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Abstract

Owing to the recent advancement of deep learning, applications of deep Convolutional Neu-

ral Networks (CNNs) have been developed for various industry purposes (e.g., image classifi-

cation, segmentation, detection, etc.). However, evidence that CNNs are vulnerable to image

distortions have been witnessed in many recent studies in computer vision. This results in prob-

lems in the applications. For example, a self-driving car or drone which uses CNNs-based

detection systems, could crash to objects in bad weather or when it moves fast. These are due to

the distortions (e.g., raindrops, motion-blur) on the images taken by the on-vehicle camera(s).

In this thesis, we study the problems of restoring clear images from their distorted versions

on different factors, aiming at solving the aforementioned problem in real-world applications.

we focus on designing effective deep neural networks for solving these problems. In Chapter

2, we propose a novel style of residual connections dubbed “dual residual connection”, which

exploits the potential of paired operations, e.g., up- and down-sampling or convolution with

large- and small-size kernels. We design a modular block implementing this connection style; it

is equipped with two containers to which arbitrary paired operations are inserted. Adopting the

“unraveled” view of the residual networks proposed by Veit et al., we point out that a stack of the

proposed modular blocks allows the first operation in a block interact with the second operation

in any subsequent blocks. Specifying the two operations in each of the stacked blocks, we build

a complete network for each individual task of image restoration. We have experimentally

evaluated the proposed approach on five image restoration tasks using nine datasets. The results

show that the proposed networks with properly chosen paired operations outperform previous

methods on almost all of the tasks and datasets.

Recent studies have demonstrated that training a CNN for multiple purposes, e.g., a CNN is



trained on image caption retrieval, visual question answering, and visual grounding for learn-

ing vision-language representations, can lead performance improvement on these tasks by the

synergetic effects. In Chapter 3, we apply this idea to image restoration tasks, we show that

a single network having a single input and multiple output branches can solve multiple image

restoration tasks. This is made possible by improving the attention mechanism and an internal

structure of the basic blocks of dual residual connection. Experimental results show that the

proposed approach achieves a new state-of-the-art performance on motion blur removal, haze

removal (both in PSNR/SSIM) and JPEG artifact removal (in SSIM). To the author’s knowl-

edge, this is the first report of successful multi-task learning on image restoration tasks, which

are diverse in the sense that they appear to be dissimilar on the surface level.

Restoring the clear image from its degraded versions corresponds to retrieving the visually

original information of the clear image. This naturally becomes a promising solution to the

problem of low classification accuracy on distorted images. Specifically, a CNN trained for

image restoration is used as a “data-cleaner” for the CNNs trained for classification. In Chap-

ter 4, we experimentally analyzed this approach on a material recognition task with additive

Gaussian noise. The results show that the application of image restoration CNN improves the

classification accuracy on noisy images up to humans’ level. Based on this founding, we throw

an attractive discussion bridging CNNs and human vision for future works.

In Chapter 5, we conduct a deeper discussion between CNNs and humans. It is observed that

artificial systems are now rival to humans in several pattern recognition tasks. However, this is

only the case with the tasks for which correct answers exist independent of human perception.

There is another type of tasks for which what to predict is human perception itself, in which

there are often individual differences. Then, there are no longer single “correct” answers to

predict, which makes evaluation of artificial systems difficult. In this chapter, focusing on

pairwise ranking tasks sensitive to individual differences, we propose an evaluation method.

Given a ranking result for multiple item pairs that is generated by an artificial system, the

proposed method quantifies the probability that the same ranking result will be generated by

humans, and judges if it is distinguishable from human-generated results. Taking as an example

a task of ranking image pairs according to material attributes of objects, we demonstrate how

the proposed method works.
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Chapter 1

Introduction

1.1 Background

Images are important information carriers in our daily life. A picture (frame) taken by a on-

vehicle camera on a street contains cars, pedestrians, buildings of different size; blue regions

for the sky, white line segments for traffic lanes, etc. A picture of a glass mug taken towards

a window has images of the mug and the view outside the window projected through the mug.

Human’s vision system is very effective at making use of images for getting information in-

cluding those of high level. For example, humans can recognize different objects (e.g., cars,

pedestrians, buildings) shown in the street view picture. They can also estimate the distances

(depth) between the camera and the objects, the direction a car is moving into and even how

crowded is the street by the single picture. For the picture of the glass mug, identifying its

material, shape as well as estimating the weight, fragility or transparency of the mug are not

difficult for humans. Replicating human’s vision system by some forms for applications is the

ultimate target for engineers. This has been challenged in various studies. A group of these stud-

ies, which aim at replicating human’s vision system using computational models, and applying

them for solving engineering problems, is named Computer Vision.

Machine learning is an application of artificial intelligence (AI) that makes systems to au-

tomatically learn and improve from experience without being explicitly programmed. Machine

learning focuses on the development of computer programs that can access data and use it learn
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for themselves. Recently, deep Convolutional Neural Networks (CNNs) which is one type of

machine learning algorithms, has been progressively developed for computer vision. One of

its most successful instances of the applications to computer vision is image classification, i.e.,

classifying an image to one of a few given classes. In 2016, a series of CNNs constructed with

residual connections [48] achieved humans’ level accuracy on classifying 10,000 large scale im-

ages to 1,000 classes [108]. In the following year, CNNs [55] consisting of densely connected

layers further improved the performance on the same task. Beside this, CNNs have been ap-

plied to many other tasks such as object detection and segmentation [78, 43], depth estimation

[53] and image generation [41], implying their great potential for solving various problems like

humans do.

However, a big gap between human vision system and CNNs developed for computer vision

has been found by recent studies as well as in this thesis. That is, CNNs are not robust to image

distortion (e.g., noise, blur, geometric transformation, etc.) compared to human’s. For example,

we train CNNs using clean images and test them using images with additive Gaussian noise.

It is observed that the CNNs can classify clean images as accurately as humans do, while the

classification accuracy dropped with the noise level more steeply for the CNNs than for humans.

Detailed information for the experiment is provided in Chapter 4. A similarly observation is

reported in Geirhos et al.’s studies [36, 37] which are conducted in a scenario different to ours.

Vulnerability of CNNs to image distortions results in problems in many applications of com-

puter vision. For instance, driving a car in a heavy rain/fog day can cause bad performance of

the CNN-based systems relying on on-vehicle cameras. A CNN-based traffic violation detec-

tion system can be un-functional during nights due to increased noise level and lack of light.

This kind of problems are categorized to the problem of domain-shift. Specifically, the data

on which a CNN was trained is different from those on which the CNN is used for inference.

Problems related to domain-shift has been studied by various works from different perspectives

in the literature. For example, Cohen et al.[22] studied dealing with the domain-shift problems

caused by geometric transformation. They generalized standard convolutional layers to a new

version for improving the model’s robustness to translations and rotations, based on the theo-

retical foundations of symmetry groups. Cohen et al.[21] proposed a building block of CNNs

to deal with the geometric transformation caused by projecting a spherical image to a plane. On
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the other hand, studies such as [90, 89, 28, 120] focus on analyzing the domain-shift caused by

image intensity changes. M.Dezfooli et al.[90] show that CNNs’ prediction of an image can

be altered by changing the intensities of a small number of pixels. Su et al.[120] showed that

for some images, one can perturb CNNs’ prediction by changing only one pixel of the input

image. The recent study by Geirhos et al.[37] demonstrates a promising explanation to such

observations. They pointed out that CNNs trained in the standard way are biased towards us-

ing textures to classify images. They also proposed that encouraging CNNs to learn and use

shape-based features over texture-based features to classify images can improve their robust-

ness to a wide range of image distortions to some extent. Sun et al.[124] demonstrates that an

intensity distortion can shift the histogram of the values of a layer’s activation maps, thus re-

sults in bad performance of classification. They proposed to use floor / exponential functions to

quantify activation values for each layer, aiming at cancelling the shift of histogram. However,

the previous methods are either not applicable to multiple types of domain-shift (specifically,

image distortions), or not powerful enough to achieve a good improvement of performance on

these factors. In this thesis, we pursue more powerful approaches for removing various types of

image distortions, or equivalently, restoring the clean images from their distorted versions.

1.2 Theoretical Foundations for Supervised

Learning

Supervised learning is a machine learning task of inferring a function from a labeled training

dataset. In a supervised learning problem [5], a learning system receives a number of samples

(i.e., pairs of an input and its label), and computes a hypothesis function to approximate the

true (target) mapping from inputs to labels of the learning problem, by fitting the function to

the samples. The true mapping is also referred as the optimal function for the learning system

to infer, and the training samples are usually considered as a mount of partial information about

the true mapping. Solving a supervised learning problem with a neural network, the task is then

posed as adjusting the parameters’ states of the network in response to the training dataset [5].

