
Towards a Classification

of Knowledge-of-Exponent Assumptions

in Cyclic Groups

by

Firas Kraiem

Department of Computer and Mathematical Sciences

Graduate School of Information Sciences

Tohoku University

17 July 2019

Submitted to Tohoku University

in partial fulfillment of the requirements for the degree of
Ph.D. (Information Sciences)

1

Abstract

Inspired by the work of Ghadafi and Groth on a certain type of computa-

tional hardness assumptions in cyclic groups (which they call “target assump-

tions”), we initiate in this thesis an analogous work on another type of hardness

assumptions, namely the “knowledge-of-exponent” assumptions (KEAs). Orig-

inally introduced by Damg̊ard to construct practical encryption schemes secure

against chosen ciphertext attacks, KEAs have subsequently been used primarily

to construct succinct non-interactive arguments of knowledge (SNARKs), and

proven to be inherent to such constructions.

Using a proof technique first introduced by Bellare and Palacio (but acknowl-

edged by them as being due to Halevi), we first investigate the internal structure

of the q-power knowledge-of-exponent (q-PKE) family of assumptions introduced

by Groth, which is thus far the most general instance of KEAs in the literature.

Namely, we give evidence showing that the assumptions in the q-PKE family

appear to increase in strength as the parameter q grows.

We then introduce a generalisation of the q-PKE family, which is again in-

spired by the “target assumptions” of Ghadafi and Groth. Namely, the univari-

ate monomial parameters that appear in the q-PKE assumptions are replaced

by multivariate rational functions. We call the resulting assumptions “rational

knowledge-of-exponent assumptions” (RKEAs), and as a first step towards a full

classification of this class of assumptions, we show that the rational functions

may be replaced by polynomials.

2

Acknowledgments

First of all, I would like to express my deepest gratitude to my supervisor,

Professor Hiroki Shizuya, for his careful guidance during the work that led to

this thesis, as well as for supporting me in many other ways. It is absolutely

no exaggeration to say that without his support this thesis would not have been

possible.

I would also like to thank the other members of the jury, Professors Xiao

Zhou and Takuo Suganuma and Associate Professor Shuji Isobe, whose valuable

comments and suggestions allowed me to improve this thesis considerably.

Assistant Professor Eisuke Koizumi has been my thesis advisor and also

contributed significantly towards its completion. My thanks are due to him as

well.

I have also had many interesting discussions with Associate Professor Masao

Sakai and Assistant Professor Shingo Hasegawa, and extend my sincere thanks

to them.

Of course, I have also enjoyed many services provided by Tohoku University

at large; I want to also express my gratitude to all those who made it such a

pleasant place for me to work at.

Finally, I would like to thank my mother and my sister, as well as the Ki-

tashoji family, for all their support throughout the years.

Contents

1 Introduction 5

1.1 Background . 5

1.2 Summary of Results . 9

1.3 Organisation . 11

2 Preliminaries 12

2.1 Sets, integers, and strings . 12

2.2 Probability . 13

2.2.1 Probability spaces . 13

2.2.2 Independence and conditional probabilities 15

2.2.3 Random variables . 16

2.2.4 The Schwartz-Zippel lemma 17

2.3 Computational complexity and algorithms 18

2.3.1 Turing machines . 18

2.3.2 Probabilistic Turing machines 22

2.3.3 Non-uniform Turing machines 23

2.3.4 The model we use . 23

3 The q-PKE family of assumptions 25

3.1 Group generators . 25

3.2 The first knowledge-of-exponent assumption (KEA1) 26

3.3 The discrete logarithm assumption (DLA) 27

3.4 More assumptions: KEA2 and KEA3 28

3.5 The q-PKE family of assumptions 29

4 Rational KEAs (RKEAs) 34

4.1 Definition of RKEAs . 34

3

CONTENTS 4

4.2 Simplifications of RKEAs . 36

5 Conclusion 39

Bibliography 41

List of Publications 45

Chapter 1

Introduction

1.1 Background

Cryptography can be broadly defined as the design of systems, called crypto-

graphic systems or cryptographic schemes, that are capable of maintaining their

functionality in the presence of adversarial entities that attempt to make them

deviate from their intended behaviour [16]. In the classical cryptographic task of

encryption, for instance, a cryptographic system called an encryption scheme is

used by two parties to exchange messages over a public channel in such a way as

to make it impossible for any third party to obtain the contents of the exchanged

messages. This property, called privacy or confidentiality, must be maintained

regardless of the strategy employed by such a third party in its attempts. In such

schemes, one of the parties (the sender) first applies a process called encryption

to the message they wish to send, yielding an “encrypted form” thereof, called

a ciphertext. The sender then transmits (over the public channel) the cipher-

text to the other party (the receiver), who applies a process called decryption to

reverse the encryption process and recover the original message (the plaintext).

Since the ciphertext is sent over the public channel, any third party can obtain it;

privacy requires that even such a third party should not be able to obtain the

corresponding plaintext.

A question that immediately arises when considering such schemes is how

one should evaluate their “security”, i.e., whether and to what extent they satisfy

the privacy requirement. The “classical” approach, based on information theory

and pioneered by Shannon during the Second World War [28], asserts that such

schemes should be considered secure if (and only if) the ciphertexts they produce

5

CHAPTER 1 INTRODUCTION 6

do not contain any “information” about the corresponding plaintexts. However,

a major drawback of this approach is that any scheme that is “secure” in this sense

requires the parties to exchange a priori a secret “encryption key” which must

be as long as the messages they wish to subsequently exchange securely. This

requirement severely limits the applicability of such schemes when the amount of

data to be transmitted securely is large, as is routine over the modern Internet.

The “modern” approach, based on computational complexity theory and pi-

oneered around 1980 [10, 18, 27] asserts that such schemes should be considered

secure if (and only if) any information about a plaintext that is contained in

a corresponding ciphertext cannot be “efficiently” obtained by any third party.

In other words, it is permissible for a ciphertext to contain information about

the corresponding plaintext, as long as such information cannot be efficiently ob-

tained by a third party. Under this new paradigm, encryption schemes that make

it possible to securely and efficiently transmit large amounts of data became con-

ceivable, and indeed such schemes are routinely used today. On the other hand,

because such schemes are based on computational complexity theory, our ability

to reason about them, and in particular to prove their security, is constrained by

our knowledge in that field, which at this point in history can be fairly described

as rudimentary (as illustrated for instance by our inability to answer the funda-

mental question of whether or not it is more difficult to discover a solution to a

problem than to merely check whether a given solution is correct).

Therefore, an important drawback of the complexity-theoretic approach is

that the security of most cryptographic systems cannot currently be proved un-

conditionally, and must be proved under the assumption that certain computa-

tional tasks are difficult (in a suitable sense). Of course, in order to increase our

confidence in the security of such systems, it is necessary to increase our con-

fidence in the validity of the assumptions under which their security is proved.

Traditionally, this was done by admitting as valid the assumption that a problem

is difficult when a considerable amount of research effort had been devoted to the

search of efficient solutions to it without any (or much) success. (One such prob-

lem is the integer factoring problem [7]: given an integer, find a non-trivial factor

of it.) In recent years, however, new assumptions are introduced very frequently,

and, as pointed out for instance by Naor [23], it is sometimes not clear whether

proving the security of a system under a new assumption is much different from

simply assuming that the system is secure.

CHAPTER 1 INTRODUCTION 7

This proliferation of new assumptions raises questions both for cryptogra-

phers, who design new cryptographic systems, and for cryptanalysts, who attempt

to “break” those systems by showing that the underlying assumptions are in fact

false. For the former, what are the best assumptions on which to base their con-

structions? And for the latter, what are the best assumptions on which to focus

their efforts? A solution to these dilemmas was proposed by Ghadafi and Groth

in 2017 [15] for a class of assumptions which they call “target assumptions” and

which includes for instance the well-known computational Diffie-Hellman (CDH)

assumption [10]. Their idea was to firstly identify a large class of assumptions

(the “target assumptions”) which captures many assumptions already used in the

literature as well as some which may appear in the future. In a target assumption,

an adversary is given some elements of a cyclic group, and must compute another,

prescribed group element, the assumption being that no adversary can efficiently

perform this task. In the CDH assumption, for instance, the adversary is given a

triple of the form (g, ga, gb), where g is a generator of a cyclic group G of prime or-

der q and a, b are random integers in {0, . . . , q−1}, and must compute the element

gab of G. Secondly, they identify a small subclass of assumptions (called “Uber-

assumptions”) within the large class, and show that if all the Uber-assumptions

hold, then all the target assumptions hold as well. Namely, they identify as

Uber-assumptions the family consisting of the q-Generalised Diffie-Hellman Ex-

ponent (q-GDHE) family of assumptions [4, 5] and a new family of assumptions

which they name the q-Simple Fractional (q-SFrac) family. Ghadafi and Groth

additionally study the internal structure of both families of assumptions, and

in particular they show that the assumptions in the q-GDHE family appear to

strictly increase in strength as the parameter q grows (i.e., for any q it is true that

(q + 1)-GDHE implies q-GDHE, but the converse is not true for generic group

adversaries [6, 24, 29]).

Such a result is useful both to cryptographers and to cryptanalysts. Cryp-

tographers can use any target assumption as the basis of their systems, and be

confident that they will remain secure at least as long as none of the Uber-

assumptions is broken (since if their chosen assumption is false, then at least

one Uber-assumption is false as well). Cryptanalysts, meanwhile, have a higher

chance of success if they focus on the Uber-assumptions, since they give a small

set of assumptions that is guaranteed to contain at least one false assumption

(unless all the assumptions in the large class are true, in which case there is no

CHAPTER 1 INTRODUCTION 8

hope of proving that any assumption is false anyway). Of course, the usefulness

of such a result can be increased either by increasing the size of the large class

(since then cryptographers have more assumptions at their disposal) or by de-

creasing the size of the class of Uber-assumptions (since then cryptanalysts can

focus their efforts on a smaller number of assumptions). It is for this reason

that Ghadafi and Groth apply their analysis to a large class of assumptions (the

“target assumptions”), which is a generalisation of existing assumptions.

