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Abstract

This work for the most part involves applications of data science and trajectory data mining
in movement ecology of animal. The main objective is to present methods and techniques
that could be applied in modeling or extracting information from animal movement in spa-
tial, spectral and temporal domains at large scales. A small part of this work is also allo-
cated to applications of computer science and vision in data acquisition and visualization of
movement. In Chapter 2, a multi-stage motion based stereo tracking method presented for
non-invasive tracking of elusive animals like bats in their natural habitats. Since imaging
these objects in their environments requires near infrared cameras with maximum aper-
ture to collect maximum allowable light, images often lack sharpness. In addition, they
also possess very low observable visual features. Thereby, to overcome these challenges,
a method proposed which estimates the moving components of the scene and based on
their dynamics and a prior knowledge about the dynamics of the target objects, it is able
to identify the desired targets and reconstruct their 3D trajectories. It is demonstrated that
the proposed method could provide reasonable estimates of the trajectories given the poor
image conditions. This however comes at a considerable computational cost which re-
mains as a follow-up objective. In Chapter 3, the focus moves towards modeling latent
states of animal movement using their geospatial trajectory data. In this chapter, objective
is to propose methods which could extract information about behavioral trends from ani-
mal trajectories at large scales. In other words, rather than focusing on an individual, the
movement of masses like genders, colonies or whole species over long periods of time was
the objective. Here, the similarities between language and navigation rooted in cognitive
abilities of organisms exploited to discriminate between influence of behaviors on the tra-
jectories using probabilistic models. In Chapter 4, the contextual semantical relationships
between geospatial locations were modeled to classify behavioral responses of focal organ-
isms. These contextual relationships could disentangle large groups of trajectories based
on the underlying states which influenced the arrangement of trajectory points. This infor-
mation is also embedded in numerical representations of the trajectory key points. These
numerical representations then could be used for modeling or classification of trajectories
based on their latent states. It is experimented that utilization of these input features im-
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prove the classification results comparing to other common techniques. In Chapter 5, novel
approaches in modeling of the dynamics of animal movement using variants of recurrent
neural networks are presented. It is shown that these powerful models are able to learn and
generate animal trajectories with the given prior information about the organism itself and
geospatial features of environment. In this chapter probabilistic models used to discover
the similarities or disparities between latent states influencing geometry of trajectories.
Finally, in Chapter 6, a software solution for analysis and visualization of animal trajec-
tories with interactive and integrated environment data management system is proposed.
This tool is to help researchers to reconstruct a more realistic environment for visualiza-
tion of trajectories in order to better understand the movement and navigational behaviors.
Over the course of this study, the importance and necessity of integration of environmental
factors in study of animal movement become more relevant. With the proposed suite, it
became easier to analyse and comprehend individual and collective movement behaviors
and features particularly in case of marine avians. After all, this work attempted to pro-
vide multiple paths forward for the researchers interested in the newly minted discipline
of bio-navigation science. Topics discussed and presented in this work introduce various
perspectives in data-driven ecology of animal movement. These are also compelling candi-
dates for follow-up research in ecology of animal movement within the framework of data
science.



Contents

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Introduction 1
1.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Trajectory Mining . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Movement Ecology . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Problems and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 Stereo Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Trajectory Features . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.3 Trajectory Models . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Notes to Readers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Stereo Tracking for Reconstruction of 3D Trajectories of Bats 17
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Preliminary Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Epipolar Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Gaussian Mixture Models . . . . . . . . . . . . . . . . . . . . . . 21
2.2.3 Belief Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.4 Total Variation Regularization . . . . . . . . . . . . . . . . . . . . 23

2.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.2 Background Modeling . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.3 Disparity Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.4 Scene Flow Estimation . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.5 Extraction of Motion Field Components . . . . . . . . . . . . . . . 34

2.4 Experiments, Results and Discussion . . . . . . . . . . . . . . . . . . . . . 35
2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

i



Contents

3 Modeling Latent Structures in Trajectories 55
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2 Preliminary Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.1 Stay Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.2 Density-based Clustering . . . . . . . . . . . . . . . . . . . . . . . 58
3.2.3 Dirichlet, Categorical and Multinomial Models . . . . . . . . . . . 59

3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3.2 Key Point Extraction . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.3.3 Trajectory Representation . . . . . . . . . . . . . . . . . . . . . . 64
3.3.4 Generative Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.3.5 Discriminative Modeling . . . . . . . . . . . . . . . . . . . . . . . 67

3.4 Experiments, Results and Discussion . . . . . . . . . . . . . . . . . . . . . 70
3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4 Context-based Semantical Vectors for Modeling Latent Structures 83
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2 Preliminary Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2.1 Continuous Bag-of-Words Model . . . . . . . . . . . . . . . . . . 85
4.2.2 Skip-gram Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.2.3 Candidate Sampling . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3.2 Key point Extraction . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.3.3 Model Construction and Optimization . . . . . . . . . . . . . . . . 90

4.4 Experiments, Results and Discussion . . . . . . . . . . . . . . . . . . . . . 92
4.4.1 Trajectory Data Exploration . . . . . . . . . . . . . . . . . . . . . 93
4.4.2 Gender-based Classification . . . . . . . . . . . . . . . . . . . . . 100

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5 Encoding Trajectory using Recurrent Neural Networks 109
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.2 Preliminary Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2.1 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . 111
5.2.2 Backpropagation Through Time . . . . . . . . . . . . . . . . . . . 113
5.2.3 Mixture Density Networks . . . . . . . . . . . . . . . . . . . . . . 114
5.2.4 RNN Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.2.5 RNN Predictor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.2.6 Conditional or Unconditional Recurrence . . . . . . . . . . . . . . 119

5.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.3.2 Undercomplete Autoencoder Model . . . . . . . . . . . . . . . . . 120
5.3.3 Mixture Density Encoder Model . . . . . . . . . . . . . . . . . . . 122

5.4 Experiments, Results and Discussion . . . . . . . . . . . . . . . . . . . . . 123

ii



Contents

5.4.1 Undercomplete Autoencoder Model . . . . . . . . . . . . . . . . . 123
5.4.2 Mixture Density Encoder Model . . . . . . . . . . . . . . . . . . . 126

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6 Visualization of Movement in Dynamic Environments 147
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.2 Design Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.2.1 Software Structure Model . . . . . . . . . . . . . . . . . . . . . . 148
6.2.2 Trajectory Data Interface Module . . . . . . . . . . . . . . . . . . 149
6.2.3 Environmental Data Interface Module . . . . . . . . . . . . . . . . 150
6.2.4 Map Projection Module . . . . . . . . . . . . . . . . . . . . . . . 150
6.2.5 Process Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.2.6 Map Interface Module . . . . . . . . . . . . . . . . . . . . . . . . 152
6.2.7 User Interface Module . . . . . . . . . . . . . . . . . . . . . . . . 152

6.3 Major Functionalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.3.1 Itinerary Reconstruction . . . . . . . . . . . . . . . . . . . . . . . 153
6.3.2 Windowed Analysis Visualization . . . . . . . . . . . . . . . . . . 154
6.3.3 Multiple Object Visualization . . . . . . . . . . . . . . . . . . . . 154

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7 Conclusions 157

Bibliography 165

List of Publications 191

Acknowledgments 193

iii





List of Figures

2.1 (a) Epipolar lines and epipolar plane. (b) Inverse relation between depth
and disparity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Schematic diagram of motion component extraction and object identifica-
tion process. (a) Single frame. (b). Across multiple frames. . . . . . . . . . 35

2.3 A sample image of a bat with different power transform parameters. It
is seen that unlike linear transforms, non-linear power transform greatly
improve contrast of the object. (a) Original Image (b) γ = 1, α = 3 (c)
γ = 0.8, α = 1 (d) γ = 0.8, α = 3 (e) γ = 0.6, α = 1 (f) γ = 0.6, α = 3 . . . 36

2.4 Denoised images on the left and their corresponding residuals on the right
column. The residual information is used to improve depth and sceneflow
estimation. (a) , (b) Box filter. (c) , (d)FastNLMeans . (e) , (f) TV-L1 . . . . 38

2.5 Foreground segments extracted from half-size image on the left and Sobelk=5

edges on the right column. Refer to text for details. . . . . . . . . . . . . . 39
2.6 Foreground segments extracted from full-size image on the left and Sobelk=5

edges on the right column. Refer to text for details. . . . . . . . . . . . . . 40
2.7 Disparity map obtained using semi-global block matching algorithm [1] (a)

and superposition top half of disparities on the corresponding image (b) . . 41
2.8 Left view image (a) Disparity maps λ. = 15, Niter = 60 (b) λ. = 8, Niter =

120 (c) λ. = 8, Niter = 120 Foreground segment disparities in cyan on the
image obtained λ. = 15, Niter = 60 (d) λ. = 8, Niter = 120 (e) . . . . . . . . 42

2.9 Natural logarithm of energy values of the belief network versus number of
iterations (b) λ. = 15.0, Niter = 60 (b) λ. = 8.0, Niter = 120 . . . . . . . . . 42

2.10 This figure shows the motion components of the full-scale and down-sampled
to half-size images obtained using total variation loss with two different
data coefficients 0.3 and 0.6 on top and bottom respectively. (a) Half-size
image. (b) Full-size image. . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.11 A demonstration of 2D motion component and groups. (a). Extraction
of motion components from pixels in 6D. (b) Identification of groups of
motion components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.12 Tracked locations of two objects using the proposed algorithm, correlation
based CSR-DCF and MIL trackers displayed along with the marker posi-
tions (GT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

v



List of Figures

2.13 Benchmark plots for left camera image sequence with length of 400 frames.
(a) Success plot. (b) Precision plot. . . . . . . . . . . . . . . . . . . . . . . 47

2.14 Benchmark plots for right camera image sequence with length of 400 frames.
(a) Success plot. (b) Precision plot. . . . . . . . . . . . . . . . . . . . . . . 47

2.15 Benchmark plots for longer left camera image sequence with length of
1000 frames. (a) Success plot. (b) Precision plot. . . . . . . . . . . . . . . 49

2.16 Benchmark plots for longer right camera image sequence with length of
1000 frames. (a) Success plot. (b) Precision plot. . . . . . . . . . . . . . . 49

2.17 Failure of MIL tracker after path crossing. (a) Before the crossing, two
objects are tracked individually as B1 and B2. (b) After the crossing, both
trackers B1 and B2 track the same object failing to track both objects in the
seen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.18 Reconstructed trajectories of two flying bats B1 and B2 using the proposed
method and other top 2 performing algorithms. It is seen that the proposed
method, SF, successfully kept tracking objects after the path crossing in
camera images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1 (a) Sample stay points extracted form a shearwater trajectory with time
parameter of 10min and spatial threshold of 500m indicated by red ◦. (b)
Trajectory segments with speeds below 2.5m/s are indicated by red ◦ . . . 57

3.2 Identified stay point clusters using (a) BIRCH (b) DBSCAN (gray points
are designated as noise.) (c) K-means (d) Spectral . . . . . . . . . . . . . 60

3.3 Movement graphical models (a) with sequential chain dependencies (b) As-
sumption of conditional independence and exchangeability. Λ = [Ω,Φ,w, r]. 63

3.4 Extracted key point which has minimum of 10 unique bird ids using (a)
speed threshold and (b) stay point method. Larger cross signs show higher
number of unique bird ids contained in the key point cluster . . . . . . . . . 72

3.5 Histogram of unique bird ids at key points extracted using speed threshold
method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.6 Sample of trajectories. Identified speed threshold DBSCAN clusters marked
by blue + and identified vocabulary key points marked by red 4. (a) Female
trajectories (b) Male trajectories. . . . . . . . . . . . . . . . . . . . . . . . 73

3.7 Performance results of tuned classifiers for key points extracted using speed
threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.8 Spatial features importance for gender classification. . . . . . . . . . . . . 76
3.9 Distribution of travel speeds for birds of each gender (a) Birds of a-colony

(b) Birds of t-colony. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.10 Plot of selected feature percentile versus prediction rate. . . . . . . . . . . 78
3.11 Vocabulary key points marked by blue 4. First component’s top 10 key

points marked by green ◦. Second component is marked by red I. (a)
Female bird trajectories belonging to a-colony (b) Male bird trajectories
belonging to t-colony . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

vi



List of Figures

4.1 Each key point and its semantical features is encoded to a one-hot vector kn

which is then projected on embedding space hn and projected back to orig-
inal space. After applying SoftMax, the loss is computed against sampled
context key points kc. This is interpreted as the probability of k̂c appears in
the sampled context key points of kn. . . . . . . . . . . . . . . . . . . . . . 92

4.2 Trajectories, selected key points and visualizations of their embedding. (a)
Trajectories in geo-spatial space. The colony is designated by ^. (b) Ex-
tracted key points in geo-spatial space. Marker size conveys information
about the count of individual trajectories sharing the key point. (c) 2d vi-
sualization of key point embeddings using t-SNE. (d) Identified densities
of key point embeddings using the first 2 principal components. Densities
with minimum of 5 members within the distance of 0.03 are highlighted.
Centroids are designated by 4. . . . . . . . . . . . . . . . . . . . . . . . . 94

4.3 Corresponding trajectories of the key point clusters in Figure 4.2(d). key
points are identified by I. The colony is designated by ^. (a) Cluster 11
(b) Cluster 5 (c) Cluster 10 (d) Cluster 3 . . . . . . . . . . . . . . . . . . . 96

4.4 Corresponding trajectories of the key point clusters in Figure 4.2(d). key
points are identified by I. The colony is designated by ^. (a) Cluster 8 (b)
Cluster 9 (c) Cluster 2 (d) Cluster 4 . . . . . . . . . . . . . . . . . . . . . . 98

4.5 Average validation errors for training different model configurations. The
numbers proceeding the letters H and C represent the dimensionality of the
embedding space and the context window size. The number of negative
samples and skip samples are set to 4 and 8 respectively and context win-
dow spanned bidirectionally. (a) Average of validation errors for different
models in last 5e5 steps of training. It is apparent that 1e6 steps is suffi-
cient for the training as no further improvement is noticed. (b) Average and
standard deviation of the validation error for the last 1e5 steps of training.
This demonstrates that larger context window size requires greater size of
embedding vector while it increases the standard deviation. . . . . . . . . . 99

4.6 2d t-SNE visualizations of the resulted embedding vectors for different
model configurations. The numbers proceeding the letters H and C represent
the dimensionality of the embedding space and the context window size
bidirectionally. Model configurations: (a) H16C1 (b) H16C8 (c) H32C4
(d) H32C16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.7 Multi-level DBSCAN clustering of Streaked Shearwater trajectory points.
Level 0 is trajectory points. Level 1, 2, 3, 4 and 5 are detected clusters
with neighborhood radii set to 1.5, 3, 6, 12, 24 km respectively. Minimum
neighbors number set to 10. Each centroid’s marker size is proportional
to the number of trajectories sharing the corresponding key point. (a) Tra-
jectory points assigned to the detected clusters for each level. (b) Centroid
points of detected clusters for each level. (c) Sample centroid points of
Level 1 clusters. L1 0 is located at colony. (d) Sample centroid points of
Level 3 clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

vii



List of Figures

4.8 Semantical features extracted for key points are based on speed, time and
direction. Each one of these features is discrete and semantical. (a) Domi-
nant mode of activity as either flight mode or floating on water designated
as drift mode based on 2.5 m/s speed threshold. (b) Time spans for which
birds remained at key points. (c) Discretized directions female birds took
at “L3 11” key point in Figure 4.7(d). . . . . . . . . . . . . . . . . . . . . 104

5.1 (a) Multilayer LSTM predictor network diagram. Xt is input data to the
encoder part is the estimated input vector at time t + 1. Predictor inputs
are previous step’s output. (b) Multilayer LSTM autoencoder network dia-
gram. Xt is input data to the encoder part. X̄t is decoded input from hidden
state at time t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.2 (a) Trajectories of seagulls and (b) trajectories of shearwaters. . . . . . . . 123

5.3 Optimization cost plots. Network parameters are indicated with numbers
proceeding letters L, C, S, and Lr for number of layers, cell size, prediction
steps and learning rate respectively. All sequence lengths are set to 20 time
steps. (a) Training cost plots. (b) Test cost plots of prediction networks. . . 125

5.4 (a) Sample of predicted trajectory points from trained hidden states on pre-
vious 20 time steps, projection window of 5 time steps, with sampling rate
of 1 minute and conditioned on previous output. (b) Sample of generated
trajectory points from hidden states encoded with input vectors of 20 time
steps at sampling ratio of 1 minutes and conditioned on previous output. . . 126

5.5 Sample embedding maps of trained hidden state vectors using t-SNE. (a)
Embeddings of the hidden state vectors form clusters. (b) Embeddings are
spread uniformly which mey convey they contain arbitrary information. . . 127

5.6 Trajectory segments labeled according to the hidden states’ embeddings in
(a) Figure 5.5(a). (b) Figure 5.5(b). . . . . . . . . . . . . . . . . . . . . . . 127

5.7 Training and validation negative log loss (NLL) plots of the first 50 epochs
for seagulls on the left and right respectively. (a), (b) Networks with differ-
ent number of layers. (c), (d) Networks with different sequence lengths . . . 129

5.8 NLL plots of the first 50 epochs for shearwaters with networks with differ-
ent number of layers. (a) Training results. (b) Validation results. . . . . . . 130

5.9 NLL plots for normalized and raw input gulls data. Suffix N denotes that
the northing and easting steps are normalized in contrast to being only
scaled. (a) Training results. (b) Validation results. . . . . . . . . . . . . . . 131

5.10 NLL plots for normalized and scaled input shearwaters data. Training plots
on the right and validation plots are on the left. (a), (b) Normalized inputs
versus raw northings and eastings. Suffix N denotes that the northing and
easting steps are normalized. (c), (d) Scaled and clamped inputs. The
number proceeding C denotes the value at which the northing eastings are
scaled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

viii



List of Figures

5.11 1st and 2nd components of PCA and t-SNE embeddings of network lay-
ers’ weights for networks with single, two and three layers. Columns on
the left are PCA and on the right are t-SNE. (a), (c), (e) Trained on gulls
trajectories. (b), (d), (f) Trained on shearwaters trajectories. . . . . . . . . 133

5.12 NLL plots for Adam and RMSProp optimizers. (a) Training results. (b)
Validation results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.13 Unbiased samples of trajectories drawn from gull and shearwater models
shown on the left and right columns respectively. Green 4 denotes the start
and red I determines the end of the segment. . . . . . . . . . . . . . . . . 135

5.14 Unbiased samples of trajectories drawn from gull and shearwater models
shown on the left and right columns respectively. Green 4 denotes the start
and red I determines the end of the segment. . . . . . . . . . . . . . . . . 136

5.15 (a) The 1st and 2nd principal components of first layer states of the network
plotted and its KMean clusters. (b) The corresponding generated trajectory
and associated points to each cluster. . . . . . . . . . . . . . . . . . . . . . 138

5.16 Mean (top) and standard deviation (middle) of speeds, and fraction of sta-
tionary points (bottom) in generated trajectories and trajectory data set of
seagulls on the left and right columns respectively. . . . . . . . . . . . . . 140

5.17 Mean (top) and standard deviation (middle) of speeds, and fraction of sta-
tionary points (bottom) in generated trajectories and trajectory data set of
shearwaters on the left and right columns respectively. . . . . . . . . . . . 141

5.18 Distribution of trajectory segment reconstruction mean and std of RMSE
measured in Euclidean distance, northing and easting dimensions in gulls
trajectories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.19 Distribution of trajectory segment reconstruction mean and std of RMSE
measured in Euclidean distance, northing and easting dimensions in shear-
waters trajectories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.20 Sampled trajectory segments conditioned on geospatial and gender states.
(a) Conditioned on the grid location of colony (b) Conditioned on the grid
location at the straight and male gender . . . . . . . . . . . . . . . . . . . 144

6.1 (a) The Essential functioning blocks of the software (b) Candidate data file
handler model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.2 (a) Map overlay image of wind speed and direction vectors. Map data is
courtesy of ©2017 Google, ZENRIN and SK telecom. (b) Rainbow color
map image of sea surface temperature values. . . . . . . . . . . . . . . . . 151

6.3 (a) Timeline controls in interactive visualization of bird trajectory. (b)
Overlay controls for environment data layers. Maps data are courtesy of
©2017 Google, ZENRIN and SK telecom. . . . . . . . . . . . . . . . . . . 154

6.4 Moving average plots of the selected variables. (a) Sea surface tempera-
tures overlay. Map data is courtesy of ©2017 Google, ZENRIN and SK
telecom. (b) Sea surface temperatures and chlorophyll level overlays. All
map data and imagery are courtesy of ©2017 Google, ZENRIN imagery
and©2017 TerraMetrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

ix



List of Figures

6.5 Visualizing centralized sample moving variance of velocities using weighted
heat maps. (a) Single trajectory. (b) Multiple trajectories. Maps data are
courtesy of©2017 Google, ZENRIN and SK telecom. . . . . . . . . . . . 156

7.1 A modular overview of this thesis and suggested follow up works shaded
in yellow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

x



List of Tables

2.1 Average results of precision and IOU in both camera images. In addition,
the ratio of the frames that performance numbers were within the thresholds
are listed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.2 Average, standard deviation (SD) and median of Euclidean distance error
relative to the marker for a test sequence of 400 frames are listed per target
and in overall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1 Test accuracy of top performing vanilla classifiers . . . . . . . . . . . . . . 71
3.2 Test results of top performing tuned classifiers for speed threshold/ DB-

SCAN key points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.3 Test results of top performing tuned classifiers for stay point/ DBSCAN

key points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.4 2-sample tests for the null hypothesis of same speed distribution of male

and female birds from colonies Awashima (a) and Iwate(t) . . . . . . . . . 77

4.1 For each method, the mean and standard deviation of validation accuracies,
and test accuracy is listed. . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.1 Experiment results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.2 Expected RMSE statistical measures of 100 reconstructed segments with

length 60 (1hr) sampled trajectories from gulls and shearwaters test sets. . . 137

xi





Chapter 1

Introduction

As mankind becomes technologically more advanced, it gains expanding capabilities

to collect and analyse a greater volume of information about its environment. The signifi-

cance of this data in improving, or in many cases saving, human life renders more evident

as we progress in time. An obvious example is our ability to forecast severe weather sys-

tems which salvaged numerous human lives in recent decades. A major portion of the

environmental data is collected via in-situ and remote sensing machinery such as ocean

weather buoys and remote sensing satellites respectively. As one may imagine, there is a

trade-off between the scale and resolution for each of the collection method as buoys data

are local and remote data comes with limited resolution. Of course, increasing the number

of sensors would alleviate the problem to some degree, but, up to a breaking point at which

the navigational and logistical complexity makes it impractical and expensive to operate.

A candidate solution to this problem is to employ animal kingdom as expert surveyors of

the environment. This is done by large scale collection of animal movements. In return,

this also supplies us with information about the possible adverse effects of human activities

on other species and their ecosystems. In other words, by scientific and objective study
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of animal movements, or movement ecology, mankind could obtain clues about environ-

ment and the interaction of its inhabitants with it. Another major advantage in studying

animal movement is that it could guide us towards design of smart logging devices and

GPS-less navigation systems which have applications in autonomous robots, logger robots

and autonomous vehicles.

Animal movement data could be collected in both invasive and non-invasive manners.

Invasive methods involve affixing a foreign object to the species of interest, given the as-

surance that it would not have any effects on their movement. In contrast, in non-invasive

methods animals are observed from distance without necessity for making any contact.

Each method has inherent limitations that makes them unsuitable for certain applications.

For instance, in case of tracking bats, imaging is more suitable due to their small size,

taking into account that the spatial boundaries of the trajectories would be significantly re-

stricted. On the other hand, GPS sensors or telemetry devices are widely used for tracking

larger birds.

Traditionally, free ranging animals’ movements were documented by recapturing the

tags or wires that had been attached to them. There was little to none information about

the detailed path of their travel. Animal trajectories or movements are results of interaction

between internal states, motion and navigation capabilities, and external factors[2]. With

the introduction and recent advances in GPS sensors and telemetry devices technologies,

we were enabled to design and manufacture smaller and lighter sensors yet with higher

performance, storage and operation time. As a result, researchers were presented with a

continuous availability of movement data from different animal species [3]. This on the

other hand, poses as a new challenge in interpreting and gaining insights into the collected

data [4, 5]. Therefore, new and revolutionary methods and techniques were required to
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manage, analyse and visualize the collected data [6]. The outcome provides a window

into the behavior of organisms, their reactions to environment stimuli and their life phases

[7, 8, 9, 10, 11, 12]. It would also present us with a more accurate information about

environment as reported in [13]. This study in parts, attempts to suggest solutions for

challenges regarding the modeling and representation of animal movements by adopting

data mining techniques.