The method by which the parameters are adjusted constitutes a learning algorithm. In another
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words, a learning algorithm describes what the architecture of a learning system is, and how to

adjust its parameters’ states. The training data of a learning task is considered as a set of pairs

(x, y) where x ∈ X is an input (e.g. image) to the network, and y ∈ Y is the associated true

label. Formally, we define a training data z by

z = ((x1, y1), (x2, y2), . . . , (xm, ym)) = (z1, z2, . . . , zm) ∈ Zm. (1.1)

Assume that each pair zi = (xi, yi) where i ∈ (0,m], i ∈ Z+, is generated (i.e., drawn i.i.d.)

according to a fix distribution P on Z = X × Y , that reflects the probability of an input xi

jointly appearing with the specific label yi, which is also called a pattern, the probability of a

training data z is defined as the product of the probabilities of all the m pairs

Pm(z) =
m∏
i=1

P (xi, yi). (1.2)

Next, we define the space of functions a neural network can approximate. In order to do that,

we first define a task-specific space S for data, such that S ⊆ Z , representing all the possible

inputs and labels related to the task. For example, considering the task of image based binary

classification, the task-specific space S consists of all the combinations of the related images

and {0, 1}. At the same time, when considering a regression task such as removing Gaussian

noise from a natural image, the task-specific space S becomes combinations of all the Gaussian-

noisy versions (= X ⊂ Y) of natural images and the union (= Y ⊂ Y) of natural images and

their noisy versions, where X ⊂ Y . Additionally, we define a measure D that computes the

difference between two objects (e.g., images) by

D(v1, v2) =
N∑
n=1

αndn(v1, v2), (1.3)

where αn ∈ R, dn means a function (e.g. Euclidean distance function ||v1 − v2||2) computing

distance between two vectors. Based on the two definitions made above, and considering a

scenario of regression task (for image restoration), we define the space of hypothesis functions
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on S as H|S , and the function of error by

er(h) = P {(x, y) ∈ S : D(h(x), y) > γ} , (1.4)

where γ ∈ R is a threshold that controls the strictness of judging a system’s prediction as “bad”,

and the error er(h) can be interpreted as the probability for drawing a “bad” (x, y) conditioned

on the hypothesis function h(·). The purpose for training a neural network is to compute a

hypothesis function making the error the minimum, that is in fact searching for the optimal

function h? over the hypotheses function space H|S . Formally, the minimum error made by the

h? is written as

opt(H) = inf {er(h)} , h∈H. (1.5)

However, such an minimum (and the values in its close neighborhood) is (are) usually impossi-

ble to achieve by a neural network with some learning algorithm, in many real-world problems.

Pursuing a practically applicable way for measuring how good a neural network is trained, we

employ

er(h) < opt(H) + ε (1.6)

for the measurement. ε ∈ (0, 1) is called accuracy parameter that represents how much is

the error a hypotheses function h made larger than the opt(H) on S. In such a way that we

can consider the hypotheses function h computed by a neural network is ε-good according to

1.6. Recall that it is mentioned at the beginning that a learning system computes a hypotheses

function by fitting it to the training dataset. A training dataset z is generated according to a

probabilistic model (1.2), thus it is not guaranteed that the hypothesis function can always be

ε-good. To handle this problem, equation (1.6) is reformulated within a probabilistic model by

Pm {er(h) < opt(H) + ε} ≥ 1− δ, (1.7)

where δ ∈ (0, 1) is called confidence parameter, and m represent the size of the training data

z. The interpretation of equation (1.7) is that, we at least hope to ensure that the hypothesis

function h is ε-good with a high probability which is specifically at least 1 - δ. Finally, we
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formally write learning algorithm [5] that we have mentioned few times above. A learning

algorithm L for H|S is a function

L :
∞⋃
m=1

Zm → H, (1.8)

that maps the set of training datasets of all possible size m (except empty training dataset, i.e.,

m = 0) to H|S , with the the property that, for any ε, σ ∈ (0, 1) the following holds:

Pm {er(L(z)) < opt(H) + ε} ≥ 1− δ. (1.9)

It is obvious that the dataset’s size m should vary inversely to ε, σ and γ (recall (1.4)), reflect-

ing that a larger number of training samples is required for a better performance. An intuitive

interpretation to equation (1.9) is that, given a fixed learning algorithm, one could train a neural

network to have better performance with a higher probability by adding more training samples.

On the other hand, given a set of training samples of fixed size, one could expect better per-

formance with higher a probability by applying a smarter learning algorithm. In practice, most

related studies as well as my research apply to the later. In this thesis, we focus on making a

smarter learning algorithm by pursuing effective designs of neural network architecture on im-

age restoration tasks. We propose a basic building block (DuRB) for effectively leveraging the

potential of paired operations, and design entire networks for different image restoration tasks

with the DuRB. The experimental results show that my networks outperform the state-of-the-art

methods in five image restoration tasks and nine benchmark datasets.

1.3 Convolutional Neural Networks

In this section, we introduce i) basic operations used in my research, and ii) the main back-

ground on which my proposed network was developed.

1.3.1 Two-Dimensional (2D) Convolution

A 2D-convolution is a single computation of taking the weighted sum of the elements covered

by a convolutional filter, which is a matrix holding the weights. A convolutional computation
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Figure 1-1: A visual example of 2D-convolution. g, h and u means an input array, an 2D-

convolutional filter of size = 3× 3 and the output, respectively.

outputs a scalar value. Conducting 2D-convolution on a two dimensional array (e.g., a gray-

scale image) is equivalent to sliding the convolutional filter over the array with a specified stride.

A 2D-convolution with a I × J filter is formally defined by

ux,y =
I−1∑
i=0

J−1∑
j=0

g(x+ i, y + j)h(i, j), (1.10)

where x and y denote the coordinate of a pixel of the input array. g(·) and h(·) mean the values

of the input array and the filter at a coordinate. The convolutional operation is illustrated in

Fig .1-1.

In modern CNNs, information is usually stored as tensors having more than two dimensions

(specifically, three or four dimensions). The 2D-convolution is thus generalized to be competi-

tive with this setting. Specifically, each convolutional filter becomes a tensor of size K× I×J ,

whereK is the number of I×J filters, the same to the channel number of the input. In addition,

a bias term b is usually added to a 2D convolutional result in modern CNNs. The formulation

1.10 is thus revised to be

ux,y =
K−1∑
k=0

I−1∑
i=0

J−1∑
j=0

g(x+ i, y + j, k)h(i, j, k) + b. (1.11)
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In a convolutional layer of a CNN, 2D-convolutional operators are stacked independently of

each other, performing the computation defined by 1.11. The number of the operators (i.e. the

dimension of the convolutional layer) is called channel number, usually denoted by C. It is

noteworthy that i) the channel number of a layer is equivalent to the dimension of the tensor

outputted by the layer, and ii) each channel has an independent bias term b.

1.3.2 Batch Normalization

Batch Normalization [56] is a layer-wise normalization method against to a problem, called

internal covariate shift, which refers to the fact that the distribution of a layer’s input changes,

as the parameters of the previous layers change during training a CNN. When the input’s distri-

bution shifts around for each iteration or epoch, the parameters of the layer and its later layers

do not have a stable ground to stand on to be updated for learning features, which thus re-

sults in a complicated training of CNNs and requirement of lower learning rates and careful

parameter initialization. Batch Normalization alleviates this problem by controlling the mean

and the standard deviation of a layer’s input. It first standardizing the layer’s input using the

mean and standard deviation computed in a mini-batch, then it re-scales and shifts the input

by a linear transformation with two parameters (γ and β) learned in the training. This process

makes the distribution of a layer’s input have a stable mean and standard deviation, against

to updating the parameters in the early layers. Formally, Batch Normalization is defined as

following. In training, for a layer (e.g. 2D-convolutional layer) with a K-dimensional input

x = (x(1), x(2) . . . x(k)), Batch Normalization is a function

BNγ,β : x→ y, (1.12)

where x, y ∈ RK×P×Q, P and Q are the height and width of a feature map, and γ, β ∈ RK ,

such that each element x(k) is first standardized by

x̂(k) =
x(k) − E[x(k)]

σ(k)
, (1.13)
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then transformed by

y(k) = γ(k)x̂(k) + β(k). (1.14)

γ(k) and β(k) are two trainable parameters. E[x(k)] and σ(k) mean the expectation and the stan-

dard deviation of the activation values in the kth dimension in a mini-batch, which are computed

by

E[x(k)] =
1

MPQ

M∑
m=1

P∑
p=1

Q∑
q=1

x(k)m,p,q, (1.15)

and

σ(k) =

√√√√ε+
1

MPQ

M∑
m=1

P∑
p=1

Q∑
q=1

(x
(k)
m,p,q − E[x(k)])2, (1.16)

where M means the number of training images within a mini-batch (i.e. batch-size), and ε ∈ R

is a constant added in the computation for numerical stability.

In the inference time, the E[x(k)] and σ(k) are replaced with the expectation of each, denoted

by E(k)
inf and σ(k)

inf , computed over training mini-batches. For the sake of clarity of notions, we

denote the input of a layer of a test sample by xte ∈ RK , and the value at its kth dimension by

x
(k)
te , against to that of a training sample x(k). The computations of E(k)

inf and σ(k)
inf are originally

defined as

E(k)
inf = Ebatch[E[x(k)]], (1.17)

and

σ
(k)
inf =

√
M

M − 1
Ebatch[σ(k)2], (1.18)

where Ebatch[·] means the operation of computing expectation over training mini-batches, and

the M
M−1 is used for the unbiased variance estimate according to the Bessel’s correction. It is

noteworthy that popular deep learning libraries such as PyTorch [99] or TensorFlow [1] have

their own versions of implementation for Batch Normalization, which might be slightly different

from the original version introduced above. However, we don’t include the related details in this

thesis.
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1.3.3 Instance Normalization

Instance Normalization [128] is a modified version of Batch Normalization. The main differ-

ence is that it computes the E[x(k)] and σ(k) within each feature map of a single sample, and the

computation is independent of other samples in a mini-batch. Formally, the E[x(k)] and σ(k) are

defined by

E[x(k)] =
1

PQ

P∑
p=1

Q∑
q=1

x(k)p,q , (1.19)

and

σ =

√√√√ε+
1

PQ

P∑
p=1

Q∑
q=1

(x
(k)
p,q − E[x(k)])2. (1.20)

It is noteworthy that Instance Normalization uses the same computation for training and infer-

ence.

