly

available databases: CASIA-Iris-Distance in the CASIA Iris Image Database Version 4.0

[130] (CASIA), UBIPr database [69] (UBIPr), and ocular still challenge of the NIST FOCS

dataset [116] (FOCS). In addition, we compare the recognition performance of our method

with the performances reported in the literature for advanced periocular recognition methods

[48, 120].

For the comparative evaluation, we present the Receiver Operating Characteristic (ROC)

curve which is a plot of the FRR against the FAR, as described in Sec. 2.5. In all of our

experiments, we measured the verification performance using the Equal Error Rate (EER),

which is the error rate when FAR(%) is equal to FRR(%). We compute the EER(%) values

by linear interpolation of the ROC curves.
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Algorithm 12 Verification procedure

Require: A probe image J

Ensure: Matching score between J and the enrolled image I

Generate the reflection mask MJ(n1, n2) by Eq. (5.5)

Fill the area with specular reflections on J as described in Sec. 5.3.3

Generate a two-layer resolution pyramid and apply texture enhancement, so to obtain J0

and J1, as described in Sec. 3.8.1 and Sec. 5.3.1

Initialize the corresponding points q1
t (t = 1, 2, . . . , Nb) on J1 by Eq. (3.61)

Initialize the set V , i.e., V = {∅}
for t ∈ {1, 2, . . . , Nb} do
if there is a phase feature X1

t (k1, k2) in the gallery then

Extract a corresponding block from J1 at q1
t

Compute the phase feature Y 1
t (k1, k2) by Eq. (3.45)

Compute the BLPOC function between X1
t (k1, k2) and Y 1

t (k1, k2) by Eq. (4.3) and

Eq. (3.17)

Derive the translational displacement δ1
t

Determine q0
t from q1

t and δ1
t by Eq. (3.60)

Extract a corresponding block from J0 at q0
t

if the block at q0
t has more than 50% of valid pixels according to MJ(n1, n2) then

Compute the phase feature Y 0
t (k1, k2) by Eq. (3.45)

Compute the BLPOC function between X0
t (k1, k2) and Y 0

t (k1, k2) by Eq. (4.3)

and Eq. (3.17)

Derive the peak value αt and add t to the set V

end if

end if

end for

Compute the matching score between I and J from the values αt (t ∈ V ) using one of

the similarity measures described in Sec. 5.3.3
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5.5.1 Periocular databases

The images of the CASIA database were collected by the Chinese Academy of Sciences’

Institute of Automation [130]. This database consists of 2,567 partial face images taken

from 142 subjects under near infrared illumination, where the subjects stand at a distance

around 3m from the camera. The size of this images is 2, 352 × 1, 728 pixels (width ×
height) and they cover from the mouth to the forehead of the subjects. The images contain

small variations in head pose and occlusions due to hair, eyeglass, and specular reflections.

When the tilt (or rotation of the face) is more than six degrees, we correct it by aligning the

eyes position horizontally. We scaled the images to one-fourth of the conventional image

resolution and cropped two periocular regions of 300× 300 pixels for each eye.

The University of Beira Interior Periocular (UBIPr) database [69] consists of 10,950

periocular images captured in the visible spectrum from 342 subjects. Each subject has

images at five different resolutions: 501× 401 pixels at 8m (stand-off distance), 561× 441

pixels at 7m, 651× 501 pixels at 6m, 801× 651 pixels at 5m and 1001× 801 pixels at 4m.

We scale all these images to a common size of 240× 300 pixels and transform them into

gray-scale.

The Face and Ocular Challenge Series (FOCS) database [116] consist of 9, 581 periocular

images of 136 subjects where 4, 792 images are from left eyes and 4, 789 images are from

right eyes. captured with a near-infrared camera at an image resolution of 750× 600 pixels.

These periocular images were extracted from video sequences of subjects while walking.

This database contains images with blur, occlusion and gaze deviation. The images also

exhibit drastic variations in illumination and sensor noise. We scale these images to a size

of 300× 240 pixels.

5.5.2 Baseline methods

In order to compare the recognition performance of the proposed method, we implemented

two baseline recognition methods, which employ well known image descriptors: Local Binary

Patterns (LBP) [10] and modified Scale-Invariant Feature Transform (m-SIFT) [74]. The

first method employs the LBP operator [131], which assigns a label to every pixel of an

image by thresholding a circular neighborhoods of each pixel with the center pixel value

and considering the result as a binary number 2.4. Then, the histogram of the labels is used

as a texture descriptor [131]. Periocular recognition is performed by block-wise comparison

of the local histograms. We tested two block sizes for the histogram computation, which

are 30× 30 pixels for small size and 50× 50 pixels for large size. In the experiments with

the CASIA database, images are divided into 10× 10 (column×row) for small blocks and
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6× 6 for large blocks. In the case of FOCS and UBIPr databases, we divided images into

10× 8 for small blocks and 6× 5 for large blocks. We use Matlab implementation of LBP1.