In this thesis, we attempt to apply a similar analysis to another type of as-

sumptions, called “knowledge-of-exponent assumptions” (KEAs). In a KEA, as

in a target assumption, an adversary is given some elements of a cyclic group

of prime order. However, the adversary is not tasked with computing a pre-

scribed group element. Rather, he must compute a pair of group elements with

a prescribed relationship between them. Moreover, the assumption is not that

performing this task is infeasible, but that it is feasible only in a prescribed man-

ner. For instance, the first KEA (introduced by Damg̊ard in 1991 [8] and which

we call KEA1 following Bellare and Palacio [3]) asserts that an adversary which

is given a pair (g, ga) (where again g is a generator of a cyclic group G of prime

order q and a is a random integer in {0, . . . , q − 1}) has only one feasible way of

computing a pair (u, v) of elements of G where v = ua. Namely, the adversary

must choose an integer k and compute u = gk and v = (ga)k. This is formalised

by saying that for every efficient adversary that outputs such a pair (u, v), there

must exist an extractor which outputs an integer k such that u = gk. Intuitively,

because the adversary must, at some point during its execution, compute such

an integer k, it must be possible to construct an extractor that computes k in

the same manner and outputs it instead of (u, v).

KEAs were initially criticised for not being falsifiable, in a sense first made

precise in the context of cryptography by Naor in 2003 [23]. In Naor’s sense,

an assumption is falsifiable if there is “a (constructive) way to demonstrate that

it is false, if this is the case.” Concretely, he considers assumptions in which

a challenger publishes a challenge, and a verifier verifies whether a given solu-

tion to the challenge is correct (possibly with the help of some additional secret

information that is generated together with the challenge but not published).

The assumption, then, is that it is infeasible to produce a valid solution when

given only the challenge. The CDH assumption, for instance, is of this form: the

challenger generates the generator g and the integers a and b, computes and pub-

CHAPTER 1 INTRODUCTION 9

lishes (g, ga, gb), and keeps a and b as secret information. The verifier, for its part,

uses g and the secret integers a and b to compute gab and accepts a purported

solution h if and only if h = gab. KEA1, on the other hand, is not of this type,

for in order to verify that a solution is valid, the verifier would need to verify

that it was produced in a manner other than the prescribed one (formally, by an

adversary for which there is no extractor). We note, however, that a KEA was

falsified, in a different sense, by Bellare and Palacio [3].

Despite the questions surrounding their non-falsifiability, KEAs have still

been used to construct systems for which no construction was known under falsi-

fiable assumptions. Such constructions include efficient encryption schemes secure

against chosen ciphertext attacks [8], 3-round zero-knowledge protocols [3, 21, 22],

and succinct non-interactive zero-knowledge protocols [19, 13], a construct for

which non-falsifiable assumptions have been shown to be inherent [14]. More-

over, at least one such construction (a variant of the construction of [13, 25]) is

already being used in a practical system, namely the Zcash digital currency [30].

Roughly speaking, unlike prior digital currencies such as Bitcoin which are only

pseudonymous (meaning that each transaction publicly reveals the addresses of

the participants), Zcash uses the zero-knowledge property of the construction

of [13, 25] in order to be completely anonymous, meaning that no information

is revealed. However, for efficiency reasons, classical zero-knowledge protocols

such as those based on one-way functions [17] are not suitable, and succinct, non-

interactive protools must be used. Since such protocols require KEAs or other

non-falsifiable assumptions [14], it can be expected that KEAs will become in-

creasingly popular in the future, which makes it all the more important to have

a solid understanding of them.

1.2 Summary of Results

As mentioned above, Ghadafi and Groth firstly introduced a new class of

assumptions (the “target assumptions”) which generalises many pre-existing as-

sumptions. Secondly, they identify Uber-assumptions for this class, which include

a pre-existing family of assumptions (the q-GDHE family). Thirdly, they inves-

tigate the internal structure of the class of Uber-assumptions, and they show

among other results that the q-GDHE family appears to be strictly increasing.

In this thesis, we perform a similar analysis for KEAs, albeit in a slightly

CHAPTER 1 INTRODUCTION 10

different order. Namely, we firstly investigate the internal structure of the q-

PKE family of assumptions of Groth [19], showing that this family is increasing

in groups where a certain decisional assumption holds. (Roughly speaking, the

assumption is that given (g, ga, . . . , ga
q

) it is infeasible to distinguish ga
q+1

from

a random group element.)

Theorem 3.13 (Chapter 3)

Let G be a group generator, and q ∈ N∗. If q-DDHE and (q+1)-PKE hold for G,

then q-PKE holds for G.

We are unfortunately unable to prove that it is increasing in all groups,

or that it is strictly increasing, and leave those questions open for future work.

Nevertheless, we are able to prove a partial result that holds in all groups, as

a generalisation of a prior result (Proposition 2) from [3]. Namely, that result

showed that 1-PKE implies 0-PKE; we generalise it to show that q-PKE implies

0-PKE for all q.

Theorem 3.11 (Chapter 3)

Let G be a group generator, and q ∈ N. If q-PKE holds for G, then 0-PKE holds

for G.

Our reasons for focusing on the q-PKE family first are twofold. Firstly, since

the q-PKE family is to our knowledge the most general instance of KEAs in

the literature, its structure may be of independent interest. Secondly, studying

it provides useful background for our more general study of KEAs and can be

helpful in understanding both the general notion of KEAs, which is very different

from that of more common assumptions such as CDH, and the proof technique we

use. That proof technique was, as previously mentioned, introduced by Bellare

and Palacio in [3] but acknowledged by them as being due to Halevi. It is used

in that work to prove the result (Proposition 2) mentioned above, which to our

knowledge is the only result in the literature showing an implication between

two KEAs. Thus that technique is the only one currently known for proving

implications between KEAs, and it is the one we use.

Turning to our main goal of a classification of KEAs, we firstly define a large

class of assumptions, which we call “rational knowledge-of-exponent assumptions”

(RKEAs) and which generalises the q-PKE family. As mentioned previously, our

goal is to capture not only the KEAs that have appeared in the literature thus

far, but also some that may appear in the future. Roughly speaking, whereas in

a q-PKE assumption the adversary is given group elements of the form gx
i

for a

CHAPTER 1 INTRODUCTION 11

random integer x, in a RKEA it is given elements of the form gai(x)/bi(x), where the

ai and bi are arbitrary polynomials in m variables and x is a random vector of m

integers. Note that q-PKE can be seen as a RKEA where the polynomials are in

one variable, ai(x) = xi, and bi(x) = 1. Thus RKEAs are indeed a generalisation

of the q-PKE family.

Finally, as a first step towards a full classification of RKEAs we define a

subclass of RKEAs which we call “simple RKEAs”, analogously to the simple

target assumptions of Ghadafi and Groth, and as they show that simple target

assumptions imply all target assumptions, we show that simple RKEAs imply all

RKEAs.

Theorem 4.6 (Chapter 4)

For any (d,m, n)-RKEA A = (IA,VA,VA) there is a (nd,m, n)-simple RKEA

B = (IB,VB,VB) such that B implies A.

Unfortunately, we are unable to follow their next step and define a class of

univariate simple RKEAs which would imply all simple RKEAs, and we leave

this question open for future work.

1.3 Organisation

The rest of this thesis is organised as follows. In Chapter 2, we review

some basic definitions and notation, as well as some background in probabil-

ity and complexity theory. In Chapter 3, we discuss the q-power knowledge-of-

exponent (q-PKE) family of assumptions, starting from the first KEA introduced

by Damg̊ard [8], which as we will see can be viewed as a member of this family, up

to its formal introduction by Groth [19]. We then study its internal structure and

show that it is increasing in some cases. In Chapter 4, we propose a generalisation

of the q-PKE family which we call “rational knowledge-of-exponent assumptions”

(RKEAs) and, as a first step towards identifying Uber-assumptions for RKEAs,

we show that all RKEAs are implied by a slightly smaller class of assumptions

(the “simple RKEAs”). Finally, in Chapter 5 we summarise our results and point

out possible directions for future work.

Chapter 2

Preliminaries

2.1 Sets, integers, and strings

We shall not define set, but shall just hope that when such

expressions as “the set of all real numbers” or “the set of all

members of the United States Senate” are used, people’s various

ideas of what is meant are sufficiently similar to make

communication feasible.

John B. Fraleigh, A First Course in Abstract Algebra [12]

Operations on sets. Given a sequence A1, A2, . . . of subsets of some “universal

set” Ω, their union, noted
⋃∞

i=1 Ai is the set of elements of Ω that are in at least

one of the Ai, and their intersection, noted
⋂∞

i=1 Ai is the set of elements of Ω

that are in all of them. Given a subset A of Ω, its complement, noted Ac or A or

Ω \ A, is the set of all elements of Ω that are not in A. We have the de Morgan

laws.

Proposition 2.1 (The de Morgan laws)

For any sequence A1, A2, . . . of subsets of Ω, we have

∞
⋃

i=1

Ai =
∞
⋂

i=1

Ai and
∞
⋂

i=1

Ai =
∞
⋃

i=1

Ai.

Integers and strings. N = {0, 1, 2, . . . } is the set of natural numbers (or

natural integers); N∗ = N \ {0} is the set of positive integers. For any n ∈ N,

{0, 1}n is the set of binary strings of length n, and {0, 1}∗ =
⋃

i∈N{0, 1}
i is the

12

CHAPTER 2 PRELIMINARIES 13

set of all finite binary strings. For any n ∈ N∗, |n| = ⌊log2(n)⌋+1 is the length of

the usual binary representation of n, and for convenience we set |0| = 0. (We also

use |x| to denote the absolute value of a real number x, but the meaning of such

notation should always be clear from the context.) For any n ∈ N, 1n is the string

of length n with all bits 1. Fp denotes the finite field with p elements, represented

as the integers {0, . . . , p−1} with addition and multiplication modulo p (we only

consider prime finite fields). R denotes the field of real numbers. ε denotes the

empty string.