1.3.4 Activation Functions
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2.0 Hyperbolic tangent
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Figure 1-2: Left and middle: Sigmoid functions. Right: Rectified Linear Units (ReLU)

Sigmoid function It refers to the family of functions having “S” curves. Two widely used

examples are given here: logistic function and hyperbolic tangent (tanh) function. Logistic

function takes values of z in the range of (−∞,+∞) of R, and maps them into (0, 1). tanh

function takes values of z from the same range as logistic function, and maps them into (−1, 1).
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Formally, their are defined by the following equations;

Logistic function: f(µ) =
1

1 + e−z
, (1.21)

and

Tanh function: tanh(z) =
ez − e−z

ez + e−z
, (1.22)

respectively. Both logistic function and tanh function have two properties, which are i) the

output of the function will be saturated when the absolute value of the input z becomes large;

and ii) the output value of the function grows smoothly as the input value becomes large. Visual

examples of the two functions are given in Figure 1-2, on the left and middle.

Rectified Linear Unit (ReLU) [94] It has become one of the most popular activation functions

used for training deep neural network algorithms in the recent years. A ReLU is defined by

ReLU(z) = max(0, z). (1.23)

It takes takes values of z in the range of (−∞,+∞) of R, and maps them into [0,∞). It’s shape

is illustrated on the right hand of Figure 1-2.

(a) (b)

Figure 1-3: (a) is a multi-layers perceptron. (b) illustrates the effects of Dropout on the multi-

layer perceptron.
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1.3.5 Dropout

Dropout [119] is a method used for resolving overfitting problems for deep neural networks.

The term “dropout” refers to dropping out units in training a neural network. By dropping a

unit out (temporarily removing it) from the network, we mean all its incoming and outgoing

connections are removed simultaneously as shown in Fig. 1-3. The sub-figure (a) illustrates a

standard multi-layers perceptron which consists of layers of fully-connected (fc) layers. The

sub-figure (b) illustrates the effects of Droput on the multi-layers perception. The choice of

which units to drop is random. In the simplest case, each unit is retained with a fixed probability

p independent of other units, where p is a hyper-parameter defined by the user.

1.3.6 Softmax

Softmax(x) : RT → RT , maps a vector of T real numbers into a probability distribution, such

that each element in its output is in the interval (0, 1), and the summation over all elements is 1.

Formally, it is defined by

Softmax(x)i =
exi∑T
t=1 e

xt
, for i = 1, . . . , T. (1.24)

This function is often used with the last layer of a CNN when the CNN is trained for classifi-

cation. Assuming such a scenario, the Softmax function takes as input the output vector of the

last layer, and outputs a posterior probability for each class, representing the confidence of the

CNNs’ decision to the class.

1.3.7 Performance Metrics

Mean Square Error (MSE) It is also known as L2 loss, or Quadratic loss, when it is employed

for training a learning system for regression. In the scenario of image-to-image transfer tasks,

it is formally defined by

MSE ≡ 1

CWH

C∑
c=1

W∑
x=1

H∑
y=1

(ŷc,x,y − yc,x,y)2, (1.25)
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where C, W and H are the channel number, width and height of the output image ŷ and the

ground truth image y.

Mean Absolute Error (MAE) It is known as L1 loss, formally defined by

MAE ≡ 1

CWH

C∑
c=1

W∑
x=1

H∑
y=1

|ŷc,x,y − yc,x,y|. (1.26)

It is noteworthy that when C, W and H are all equal to 1, the aforementioned metrics can be

used on single real values (i.e., ŷ and y ∈ R).

Structural Similarity (SSIM) Index It is a perceptual metric that measures the similarity

between two images. Assuming the scenario of comparing two gray-scale images, one has

the perfect quality (i.e., the ground truth image y) while another has a worse quality by some

kind of distortion (e.g., the output image ŷ by a CNN). The SSIM index models the amount of

difference between ŷ and y from three perspectives: luminance (l), contrast (c) and structure (s).

In practice, the three factors are computed on local patches of the two images. The luminance

(l) and contrast (c) of a patch (p) is represented by its mean intensity (µp) and the standard

deviation (σp), computed by

µp =
1

N

N∑
n=1

hn (1.27)

and

σp =

√√√√ 1

N − 1

N∑
n=1

(hn − µp)2, (1.28)

where N is the number of pixels in the patch p, and hn means the intensity of the nth pixel. The

similarity on structure (s) is represented by their covariance (σp̂,p), which is computed by

σp̂p =
1

N − 1

N∑
n=1

(ĥn − µp̂)(hn − µp), (1.29)

where the notions w/o the superscription “ˆ” , are those computed on the output image (by a

CNN) / the ground truth image. Measuring the similarity between two images, it is desirable to

make the metric have the following properties:
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• Symmetry: SSIM(p̂, p) = SSIM(p, p̂)

• Boundedness: SSIM(p̂, p) ≤ 1

• Unique maximum: SSIM(p̂, p) = 1 ⇐⇒ y = ŷ

It is made possible by formulating the luminance (l), contrast (c) and structure (s) as

l(p̂, p) =
2µp̂µp + C1

µ2
p̂ + µ2

p + C1
, (1.30)

c(p̂, p) =
2σp̂σp + C2

σ2
p̂ + σ2

p + C2
, (1.31)

and

s(p̂, p) =
σp̂p + C3

σp̂σp + C3

. (1.32)

Thus,

SSIM(p̂, p) = l(p̂, p)α × c(p̂, p)β × s(p̂, p)γ

=
(2µp̂µp + C1)(2σp̂p + C2)

(µ2
p̂ + µ2

p + C1)(σ2
p̂ + σ2

p + C2)

, (1.33)

when α = β = γ = 1 and C3 = C2/2. It is noteworthy that changing the values assigned to α,

β and γ adjusts the effect of luminance, contrast and structure on the measured result, and C1,

C2 and C3 are constant added in the computation to avoid instability when a denominator close

to 0.

Cross-entropy Error Cross-entropy measures the difference between two probability distri-

butions p and q over the same underlying set of events. It is formally defined by

Cross-entropy(p, q) = −
T∑
t=1

p(xt)q(xt). (1.34)

This measure is often used as a loss function for training a CNN for classification. Specifically,

the ground truth of an image to be classified is converted to a one-hot vector of T elements

(classes), and assigned to q. p is the posterior probability predicted by the CNN with a Softmax
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function. The (1.34) computes the classification loss of the CNN on the input image.

1.3.8 Deep Residual Learning

It is known that a deeper network can achieve better performance than a shallow one. The

evidence is with these studies [48, 118, 125, 157, 46]. However, training a very deep neural

network is not an easy task. Two notorious problems, i.e., gradients vanishing and exploding,

are posed with this issue (discussed in [7, 38]). In the literature, these problems been addressed

by various studies such as [38, 111, 47]. Another problem is, with an increasing depth for a net-

work, the performance gets saturated and then degrades rapidly [48]. In addition, it is reported

that this problem is not caused by overfitting [48]. Such a problem results in limit on using

deeper networks for better performance, thus becomes a considerable obstacle in developing

powerful CNNs. Residual Learning is proposed to address this problem. Formally it is defined

by

y = F(x;W) + x, (1.35)

where F(·;W) is some function implemented by a stack of layers (a block) with trainable

parametersW , x and y are the input and output to/from the block. Assuming that there exists

an optimal projection H that maps an input x to the optimal output y∗, such that y∗ = H(x).

The F(·;W) is expected to estimate the difference H(x) − x (the so-called residual) based on

x, and by this intention, it is defined by

F(x;W) ≡ H(x)− x. (1.36)

It is thus obvious that adding x to F(x;W) approaches the optimal output y∗ (= H(x)), when

the F is properly designed and trained. Two basic implementations [48] of (1.35) are shown in

Fig .1-4. The “1×1” and “3×3” mean the kernel size for a convolutional layer (conv.). A Batch

Normalization layer is actually used right after a convolutional layer for all the convolutional

layers, and it is not illustrated in the figure for the sake of simplicity.
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Figure 1-4: (a) The plain setting, 64 channels for all the layers. (b) The “bottle neck” setting,

the input (x) and output (y) have 256 channels while the first two layers have 64 channels.