The second method is the modified SIFT (m-SIFT) method [74], a biometric recognition

method based on SIFT features [11]. In our experiments, m-SIFT is implemented using the

VLfeat library2 like Ross et al. [74]. For a fair comparison, we also applied the reflection

mask described in Sec. 5.3.3 to select or discard features for the two baseline methods. If

the circular region around a SIFT key-point has less than 70% of valid area, that key-point

is discarded, and if an LBP block has less than 70% of valid area, that block is discarded.

5.5.3 Effect of texture enhancement on the recognition accuracy

We employed the CASIA database to assess the effect of texture enhancement since CASIA

images are larger than those of the other two databases and display richer skin textures. The

parameters for PB-CM and the texture enhancement are presented in Table 5.2. Texture

enhancement affects the appearance of the images with a whitening-like effect, which

intensifies the texture representation in the higher frequency bands. Hence, the use of wider

BLPOC bandwidth compared with the usual 50% bandwidth [17] can improve verification

performance. For this reason, we consider two band-limitation setups for BLPOC and three

patch size for texture enhancement. Table 5.3 presents the EERs for the aforementioned

configurations. We observe consistent improvement using texture enhancement for both

eyes. The introduction of texture enhancement and 67% BLPOC bandwidth can reduce

EER to less than one-third of the original case (50% bandwidth) and no enhancement.

Considering these results, in the following experiments, we employ a patch size of 5 × 5

pixels and a bandwidth of 67%. For this configuration, the similarity measures Sthr and

Srank consistently outperform Save, and hence we omit Save in the following experiments.

5.5.4 Quantization of phase features

We evaluated the effect of phase quantization on the recognition performance using the

CASIA database. We used the parameters shown in Table 5.2 and selected a patch size of

5× 5 pixels for texture enhancement and 67% bandwidth for BLPOC. Table 5.4 shows the

EERs for different quantization levels of phase angles: 2bits, 3bits, and 4bits. We did not

observe significant degradation of recognition performance due to quantization. However,

in the case of 2-bit quantization, the results are not consistent for both eyes. We observe

little degradation of the recognition performance for the left eye, while slight improvement

1 http://www.cse.oulu.fi/CMV/Downloads/LBPSoftware
2 http://www.vlfeat.org/

http://www.cse.oulu.fi/CMV/Downloads/LBPSoftware
http://www.vlfeat.org/
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Table 5.2: Parameters for PB-CM and texture enhancement. Parameters indicated with *

are used in the comparative evaluations

PB-CM

Parameter Value

Block size 48× 48 pixels*

Horizontal/vertical spacing between

blocks
16 pixels*

Number of blocks
(14× 14) blocks (where we removed 5 blocks

corresponding to the upper eyelid)

Band limitation for BLPOC 50% bandwidth: 24× 24 phase components

(two different setups) 67% bandwidth: 32× 32 phase components

Texture enhancement

Parameter Value

Noise rejection parameter η
0.0004× |C| × 255* where |C| is the size of the

patch

Patch sizes (three different setups) 3× 3 pixels, 5× 5 pixels* and 7× 7 pixels

Similarity measure

Parameter Value

Threshold of Sthreshold 0.30 for 50% bandwidth

(varies depending on the BLPOC

bandwidth)
0.28* for 67% bandwidth

Rank of Srank 12 for 50% bandwidth

(varies depending on the BLPOC

bandwidth)
8* for 67% bandwidth
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Table 5.4: EERs (%) of phase-based image matching with and without quantization of phase

angles. Bold fonts indicate the best EER per similarity measure.

Phase Left eye Right eye

quantization Save Srank Sthr Save Srank Sthr

No 0.223 0.157 0.145 0.085 0.080 0.077

4 bits 0.219 0.143 0.150 0.087 0.075 0.078

3 bits 0.223 0.143 0.165 0.089 0.089 0.084

2 bits 0.257 0.179 0.210 0.080 0.071 0.088

is observed for the right eye. For the rest of our experiments, we choose 4-bit quantization

because it is a good balance between the degree of compression and recognition performance.

Also, 3-bit quantization is a valid consideration when the registered data size is the main

concern.