Asymptotics. Let f : N → R be a function. We say that f is positive if

f(n) > 0 for all n. We say that f is polynomial (in n), and we write f(n) ≤

poly(n) if there is a polynomial p such that f(n) ≤ p(n) for all n. We say that f

is negligible if for all positive polynomials p and all sufficiently large n we have

f(n) < 1/p(n). When such is the case we write f(n) ≤ negl(n), and if n is the

security parameter κ, we omit it and write ν ≤ negl. Given another function

g : N → R, we note f = Θ(g) if there are two positive real numbers k1, k2 such

that for all sufficiently large n we have k1 · g(n) ≤ f(n) ≤ k2 · g(n).

2.2 Probability

We quickly review the basic objects of probability theory [20].

2.2.1 Probability spaces

Definition 2.2 (σ-algebras)

Let A be a collection of subsets of Ω. A is a σ-algebra (on Ω) if the following

conditions hold.

1. Ω ∈ A.

2. For any A ∈ A, Ac ∈ A.

3. For any sequence A1, A2, . . . of elements of A,
⋃∞

i=1 Ai ∈ A.

Definition 2.3 (Measurable spaces)

A pair (Ω,Σ) where Ω is a set and Σ is a σ-algebra on Ω is called a measur-

able space. The elements of Σ are called the measurable subsets of Ω (in the

measurable space (Ω,Σ)).

CHAPTER 2 PRELIMINARIES 14

Definition 2.4 (Probability measures)

Given a measurable space (Ω,Σ), P is a probability measure on (Ω,Σ) if the

following conditions hold.

1. For any A ∈ Σ, P (A) is a non-negative real number, called the probability

of A.

2. P (Ω) = 1.

3. If A1, A2, . . . are pairwise disjoint elements of Σ (i.e., if Ai∩Aj = ∅ when-

ever i 6= j), then

P

(

∞
⋃

i=1

Ai

)

=
∞
∑

i=1

P (Ai).

Definition 2.5 (Probability spaces)

A probability space is a triple (Ω,Σ, P) such that the following conditions hold.

1. Ω is a set, called the sample space.

2. Σ is a σ-algebra on Ω (i.e., (Ω,Σ) is a measurable space). The elements of

Σ are called events.

3. P is a probability measure on (Ω,Σ), called the probability distribution.

For each ω ∈ Ω, if {ω} is an event (i.e., if it is in Σ), it is called an elementary

event. A probability space is called finite if its sample space is finite. In the

following, we assume that Ω is finite and not empty, and that Σ = P(Ω), the

set of all subsets of Ω. (Most commonly, Ω will be the set of strings of some

fixed length.) It is clear that the probability distribution is then completely

determined by the probabilities of all the elementary events, and that the sum of

those probabilities equals 1. An important special case is when P ({ω}) = 1/|Ω|

for all ω ∈ Ω; the probability distribution P is then said to be uniform. In the

following, we will sometimes abuse notation and write P (ω) instead of P ({ω}) to

denote the probability of the elementary event {ω}.

Example 2.6 (Throw of a die)

The experiment of throwing a (fair) six-sided die can be formalised by a probabil-

ity space with sample space {1, . . . , 6} where the probability of each elementary

event is 1/6 (i.e., the probability distribution is uniform). The elementary event

CHAPTER 2 PRELIMINARIES 15

{n} naturally represents the case when the n side comes up. We can then con-

sider non-elementary events, for example the event {2, 4, 6} represents the case

where the side which comes up is even, and the probability of this event is 1/2,

as intuition dictates.

2.2.2 Independence and conditional probabilities

The notion of independence formalises the perception that past events do

not influence the outcome of future ones or provide any information about them.

Put another way, if two events are independent, the order in which they occur is

of no consequence, and it may sometimes help to think of one occurring after the

other, even if it actually occurs before.

Definition 2.7 (Independent events)

Let A1, . . . , An be events on (Ω,Σ, P). Those events are said to be independent

if for all subsets I of {1, . . . , n} we have

P

(

⋂

i∈I

Ai

)

=
∏

i∈I

P (Ai) .

They are said to be pairwise independent if any two of them are independent,

i.e., if

P (Ai ∩ Aj) = P (Ai) · P (Aj)

whenever i 6= j.

Example 2.8

Considering again the case of a fair six-sided die, the events odd = {1, 3, 5} and

lowerhalf = {1, 2, 3} are not independent, because P (odd) = P (lowerhalf) = 1/2,

whereas P (odd ∩ lowerhalf) = 1/3 6= 1/2 · 1/2. On the other hand the events odd

and lowerthird = {1, 2} are independent.

The definition of independence naturally leads to conditional probabilities.

Intuitively, independence of two eventsA andB means that the probability thatB

occurs is not changed if we “know” that A has occurred. Conditional probabilities

formalise “the probability that B occurs if we know that A has occurred”.

Definition 2.9 (Conditional probabilities)

Let A and B be two events, with P (A) > 0. Then the conditional probability of

CHAPTER 2 PRELIMINARIES 16

B given A is

P (B | A) =
P (A ∩ B)

P (A)
.

Clearly, A and B are independent if and only if P (B | A) = P (B).

Example 2.10

With the notation above, we have P (odd | lowerhalf) = 2/3. Intuitively, of the

three possible “lower half” results, two are odd, so if we know that the result

is in the lower half, the probability that it is odd becomes 2/3. (An equivalent

experiment would be to throw an imaginary three-sided die.)

2.2.3 Random variables

Definition 2.11 (Random variables)

A random variable on a probability space (Ω,Σ, P) is a function from Ω to R.

A random variable X on a probability space (Ω,Σ, P) induces a probability

distribution P on the measurable space (R,P(R)) by

P(A) = P (X−1(A)) = P ({ω ∈ Ω | X(ω) ∈ A}) =
∑

ω∈Ω
X(ω)∈A

P (ω).

For a subset A of R, P(A) naturally represents the probability that the random

variable X takes a value in A, and in particular P({a}) for some a ∈ R represents

the probability that the value of X equals a.

Example 2.12 (A dice game)

Suppose we play a game where, upon the throw of a fair six-sided die, we gain

three dollars if the five or six side comes up and lose one dollar otherwise. We have

as before Ω = {1, . . . , 6}, and the random variable X representing the amount of

money gained is defined as

X(5) = X(6) = 3

and

X(1) = X(2) = X(3) = X(4) = −1.

We thus have

P({3}) = P ({5, 6}) =
1

3
,

and likewise P({−1}) = 2/3, which means that the probability that we gain three

dollars (resp., lose one dollar) is 1/3 (resp., 2/3).

CHAPTER 2 PRELIMINARIES 17

In the following, P will usually be uniform, and we will only be interested

in P. Thus we identify the two, and for a subset A of R we write P (X ∈ A)

instead of P(A). Moreover, if A = {a} for some a ∈ R, we write P (X =

a). Thus in the end when we write P (X ∈ A) (resp., P (X = a)) we mean

P (X−1(A)) (resp., P (X−1({a}))). Similarly, we will write P (X < a), P (X ≤ a),

etc. When we write P (A), without any symbol, A is an element of Σ, as in

the formal definition of P . We will also abuse terminology slightly and consider

random variables that are mappings from Ω to some set S other than R. If S is

finite, we then say that a random variable X : Ω→ S is uniformly distributed if

P (X = s) = 1/|S| for all s ∈ S.

2.2.4 The Schwartz-Zippel lemma

We will use the following result, often called the Schwartz-Zippel lemma

although its origin is unclear [2, Lemma A.36].

Proposition 2.13 (The Schwartz-Zippel lemma)

Let f be a non-zero polynomial in n variables and of degree at most d over a finite

field Fq. Then if a vector (x1, x2, . . . , xn) is chosen uniformly in Fn
q we have

P [f(x1, x2, . . . , xn) = 0] ≤
d

q
.

Proof. The proof is by induction on n. The case n = 1 follows from the well-

known fact that a non-zero polynomial in one variable and of degree d over a field

has at most d roots in that field.

Suppose now that the result holds for some n ≥ 1, and consider a non-

zero polynomial f in n + 1 variables and of degree r ≤ d. We can view f

as a polynomial in one variable Xn+1 and whose coefficients are polynomials in

n variables X1, X2, . . . , Xn:

f(X1, X2, . . . , Xn, Xn+1) =
r
∑

k=0

fk(X1, X2, . . . , Xn) ·X
k
n+1.

Since f is a non-zero polynomial, there is a k such that fk is a non-zero polynomial;

we consider the largest such k, and we note that the degree of fk equals r − k ≤

d − k. Since we assume that the result holds for all polynomials in n variables,

we obtain that, if x1, x2, . . . , xn are chosen uniformly, fk(x1, x2, . . . , xn) = 0 with

probability at most (d− k)/q.

CHAPTER 2 PRELIMINARIES 18

If fk(x1, x2, . . . , xn) 6= 0, then the polynomial f(x1, x2, . . . , xn, Xn+1) in one

variable Xn+1 is of degree k, and so if xn+1 is uniformly chosen we have f(x1, x2,

. . . , xn+1) = 0 with probability at most k/q.

On the sample space Fn+1
q with uniform probability distribution, we consider

two events. A is the set of vectors (x1, x2, . . . , xn+1) such that f(x1, x2, . . . , xn+1)

= 0; we want to show that P (A) ≤ d/q. B is the set of vectors such that fk(x1, x2,

. . . , xn) = 0. We have seen above that P (B) ≤ (d−k)/q and that P (A|B) ≤ k/q.

We thus obtain

P (A) = P (A ∩ B) + P (A ∩ B)

= P (A ∩ B) + P (B) · P (A |B)

≤ P (B) + P (A | B)

≤
d− k

q
+

k

q

≤
d

q
.