1.4 Outline of the Thesis

Chapter 2 We propose a novel style of residual connections dubbed “dual residual connec-

tion”, which exploits the potential of paired operations, e.g., up- and down-sampling or con-

volution with large- and small-size kernels. We design a modular block implementing this

connection style; it is equipped with two containers to which arbitrary paired operations are

inserted. Adopting the “unraveled” view of the residual networks proposed by Veit et al. [130],

we point out that a stack of the proposed modular blocks allows the first operation in a block

interact with the second operation in any subsequent blocks. Specifying the two operations

in each of the stacked blocks, we build a complete network for each individual task of image

restoration. We experimentally evaluate the proposed approach on five image restoration tasks

using nine datasets. The results show that the proposed networks with properly chosen paired

operations outperform previous methods on almost all of the tasks and datasets.

Chapter 3 In addition, we further propose a universal network that has a single input and

multiple output branches, to solve multiple image restoration tasks in the same model. This

is made possible by improving the attention mechanism and an internal structure of the basic

blocks used in the dual residual networks proposed in chapter 2. Experimental results show

that the newly proposed approach achieves a new state-of-the-art performance on motion blur
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removal, haze removal (both in PSNR/SSIM) and JPEG artifact removal (in SSIM). To our

knowledge, this is the first report of successful multi-task learning on multiple orthogonal image

restoration tasks.

Chapter 4 Finally, we recall the issue we mentioned at the beginning, i.e., there is a gap

between human vision system and CNNs developed for computer vision in terms of robustness

to image distortions. We investigate whether the proposed image restoration strategy can close

the gap. The experimental results show that a simplified version of the proposed approach

improves the CNNs’ classification accuracy on Gaussian noise images to humans’ level.

Chapter 5 Towards a deeper discussion between humans and CNNs, we further tackled the

problem of evaluating CNNs’ performance under humans’ individual differences on a pair-wise

ranking task. This is a difficult problem due to the reason that humans’ judgments for a same

question can split. We proposed a novel method that evaluates an artificial systems by judging

if it is distinguishable from humans for ranking of N item pairs.
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Chapter 2

Dual Residual Networks Leveraging the

Potential of Paired Operations for Image

Restoration

2.1 Introduction

The task of restoring the original image from its degraded version, or image restoration, has

been studied for a long time in the fields of image processing and computer vision. As in

many other tasks of computer vision, the employment of deep convolutional networks have

made significant progress. In this study, aiming at further improvements, we pursue better ar-

chitectural design of networks, particularly the design that can be shared across different tasks

of image restoration. In this study, we pay attention to the effectiveness of paired operations

on various image processing tasks. In [42], it is shown that a CNN iteratively performing a

pair of up-sampling and down-sampling contributes to performance improvement for image-

superresolution. In [122], the authors employ evolutionary computation to search for a better

design of convolutional autoencoders for several tasks of image restoration, showing that net-

work structures repeatedly performing a pair of convolutions with a large- and small-size kernels

(e.g., a sequence of conv. layers with kernel size 3, 1, 3, 1, 5, 3, and 1) perform well for image

denoising. In this chapter, we will show further examples for other image restoration tasks.
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(a) Three residual blocks

Figure 2-1: A sequential connection of three residual blocks (left), and the unraveled view of it

(right).

Assuming the effectiveness of such repetitive paired operations, we wish to implement them

in deep networks to exploit their potential. We are specifically interested in how to integrate

them with the structure of residual networks. The basic structure of residual networks is shown

in Fig. 2-1(a), which have become an indispensable component for the design of modern deep

neural networks. There have been several explanations for the effectiveness of the residual

networks. A widely accepted one is the “unraveled” view proposed by Veit et al.[130]: a

sequential connection of n residual blocks is regarded as an ensemble of many sub-networks

corresponding to its implicit 2n paths. A network of three residual blocks with modules f1,

f2, and f3, shown in Fig. 2-1(a), has (23 =)8 implicit paths from the input to output, i.e.,

f1 → f2 → f3, f1 → f2, f1 → f3, f2 → f3, f1, f2, f3, and 1. Veit et al.also showed

that each block works as a computational unit that can be attached/detached to/from the main

network with minimum performance loss. Considering such a property of residual networks,

how should we use residual connections for paired operations? Denoting the paired operations

by f and g, the most basic construction will be to treat (fi, gi) as a unit module, as shown

in Fig. 2-2(b). In this connection style, fi and gi are always paired for any i in the possible

paths. In this study, we consider another connection style shown in Fig. 2-2(d), dubbed “dual

residual connection”. This style enables to pair1 fi and gj for any i and j such that i ≤ j. In

the example of Fig.2-2(d), all the combinations of the two operations, (f1, g1), (f2, g2), (f3, g3),

(f1, g2), (f1, g3), and (f2, g3), emerge in the possible paths. We conjecture that this increased

1Direct connection(s) of fi to fj is(are) impossible.
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f1 g3f1 g2
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Unraveled view

Figure 2-2: Different construction of residual networks with a single or double basic modules.

The proposed “dual residual connection” is (d).

number of potential interactions between {fi} and {gj} will contribute to improve performance

for image restoration tasks. Note that it is guaranteed that f· and g· are always paired in the

possible paths. This is not the case with other connection styles such as the one depicted in

Fig. 2-2(c). Note that i) compared to (b), the proposed (d) has more possible paths and paired

operations (depicted by blue squares with a f and a g in each); ii) compared to (c), the (d)

has paired operations while the (c) doesn’t. We call the building block for implementing the

proposed dual residual connections Dual Residual Block (DuRB); see Fig. 2-3. We examine

its effectiveness on five image restoration tasks shown in Fig. 2-3 using nine datasets. DuRB

is a generic structure that has two containers for the paired operations, and the users choose

two operations for them. For each task, we specify the paired operations of DuRBs as well as

the entire network. My experimental results show that the proposed networks outperform the

state-of-the-art methods in these tasks, which supports the effectiveness of my approach.

In this chapter, we will first briefly go over the recent studies on the five image restoration

tasks, then we introduce the proposed approach and show the experimental results. Detailed

information about the experimental settings as well as more visual results will be provided in
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Figure 2-3: Upper-left: the structure of a unit block having the proposed dual residual connec-

tions; T l1 and T l2 are the containers for two paired operations; c denotes a convolutional layer.

Other panels: five image restoration tasks considered in this paper.

Appendix.

2.2 Pioneering Work

Gaussian noise removal Application of neural networks to noise removal has a long history

[58, 134, 2, 153, 154]. Mao et al.[84] proposed REDNet, which consists of multiple convolu-

tional and de-convolutional layers with symmetric skip connections over them. Tai et al.[126]

proposed MemNet with local memory blocks and global dense connections, showing that it

performs better than REDNet. However, Suganuma et al.[122] showed that standard convo-

lutional autoencoders with repetitive pairs of convolutional layers with large- and small-size

kernels outperform them by a good margin, which are found by architectural search based on
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evolutionary computation.

Motion blur removal This task has a long history of research. Early works [29, 140, 139, 6]

attempt to simultaneously estimate both blur kernels and sharp images. Recently, CNN-based

methods [123, 39, 93, 66, 132] achieve good performance for this task. Nah et al.[93] proposed

a coarse-to-fine approach along with a modified residual block [48]. Kupyn et al.[66] proposed

an approach based on Generative Adversarial Network (GAN) [41]. New datasets were created

in [93] and [66].

Haze removal Many studies assume the following model of haze: I(x) = J(x)t(x)+A(x)(1−

t(x)), where I denotes a hazy scene image, J is the true scene radiance (the clear image), t is

a transmission map, A is global atmospheric light. The task is then to estimate A, t, and thus

J(x) from the input I(x) [44, 9, 87, 151, 144]. Recently, Zhang et al.[151] proposed a method

that uses CNNs to jointly estimate t and A, which outperforms previous approaches by a large

margin. Ren et al.[102] and Li et al.[74] proposed method to directly estimate J(x) without

explicitly estimating t and A. Yang et al.[144] proposed a method that integrates CNNs to

classical prior-based method.

Raindrop detection and removal Various approaches [67, 149, 60, 105, 142] have been

proposed to tackle this problem in the literature. Kurihata et al.[67] proposed to detect raindrops

with raindrop-templates learned using PCA. Ramensh [60] proposed a method based on K-

Means clustering and median filtering to estimate clear images. Recently, Qian et al.[100]

proposed a hybrid network consisting of a convolutional-LSTM for localizing raindrops and a

CNN for generating clear images, which is trained in a GAN framework.

Rain-streak removal Fu et al.[34] use “guided image filtering” [45] to extract high-frequency

components of an image, and use it to train a CNN for rain-streak removal. Zhang et al.[152]

proposed to jointly estimate rain density and de-raining result to alleviate the non-uniform rain

density problem. Li et al.[75] regards a heavy rainy image as a clear image added by an accu-

mulation of multiple rain-streak layers and proposed a RNN-based method to restore the clear

image. Li et al.[72] proposed an non-locally enhanced version of DenseBlock [55] for this task,

their network outperforms previous approaches by a good margin.
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Figure 2-4: Four different implementations of the DuRB; c is a convolutional layer with 3 × 3

kernels; ctl1 and ctl2 are convolutional layers, each with kernels of a specified size and dilation

rate; up is up-sampling (we implemented it using PixelShuffle [117]); se is SE-ResNet Module

[52] that is in fact a channel-wise attention mechanism.