5.5.5 Comparative performance evaluation

We compared our proposed method with the baseline methods for the three databases. We

adopt the parameters marked with ∗ in Table 5.2. The number of blocks for PB-CM are

changed depending on the database used, i.e., 14× 14 for CASIA and 14× 11 for FOCS

and UBIPr. We also compare the performance of the proposed method without texture

enhancement in order to demonstrate the effectiveness of texture enhancement in periocular

recognition. Table 5.5 (a), (b) and (c) summarize the verification performance for the

CASIA, UBIPr, and FOCS databases, respectively. Fig. 5.7 compares the ROC curves

of the proposed method with Srank, the proposed method with texture enhancement and

Srank and the conventional methods using m-SIFT and LBP (the best case) for the three

databases. The proposed method with texture enhancement outperforms m-SIFT, while

m-SIFT outperforms LBP for the three databases. The proposed method with texture

enhancement outperforms that without texture enhancement in all the cases. Hence, we

discuss the experimental results only for the proposed method with texture enhancement in

the following.

As for the CASIA database shown in Table 5.5(a), the proposed method exhibits EERs

one order of magnitude lower than those of m-SIFT. As observed at FAR=0.01% in Fig.

5.7 (a) and (b), the proposed method has a significantly low FRR, i.e., 0.23% for left eye

and 0.09% for right eye, compared with m-SIFT, i.e., 9.6% for left eye and 6.4% for right

eye. The CASIA database has an advantage for the proposed method due to its relatively
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good quality images with some skin texture. This database is also acceptable for m-SIFT,

since the images have around 400 m-SIFT key-points on average.

As for the UBIPr database shown in Table 5.5(b), the proposed method and m-SIFT

performed relatively close, while LBP performed poorly. Unlike the CASIA database, the

UBIPr database contains images with significant large head-pose variation specially in yaw

rotations, which are difficult to address. This is a relatively advantageous scenario for

m-SIFT due to its robustness against image deformation. Also, the UBIPr images contain a

significant number of SIFT key-points, where around 1,200 key-points in average per image

are detected. Nonetheless, as observed at FAR=0.1% in Fig. 5.7 (c) and (d), the proposed

method exhibits significantly low FRRs, i.e., 9.1% for left eye and 6.5% for right eye, with

respect to m-SIFT, i.e., 16.7% for left eye and 10.29% for right eye.

As for the FOCS database shown in Table 5.5 (c), all the methods performed poorly.

The proposed method performs slightly better than m-SIFT in terms of EER. This database

is highly challenging, since it contains images with substantial blur and noise.

5.5.6 Comparison with methods based on trained features

A major difficulty of periocular recognition is that the skin under the eyes has considerably

weak texture and hence conventional methods of biometric feature representation could not

capture its inherent features. Another possibility to address this problem would be to use

state-of-the-art machine learning techniques with a training data set. In order to enhance the

credibility of this chapter’s experimental evaluation, in this section, we additionally consider

two methods: one is based on Convolutional Neural Networks (CNNs), which are gaining

traction also in biometric applications [15, 16], and the other is based on correlation filters

which have been studied on periocular recognition [48, 67, 74, 123, 124, 133]. Specifically,

we compared with “Semantic assisted CNN (SCNN)” proposed by Zhao and Kumar [120]

and “Periocular Probabilistic Deformation Model (PPDM)” proposed by Smereka et al.

[48].

We prepared a subset of the CASIA database that imitates the setup used in [120] for

SCNN, although we used a different image segmentation. Table 5.6 presents the parameters

of this setup, and Table 5.7 shows the resulting EERs(%) of our method and SCNN

implementation1. The error rates of our method are one order of magnitude lower than

those of SCNN. We assumed that our segmentation was favorable to SCNN since in our

experiments SCNN yielded an EER=4.32% which is lower than the 6.61% reported in the

literature [120]. Therefore, the comparison in Table 5.7 should be fair. Note that the EERs

1http://www4.comp.polyu.edu.hk/~csajaykr/scnn.rar

http://www4.comp.polyu.edu.hk/~csajaykr/scnn.rar
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Table 5.5: EERs (%) of the proposed method and conventional methods on CASIA database,

UBIPr database and FOCS database, where TE indicates texture enhancement. Bold fonts

indicate the best EER.