1.1 Basic Concepts

In this section we briefly review two fundamental concepts of this study.

1.1.1 Trajectory Mining

Trajectory mining or trajectory data mining is systematic process of analyzing move-

ment data in large volumes to discover patterns, similarities, semantics and anomalies

[14, 15, 16, 17]. This process starts right after data acquisition with preprocessing and

ends with knowledge discovery. Most of trajectory data mining algorithms share these

steps in some form [15, 16]. Trajectory data may be collected in numerous ways from wide

variety of objects. Trajectory data might be traces of objects in an image sequence, cel-

lular tower pings, WiFi fingerprints, geo-locations of activities in social networks or GPS

locations of public transport vehicles. It also could be animal or natural phenomena traces.

These data sets undergo preprocessing procedures with respect to their type or the infor-

mation expected to be extracted from them. Common preprocessing procedures are noise

filtering, compression, key point detection and segmentation. In addition, map-matching is

also a preprocessing method mainly used with vehicle trajectories on road networks. Next

stage is representation of the trajectories. This is important in order to measure similarities
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or disparities between trajectories which are used in indexing, clustering and classification

of trajectories. In the following stages discovery and modeling are performed.

Trajectory Compression

In certain applications, not all of the sampled trajectory coordinates are significant and

due to power, storage or complexity constraints they need to be discarded. For instance,

while tracking an object, only a point suffices for representation of period of time in which

the object was stationary. Therefore, a spatial aggregation tools should be used to reduce

the number of data points in the trajectory. This compression could be done based on shape,

key points and semantics along trajectories [18, 19, 20].

Trajectory Segmentation

Trajectory segmentation is to identify the composing elements of trajectories in a way

that the underlying information about the trajectories are greatly rendered. In other words,

these element produce a richer knowledge about the trajectories while reducing the cost

and complexity of the computation. Segmentation is application oriented and could be per-

formed on top of compression. Segmentation and compression share a few approaches as

well. Like compression, segmentation could be based on geometry and shape or semantical

[21, 22, 23]. It also could be temporal in non-uniformly sampled data set where, a large

time interval between to data points creates segments [16].

1.1.2 Movement Ecology

According to [2], movement of an organism is driven by multi-scale spatial and tem-

poral processes and it characterizes fate and lifestyle of each individual. It also reveals
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essential information about the structure and dynamics of populations and their ecosys-

tems. For modeling, organismal movement could be considered as integration of 4 main

processes related to an individual organism interacting with external processes. These are

internal state dynamics, navigation, motion and movement propagation processes. Inter-

nal states of an organism regards to the physiological and psychological states encoding

objectives of an organism. Motion capacity describes the modes of movement in an or-

ganism like flying, crawling or swimming. Navigation capacity represents the ability of an

organism to orient and navigate in space and time. This involves both sensory and memory

apparatus. And movement propagation process is the way modes of movement rendered in

environment. As further described in [2] movement can be formulated as following:

ut+1 = F(Ω,Φ, rt,wt,ut), (1.1)

where Φ, Ω, rt, and wt represent navigation capacity, motion capacity, external factors

and internal state at location ut respectively. The processes mentioned earlier could be

expressed in the formulation above as following:

ut+1 = fU( fN(Φ, fM(Ω, rt,wt,ut), rt,wt,ut)), (1.2)

for navigation-driven movement process and for motion-driven case is written as:

ut+1 = fU( fM(Ω, fN(Φ, rt,wt,ut), rt,wt,ut)). (1.3)

In movement formulation some of processes could be ignored. For instance, for an organ-

ism in a random motion or fully under external influence is as:

ut+1 = fU( fM(Ω, rt,wt,ut)). (1.4)

Lastly, internal states and external factors could have their own independent dynamical

processes which are described as following:

rt+1 = fR(rt,wt,ut), (1.5)
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wt+1 = fW(rt,wt,ut). (1.6)

1.2 Problems and Contributions

1.2.1 Stereo Tracking

As mentioned previously, image-based tracking is a non-invasive method for registering

animal movements. This technique is mainly used where weight, size or access limitations

do not allow attachment of active sensors. An application of this is in tracking of bats

in low-light environments. Due to the natural color profile of bats, their image is captured

against a background with high relative contrast. Utilizing forward-looking infrared (FLIR)

or near-infrared (NIR) imaging devices and infrared illuminators are also admissable [24,

25, 26, 27, 28, 29]. In controlled setups in a relatively smaller flight chambers multi-view

motion capture rigs with number of active or passive wing marker configurations are also

used to record a more detailed flight kinematics of bats [30, 31, 32].

Since the interest here is mainly trajectories, using two imaging devices in stereo con-

figuration suffices 3D reconstruction of bats’ trajectories. However, one requirement for

depth reconstruction in stereo setup is computing disparities between corresponding points

in left and right view planes. It should be noted that detecting bats in single image is chal-

lenging let alone finding the correspondences between multiple views. There are two cases

considered here. The first is that the constraint on non-invasive tracking could be slightly

relaxed and the case that physical contact is not an option.

In the first case, a solution is affixing ultralight infrared reflector markers to the birds

which appear as tiny bright blobs in images. The correspondence in multiple views is trivial

for the case of a single object, multiple objects situated on different epipolar lines or beyond
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a threshold for disparity. But, given conditions except the latter, it would be challenging

to measure the 3rd dimension. Another challenge in tracking markers is dealing with the

occlusions. Since bat flight involves large motion of the wings, and the wing spread is

larger than the main body, which leads to occlusion of the marker in motion.

In the second scenario, there should be a few model-based prior assumptions imposed

in order to localize the corresponding points in each frame in both view and time sequence.

Problem Summary and Contributions

In summary, the challenges regarding the stereo tracking of bats could be enumerated

as following:

• Recognition of individual bats in each frame.

• Finding the correspondence between identified objects in each view and time frame

sequence.

• Dealing with occlusions and missing assignments in both view and time frame se-

quence.

• Localizing the points of interest in the recognized segments in each frame.

This study offers the following contributions in order to tackle aforementioned problems:

• Proposing a method for 3D reconstruction of trajectories for bats with markers which

deals with occlusions and missing correspondences.

• Proposing a multi-stage motion-based recognition algorithm for marker-less tracking

of bats.
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1.2.2 Trajectory Features

A trajectory, specifically a spatial trajectory, is a sequence of position measurements in

space ordered in time. In general, in most of geospatial applications, the position measure-

ments are in 2 dimensions, latitude and longitude, where the elevation is ignored due to

relatively small variations. Here, we mainly focus on analysis and modeling for geospatial

trajectories of animals.

Trajectories may be recorded in equal or variable intervals in time. In addition, they

may have the same end points while being different in length. Hence, not all of the tra-

jectory points carry the same weight of information about underlying factors generated the

trajectory. This makes measuring similarities or comparison between trajectories a non-

trivial task.

Commonly, prior to analysis or modeling stages in trajectory data mining, collected

trajectory data undergoes a number of application oriented preprocessing procedures other

than simply noise removal. This is due to the naive nature of each geospatial coordinate

that does not carry semantical information on its own. Preprocessing procedures like clus-

tering, segmentation and stay-point detection are a few to be mentioned [16, 15]. Each

of these methods attempts to assign relevant feature information to points or segments in

trajectory. These features to be used in later stages to model or discriminate between tra-

jectories or their latent states [33, 22]. Design and engineering of these features and their

representations remain an area of research in trajectory mining.

Trajectory segments could be considered at different scale levels both in time and spa-

tial dimensions [2, 34] for their respective feature information. These segments could be

determined in various ways. For instance, it could be based on the geometric shape of the

trajectory at a point or mode of motion along a segment of the trajectory. But, there are
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points in trajectories that are determinant of the corresponding segment semantics regard-

less of the scale. These carry special information along trajectories and are used as features

for modeling the latent states that generated the trajectories in the first place. For exam-

ple, trajectories containing theater locations versus ones containing location of stadiums

would provide sufficient information to distinguish between the latent states of the subjects

[35, 36].

A significant distinction between animal and human trajectories is that, in the latter,

mostly the utility of the points along the trajectories could be determined in advance by

matching them against the known landmarks. Therefore, the key points are simpler to

extract. In contrast, in case of animals, utility semantics of locations are not generally

available and identifying them might be indeed an objective itself. This is even more chal-

lenging in case of animals with very dynamic environment like seabirds. Thence, methods

and algorithms should be devised to identify such key points. Furthermore, the represen-

tation of these key points needs to be addressed as well. For instance, Gao et al. [37]

applied spatial hierarchical clustering methods to create feature sequences of land animals’

trajectories. Then to compare similarities of these sequences with each other, Least Com-

mon Sub-Sequent (LCSS) and entropy methods [38, 39] were employed. There are also

other approaches in which environment related features like distances to boundaries are

considered [40].

Problem Summary and Contributions

In summary the persisting challenges regarding trajectory features and representations

are stated as following:

• Sampling frequency and resolution of the collected data.
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• Segmentation of the collected stream of spatial points into meaningful sequence of

phases.

• Extracting informative features from trajectory segments.

• Efficient and compact numerical representation of trajectory features.

The corresponding contributions to present solutions for the problems above are:

• Proposing key point extraction algorithms for animal trajectories which produce

multi-level features that carry semantical information for modeling navigational be-

haviors and responses to the environmental events.

• Proposing context-based semantical vector representations for animal trajectories

1.2.3 Trajectory Models

Animal trajectories could be modeled as a joint result of interacting processes between

components related to the focal organisms and external factors [2]. These components are

related to internal states, navigation capabilities, motion characteristics, movement path

and lastly environmental factors. Internal states could be physiological and neurological

states affecting movements of the organism. Therefore, it is possible to infer information

about those states given trajectories. The same stands for navigation apparatus and motion

machineries. The question becomes how one would model these processes. Movement

consist of multiple levels of spatiotemporal scale. Evident effects of each aforementioned

component varies at each level. For instance, effects of motion characteristics and move-

ment propagation process are more distinguishable in finer scales while navigation and

internal states prevail in larger scales.
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With reference to the framework introduced in [2], the aforementioned components are

originated from addressing essential questions like: why move? how to move? when to

move? what are the consequences of movement in terms of ecology? However, answer-

ing these key questions brings about following major challenges in analysis and modeling

of organismal movement. One is, to produce multilevel spatiotemporal scales of move-

ment phases which consist of canonical activity modes [41]. The other is attributed to the

environment in which, the organisms reside. Environmental factors certainly have consid-

erable effects on all components of movement ecology. For instance, vegetation and winds

effectively adjust movement paths of animals in their habitat [13, 34, 42, 43].

Here, we point out some notable and relatable approaches in movement ecology litera-

ture which attempted to tackle the mentioned challenges. Analysis of Variance (ANOVA),

and other statistical methods are commonly used for modelling animal movements. In

[44, 45] ANOVA and general linear models were utilized to study gender segregation of a

species of deer based on their response to habitat alterations. Statistical methods are also

applied to analyse the behavioral trends, the correlation between environment and foraging

locations, gender specific foraging strategies and the effects of ocean currents and com-

pass orientation on foraging and migratory behaviors in seabirds [12, 46, 10, 11, 46, 47].

Brillinger et al. [48] used stochastic differential equation models and statistical inference

on Fourier transforms of trajectory data, to analyse the effects of habitats’ variables and be-

havior of other animals on movement paths of species of elk and deer. Bayesian and Hidden

Markov models are widely used in predicting and identifying the behavioral states of ani-

mals as well [49, 50, 51, 52]. Another model of interest is Gaussian mixture model which

for instance was used in [53] to classify flight modes. Given the availability of training la-

bels, supervised methods are often used in applications like behavioral mode classification
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and prediction [54, 55]. In [56], inverse reinforcement learning (IRL) was used to predict

the missing movement data in a reward-based approach.

Problem Summary and Contributions

The challenges and problems in modeling trajectories that are deemed to be overlooked

are summarized as following:

• Semantical approaches for modeling movement

• Discovery of informative low dimensional data manifolds for dynamics of animal

movement

This study offers these contributions to tackle the stated challenges:

• Proposing a semantical approach for modeling cognitive components of animal move-

ment in both spatial and spatiotemporal domains

• Proposing non-linear system identification algorithms for animal movement.

• Proposing a trajectory encoder model using recurrent neural networks.

1.3 Thesis Outline

Aside from the first chapter and last chapter, which provide basic concepts and generic

introductory descriptions of addressed problems and their respective solutions, and sum-

mary remarks respectively, chapters of this thesis are categorized in three families based

on the nature of the problems they approach. They are trajectory data acquisition in the

second, trajectory data mining in chapters 3 to 6 and trajectory data visualization in the
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last chapter. Here, the problems, motivations, proposed solutions and conclusions of each

chapter are summarized.

In Chapter 2, we approach the problem of 3D trajectory reconstruction for animals us-

ing stereo imaging. Our approach, in general, focuses on the capturing of the movements

of animals that are not easily distinguishable in their habitat. In particular, the ultimate goal

is to be able to track bats flight in a non-invasive manner. Due to the widely availability

of near infrared cameras, solution to this problem accommodates biologist and ecologist

with new options for researching bats flight in their environment. They would be able to

capture the trajectories without requiring specialized and sophisticated sensory machinery

like thermal imaging and sonar devices. To achieve this objective, we propose a multistage

motion-based algorithm which provides solutions for target acquisition, stereo point corre-

spondence for 3D coordinates reconstruction and target identification for coherent tracking

of texture-less objects. To verify the viability of our method, it was compared with flight

paths captured from bats equipped with markers as reference target.

In Chapter 3, we attempt to provide a solution for modeling animal behavior based on

their movement. With constantly growing volume of collected trajectory data from ani-

mals, it is necessary to devise and introduce techniques which are capable of dealing with

larger and larger data sets. Therefore, we propose a geo-spectral approach which relaxes

the sequential dependencies between trajectory points and using conditional independence

models the latent states of responsible for generation of the trajectories. This approach

consists of three main stages: extraction of geo-spectral features from trajectories, repre-

sentation of trajectories based on extracted features and finally modeling behaviors based

on such representations. In Chapter 3, we presented both generative and discriminative

models constructed capable of modeling trajectories characterized by gender. A notable
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advantage of our approach is its capability to deal with extensively large data sets. In fact,

increase in size and balance of the data, contributes to accuracy and robustness of the con-

structed models. Nonetheless, a feature of this approach is inability to address temporal

characteristics of behaviors. Yet, there might be remedies to tackle such shortcomings like

temporal slicing. After all, we present extensive test results which evaluates the approach

itself and compares the major options for its stages.

In Chapter 4, we take another approach to modeling latent structures in trajectories by

introducing context in representation of points in trajectories. This is to model behaviors

based on local structures in trajectories. This resembles temporal slicing as referred to in

Chapter 3. With this approach, we have also a less space demanding and more informative

alternative to n-gram structures for modeling sequences. Moreover, It is possible to embed

the trajectory points in metric semantical subspaces which is beneficial in measuring em-

bedded semantical similarities or dissimilarities between trajectory points. Our approach

also provides a compact representation space for trajectory points by taking advantage of

local embeddings. In addition, utilizing candidate sampling methods, it is possible to deal

with large data sets. We have presented results of experiments in both data exploration and

classification that support the viability of the proposed method.

In Chapter 5, recurrent neural networks were used to model the sequential dynamics

of the trajectories. With employing autoencoder models, we attempted to discover data

manifolds that are responsible for generation of trajectory paths. These manifolds could

represent a combinatory state of internal and external components of animal movement.

This provides researchers a tool to compare sequential dynamics of trajectory segments or

study their dynamical relationship with environment. The presented networks including

multimodal and generative models that are capable of reconstruction of parts of trajecto-
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ries at different scales. A number of experiments were performed to closely examine the

information capacity and generalization of the trained models. It was shown that recur-

rent models with complex structure like LSTMs could learn to distinguish between state

dynamics of path procession. These states could be trained conditionally on terrain or envi-

ronment features which in return could predict the future movement of animals given such

features.

In Chapter 6, we attempt to approach the shortcomings in visualization of movement

data. In fact, visualization techniques and tools play a prominent role in analyzing and

exploring movement data and their models. Certainly, not to be overlooked, this hugely

involves relevant atmospherical and geological data. With assistance of these tools, re-

searchers are able to have a better understanding or assessment of movement features or

behavioral symptoms. In other words, placing the animal movements in the context of

their surrounding information could be significantly beneficial to researchers in terms of

better understanding or describing underlying phenomena. In this chapter, we proposed

an architecture for a web-based application which could manage and visualize the relevant

atmospheric, oceanic and geologic conditions along with movement paths of animals. To

demonstrate the essential functionalities of this application, a working prototype built and

used for reconstruction of trajectories of gulls and shearwaters.

1.4 Notes to Readers

In this section, there a few notes that should be stated regarding software libraries used

throughout this work and reuse of media materials included in this book.
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Use of Open Source Software

It is worth to be acknowledged that, the open source software libraries used for vi-

sualization in general are this book are Matplotlib [57, 58], HoloViews [59] and Google

maps [60]. With regards to numerical manipulation of data, geographical mappings, im-

age processing and data modeling GeoPy [61], NumPy [62], OpenCV [63], Pandas [64],

scikit-learn [65, 66], SciPy [67] , Theano [68] and TensorFlow [69, 70] were used.

Reuse of Media Contents

The last point to mention is regarding the reuse of images in this book, in particular in

Chapter 6. In accordance with copyright notes provided by Google with regards to Google

maps, in case of reuse, the readers are advised to include the image captions which include

copyright information as well.
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Chapter 2

Stereo Tracking for Reconstruction of

3D Trajectories of Bats

2.1 Introduction

Tracking bats flight was always a challenging task for researchers as it always required

special equipments like sonars or thermal imaging devices. These devices are expensive

and there are limitations in their applicability in certain conditions. Yet, another group

of devices that are gaining grounds in performing similar task in comparable conditions

are near infrared imaging (NIR) devices. These devices possess sufficiently sensitive sen-

sors which are able to register rays near infrared wavelength. Images collected using these

devices also having specific properties like lack of color features, and artifacts caused by

higher aperture size to collect more light. Thence, there are specific set of techniques to be

revised in order to extract information from these images. To reconstruct 3D trajectories,

a pair of these devices could be positioned at a certain baseline distance from each other

and using object correspondence, the depth or distance of the identified object to cameras
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could be estimated. It is worth mentioning that with regards to bats, during this process

few problems arise that have been overlooked. The first is recognition, or identification of

the bat itself is challenging. Since bats appearance profile is elusive in their natural habi-

tat, there is more effort required to track them. Instance of this are demonstrated later in

this chapter. Second challenge is correspondence problem between consecutive frames in

time and frames of each view to compute disparity distance. Moreover, increase in base-

line distance to decrease depth ambiguity, renders incongruous projections of the same

object on each image plane. This exacerbates the correspondence problem further. The

third issue is related to the tracking anchor. Bats’ highly variable geometry during flight

introduces unwanted disturbances in trajectory of the registered geometric feature like cen-

troid. Hence, to reconstruct more accurate trajectories, a solution should be formulated to

recover the anchor point from the detected segment. Here, we attempt to provide solutions

to the aforementioned problems by introducing an motion-based recognition method which

explains the observations in terms of model bases.

2.2 Preliminary Concepts

2.2.1 Epipolar Geometry

In stereo imaging, the relationship between projection of 3D structures could be de-

scribed in terms of epipolar geometry. Main components of epipolar geometry are

epipolar points, epipolar lines and epipolar planes. Given a generic stereo

configuration for cameras Cl and Cr, and object point P in 3D, optical center of Cl, Ol, is

considered as the origin. B, distance between two cameras along horizontal axis is called

baseline distance. Πl and Πr are image planes of two cameras and pl and pr are corre-
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sponding images of P on the image planes. Triangle
4

OlOrP constructs the epipolar plane.

Epipoles are images of each optical center on the image plane of the other camera. Epipo-

lar lines are intersection of epipolar plane with image planes of each camera. Figure 2.1(a)

shows a stereo configuration and corresponding epipolar elements. It is seen that pl and pr

are guaranteed to lie on the corresponding epipolar lines in Πl and Πr. This relationship is

described in a mapping matrix called fundamental matrix, F, where it maps a point on

an image plane to the corresponding epipolar line on the other image plane as:

lr = Fpl (2.1)

Given points pl and pr coordinates on the image planes, it is possible to recover the

distance of point P from the baseline of the cameras as following:

Pz = f
b

pl
x − pr

x
, (2.2)

where pl
x − pr

x is termed as disparity and it is inversely proportional to distance of the

point to the optical center of the camera. Figure 2.1(b) illustrates the relationship between

disparity and depth.

The major step for computing disparities is point correspondence. As a result, to com-

pute disparities, for points in left image, corresponding points in right image is sought for.

The problem could be defined as:

d̂ = arg max
d

ψ(pl,pr
d) (2.3)

where ψ(pl,pr
d) is measure of similarity between point pl in left image and point pr

d in

right image at disparity d in set of D disparities. Knowledge of fundamental matrix is

significantly reduce the search space of the problem. It was shown that corresponding

points ideally should lie on the corresponding epipolar line. The limit the search window

to a line or a group of lines in contrast to whole image.
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(a) (b)

Figure 2.1: (a) Epipolar lines and epipolar plane. (b) Inverse relation between depth and
disparity.

There various methods available for measuring similarity between patches of stereo

images. The simplest is sum of absolute differences as:

S AD(pl,pr) = |pl
I) − pr

I |, (2.4)

where pI determines the image intensity at point p. A more complicated measure is nor-

malized cross correlation which is defined as:

NCC(pl,pr) =

∑
n∈N nr

i n
l
i√∑

n∈N(nl
i)2 ∑

n∈N(nr
i )2
, (2.5)

where N is the set of neighboring points of p. NCC(., .) has a zero mean variant that

is denoted with ZNCC(., .) and only defers where it calculates the means of intensities

and subtracts them from each pixel’s intensity. More methods like census, and rank are

described and benchmarked in [71].
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2.2.2 Gaussian Mixture Models

Almost all of distribution functions could be approximated by superposition or lin-

ear combination of a sufficient number of Gaussian distributions. These combinations are

called Gaussian mixture models [72]. These could be formulated as:

P(x) =
∑
c∈C

πcN(x|µµµc,ΣΣΣc),
∑
c∈C

πc = 1, πc ≥ 0 (2.6)

where C is the number of Gaussian components with mean vector and covariance matrix of

µµµc and ΣΣΣ respectively. Consequently, the log likelihood of independent data points in data

set X is given as:

L(X|πππ,µµµ,ΣΣΣ) =
∑
x∈X

ln
∑
c∈C

πcN(x|µµµk,ΣΣΣk) (2.7)

Expectation-Maximization Algorithm

Expectation-maximization algorithm (EM) introduced in [73, 74, 75] provide a solution

for optimizing the parameters of Gaussian mixture models using likelihood measure in

eq. 2.7. This algorithm comprised of two major steps: E and M. After initialization of

parameter set {µµµ,ΣΣΣ, πππ}, posterior probabilities of parameters are calculated for each data

point as following:

p̂(xc) =
πcN(x|µµµc,ΣΣΣk)∑

c′∈C πc′N(x|µµµc′ ,ΣΣΣc′)
, |X| = N (2.8)

where p̂(xc) measures component c’s level of ownership of data point x. Then using poste-

rior values computed in E step, the parameter set is updated as following:

µ̂µµc =
1
|Xc|

∑
x∈X

p̂(xc)x (2.9)

Σ̂ΣΣc =
1
|Xc|

∑
x∈X

p̂(xc)(x − µ̂µµc)(x − µ̂µµc)
T (2.10)

π̂c =
|Xc|

|X|
. (2.11)

21



Chapter 2: Stereo Tracking for Reconstruction of 3D Trajectories of Bats

Then log likelihood is evaluated using updated parameters and compared against a thresh-

old to determine convergence. This process is repeated until convergence or to a predefined

iterations.