2.3 Dual Residual Blocks

The basic architecture of the proposed Dual Residual Block is shown in the upper-left corner

of Fig. 2-3, in which we use c to denote a convolutional layer (with 3 × 3 kernels) and T l1 and

T l2 to denote the containers for the paired first and second operations, respectively, in the lth

DuRB in a network. The two convolutional layers with a residual connection (set before T l1)

are used to smooth information changing for the DuRB. This is rather an implementation trick.

Normalization layers (such as batch normalization [56] or instance normalization [128]) and

ReLU [94] layers can be incorporated when it is necessary. We design DuRBs for each individ-

ual task, or equivalently choose the two operations to be inserted into the containers T l1 and T l2.

We use four different designs of DuRBs, DuRB-P, DuRB-U, DuRB-S, and DuRB-US, which

are shown in Fig. 2-4. The specified operations for [T l1, T l2] are [conv., conv.] for DuRB-P,

[up-sampling+conv., down-sampling (by conv. with stride=2)] for DuRB-U, [conv., channel-

wise attention2+conv.] for DuRB-S, and [up-sampling+conv., channel-wise attention+down-

2It is implemented using the SE-ResNet Module [52].
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Table 2.1: Performance of the three connection types of Fig. 1(b)-(c). ‘-’s indicate infeasible
applications.

(b) (c) (d)

Gaussian noise 24.92 / 0.6632 24.85 / 0.6568 25.05 / 0.6755
Real noise 36.76 / 0.9620 36.81 / 0.9627 36.84 / 0.9635

Motion blur 29.46 / 0.9035 -/- 29.90 / 0.9100
Haze 31.20 / 0.9803 -/- 32.60 / 0.9827

Raindrop 24.70 / 0.8104 25.12 / 0.8151 25.32 / 0.8173
Rain-streak 32.85 / 0.9214 33.13 / 0.9222 33.21 / 0.9251

sampling] for DuRB-US, respectively. We will use DuRB-P for noise removal and raindrop

removal, DuRB-U for motion blur removal, DuRB-S for rain-streak and raindrop removal, and

DuRB-US for haze removal.

Before proceeding to further discussions, we present here experimental results that show the

superiority of the proposed dual residual connection to other connection styles shown in Fig. 2-

2(b) and (c). In the experiments, three networks build on the three base structures (b), (c),

and (d) of Fig. 2-2 were evaluated on the five tasks. For Gaussian&real-world noise removal,

motion blur removal, haze removal, raindrop and rain-streak removal, we use DuRB-P, DuRB-

U, DuRB-US, DuRB-S&DuRB-P and DuRB-S to construct the base structures. Number of

blocks and all the operations in the three structures as well as other experimental configurations

are fixed in each comparison. The datasets for the six comparisons are BSD-grayscale, Real-

World Noisy Image Dataset, GoPro Dataset, Dehaze Dataset, RainDrop Dataset and DID-MDN

Data. Table 2.1 shows their performance. Note that ‘-’ in the table indicate that the connection

cannot be applied to DuRB-U and DuRB-US due to the difference in size between the output

of f and the input to g. It can be seen that the proposed structure (d) performs the best for all

the tests.

2.4 Five Image Restoration Tasks

In this section, we describe how the proposed DuRBs can be applied to multiple image restora-

tion tasks, noise removal, motion blur removal, haze removal, raindrop removal and rain-streak
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Figure 2-5: DuRN-P: dual residual network with DuRB-P’s [conv. w/ a large kernel and conv.

w/ a small kernel] for Gaussian noise removal. b+ r is a batch normalization layer followed by

a ReLU layer; and Tanh denotes hyperbolic tangent function.

2.4.1 Noise Removal

Network Design We design the entire network as shown in Fig. 2-5. It consists of an input

block, the stack of six DuRBs, and an output block, additionally with an outermost residual

connection from the input to output. The layers c, b+r and Tanh in the input and output blocks

are convolutional layer (with 3×3 kernels, stride = 1), batch normalization layer followed by

a ReLU layer, and hyperbolic tangent function layer, respectively. We employ DuRB-P (i.e.,

the design in which each of the two operations is single convolution; see Fig. 2-4) for DuRBs

in the network. Inspired by the networks discovered by neural architectural search for noise

removal in [122], we choose for T1 and T2 convolution with large- and small-size receptive

fields. We also choose the kernel size and dilation rate for each DuRB so that the receptive field

of convolution in each DuRB grows its size with l. More details are given in the appendix. We

set the number of channels to 32 for all the layers. We call the entire network DuRN-P. For this

task, we employed l2 loss for training the DuRN-P.

Results: Additive Gaussian Noise Removal The proposed network is tested on the task of
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noise level = 50 DuRN-P Ground truth

Figure 2-6: Some examples of the results by the proposed DuRN-P for additive Gaussian noise

removal. Sharp images can be restored from heavy noises (σ = 50).

Table 2.2: Results for additive Gaussian noise removal on BSD200-grayscale and noise levels
(30, 50, 70). The numbers are PSNR/SSIM.

30 50 70

REDNet[84] 27.95 / 0.8019 25.75 / 0.7167 24.37 / 0.6551
MemNet[126] 28.04 / 0.8053 25.86 / 0.7202 24.53 / 0.6608
E-CAE[122] 28.23 / 0.8047 26.17 / 0.7255 24.83 / 0.6636

DuRN-P (ours) 28.50 / 0.8156 26.36 / 0.7350 25.05 / 0.6755

removing additive Gaussian noise of three levels (30, 50, 70) from a gray-scale noisy image.

Following the same experimental protocols used by previous studies, we trained and tested the

proposed DuRN-P using the training and test subsets (300 and 200 grayscale images) of the

BSD-grayscale dataset [86]. More details of the experiments are provided in the Appendix. We

show the quantitative results in Table 2.2 and visual results in Fig. 2-6. It is observed from Table

2.2 that the proposed network outperforms the previous methods for all three noise levels.

Results: Real-World Noise Removal We also tested the DuRN-P on the Real-World Noisy

Image Dataset [136], which consists of 40 pairs of an instance image (a photograph taken by

a CMOS camera) and the mean image (mean of multiple shots of the same scene taken by the

CMOS camera). All the batch normalization layers are removed from the DuRN-P for this

experiment, as the real-world noise captured in this dataset do not vary greatly. The details of
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Noisy DuRN-P Mean

Figure 2-7: Examples of noise removal by the proposed DuRN-P for images from Real-World

Noisy Image Dataset. The results are sometimes even better than the mean image (used as the

ground truth); see the artifact around the letters in the bottom.

Table 2.3: Results on the Real-World Noisy Image Dataset [136]. The results were measured
by PSNR/SSIM. The last row shows the number of parameters for each CNN.

REDNet[84] MemNet[126] E-CAE[122] DuRN (ours)

PSNR/SSIM 35.56 / 0.9475 - / - 35.45 / 0.9492 36.83 / 0.9635
# of param. 4.1× 106 2.9× 106 1.1× 106 8.2× 105

the experiments are given in the Appendix. The quantitative results of three previous methods

and our method are shown in Table 2.3. We used the authors’ code to evaluate the three previous

methods. (As the MemNet failed to produce a competitive result, we left the cell empty for it

in the table.) It is seen that the proposed method achieves the best result despite the smaller

number of parameters. Examples of output images are shown in Fig. 2-7. It is observed that

the proposed DuRN-P has cleaned noises well. It is noteworthy that the DuRN-P sometimes

provides better images than the “ground truth” mean image; see the bottom example in Fig. 2-7.
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2.4.2 Motion Blur Removal

The task is to restore a sharp image from its motion blurred version without knowing the latent

blur kernels (i.e., the “blind-deblurring” problem).

!"+#
DuRB-U ×6

%& '("ℎ!"+# ! "+# !%&

residual connection

!"+# !"+#

!"# !$#
%& '("# '($#' '

DuRB-U

up-sampling (𝑇"#) down-sampling (𝑇$#)

Paired operations

Figure 2-8: DuRN-U: Dual Residual Network with DuRB-U’s (up- and down-sampling) for

motion blur removal. n+ r denotes an instance normalization layer followed by a ReLU layer.

Network Design Previous works such as [132] reported that the employment of up- and down-

sampling operations is effective for this task. Following this finding, we employ up-sampling

and down-sampling for the paired operations. we call this as DuRB-U; see Fig. 2-8. we use

PixelShuffle [117] for implementing up-sampling. For the entire network design, following

many previous works [132, 66, 151, 160], we choose a symmetric encoder-decoder network;

see Fig. 2-8. The network consists of the initial block, which down-scales the input image by 4:1

down-sampling with two convolution operations (c) with stride = 2, and instance normalization

+ ReLU (n+r), and six repetitions of DuRB-U’s, and the final block which up-scales the output

of the last DuRB-U by applications of 1:2 up-sampling (up) to the original size. We call this

network DuRN-U. For this task, we employed a weighted sum of SSIM and l1 loss for training

the DuRN-U. The details aboput experimental settings are given in the Appendix.