(a) CASIA database

Method Left eye Right eye

LBP (Block size: 30× 30 pixels) 6.067 4.877

LBP (Block size: 50× 50 pixels) 4.595 3.920

m-SIFT 2.065 1.710

Proposed with Srank 0.640 0.510

Proposed with Sthr 0.610 0.290

Proposed with TE and Srank 0.143 0.075

Proposed with TE and Sthr 0.150 0.078

(b) UBIPr database

Method Left eye Right eye

LBP (Block size: 30× 30 pixels) 19.59 17.70

LBP (Block size: 50× 50 pixels) 30.10 29.88

m-SIFT 5.57 4.15

Proposed with Srank 6.55 5.25

Proposed with Sthr 5.19 4.05

Proposed with TE and Srank 3.16 2.87

Proposed with TE and Sthr 3.47 3.17

(c) FOCS database

Method Left eye Right eye

LBP (Block size: 30× 30 pixels) 35.30 35.45

LBP (Block size: 50× 50 pixels) 46.60 43.03

m-SIFT 24.69 25.26

Proposed with Srank 32.64 32.79

Proposed with Sthr 32.02 32.46

Proposed with TE and Srank 22.46 25.08

Proposed with TE and Sthr 24.67 26.46
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Proposed w/ texture enhancementm-SIFTLBP Proposed w/o texture enhancement
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(a) CASIA database (Left eye)
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(b) CASIA database (Right eye)
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(e) FOCS database (Left eye)
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(f) FOCS database (Right eye)
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(c) UBIPr database (Left eye)
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(d) UBIPr database (Right eye)

Figure 5.7: Comparison of ROC curves of the proposed method and conventional methods.
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Table 5.6: Experimental setup for comparative evaluation with SCNN.

Parameter Value

Image selection As provided in [132]

Image resolution
0.294 times the original resolution (estimated from

images samples provided in [132])

Image Size 240× 240 pixels

About right eye images
Right eye images are flipped horizontally since

SCNN is trained for left eye images

Number of blocks for PB-CM 10× 10 blocks

Table 5.7: Verification performances EERs(%) on a subset of CASIA database (comparison

with SCNN). Bold fonts indicate the best EER.

Method Left eye Right eye

SCNN 4.32 4.25

proposed with Srank 0.682 0.237

proposed with Sthreshold 0.735 0.253
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of the proposed method in Table 5.7 differ from those in Table 5.5 due to the differences in

the experimental setup.

We also compare our method with PPDM considering the EERs reported in the literature

for left eye images. The EERs(%) of PPDM are 10.47% and 7.67% for CASIA database

[120] and UBIPr database [48], respectively. These EERs are more than double of those

of our method for the respective databases, i.e., 0.68% and 3.16%. We do not consider

that the differences in test protocols can be the reason for such a pronounced difference in

performance. Therefore, we conclude that our method has a clear advantage over PPDM in

periocular image matching.

In the case of FOCS database, for left eye images, the EER of SCNN reported in [120] is

10.47%, and the EER of PPDM reported in [48] is 22.44%. Their experimental evaluation

differs in term of preprocessing and selection of test images. However, we can infer that the

performance of our method, i.e., EER=22.19% is close to PPDM, while it is clearly worse

than the performance of SCNN. This is because our method did not deal with such a high

level of noise and blur as is observed in the FOCS images, while CNNs are able to manage

a certain degree of feature ambiguity due to image quality degradation. For future works,

we will consider introducing deblurring and denoising based on spatio-temporal analysis

of video sequences in addition to texture enhancement so as to realize accurate periocular

recognition for walking persons in future work.

5.6 Summary

In this chapter, we proposed a periocular recognition algorithm using Phase-Based Corre-

spondence Matching (PB-CM) with texture enhancement. By using a specially selected

texture enhancement, we improved the recognition performance of phase-based image match-

ing on periocular images. Experimental evaluation on three public databases demonstrated

a clear advantage of the proposed method matching periocular images over conventional

methods. To the best of the author knowledge, at the date of this dissertation, the proposed

method accomplished the highest performance for the CASIA iris-Distance dataset and the

UBIPr database.

This chapter contains pre-prints of an article to be published on the IEICE Transactions

on Fundamentals, Vol. E102-A, No.10, Oct. 2019.
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6
Conclusion

We have developed two high-performance recognition methods that employ phase-based

image matching. The first method is a palmprint identification method that employs

an efficient one-to-many matching strategy of phase features. This strategy is derived

from convolutional sparse coding of phase templates. In our experimental evaluation, the

proposed identification method exhibits a computation time competitive with fast methods

and no detriment in the high recognition accuracy of phase-based methods. Our method

can accomplish palmprint identification under one-tenth of the time yielded by conventional

phase-based recognition methods. The second method is a periocular recognition method

that improves the recognition accuracy of conventional phase-based methods by applying

texture enhancement. To the best of the author knowledge, at the date of this dissertation,

the proposed method exhibits the highest recognition accuracy reported for two public

databases.

The contributions presented in this dissertation expand the applicability of recognition

using phase-based image matching in two scenarios. They are the following: scenarios

for identification (one-to-many recognition) and scenarios that demand facial recognition

with high accuracy and low constrained setups. Considering the high performance of the

presented methods, this dissertation makes a solid contribution to the state of the art in

the field of biometric recognition.
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6.1 Future work

The aforementioned contributions of this dissertation expand the range of applicability of

biometric recognition using phase-based image matching and opened new directions for

research.