2.3 Computational complexity and algorithms

As mentioned in the Introduction, our approach is based on computational

complexity theory: we wish to argue that some computational tasks are impossi-

ble to perform efficiently. Of course, this means that we first need a notion of what

it means for a computation to be efficient. At first glance, this seems to depend

heavily on the computing hardware: we intuitively know that what is “efficient”

on a modern computer might not be so on a more ancient one. Nevertheless,

we can devise a computation model, the Turing machine, which can simulate

any physically realisable computing machinery sufficiently accurately to enable

us to have a sensible notion of “efficient” computation (and of computational

complexity in general), independently of technology*1).

2.3.1 Turing machines

Although we rarely need to delve into the details of Turing machines, it is still

useful to have at our disposal a precise model to which we can refer when needed,

∗1) A possible exception is quantum computers, which are suspected (but not proven) to be
impossible to simulate with Turing machines. Quantum computers are also not proven to
be physically realisable.

CHAPTER 2 PRELIMINARIES 19

and so we will briefly introduce them here (for details, see any text on complexity

theory, such as [2]). Jumping ahead, we note that the actual computational model

we will use is the one introduced by Abe and Fehr [1], which we will describe at

the end of this chapter as a variant of those described beforehand.

Definition

A Turing machine is composed of one or more tapes (analogous to the mem-

ory of modern computers) of infinite length. Each tape is divided into cells, and

each cell contains a symbol. Each tape also comes with a head (which is analo-

gous to the processor). At each step of the computation, the machine starts by

reading the symbols which lie under the head of each tape. Then, depending on

the symbols read and on its program, it performs the following actions.

1. It writes a new symbol under the head of each tape (the new symbol may

be the same as the old one, so the machine is allowed to effectively not write

anything).

2. It separately moves each head one cell to the left or to the right on the

corresponding tape (again, it is also allowed to leave one or more heads in

their current positions).

3. It proceeds to the next step of the computation.

Concretely, we define our flavour of Turing machines (following [2]) as follows.

• Our machines have k > 1 tapes. One of them is the input tape, which

contains the input of the computation and which is “read-only”. All the

other tapes are “read-write”, and one of them is the output tape, where the

output of the computation is written (the other tapes are generally called

the work tapes).

• The set of symbols, or alphabet, is noted Γ. It contains the symbols 0 and 1,

as well as two special symbols: the blank symbol � and the start symbol ⊲.

• The set of states of the machine is noted Q. It contains at least the initial

state qstart and the final state (or halting state) qhalt.

• The transition function of the machine, which is the “program” indicating

which actions the machine performs as a function of its read symbols and

current state, is noted δ. Formally, it is a function from Γk × Q (read

CHAPTER 2 PRELIMINARIES 20

symbols and current state) to Γk−1 × {◭,H,◮}k × Q (written symbols,

head movements, and new state).

At the start of the computation, the machine is in the initial state qstart. The

tapes contain the start symbol ⊲ followed by infinitely many blank symbols �,

except the input tape, which contains the start symbol, then the input of the

computation, then the blank symbols. The heads are all at the beginning of

their respective tapes. For example, with three tapes (the brackets indicate the

positions of the heads):

[⊲] � � � � � � � · · ·

[⊲] � � � � � � � · · ·

[⊲] 1 0 0 1 1 � � · · ·

The computation then begins; it simply consists of repeated application of

the transition function. During the computation, the tapes may look like this:

⊲ [�] � � � � � � · · ·

⊲ 0 0 [0] 1 0 1 � · · ·

⊲ 1 0 0 1 [1] � � · · ·

The computation ends when the machine enters the terminal state qhalt (we

then say that the machine halts). Then it performs no further action, and the

output of the computation is the contents of the output tape. The output of

a machine M on input x, assuming that M halts on input x, is noted M(x).

Given a function T : N → N, we say that a machine runs in time T (n) if for

all input strings x ∈ {0, 1}∗ it halts after at most T (|x|) steps. We say that

the machine runs in polynomial time if there is a polynomial p(n) such that the

machine runs in time p(n). A machine that runs in polynomial time is also called

a polynomial-time machine.

CHAPTER 2 PRELIMINARIES 21

Example: Palindromes

We will define a Turing machine which decides whether its input string is a

palindrome, i.e., whether it is read in the same way from left to right and from

right to left (for example 0010100 and 10001 are palindromes, but 100110 is not),

again following [2]. As above, our machine has three tapes (input, work and out-

put), and its alphabet is Γ = {0, 1,�, ⊲}. To determine its states and transition

function, it is helpful to start with a high-level description of the computation.

1. Copy the entire input on the work tape.

2. Go back to the start of the input tape (staying at the end of the work tape).

3. [Finished?] If we are at the end of the input tape and at the start of the

work tape, output 1 and halt.

4. [Test] If the symbols under the input and work tape are different, output 0

and halt. Otherwise, move one position to the right on the input tape, one

position to the left on the work tape, and go to step 3.

In detail, we have five states Q = {qstart, qcopy, qleft, qtest, qhalt}, and the transi-

tion function is defined as follows.

• In state qstart, the machine moves all the heads one position to the right

without writing anything (more accurately, rewriting the ⊲ symbol) and

enters state qcopy.

• In state qcopy, if the symbol on the input tape is not the � symbol, the

machine copies it on the work tape, moves both heads to the right, and

remains in state qcopy. Otherwise, it moves them to the left, writes nothing,

and enters state qleft. (In both cases, the head of the output tape does not

move and writes nothing.)

• In state qleft, if the symbol on the input tape is not ⊲, the machine moves

its head to the left, writes nothing, and remains in state qleft. Otherwise,

it moves it to the right, still writing nothing, and enters state qtest.

• In state qtest, if the symbol on the input tape is � and the symbol on

the work tape is ⊲, the machine writes 1 on the output tape and enters

qhalt. Otherwise, if the symbols on the input and work tapes are different,

it writes 0 on the output tape and enters qhalt. Otherwise, it moves the

CHAPTER 2 PRELIMINARIES 22

heads of the input and work tapes to the right and the left respectively, and

remains in state qtest.

It is easily seen that this machine correctly decides whether its input is a

palindrome. As for its running time, we see that on input x it always spends 1

step in state qstart, then |x| + 1 steps in state qcopy, then again |x| + 1 steps in

state qleft, then finally at most |x|+ 1 steps in state qtest (if the string is indeed a

palindrome). It will therefore always halt after at most 3|x| + 4 steps, and so it

runs in polynomial time.

2.3.2 Probabilistic Turing machines

One aspect of “real programs” that does not seem to be captured by the

foregoing definition of Turing machines is the ability to make random choices.

Since our approach is to not make any assumption about the strategy employed by

an adversary, and since many practical programming languages provide a random

number generator, it seems reasonable to model adversaries with machines that

can access a source of randomness. Such machines were first introduced by Rabin

in 1976 [26]; we discuss them following [2, Chap. 7].

Definition 2.14 (Probabilistic polynomial-time (PPT) Turing machines)

A probabilistic Turing machine is a Turing machine with an additional, read-

only tape called the random tape. A probabilistic Turing machine is said to run

in polynomial time if there is a polynomial p such that for any strings x ∈ {0, 1}∗

and r ∈ {0, 1}p(|x|), the machine halts after at most p(|x|) steps on input x when

its random tape initially contains the string r. A probabilistic Turing machine that

runs in polynomial time is called a probabilistic polynomial-time (PPT) Turing

machine. We call the string r the random coins of the machine, and we denote

by M(x; r) the output of a PPT machine M on input x and random coins r.

Remark 2.15

When we need to make explicit the fact that a polynomial-time Turing machine is

not probabilistic, we will call it a deterministic polynomial-time (DPT) machine.

The execution of a PPT Turing machine M on inputs of length n naturally

induces a probability space with sample space {0, 1}p(n) and uniform probability

distribution. For any x ∈ {0, 1}n, we can then define a random variable by

mapping any r ∈ {0, 1}p(n) to the string M(x; r). This random variable naturally

CHAPTER 2 PRELIMINARIES 23

represents the output of M on input x, and we note it M(x); thus for example

the probability that M outputs 1 on input x is

P (M(x) = 1) = P ({r ∈ {0, 1}p(n) |M(x; r) = 1})

=
1

2p(n)
·
∣

∣{r ∈ {0, 1}p(n) |M(x; r) = 1}
∣

∣ .

2.3.3 Non-uniform Turing machines

Definition 2.16 (Non-uniform polynomial-time Turing machines)

A non-uniform Turing machine is a Turing machine with an additional, read-only

tape called the advice tape, together with an infinite sequence of advice strings

adv0, adv1, A non-uniform Turing machine is said to run in polynomial time

if there is a polynomial p such that for any string x ∈ {0, 1}∗, the machine halts

after at most p(|x|) steps on input x when its advice tape initially contains the

string adv|x|. A non-uniform Turing machine that runs in polynomial time is

called a non-uniform polynomial-time Turing machine, and we denote by M(x)

the output of such a machine M on input x.

We can combine probabilistic and non-uniform Turing machines to yield non-

uniform probabilistic Turing machines, which have both a random tape and an

advice tape. We say that a machine runs in non-uniform probabilistic polynomial

time if there is a polynomial p such that for all strings x ∈ {0, 1}∗ and r ∈

{0, 1}p(|x|) it halts after at most p(|x|) steps on input x when the strings r and

adv|x| are initially written respectively on its random and advice tapes. Such

a machine is called a non-uniform probabilistic polynomial-time (non-uniform

PPT) machine.

2.3.4 The model we use

As mentioned at the beginning of this section, we will use a variant of Turing

machines first introduced by Abe and Fehr [1]. All our machines will have an

additional, read-only tape that we will call the security parameter tape and that

will initially contain the string 1κ, for a security parameter κ. All machines will

run in time polynomial in κ, meaning that whenever we consider a machine it is

assumed that there is a polynomial p such that the machine always halts after

at most p(κ) steps (where κ is the length of the string on its security parameter

CHAPTER 2 PRELIMINARIES 24

tape), regardless of the initial contents of all its other tapes (in particular, of its

input tape, which we may thus assume to have length at most p(κ)).