Results: GoPro Dataset We tested the proposed DuRN-U on the GoPro-test dataset [93] and

compared its results with the state-of-the-art DeblurGAN [66]. The GoPro dataset consists of

2,013 and 1,111 non-overlapped training (GoPro-train) and test (GoPro-test) pairs of blurred
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Figure 2-9: Examples of motion blur removal on GoPro-test dataset.

and sharp images. We show quantitative results in the Table 2.4. DeblurGAN yields outstand-

ing SSIM number, whereas the proposed DuRN-U is the best in terms of PSNR. Examples

of deblurred images are shown in Fig. 2-9. It is observed that the details such as cracks on a

stone-fence or numbers written on the car plate are restored well enough to be recognized.

Results: Object Detection from Deblurred Images In [66], the authors evaluated their de-

blurring method (DeBlurGAN) by applying an object detector to the deblurred images obtained

by their method. Following the same procedure and data (Car Dataset), we evaluate the pro-

posed DuRN-U that is trained on the GoPro-train dataset. The Car Dataset contains 1,151 pairs

of blurred and sharp images of cars. We employ YOLO v3 [101] trained using the Pascal VOC

[27] for the object detector. The detection results obtained for the sharp image by the same
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Table 2.4: Results of motion blur removal for the GoPro-test dataset.

GoPro-test

Sun et al.[123] 24.6 / 0.84
Nah et al.[93] 28.3 / 0.92
Xu et al.[140] 25.1 / 0.89

DeBlurGAN[66] 27.2 / 0.95

DuRN-U (ours) 29.9 / 0.91

Blurry DuRN-U Sharp

Blurry DuRN-U SharpDeblurGAN

Figure 2-10: Examples of object detection from original blurred images and their deblurred

versions.

Table 2.5: Accuracy of object detection from deblurred images obtained by DeBlurGAN [66]
and the proposed DuRN-U on Car Dataset.

Blurred DeBlurGAN[66] DuRN-U (ours)

mAP (%) 16.54 26.17 31.15

YOLO v3 detector are utilized as the ground truths used for evaluation. Table 2.5 shows quanti-

tative results (measured by mAP), from which it is seen that the proposed DuRN-U outperforms

the state-of-the-art DeBlurGAN. Figure 2-10 shows examples of detection results on the GoPro-

test dataset and Car Dataset. It is observed that DuRN-U can recover details to a certain extent

that improves accuracy of detection.
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Figure 2-11: DuRN-US: dual residual network with DuRB-US’s (up- and down-sampling and

channel-wise attention (SE-ResNet Module)) for haze removal.

2.4.3 Haze Removal

Network Design In contrast with previous studies where a CNN is used to explicitly estimate

a transmission map that models the effects of haze, we pursue a different strategy, which is to

implicitly estimate a transmission map using an attention mechanism. The model estimates the

dehazed image from an input image in an end-to-end fashion. We design DuRB’s for this task

by employing up-sampling (up) implemented using PixelShuffle [117] with a convolutional

layer (ctl1) in T l1 and channel-wise attention (se) implemented using SE-ResNet module [52]

with a conv. layer (ctl2) in T l2. More details are given in Appendix. The entire network (named

DuRN-US) has an encoder-decoder structure similar to the DuRN-U designed for motion blur

removal, as shown in Fig. 2-11. 12 DuRB-US’s are stacked in the middle of the network; the

number of channels is 64 for all the layers. In Appendix, we demonstrate how the network

estimates a transmission map inside its attention mechanisms. For this task, we employed a

weighted sum of SSIM and l1 loss for training the DuRN-US.

Results In order to evaluate the proposed DuRN-US, we trained and tested it on two datasets,

the Dehaze Dataset and the RESIDE dataset. The training and test (Dehaze-TestA) subsets in the

Dehaze Dataset consist of 4,000 and 400 non-overlapped samples of indoor scenes, respectively.

RESIDE contains a training subset of 13,990 samples of indoor scenes and a few test subsets.
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Table 2.6: Results for haze removal on Dehaze-TestA dataset and RESIDE-SOTS dataset. The
measure SSIM and SSIM/PSNR is employed for the first and second dataset.

Dehaze-TestA

He et al.[44] 0.8642
Zhu et al.[161] 0.8567

Berman et al.[8] 0.7959
Li et al.[69] 0.8842

Zhang et al.[151] 0.9560

DuRN-US (ours) 0.9827

RESIDE-SOTS

Berman et al.[8] 17.27 / 0.75
Ren et al.[102] 17.57 / 0.81
Cai et al.[14] 21.14 / 0.85
Li et al.[69] 19.06 / 0.85

Ren et al.[103] 22.30 / 0.88

DuRN-US (ours) 32.12 / 0.98

Following [103], we used a subset SOTS (Synthetic Objective Testing Set) that contains 500

indoor scene samples for evaluation. It should be noted that the state-of-the-art method on

the Dehaze Dataset, DCPDN [151], is trained using i) hazy images, ii) ground truth images,

iii) ground truth global atmosphere light , iv) ground truth transmission maps; additionally,

its weights are initialized by those of DenseNet [55] pre-trained on the ImageNet[108]. The

proposed DuRN-US is trained only using i) and ii). Table 2.6 show results on Dehaze-TestA

and RESIDE-SOTS datasets, respectively. Figure 2-12 shows examples of the results obtained

by the proposed network and others for the same input images. In sub-figure (A), we show

results for two synthesized images produced by the DCPDN (the second best approach in terms

of SSIM and PSNR) and our DuRN-US. It is observed that DuRN-US yields better results for

these two images. In sub-figure (B), we show results for two real-world hazy images produced

by two state-of-the-art methods, GFN[103] and DCPDN[151], and by ours. It can be observed

that our network yields the most realistic dehazed images. It is noteworthy that our DuRN-US

can properly deal with strong ambient light (sunshine coming behind the girl). See the example

in the left-bottom of Fig. 2-12.
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Hazy image DCPDN DuRN-US Ground truth

Hazy image DCPDN DuRN-USGFN

(A)

(B)

(C)

Figure 2-12: Examples of de-hazing results obtained by DuRN-US and others on (A) synthe-

sized images, (B) real images and (C) light hazy images.
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Figure 2-13: DuRN-S-P: Hybrid dual residual network with DuRB-S’s and DuRB-P’s for rain-

drop removal.

2.4.4 Raindrop removal

Network Design The task can naturally be divided into two stages, that of identifying the

regions of raindrops and that of recovering the pixels of the identified regions. The second stage

is similar to image inpainting and may not be difficult, as there are a lot of successful methods

for image inpainting. Then, the major issue is with the first stage. Following this two-stage

approach, the state-of-the-art method [100] uses an attentive-recurrent network to produce an

attention map that conveys information about raindrops; then, the attention map along with

the input image are fed to a convolutional encoder-decoder network to estimate the ground

truth image. It also employs adversarial training with a discriminator to make the generated

images realistic. We show the proposed DuRBs are powerful enough to perform these two-

stage computations in a standard feedforward network, if the DuRBs are properly designed in

proper positions in the entire network. To be specific, we choose the encoder-decoder structure

for the entire network, and in its bottleneck part, we set three DuRB-S’s followed by six DuRB-

P’s. For ctl1 in the three DuRB-S’s, we use convolution with a 3 × 3 kernel with decreasing

dilation rates, 12, 8, and 6, in the forward direction, aiming to localize raindrops in a coarse-

to-fine manner in the three DuRB-S’s in a row. For the six DuRB-P’s, we employ the same
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Rainy image DuRN-S-PAttention map Residual map -

Figure 2-14: Examples of raindrop removal along with internal activation maps of DuRN-S-P.

The “Attention map” and “Residual map” are the outputs of the Attentive-Net and the last Tanh

layer shown in Fig. 2-13; they are normalized for better visibility.

Table 2.7: Quantitative result comparison on RainDrop Dataset [100].

Qian et al.[100] DuRN-S-P (ours)

TestSetA 31.51 / 0.9213 31.24 / 0.9259
TestSetB 24.92 / 0.8090 25.32 / 0.8173

strategy as in noise removal etc., which is to apply a series of convolution with an increasing

receptive field size in the forward direction. We call the entire network DuRN-S-P. For this task,

we employed a weighted sum of SSIM and l1 loss for training the DuRN-S-P.

Results We trained and evaluated the DuRN-S-P on the RainDrop Dataset. It contains 861

training samples and 58/249 test samples called TestSetA/TestSetB. TestSetA is a subset of

TestSetB, and is considered to have better alignment than TestSetB by the dataset’s author.

Table 2.7 shows the results. It is seen that the proposed method outperforms the state-of-the-art

method for three out of four combinations of two test sets and two evaluation metrics. It is

noteworthy that the proposed method does not use a recurrent network or adversarial training.

Figure 2-14 shows some examples of the results obtained by the proposed method. It is seen

that the results of the proposed method are visually good, and comparable to the method of

[100] (more examples for visual comparison is provided in the appendix). The “Attention map”

and “Residual map” of Fig. 2-14 are the over-channel summation of the output of Attentive-Net
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and the output of the last Tanh layer, respectively; see Fig. 2-13.

2.4.5 Rain-streak Removal

!"# !$#
%&"# %&$#% % '(

DuRB-S

attentive conv. (𝑇"#)large filter (𝑇$#)

Paired operations

residual connection

DuRB-P	×6 $ %&'ℎ$ )+*$ )+*$ )+* S

Figure 2-15: DuRN-S: dual residual network with DuRB-S’s (large filter convolution and

channel-wise attention (SE-ResNet Module) with small filter convolution for the pair) for rain-

streak removal.