2.2.3 Belief Propagation

An efficient algorithm for inference on probabilistic graphical model is sum-product

message passing or belief propagation method (BP) [76]. Given a tree-structured proba-

bilistic graph, BP could achieve exact inference [75]. This algorithm involves evaluating

local marginals. A marginal is computed by summing over the joint distribution as:

P(x) =
∑
x\x

P(x), (2.12)

where x\x means variable x is excluded from the joint. By creating a factor graph [75, 77]

from the probability graph and partitioning the joint distributions, the joint distribution

could be written in form of product of factors as:

P(x) =
∏
s⊂x

fs(s), (2.13)

where fs is function of variables in s a subset of x. By grouping factors connected to

variable x, the joint distribution is:

P(x) =
∏
s∈S

Fs(x, Xs) (2.14)

where S and Xs are set of neighboring factor nodes and their variables respectively. Fs is

joint of factors in the group. Plugging Eq. 2.14 in to Eq. 2.12 results in:

P(x) =
∑
x\x

∏
s∈S

Fs(x, Xs) =
∏
s∈S

∑
x\x

Fs(x, Xs)

=
∏
s∈S

µ fs→x(x),
(2.15)
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where µ fs→x(x) is termed as message which is being passed from fs to x. Message µ fs→x is

marginalized as:

µ fs→x(x) =
∑

x1,x2,...,xM

fs(x, x1, x2, . . . , xM)
∏

m∈G\x

µxm→ fs(xm), (2.16)

where G is set of variable nodes neighboring fs.

Gm(xm, Xs) =
∏

l∈L\ fs

Fl(xm, Xl), (2.17)

where L is set of factor nodes neighboring variable node xm. µxm→ fs(xm) is defined as:

µxm→ fs(xm) ≡
∑
x\x

Gm(xm, Xs)

=
∏

l∈L\ fs

∑
x\x

Fl(xm, Xl)

=
∏

l∈L\ fs

µ fl→xm(xm).

(2.18)

2.2.4 Total Variation Regularization

Total variation (TV) regularization introduced in computational image processing in

[78, 79]. It has been proposed that rather than L2-norm, TV is the proper norm for images.

TV norm is in fact absolute value of derivative or L1-norm of gradient vector. However, un-

like L2-norm, closed form solution is not trivial. In [80], it is stated that the proper class for

many image processing task like denoising is bounded total variation (BV) function space.

Given u is smooth, the solution to denoising problem is the result of TV-L2 minimization

below:

arg min
f

λ

∫
Ω

( f − I)2 +

∫
Ω

|∇ f | (2.19)

where f is estimated image, I is observed image and λ is data weight. The first term is

data term and the second term is TV which encourages less oscillations and allows edges.
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TV-L1 version [81] of this equation is written as:

arg min
f

λ

∫
Ω

| f − I| +
∫

Ω

|∇ f |. (2.20)

Another application of TV terms in image processing is in optical flow. In [82, 83]

TV-L1 was used to define the following terms to ensure piecewise smooth flow field:

Es(u, v) =

∫
Ω

|∇u| + |∇v|, (2.21)

where u and v are horizontal and vertical components of optical flow. In [83] to approximate

L1 minimization, concave function ψ(x) =
√

x + ε2, where x ≥ 0, ε > 0, was applied on

variation terms as:

Es(u, v) =

∫
Ω

ψ(|∇u|2 + |∇v|2). (2.22)

The total energy functional is written as:

E(u, v) = Ed + λEs. (2.23)

Ed, which assumes both intensity and gradient constancy, is described as:

Ed(u, v) =

∫
Ω

ψ(|I(x + u, y + v, t + 1) − I(x, y, t)|2

+ γ|∇I(x + u, y + v, t + 1) − ∇I(x, y, t)|2)

(2.24)

where, γ is a weighting coefficient. To minimize the total energy functional, numerical

approximation of the solution to the Euler-Lagrange equations of E computed with use

of fixed point iterations. Yet another approach for constructing energy functional is simply

consider intensity consistency over time for data term and use Taylor expansion to linearize

the nonlinear image function as:

Ed(u, v) =

∫
Ω

|∇I(x + u0, y + v0, t + 1) . (u − u0, v − v0)

+ I(x + u0, y + v0, t + 1) − I(x, y, t)|

(2.25)
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where u0 and v0 are the values at which image function gradient approximated. With ref-

erence to [82], the total energy functional could be written with weighted data, smoothing

and convex relaxation terms as:

E(u, v) =

∫
Ω

λEd(u, v) + Es(ua, va) +
1
2θ
|u − ua + v − va|

2 (2.26)

where θ controls penalizing disparity between ua, va, and u, v respectively. Given small val-

ues for θ, the solution is accepted when the relaxation term is nearly zero. The optimization

is done iteratively by alternatively fixing a pair variables constant and solve minimization

problem in part. First ua and va constant and minimize:

min
u,v

∫
Ω

λEd(u, v) +
1
2θ
|u − ua + v − va|. (2.27)

Then fix u and v, solving:

min
ua,va

∫
Ω

Es(ua, va) +
1
2θ
|u − ua + v − va|. (2.28)

The first optimization problem could be solve using point-wise thresholding and the second

using Chambolle’s duality-based algorithm as stated in [82].

2.3 Methodology

2.3.1 Problem Formulation

There are a set of problems that should be resolved in order to reconstruct 3D trajec-

tories of bats using stereo images. We leave out preprocessing challenges and assume that

images are single channel grayscale, their histogram are adjusted sufficiently to achieve

reasonable intensity and contrast levels for further procedures and stereo rectified. In the

first stage we deal with recognition of the objects in the scene we are interested in. Since we
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assume that objects of interest, bats, occupy a subset of image real estate, we approach the

first stage as background modeling problem. This is beneficial as it significantly reduces

the search space for this problem as whole. In this stage we construct model of background

components and mask out pixels determined to be background from our object search. In

addition, certain geometric criteria could be used to select a subset of detected foreground

segments that presumed to be projected surfaces on the image plane. Set of foreground

segments in camera image Ii is defined as:

Fi = {πi(S ) | S ∈ S}, i ∈ {l, r}, (2.29)

where S is a surfaces in set of surfaces in 3D space and πi : R3 → Z2 is the projection

function of camera i in set of l and r representing left and right. Camera image is defined

as mapping function Ii : Ωi → R, Ωi ⊂ Z
2. In the next stage, to estimate the depth of

qualified foreground segments, correspondences and subsequently, disparities should be

determined. As stated previously, simply using intensity or color correspondence for com-

puting disparities produces poor results. In order to resolve this we introduce new criteria

and constraints to correspondence evaluation. Given rectified stereo rectified images, for

pixels pi = {c, x, y, f }, i ∈ {r, l}:

|cl − cr| < δc

|xl − xr| < δx

|yl − yr| < δy

fl − fr = 0

(2.30)

where c, x, y are intensity, x-coordinate and y-coordinate of the pixel. f is a binary vari-

able, identifying whether it is part of foreground segment. δc, δx, δy are intensity disparity

threshold, maximum lateral disparity and vertical tolerance respectively. With these con-

straints, we approach this problem as inference on Markov random fields (MRF) [84]. Set
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of disparity labels D is defined and BP algorithm is used to find the likely disparity la-

bels. The major goal of this stage is to approximately measure the depth of the foreground

segments resulted in the first stage. In the third stage, we use a decoupled scene flow algo-

rithm to optimize u, v, and p corresponding to lateral, vertical and change in disparity [85].

Given u, v, p and d with calibration parameters of cameras we can compute the coordinates

and the motion of pixels in the foreground segment in 3D. The information obtained then

used to determine the dynamics of moving parts of the object and fit the appropriate model

priors. This is essential for solving this problem as we do not have access to the interior

points of the projected surfaces and recognition should be done on the features of the object

silhouettes.

2.3.2 Background Modeling

Background modeling is a fundamental stage in our algorithm. Failure to identify the

relevant and informed image segments would bring down efficiency of the results as whole.

Since the main objective is to track moving objects, we could exploit this prior knowledge

to increase both computational efficiency and performance of the algorithm. Simple back-

ground subtraction could provide hints about the movements in the image but, noise and

multimodality of the background components could introduce redundancies. Therefore,

adaptive methods with multi-component models like Gaussian mixture models [86] and

kernel density estimator models [87] were introduced to represent a more robust model of

background pixels. However, there was still issue of computational complexity still persist-

ing. With introduction of online expectation maximization algorithms, adaptive methods

based on Gaussian mixture models [88, 89, 90] gained more popularity. There are also

principal components analysis (PCA) and factorization approaches to this problem as well
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[91, 92]. Here, we choose to approach the background modeling employing the technique

in [90]. This technique is an online method and is based on Gaussian mixture models.

The membership of the object to foreground is decided based on P(pt|B) value, which is

probability of color components of pixel pt
x,y at time t given background distribution model

B, being less than a threshold ω. The density components are updated periodically and

represented by C components, with means and isotropic covariance matrices, µµµ1, . . . , µµµC

and σ1I, . . . , σCI, respectively. The estimated density for a pixel is described as:

P(p|PT ,I) =
∑
c∈C

πcN(p|µµµc, σcI), (2.31)

where PT is set of pixel values over time period T , and I is the model of both foreground

F and background B components in the image.

According to [93], parameters of the components are updated as following:

πt
c = πt−1

c + α(ot
c − π

t−1
c ), (2.32)

µµµt
c = µµµt−1

c + ot
c(
α

πt
c
)δδδc, (2.33)

σt
c = σt−1

c + ot
c(
α

πt
c
)(δδδT

c δδδc − σ
t−1
c

2), (2.34)

where α = 1/T , δδδc = pt − µµµt−1
c and ot is binary variable which determines the membership

to component c given a distance threshold compared against the distance to the component,

∆c, which is computed as:

∆2
c(pt) =

δδδT
c δδδc

σt−1
c

2 . (2.35)

If there is no component withing threshold distance, a new component with following pa-

rameters is appended to C:

π = α, µµµ = pt, σ = σ0

where σ0 is an arbitrary initial value for variance. Given the trained component models,

the background components are assigned to the components with largest pic values, or as
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in [90], with sorted weight in descending order, the background components are:

arg min
b

b∑
c

πc > (1 − cF ) (2.36)

where cF is the ratio of the foreground occlusion in the image. Here, we take the approach

presented in [90] to adaptively update priors of the components πc using Dirichlet prior

coefficients κc = −k where maximum a posteriori solution can be written in recursive form

as:

πt
c = πt−1

c + (ot
c − π

t−1
c )/t − kT/t, kT = k/T (2.37)

where T is a large constant time period and therefore kT is a constant. However, in our

case, these component models are computed updated for each of left and right images

separately. In the next stage, using the probability density models learnt here, we design

correspondence measures for pixels between left and right images. Every pixel pi, i ∈ {r, l}

membership component parameters are πpi , µµµpi and σpi . The probability density for pixel

p j belong to the density of pi is:

P(p j|pi) = πpiN(p j|πpi , µµµpi , σpi) (2.38)

In the final part of the first stage, pixel segments identified as foreground are passed to the

next stage for disparity estimation.

2.3.3 Disparity Estimation

For disparity estimation, only the rows of the detected foreground segments in both

images are selected as search regions. These search regions fall within epipolar threshold

for vertical tolerance. To compute disparities we design a global loss function which con-

sists of data or observations term Eo instead of Ed to avoid confusion with disparity d, and
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smoothness term Es as below:

E(d) =
∑
p∈F̂

[
Eo(p, d) + Es(p, d)

]
, (2.39)

where F̂ = Fl ∪ Fr is the selected foreground rows. Data cost term promotes intensity and

segment consistency along with epipolar criterion. Therefore, we can write Eo as:

Eo(p, d) = λiZNCC(p, d) + λbL(p, d) + λe|∆y(p, d)|, (2.40)

where λi, λb and λe are weighting coefficients for intensity consistency, segment consis-

tency and epipolar criterion penalties. ZNCC(.) is zero mean normalized cross correlation:

ZNCC(p, d) =

∑
n∈N(np − n̄p)(npd − n̄pd )√∑

n∈N(np − n̄p)2 ∑
n∈N(npd − n̄pd )2

, (2.41)

where N is set of neighboring pixels, n̄p and n̄pd are means of each neighborhood. ∆y(.) is

vertical disparity:

∆y(p, d) = |yp − ypd |, (2.42)

where ypd is the vertical component of the pixel at disparity d and L(.) is negative log

likelihood of a pixel does not belong to background component computed as:

L(p, d) = − log

1 −∑
c∈B

πcN(pd; µc, σ
2
c)

 . (2.43)

With regards to smoothing term Es, we consider penalizing spatial and temporal disconti-

nuities by introducing spatial and temporal smoothness terms as:

Es(p, d) = λs

∑
q∈Q(p)

|dp − dq| + λt|dt
p − dt−1

p |, (2.44)

where Q(p) is set of spatial neighboring pixels of p. The first term discourages large dispar-

ities between neighboring pixels and the second term penalizes sharp changes in disparity

of the same pixel in consequent frames. It should be noted that to avoid over-smoothing of
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the results, these losses are generally truncated explicitly or robust estimator functions are

used. We also use additional segmentation information to manipulate the smoothing costs

to allow informed discontinuities.

To solve the minimization problem in this stage, we quantize the disparity levels and

assign a label to each level. Then we approach this problem as a labeling problem inspired

by [84, 94]. Here, a Markov random field (MRF) connectivity graph of image pixels is

spanned. Each pixel statutes a hidden node four-way connected to neighboring pixels and

data nodes consist of observation cost and temporal consistency cost. Then, we can ap-

proach the labeling problem as a maximum a posteriori problem in MRF. We use message

passing algorithm with negative log likelihood minimization to solve the MAP problem.

To reach an optimum state, the graph nodes start pass messages initialized to zero to

each other updating states and subsequent messages given observation nodes. Each node

stores a vector of disparity costs h ∈ RD at each disparity label. A min-sum BP update

message to a neighboring node q from node p ∈ F̂ is computed as:

µµµi
p→q(q) = min

p

[
F(p, q) + h(p)

]
, (2.45)

F(dp,dq)(p, q) = ρ(λs|dp − dq|, εs), (2.46)

h(p) = Eo(p) + ρ(λt|dp − bt−1
p |, εt) +

∑
q′∈Q(p)\q

µµµi−1
q′→p(p), (2.47)

where i is the iteration step number, F(p, q) is vector ofD disparities for node q evaluated

for D-dimension vector node p, and bt−1 is the belief of the pixel in the previous frame

tiled as a vector, d is vector of all disparity labels, ρ(., ε.) is the robust estimator function

with parameter ε.. This function could be simply a truncation at ε value. As one sus-

pects, the computational cost of F(p, q) is O(D2). To reduce this cost to linear time, min

convolution algorithm introduced in [84] is used. In case of linear model for ρ(., ε), the
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update message equation for a disparity label dq for node q is:

µi
p→q(dq) = min

dp
(λs|dp − dq| + h(dp)), (2.48)

and could be imagined asD upward cones with tips situated at point (dp, h(dp)) with slope

λs. The solution to the minimization problem is lower envelope of the cones that is com-

puted using linear model min convolution forward-backward algorithm in [84]. Then the

truncated message update is:

µp→q(dq) = min(µp→q(dq),min
dp

h(dq) + εs) (2.49)

Given a sufficient number of iterations, the bp is belief vector for node p whose disparity is

minimum of the bp as:

d̂p = arg max
d

bp. (2.50)

It should be noted that, if a pixel was not segmented as foreground in previous stage,

in this stage remains inactive and there is no message should be generated from it while

they still receive messages from active neighboring pixels. At this point, the calculated

disparities are passed to the next stage for estimation of scene flow.

2.3.4 Scene Flow Estimation

To create dense 3D motion fields from stereo images and the estimated disparities in

the previous stage, we take the approach presented in [85] to estimate the optical flow in

horizontal u and vertical v directions in addition to the change in disparities p. This flow

field is the scene flow field and parameterized by
[
u(x, y, t), v(x, y, t), p(x, y, t)

]T vector. With

estimation of these parameters using the scene flow algorithm, it is possible to reconstruct

the motion in 3D. Given a pair of stereo images at time t with computed disparity map
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d(x, y, t), I(x, y) ∈ F̂ belonging to the foreground segments, a pair of stereo images at time

t + 1 and intensity consistency assumption, following constraints could be imposed:

EIl = Il(x, y, t) − Il(x + u, y + v, t + 1) = 0, (2.51)

EIr = Ir(x, y, t) − Ir(x + u + d + p, y + v, t + 1) = 0, (2.52)

Ed = Il(x + u, y + v, t + 1) − Ir(x + u + d + p, y + v, t + 1) = 0 (2.53)

where Il(.) and Ir(.) are the left and right image functions respectively, and (x, y, t) subscript

is dropped for u, v and p for the sake of brevity.

Based on the constraints above, data term could be described as:

Ed = ψ(E2
Il
) + cψ(E2

Ir
) + cψ(E2

d) (2.54)

where ψ(.) is TV-L1 approximation and c is a binary coefficient disabling the loss if dis-

parity information is not available for the pixel. The smoothness term consists of variation

penalties for all variables is as following:

Es = λsψ(|∇u|2 + |∇v|2) + γψ(|∇p|2), (2.55)

where λs and γ are weighting factors for smoothness of optical flow and disparity flow

components respectively. We construct an energy functional combining the data and the

smoothness terms defined above as:

E(u, v, p) =

∫
Ω

(Ed(u, v, p) + Es(u, v, p))dx, (2.56)

where dx consists of dx and dy components.

To optimize this energy functional Euler-Lagrange equations are calculated as in [85].

Similarly, the linearization technique presented in [83] are utilized to iteratively solve the

nonlinear Euler-Lagrange equations. With a solution for the scene flow vector field, we are

able to create the motion components of the scene in the next stage.
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2.3.5 Extraction of Motion Field Components

With disparities obtained in the second stage, 3D coordinates could be derived with

calibrated camera parameters as:

W


X

Y

Z

1


=


1 0 0 −cx

0 −1 0 cy

0 0 0 f

0 0 1
b 0




x

y

d

1


(2.57)

where f is focal length, cx, cy are coordinates of principal point of left camera on its image

plane and b is the baseline distance between cameras. Then with flow parameters obtained

in the previous stage, it is possible to write the change in 3D coordinates as following:
∆X

∆Y

∆Z

 = b


x+u−cx

d+p −
x−cx

d
y−cy

d −
y+v−cy

d+p
f

d+p −
f
d

 (2.58)

Given the 3D motion field of foreground pixels, we identify the density components of

the 3D motion field using 6 dimensional feature vector [X,Y,Z,∆X,∆Y,∆Z]T with depth

dependent minimum number η(Z) for pixels and a maximum distance σ(Z). Then, we extract

the components o that fit the simplified model of flying bats with group of moving major

components within a distance threshold λ(Z). The range and levels of these parameters are

dependent on the physical properties of the bats to be tracked and camera baseline distance.

Figure 2.2 demonstrates an instance of the mentioned procedures. Finally, to distinguish

between moving parts of the object for tracking, we employ the dynamic model of bat

flight. Here, we compare the motion vector of each individual component with the mean

movement of the object and identify the component that has the least divergence from the

mean. In other words, the inner products of the mean motion vector of the object with the

ideal component should be maximized or formulated as:

ô = arg max
o∈O

oT V̄ (2.59)
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(a) (b)

Figure 2.2: Schematic diagram of motion component extraction and object identification
process. (a) Single frame. (b). Across multiple frames.

where, o is a component vector of an object O with average motion vector V̄ . Figure 2.2(a)

shows a schematic diagram of the mentioned process. Of course this technique is more

robust across frames in time where the mean motion is computed across multiple frames as

shown in Figure 2.2(b).

2.4 Experiments, Results and Discussion

Prior to processing the image for foreground extract, stereo images are undistorted and

rectified. As a result, the correspondence search performed along rows. Then, the image

intensities were transformed using the following power transform:

Î(x, y) = αI(x, y)γ, γ = 0.8, α = 2.2 (2.60)

The results of power transformation for different values of γ and α is shown in Figure 2.3.

Then images are denoised using box filter, fast non-local means (fastNLMeans) [95, 96]

or TV-L1 [97] methods. Figure 2.4 illustrates the results of denoising and corresponding
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(a) (b)

(c) (d)

(e) (f)

Figure 2.3: A sample image of a bat with different power transform parameters. It is seen
that unlike linear transforms, non-linear power transform greatly improve contrast of the
object. (a) Original Image (b) γ = 1, α = 3 (c) γ = 0.8, α = 1 (d) γ = 0.8, α = 3 (e)
γ = 0.6, α = 1 (f) γ = 0.6, α = 3
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residual images. As suggested in [98] the performance of the optical flow algorithm could

be improved using residual images.

To reduce computational work load and reduce noise, we examine providing different

pyramid levels of the stereo images to the algorithm. However, due to the small size of the

bats in the images, the down-sampling of the images could result in loss of information.

We choose to work with only two pyramid scale levels, full-size and half-size. Then the

images are passed to background subtraction algorithm. The results for half and full-size

at different poses are shown in Figure 2.5, and Figure 2.6 respectively. Considering Sobel

edges, it is seen that in most of cases the objects are properly classified as foreground but,

results in case of full-size images contain more noise.

In the next stage, the foreground segments are used to compute disparity map. This

greatly reduces the computational cost for subsequent stages. It is worth mentioning that, in

case of lighting conditions or poor image quality causing missing corresponding segments

on left or right images, we would consider intersection of foreground rows on both images

with some margin.

As stated earlier, BP algorithm is used to determine disparities in foreground segments.

For the sake of comparison, the estimated disparities using semi-global block matching

algorithm [1] on the whole image is illustrated in Figure 2.7. In most cases, the foreground

object would not appear in the foreground or its depth data is diffused with surroundings.

BP algorithm could be slower depending on the size of the foreground segment but

it achieves more consistent results. Disparity maps obtained from BP algorithm for fore-

ground row is shown in Figure 2.8. Maximum disparities were set to 256 and universal λ

values 15 and 8 were used for weighting energies. Figure 2.9 show the energy function val-

ues versus iterations for the settings. It is seen that, with increase in number of iterations, a
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(a) (b)

(c) (d)

(e) (f)

Figure 2.4: Denoised images on the left and their corresponding residuals on the right
column. The residual information is used to improve depth and sceneflow estimation. (a) ,
(b) Box filter. (c) , (d)FastNLMeans . (e) , (f) TV-L1
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(a) (b)

(c) (d)

(e) (f)

Figure 2.5: Foreground segments extracted from half-size image on the left and Sobelk=5

edges on the right column. Refer to text for details.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.6: Foreground segments extracted from full-size image on the left and Sobelk=5

edges on the right column. Refer to text for details.
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(a) (b)

Figure 2.7: Disparity map obtained using semi-global block matching algorithm [1] (a) and
superposition top half of disparities on the corresponding image (b)

better results were achieved.

Thereafter, the obtained disparities are used to compute scene flow of the stereo images

sequence. with regards to the execution of the scene flow algorithm, we perform few ex-

periments to observe the influence of smoothing coefficient and computational efficiency

of the algorithm. Even though the objective at the moment is not to optimize the execution

efficiency of this algorithm, we intend to avoid intractable computation times. Of course

with help of parallel processing, this would not be an issue. Here, we demonstrate the 2d

results of scene flow obtained from full-size and half-size images. The angles are encoded

with hue channel of HSV color model with intensities representing the magnitude. Then

we adjust the coefficient of the data energy term to examine the noise artifacts. The results

for coefficients 0.3 and 0.6 are shown in Figure 2.10. It is seen that with increase in the co-

efficient of data term moving components of the objects are become more distinguishable.

However this adds unwanted noise to the results. Similar outcome is also observed in the

results obtained from full-size image as well.