Such machines can be probabilistic, meaning that they have a random tape

which initially contain the random coins (of length p(κ)) and that their output (on

a given input and security parameter) can be viewed as a random variable over

the sample space of all possible random coins with uniform distribution. They

can also be non-uniform, but with the advice string depending on the security

parameter instead of on the length of the input (i.e., the string written on the

advice tape is advκ, which may also be assumed to have length at most p(κ)).

Thus the output of such a machine A on input x and security parameter κ

is A(1κ, x) or A(1κ, x, advκ). To ease notation, however, 1κ and advκ will often

be omitted (i.e., we will often write A(x) instead of A(1κ, x) or A(1κ, x, advκ)).

For two machines A and B we denote by A||B their joint execution on a common

input and random tape, and we write (u; v)← (A||B)(x) to say that the output

of A on input x is assigned to u and the output of B on the same input x and the

same random coins is assigned to v. We note that it makes sense to say that A

and B are executed on the same random coins: if A (resp., B) runs in time pA(κ)

(resp., pB(κ)), then both machines can be seen as running in time (pA + pB)(κ),

with random coins of equal length.

Chapter 3

The q-PKE family of assumptions

In this chapter we discuss the KEAs that have appeared in the literature thus far,

from the first KEA of Damg̊ard [8] to the q-PKE family of Groth [19]. (The title of

this chapter is justified by the fact that all those KEAs can be seen as members

of the q-PKE family, or close variants thereof.) We then show two theorems

regarding the internal structure of the q-PKE family, which, as mentioned in the

Introduction, indicate that it is increasing.

3.1 Group generators

As is common in modern practice, we will define assumptions relative to an

abstract group generator, as opposed to defining them in specific groups. We

define group generators following Ghadafi and Groth [15].

Definition 3.1 (Group generators)

A group generator is a uniform probabilistic algorithm G which on security pa-

rameter κ outputs group parameters (Gp, g), where

• p is a prime with |p| = Θ(κ);

• Gp is (a description of) a (cyclic) group of order p, with canonical repre-

sentations of group elements as bitstrings and efficient algorithms for per-

forming the group operation and deciding membership; and

• g is a uniformly random generator of Gp.

Example 3.2

A simple example of a group generator that is used often in practice is one that

produces a prime-order subgroup of the multiplicative group of a prime finite

25

CHAPTER 3 THE Q-PKE FAMILY OF ASSUMPTIONS 26

field. Namely, on input 1κ it generates a prime q of length κ + 1 such that

p = (q−1)/2 (which is of length κ) is also prime. The group Gp is then the order-p

subgroup of F∗
q, which is the group of quadratic residues modulo q; its elements

are represented as bitsrings by their usual binary representation. The integer q

suffices as a description of this group: the group operation is just multiplication

modulo q, and testing whether an element a ∈ F∗
q is in Gp can be done by testing

whether a(q−1)/2 mod q equals 1. Finally, a generator g can be chosen uniformly

by choosing uniformly an integer i ∈ {1, . . . , q − 1} and outputting g = 4i mod q

(4 = 22 is a generator of Gp since it is a quadratic residue, it is not 1, and the

group has prime order).

As in [15], given a group Gp, a generator g, and an element x ∈ Fp, we

will denote by [x] the element of Gp with discrete logarithm x relative to the

generator g and the group operation of Gp, i.e., [x] = g ◦ g ◦ · · · ◦ g for x terms.

Thus the generator g is [1] and the identity element is [0]. We will also denote

the group operation additively, so that we have [x+ y] = [x] + [y] and [kx] = k[x]

(where k[x] = [x] + [x] + · · ·+ [x] for k terms).

3.2 The first knowledge-of-exponent assumption (KEA1)

As mentioned, the first knowledge-of-exponent assumption, which we call

KEA1 following Bellare and Palacio [3], was introduced by Damg̊ard in 1991

[8]. Roughly, it says that given a pair ([1], [α]) of elements of Gp, the only way to

generate a pair ([k], [kα]) is the obvious way: pick k in some fashion, and compute

[k] = k[1] and [kα] = k[α]. In other words, any algorithm (adversary) which

outputs such a pair must “know” k. This is formalised by saying that there must

exist another algorithm, called an extractor, which, also given ([1], [α]), outputs

k.

Assumption 3.3 (KEA1)

Let G be a group generator. We say that KEA1 holds (relative to G) if for every

non-uniform probabilistic algorithm A (the adversary) there is a non-uniform

probabilistic algorithm χA (the extractor) such that

Pr
[

(Gp, [1])← G;α← Fp; σ := (Gp, [1], [α]);
(

([u], [v]); k
)

← (A||χA)(σ) :
(

[v] = α[u]
)

∧
(

[u] 6= k[1]
)]

≤ negl.

CHAPTER 3 THE Q-PKE FAMILY OF ASSUMPTIONS 27

Remark 3.4

In the above probabilistic statement, the probability is taken over the random

coins of G andA||χA and the uniform choice of α ∈ Fp. In other words, the sample

space is {0, 1}pG(κ) × {0, 1}pA||χA
(κ) × Fp with uniform probability distribution.

Other probabilistic statements throughout should be read similarly.

Remark 3.5

In [13, 25], KEAs are augmented to take into account any prior information

the adversary might possess. Namely, the adversary has an additional auxiliary

input z, and the condition must hold for all z generated independently of α. (Of

course, the extractor is given z as well.)

In [8], KEA1 is used to show that a variant of the ElGamal encryption scheme

[11] is secure against chosen ciphertext attacks by asserting that the only way for

an adversary to produce a valid ciphertext (i.e., one that is accepted by the

decryption oracle) is to encrypt a known plaintext (in which case the decryption

gives no advantage).

KEA1 is a very strong assumption. For instance, it is easily shown that,

under KEA1, the hardness of the discrete logarithm problem implies that of

the computational Diffie-Hellman problem, whereas the same implication in the

general case is a longstanding open question. Nevertheless, KEA1 has been shown

to hold in the generic group model [6, 24, 29] independently by Abe and Fehr [1]

and by Dent [9].

3.3 The discrete logarithm assumption (DLA)

As in [3], we remark that if the discrete logarithm problem is easy (in groups

generated by G), then KEA1 trivially holds (in G), for in that case we can trivially

construct a KEA1-extractor χA for any A as follows. Since χA is given A’s input

and random coins, it can compute A’s output ([u], [v]), and furthermore, since the

discrete logarithm problem is easy, it can compute u from [u]. It then outputs u,

and if the discrete logarithm computation was successful (which happens with

high probability since the discrete logarithm problem is easy), it will be successful

as well.

Therefore, KEAs are only interesting in groups where the discrete logarithm

problem is (believed to be) hard, which are the groups commonly used in cryp-

tographic systems. We will thus assume throughout that the discrete logarithm

CHAPTER 3 THE Q-PKE FAMILY OF ASSUMPTIONS 28

problem is hard in the group generators we will consider, and we formalise this

assumption as follows.

Assumption 3.6 (The discrete logarithm assumption (DLA))

We say that DLA holds (relative to the group generator G) if for every non-

uniform probabilistic adversary A we have

Pr
[

(Gp, [1])← G;α← Fp : A(Gp, [1], [α]) = α
]

≤ negl.

3.4 More assumptions: KEA2 and KEA3

A second knowledge-of-exponent assumption (KEA2) was introduced by

Hada and Tanaka in 1998 [21, 22] to construct 3-round zero-knowlege proto-

cols, which had been a longstaning open problem. However, KEA2 was proven

false (under the DLA) by Bellare and Palacio in 2004 [3], a result which, besides

rendering the results of Hada and Tanaka vacuous, showed that it was possible

to falsify a KEA, albeit in a different sense than that of Naor [23]. Fortunately,

Bellare and Palacio were able to recover the results of Hada and Tanaka by using

another new assumption, named KEA3, and they also showed that KEA3 implies

KEA1, a result which we extend below.

Roughly, KEA2 states that given ([1], [x], [α], [αx]), there are only two ways

to produce a pair ([k], [kα]): generate k in some fashion and output either

(k[1], k[α]) or (k[x], k[αx]). Intuitively, it is easy to see why this assumption

should be false under the DLA: what about an adversary which generates k1, k2
and outputs (k1[1] + k2[x], k1[α] + k2[αx])? KEA2 asserts that such an adversary

should know either k1 + k2x or k1x
−1 + k2, but it seems impossible to compute

them without computing x and breaking the DLA. KEA3 addresses this issue in

the obvious manner, by asserting that the only way to generate a pair ([k], [kα])

is as above: generate k1, k2 and output (k1[1] + k2[x], k1[α] + k2[αx]). We now

turn to the formalisation of both assumptions.

Assumption 3.7 (KEA2)

Let G be a group generator. We say that KEA2 holds (relative to G) if for ev-

ery non-uniform probabilistic adversary A there is a non-uniform probabilistic

CHAPTER 3 THE Q-PKE FAMILY OF ASSUMPTIONS 29

extractor χA such that

Pr
[

(Gp, [1])← G; x, α← Fp;

σ := (Gp, [1], [x], [α], [αx]);
(

([u], [v]); k
)

← (A||χA)(σ) :
(

[v] = α[u]
)

∧
(

[u] 6= k[1]
)

∧
(

[u] 6= k[x]
)]

≤ negl.

Assumption 3.8 (KEA3)

Let G be a group generator. We say that KEA3 holds (relative to G) if for ev-

ery non-uniform probabilistic adversary A there is a non-uniform probabilistic

extractor χA such that

Pr
[

(Gp, [1])← G; x, α← Fp;

σ := (Gp, [1], [x], [α], [αx]);
(

([u], [v]); (k1, k2)
)

← (A||χA)(σ) :
(

[v] = α[u]
)

∧
(

[u] 6= k1[1] + k2[x]
)]

≤ negl.

3.5 The q-PKE family of assumptions

In this section we describe the q-power knowledge-of-exponent (q-PKE) fam-

ily of assumptions, which was introduced by Groth in 2010 [19], and we prove two

theorems which indicate that this family of assumptions is increasing in strength

as the parameter q grows (i.e., that assumptions with a higher value of q imply

those with a lower value). We note that Groth showed in [19] that q-PKE holds

in the generic group model for any q.