For future works, the author considers developing an image restoration method for

biometric recognition. This is sought for face, iris, and periocular recognition. The aim is

to attain deblur and denoising sufficiently fast for practical biometric applications.



A
Score-level fusion of multi-biometrics

A.1 Introduction

Biometric systems that utilize one modality (one form of recognition) fail to exhibit high

performance in real-life application, specially, those with a large number of users. This is

because different problems. Imperfect acquisition increases the noise level; preprocessing

can fail on images acquired with low constrained setups; population of users have difficult

providing biometric data (e.g., texture-less fingerprints in elder population); and some

people can not provided it due to lack of universality. Moreover, it is easier to target one

modality for spoofing attacks than multiples. Some of these problems can be addressed

by using multiple modalities such as multiple sensors, multiple image samples, multiple

recognition algorithms, or multiple traits. Particularly, in order to overcome most of the

limitations within unimodal systems, person authentication systems that make use of

multiple biometric traits have attracted considerable interest in the last decade [32].

Multibiometric systems improving performance by the complementary use of the infor-

mation provided by multiple traits. This approach has multiple advantages: (A) It address

limited population coverage, (B) hinder spoofing by impostors, and (C) assess noise in

sensed data, which are previously unmanageable with unibiometric systems. Fusion levels

for multibiometric systems can be classified into five categories: (i) sensor level, (ii) feature

level, (iii) score level, (iv) rank level, and (v) decision level. In this chapter, we focus on

score level fusion of multiple biometric traits, since matching scores are accessible and

relatively simple to combine regardless of the algorithms or traits used.
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Figure A.1: Multibiometric systems: (a) conventional system using multiple matchers, and

(b) proposed system using PB-CM (local phase array).

In Ch. 2 we covered the fundamentals of biometric systems, the modules of their

operation flow with a single trait: an acquisition module, a preprocesing module, a feature

extraction module, and a matching module, which is also referred as matcher. In general for

multibiometric systems with score-level fusion, the matching score for each trait is calculated

using a trait-dedicated recognition algorithm. This case requires a feature extraction module

and matching module for each trait. Therefore, the increase in the number of traits results

in a large-scale system as shown in Fig. A.1(a). In contrast, multibiometric recognition

using a unified recognition algorithm such as PB-CM is expected to realize a compact

system as shown in Fig. A.1(b).

In chapter 3 we described the Phase-Based Correspondence Matching (PB-CM) recogni-

tion method which has demonstrated its efficiency for face, palmprint and finger knuckle

[17]. If the matching score for each trait is calculated by one same matcher using PB-CM,

the size of the system can be reduced and the simple score level fusion can be utilized to

exhibit high quality performance for person authentication. In this appendix, we consider

the score level fusion of face, iris, palmprint and finger knuckle whose matching scores are

calculated using PB-CM method described in Sec. 3.8. We already review the biometric

traits face, iris, and palmprint in Sec. 2.2.

Through a set of experiments using public databases, we demonstrate the effectiveness of

PB-CM for multibiometric recognition compared with the combination of the state-of-the-art

recognition algorithms for each trait.
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After a review of the PB-CM recognition method in the next section, we describe the

score-level fusion approaches considered in this study. We present in Sec. A.3 an extensive

experimental evaluation and its respective discussions. Then, we summarize this appendix

in Sec. A.4.

A.1.1 Biometric recognition using phase-based image matching

Phase features are suitable to represent various biometric texture which can be compared

by the means of the BLPOC function to measure similarity. As we explained in Sec. 3.8,

PB-CM combines block-wise comparisons with a coarse-to-fine strategy. In this method,

biometric images are represented by an hierarchical array of local phase features, i.e., a Local

Phase Array (LPA). We employ a three layers PB-CM and the matching score computed

by Eq. 5.6.