In the next stage, clusters of pixels based on their location and displacements in hori-

zontal, vertical and depth components are identified. We register these component groups
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(a)

(b)

(c)

(d)

(e)

Figure 2.8: Left view image (a) Disparity maps λ. = 15, Niter = 60 (b) λ. = 8, Niter = 120
(c) λ. = 8, Niter = 120 Foreground segment disparities in cyan on the image obtained
λ. = 15, Niter = 60 (d) λ. = 8, Niter = 120 (e)

(a) (b)

Figure 2.9: Natural logarithm of energy values of the belief network versus number of
iterations (b) λ. = 15.0, Niter = 60 (b) λ. = 8.0, Niter = 120
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(a)

(b)

Figure 2.10: This figure shows the motion components of the full-scale and down-sampled
to half-size images obtained using total variation loss with two different data coefficients
0.3 and 0.6 on top and bottom respectively. (a) Half-size image. (b) Full-size image.
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(a) (b)

Figure 2.11: A demonstration of 2D motion component and groups. (a). Extraction of
motion components from pixels in 6D. (b) Identification of groups of motion components.

and based on their 3D movement vectors computed using eq. 2.58. Figure 2.11 shows

examples of moving components identified as a group. In Figure 2.11(a), it is shown that

motion components are identified and extracted using a clustering method like KMeans.

Then these components are aggregated within a range depending on the size of the bats as

shown in Figure 2.11(b). These are registered as motion groups and are tracked. Given

velocity and position of the groups and their components it is possible to use particle filters

or ensemble Kalman filters to create a search area for subsequent frames. Given the loca-

tion and movement parameters of the target object it becomes less prone to 2D occlusion

failures.

To evaluate this method against other tracking techniques for this application, we have

selected a number of prominent baseline tracking algorithms. These are Boosting [99],

CSR-DCF (CSRT) [100], GOTURN [101], KCF [102], MedianFlow [103], MIL [104],

MOSSE [105] and TLD [106]. Since the algorithm proposed here, directly measures the
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depth, there is no requirement for depth estimation from tracked objects. However, the

tracking algorithms track objects in both left and right images and the centers of the pro-

posed rectangles are used to compute depth of the tracked objects. In addition, for directly

comparing the tracking results of the proposed algorithm with the others in images, we

projected the obtained 3D components on to left and right images and benchmark all al-

gorithms in a same way. The evaluation scores are intersection over union (IOU) ratio of

the bounding boxes and 2D Euclidean distance of their center points. IOU is computed as

following:

IOU =
R ∩ RGT

R ∪ RGT
, (2.61)

where RGT is the ground truth bounding box. In this experiment, the ground truth position

is determined by the maker position in the image. However, to accommodate the latter

evaluation measure (IOU), a square bounding box centered at the marker location in the

image designated as ground truth bounding box. Then, we run all algorithms on a same

sequence with the exact preprocessing parameters. The computed precision and IOU values

are considered separately for each of left and right camera images. Figure 2.12 shows few

tracking results along with ground truth (GT) tracks. The proposed method in this chapter

referred to as SF for the rest of this chapter.

In addition to precision and IOU values, tracking quality is also measured by the ratio

frames having IOU or precision against some threshold values. These are illustrated as

precision and success plots as shown in Figure 2.13 and Figure 2.14 for left and right

camera images respectively. Average precision and IOU values are list in Table 2.1.

As seen in the table, the proposed method performed relatively better while, MIL was

better in term of being within the set threshold for larger ratios. As stated earlier, to pro-

duce 3D trajectories from both left and right images should be valid. This is where other
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Figure 2.12: Tracked locations of two objects using the proposed algorithm, correlation
based CSR-DCF and MIL trackers displayed along with the marker positions (GT).
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(a) (b)

Figure 2.13: Benchmark plots for left camera image sequence with length of 400 frames.
(a) Success plot. (b) Precision plot.

(a) (b)

Figure 2.14: Benchmark plots for right camera image sequence with length of 400 frames.
(a) Success plot. (b) Precision plot.
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Table 2.1: Average results of precision and IOU in both camera images. In addition, the
ratio of the frames that performance numbers were within the thresholds are listed.

Method IOU IOUthr>0 Precision(px) Precisionthr<50

Boosting 0.0725 0.136 67.5 0.135

CSRT 0.0818 0.101 75.0 0.122

GOTURN 0.176 0.0155 239 0.0119

KCF 0.357 0.0128 1.06 0.0128

MIL 0.35 0.342 5.0 0.342

MOSSE 0.408 0.338 4.04 0.338

MedianFlow 0.0897 0.183 58.9 0.144

SF* 0.47 0.328 4.63 0.328

TLD 0.196 0.342 4.25 0.342

algorithms fall short. As illustrated in Figure 2.14, there is a discrepancy between the per-

formance in the left and right images. Figure 2.15 and Figure 2.16 show the precision

and success plots for longer sequence of 1000 frames. It is seen that the discrepancy issue

persisted.

This discrepancy in performance between left and right frames produces invalid depth

data and consequently, failing 3D reconstruction. This is while, in the proposed algorithm

here, depth information is already available and it is also utilized for object identification

and occlusion resolution. In simpler words, if trackers miss object position in either of

images, the depth information would not be available for 3D trajectory reconstruction. Yet,

another aspect, to which the high failure in 2D tracking could be attributed is highly non-

linear dynamics of flight of bats, specifically while approaching boundaries of the flight

chamber. In the proposed method, 3D state predictors are employed which may experience

less degree of nonlinearity or loss of information. This was clearly visible in the perfor-

48



Chapter 2: Stereo Tracking for Reconstruction of 3D Trajectories of Bats

(a) (b)

Figure 2.15: Benchmark plots for longer left camera image sequence with length of 1000
frames. (a) Success plot. (b) Precision plot.

(a) (b)

Figure 2.16: Benchmark plots for longer right camera image sequence with length of 1000
frames. (a) Success plot. (b) Precision plot.
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mances the 2D trackers in the experiments performed. They could perform fairly well while

the targets flew across the screen where the change in depth was minimal. Ultimately, there

are instances that all techniques fail altogether. These incidences occurred majorly at loca-

tions where appearance profiles of the objects diffused into the background and in case of

the proposed algorithm, previous stages fail to estimate the foreground segments and their

corresponding depth estimates. This situation could be remedied using more advanced state

predictors. Given the dynamics of the target in 3D, it would be more plausible to track a

highly maneuverable targets like bats.

Most of the trackers failed the correct registration of objects which their projected tra-

jectories on the screen crossed. Since these trackers do not have access to depth infor-

mation, they need to account for other indicators or information to identify the individual

objects after the crossings. While with access to depth information this would not be the

case other than instances, in which objects physically collide or closely fly past another.

Figure 2.17 demonstrates few examples of such incidents.

Lastly, in the final phase, 3D coordinates tracked points was reconstructed. Since not

all trackers successfully registered corresponding points in both images, best results were

chosen for demonstration. Figure 2.18 illustrates instances of reconstructed tracks in 3D

and Table 2.2 lists the means of Euclidean distance errors of the reconstructed trajectories

in relative to the marker position in 3D for a test sequence with length of 400 frames, in

176 of which ground truth measured.

2.5 Conclusions

In this chapter, we have presented a modular multi-stage algorithm which is able to

estimate and reconstruct the 3D motion of animals with low visibility in their environment.
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(a) (b)

Figure 2.17: Failure of MIL tracker after path crossing. (a) Before the crossing, two objects
are tracked individually as B1 and B2. (b) After the crossing, both trackers B1 and B2 track
the same object failing to track both objects in the seen.
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Figure 2.18: Reconstructed trajectories of two flying bats B1 and B2 using the proposed
method and other top 2 performing algorithms. It is seen that the proposed method, SF,
successfully kept tracking objects after the path crossing in camera images.
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Table 2.2: Average, standard deviation (SD) and median of Euclidean distance error relative
to the marker for a test sequence of 400 frames are listed per target and in overall.

Target Method Mean Err35mm SD Err35mm Median Err35mm

B1

MIL 52.322 41.987 30.780

MOSSE 10.391 26.173 1.941

SF* 7.720 17.673 3.715

B2

MIL 13.745 27.972 3.898

MOSSE 57.132 31.937 69.690

SF* 7.909 17.615 4.027

All

MIL 33.034 40.466 9.960

MOSSE 33.762 37.332 8.432

SF* 7.815 17.590 3.910

This method possesses farther more potentials for identifying and distinguishing targets

based on their dynamical properties. Since, the movement model of the target objects esti-

mated in 3D, and with the assumption of semi-rigid motion, this method is less susceptible

to the common failures in methods tracking in 2D. We shown that this method is capable

of tracking the moving parts of objects that are with little or without any texture features.

Another upside to this approach is that, it is possible to substitute the method in each stage

according to the objectives. In other words, if the goal is tracking texture rich objects easily

distinguishable in their habitat, we could choose a less computationally taxing methods for

estimating the disparity and motion fields. Another advantage here is the ability to bypass

the first stage of the algorithm given a known number of objects are already being tracked

with a known simplified model. With this information, it is possible to propose the view

hull of the object as foreground segment. However, all these come at the cost of complexity

of variational methods and belief networks. They do not guarantee global optimums and
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in certain problems, they are likely to fail. Computational cost could be improved with

new parallel hardware capabilities and efficient implementations. This work also could be

basis for the future works on pose estimation based on the motion components in semi-

rigid body. One could imagine by imposing movement constraints concerning the physical

or rigid properties of the target, it would be possible to estimate feasible solutions for the

specific pose of the object.
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Chapter 3

Modeling Latent Structures in

Trajectories

3.1 Introduction

In this chapter, we look at animal movement from a novel perspective. We assume that

certain trajectory points are the results of persistent behavioral attributes in focal organ-

ism’s movement. Therefore, through identification of these points, trajectories containing

these points could be associated to those behavioral characteristics which in the end may

be linked to a specific individual or group. These points are labeled as key points in a tra-

jectory. In this chapter we also present techniques for extracting these key points as well.

It should be noted that extraction of these key points is also a consequential task since part

of the modeling lies with the key point extraction method. In other words, the nature and

semantics of key points are tightly intertwined with the modeling objectives of the algo-

rithm. This is elaborated further later in this chapter. The other attribute of the algorithm

presented here is that we only consider trajectory points in spatial dimensions ignoring
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their chronological order. This is based on the assumption that the latent factors we are

interested in are time invariant. This suggests that there is no concern about non-uniform

sampling of data points or variable lengths of trajectories. Furthermore, this algorithm is

greatly scalable to large data sets. In summary, the main contributions of this chapter are

in three fronts. The first is feature extraction by proposing a semantical feature extraction

method for movement data. The second is feature representation by adopting a technique

for construction of numerical vectors of extracted features. The third is modeling by pre-

senting techniques for discriminating or generating movement features. The main results

of this chapter published in [107]. In the following section we review a few required basic

technical concepts prior to delving into mechanics of the proposed algorithm.

3.2 Preliminary Concepts

3.2.1 Stay Point

As mentioned in Chapter 1, not all spatial points in trajectories carry semantics or at

least not with uniform weights. In part of literature these points are termed as ”Stay Points”.

As implied from the title, these points identify the points along trajectory that focal object

remained stationary or within a threshold displacement for a certain time. There a num-

ber of algorithms for detecting stay points in trajectory mining literature [108, 109, 110].

In general given trajectory points sequence P = {pt0 ,pt1 , . . . ,ptn}, points in contiguous seg-

ment S = {pti ,pti+1 , . . . ,pti+l} of P identifies a stay point if dist(pti+l−pti) < ε and |ti+l−ti| > δ.

dist(.) determines the spatial distance between two points. Figure 3.1 shows few stay point

examples.
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(a) (b)

Figure 3.1: (a) Sample stay points extracted form a shearwater trajectory with time param-
eter of 10min and spatial threshold of 500m indicated by red ◦. (b) Trajectory segments
with speeds below 2.5m/s are indicated by red ◦
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3.2.2 Density-based Clustering

Clustering could be identified as a reduction method whose objective is to describe a

data set with a defined number of homogeneous groups. The measure of pair-wise homo-

geneity or contrast should be defined for all members of data set. Clustering methods are

classified based on their approach for modeling the data groups. The most common ones,

that are based on centroid and distribution, called k-means [111] and Gaussian mixture

model (GMM) [112]. With these methods, there should be a number of groups specified in

prior to the process of clustering or the process is repeated for a number of times to arrive

at the best fit. This feature make them inefficient for applications where the objective itself

is detecting the number of underlying groups or modeling the density is part of the prob-

lem. For this group of problems, density-based clustering methods like DBSCAN [113] or

mean-shift are used. However, It should be noted that in case of spatial data, DBSCAN is

mostly preferred due to its well-defined cluster model, ability to classify the noise in data

rather than simply partitioning it, and its linear complexity. DBSCAN has a number vari-

ants which in essence are simply extensions or generalizations of DBSCAN[114, 115, 116].

DBSCAN starts with an arbitrary point and detects all density-reachable points from

it. The term density-reachable is defined as neighbor points within a threshold dis-

tance ε. If number of density-reachable points from the selected point is above a prede-

termined number n, this point is a core point, otherwise it is labelled as noise. In case

of the core point, it is registered as a new cluster. Then all its density-reachable points

and their density-reachable neighbors are assigned with the same label if there were tested

previously. Figure 3.2 demonstrates examples of different cluster models BIRCH [117],

DBSCAN, k-means and spectral clustering [118], used for a sample geospatial data. For

models with required initial guess, the number set to 6. DBSCAN’s minimum neighbor
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set to 3, haversine distance metric and threshold distance of 5km were used. BIRCH’s

branching factor set to 10 with threshold of 0.001 radians.

3.2.3 Dirichlet, Categorical and Multinomial Models

Categorical distribution is the extension of Bernoulli distribution for modeling outcome

of an event with more than two possible classes. In other words, categorical distribution

describes a distribution over any number of outcomes. A categorical random variable is

represented by a vector of K dimensions for K categories and each entry denotes the prob-

ability of the outcome belonging to the respective category. These entries are sum to unity.

Probability mass function of categorical distribution is as:

Cat(x|ΘΘΘ) =
∏
k∈K

θIk=x
k ,

∑
k∈K

θk = 1, θk ≥ 0 (3.1)

where ΘΘΘ is K−dimensional parameter vector of probabilities for each category and I. is

indicator function which returns unity if equality condition holds true. Multinomial distri-

bution is generalization of the categorical distribution where it is repeated for more than

one trial and defined as:

Multi(x|ΘΘΘ) =
N!∏

k∈K xk!

∏
k∈K

θxk
k ,

∑
k∈K

xk = N,
∑
k∈K

θk = 1, θk ≥ 0 (3.2)

where N is total number of trials, x is a vector of length K denoting the number of outcomes

being of each category and elements sum to N.

Prior distribution of categorical distribution’s parameters could be modeled with Dirich-

let distribution of order K as:

Dir(ΘΘΘ|ααα) =
Γ(

∑
k∈K αk)∏

k∈K Γ(αk)

∏
k∈K

θαk−1
k ,

∑
k∈K

θk = 1, θk ≥ 0 (3.3)
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(a) (b)

(c) (d)

Figure 3.2: Identified stay point clusters using (a) BIRCH (b) DBSCAN (gray points are
designated as noise.) (c) K-means (d) Spectral
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where ΘΘΘ is K−dimensional vector of positive values sum to unity (K − 1 simplex) and ααα is

vector of concentration parameters with the same dimension. Γ(.) is gamma function. The

posterior distribution could be estimated for a set of N data vectors X as following:

P(ΘΘΘ|X,ααα) ∝ P(X|ΘΘΘ)P(ΘΘΘ|ααα)

∝
∏
n∈N

∏
k∈K

θ
Ik=xn
k

∏
k∈K

θαk−1
k

=
∏
k∈K

θnk
k

∏
k∈K

θαk−1
k

∝ Dir(ΘΘΘ|n +ααα)

(3.4)

where n is vector of observed counts of each category in the data set.

Finally, the predictive probability of x̂ given above is:

P(x̂|X) =

∫
Cat(x̂|ΘΘΘ,X)P(ΘΘΘ|X,ααα)dΘΘΘ

=

∫
θk=x̂Dir(ΘΘΘ|n +ααα)dΘΘΘ

=
nk + αk

N +
∑

k∈K αk

(3.5)

3.3 Methodology

3.3.1 Problem Formulation

As suggested in [2] the navigation capacity and internal state of organism are viewed

part of cognitive. The relationship between consecutive locations in trajectory formulated

as:

ut+1 = F(Ω,Φ, rt,wt, ut) (3.6)

where ut, ut+1 are consecutive positions at times t, t+1, wt is internal state, rt being environ-

mental factors, Φ is navigation capacity and Ω is motion capacity which further explained
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in Chapter 1. The formulation models the progression of movement in time as a dynamical

process. Therefore, time is considered primary variable here and dynamical constraints

govern the order of the points along trajectory. In other words, there is strong depen-

dence between consecutive points in trajectory. These constraints could be relaxed with

dropping time as the primary variable and approaching trajectories in spatial and spectral

domains. Trajectories are projected on to spatial plane and represented by points based

on their spectral attributes. As a result, trajectories are represented as set of K key points

with semantical relevance and could be assumed conditionally independent of each other

given certain movement feature. Figure 3.3 demonstrates graphical models for sequential

and conditionally independent representations for trajectory points. By removing sequen-

tial dependence, exchangeability assumption [119] could be considered and bag-of-words

model become applicable. The other implication of this approach is that the destination

exercises a stronger semantical meaning than the path traversed to reach the destination.

Similarly, in sentiment analysis the bag-of-words model is assumed where the ordering

of the words in a sentence is neglected. This may not always produce great results in

more combinatory vocabularies but in general it is simplistic and practical [120, 121]. Yet

another advantage of key points representation of trajectories is that it reduces the effect

of transient environment factors on composition of trajectory key points. It is assumed,

in general, animal compensates for such deviations caused by environmental factors and

it is only apparent in generated path and time taken to the intended destination, while the

location of destination remains the same [13].

Conceptually, to analyse the behavioral states using trajectories, they could be con-

verted into series of key points which are assumed to be exchangeable in order. As though,

any permutation of the key points is similarly likely. The hypothesis is that common or
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(a)

(b)

Figure 3.3: Movement graphical models (a) with sequential chain dependencies (b) As-
sumption of conditional independence and exchangeability. Λ = [Ω,Φ,w, r].

similar internal states tend to generate similar key points to comprise a trajectory which

could be interpreted as a particular behavior expression prevalent in trajectories. This en-

ables us to classify these behaviors or latent states responsible for these behaviors using

discriminative models or even span trajectories with such attributes using generative mod-

els. It should not be overlooked that this approach is only applicable for modeling time

invariant or time independent features or characteristics. Hence, it is not expected to be

able to encode the temporal dynamics of movements or behaviors or at least, within the

integrated time window used for key point extraction. In other words, to model temporal

behaviors using this approach, key points could be extracted over shorter time partitions

and modeled independently, given their temporal partition parameters.
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3.3.2 Key Point Extraction

Stay point detection algorithms are commonly used to extract points of interest from

trajectories. As focal organisms remained at proximity of specific locations for a minimum

time period, these points could carry semantics such as foraging, sleeping in case of animals

and shopping or dining in case of people. These stay points then clustered to discover the

hubs with higher significance [109]. However, in case of animals, the spatial range and time

threshold for stay point detection may vary. A simpler approach to detect such key points

given that logged data sampled in a relatively fixed frequency, it is safe to assume that

low speed movement along trajectory creates higher spatial densities. By stacking all data

on spatial plane, locations with frequent low speed crossings would automatically create

high density regions that would form cluster using density-based clustering methods. As a

result, trajectories could be reduced to a set of these clusters. Figure 3.4 illustrates extracted

key points extracted using stay point detection method and speed threshold techniques.

3.3.3 Trajectory Representation

In order to employ numerical methods, the key points and trajectories should be rep-

resented as numbers or numerical vectors. There are different approaches to this problem,

but here spectral methods inspired by text mining used in this work. K Key points in tra-

jectories represented by tokens with integer ids. The simplest feature vectors could be just

binary vector of token memberships in trajectories. The trajectory tn is represented by a

K−dimensional vector tn as:

tn = [Ik∈tn |k ∈ K]T (3.7)

where Ik∈tn returns one if key point k is member of trajectory tn otherwise returns zero. A

slightly more sophisticated one is key point frequency which is the number of occurrences
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of these tokens in a trajectory. In this manner numerical representations of trajectories of

variable lengths with fixed length vectors is constructed as:

tn = [
∑
i∈tn

Ik=i|k ∈ K]T (3.8)

where
∑

i∈tn Ik=i is key point k’s frequency in trajectory tn. So, by selection of K key points,

corpus of trajectories could be represented as a matrix of K × N where N is number of

trajectories in data set. In other words, corpus is of N samples of K−dimensional feature

vectors. Using key point frequency may not also be the most efficient way of representing

a trajectory. There are key points that are universally shared between all trajectories fre-

quently. These point carry very little discriminative semantical information as a results. To

encounter this, inverse trajectory frequency factor inspired by [122] is also considered. The

trajectory representation vector using a smoothed variant [123] is described as:

tn = [αk log
1 + N
1 + βk

+ αk|k ∈ K]T (3.9)

βk =
∑
n′∈N

Ik∈tn′ (3.10)

where αk is key point k’s frequency and βk determines the frequency of trajectories sharing

it. The latter two representation vectors are further normalized by Euclidean norm.

3.3.4 Generative Modeling

In this study, a modeling approach inspired by sentiment analysis is used to infer, extract

and quantify subjective information about internal state and attitude of focal organism. The

latent structure could be modeled as generative distributions which produce the key points

in a trajectory. This is referred to as ”Topic Modeling”. For instance, latent Dirichlet al-

location (LDA) could be a probabilistic model which intuitively explains the distribution
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of behaviors or document topics [124]. Given a random mixture of hidden states in an-

imal movement, trajectory key points are distributed according to a latent state specific

distribution in the expressed movement. This could be designed as two series of Dirichlet

distribution draws, one for latent states and the other for state specific key points, and two

series multinomial distribution draws for latent state assignment to each key point and tra-

jectory assignment to each key point. Parameter estimation is commonly performed using

inference methods.

To model trajectories using LDA [125], H particular group of latent states are assumed

which is analogous to number of topics in documents. As mentioned earlier, each of the

states has a multinomial distribution over the all key points as in text processing where

topics define distributions over the words in vocabulary. Prior for these multinomial dis-

tributions is ΠΠΠ and, each πππh drawn from Dirichlet with hyperparameter of ααα. Hence, to

generate the trajectories, given trajectory t, θθθt is drawn from Dirichlet distribution with

hyperparameter βββ. Next, for each key point kt of trajectory t, latent state ht,k drawn from

Multi(θθθt) and given ht,k, kt is drawn from Multi(πππht,k). The generative process is summarized

as following:

1. For each latent state h, draw πππh ∼ Dir(ααα), h ∈ H

2. For each trajectory tn, draw θθθt ∼ Dir(βββ), n ∈ N

3. For each key point k in tn:

(a) Draw ht,k ∼ Multi(θθθt)

(b) Draw kt ∼ Multi(πππt,k)

Referred to as ”Multinomial Principle Component Analysis (PCA)” in [126], this model

would provide an unsupervised approach to analyze trajectories. Hence this can discover
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latent structure of trajectory collections which is beneficial for both prediction and data

exploration. The posterior distribution is described as following:

P(h,ΘΘΘ,ΠΠΠ|k,ααα,βββ) =
P(h,ΘΘΘ,ΠΠΠ|ααα,βββ)

P(k|ααα,βββ)
(3.11)

and could be estimated using methods like variational inference or Markov Chain Monte

Carlo (MCMC) sampling or Gibbs sampling [125]. In our experiments we used an online

variational inference method developed by Hoffman et al. in [126]. The variational objec-

tive derived to rely only on key point frequency per trajectory which carries the intuition of

document summary based on word counts. Clearly this is applicable in case of trajectories

where frequency of the key points could potentially summarize the latent states of the focal

organism.

3.3.5 Discriminative Modeling

Discriminative approach could be utilized to identify the polarity of the expressed be-

haviors in trajectories. This involves a family of discriminative models which classify the

trajectories based on the extracted key points. This approach is analogous to sentiment anal-

ysis on text documents. A great example is Twitter sentiment analysis which was topic of

numerous studies. [127, 120]. Most of these methods assume bag-of-words model, which

as mentioned previously in probability theory referred to as exchangeability assumption

[119], that ignores the ordering of the words in documents.