Assumption 3.9 (The q-power knowledge-of-exponent assumption (q-PKE))

Let G be a group generator, and q ∈ N. We say that q-PKE holds (relative

to G) if for every non-uniform probabilistic adversary A there is a non-uniform

probabilistic extractor χA such that

Pr
[

(Gp, [1])← G; x, α← Fp;

σ := (Gp, [1], [x], . . . , [x
q], [α], [αx], . . . , [αxq]);

(

([u], [v]); (k0, . . . , kq)
)

← (A||χA)(σ) :
(

[v] = α[u]
)

∧
(

[u] 6=
∑q

i=0ki[x
i]
)]

≤ negl.

CHAPTER 3 THE Q-PKE FAMILY OF ASSUMPTIONS 30

Remark 3.10

We can allow the parameter q to be any function of the security parameter κ; in

that case, the experiment on security parameter κ has σ := (Gp, [1], [x], . . . , [x
q(κ)],

[α], [αx], . . . , [αxq(κ)]). Of course, since our algorithms run in time polynomial

in κ, we can assume that q(κ) is polynomial as well. To ease notation, we will

always simply write q.

We note that KEA1 is 0-PKE and that KEA3 is 1-PKE. As previously

mentioned, it was shown by Bellare and Palacio [3] that 1-PKE implies 0-PKE;

the proof there readily extends to show that, for any q, q-PKE implies 0-PKE.

For completeness and as a warm-up for what follows, we restate it here.

Theorem 3.11 (Generalisation of Proposition 2 from [3])

Let G be a group generator, and q ∈ N. If q-PKE holds for G, then 0-PKE holds

for G.

Proof. Let A be an adversary against 0-PKE; we first construct an adversary B

against q-PKE that uses A in a black-box manner. B has input

(Gp, [1], [x], . . . , [x
q], [α], [αx], . . . , [αxq]);

it runs A on input (Gp, [1], [α]) and with its own random tape, and outputs the

pair ([u], [v]) output by A. Since q-PKE holds, there is an extractor χB for B with

negligible error probability ν; we construct an extractor χA for A that uses χB in

a black-box manner. χA proceeds as follows on input (Gp, [1], [α]).

• x← Fp.

• σ := (Gp, [1], [x], . . . , [x
q], [α], [αx], . . . , [αxq]).

• (k0, . . . , kq)← χB(σ).

• Output
∑q

i=0 kix
i.

We claim that χA has (negligible) error probability ν.

We run the 0-PKE experiment. Firstly, A is run on input (Gp, [1], [α]), and

we let ([u], [v]) be its output. Then χA is run, again on input (Gp, [1], [α]) and

with the same random tape as A, and it runs χB on input σ and with its own

random tape. Now, observe that σ is distributed identically to the input to χB in

the experiment for q-PKE, and so, letting
(

([u′], [v′]); (k0, . . . , kq)
)

be the output

CHAPTER 3 THE Q-PKE FAMILY OF ASSUMPTIONS 31

of B||χB on input σ and with the same random tape as that of A, we have

(

[v′] = α[u′]
)

∧
(

q
∑

i=0

ki[x
i] 6= [u′]

)

with probability ν. Since B on input σ runs A on input (Gp, [1], [α]) and with the

same random tape as that with which A was run originally, we have ([u′], [v′]) =

([u], [v]). Observing that

q
∑

i=0

ki[x
i] =

(

q
∑

i=0

kix
i
)

[1]

completes the proof.

As mentioned, the above result shows in particular that 1-PKE implies 0-

PKE. A natural question is then to ask whether this can be generalised to show

that in general (q + 1)-PKE implies q-PKE. We show that this is the case under

a variant of the decisional Diffie-Hellman exponent (DDHE) assumption.*1)

Assumption 3.12 (The q-decisional Diffie-Hellman exponent (q-DDHE) as-

sumption)

Let G be a group generator, A be a non-uniform probabilistic adversary, q ∈ N∗,

b ∈ {0, 1}. Consider the following experiment Expq-ddhe-bG,A (κ).

• (Gp, [1])← G; x, r ← Fp.

• If b = 0, then σ := (Gp, [1], [x], . . . , [x
q], [r]); otherwise, σ := (Gp, [1], [x], . . . ,

[xq], [xq+1]).

• b′ ← A(σ).

• Output b′.

We let

Adv
q-ddhe
G,A (κ) =

∣

∣

∣
Pr
[

Exp
q-ddhe-1
G,A (κ) = 1

]

− Pr
[

Exp
q-ddhe-0
G,A (κ) = 1

]

∣

∣

∣

be the advantage of A (in q-DDHE) relative to G, and we say that q-DDHE holds

in G if every non-uniform adversary has negligible advantage, i.e., if for every

non-uniform adversary A, we have Adv
q-ddhe
G,A ≤ negl.

∗1) Unfortunately, since our proof relies on a decisional assumption, it does not apply in the bi-
linear setting, which is the setting in which q-PKE was introduced in [19] and subsequently
used in [13, 25].

CHAPTER 3 THE Q-PKE FAMILY OF ASSUMPTIONS 32

Theorem 3.13

Let G be a group generator, and q ∈ N∗. If q-DDHE and (q+1)-PKE hold for G,

then q-PKE holds for G.

Proof. Let A be an adversary against q-PKE; we first construct an adversary B

against (q + 1)-PKE that uses A in a black-box manner. B has input
(

Gp, [1], [x], . . . , [x
q+1], [α], [αx], . . . , [αxq+1]

)

;

it runs A on input
(

Gp, [1], [x], . . . , [x
q], [α], [αx], . . . , [αxq]

)

and with its own random tape, and outputs the pair ([u], [v]) output by A. Since

(q + 1)-PKE holds, there is an extractor χB for B with negligible error probabil-

ity ν; we construct an extractor χA for A that uses χB in a black-box manner.

χA proceeds as follows on input (Gp, [1], [x], . . . , [x
q], [α], [αx], . . . , [αxq]).

• r ← Fp.

• σ := (Gp, [1], . . . , [x
q], [r], [α], . . . , [αxq], [αr]).

• (k0, k1, . . . , kq+1)← χB(σ).

• Output (k0 + kq+1r, k1, . . . , kq).

We claim that χA has negligible error probability.

We run the q-PKE experiment. Firstly, A is run on input

(Gp, [1], [x], . . . , [x
q], [α], [αx], . . . , [αxq]),

and we let ([u], [v]) be its output. Then χA is run, on the same input and with

the same random tape as A, and it runs χB on input σ and with its own random

tape. We claim that, letting
(

([u′], [v′]); (k0, . . . , kq+1)
)

be the output of B||χB on

input σ, we have

(

[v′] = α[u′]
)

∧
(

kq+1[r] +

q
∑

i=0

ki[x
i] 6= [u′]

)

with negligible probability. Intuitively, this follows from the fact that, under

q-DDHE, σ is indistinguishable from the input to B||χB in the (q + 1)-PKE

experiment. To show it formally, we consider the following adversary Z against

q-DDHE, which uses B and χB in a black-box manner.

Z proceeds as follows on input (Gp, [1], [x], . . . , [x
q], [z]) (where x is random

and z is either xq+1 or random).

CHAPTER 3 THE Q-PKE FAMILY OF ASSUMPTIONS 33

• α← Fp.

• σ := (Gp, [1], [x], . . . , [x
q], [z], [α], [αx], . . . , [αxq], [αz]).

•

(

([u], [v]); (k0, k1, . . . , kq+1)
)

← (B||χB)(σ).

• If [v] = α[u] and kq+1[z] +
∑q

i=0 ki[x
i] 6= [u], output 1; else, output 0.

If z = xq+1, the q-DDHE experiment for Z is exactly the (q+1)-PKE experiment

for B||χB, and so Z outputs 1 with (negligible) probability ν. On the other hand,

if z is random, then σ is distributed identically to the input to B||χB when it is

run by χA in the q-PKE experiment. Let µ be the probability that Z outputs 1

in that latter case; then |ν − µ| is negligible since q-DDHE holds, and since ν is

negligible as well, so is µ.

Finally, since B on input σ runs A on input (Gp, [1], . . . , [x
q], [α], . . . , [αxq])

and with the same random tape as that with which A was run originally, we have

([u′], [v′]) = ([u], [v]). Observing that

kq+1[r] +

q
∑

i=0

ki[x
i] = (k0 + kq+1r)[1] +

q
∑

i=1

ki[x
i]

completes the proof.

Chapter 4

Rational KEAs (RKEAs)

In this chapter, we propose a definition of a large class of assumptions, with the

goal of capturing not only the KEAs that have appeared in the literature thus

far, but also some that are likely to appear in the future. We then show that this

large class is implied by a slightly smaller subclass.

4.1 Definition of RKEAs

Along the lines of the definition of target assumptions by Ghadafi and Groth

[15], we generalise the PKE family of assumptions by allowing arbitrary rational

functions of several variables instead of just powers of x. We call the result-

ing class of assumptions rational knowledge-of-exponent assumptions (RKEAs).

Analogously to the target assumptions of [15], RKEAs are parameterised by three

integers*1) d (the maximal degree of the polynomials involved), m (the number of

variables) and n (the number of rational functions). We first define a very gen-

eral notion of non-interactive knowledge assumptions (NIKAs) analogous to the

non-interactive computational assumptions of Ghadafi and Groth [15]. (The in-

tuitive meanings of the quoted terms should be clear from the previous examples

of KEAs.)

Definition 4.1 (Non-interactive knowledge assumptions (NIKAs))

A non-interactive knowledge assumption consists of an instance generator I, a

verifier V, and a knowledge verifier V, defined as follows.

∗1) Again, we can allow d,m, n to be any functions of the security parameter κ, and assume
that they are polynomial.