A.2 Score fusion approaches

This section describes score fusion approaches considered in this work. Score fusion

approaches are broadly classified into 3 approaches: (i) density-based approach, (ii) classifier-

based approach, and (iii) transformation-based approach [32]. The density-based approach

estimates the Probability Density Function (PDF) of the matching scores for both genuine

and impostor pairs of each trait. Then, this approach calculates the combined matching

score according to the relation between genuine and impostor PDFs. Given an accurate

estimation of these PDFs, the density-based approach can exhibit the best performance

in score fusion approaches; however, an accurate estimation is not always possible under

practical situations where the amount of training data is limited. Compared with classifier-

based approach, transformation-based approach is a simpler way to approximate the relation

between the PDFs. We employ the density-based and transformation-based approaches in

this dissertation. In the following, the matching scores of face, iris, palmprint and finger

knuckle are denoted by Sx (x ∈ T = {F,E,P,K}), and the matching score vector is denoted

by S = [SF, SE, SP, SK], where the high value of Sx indicates the high possibility of genuine

match. The set of biometric traits to be fused is indicated by T ′ as

T ′ ∈ P(T )r {φ, {F}, {E}, {P}, {K}}, (A.1)

where P(T ) is a power set of T .
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A.2.1 Density-based approach

This approach uses the PDF of matching score S to combine matching scores calcu-

lated from different traits. In the training stage, the PDFs px(S | ω) of each x ∈ T for

ω ∈ {genuine, impostor} are estimated from the training data set. The conventional ap-

proach is kernel density estimation, also known as Parzen window. The model of this

approach depends on all the training data, so it is not convenient for our case. For this

reason, we choose instead a powerful parametric method called Gaussian mixture model for

representing the PDF px(S | ω), i.e.,

px(S | ω) =
Ng
∑

i=1

wi exp

(−(S − µi)
2

2σ2
i

)

. (A.2)

The parameters wi, σi, µi, Ng are learned with a fitting/optimization algorithm. The stan-

dard method to fit mixture model of Gaussian functions is expectation-maximization (EM).

However, EM cannot estimate the complexity of the model, i.e., the number of compo-

nents Ng. For this purpose, we use the algorithm proposed by Zivkovic et al. 2004 [134].

This algorithm starts with a high number Ng and searches for the maximum a posteriori

solution. During this search a prior discards irrelevant components. In order to solve a

convergence problem that arose in our experiments, we add a restriction to the algorithm

to the parameters. This restriction truncates the values of wi, if they become very large,

and it truncates the values of σi, if they become very small.

In the testing stage, the values of px(Sx | genuine) and px(Sx | impostor) for S of the

input data. Then, we calculate the combined matching score Sfusion fusion as a Likelihood

Ratio (LR) between genuine and impostor distributions, i.e.,

Sfusion =
p(S | genuine)
p(S | impostor)

=

∏

x∈T px(Sx | genuine)
∏

x∈T px(Sx | impostor)
. (A.3)

A.2.2 Transformation-based approach

This approach employs simple fusion rules to calculate the combined matching scores

by transforming input matching scores of different traits into a common domain. The

parameters for score transformation, i.e., score normalization, are calculated from the

training data set. In this work, we employ three normalization techniques [135]: (i) Min-

max, (ii) Double sigmoid, and (iii) tanh-estimators. Let S ′
x denote a transformed element

Sx of the matching score vector S. Then, the combined matching score Sfusion is calculated

from the normalized matching score vector S′ = [S ′
F, S

′
E, S

′
P, S

′
K] using the following simple

fusion rules:
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• Average

Sfusion =

∑

x∈T ′ S ′
x

|T ′| , (A.4)

• Mean Square (MS)

Sfusion =

∑

x∈T ′ S ′2
x

|T ′| , (A.5)

• Residuals

Sfusion = 1−
∏

x∈T ′

(1− S ′
x) . (A.6)

Score fusion rules MS and (product of) residuals rules are novelties of this study. If the

elements of matching score vector S are in the common domain, score normalization with

the training data set should not be required. This is expected if use an unified matching

modules with a robust feature vector, such as local phase features.

A.3 Experimental evaluation

This section describes a set of experiments to evaluate the recognition performance of

the proposed multibiometric recognition system using PB-CM. We construct a set of

virtual multibiometric databases which we utilize together with a statistical technique for a

comparative experimental evaluation.

A.3.1 Virtual multibiometric datababases

In order to evaluate recognition accuracy of score level fusion for face, iris, palmprint and

finger knuckle recognition algorithms, we utilize a virtual multibiometric database. We

generate this database by combining public unimodal databases. In this way one identity

of each database is attributed to one virtual subject identity. Performance evaluation with

virtual databases is considered to be valid under the assumption that the biometric data of

sufficiently distinct traits is statistically independent.