For discriminative modeling, the options for off-the-self classifier are abundant. Naı̈ve

Bayes model intuitively explains the probabilistic relationship between hidden states and

key points. Considering their simplicity and strong prior assumptions they tend to work

very well in this sort of problem settings [128]. Using Bayesian theorem, hidden category
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probability could be modeled as:

P(h|t,ΘΘΘ,ΠΠΠ) =
P(h|ΠΠΠ)P(t|h,ΘΘΘ)∑

h∈H P(h, t,ΘΘΘ,ΠΠΠ)
(3.12)

where ΘΘΘ and ΠΠΠ are parameters of the model, H is the number of hidden state categories, t

is a trajectory in set T of all trajectories and Kt is set of key points in trajectory t. A priori

is modeled as a categorical distribution with parameter ΠΠΠ as:

P(h|ΠΠΠ) =
∏
h′∈H

πIhh′ = πh,
∑
h′∈H

πh′ = 1 (3.13)

where ΠΠΠ has H dimension with L1−norm of unity. Hence πh could be interpreted as prior

probability of h. Likelihood of a trajectory given h could be modeled as multinomial dis-

tribution as:

P(t|h,ΘΘΘ) =
∏
k∈Kt

P(k|h,ΘΘΘ) ∼ Multi(ΘΘΘ,K) (3.14)

where we assume key points are conditionally independent given hidden state h. This could

be interpreted as each state has its own distribution over key points. Therefore, a generic

form of naı̈ve Bayes classifier could estimate maximum likelihood of a hidden state given

key points as:

arg max
h∈H

πh

∏
k∈K

θk,h (3.15)

where pih and thetak,h could be determined using maximum likelihood estimation (MLE)

method which results in:

πh =
nh∑

h′∈H nh′
(3.16)

and,

θk,h =
nh,k

nh
(3.17)

where nh and nh,k are counts of trajectories with hidden state labeled as h and key point

k associated with that hidden state respectively. in practice, smoothed version of these
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equations are used in which, smoothing prior constant α and αK are added to numerator and

denominator respectively. Maximum a posteriori (MAP) estimate is also applicable where

Dirichlet priors are assigned to the parameters. Since, Dirichlet distribution is conjugate

prior of the multinomial distribution, the results are similar to the smoothed version of MLE

method’s solutions.

Other than naı̈ve Bayes classifier, more complex models like support vector machines

(SVM), ensemble and boosted trees could be utilized to predict hidden states based on

extracted feature vectors. It is also possible to further improve the performance of naı̈ve

Bayes, SVM and tree classifiers by calibrating membership probabilities [129]. Since these

classifiers are not optimized on the prediction probabilities, they often produce biased class

probabilities. These biases are dependent on the method. Zadrpzny et al. [129, 130]

proposed remedies to calibrate the class probabilities of the naı̈ve Bayes classifiers us-

ing histogram methods and tree classifiers using smoothing, curtailment, Kearns-Mansour

splitting criterion, and isotonic regression. In this experiment, non-parametric and para-

metric methods, isotonic regression and Platt scaling[131, 132] respectively, are used to

calibrate the class probability of all classifiers. Since, Isotonic Regression is very prone to

overfitting, k-fold cross-validation is used in training procedure.

To evaluate the performance of the classifiers, in addition to accuracy, Matthews cor-

relation coefficient (MCC)[133], precision, recall and F1−measure are employed. MCC is

defined as following:

MCC =
T P × T N − FP × FN

√
(T P + FP) × (T P + FN) × (T N + FP) × (T N + FN)

. (3.18)

This score is regarded as balanced measure [134] and weighs performance in true and false

positives and negatives (T P,FP,T N,FN). Precision and recall are calculated as:

precision =
T P

T P + FP
(3.19)
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recall =
T P

T P + FN
(3.20)

Finally, F1−measure is computed as:

F1 =
2 × precision × recall

precision + recall
(3.21)

3.4 Experiments, Results and Discussion

Our experiment was performed on a species of seabirds off the cast of Japan called

Streaked Shearwater Calonectris leucomelas. The data set was provided by Yoda-lab [135].

The trajectories recorded using logging devices attached to 271 birds belonging to 112

unique nests. These nests are located at two colonies on the east and west coasts of Japan.

A quarter of all birds under study belong to the colony on the west. In addition to nest and

colony information, gender of the birds is also available. This information could be used

as labels in supervised modeling of trajectories based on the gender or colony of the birds.

As a result, inferring the state differences in generation of trajectories is plausible. Gender

of the birds identified by their gender specific vocal features [136]. The gender distribution

in each colony is approximately uniform.

Here in this experiment, two types of key points extracted from trajectories. One based

on stay point definition and the other based on key point extraction procedures discussed in

the previous section. In the second method speed threshold used for speed was 5km/s. For

stay point detection, range threshold of 500m and time threshold of 10min was used. Then,

DBSCAN is used to extract densities of points in 1km radius neighborhood with minimum

of 30 neighbors. Densities with minimum of 10 unique bird ids were selected as key points

set K. This number is essential to performance of classifiers as greatly influences the size

and utility of the key points set. For instance, for increasing the spatial coverage in case
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Table 3.1: Test accuracy of top performing vanilla classifiers

Key Point Type Classifier Test Acc (%)

Speed Threshold/ DBSCAN

Bernoulli naı̈ve Bayes 62.75

Gradient Boost 70.59

Ada Boost 68.63

Stay Point/ DBSCAN

Bernoulli naı̈ve Bayes 66.67

Gradient Boost 72.73

Ada Boost 66.67

of stay points, this number was reduced to 5. As a consequence, the results of classifiers

improved significantly. Figure 3.4 shows the results of key point extraction procedures.

Size of the extracted key points set is 65 for speed threshold extraction method and 155

for stay point detection method. This also has an effect on the number of trajectories that

are possible to be processed. If a trajectory does not contain any of the key points in the

key points set, it should be discarded. Therefore, in key point extraction step, these notes

should be considered and appropriate hyperparameter values should be used. Figure 3.5

shows the distribution of birds over the selected key points.

Having key points set, each trajectory encoded to a sequence of key points. Subse-

quently, the spectral feature matrices of trajectories was created. To have a rough estimate

of classification performance, vanilla classifiers trained on 80% of the data set and tested

on the rest. Table 3.1 demonstrates the outcome.

It is seen that accuracy of the test predictions ranged between 60%− 70% with boosted

trees resulting in top performances. These results simply show that trajectory key points

carry information about gender of the birds. So, to improve the performance, we have

attempted tuning of class probabilities. As described previously, Platt’s sigmoid [131] and
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(a)

(b)

Figure 3.4: Extracted key point which has minimum of 10 unique bird ids using (a) speed
threshold and (b) stay point method. Larger cross signs show higher number of unique bird
ids contained in the key point cluster
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Figure 3.5: Histogram of unique bird ids at key points extracted using speed threshold
method

(a) (b)

Figure 3.6: Sample of trajectories. Identified speed threshold DBSCAN clusters marked
by blue + and identified vocabulary key points marked by red 4. (a) Female trajectories (b)
Male trajectories.
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Table 3.2: Test results of top performing tuned classifiers for speed threshold/ DBSCAN
key points.

Classifier MCC Precision Recall F1 Accuracy

Logistic 0.3297 0.6786 0.7037 0.6909 0.6667

Naı̈ve Bayes 0.2542 0.6538 0.6296 0.6415 0.6275

Naı̈ve Bayes + Isotonic 0.3297 0.6786 0.7037 0.6909 0.6667

Naı̈ve Bayes + Sigmoid 0.2542 0.6538 0.6296 0.6415 0.6275

SVM 0.2485 0.6250 0.7407 0.678 0.6275

SVM + Isotonic 0.3723 0.6667 0.8148 0.7333 0.6863

SVM + Sigmoid 0.2173 0.64 0.5926 0.6154 0.6078

GBC 0.4923 0.7188 0.8519 0.7797 0.7451

GBC + Isotonic 0.5000 0.7059 0.8889 0.7869 0.7451

GBC + Sigmoid 0.4876 0.7500 0.7778 0.7636 0.7451

ABC 0.1673 0.5938 0.7037 0.6441 0.5882

ABC + Isotonic 0.3287 0.6667 0.7407 0.7018 0.6667

ABC + Sigmoid 0.0599 0.5833 0.2593 0.359 0.5098

isotonic regression [130] methods were used to tune class probabilities. Since isotonic

regression is prone to overfitting, tuning used 10-fold cross-validation on 80% of data set.

The tuned classifier then tested on the rest of the data. The performance scores of classifiers

is shown in Table 3.2 and 3.3 for speed threshold based and key point based input features

respectively.

It is observed that tuning of the class probabilities certainly improved the performance

of the most of classifiers. It should be noted that, one of the significant limiting factors of

decision models are lack of standard key point set. This problem would be surely less of

an issue with increase in volume of data. The same classifiers also trained and tested on

key points extracted using stay point detection technique. It is seen that the performance is
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Table 3.3: Test results of top performing tuned classifiers for stay point/ DBSCAN key
points.

Classifier MCC Precision Recall F1 Accuracy

Logistic 0.3699 0.6857 0.8276 0.75 0.6923

Naı̈ve Bayes 0.2088 0.6364 0.7241 0.6774 0.6154

Naı̈ve Bayes + Isotonic 0.251 0.6563 0.7241 0.6885 0.6346

Naı̈ve Bayes + Sigmoid 0.228 0.6667 0.6207 0.6429 0.6154

SVM 0.2892 0.6667 0.7586 0.7097 0.6538

SVM + Isotonic 0.2452 0.6389 0.7931 0.7077 0.6346

SVM + Sigmoid 0.228 0.6667 0.6207 0.6429 0.6154

GBC 0.413 0.6944 0.8621 0.7692 0.7115

GBC + Isotonic 0.2892 0.6667 0.7586 0.7097 0.6538

GBC + Sigmoid 0.237 0.68 0.5862 0.6296 0.6154

ABC 0.0387 0.5769 0.5172 0.5455 0.5192

ABC + Isotonic 0.2048 0.6286 0.7586 0.6875 0.6154

ABC + Sigmoid 0.1659 0.6176 0.7241 0.6667 0.5962

slightly below the results achieved on the other set of key points.

Surely, to improve the objective of this experiment which is gender classification, we

could also use motion capacity features. These features are also showing the physical differ-

ences between two genders. Figure 3.9 shows the recorded speed distribution over genders.

The results of statistical hypothesis testings are shown in Table 3.4 as well. The disparity

between the distribution of values belonging to each gender is substantial in Awashima

colony (a-colony) while not as much in the other. Therefore with proper utilization of these

features, the classification results could be improved further. Using speed as input feature,

increases the stability of the classification results significantly.

Since the main objective of this study is to explore information capacity of the ex-
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Figure 3.7: Performance results of tuned classifiers for key points extracted using speed
threshold

Figure 3.8: Spatial features importance for gender classification.
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(a) (b)

Figure 3.9: Distribution of travel speeds for birds of each gender (a) Birds of a-colony (b)
Birds of t-colony.

Table 3.4: 2-sample tests for the null hypothesis of same speed distribution of male and
female birds from colonies Awashima (a) and Iwate(t)

Populations Test p-value

Malea − Malet
Kolmogorov–Smirnov 0.9965

t-test* 0.7026

Femalea − Femalet
Kolmogorov–Smirnov 2.6×10−5

t-test 1.4×10−5

Femalea − Malea
Kolmogorov–Smirnov 2.7×10−8

t-test 2.4×10−12

Femalet − Malet
Kolmogorov–Smirnov 0.0633

t-test 0.0296

* 2 samples t-test [137].

tracted key points regarding the latent states of the focal organisms, further analysis on the

features and classification results were performed. To dig more about the effectiveness of
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Figure 3.10: Plot of selected feature percentile versus prediction rate.

key points inclusion as input to classifiers, a feature selection method using mutual infor-

mation, utilized to examine the performance of the logistic regression against the percentile

of selected features. Figure 3.10 shows the results. As seen in the plot, inclusion of more

features between 20 to 30 percentiles improve the classifier performance significantly while

the performance peaks at 30 percentile does not improve further considerably.

As mentioned earlier, it is suspected that other than gender, there other factors that

could be attributed to the latent state of the animal. This is examined by taking advantage

of variational Bayesian encoder model. Here, stochastic LDA model trained using the

online method purposed in [126] to identify the major components in the data set. This is

used like PCA to identify the features contributing to the principle components. To create

a comparable generative model to the discriminative model, number of components for

LDA chosen to be 2. Then top key points contributing to the components were extracted.

Figure 3.11 demonstrates the top key points of the extracted components using LDA, along

with trajectories of birds of different gender and habitat and key points set. It is evident

that one component has more key points shared with the sample male bird trajectory even
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(a) (b)

Figure 3.11: Vocabulary key points marked by blue 4. First component’s top 10 key points
marked by green ◦. Second component is marked by red I. (a) Female bird trajectories
belonging to a-colony (b) Male bird trajectories belonging to t-colony .

though the birds with different genders from separate habitats have common regions in

their trajectories. It can be perceived that although not with strong margins, key points are

gender segregated within species trajectories. This should be reasonable as there are many

more internal and external factors which also affect the path propagation process of birds.

3.5 Conclusions

In this section, we have proposed an alternative look at behavioral analysis using trajec-

tories. The temporal constraints in the study of the trajectories were relaxed and trajectories

represented by groups of independent key points. This independence assumed to be condi-

tioned on internal states, motion capacities or navigation capacities of the organisms under

study. This conditional independence allows treatment of trajectories in only spatial dimen-

sions. Analogous to sentiment analysis and text processing, bag-of-words model could be

applied, which given sufficient size of training data and ordinary language model, evidently
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produces acceptable results.

One very important element of this procedure is key point identification and extraction.

This means identification of major semantics. There is still room for more studies here,

which could lead to introduction of new kernel methods for fast and reliable detection of

the key points. One notable takeaway from our experiment is that, after key point extraction

process the key points lose their spatial relations and their similarities must be measured in

a different space. As though two key points spatially close to each other may not carry the

similar semantics. Therefore, new points to data set must be clustered again or a projection

function must be designed to transform the new points to semantic space of the key points.

An instance is that, even though a foraging area and nests are spatially close, they belong

to two distant points in semantical space. This encourages use of kernel-based methods for

transformation of the trajectories spatial points to semantic space. Furthermore, the concept

of n-gram is also applicable here to model more complex relation between consecutive

points in trajectories.

Unfortunately, there are disadvantages to the approach as well. One as with most of

data driven modeling methods is that, its dependency on data set and potential lack of gen-

erality. As it was seen in the experiment, size of trajectory data set and the class balance had

considerable effects on the performance. However, this is likely to be handled to acceptable

margins by increase in size of trajectory data set. Carefully selection of training data is also

helpful. As mentioned earlier, key point extraction methods also play a very essential role

in fitness of the models and key point extraction methods rely on the data set features like

sampling rate, sparseness, etc. For example, directly applying a clustering method on the

points as used in this experiment is highly dependent on sampling rate of the trajectories.

Though, the same thresholds may not be applicable in other cases with much lower sam-
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pling rates. One last potential downside to the introduced approach is lack of generality

in generated models for species of different attributes. This is also held true in the most

language and text processing methods. Learning models for a certain language, does not

necessarily translate into information about other languages. We will propose solutions to

some of the stated problems in in the following chapters.

The overall conclusion is that, this approach is efficient to semantically compare data

inputs with variable length. It is also open to other semantic methods like negative matrix

factorization and tensor factorization.
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Chapter 4

Context-based Semantical Vectors for

Modeling Latent Structures

4.1 Introduction

In this chapter we present a method for compact numerical and semantical representa-

tion of key points in animal trajectories. In previous chapter, trajectory key points simply

represented by one-hot vectors with size of key points set. These vectors solely carry infor-

mation about each key point independently without any hint of their contexts. Certainly, as

independent random variables, they are applicable in inference for larger temporal scales

where the temporal constraints are relaxed. To model trajectories in lower scales, contexts

of a key point becomes influential as well. To model a sequence, it is possible to consider

n−gram structures as independent inputs, but, this blows up the dimension of the feature

space with increase in the number of key points. Even though animal trajectory data sets are

dense over the span of individual trajectories, they are relatively sparse in domain of organ-

isms’ behavioral states and habitats. For instance, considering only spatiotemporal domain
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of the seabirds’ movement data was used in this study, the sampled data only covers small

and sparse patches of it. This is while, the real-world domain also includes environmental

factors and aspects of individuals’ behavior. To deal with these challenges, this study offers

a new approach for modeling organismal movement data motivated by skip-gram model

in natural language processing (NLP) [138]. The proposed objective is mainly to create

contextual semantical representation models of organisms’ trajectories, specifically, relat-

ing to their behavioral trends. With the success in NLP, it is expected that skip-gram model

provides a solution for modeling animal movement based on large and sparse data sets.

The grounds for this approach are founded on similarities drawn between language domain

and movement domain. Here, the basic assumption is that, as sentences are composed of

words, trajectories are sequences of segments. Each of these segments is represented by a

key point which carries semantical information and was generated given a certain context.

More importantly, like words being shared among people of the same tongue, the trajectory

key points are also to be shared among animals of the same habitat, or geospatial region.

In summary, in this chapter we aim to achieve the main objectives in two stages. The

first stage is to extract proper key points and their features from trajectories which act

analogous to words in text documents. The second and the major one is to create contex-

tual representation vectors of these key points in feature embedding space. Hence, these

representations of trajectories could be compared or analyzed at multiple levels of feature

abstraction, like environmental, spatial and temporal. The method offered in this study

could be utilized in various research applications like data exploration, classification or

prediction. Here, two applications, a discriminatory and an exploratory one, are demon-

strated analyzing data collected from a seabird species, Streaked Shearwaters (Calonectris

leucomelas), and classifying their gender given their trajectories. Lastly, the main contribu-

84



Chapter 4: Context-based Semantical Vectors for Modeling Latent Structures

tions of this chapter are in both key point extraction and representation. On the extraction

side, a multilevel clustering approach presented to capture a sparse map of trajectories in

different density levels. On the representation side, to represent the extracted key points

with compact, efficient and semantical numerical vectors, we adopted the distributed rep-

resentation concept and embedded contextual relationships in local Euclidean space using

skip-gram model. This work was published in [139].

4.2 Preliminary Concepts

4.2.1 Continuous Bag-of-Words Model

Continuous Bag-of-Words (CBOW) model was introduced by Mikolov [138]. In short,

it is a linear feedforward neural network which projects a one-hot vector of a word into

an L-dimensional vector space and projects it back to the input space as a vector of prob-

abilities using SoftMax function. In theory, the objective is, for a given centre word, its

context words to be situated in the same neighborhood in an L-dimensional vector space.

It is optimized by maximizing the sum of log probabilities of centre words given context

words as

1
N

∑
n∈N

log p(wn|wc) (4.1)

where p(wn|wc) is the probability of centre word wn given the context words wc and com-

puted as

p(wn|wc) =
ev̂n.v̄c∑

w∈W ev̂w.v̄c
(4.2)

where v̂n and v̄c are L-dimensional representation vectors of centre word and context re-

spectively. For each centre word wn, a one-hot input vector, selects an L-dimensional

representation vector vn. Context consists of both history and future words without any
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specific order according to Bag-of-Words (BoW) model. Context vector v̄c is calculated

using context words’ representation vectors vc as

v̄c =
1
C

∑
c∈C

vc (4.3)

4.2.2 Skip-gram Model

In skip-gram model [138], like CBOW model, the goal is to represent each word in

dictionary by an L-dimensional vector vn in an embedding space close to their context

words’ representation vectors vc. The training objective for this embedding projection is

to maximize likelihood of a word’s context given its representation vector. This model is

trained for a random number of times in the range of context size C with a word as input

and its sampled context words wc as target labels. Selection of context size and sampling

of context words play important roles in quality of the embeddings. This model’s objective

function is

1
N

∑
n∈N

∑
c∈C

log p(wc|wn) (4.4)

where N is the number of training words and p(wn|wc) is estimated using (4.2) for each

context word.

4.2.3 Candidate Sampling

Optimizing the objective function of skip-gram model turns out to be computationally

costly with larger sizes of dictionary W. One solution could be incorporating candidate

sampling methods. This group of methods attempts to differentiate noise from informative

data. Negative sampling (NEG) [140] is one of the candidate sampling techniques which
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is used for training skip-gram model. The objective function is defined as

logσ(v̂n.vc) +
∑
k∈K

Ewk∼pu(w)[logσ(−v̂k.vc)] (4.5)

where K is the number of negative samples drawn from a noise distribution Pu(w) for each

training sample.

Another candidate sampling method could be employed for differentiating noise in

training of skip-gram is Noise Contrastive Estimation (NCE) [141]. Using this method,

skip-gram objective function is approximated as

EPi(wc |wn) log
p(wc|wn)

p(wc|wn) + KPu(wc|wn)
+ KEPu(wk |wn) log

KPu(wk|wn)
p(wk|wn) + KPu(wk|wn)

(4.6)

where Pi(wc|wn) informative distribution from which, context is sampled. This approach

differs from the NEG only in involvement of noise distribution in the loss function.

4.3 Methodology

4.3.1 Problem Formulation

In this section, the intuition behind employing Bag-of-Words and skip-gram models for

analysis of organismal movement data, specifically geo-spatial trajectories, is discussed. It

is intended to create abstract bridge which links concept of contextual word embeddings to

geo-spatial key points embeddings in animal trajectories. For this, the collected data, which

is composed of sequences of geo-spatial coordinates recorded from the focal organisms,

could be thought of as sequences of sound frequencies. A segment of these coordinates

constitutes trajectory segment represented by a key point as frequency segments make up

spoken words. In language processing, to account for slight variances in sound, the cen-

troids or the closest samples to the centroids are chosen. Likewise, geo-spatial centroids
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used for key point selection in case of trajectories. As a result, trajectories are composed

of series of key points as sentences are of words. Theoretically, it is expected that the ar-

rangement of data points in the embedding space would represent the semantical relations

between key points.

In previous chapter, the movement models were constructed based on assumption of

exchangeability. It was successful to a certain level in modeling of navigation strategies

ignoring the temporal order between navigated key points. This approach is applicable in

cases where dynamical constraints are relaxed, since conditional independence is assumed

between key points of trajectories given navigation capacity, motion capacity, internal state

and environment factors. The probability of a set of navigation key points can be written

as following.

p(u0, · · · , uK |Ω,Φ,W,R) =
∏
k∈K

p(uk|Ω,Φ,W,R) (4.7)

With that, it is possible to adjust the extent of the temporal window to which, these key

points belong. This could range from an hour to entire a trip. The former depends on

dynamical properties according to which, the sequential constraints could be loosened. For

instance, effects of wind over entire trip could be ignored as animal compensates for such

deviations in their trajectories [13]. In this study, this approach is improved by inclusion of

contextual information in modeling of trajectories’ key points. This information could be

temporal, spatial or from any other semantical domain. It is described as

p(uk|Ω,Φ,wc, rc, uc) ∼ p(uk|Λk) (4.8)

where Λk is contextual feature vector for uk. Subscript c identifies the contextual infor-

mation for the corresponding variables. Theoretically, over the course of a trajectory with
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length K, joint probability of key points given their context should be maximized as

arg max
Λk

∏
k∈K

p(uk|Λk) (4.9)

The main motivation driving this approach is based on [11] where contemporary envi-

ronmental contexts were found to be also influential in navigation strategies of Streaked

Shearwaters. For example, for foraging behavior, temporal context which implicates simi-

lar environment factors could effectively provide clues about gender of Shearwaters based

on set of trajectory key points with their contextual features.

At this point, the remaining part is modeling of p(uk|Λk) and Λk which is addressed

later in this section. Prior to that, the key point extraction method is described.

4.3.2 Key point Extraction

As discussed earlier, one of the challenges in movement ecology is sampling frequency

and segmentation of trajectories. Quality of the information, which is carried by repre-

sentative key points or segments, has substantial role in downstream results. Objective of

analysis is also a major factor in selection of the compression or segmentation method. For

instance, for analyzing navigation capacity, start and destination of trip segments are gen-

erally extracted. In the case of analyzing movement paths, shape of segments is the feature

to be preserved. Here, target of analysis is navigation behavior rather than shape of local

path segments. Therefore, representation points of trajectory segments are extracted using

DBSCAN method. DBSCAN, requires no initial guess for the number of clusters with

ability to identify noise. Besides, its relatively higher performance in identifying densities

[142] makes it the method of choice here. It is worth noting that, given a fixed sampling

rate, destinations of navigation, activity or resting locations, and path intersections could be

extracted setting appropriate clustering parameters. These segments represent a trajectory
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sequence. Generally, unlike key points for human trajectories like school, cinema, hotel,

restaurant, etc. which carry predefined semantical or functional information, key points for

animal trajectories, specifically in the case of seabirds are not having fixed locations nor

functionally predetermined. An option to approach this problem is to create hierarchical

key point clusters. This method identifies spatial super key points that are shared between

trajectories and each of the member key points could have a semantical feature assigned

to it. For instance, common path ways, foraging spots, or prey patches at sea could be

identified using this method.