Network Design It is shown in [72] that the mechanism that selectively weighs feature maps

using global information works effectively for this task. Borrowing this idea, we employ a

channel-wise attention mechanism to perform similar feature weighting. The overall design

of the network for this task is similar to the DuRN-P designed for Gaussian noise removal.

A difference is that we use DuRB-S instead of DuRB-P to use the attention mechanism. The

details are given in Appendix. For this task, we employed a weighted sum of SSIM and l1 loss

for training the network.
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DID-MDN
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RESCAN

DuRN-S Ground truth

Rainy DDNRainy

DID-MDN RESCAN

DuRN-S Ground truth

Figure 2-16: Examples of rain-streak removal obtained by four methods including the proposed

one (DuRN-S).

Table 2.8: Results on two rain-streak removal datasets.

DDN Data DID-MDN Data

DDN[34] 28.24 / 0.8654 23.53 / 0.7057
JORDER [145] 28.72 / 0.8740 30.35 / 0.8763

DID-MDN [152] 26.17 / 0.8409 28.30 / 0.8707
RESCAN [75] -/- 32.48 / 0.9096
NLEDN [72] 29.79 / 0.8976 33.16 / 0.9192

DuRN-S (ours) 30.61 / 0.9136 33.21 / 0.9251

Results We tested the proposed network (DuRN-S) on two benchmark datasets, the DDN-

Data, which consists of 9,100 training pairs and 4,900 test pairs of rainy and clear images, and

the DID-MDN Data, which consists of 12,000 training pairs and 1,200 test pairs. Table 2.8

shows the results. Those for the previous methods except RESCAN [75] are imported from

[72]. It is seen that the proposed network achieves the best performance. Examples of the

output images are provided in Fig. 2-16.
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2.5 Summary and Discussions

We have proposed a style of residual connection, dubbed “dual residual connection”, aiming to

exploit the potential of paired operations for image restoration tasks. We have shown the design

of a modular block (DuRB) that implements this connection style, which has two containers for

the paired operations such that the user can insert any arbitrary operations to them. We have

also shown choices of the two operations in the block as well as the entire networks (DuRN)

containing a stack of the blocks for five different image restoration tasks. The experimental

results obtained using nine datasets show that the proposed approach consistently works better

than previous methods.
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Chapter 3

A Universal Network Applicable to

Multiple Image Restoration Tasks

3.1 Introduction

There are many factors causing image degradation/distortion, for each of which there are a

(large) number of studies in the past, such as motion/defocus blur [113, 97, 140, 139, 20],

several types of noises (e.g., Gaussian, real-world noise, etc.) [23, 17, 138, 137], JPEG com-

pression noise [146, 16, 12, 49], rain streak [76, 59, 18], raindrop [67, 149, 60], haze [44, 87, 8]

etc. Previous studies have treated each of these degradation types individually and developed

“dedicated” methods for each factor. This is also the case with recent studies [66, 100, 122, 75,

147, 151] utilizing deep learning, including the one introduced in Chapter 2. There are different

networks for different degradation types. It should be noted that a few recent studies attempt to

deal with combined degradation [121, 150], having proposed single networks that can deal with

images having mixed degradation types with unknown mixing ratio. However, their restoration

accuracy (for images with a single degradation type) tends to be much lower than the dedicated

methods; moreover, they can only deal with small image patches (i.e., 64× 64 pixels) for now.

Thus, it is fair to say that they are still in an experimental stage. In this section, we consider

another approach and choose to use a single network to deal with multiple degradation factors.

Figure 3-1 shows the standard approach and the proposed approach; we use a network having
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CNN1
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Figure 3-1: Left: Approach employed in recent studies, i.e., designing/training a different net-

work for each image restoration task dealing with a single degradation factor. Right: The pro-

posed approach; a single network having a single input and multiple output branches is trained

on multiple image restoration tasks.

a single input and multiple output branches, each of which is dedicated to a different image

restoration task. Although this is also a standard formulation of multi-task learning (MTL), it

remains unclear so far if MTL works for image restoration tasks. Moreover, my motivation is

not merely to improve the current state-of-the-art by employing MTL. This study is motivated

more by a desire to know what is (and should be) learned by the CNNs on image restoration

tasks and what is their optimal design for the tasks. In earlier studies of image restoration, it

was of a primary interest to model and represent the statistics or prior of natural images, which

is then utilized to restore the original image from an input by, for instance, using it in the frame-

work of the Bayesian inference [29, 88, 106]. On the other hand, in the recent approaches that

use CNNs in an end-to-end fashion, there is no explicit modeling of image prior. We conjecture

that in order to restore original images accurately, a network must learn natural image prior in

some form for any degradation factors. If this is true, optimal networks for individual degrada-

tion factors may share representation of natural image prior. The proposed method is built upon

this conjecture. To enable to deal with multiple degradation factors with a single network, we

propose a new design of networks build upon the Dual Residual Networks (DuRNs) introduced

in the last chapter [82]. Although we have shown that the base network architecture is effective

for various degradation factors, the internal components of the networks need to be changed for

different degradation factors. The improvements to the DuRNs are two folds. One is an im-
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proved attention mechanism. We have employed the squeeze-and-excitation (SE) mechanism

in two of the proposed DuRBs (DuRB-S and DuRB-US). Since the SE mechanism was origi-

nally proposed for object classification task, the SE mechanism has been successfully applied

to various tasks such as super-resolution (SR) [157], single-view depth estimation [53], etc. Its

concept is to use global average pooling of activations in each individual channel of a layer to

generate channel-wise attention weights on its layer activations. We extend it to additionally use

amplitude of spatial derivatives of activation (i.e., |I(c)x | and |I(c)y |) to compute attention weights.

The other extension is a new design of basic block, in which the two operations employed in

DuRB-U and -US are fused; we call it as DuRB-M. We show through experiments that these

two extensions make it possible for a single network to learn multiple image restoration tasks,

updating the current state-of-the-art for some of them.

3.2 Pioneering Works

Single Net for Multiple Degradation Factors A widely considered formulation is to train

and use different networks with the same architectural design on multiple restoration tasks,

such as Kligvasser et al.[63] for noise removal, rain-streak removal and Super-Resolution (SR);

and Zhang et al.[158] for noise, mosaic, JPEG-compression noise removal and SR; and the

DuRN proposed in Chapter 2 of this thesis. The approach proposed in this chapter differs from

the above in that we attempt to train the same network on multiple different restoration tasks,

which is also called multi-task learning.

Another more general formulation of image restoration is to restore the clean image from

a degraded input with unknown combination of several degradation factors. There are several

studies on this formulation [150, 121, 155, 3, 141, 40]. However, their performance tend to

be (often quite) inferior to the state-of-the-art method designed for each individual restoration

task. It is noteworthy that some existing studies such as [155, 141, 40] address a small num-

ber (specifically, 2) of similar/related factors, theirs’ performance is comparatively close to the

state-of-the-art performance. However, the main differences between the existing studies and

the proposed approach is, the existing studies deal with only tasks that are inherently similar

(e.g., deblurring and super-resolution) or closely related with each other (e.g., denoising vs.
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deblurring/decompression), and thus the number of tasks is limited to two. On the other hand,

the approach proposed in this chapter considers up to four tasks, which are diverse in the sense

that they appear to be dissimilar on the surface level. In addition, the proposed approach outper-

forms the state-of-the-art methods for some factors. From a methodological point of view, it is

fair to consider this study to be the first work that shows multi-task learning (MTL) of multiple

diverse tasks of image restoration is feasible.

Multi-task Learning It is well known that multi-task learning [15] of deep networks is ef-

fective for many computer vision tasks; [15, 83, 61, 143, 43] to name a few. To enable MTL to

work, there should arguably be some relation among the tasks jointly learned; in other words,

there should be overlaps among the representations to be learned for those tasks. Combinations

of tasks in the successful MTL examples include scene recognition and object recognition [43];

depth estimation and scene parsing [135]; facial expression recognition and landmark detection

[50]; vision and language [95] etc.. However, it remains unknown if the same holds true for

image restoration tasks. Although there should be some similarity among them, different types

of degradations seem to be somewhat orthogonal with each other. In fact, the aforementioned

studies on restoration from combined degradations attempt to deal with different degradation

factors by adaptively selecting different networks [150] or different operations [121] depending

on the degradation factors in input images.

Attention Mechanism Attention mechanisms have been developed and employed to solve

various computer vision problems [131, 73, 4, 52, 121] . Hu et al.proposed a squeeze-and-

excitation (SE) block, which produces and applies channel-wise weights on an input tensor

[52]. This block has been successfully applied to various tasks such as classification [52], super

resolution [157] and single-view depth estimation [53]. A number of later studies [77, 54, 133,

51, 35] aim at improving the SE-block. Woo et al.propose to use channel-wise and spatial

attention weights [133]. Hu et al.study how to efficiently combine a SE-block and a ResNet

module [54]. Gao et al.[35] propose to use correlation of activations of each pair of channels

to generate attention. Hu et al.improve SE-block by replacing global average pooling with a

pooling operation with trainable parameters [51].
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Figure 3-2: Fa, Fb and Fc denotes a CNN trained for motion blur removal, haze removal and

rain-streak removal. The images in the second column are normalized for better visibility.