The virtual subjects, i.e., chimera subjects is created by joining together face, iris,

palmprint and finger knuckle images from unimodal databases. In the experiments, the

number of chimera subjects is 100 with 4 images for each biometric trait. These images

are a subset of the initially considered datasets. As for face images, we use 144 subjects

with 4 images from FERET database [112]. As for iris images, we use 175 subject with

4 images from Iris Challenge Evaluation 2005 (ICE 2005) database [136], where we have
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0.339 0.495

0.333 1.664

Iris

Palmprint

Finger
knuckle

Figure A.2: Examples of ROI images in each database and EERs(%) of each recognition

algorithm: (a) face, (b) iris, (c) palmprint, and (d) finger knuckle.

assumed the left eye and right eye of the same person as different subjects. As for palmprint

images, we use 600 subjects with 4 images from CASIA Palmprint database [91], where

we have assumed the left and right hand of the same person as different subjects. As

for finger knuckle images, we employ PolyU FKP database [137] which consists of 7920

images with 165 subjects and 6 different images for each of the left index finger, the left

middle finger, the right index finger and the right middle finger in 2 separate sessions. We

assume each finger knuckle of the same person as different subjects, i.e., a total of 660

subjects (= 165 subjects ×4 fingers). We use 660 subjects with 4 images from PolyU FKP

database, where 2 images are from the first session and the remaining 2 images are from

the second session. Subsequently, for all these subjects, we calculate matching scores of

all the possible combinations of genuine pairs using PB-CM. Then, we made a database

for each trait by selecting 100 subjects per trait. We select those subjects with the lowest

averages of matching scores. This selection eliminates any bias in the choice of subjects

that might favor PB-CM. In the following experiments, we combine these 100 subjects to

make chimera subjects of virtual multibiometric databases. Fig. A.2 shows example images

for each database.

For performance comparison, we employ the following conventional algorithms: Local

Phase Quantization [138] for face recognition, Ordinal Code [9] for iris recognition, SIFT

[12] for palmprint recognition, and Local-Global Information Combination [139] for finger
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knuckle recognition. These algorithms are known to belong to the state-of-the-art algorithms

for the corresponding biometric trait. Hereon, we denote the number of 2-combinations

from a set of n elements as nC2 such that nC2 =
(

n
2

)

. For each database, we evaluate Equal

Error Rate (EER) of conventional and local phase array algorithms using 100×4 C2 = 600

genuine pairs and 100C2 × 4× 4 = 79, 200 impostor pairs. Figure A.2 shows a summary of

EERs for conventional algorithms and local phase array for each database. The proposed

algorithm exhibits comparable performance with the conventional algorithms specialized

for each biometric trait despite selecting worst subjects for PB-CM.

A.3.2 Comparative evaluation of the score level fusion

We evaluate the error rates statistically by using the bootstrap technique, which is a non-

parametric method to estimate the confidence interval by random data sampling. We create

100 chimera subjects with 4 biometric traits by randomly combining subjects from each

database generated in Sec. A.3.1 For each trait, the number of all the possible combinations

of genuine matching scores is 4C2 = 6, while the number of all the possible combinations of

impostor matching scores between different 2 chimeras is 4 × 4 = 16, since one chimera

subject has 4 images of each trait. We use 2 genuine scores and 6 impostor scores in

the training step and leave the remaining scores for the testing step. We then generate a

set of virtual score vectors using the same procedure in [135]. Thus, the total number of

genuine combinations of score vectors S for one chimera subject is 44 = 256, since there

are 4 genuine matching scores for each trait. On the other hand, the total number of

impostor combinations of score vectors S between 2 different chimeras is 104 = 10, 000,

since there are 10 impostor matching scores for each trait. Among the above score vectors,

we randomly select 128 genuine pairs and 512 impostor pairs to generate a set of virtual

score vectors. Then, for |T ′| = 2, we apply the score fusion approaches described in Sec.

A.2 to 128× 100 = 12, 800 genuine pairs and 512×100 C2 = 2, 534, 400 impostor pairs and

evaluate EERs calculated from combined matching scores. For consistency, we repeat this

experimental evaluation for 100 different combinations of subjects and scores in the virtual

database.

Table 1 summarizes EERs for each fusion rule when using all the possible combinations

of biometric traits, where EER indicates an average of 100 trials. “Conventional” indicates

fusing scores calculated by conventional algorithms, “LPA (PB-CM)” indicates fusing scores

calculated by the method described in Sec. 3.8. “Best single modality” indicates lower EER

of the respective two traits. “Similarity” indicates a simple combination of the matching

score between 2 images, which is given as a value within [0, 1] calculated by each recognition

algorithm. From the EERs of Conventional, we can make 3 observations. First, most
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of them are higher than those of single modality cases. In particular, the combination

of face, whose EER is the highest, and finger knuckle, whose EER is the lowest, shows

this tendency. Second, specifically “Similarity + MS” exhibits significantly high EER

for face-palmprint and iris-palmprint compared with other fusion rules. This is because

distribution of matching scores for palmprint is significantly different from other algorithms.

Third, EERs of “Double sigmoid + MS” and “Double sigmoid + Residuals” improve the

EERs of other fusion rules. These observations indicate that conventional algorithms have

to employ normalization to use simple combination rules and to ensure high performance.