4.3.3 Model Construction and Optimization

As mentioned earlier, a way to create contextual representation vectors of key points

is to maximize (4.9). The probability function p(uk|Λk) can be modelled with a SoftMax

function as

p(uk|Λk) =
eΛk .vk∑

k′∈K eΛk .vk′
(4.10)

where K is set of all key points in habitat. Λk is a D-dimensional contextual feature vector

and defined as

Λk =
∑
c∈C

vc (4.11)

where C is size of the context key points set. The loss function can be written as

−
∑
n∈N

log p(un|Λn) (4.12)

where, N is size of training set. This approach is analogous to continuous Bag-of-Words

(CBOW) model in NLP.

In [138], it was suggested that CBOW is faster and suitable for larger data sets. It is

while, skip-gram produces better representations for smaller data sets. Therefore, the model
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proposed here, we took an approach in line with skip-gram model. Here, the objective is

set to generate context key points given a key point. It is composed of a simple feedforward

neural network with a single hidden layer. The input layer is one-hot vector of a key point

and the output layer is a SoftMax function which estimates probabilities of context points

given that key point. Like CBOW, this network projects each discrete key point to a point on

D-Dimensional continuous vector space. Then, the D-dimensional representation vector is

projected back to a K-dimensional continuous vector. Conceptually, the optimized network

should project key points to vicinity of their context key points. Algebraically, this network

is described as following equations

p̂(kc|hn) =
ek̂c∑

k′∈K ek̂k′
(4.13)

k̂c = ΘT hn, Θ ∈ RD×K (4.14)

hn = kT
n Φ, Φ ∈ RK×D (4.15)

in which, p̂(kc|kn) is the estimated SoftMax probability of sample context key point k̂c given

the key point kn in data set and hn is its representation vector in the embedding space. A

schematic diagram of this model is shown in Figure 4.1.

For training this network, NCE function [141] is selected as loss function. For opti-

mization, stochastic gradient descent is used. This combination provides both scalability

and reliability to the training process. This setup is optimized as though the output proba-

bilities are significantly higher for the context key points rather than the rest. Regarding the

selection of context size C and the dimension of representation space D, they are manually

adjusted to achieve the optimum results.
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Figure 4.1: Each key point and its semantical features is encoded to a one-hot vector kn

which is then projected on embedding space hn and projected back to original space. After
applying SoftMax, the loss is computed against sampled context key points kc. This is
interpreted as the probability of k̂c appears in the sampled context key points of kn.

4.4 Experiments, Results and Discussion

In order to thoroughly address the utility of contextual vector embeddings in animal

movement ecology, this section is divided into two subsections. The first one demonstrates

the experimental results regarding the applicability of contextual vector embeddings in tra-

jectory data exploration and the effects of various model configurations on the distribution

of vector embeddings. In the second subsection, an application in gender classification is

experimented. As mentioned previously, the experiment was performed on Streaked Shear-

waters off the west coast of Japan. This data set was offered as part of CodaLab’s ABC 2018

competition [143]. This data set contains 906 trajectories recorded over the years in fall,

326 of them belong to male birds, 305 to females and 275 assigned for benchmarking.
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4.4.1 Trajectory Data Exploration

Trajectories are sequences of spatial data points. The length of these sequences can

vary significantly while their spatial footprints only slightly change. Therefore, compar-

ing trajectories with each other was not always a straightforward task to perform. There

are methods like dynamic time warping, sampling, etc. available to deal with the existing

challenges, but, most of these methods do not create an efficient metric numerical represen-

tation for the components of trajectories. Here we show how these metric representations

would help researchers to explore and analyze relationships between trajectories.

The first stage involves extracting key points from trajectories. Since, we are interested

in navigation trends, beginning and destination of travel segments in trajectories are ideal

key points. Assuming that these end points are clusters of points with low or stationary

speeds, only points with speeds lower than 2 m/s were considered for clustering. As for

the DBSCAN, the neighborhood radius and the minimum number of neighbors set to 1.5

km and 10 respectively. It resulted in 667 clusters. Out of these, 500 were selected as key

points based on their ubiquity and frequency in trajectories. Then one-hot encoded vectors

of these key points were chosen as input to skip-gram model. Initially, the embedding

vector size was set to 128, number of negative samples for the NCE was set to 8 and the

context window length was set to 10 in both past and future direction (later in this section,

we would discuss role of parameters like embedding vector size in the obtained results).

Then the network was trained in batches of 32 until average loss did not change significantly

which was at about 106 steps.

To visualize the resulted vector embeddings, dimensionality reduction methods PCA

[144] and t-SNE [145] were used to create 2d visualizations. Results are shown in Fig-

ure 4.2. It is observable that the embedding vectors are pulled closed to each other in some
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Figure 4.2: Trajectories, selected key points and visualizations of their embedding. (a) Tra-
jectories in geo-spatial space. The colony is designated by ^. (b) Extracted key points in
geo-spatial space. Marker size conveys information about the count of individual trajecto-
ries sharing the key point. (c) 2d visualization of key point embeddings using t-SNE. (d)
Identified densities of key point embeddings using the first 2 principal components. Den-
sities with minimum of 5 members within the distance of 0.03 are highlighted. Centroids
are designated by 4.
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regions while some points are positioned farther from the rest. To analyze the underlying

structure, vectors sampled from local neighborhoods in embedding space and are projected

back to geo-spatial space. For instance, the designated key points associated with clusters

11, 5, 10 and 3 in Figure 4.2(d) were projected back to geo-spatial space and plotted along

with their corresponding trajectories in Figure 4.3. It is apparent that they are not situated

at the same relative distances to each other both intra-cluster and inter-cluster wise. For

example, key points in clusters 11 and 5 share major geo-spatial bounding regions while

in the embedding space, they have no shared bounding regions. These points are not from

the immediate neighborhood in embedding space, but geo-spatially they are close. In fact,

even though these points seem to be geo-spatially close, they belong to trajectories with

different geometries. It is worth noting that there are distances in the embedding space that

differ from of those in the corresponding geo-spatial space. The embedding space in this

specific instance is optimized to represent key points’ sequential patterns and semantics.

Therefore, key points which are traversed consequently may not be in a close neighbor-

hood in geo-spatial space while in the respective embedding space, they appear to be closer

to each other. Analogous to text mining, for example, the optimized semantical embedding

space pulls “king” closer to “father” rather than “wing”, even though king and wing have

closer distance in character-based measurements. Furthermore, regarding the embedding

space created based on sequential semantics, it is noted that repetitive or cyclic trajectory

segments produce concentrated densities in both geo-spatial and the embedding space as

shown in Figure 4.4(c) and Figure 4.4(d). This is due to the fact that subsequent key points

are located in close neighborhood geo-spatial space.

In Figure 4.4, the corresponding trajectories with key points in clusters 8, 9, 2 and 4 are

illustrated. It is also apparent that clusters 8, and 9 have visually closer trajectories than 2,
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Figure 4.3: Corresponding trajectories of the key point clusters in Figure 4.2(d). key points
are identified by I. The colony is designated by ^. (a) Cluster 11 (b) Cluster 5 (c) Cluster
10 (d) Cluster 3
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and 4. It is while cluster 8 could be imagined as a transition point between 9 and 4. The

same could be applied to 8 between 2 and 4. This underlying structure could be very useful

in identifying navigational behaviors between species or discovering relationship between

trajectories. For instance, considering clusters 4, 8, 9 and 2 the proportions of connected

trajectories being of male gender are about 95%, 89%, 77% and 52% respectively. Though,

it should be noted that based on the construction of this data set, there is an unlikely chance

of these trajectories belong to an individual bird.

These could very well be advantageous in gender classification of trajectories. As

mentioned previously, environment is also an influential factor in generation of navigation

strategies. As a result, the clusters of key points in the embedding space could be attributed

to a certain weather condition or even habitat features like rivers, coasts, etc. However, due

to the absence of calendar information for this data set, it was not possible to test this case

for contemporary weather conditions. Up to this point, only sequential semantics in spatial

domain were used in construction of embedding vectors. In the next section, utilization of

different contextual information in other domains like time and activity is discussed. But,

before proceeding to the next experiment, it is worth to discuss tuning of the key model pa-

rameters like the representation space’s dimension and the context window size, and their

effects on the captured information. In regards to the dimension of embedding vectors,

certainly, information capacity of embedding vectors is directly related to their dimension-

ality, or dimension of the representation space. To examine this, the size of hidden layer

and context window in the embedding network was modified individually, and their corre-

sponding training results were compared. Part of these results are shown in Figure 4.5. In

Figure 4.5(a) and Figure 4.5(b) moving average of the validation error for the last 5e5 steps

and the mean and standard deviation of the last 1e5 steps in training of different model con-
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Figure 4.4: Corresponding trajectories of the key point clusters in Figure 4.2(d). key points
are identified by I. The colony is designated by ^. (a) Cluster 8 (b) Cluster 9 (c) Cluster
2 (d) Cluster 4
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Figure 4.5: Average validation errors for training different model configurations. The num-
bers proceeding the letters H and C represent the dimensionality of the embedding space
and the context window size. The number of negative samples and skip samples are set to
4 and 8 respectively and context window spanned bidirectionally. (a) Average of valida-
tion errors for different models in last 5e5 steps of training. It is apparent that 1e6 steps is
sufficient for the training as no further improvement is noticed. (b) Average and standard
deviation of the validation error for the last 1e5 steps of training. This demonstrates that
larger context window size requires greater size of embedding vector while it increases the
standard deviation.

figurations are shown respectively. The trend of error curves in Figure 4.5(a) shows that

there was no significant improvement expected beyond 1e6 training steps. In Figure 4.5(b),

it is seen the that networks with smaller hidden layer dimension have higher NCE loss with

larger size of context window, while, posted less standard deviation.

A large context window size attempts to map points farther down in the sequence onto

close vicinity of the sampled point. These points may not be geo-spatially close to the

sampled point. Therefore, if the context window size is set to 1 the embedding may seem

evenly distributed. This is due to the fact that few points in trajectories share the same

immediate neighbor key points. On the other hand, if the size of context window is in-
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creased, the possibility of sharing contextual key points becomes higher which results in

emergence of larger clusters in the embedding space. This effect could be seen using 2d t-

SNE embeddings of the trained representation vectors with different context window sizes

in Figure 4.6. The context window size is set to 1 for the embeddings shown in Figure 4.6(a)

and 8 for the ones shown in Figure 4.6(b). It is apparent that when the window size is small,

representation vectors are spread evenly in small concentrations in contrast to the greater

context window size with larger pronounced concentrations. In the end, the best choices

for the size of hidden layer and context window are dependent on the application, where

there are trade-offs to be made.

4.4.2 Gender-based Classification

This experiment aims to illustrate utility of using semantical embedding vectors in clas-

sification and prediction. Here, Streaked Shearwaters’ trajectories were used to predict their

gender. As mentioned previously, recent studies [11] have concluded the existence of gen-

der segregation in trajectories of Streaked Shearwaters. In this experiment, to benchmark

advantages of using embedding vectors, we have compared the classification results of a

recurrent neural network that was fed in raw spatial coordinates of key points with the re-

sults obtained from the same network except that it was used the embedding vectors of key

points as input. We also set them side by side with the results achieved using techniques in

[37], where LCSS and entropy were employed, and in previous chapter, where trajectories

were represented with fixed length vectors constructed based on key points and trajectories

frequencies.

To extract key points from different regions with different densities, DBSCAN cluster-

ing was performed in 5 levels. In the first level, the minimum distance was set to 1.5 km
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Figure 4.6: 2d t-SNE visualizations of the resulted embedding vectors for different model
configurations. The numbers proceeding the letters H and C represent the dimensionality of
the embedding space and the context window size bidirectionally. Model configurations:
(a) H16C1 (b) H16C8 (c) H32C4 (d) H32C16
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and the minimum number of neighbors was set to 10. At each level, the minimum distance

was doubled, and clustering was performed on the noise from the previous level. Then each

of these clusters was assigned a unique label. The results are shown in Figure 4.7.

As seen in the result, the lower levels capture topographical features. For instance, in

level 1 and level 2 key points, the colony’s location and persistent foraging locations are

identifiable. It is while level 4 and 5 generally captured transient locations which may

have caused by contemporary environmental conditions. Since the method introduced in

previous chapter used solely spatial information, here as well, the features were strictly

extracted from spatial information for comparison purposes. Based on the distribution of

average speed densities shown in Figure 4.8(a), for each trajectory segment containing a

key point, mean direction of flight associated with speeds equal or over 2.5 m/s and mean

direction of drift associated with speeds less than 2.5 m/s were extracted. These were

quantized in 4 directions and a neutral label. Histograms of this feature for female and

male birds are shown in Figure 4.8(c) and Figure 4.8(d).

These features designed to encapsulate information about local activities and environ-

ment factors in the corresponding key points. For the average sequence length of about 71

extracted from trajectories, the embedding vectors dimension was set to 64. Dictionary size

was set to top 500 frequent key points. In the case of recurrent neural network used here, a

long-short term memory (LSTM) network [146], with a single layer of 128 cells, was used.

Gender classification result achieved from embedding vectors with LSTM (LSTM-EMBD-

SP) was compared with the ones obtained from raw spatial coordinates of key points with

LSTM (LSTM-SP). These results are listed in Table 4.1.

There are two sets of results that are posted for embedding vectors. One is LSTM-

EMBD-SP-1 which has used vector representations created by skip-gram model and the
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(a) (b)

(c) (d)

Figure 4.7: Multi-level DBSCAN clustering of Streaked Shearwater trajectory points.
Level 0 is trajectory points. Level 1, 2, 3, 4 and 5 are detected clusters with neighbor-
hood radii set to 1.5, 3, 6, 12, 24 km respectively. Minimum neighbors number set to 10.
Each centroid’s marker size is proportional to the number of trajectories sharing the corre-
sponding key point. (a) Trajectory points assigned to the detected clusters for each level.
(b) Centroid points of detected clusters for each level. (c) Sample centroid points of Level
1 clusters. L1 0 is located at colony. (d) Sample centroid points of Level 3 clusters.
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(a) (b)
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Figure 4.8: Semantical features extracted for key points are based on speed, time and direc-
tion. Each one of these features is discrete and semantical. (a) Dominant mode of activity
as either flight mode or floating on water designated as drift mode based on 2.5 m/s speed
threshold. (b) Time spans for which birds remained at key points. (c) Discretized directions
female birds took at “L3 11” key point in Figure 4.7(d).
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Table 4.1: For each method, the mean and standard deviation of validation accuracies, and
test accuracy is listed.

Method Acc. Mean (%) Acc. Std.(%) Test Acc (%)*

LSTM-SP 57.11 3.88 57.09

LSTM-EMBD-SP-1 69.85 3.01 68.36

LSTM-EMBD-SP-2 68.31 2.67 -

LSTM-EMBD-SPT 73.10 2.22 -

SVM-ENTLCSS[37] 63.03 2.44 61.09

* Test accuracies are obtained via CodaLab’s ABC2018 [143] submissions.

other is LSTM-EMBD-SP-2 which has used the ones created by CBOW model. It is seen

that there is not a wide performance gap between them. In addition, the performance

of classification using entropy and LCSS (SVM-ENTLCSS) [37] was also included. For

this method, the highest performing parameters in the classifier were selected. It can be

seen that having vector embeddings as input has improved the performance over the other

method by about 7% and about 10% over the one using raw spatial coordinates as input.

Again, it should be noted that, only spatial information was utilized for creating features.

Closely examining variance of the validation results and validation data itself, it shows that,

certainly, there are trajectories that are short or spatially uninformative. These are probably

gender neutral and their key points are common among both genders. This is analogous

to neutral sentiment sentences in sentiment analysis of documents. Furthermore, time,

calendar and the features extracted from other domains may also be informative in gender

prediction of trajectories. Here, an additional experiment performed by including a new

feature constructed based on the continuous time span of a trajectory segment assigned to

a key point. In other words, it measures the amount of time that a seabird remains at a

key point. Figure 4.8(b) demonstrates the distribution of measured time spans in minutes

105



Chapter 4: Context-based Semantical Vectors for Modeling Latent Structures

for all trajectory key points. Two main densities were identified by a cut-off point set at

5 mins. With this new feature, the network was retrained and tested. Results, labelled as

LSTM-EMBD-SPT, are listed in Table 1. It is seen that it could achieve about 4% gain

over the results obtained from using only spatial features. This illustrates the potential of

features from other domains in further improvement of the classification results. However,

this is out of the scope of this work and it is suggested as a follow-up study. The main

objective here was to evaluate advantages of using embedding in trajectory classification.

4.5 Conclusions

In this chapter, we have proposed an alternative method for creating vector represen-

tations for animal trajectory key points. These representations designed to encapsulate

both spatial and semantical information of trajectory segments. This makes them applica-

ble to wide range of problems in trajectory mining such as segmentation, clustering and

classification. As part of our experiment, it was illustrated that these representations of-

fered improvements in gender-based classification for Streaked Shearwaters’ trajectories.

To construct these vectors, we have proposed skip-gram model to be utilized which brings

efficiency and scalability over solely using recurrent auto-encoders. With the approach pre-

sented in this study, researchers would be able to produce vector embeddings of very large

data sets belonging to various organisms. As a result, these embeddings could be counted

as numerical representations of behavioral features and they could be used to compare dif-

ferent species’ responses to different external and internal factors. In the case of Streaked

Shearwaters, it was shown that each gender has differentiable navigation strategies. An-

other point worth mentioning is the use of negative sampling that offered a very fast and

efficient approximation of the loss function, while avoided readjusting all network weights
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at each step in a noisy training set. This helps to nudge the vectors far from unlikely neigh-

borhoods at each step.

Like any other method, there are downsides to the proposed approach. Apparently, the

very first is in key point extraction. The clustering method’s hyper-parameters should be

adjusted based on the data. It is not always guaranteed that the same or even similar results

achieved on different data sets given keeping the hyper-parameters unchanged. Besides, in

case of classification, selection of vocabulary key points is very influential in final results.

It is necessary to choose the points which were shared between trajectories. This is anal-

ogous to sentiment analysis and language processing. For instance, if there are words in

a text that were not seen in any other document, it would be challenging to determine the

text’s sentiment. The last disadvantage to mention here is that the performance and gen-

eralization of this approach as a data driven method heavily relies on the size and quality

of the available training data. But, as stated before, with recent advances in data collection

and storage, this is the least of concerns.

After all, the final takeaway is considering interpretation of trajectories as sequences

of semantical key points which were generated given contemporary internal and external

conditions. Since these conditions are shared both temporally and spatially among a set of

trajectories, it would be possible to represent these trajectories in a semantical and more

informative continuous feature space as animals navigate using semantics rather than nu-

merical coordinates.
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Chapter 5

Encoding Trajectory using Recurrent

Neural Networks

5.1 Introduction

In previous chapters, sequential constraints in trajectories were generally relaxed. In

other words, temporal dimension was not considered as the primary variable in modeling

trajectories. In this chapter, we consider time as the primary variable and we attempt to

model temporal dynamics of animal trajectories. It is worth mentioning that we could still

consider trajectories at multiple temporal scales, but, the trajectory points are considered

in temporal order. Availability of efficient and light tracking sensors provided researchers

with each tracking data of individual organisms in finer resolutions. Since this data is

recorded in form of time series and in variable lengths, it is harder to compare or model

them in their original sequential representations. As stated previously, these coordinate

sequences may describe actions, behaviors and responses of animals in or to environment.

Hidden Markov models were a common tool for modeling trajectory dynamics in move-
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ment ecology [52]. However, after recent advances in efficiently training deep recurrent

neural networks (RNN) in both software and hardware side, they have become the top tier

sequence learning and classification tools. This ranges from very successful speech recog-

nition models [147] to playing video games [148]. They are supervised, semi-supervised

and unsupervised learning models [149, 150, 151]. Long short-term memory (LSTM) net-

works, a sub-variant of RNNs are very successful in house keeping the contents of hidden

states in a manner that they can memorize distinctive features in longer sequences [146].

A very powerful feature of RNNs is ability to map the variable length sequences into fixed

size vectors. Then these vectors could be used as representation of encoded sequences

[152]. Furthermore, these representation vectors can generate outputs based on their held

state either conditioned on the last output or independently [151]. Here, the objective is

to experiment LSTM networks in various configurations for encoding and modeling trajec-

tory data. The problem is approached in an unsupervised setup. Similar methods were used

for video and phrase representations [151, 153] where predictors and autoencoder models

learn the state vectors that can produce immediate outputs functioning as a predictor or

reproduce the input window functioning as a descriptor respectively. Then, we visualize

the local structure and topology of these vectors in latent space by embedding them in

lower dimensional mapping space using t-SNE method [145]. This would provide a richer

abstract information about the dynamical patterns in the trajectory data. The main contri-

bution of this chapter is unsupervised modeling of animal movement using deep RNNs and

it is partially published in [154].
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5.2 Preliminary Concepts

5.2.1 Recurrent Neural Networks

For an input sequence of Xt, t ∈ {1, ...,T } where T is time window length, an RNN

consists of T hidden vectors Ht and output vectors Yt as:

Ht = F (WH
X Xt + WH

H Ht−1 + bH) (5.1)

Yt = (WY
HHt + bY) (5.2)

where F is point-wise non-linearity function. Ht is the hidden state or recurrent vector.

Subscripts and superscripts for weights Wout
in determines the input and output dimension

alignments respectively. A multilayer version of RNNs is easily constructed by stacking

hidden units on top of each other. The equation for each internal layer could be described

as:

Hl
t = F (WH

H Hl−1
t + WH

H Hl
t−1 + bH) (5.3)

where Hl
t identifies the layer l’s hidden state vector at time step t. Three sets of weight

matrices WH
X , WH

H , and WY
H and biases bH and bY are learned using back propagation. Gen-

erally, in RNNs, there are two major issues with simple application of back propagation.

Exploding and vanishing gradient in long sequences. Exploding gradients could be avoided

using gradient clipping, where gradient values are restricted to a certain limits. Regarding

vanishing gradient issue, LSTM network architecture was proposed as a solution to this

problem [146]. LSTM networks are built of fundamental blocks called LSTM units. Each

unit, consists of a memory cell ct storing data at time step t which is controlled by non-

linearity function gates for reading or writing. These gates are commonly sigmoid func-

tions and namely are input gate it, forget or reset gate ft and output gate ot and described
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as following:

ft = σ(W f
XXt + W f

HHt−1 + W f
c ct−1 + b f ), (5.4)

it = σ(W i
XXt + W i

HHt−1 + W i
cct−1 + bi). (5.5)

The value of the ct is determined by point-wise product of previous value of the cell ct−1 and

output of forget gate ft summed with point-wise product of input gate it and non-linearity

tanh output of biased weighted sum of previous hidden state Ht−1 and current input vector

Xt as following:

ct = ft ◦ ct−1 + it ◦ tanh(Wc
XXt + W i

HHt−1 + bc) (5.6)

where, the symbol ◦ represents the point-wise or element-wise multiplication. Output of

each cell ct is non-linearity sigmoid output of biased weighted sum of Ht−1, xt, and ct. The

updated hidden state Ht is a weighted copy of output where weights are in range (−1, 1)

and are controlled by ct:

ot = σ(Wo
XXt + Wo

HHt−1 + Wo
c ct−1 + bo) (5.7)

Ht = ot ◦ tanh(ct) (5.8)

In equations above, the inclusion of weighted ct values in gates is called peephole connec-

tion. Similar to RNNs, LSTM units can be stacked in layers to construct deeper networks.