34

CHAPTER 4 RATIONAL KEAS (RKEAS) 35

• (pub, priv) ← I: I is a uniform probabilistic algorithm which, on input 1κ

(where κ is a security parameter), outputs a pair of public/private informa-

tion (pub, priv). We omit the input 1κ as usual.

• 0/1 ← V(pub, priv, sol): V is a uniform deterministic algorithm which, on

input (pub, priv) and a purported solution sol, outputs 1 if the solution is

“correct” and 0 otherwise.

• 0/1 ← V(pub, priv, sol, sec): V is a uniform deterministic algorithm which,

on input (pub, priv, sol) and a purported “secret” sec, outputs 1 if the secret

is “correct” and 0 otherwise.

We say that the assumption holds if for any non-uniform probabilistic algorithm A

(the adversary) there is a non-uniform probabilistic algorithm χA (the knowledge

extractor, or just the extractor) such that

Pr
[

(pub, priv)← I; (sol; sec)← (A||χA)(pub) :

V(pub, priv, sol) = 1 ∧ V(pub, priv, sol, sec) = 0
]

≤ negl.

We call the above probability the error probability of χA relative to A, and express

it as a function of the security parameter κ; thus the assumption holds if for every

adversary A there is an extractor χA with negligible error probability relative to A.

We also say that χA is successful (relative to A) if the condition above does not

hold, i.e., if χA “successfully extracts” A’s secret (hence the error probability is

the probability that the extractor is not successful).

Definition 4.2 (Rational knowledge-of-exponent assumptions (RKEAs))

For d,m, n ∈ N∗ and a group generator G, we say that (I,V ,V) is a (d,m, n)-

RKEA if there is a uniform probabilistic algorithm Icore such that I, V and V

are of the following forms.

• (pub, priv)← I:

– (Gp, [1])← G.

–
({

ai(X)
bi(X)

}n

i=1
, pub′, priv′

)

← Icore(Gp), where the ais and bis are poly-

nomials in m variables and of total degree at most d.

– x← Fm
p conditioned on bi(x) 6= 0 for all i.

– α← Fp.

– pub :=
(

Gp,
{[

ai(x)
bi(x)

]}n

i=1
,
{[

α·ai(x)
bi(x)

]}n

i=1
,
{

ai(X)
bi(X)

}n

i=1
, pub′

)

.

CHAPTER 4 RATIONAL KEAS (RKEAS) 36

– Return
(

pub, priv := ([1],x, α, priv′)
)

.

• 0/1← V
(

pub, priv, sol = ([u], [v])
)

: if [v] = α[u], return 1; else, return 0.

• 0/1← V
(

pub, priv, sol, sec = (k1, . . . , kn)
)

: if
∑n

i=1 ki
[

ai(x)
bi(x)

]

= [u], return 1;

else, return 0.

Remark 4.3

We note that in an RKEA the knowledge verifier V does not use the private in-

formation priv; thus RKEAs would also satisfy an alternative definition of NIKAs

where V is not given priv.

Example 4.4 (q-PKE)

q-PKE is a (q, 1, q+1)-RKEA, meaning that Icore generates q+1 rational functions

consisting of polynomials in one variable and of degree at most q. Namely, we

have ai(x) = xi−1 and bi(x) = 1 for all i = 1, . . . , q + 1.

4.2 Simplifications of RKEAs

As a first step towards identifying Uber-assumptions for the class of RKEAs,

in this section we define simple RKEAs analogously to the simple target assump-

tions of Ghadafi and Groth [15], and we show that simple RKEAs imply all

RKEAs.

Definition 4.5 (Simple RKEAs)

We say that an RKEA is simple if bi(X) = 1 for all i = 1, . . . , n, i.e., all the

rational functions output by Icore are just polynomials.

Theorem 4.6

For any (d,m, n)-RKEA A = (IA,VA,VA) there is an (nd,m, n)-simple RKEA

B = (IB,VB,VB) such that B implies A.

Proof. The algorithm IcoreB of B proceeds as follows on input Gp.

•

({

ai(X)
bi(X)

}n

i=1
, pub′A, priv

′
A

)

← IcoreA (Gp).

• ci(X) := ai(X) ·
∏

j 6=i bj(X) for all i = 1, . . . , n.

• pub′B :=
({

ai(X)
bi(X)

}n

i=1
, pub′A

)

; priv′B := priv′A.

• Return
({

ci(X)
}n

i=1
, pub′B, priv

′
B

)

.

CHAPTER 4 RATIONAL KEAS (RKEAS) 37

Let A be an adversary against A; we first construct an adversary B against

B which uses A in a black-box manner. B’s input is

pubB =
(

Gp,
{[

ci(x)
]}n

i=1
,
{[

α · ci(x)
]}n

i=1
,
{

ci(X)
}n

i=1
, pub′B

)

;

it runs A on input
(

Gp,
{[

ci(x)
]}n

i=1
,
{[

α · ci(x)
]}n

i=1
,

{

ai(X)

bi(X)

}n

i=1

, pub′A

)

and with its own random tape, and outputs the pair output by A. Since we as-

sume that B holds, there is an extractor χB for B with negligible error probability

ν; we construct an extractor χA for A which uses χB in a black-box manner. χA’s

input is

pubA =

(

Gp,

{[

ai(x)

bi(x)

]}n

i=1

,

{[

α · ai(x)

bi(x)

]}n

i=1

,

{

ai(X)

bi(X)

}n

i=1

, pub′A

)

and its random tape is the same as that of A. χA runs χB on input

σB =

(

Gp,

{[

ai(x)

bi(x)

]}n

i=1

,

{[

α · ai(x)

bi(x)

]}n

i=1

,
{

ci(X)
}n

i=1
, pub′B

)

and with its own random tape, and outputs the values (k1, . . . , kn) output by χB.

We claim that χA is an extractor for A with (negligible) error probability at most

ν + dn
p
.

We run the NIKA experiment for A. Firstly, A is run on input pubA, and

we let ([u], [v]) be its output. Then, χA is run, again on input pubA and with the

same random tape as A, and it runs χB on input σB and with its own random

tape, outputting the output (k1, . . . , kn) of χB. We claim that σB is distributed

identically to pubB except with negligible probability. To see this, observe that IA
generates the polynomials ai(X) and bi(X) as well as the vector x independently

of the generator [1] output by G. Further, assuming that
∏n

i=1 bi(x) 6= 0, the only

difference between pubB and σB is the choice of generator; namely, if choosing

the generator [1] yields the input pubB, then choosing the generator
[
∏n

i=1 bi(x)
]

yields σB.

By the Schwartz-Zippel lemma, the probability that
∏n

i=1 bi(x) = 0 is at

most dn
p
. Thus, letting ([u′], [v′]) be the pair output by B we have

(

[v′] = α[u′]
)

∧

(n
∑

i=1

ki

[

ai(x)

bi(x)

]

6= [u′]

)

CHAPTER 4 RATIONAL KEAS (RKEAS) 38

with probability at most ν + dn
p
. Observing that B, when run on input σB, runs

A on input pubA and with the same random tape as that with which A was run

originally shows that ([u′], [v′]) = ([u], [v]), which completes the proof.

Chapter 5

Conclusion

In this thesis we have initiated an analysis of knowledge-of-exponent assumptions

(KEAs), with the goal of obtaining a classification of those assumptions analogous

to that obtained by Ghadafi and Groth for target assumptions [15]. Namely, we

sought to identify a large class of KEAs, and then a small subclass thereof such

that if all the assumptions in the small class hold, then all the assumptions in

the large class hold as well. (The assumptions in the small class are then called

“Uber-assumptions”.) The aim of such a classification is to provide designers of

cryptographic systems with a wide range of assumptions from which they may

choose the most suitable one for their purposes, while at the same time ensuring

that their validity relies on a small number of assumptions, which can then be

thoroughly studied.

In Chapter 3 we studied the internal structure of the q-power knowledge-of-

exponent (q-PKE) family of assumptions. This family of assumptions was intro-

duced by Groth [19] as a generalisation of assumptions that had been introduced

earlier by Damg̊ard [8] and by Bellare and Palacio [3] (the latter as a modification

of a faulty assumption of Hada and Tanaka [21, 22]), and was the most general

instance of KEAs in the literature. We proved two results which give evidence

that the assumptions in the q-PKE family increase in strength as the parameter q

grows. Namely, we showed that, for any q, q-PKE unconditionally implies 0-PKE,

and implies (q−1)-PKE under a decisional Diffie-Hellman-type assumption. The

first result is an extension of a prior result of Bellare and Palacio (due to Halevi)

[3], which showed merely that 1-PKE implies 0-PKE. Regarding the second re-

sult, we remark that its reliance on a decisional assumption is unfortunate, since

it means that it does not apply in bilinear groups.

39

CHAPTER 5 CONCLUSION 40

In Chapter 4, we introduced a further generalisation of the q-PKE fam-

ily of assumptions, which we named rational knowledge-of-exponent assumptions

(RKEAs), with the aim of capturing not only existing assumptions, but also oth-

ers which may appear in the future. This is again motivated by the desire to

have as large a class of assumptions as possible. Then, as a first step towards

identifying Uber-assumptions for RKEAs, we show that all RKEAs are implied

by the smaller subclass of simple RKEAs.

All our results were obtained using the proof technique from [3], which to our

knowledge, is thus far the only known method for proving implications between

KEAs. Indeed, to our knowledge, Proposition 4.2 from [3] was prior to this

work the only result in the literature that proved an implication between two

KEAs. Many directions for future work remain open, which might require the

introduction of new proof techniques.

• Is the q-PKE family strictly increasing? In other words, can it be shown in

some sense that q-PKE does not imply (q + 1)-PKE?

• Can RKEAs be simplified further as in [15]? In particular, can Uber-

assumptions be found? If not, can RKEAs be proved secure in the generic

group model [6, 24, 29]?

• Can RKEAs be generalised further, for instance by allowing V and V to be

of a more general form?

• Perhaps most importantly, can a similar analysis be done in the bilinear

setting, where KEAs are now primarily used?