For the result of PB-CM, we can make three observations. First, EERs are lower than those

of single modality cases, except for the combination of iris and palmprint for some fusion

rules. Second, “Similarity + MS” shows the best EER between simple combinations. Third,

in this case also, the EERs of “Double sigmoid + MS” and “Double sigmoid + Residuals”

improve the EERs of simple combination and the other normalization methods. These

observations indicate that PB-CM does not always need normalization since it can employ

simple combinations for almost all the combination of traits. In both Conventional and

PB-CM, LR exhibits the lowest EERs for most cases. As mentioned in Sect. 3, LR is

expected to show the best performance, if the PDFs for genuine and impostor pairs were

estimated accurately. However, the transformation-based approaches, “Double sigmoid +

MS” and “Double sigmoid + Residuals,” also exhibit efficient performances comparable to

the ones of LR. Therefore, these score fusions are robust against limited training data and

the diversity of their score distributions compared with LR.

Focusing on “Similarity + Average” and “Double sigmoid + MS/Residuals,” EERs

of PB-CM are significantly improved compared with those of Conventional. This result

indicates that fusion with different recognition methods requires a complex optimization

for score normalization and combination approaches to exhibit similar efficiency of score

fusion observed with PB-CM. This is because the optimal score normalization method and

optimal fusion rule might be different for each recognition algorithm. As observed above,

successful score fusion with PB-CM does not depend on normalization methods and fusion

rules as it does with the conventional method. Hence, the use of PB-CM for multibiometric

systems makes it possible to improve the performance only with simple combination.

A.4 Summary

This appendix proposed score-level fusion of multibiometric recognition using Phase-Based

Correspondence Matching (PB-CM). We considered four biometric traits: face, iris, palm-

print, and finger knuckle, which we combined in pairs for an extensive experimental
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evaluation. Experimental evaluation demonstrates that simple score fusion approaches are

enough to improve consistently recognition performance for PB-CM, whereas for conven-

tional algorithms the improvement depends on elaborated fusion rules. PB-CM makes

possible to realize simple and compact multibiometric person authentication systems, since

its implementation requires only one matching module and simple score fusion.

This appendix contains reprints of a work published in LNCS Proceedings Pacific-Rim

Conference on Multimedia 2015 [60].
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Table A.1: EERs(%) for all combinations and fusion rules.

T ′ {F,E} {F, P} {F,K} {E,P} {E,K} {P,K}

C
on

ve
n
ti
on

al

Best single modality 2.665 0.339 0.333 0.339 0.333 0.333

LR 0.749 0.222 0.630 0.138 0.270 0.138

Similarity

Average 0.973 0.391 0.699 0.240 0.391 0.260

MS 1.017 1.973 0.706 1.604 0.535 0.791

Residuals 1.023 0.707 0.645 0.660 0.441 0.332

Min-max

Average 1.078 0.499 0.677 0.435 0.519 0.194

MS 0.897 1.722 1.137 1.192 0.790 0.410

Residuals 0.948 0.804 0.781 0.638 0.605 0.218

Double sigmoid

Average 1.029 0.321 0.735 0.161 0.448 0.158

MS 0.820 0.221 0.663 0.082 0.305 0.085

Residuals 0.826 0.218 0.650 0.077 0.304 0.082

tanh-estimator

Average 1.024 0.792 0.861 0.739 0.806 0.197

MS 0.876 0.804 0.854 0.476 0.525 0.196

Residuals 0.928 0.803 0.856 0.577 0.629 0.195

L
P
A

(P
B
-C

M
)

Best single modality 2.660 0.495 1.664 0.495 1.664 0.495

LR 0.777 0.253 0.603 0.330 0.872 0.270

Similarity

Average 1.071 0.321 0.732 0.683 1.296 0.427

MS 0.994 0.276 0.686 0.516 1.223 0.334

Residuals 1.030 0.294 0.703 0.577 1.260 0.366

Min-max

Average 1.282 0.304 0.742 0.734 1.473 0.379

MS 1.081 0.302 0.686 0.404 1.316 0.362

Residuals 1.144 0.300 0.701 0.422 1.370 0.359

Double sigmoid

Average 1.124 0.330 0.860 0.554 1.340 0.461

MS 0.891 0.214 0.682 0.341 1.027 0.271

Residuals 0.891 0.216 0.680 0.340 1.030 0.267

tanh-estimator

Average 1.155 0.396 0.768 0.476 1.544 0.495

MS 1.070 0.281 0.734 0.386 1.407 0.370

Residuals 1.096 0.327 0.742 0.432 1.442 0.421
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