A variant of RNNs is bidirectional RNNs, and in case of LSTMs, they are called bidirec-

tional LSTM (BiLSTM) networks [155]. In bidirectional networks, hidden layers are run

in both forward and backward directions. Each direction’s hidden layer output contributes

to the network’s output as:

Yt = WY
H
−→
H t + WY

H
←−
H t + bY (5.9)

where
−→
H t and

←−
H t represent the forward and backward hidden layers’ outputs at time step

t. These networks specially benefit from exploitation of both future and past contexts. As
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for multilayer bidirectional LSTM networks, input for each layer’s forward and backward

LSTM block is written as:

Xl
t = WH

H
−→
H l−1

t + WH
H
←−
H l−1

t + bH (5.10)

A simpler form of RNN units are gated recurrent units (GRU) and were introduced in

[153]. The memory cell in GRUs controlled by set s and reset gates r defined as:

st = σ(W s
XXt + W i

HHt−1), (5.11)

rt = σ(Wr
XXt + W i

HHt−1). (5.12)

The memory cell ct which is also the output of the unit is described as:

ct = tanh(Wc
XXt + rt ◦Wc

HHt−1). (5.13)

Finally, the updated recurrent state is:

Ht = st ◦ Ht−1 + (1 − st) ◦ ct. (5.14)

5.2.2 Backpropagation Through Time

Given loss function value Lt for each time step of an RNN, stochastic gradient de-

scent and backpropagation algorithms are used to optimize the weight W .
. parameters of

the network. In order to update theses parameters,
∑

t∈T
∂Lt
∂W .

.
and

∑
t∈T

∂Lt
∂b. should be com-

puted. Referring to Eq. 5.2, it is seen that ∂Lt
∂WY

H
and ∂Lt

∂bY only depend on Ht. Therefore, their

gradients are straightforward and derived as:

∂Lt

∂WY
H

=
∂Lt

∂Yt

∂Yt

∂WY
H

(5.15)

However, for terms involved with recurrent state vector Ht−1, the calculation of gradient

become more complex. Since recurrent network’s weight parameters are shared over all
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time steps, their gradient is calculated by summing over backward procession in time. For

instance, for each ∂Lt
∂WH

H
is calculated as:

∂Lt

∂WH
H

=

t∑
τ=0

∂Lt

∂Yt

∂Yt

∂Ht

 t∏
τ′=τ+1

∂Hτ′

∂Hτ′−1

 ∂Hτ

∂WH
H

. (5.16)

Similarly, gradient updates for WH
X and more complex components in LSTMs and GRUs

could be derived. It is evident in Eq. 5.16 that longer time sequences will have adverse

effects on the numerical stability of the gradient updates. As mentioned earlier, LSTM or

GRU networks introduced as a remedy for diminishing or vanishing gradients due to repet-

itive multiplication of small numbers. On the other hand we could prevent the explosion of

gradients in case of large numbers multiplication by clamping the gradients or limiting the

number of steps such multiplications should be done.

5.2.3 Mixture Density Networks

If we suppose to provide a solution for inverse problem of a many-to-one forward prob-

lem, our model should be capable of dealing with one-to-many mappings. Most of re-

gression tools provide solutions with the assumption that underlying data has Gaussian or

Gaussian like distribution. This might not be the case for modeling physical factors which

are identified by the same outcome. In order to model multimodal distributions as such, we

could employ mixture density networks (MDN) proposed by Bishop in [156, 157]. These

networks introduced to deal with non-Gaussian problems like inverse problems. These net-

works are able to approximately model an arbitrary distribution using mixture components.

A standard Gaussian mixture model could be considered as:

P(Y |x) =
∑
c∈C

πc(x)N(Y |µµµc(x),σσσ2
c(x)) (5.17)
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The parameters of the distribution components are estimated by a neural network. Since

π(c) is a prior probability, it is estimated using so f tmax(.) function on |C| outputs of the

network as:

πc(x) =
eyπc∑

c′∈C eyπc′
(5.18)

where yπ is set of |C| outputs of the network assigned to estimation of prior probabilities πc.

Components’ means could be directly estimated using the network outputs yµ. But, in case

of variances, network outputs yσ should be passed through a function which has range of

positive real numbers. Therefore σσσ(x) is computed as:

σc(x) = eyσc . (5.19)

It should be noted that the components could be multivariate distributions where µµµc is a

multidimensional vector mean and σσσc is non-zero elements of Cholesky decomposition of

covariance matrix. In order to train MDN networks, log-likelihood of the data labels y

given network parameters is chosen as the objective function for optimization.

L =
∑
n∈N

log
[∑

c∈C

πc(xn,W)N(yn|µµµc(xn,W),σσσc(xn,W))
]

(5.20)

In order to use back propagation for training the network’s parameters, first we need to

compute the derivatives of output heads for components’ parameters.

∂L

∂yπk
= πkγk − γk + πk

∑
c∈C/k

γc = πk − γk (5.21)

where γ is written as:

γk =
πkNk∑

c∈C πcNc
. (5.22)

Given the equation for normal distribution as:

N(x|µ, σ) =
1

√
2πσ2

e
(x−µ)2

−2σ2 , (5.23)
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the derivatives with respect to mean and variance outputs are computed respectively as

following:

∂L

∂yµk
= γk

µk − y
σ2

k

(5.24)

∂L

∂yσk
= γk

1
σk
− γk

(µk − y)2

σ3
k

. (5.25)

The equations above could be also computed for multivariate Gaussian distributions. In

case of isotropic distribution, all equations remain almost the same other than means being

computed for each dimension and in variance equation, L2−norm is used to measure the

distance between data point and each components mean.

5.2.4 RNN Autoencoder

In certain applications, the objective is to replicate or copy the input data. This process

is performed through an internal or hidden layer that inscribes the information required for

reconstructing or generating the given input. Mathematically, this could be described as:

h = F (x) (5.26)

x̂ = G(h) (5.27)

where h is internal state or hidden layer of an autoencoder. F and G are called encoder

and decoder functions respectively. In general, autoencoders are designed in a way to

store essential information about input in their internal states, which could be imagined

as a surface or submanifold that input data resides in input feature space. This in other

words is dimensionality reduction or manifold learning. However, in recent years, autoen-

coders were expanded to probabilistic mappings and learning like variational models which
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makes them a state-of-art generative models. Two large groups of autoencoders are regu-

larized and undercomplete autoencoders. In case of undercomplete autoencoders, they act

as nonlinear principal component analysis (PCA). They have a mathematical description

as described in Eqs. 5.26 and 5.27. Both decoder and encoder functions could be modeled

using feedforward neural networks and their parameters could be optimized by minimizing

following loss function:

L = ∆(x, x̂) (5.28)

where ∆(., .) represents a desired dissimilarity measure between original input data and the

reconstructed one. The main feature of this type of autoencoders is reduced dimensionality

of their internal space or h. With that, networks learn to project the input data from an input

space RN to a submanifold RD where D < N and the conserved information about the data

is maximized. In case of regularized autoencoders, the objective is not limiting the capac-

ity of transferred information, rather representation of data with different properties like

sparseness, robustness to noise. To construct a regularized autoencoder, a regularization

term could be added to the loss function as:

L = ∆(x, x̂) + Λ(h) (5.29)

where Λ(h) is a candidate regularization term [158, 159, 160, 161, 162]. It is also possible

to use data augmentation, where the output of decoder could be compared with augmented

inputs as in denoising autoencoders [163, 164, 165].

Variational autoencoders (VAE) are approximate inference approach to construction

and modeling of autoencoders [166, 167]. In this approach, encoder and decoder are mod-

eled as conditional distributions Q(h|x) and P(x̂|h) respectively. To approximate these dis-

tributions, it is possible to define P(h), a probability density function over a D dimensional

latent space H and a neural network model which projects the sampled latent vector to
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N dimensional data space X. The network’s parameters are optimized to maximize the

following marginal probability:

P(x) =

∫
P(x|h; W)P(h)dh (5.30)

It is seen that VAEs could act as generator models as well. We can directly sample from

latent distribution and project it to data space.

Like autoencoder models in feedforward neural network models, sequential autoen-

coders are tasked to reconstruct the input data from latent variables. But in contrast, they

receive variable length input sequences with variable lengths. These networks are opti-

mized in a way that the reproduce the input sequence as their outputs. They consist of two

main blocks of encoder and decoder as well. The encoder is fed with input sequence and

then the last hidden state of encoder network is used as initial state of decoder network.

Then it is trained in a way to generate the input sequence in reverse order [151]. This

would guarantee that the hidden state contains distinctive features for generating input data

sequence.

5.2.5 RNN Predictor

Given a sample sequence of data, an RNN in predictor configuration is able to produce

a latent state representation for the stretch of length T and predict the subsequent points.

This unsupervised learning setup could be reconfigured as a supervised one by using the

subsequent points as target labels for training of the recurrent network. This setup was

experimented in predicting subsequent video frames in [151, 168]. Hypothetically, the

hidden states that are capable of generating correct predictions encapsulate essential or the

most important features or information about the sequence. The prediction window could

be designed with variable length while designing the appropriate loss functions are vital to
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the success of these models [169]. They could be constructed in two variants. Conditional

variant which produces the output based on previously generated output fed back to the

network. The other variant receives no information regarding the previously generated

output.

5.2.6 Conditional or Unconditional Recurrence

As discussed in [151] there is a design decision on choosing the decoder part of the

network models to be conditional or unconditional. Conditional decoder operates by being

fed by the previously generated output. There is an advantage to this approach where the

network does model multiple mode target sequence distribution. Apparently, unconditional

decoder targeting multiple mode targets would results in average of all modes. On the other

hand, conditional decoder tends to exploit the immediate correlations between the input

sequence. Therefore, it generates outputs based on these similarities rather that generating

targets from deep feature information embedded in the hidden vector.

5.3 Methodology

5.3.1 Problem Formulation

In this chapter, we concentrate on modeling path procession process in animal move-

ment. As stated in Chapter 1, this process is influenced by other internal and external

processes. Here, we assume all of these processes are represented by a state vector Λ ∈ RD.

The movement process for time step t could be written as:

ut+1 = F (Λt, ut) (5.31)
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We are going to model F with an LSTM autoencoder and optimize it to be able to re-

produce the trajectories. But, we employ encoders in various configurations. First, we

attempt to model the trajectories utilizing undercomplete autoencoder model. In this part

we use standard LSTMs in four different configurations of unconditional and conditional

predictors and autoencoders. The Euclidean distance is simply chosen as the loss func-

tion. The objective is to explore the capabilities of LSTMs in encode and decoding animal

movements.

As one suspects. animal movements in environment could be a multimodal process.

In other words, it is many-to-one mapping, where different circumstances may lead to a

same path. Therefore, instead of simply using Euclidean loss as cost function, we propose

generating Gaussian mixture components as output and using likelihood of the sequence u

with length T as:

P(u) =
∏
t∈T

[∑
c∈C

πc
t P(ut+1|µµµ

c
t ,σσσ

c
t )
]

(5.32)

where C is the set of mixture components. Consequently, to estimate the loss of decoder,

negative log-likelihood is computed.

5.3.2 Undercomplete Autoencoder Model

To compress trajectory sequence data in a lower dimensional vector, we use vanilla au-

toencoder model with Euclidean loss in both descriptor and predictor configurations. Both

network models employed here consist of multiple LSTM layers. LSTM cells feature peep-

hole connections with forget bias. As a regularizer, in the encoder component, two dropout

layers are placed, one after input vectors and one before the top most layer. In addition,

a bidirectional LSTM encoder is also constructed with the same number of layers. The

decoder network receives a copy of the encoder network’s last state as initial state. Outputs
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(a) (b)

Figure 5.1: (a) Multilayer LSTM predictor network diagram. Xt is input data to the encoder
part is the estimated input vector at time t + 1. Predictor inputs are previous step’s output.
(b) Multilayer LSTM autoencoder network diagram. Xt is input data to the encoder part.
X̄t is decoded input from hidden state at time t.

of decoder block are weighted to produce the immediate data points in the sequence con-

ditioned on the previously generated points. The cost function chosen to be sum of square

Euclidean loss with L2 weight regularizer as:

L =
∑
t∈T

(ut − ût)2 + λ||W||2, (5.33)

where ût is the estimated trajectory point at time step t by decoder and W is network pa-

rameters. Both descriptor and predictor networks have similar structures other than the way

their decoder components estimates the points. In descriptor model, decoder component

produces the points that were fed to encoder. This can be trained to be in forward or reverse

order. But, in case of predictor model, decoder component, generates the subsequent points

in the trajectory. The length of predicted sequence could be shorter or longer than the input

sequence to encoder.
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5.3.3 Mixture Density Encoder Model

The internal structure of this model is similar to a standard LSTM network. The only

point it differs is its observation model. This network models the inputs as a mixture of

Gaussian components [170]. In case of geospatial trajectories, these components are bi-

variate with 5 parameters and a prior weight. So given the number of components C, the

output dimension of our network at each step should be 6 × C. The loss function for a

sequence is written as:

L(x) =
∑
t∈T

− log
[∑

c∈C

πc
tN(x|µµµc

t ,σσσ
c
t , ρ

c
t )
]

(5.34)

where bivariate Gaussian N(.) is calculated as:

N(x|µµµ,ΣΣΣ) =
1

2π|ΣΣΣ|
e−

1
2 (x−µµµ)TΣΣΣ−1(x−µµµ) (5.35)

where ΣΣΣ is covariance matrix and µµµ is mean vector. They are defined as:

µµµ =

µx

µy

 , ΣΣΣ =

 σ2
x ρσxσy

ρσxσy σ2
y

 (5.36)

To produce the parameter set {µk
x ∈ R, µ

k
y ∈ R, σ

k
x > 0, σk

y > 0, ρk ∈ (−1, 1), πk ∈ (0, 1)}k∈C

from the outputs of the network, following functions are applied on top:

ρk = tanh(ŷk) (5.37)

σk
. = eŷk

(5.38)

πk =
eŷk∑

c∈C eŷc
(5.39)

µk
. = ŷk (5.40)

Given equations above, the computation graph of the loss function could be constructed

and applying backpropagation, network weight gradients are computed.
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(a) (b)

Figure 5.2: (a) Trajectories of seagulls and (b) trajectories of shearwaters.

5.4 Experiments, Results and Discussion

5.4.1 Undercomplete Autoencoder Model

In this experiment, GPS data recorded by loggers attached to Shearwaters and Gulls

provided by [135]. Trajectory points are resampled in 1 minute periods and divided into

travel segments for training. In addition, trajectory points were mapped to Cartesian coor-

dinates, northings and eastings, using Universal Mercator projection. Figure 5.2 demon-

strates the plotted trajectories of both species on the map.

To experiment with the network capacity in encoding trajectories, number of layers set

to values 4 and 8. Besides LSTM’s cells size was set to 10, 20, 30 up to 100 based on time

steps length. To avoid overfitting the dropout probability set to 0.4. Prediction window and

number of time steps were varied to observe the network memory capabilities.

Training parameters in this experiment varied to achieve the optimal results. Learning
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Table 5.1: Experiment results.

Model Train ¯err(0.1o) Test ¯err(0.1o)

LSTM4L10C10S+Lr0.01 (P) 0.120870 0.030668

BiLSTM4L10C5S+Lr0.001 (P) 0.011750 0.016677

BiLSTM4L10C+Lr0.0001 (D) 0.019439 0.021809

BiLSTM4L20C10S+Lr0.001 (P) 0.011811 0.069301

BiLSTM8L30C10S+Lr0.001 (P) 0.017418 0.026124

LSTM4L20C+Lr0.001 (D) 0.035561 0.054156

rate was initialized with range from 0.01 to 0.0001 and its decay rate set to 0.5 at each 100

iteration. Batch sizes varied based on the trajectory lengths along with number of iterations.

For testing results, depending on the training set size about 10% of it left for testing.

A set of notable results of the experiment are shown in Table.1. Numbers after letter

C is cell size, L is layer size and Lr represents the learning rate. Networks with more cell

and layers are tend to have smoother training. The bidirectional LSTMs has fast steady

decrease rate in loss while standard unidirectional LSTM has less steep descent. Increase

in learning rate help the rate of descent while it causes oscillations. Starting with very low

learning rates decreases the slope of descent and subsequently slow convergence.

Training trajectories with constraints such as nest number achieve better training ac-

curacy while surprisingly has lower test success. It shows that there overlapping parts of

space which are explored by multiple birds in similar ways. If training set restricted to only

a bird, the held-out test regions achieve higher losses. Increase in number of cells and layer

achieve better results in training while tests show signs of overfitting and shown in Figure

5.3.

Overall performance of autoencoders is lower than predictor as the length of generated
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(a) (b)

Figure 5.3: Optimization cost plots. Network parameters are indicated with numbers pro-
ceeding letters L, C, S, and Lr for number of layers, cell size, prediction steps and learning
rate respectively. All sequence lengths are set to 20 time steps. (a) Training cost plots. (b)
Test cost plots of prediction networks.

sequences were longer. For instance, an autoencoder with 20 time step units needs to

generate 20 data points while in predictor models with time steps predicting 10 or 5 steps

ahead had higher performance. In general, the average lowest cost was in neighborhood

of 0.15 degrees which is not significantly accurate as in Figure 5.4 . However, considering

noisy nature of the measurements and non-deterministic behavior of the birds on top of

environmental factors, it is apparent that only spatial context information would not provide

highly accurate predictions.

Besides predictions, hidden states of these network would provide information about

the traversed trajectory. This can be used to segment and compare the bird trajectories with

variable lengths with each other. As shown in Figure 5.5 an embedding of the hidden states

of the trajectory should provide abstract level information about hidden states of the birds.

Trajectory features such as twists, tangles and spatial contexts would map the states on
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(a) (b)

Figure 5.4: (a) Sample of predicted trajectory points from trained hidden states on previous
20 time steps, projection window of 5 time steps, with sampling rate of 1 minute and con-
ditioned on previous output. (b) Sample of generated trajectory points from hidden states
encoded with input vectors of 20 time steps at sampling ratio of 1 minutes and conditioned
on previous output.

different parts of the embedding space. Moreover, vector embedding demonstrated degree

of distinct features learned by the network. For instance, Figure 5.5(a), and Figure 5.5(b)

show two different embedding of latent states. States which contain more information are

embedded in segments rather than being spread uniformly.

5.4.2 Mixture Density Encoder Model

In this part, we use relative northing and easting to the previous point as input to the net-

work as well.But, here, we segmented trajectories at very long gaps and computed relative

northing δn and eastings δe for consequent trajectory points as following [171, 172]:

δe = (
a
χ

+ h) cos φδλ − (
a(1 − e2)

χ3 + h) sin φδφδλ cos φδλδh, (5.41)

δn = (
a(1 − e2)

χ3 + h)δφ +
3
2

a cos φ sin φe2δφ2 + δhδφ, (5.42)
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(a) (b)

Figure 5.5: Sample embedding maps of trained hidden state vectors using t-SNE. (a) Em-
beddings of the hidden state vectors form clusters. (b) Embeddings are spread uniformly
which mey convey they contain arbitrary information.

(a) (b)

Figure 5.6: Trajectory segments labeled according to the hidden states’ embeddings in (a)
Figure 5.5(a). (b) Figure 5.5(b).
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where

χ2 = 1 − e2 sin2 φ,

δφ, δλ, and δh are changes in latitude, longitude and height respectively. a and e2 are

semi-major axis and first eccentricity squared for WGS84 datum as:

e2 = 2 f − f 2, (5.43)

where f is flattening for WGS84.

As for network architectures, we increased the number of cells and reduce the number

of layers. Networks with 1, 2 and 3 layers with 64, 128 and 256 LSTM cell size where

configured and tested. With increase in cell size, the sequence length is set to 100, 200

and 300 respectively. Finally, there are two options considered for number of mixture

components of the output, 10 and 20. With regards to optimization, RMSProp [173] and

Adam [174] were used with gradients clipped at 10. In case of RMSProp, learning rate

was set to 0.01, decay to 0.95, momentum to 0.9, and epsilon to 10−4. For Adam, learning

rate and decay rate set to the same values as RMSProp, decay rates of the first and second

moments set to 0.9, 0.999 respectively, and epsilon set to 10−8. Training and validation

result for a selection of network configurations are shown in Figure 5.7 and Figure 5.8 for

gulls and shearwaters respectively.

It is observed that with increase in number of layers the network loss drops but this

decrease is not significant between networks with single and two layers. It is also seen

that with increase in sequence length loss increases. The overfitting u-turn is also clearly

visible in validation results of single layer network with sequence length of 300. It is also

possible to see differences between outcomes of two species. Shearwaters settle at higher

NLL values comparing to seagulls. This is expected as shearwater trajectories are gener-

ally of longer ranges. This is also observable in Figure 5.2. Shearwater trajectories cover
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(a) (b)

(c) (d)

Figure 5.7: Training and validation negative log loss (NLL) plots of the first 50 epochs
for seagulls on the left and right respectively. (a), (b) Networks with different number of
layers. (c), (d) Networks with different sequence lengths

.
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(a) (b)

Figure 5.8: NLL plots of the first 50 epochs for shearwaters with networks with different
number of layers. (a) Training results. (b) Validation results.

.

vaster span of geospatial canvas in contrast to seagulls. It is seen that the validation re-

sults demonstrate some degree of instability. This, even though not very pronounced in

training results, might be originated from the nature of the input data not being normal. A

remedy for this issue could be scaling, clipping and normalization of the input data. As a

result, experiments performed to compare the results obtained using scaled, clamped and

normalized input data. In case of seagulls, northing eastings are normalized to have stan-

dard deviation of unity and training and validation results are shown in Figure 5.9. It is

seen that the validation result is slightly improved but not considerably. In case of shear-

waters, both scaling and normalization of northings and eastings were experimented and

results are shown in Figure 5.10. It is seen that normalization alone did not improve the

performance significantly, however, scaling with an appropriate number would improve

both training and validation results considerably. This should be noted that based on dy-

namical constraints of the species the scale and clamp factor could be chosen. For instance,
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(a) (b)

Figure 5.9: NLL plots for normalized and raw input gulls data. Suffix N denotes that the
northing and easting steps are normalized in contrast to being only scaled. (a) Training
results. (b) Validation results.

a maximum displacement could be considered and divide all northing and easting could

be divided by such value and larger entries could be clamped to one. Another choice is to

discard the segments with larger displacements. The latter may be preferable in larger data

sets.

The other issue to be noted is ensuring flow of gradient in backpropagation. With help

PCA [144] and t-SNE [145] it is possible to examine that weights of network layers are

trained to being optimized by backpropagation. Instances of the first and second compo-

nents for PCA and t-SNE projections of the network layers’ weights are shown in Figure

5.11 for networks trained on trajectories of shearwaters and gulls.

Here, the gradients are clamped between [−10, 10] in both Adam and RMSProp opti-

mizers. Figure 5.12 shows the training and validation plots for both optimizers. It is seen

that both optimizers converge to close values while Adam takes the faster path.

The training could be stopped given the training and validation losses converge to a
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(a) (b)

(c) (d)

Figure 5.10: NLL plots for normalized and scaled input shearwaters data. Training plots on
the right and validation plots are on the left. (a), (b) Normalized inputs versus raw northings
and eastings. Suffix N denotes that the northing and easting steps are normalized. (c), (d)
Scaled and clamped inputs. The number proceeding C denotes the value at which the
northing eastings are scaled.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.11: 1st and 2nd components of PCA and t-SNE embeddings of network layers’
weights for networks with single, two and three layers. Columns on the left are PCA and
on the right are t-SNE. (a), (c), (e) Trained on gulls trajectories. (b), (d), (f) Trained on
shearwaters trajectories.
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(a) (b)

Figure 5.12: NLL plots for Adam and RMSProp optimizers. (a) Training results. (b)
Validation results.

lower bound and do not change significantly. This may be variable based on the number of

layers in the network and the sequence length in addition to the data set. Models trained on

shearwaters trajectories converged later. After stopping the training, we are able to sample

trajectories from the networks by feeding zero states and zero coordinates for the first input.

Figure 5.13 and Figure 5.14 show few unbiased sampled trajectories with lengths of 200 for

both gulls and shearwaters. It is apparent that the sampled trajectories have distinguishable

features particular to each species. For instance, gulls trajectories contains more stops and

shorter ranges in contrast to the sampled trajectories from shearwater model. Later on to

confirm these particularities, we draw sample populations from each model and compare

their statistics.