Bibliography

[1] M. Abe and S. Fehr, Perfect NIZK with Adaptive Soundness. S. P. Vadhan

(Ed.), TCC 2007, Lecture Notes in Computer Science, vol. 4392, pp. 118–

136, Springer, 2007.

doi:10.1007/978-3-540-70936-7_7

[2] S. Arora and B. Barak, Computational Complexity: A Modern Approach.

Cambridge University Press, New York, 2009.

http://theory.cs.princeton.edu/complexity/ (Accessed 9 July 2019.)

[3] M. Bellare and A. Palacio, The Knowledge-of-Exponent Assumptions and 3-

Round Zero-Knowledge Protocols. M. Franklin (Ed.), CRYPTO 2004, Lecture

Notes in Computer Science, vol. 3152, pp. 273–289, Springer, 2004.

doi:10.1007/978-3-540-28628-8_17

[4] D. Boneh, X. Boyen, and E.-J. Goh, Hierarchical Identity Based Encryption

with Constant Size Ciphertext. R. Cramer (Ed.), EUROCRYPT 2005, Lec-

ture Notes in Computer Science, vol. 3494, pp. 440–456, Springer, 2005.

doi:10.1007/11426639_26

[5] D. Boneh, C. Gentry, and B. Waters, Collusion Resistant Broadcast Encryp-

tion with Short Ciphertexts and Private Keys. V. Shoup (Ed.), CRYPTO

2005, Lecture Notes in Computer Science, vol. 3621, pp. 258–275, Springer,

2005.

doi:10.1007/11535218_16

[6] M. Chateauneuf, A. C. H. Ling, and D. R. Stinson, Slope Packings and Cov-

erings, and Generic Algorithms for the Discrete Logarithm Problem. Journal

of Combinatorial Designs, vol. 11, no. 1, pp. 36–50, Wiley, 2003.

doi:10.1002/jcd.10033

41

https://doi.org/10.1007/978-3-540-70936-7_7
http://theory.cs.princeton.edu/complexity/
https://doi.org/10.1007/978-3-540-28628-8_17
https://doi.org/10.1007/11426639_26
https://doi.org/10.1007/11535218_16
https://doi.org/10.1002/jcd.10033

BIBLIOGRAPHY 42

[7] R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspec-

tive, second edition. Springer, New York, 2005.

doi:10.1007/0-387-28979-8

[8] I. Damg̊ard, Towards Practical Public Key Systems Secure Against Chosen

Ciphertext Attacks. J. Feigenbaum (Ed.), CRYPTO ’91, Lecture Notes in

Computer Science, vol. 576, pp. 445–456, Springer, 1992.

doi:10.1007/3-540-46766-1_36

[9] A. W. Dent, The Hardness of the DHK Problem in the Generic Group Model.

Cryptology ePrint Archive, Report 2006/156, 2006.

https://ia.cr/2006/156 (Accessed 9 July 2019.)

[10] W. Diffie and M. E. Hellman, New Directions in Cryptography. IEEE Trans-

actions on Information Theory, vol. 22, no. 6, pp. 644–654, IEEE, 1976.

doi:10.1109/TIT.1976.1055638

[11] T. ElGamal, A Public Key Cryptosystem and a Signature Scheme Based

on Discrete Logarithms. IEEE Transactions on Information Theory, vol. 31,

no. 4, pp. 469–472, IEEE, 1985.

doi:10.1109/TIT.1985.1057074

[12] J. B. Fraleigh, A First Course in Abstract Algebra, seventh edition. Pearson,

2003.

[13] R. Gennaro, C. Gentry, B. Parno, and M. Raykova, Quadratic Span Programs

and Succinct NIZKs without PCPs. T. Johansson and P. Nguyen (Eds.),

EUROCRYPT 2013, Lecture Notes in Computer Science, vol. 7881, pp. 626–

645, Springer, 2013.

doi:10.1007/978-3-642-38348-9_37

[14] C. Gentry and D. Wichs, Separating Succinct Non-Interactive Arguments

From All Falsifiable Assumptions. STOC ’11: Proc. of the Forty-third Annual

ACM Symposium on Theory of Computing, pp. 99–108, ACM, 2011.

doi:10.1145/1993636.1993651

[15] E. Ghadafi and J. Groth, Towards a Classification of Non-interactive Com-

putational Assumptions in Cyclic Groups. T. Takagi and T. Peyrin (Eds.),

ASIACRYPT 2017, Part II, Lecture Notes in Computer Science, vol. 10625,

https://doi.org/10.1007/0-387-28979-8
https://doi.org/10.1007/3-540-46766-1_36
https://ia.cr/2006/156
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1985.1057074
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1145/1993636.1993651

BIBLIOGRAPHY 43

pp. 66–96, Springer, 2017.

doi:10.1007/978-3-319-70697-9_3

[16] O. Goldreich, On the Foundations of Modern Cryptography. B. S. Kaliski Jr.

(Ed.), CRYPTO ’97, Lecture Notes in Computer Science, vol. 1294, pp. 46–

74, Springer, 1997.

doi:10.1007/BFB0052227

[17] O. Goldreich, S. Micali, and A. Widgerson, Proofs that yield nothing but their

validity or all languages in NP have zero-knowledge proof systems. Journal

of the ACM, vol. 38, no. 3, pp. 690–728, ACM, 1991.

doi:10.1145/116825.116852

[18] S. Goldwasser and S. Micali, Probabilistic Encryption. Journal of Computer

and System Sciences, vol. 28, no. 2, pp. 270–299, Academic Press, 1984.

doi:10.1016/0022-0000(84)90070-9

[19] J. Groth, Short Pairing-Based Non-interactive Zero-Knowledge Arguments.

M. Abe (Ed.), ASIACRYPT 2010, Lecture Notes in Computer Science,

vol. 6477, pp. 321–340, Springer, 2010.

doi:10.1007/978-3-642-17373-8_19

[20] A. Gut, Probability: A Graduate Course, second edition. Springer Texts in

Statistics, Springer, New York, 2013.

doi:10.1007/978-1-4614-4708-5

[21] S. Hada and T. Tanaka, On the existence of 3-round zero-knowledge proto-

cols. H. Krawczyk (Ed.), CRYPTO ’98, Lecture Notes in Computer Science,

vol. 1462, pp. 408–423, Springer, 1998. (Preliminary version of [22].)

doi:10.1007/BFB0055744

[22] S. Hada and T. Tanaka, On the Existence of 3-Round Zero-Knowledge Proto-

cols. Cryptology ePrint Archive, Report 1999/009, 1999. (Full version of [21].)

https://ia.cr/1999/009 (Accessed 9 July 2019.)

[23] M. Naor, On Cryptographic Assumptions and Challenges. D. Boneh (Ed.),

CRYPTO 2003, Lecture Notes in Computer Science, vol. 2729, pp. 96–109,

Springer, 2003.

doi:10.1007/978-3-540-45146-4_6

https://doi.org/10.1007/978-3-319-70697-9_3
https://doi.org/10.1007/BFB0052227
https://doi.org/10.1145/116825.116852
https://doi.org/10.1016/0022-0000(84)90070-9
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-1-4614-4708-5
https://doi.org/10.1007/BFB0055744
https://ia.cr/1999/009
https://doi.org/10.1007/978-3-540-45146-4_6

BIBLIOGRAPHY 44

[24] V. I. Nechaev, Complexity of a determinate algorithm for the discrete loga-

rithm. Mathematical Notes, vol. 55, no. 2, pp. 165–172, Plenum, 1994.

doi:10.1007/BF02113297

[25] B. Parno, J. Howell, C. Gentry, and M. Raykova, Pinocchio: Nearly Practical

Verifiable Computation. 2013 IEEE Symposium on Security and Privacy,

pp. 238–252, IEEE, 2013.

doi:10.1109/SP.2013.47

[26] M. O. Rabin, Probabilistic Algorithms. J. F. Traub (Ed.), Algorithms and

Complexity: New Directions and Recent Results, pp. 21–39, Academic Press,

New York, 1976.

[27] R. L. Rivest, A. Shamir, and L. Adleman, A Method for Obtaining Digi-

tal Signatures and Public-Key Cryptosystems. Communications of the ACM,

vol. 21, no. 2, pp. 120–126, ACM, 1978.

doi:10.1145/359340.359342

[28] C. E. Shannon, Communication Theory of Secrecy Systems. Bell System

Technical Journal, vol. 28, no. 4, pp. 656–715, AT&T, 1949.

[29] V. Shoup, Lower Bounds for Discrete Logarithms and Related Problems.

W. Fumy (Ed.), EUROCRYPT ’97, Lecture Notes in Computer Science,

vol. 1233, pp. 256–266, Springer, 1997.

doi:10.1007/3-540-69053-0_18

[30] Zerocoin Electric Coin Company, What are zk-SNARKs?.

https://z.cash/technology/zksnarks/ (Accessed 9 July 2019.)

https://doi.org/10.1007/BF02113297
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1145/359340.359342
http://doi.org/10.1007/3-540-69053-0_18
https://z.cash/technology/zksnarks/

List of Publications

[1] F. Kraiem, S. Isobe, E. Koizumi, and H. Shizuya, On the classification of

knowledge-of-exponent assumptions in cyclic groups. To appear in Interdisci-

plinary Information Sciences.

45

	Introduction
	Background
	Summary of Results
	Organisation

	Preliminaries
	Sets, integers, and strings
	Probability
	Probability spaces
	Independence and conditional probabilities
	Random variables
	The Schwartz-Zippel lemma

	Computational complexity and algorithms
	Turing machines
	Probabilistic Turing machines
	Non-uniform Turing machines
	The model we use

	The q-PKE family of assumptions
	Group generators
	The first knowledge-of-exponent assumption (KEA1)
	The discrete logarithm assumption (DLA)
	More assumptions: KEA2 and KEA3
	The q-PKE family of assumptions

	Rational KEAs (RKEAs)
	Definition of RKEAs
	Simplifications of RKEAs

	Conclusion
	Bibliography
	List of Publications