To compare the generated results with the trajectories, a population of 100 trajectory

sets of 2000 sampled points drawn from gull and shearwater models. We compare the

main kinematic properties of trajectories, mean and standard deviation of speeds, and the
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Figure 5.13: Unbiased samples of trajectories drawn from gull and shearwater models
shown on the left and right columns respectively. Green 4 denotes the start and red I

determines the end of the segment.
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Figure 5.14: Unbiased samples of trajectories drawn from gull and shearwater models
shown on the left and right columns respectively. Green 4 denotes the start and red I

determines the end of the segment.

fraction of points that are considered stationary. This is determined by speed threshold

of 2.5m/s, where segments with speeds below the threshold considered stationary. Figure

5.16 and Figure 5.17 compare the kinematic statistics of the generated trajectories and

the data. It is seen that in case of seagulls, the speed means are centered about 22km/h

(21.9km/h) while mean of the data set is about 32km/h (31.6km/h). It is also should be

considered that the data is not distributed normally. It also clearly observed that there are

two main components in distribution of stationary points and standard deviation of speeds.

The generated samples fall in the major components neighborhood. Regarding shearwaters,

generated and data components are closer while standard deviation of speeds are centered

much higher in generated samples. It is also possible to examine the performance of the

trained networks by reconstruction of sections of trajectories. The length of section was

selected to be 60 (1hr) and we draw population of 100 segments from test data. In this

manner, we can measure root mean squared errors (RMSE) as listed in Table 5.2, Figure

5.18 and Figure 5.19 for gulls and shearwaters respectively. It is seen that errors are smaller
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Table 5.2: Expected RMSE statistical measures of 100 reconstructed segments with length
60 (1hr) sampled trajectories from gulls and shearwaters test sets.

Measure Sample Mean (km) Sample Std.(km)

Euclidean Distance (Gulls) 0.24 1.40

Eastings (Gulls) 0.51 2.67

Northings (Gulls) 0.53 2.78

Euclidean Distance (Shearwaters) 1.33 5.91

Eastings (Shearwaters) 2.32 13.18

Northings (Shearwaters) 2.18 12.26

in case of gulls as expected, however, there is close standard deviation. This might be due

to the sea trajectories of gulls which are inherently hard to predict without being provided

with information about dynamics of environment such as wind speeds. Moreover, with

increase in the length of sections to be reconstructed the errors increase as well. It should

be noted that test sequences should be lengthier than 500 points to allow clamped input of

300 points prior to the reconstruction.

It is also to generate trajectories based on specific information available in prior about

trajectories. This is also referred to as primed sampling in [170]. Instead of simply training

trajectories on only a group of trajectories, a segment of a trajectory is fed to the network

and the rest is generated. In addition, this could be preconditioned on the geospatial region

of the trajectory. This is done by slightly modifying the network and providing input infor-

mation about the zone to the hidden layers of the network as in [170, 175]. To demonstrate

the first layer’s information with regards to the trajectory points, its first and second PCA

components plotted in 5.15.

Using trainable weights, it is possible to control the outputs of the network given its

belief as interpreted in [170]. Likewise, here a weight window was designed with size of
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(a) (b)

Figure 5.15: (a) The 1st and 2nd principal components of first layer states of the network
plotted and its KMean clusters. (b) The corresponding generated trajectory and associated
points to each cluster.

spatial grid of 24 × 28 half degree squares. Every grid cell assigned a one-hot vector as

well. The discrete convolution of the window weight ψψψ and grid vectors q were supplied to

the network as following:

H1
t = F (WH

Xt
Xt + WH

H H1
t−1 + WH

Λt−1
Λt−1 + bH), (5.44)

Λt =
∑
s∈S

ψψψ(t, s)qs, (5.45)

ψψψ(t, s) =
∑
g∈G

α
g
t e−β

g
t (κg

t −s)2
, (5.46)

where S is the set of trajectory segments grid cells, s is current segment at time t, and G is

the number of Gaussian functions. αg
t , βg

t and κg
t are optimizable parameters obtained from

the first layer of the network, as in [170], as following:

ht = Wh
H1 H1

t + bh, (5.47)

αt = ehαt , (5.48)
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βt = ehβt , (5.49)

κt = κt−1 + ehκt , (5.50)

where ht is the tapped output from first layer, αt is interpreted as importance factor, βt as

spread and κt as the offset of the window from start of the segment. These parameters

are also optimized using backpropagation from the network gradients as well. Details

are elaborated in [170]. Figure 5.20 illustrates few examples of the generated shearwater

trajectory samples preconditioned on grid locations at Awashima colony and the Tsugaru

strait cells. The latter primed sampled on the male gender. It is seen that they demonstrate

different navigation strategies given the geospatial information. In addition, as seen in

previous chapters, at the strait, it was more likely that the male shearwaters took the path

through the strait.

5.5 Conclusions

In this chapter we demonstrated an attempt to explore potential capabilities of RNNs

and in particular LSTM networks for learning trajectory features of marine birds and pre-

dicting track points. As the main objective, it was shown that these networks could learn

a contextual feature vector representation of the trajectory segments. Given these vectors

it would be possible to compare different trajectory features and in outlook, they present

encoded behavior of the focal species.

The first notable point regarding prediction using undercomplete encoders was, if con-

ditional decoding on previous outputs performed on very lengthy ranges, there would be

drift introduced in the predicted trajectories. It strictly limits the prediction window length

and to avoid it, the input data should be updated with original data points. This is expected
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Figure 5.16: Mean (top) and standard deviation (middle) of speeds, and fraction of station-
ary points (bottom) in generated trajectories and trajectory data set of seagulls on the left
and right columns respectively.
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Figure 5.17: Mean (top) and standard deviation (middle) of speeds, and fraction of station-
ary points (bottom) in generated trajectories and trajectory data set of shearwaters on the
left and right columns respectively.
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Figure 5.18: Distribution of trajectory segment reconstruction mean and std of RMSE mea-
sured in Euclidean distance, northing and easting dimensions in gulls trajectories.
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Figure 5.19: Distribution of trajectory segment reconstruction mean and std of RMSE mea-
sured in Euclidean distance, northing and easting dimensions in shearwaters trajectories.
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(a)

(b) (c)

Figure 5.20: Sampled trajectory segments conditioned on geospatial and gender states.
(a) Conditioned on the grid location of colony (b) Conditioned on the grid location at the
straight and male gender
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as the training data points are multi-modal with high variance.

More regrading the prediction and modeling, there was major considerations to put

into account. Given the total number of trajectory points belonging to all birds available

for training, there was the problem of multi-target or multi-modal modeling arising. This

produced mixed and erratic test results. Therefore, in this work, we demonstrated us-

ing mixture density networks which has a probabilistic multi-component output structure.

With these powerful networks, we were able to generate random trajectories conditioned

on the geospatial grid data points which emulated the birds trajectories. Specifically, with

addition of gender specific trajectory data, conditioning outputs on gender states, it demon-

strates a specific bias towards certain directions accordingly. This reconfirms the results

obtained in previous states regarding gender specific trajectory paths. Besides, training

these networks on two different bird species, seagulls and shearwaters, we could generate

trajectories particular to each species in terms of general navigational behavior.

The internal states of these networks could be very well used to classify the expressed

behaviors along trajectories segments. For instance, one could use these vectors to identify

random-walk behavior along trajectories which could be helpful to identify the stochastic

movements in search of prey or fleeing predators along trajectories.

Unfortunately, while powerful in emulation or generating parallel paths, these networks

provide very little insight into the mechanics of the animal movement. Therefore, their use

should be with certain considerations about their viabilities in the intended applications.
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Chapter 6

Visualization of Movement in Dynamic

Environments

6.1 Introduction

In the recent decades, wildlife tracking technologies benefited significantly from ad-

vancements in silicon based processing and storage technologies. More efficient and higher

capacity embedded systems with tiny footprints made it possible to attach smart tracking

hardware to animals and record their trajectory information for significantly longer periods.

Specifically in marine biology, equipped with such tracking devices, researchers gained un-

precedented access into the daily life of marine birds. On the other hand, this increased the

volume and scale of collected data significantly which required researchers to utilize new

tools to visualize and analyze the recorded data. With regards to behaviors like migra-

tion which demonstrate a substantial shift in location of species, solely putting the spatial

data on the map in chronological order might be satisfactory. However, for the analysis

of behaviors which involve direct interaction with environment such as course correction
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in windy environments, visualization rather requires inclusion of environment information

such as wind direction and speed. Since these animals interact with their environments,

it is essential to put the sensory data in their context for a more informative simulating

visualization. With that in mind, this chapter introduces a software model that delivers

chronological combination of species kinematics and environmental data visualizations.

The overall objective is to present a more accurate illustration of organismal behaviors in

their surrounding environment dynamics. Contents of this chapter were published in [176]

6.2 Design Methodology

6.2.1 Software Structure Model

This software was designed around web application models like ERDDAP [177], OPeN-

DAP [178], etc. This makes it portable and accessible across various platforms from users’

perspective. In terms of data storage and maintenance, this centralized approach puts the

data in one place and identical set of data is accessed by researchers across an organiza-

tion or communities. It also makes it possible to share computing resources and offload

burden of performing computationally heavy analytic or preprocessing procedures locally

on researchers’ machines. For instance, interpolation of environmental maps, or coordi-

nate projection of large data sets are being performed on server side. In addition, choice

of mapping software could be customizable. This feature gives researchers flexibility to

utilize their desired web-based mapping software. There are few downsides to this ap-

proach which are requirements of reliable connectivity and sufficient bandwidth. However,

currently they are less of concern.

The overall structure of the proposed software is as follows. It consists of 6 essential
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functioning blocks as shown in Figure 6.1(a). First is trajectory data management interface

which handles data files and provides the kinematic data to the application. This encapsu-

lates task of parsing and preprocessing data file for mapping interface. The second block is

responsible for loading and parsing environmental data and presenting them either in form

of spatial or spatiotemporal measurement arrays to map projection block. The Third block

handles the projection of the environmental data arrays. This gives the software the capa-

bility of using maps with custom projection standards. The Fourth block handles the main

processes for data synchronization, analysis and visualization animations. The Fifth block

interfaces with map visualization software. This block provides the data overlays and tra-

jectories to the mapping application. The last block handles user inputs and settings for data

selection and visualization. This modular structure makes the application both customiz-

able and scalable. For instance, to handle a new set of data file types, it simply requires

only to create a new data file parser and if necessary compatible user interface dialogs

without hindering the work of other modules as illustrated in Figure 6.1(b). Moreover, the

server-side software can be programmed in any server supported Common Gateway Inter-

face (CGI) scripting language, since every frontend data set handler object encapsulates its

own CGI target. The server-client model enables system to be highly scalable on the back-

end, while on the client side, the hardware performance would only determine the amount

of data to be displayed or analyzed locally.

6.2.2 Trajectory Data Interface Module

The trajectory data is provided to the mapping interface in at least 3 arrays of latitudes,

longitudes, timestamps. The main function of this module is generally retrieving, parsing

and preprocessing data from database or directly from sensors. Standard output of this
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(a) (b)

Figure 6.1: (a) The Essential functioning blocks of the software (b) Candidate data file
handler model

module is JSON object containing mentioned data arrays in chronological order. This

module interacts with users through user interface block.

6.2.3 Environmental Data Interface Module

Environmental data, specifically oceanic and atmospheric measurements are stored in

variety of formats. The essential information required for visualization is spatial coordi-

nates and respecting measurements. Therefore, task of this block is to retrieve, parse, and

preprocess environmental data set files. This module also communicates with user via the

user interface block for the selection of desired measurements.

6.2.4 Map Projection Module

Generally, environmental data are visualized on map as overlay images. These over-

lays, depending on the dimension of their measurement variable or variables could be color
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(a) (b)

Figure 6.2: (a) Map overlay image of wind speed and direction vectors. Map data is cour-
tesy of ©2017 Google, ZENRIN and SK telecom. (b) Rainbow color map image of sea
surface temperature values.

maps, vector fields, or color coded vector fields. For instance, wind, or ocean current di-

rections are visualized as vector overlays. Figure 6.2(a) shows an instance of wind speed

overlay. In contrast, scalar measurement like sea surface temperatures are visualized as

color maps where temperature values are mapped into a color along a color spectrum like

Rainbow as shown in Figure 6.2(b). Based on the projection standard required by the map-

ping application, spatial mapping transform of the spatial measurements onto teh image

layers are generated and passed to the mapping interface block. In addition, map projec-

tion module does optionally perform preprocessing and interpolation. Choices of mapping

scale, color map spectrum and data aggregations are customizable and presented to the user

through the user interface module.
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6.2.5 Process Engine

The process engine module is the main processing block of the visualization software. It

handles the task of synchronizing trajectory data and environmental maps and transferring

them to the map interface module. Additionally, it controls the sampling rate and locally

performed windowed analytical functions on trajectory data configured through the user

interface module. This module expects standard protocol inputs from the trajectory and

environment modules.

6.2.6 Map Interface Module

The map Interface module is the communication link between the visualization and

mapping softwares. It handles the task of transferring trajectory data and environmental

maps for rendering to mapping applications. As a result, the choice of mapping application

could be diversified by adding different map interfaces to the software.

6.2.7 User Interface Module

Lastly, the final essential module is user interface which communicates user configura-

tions to other blocks. This module encapsulates the frontend dialogs, libraries and backend

CGI functions interfacing with other blocks if necessary. For instance, map interface block

dialogs require no backend implementations while the first three blocks require both fron-

tend and backend implementations.
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6.3 Major Functionalities

To demonstrate the major functionalities of the proposed software, a prototype is pre-

sented here. This prototype has the following setup. Its trajectory module handles CSV file

types. The user selects the spatial and temporal data columns through the user interface.

In addition, auxiliary data columns could be provided and visualized by dashboard plots

or heatmap layers. The environmental data interface includes functionality to retrieve and

parse data from NetCDF [179] and CSV file types. This data could be either solely spa-

tial or spatiotemporal in which map interface engine optionally updates the spatial data per

time stamps of trajectory data. The map application is selected to be Google Maps [60] and

mapping projection uses Web Mercator projection [180] to produce environmental data im-

age overlays. The analytic engine contains windowed operations and filters such as mean,

variance, etc. and visualizes the results on dashboard plots.

6.3.1 Itinerary Reconstruction

The primary function of this prototype designed to be the reconstruction bird travel

routes including the environmental parameters. Timeline and sampling rate controls allow

users to skim through the itineraries and observe the trends or peculiarities of the animal

behavior with regards to their ambient features. In addition, users have ability to reverse,

pause or manually advance the timeline as shown in Figure 6.3(a). Overlay controls allow

users to enable, disable, hide or update the environment data overlays as demonstrated in

Figure 6.3(b).
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(a) (b)

Figure 6.3: (a) Timeline controls in interactive visualization of bird trajectory. (b) Overlay
controls for environment data layers. Maps data are courtesy of ©2017 Google, ZENRIN
and SK telecom.

6.3.2 Windowed Analysis Visualization

The Second major tool available in the presented software does perform windowed time

series analysis on the trajectory data. These could be selected from a library of functions

supported by the application. The results are visualized using plots or with heat map layers

directly on the map. This tool also could be utilized for filtering of the trajectory data

retrieved from sensors directly. Figure 6.4 shows samples of windowed analysis plots.

Figure 6.5 shows heatmaps visualizing second moment or variance of the velocity over a

centralized window at each sample point.

6.3.3 Multiple Object Visualization

An another feature supported by this application is the ability to synchronize multiple

trajectories’ data and visualize their paths on the map. This is useful for studying flocking,
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(a) (b)

Figure 6.4: Moving average plots of the selected variables. (a) Sea surface temperatures
overlay. Map data is courtesy of©2017 Google, ZENRIN and SK telecom. (b) Sea surface
temperatures and chlorophyll level overlays. All map data and imagery are courtesy of
©2017 Google, ZENRIN imagery and©2017 TerraMetrics.

foraging and group migration behavior in the seabirds. There are also aggregation functions

available to be applied on multiple birds’ data. An example of such function is centroid of

a cluster of multiple birds’ data points.

6.4 Conclusions

In summary, the presented application here, provides a comprehensive, flexible and

interactive tool for visualizing animals movement paths combined with environment vari-

ables along those routes. This benefits the researchers in a sense that investigating the latent

influences of environmental stimuli on movement behavior organisms in dynamical envi-

ronments becomes more tangible. It gives researchers ability to apply various functions on

the contemporary data and observe the results visually along the procession of trajectories.
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(a) (b)

Figure 6.5: Visualizing centralized sample moving variance of velocities using weighted
heat maps. (a) Single trajectory. (b) Multiple trajectories. Maps data are courtesy of©2017
Google, ZENRIN and SK telecom.

Also from development standpoint, the modular structure of the software allows expand-

ability and compatibility. The support for more data types or maps could be added easily

without interfering with existing functionalities. An anticipating upgrade to this software

is adding support for interactive labeling of trajectory points in order to be used in train-

ing of supervised machine learning models. Interactive visual interface available in this

application provides foundation for developing such functionalities.
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Conclusions

In this chapter, we recap the topics discussed in this thesis and briefly review the results

and conclusions reached at the end of each chapter with a suggested roadmap forward for

follow up works on the problems approached in this thesis, and lastly, our final thoughts.

An overview diagram is shown in Figure 7.1. In general, this thesis was centered around

the application of data science and computer science in ecology of animal movement. It

was motivated by the fact that, studying animal movements help us to understand their be-

havior and consequently their environment, and trajectory data mining techniques provide

essential solutions for achieving this efficiently at larger scales.

In Chapter 2, we started with trajectory data acquisition from stereo images, presented

as a case study of bat trajectory reconstruction. A solution to the problem of object detec-

tion, identification and correspondence in order to reconstruct 3D trajectories of flying bats

was proposed in form of multi-stage motion-based 3D trajectory reconstruction algorithm.

The proposed model-based technique attempts to estimate 3D motion of the moving com-

ponents in the scene and identify the desired objects based on their movement model. It was

demonstrated that in comparison with single view 2D tracking methods that are commonly
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Figure 7.1: A modular overview of this thesis and suggested follow up works shaded in
yellow.
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used, the proposed approached performed better, specifically in scenarios with occlusions

caused by multi-object path crossings. It should be noted that this performance advantage

was achieved at a computational cost which makes this approach an offline method and not

suitable for densely populated scenes. Therefore, improving the performance is considered

a follow up objective which could be approached in both algorithm design and software

implementation. Furthermore, pose estimation using motion components and multi-view

stereo configurations for solving occlusion problems are also worthy of being explored .

Contributions in this chapter provide a significant assistance to researchers studying bat

trajectories in terms of trajectory data collection. Then, the collected trajectory data could

be used in conjunction with methods presented in Chapter 5 to model the movement of

flying bats.

In Chapter 3, we focused on extracting spatial features from animal movement which

describe behaviors or trajectories specific to a particular group of species. We have at-

tempted to exploit spatial features and properties forged in a grid-less form in trajectories

as results of cognitive processes in focal organisms. This leads us to identification of those

particular organisms associated with such features. We designated these features to key

points along trajectories which could identify internal states, navigation capacities, motion

capacities and even the state external factors in animal movement paths. We argued that,

the sequential order between these key points turn irrelevant given such information. In

other words, they become independent of previous point in temporal domain conditioned

on certain information about their internal state, motion capacity, navigation capacity or

external factors. To test this, this approach was employed for gender-based classification

of a species of marine birds. With rigorous testing we demonstrated that in fact using key

points, given a set of trajectories of an organism, the gender could be determined. With this
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approach, input feature space dimension was significantly reduced which could be very ad-

vantageous in dealing with large scale data sets. However, there were also encounters with

issues regarding key point extraction methods which could cause instability in the results.

Hence, we suggest further work on key point extraction methods as follow up study for

Chapter 3. Besides, further work could be done in modeling of key points distributions

over temporal slices of the geospatial plane using probabilistic inference . This may pro-

vide clues about the effects of external factors like environment on distribution of the key

points in trajectories.

Chapter 4 followed up on the issue of the efficient and informative extraction and repre-

sentation of trajectory key points from the previous chapter. In this chapter, a density-based

hierarchical approach towards key point extraction was taken in order to recognize contin-

gency of the key points being along an itinerary. This opens the gate to extraction of more

complex semantical information from simply geospatial coordinates. However, this would

increase the input feature space dimension significantly. In order to remedy that, contex-

tual embedding of input feature space inspired by Skip-gram model was used to project the

input space onto a more locally informative embedding space. These embedding vectors

provide a more informative numerical representation for key points along trajectories. It is

also possible to identify the main components of the input space based on the topology of

the embedding space. As a result, it becomes possible to represent trajectories with fixed

length vectors as well. It was demonstrated that using embedding vectors in place of sim-

ply one-hot vectors as inputs improved the classification results significantly. It was also

illustrated that with this approach, it was possible to embed wide range of semantical infor-

mation into representation space which could lead to improvements in classification results.

It was also noted that there was still issue of stability lingering which could be originating
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from key point extraction. As stated before, follow up work on key point extraction tech-

niques is suggested. Another takeaway from this chapter was the potential in identification

of trajectories with similar sequential elements. It is a powerful tool in data exploration,

feature correlation analysis and pattern discovery. This would also be beneficial in discov-

ering contingent factors like environment events that influenced the movement paths. This

as well, suggested as a follow up work. Certainly, topography and dynamical elements of

the environment are huge determinants of the distribution of key points along movement

paths.

In Chapter 5, we focused on sequential dynamics of animal movement. We presented

two LSTM based models for encoding prominent information about structure of movement

path. First we employed undercomplete recurrent autoencoder models to investigate the ca-

pability of such networks in encoding dynamics of trajectories. It was demonstrated that

multimodal nature of trajectory data impeded the expected performance. It was seen that,

these models tended to produce averaged results for multimodal outputs. To tackle this is-

sue, we employed mixture density network as the output layer of the recurrent network. The

outcome shown to be improved greatly in addition to gaining ability for generating move-

ment paths. This ability in conjunction with slight modifications in the network was used

to generate trajectories conditioned on certain prior information like gender or geospatial

information. This suggested that the hidden and memory states of recurrent network main-

tain such information. This information encoded in internal states of the network could

be utilized to discriminate or compare trajectory segments or trajectories in whole. This is

comparable to hidden Markov models used for similar purposes. However, in contrast to

HMMs, LSTMs have ability to encode trajectory information and events on a continuous

manifold as distributed representations rather than discrete states. The results shown that
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these networks were able to learn dynamical features particular to different species or dif-

ferent groups within a same species with distinguishable movement patterns or dynamics.

One topic which was not addressed in this chapter was probabilistic modeling of transitions

between trajectory steps. The latter in addition to exploring the application of variational

recurrent models in discovering latent structures in animal movement data are suggested as

a follow up endeavors. These probabilistic approaches towards state transitions may pro-

vide better descriptions of procession of internal and external states along trajectories of

animals without having direct access to those states.

Through this research a strong necessity for a visualization tool which enables sim-

ulation of environmental factors and conditions along animal movement was sensed. In

Chapter 6, we proposed a software model which enables researchers simple and compre-

hensive access to the available environmental data associated with the collected trajectory

data. This was accompanied by an interactive visualization tool capable of reconstruction

of trajectories in their environments with desired variables. This certainly help researchers

having a better understanding of animal movement influenced by topological and environ-

mental factors. This work could be followed up by addition of advance feature components

such as virtual reality and 3D simulation of environment dynamics which accommodate

immersive analytics solutions for the researchers.

Overall, from trajectory modeling perspective, this work presented three major ap-

proaches to modeling trajectories that are geospectral, geospatiotemporal, and dynamical.

In the first approach, only geospatial data was used for modeling. In the second one, tem-

poral domain was utilized but not as the primary variable and in the third approach time

was the primary variable in modeling the trajectories. Utilization of each approach cer-

tainly depends on the objectives and type of data available to the researchers. This choice

162



Chapter 7: Conclusions

of approach is critical in efficiency, fitness and viability of the results. It is worth mention-

ing again that, a major process involved in animal movement is cognitive process. While

trajectory data consists of sequence of numerical coordinates, these numbers are encoded

as semantical representations in organism cognitive process. Thence, discovering and em-

ploying such representation spaces are essential in analyzing, modeling and describing

animal movement patterns.
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