3.3 Problem Formulation

Traditionally, the problem of image restoration is formulated as an inverse problem, where the

forward process of image formation is modeled and utilized. For example, an image suffering

from non-uniform motion blur is modeled [66] as

B = K(M)⊗ I + n, (3.1)

where B is the blurred image; I is the sharp image; K(M) is the blur kernel determined by

motion field M ; and n is noise. The image of a scene with haze degradation is modeled [151]

as

H = It+ A(1− t), (3.2)
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where H is the hazy image of a scene; I is its clean image; t is a transmission map; and A is

global atmospheric light. An image having rain-streak degradation is modeled [75] as

O = I +
N∑
i=1

Si, (3.3)

whereO, I and Si’s denotes an image with rain-streak, the clean image, and different rain-streak

effects. The case of N > 1 can consider an accumulation of multiple effects. Using the models,

the problem is formulated as minimization of an objective function measuring the difference

between the input degraded image and its model given as above. It is minimized with respect

to the unknown clean image along with some other unknowns (e.g., blur kernels etc..). It is also

a common practice to incorporate natural image prior as a regularizer in the the minimization.

Such image prior is shared among image restoration for different types of degradation. On the

other hand, the recent trend is to use CNNs to directly predict the clean image from its degraded

version. This approach does not use any image prior explicitly. A successful method of applying

a CNN to the tasks [66, 34, 82] is to make it predict a compensating image such that adding it

to the input image will yield a clean image, i.e., the difference from the input image to the true

clean image. This method can be applied to any image degradation type. Figure 3-2 illustrates

a few examples. This is formally written by

I = Fρ(xρ) + xρ, (3.4)

where I is the clean image to predict; Fρ is a CNN designed and trained for degradation type ρ;

and xρ is an input image having degradation type ρ. My goal is to develop a universal network

that can deal with various degradation types. Although the ultimate goal will be a monolithic

CNN that has a single input and output, it is very hard to design and train such a CNN that

can achieve high performance. Taking the above formulation of predicting the compensating

component into account, we instead consider networks having multi-heads g1, . . . for different

degradation types, as shown in Fig. 3-1:

I = gρ ◦ f(xρ) + xρ, (3.5)
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where gρ is a head, which we call a decoder, for degradation type ρ and f is an encoder shared

by all the degradation types.

3.4 Universal Networks for Image Restoration

In this section, we describe the design of networks that are applicable to different types of degra-

dation. We make two improvements to the dual residual networks introduced in the last chapter,

intending to enhance its representation capacity. One is an improvement of the attention mech-

anism and the other is a new design of the structure of base blocks. These two improvements

will be explained in turn, followed by the description of the overall network architecture. For

decoder gρ, we use a stack of PixelShuffle [117] modules with convolutional operations.

3.4.1 Improved Attention Mechanism

An attention mechanism is employed in the dual residual networks. It is the channel-wise atten-

tion that was originally developed for object recognition in the study of squeeze-and-excitation

(SE) networks [52], and has been widely used for many other tasks. A SE-block computes and

applies attention weights on the channels of the input feature map. To determine the weight on

each channel, it computes the averages of activation values of channels; then, they are converted

by two fully-connected layers with ReLU and sigmoid activaton functions to generate channel-

wise weights. The aggregation of activation values is equivalent to global average pooling. We

enhance this attention mechanism by incorporating a different aggregation method of channel

activation. The idea is to use different statistics of channel activation values in addition to their

averages. For this, we choose to use (absolute) spatial derivatives of channel activation values.

More specifically, denoting an activation value at spatial position (i, j) of channel c by yc,i,j , we

calculate

vc =
1

N

∑
i,j

|yc,i+1,j − yc,i,j|β + |yc,i,j+1 − yc,i,j|β, (3.6)

where (i, j) denotes a spatial position of channel c, and β is a scalar to enhance derivative values.

This is also known as the total variation [107], which has been used as a regularization term for

various image processing tasks; a notable example is the classical image denoising, where the
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Figure 3-3: Absolute spatial derivatives of images in (a) vertical and (b) horizontal directions.

(The values in the three color channels are summed together.) The values in the bottom show

vc of (3.6).

total variation helps to obtain a smoother solution while preserving edges. Figure 3-3 shows

how the absolute spatial derivatives behaves for different inputs using input images (instead of

intermediate layer features) as examples. It is observed that they provide different responses

between clean and degraded images of the same scenes. Figure 3-4 illustrates the proposed

attention mechanism. We compute the global average and the total variation of activation values

of each channel and input it to the same pipeline as the SE-block to generate attention weights

over the channels. This mechanism is built into a ResNet module, as shown in Fig. 3-5. The

effectiveness of this design will be shown though experiments including ablation tests.

3.4.2 Improved Design of a Dual Residual Block

The design of the dual residual networks aims at making maximum use of paired operations that

are believed to fit for image restoration tasks. The choice of the paired operations is arbitrary

and four choices are suggested depending on the type of degradations. We pay attention on

the two of them, in both of which the first operation is up-convolution. Specifically, one is

the pair of up-convolution (i.e., up-sampling followed by convolution) and simple convolution.

The block employing the pair is named DuRB-U and applied to motion blur removal. (See the
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Figure 3-4: The proposed attention mechanism improving the SE block. It generates channel-

wise attention weights by global average pooling (the same as the standard SE block) and total

variation (TV) of each channel activation values.
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Figure 3-5: The improved SE-ResNet Module, which incorporates the improved attention

mechanism into a ResNet module.

upper panel of Fig. 3-6.) The other is the pair of up-sampling followed by convolution and a

SE-block. The block is named DuRB-US and applied to haze removal. Towards development

of universal networks that can deal with motion blur, haze, and even more, we propose a new

design of the block structure, which we call DuRB-M. The idea is to integrate the above two

designs (i.e., DuRB-U and -US). To be specific, while keeping the same up-convolution for the

first operation, we employ parallel computation of the second operations of DuRB-U and -US,

i.e., convolution and a SE-block, for the second operation of the new block design; see the lower

panel of Fig. 3-6. The output maps of the two operations are merged by concatenation in the

channel dimension, followed by 3 × 3 convolution to adjust the number of channels. We also

replace the ResNet module in the original DuRB structure with the aforementioned improved

SE-ResNet module with the enhanced attention mechanism, as shown in Fig. 3-5.
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Figure 3-6: The proposed basic block (DuRB-M) used for building our network.
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Figure 3-7: Architecture of the encoder f and the task-specific decoder gρ for the task ρ; c,

r and tanh denotes a convolutional layer, a ReLU layer and a hyperbolic tangent function,

respectively; up means conv. + PixelShuffle [117]. The encoder f has 68 weight layers (each

DuRB-M has 13 weight layers) and a decoder gρ has 5 weight layers.

3.4.3 Overall Design of the Universal Network

As mentioned earlier, the proposed network consists of a shared encoder and multiple decoders.

Figure 3-7 shows the overall design. To train it on T tasks, we use T decorders g1, . . . , gT . Each

decoder gρ (ρ = 1, . . . , T ) starts with two sets of up-sampling plus convolution (implemented by

PixelShuffle [117]) and ReLU in this order, followed by convolution with a hyperbolic tangent

activation function. All the convolution layer of the decoder employs 3×3 kernels. The number

of its channels is 96 for the first two conv. layers and 48 for the last one. We use the same design

for all the decoders for different tasks. As they have learnable weights in the convolution layers,

they work differently after training. The encoder f starts with three convolution layers with

ReLU activation, followed by a stack of the proposed DuRB-M’s. The 2nd and 3rd convolution
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layers use stride = 2, and thus the input image is down-scaled to 1/4 of the original size when

inputted to the first DuRB-M. Note that there is a skip connection from the output from the

second ReLU to the first DuRB-M. Other details of the encoder are given in the Appendix.

3.5 Experimental Results

We conduct experiments to evaluate the proposed method. We choose three tasks, i.e., motion

blur removal, haze removal, and rain-streak removal, for the main experiments (i.e., detailed

architectural design search, ablation study, etc.); we additionally use JPEG compression noise

removal for performance evaluation.

3.5.1 Experimental Configuration

Datasets

In the experiments, we choose the dataset(s) for each task that is the most widely used in re-

cent studies. We use the GoPro dataset [93] for motion blur removal. It consists of 2,013 and

1,111 non-overlapped training (GoPro-train) and test (GoPro-test) pairs of blurred and sharp

images, respectively. Each blurred image in this dataset is synthesized by averaging a number

of continual frames in a 720p-video taken by a go-pro camera. We use the RESIDE dataset [71]

for haze removal, which consists of 13,990 samples of indoor scenes and a few test subsets.

Following [82] and [103], we use a subset SOTS (Synthetic Objective Testing Set) that con-

tains 500 indoor scene samples for evaluation. For both training and test subsets of RESIDE,

synthetic hazy effects are made using (3.2). We use the DID-MDN dataset [152] for rain-streak

removal. It consists of 12,000 training pairs and 1,200 test pairs of clear image and synthetic

rainy image. Rain-streak effects for an image in this dataset are made using Photoshop. As

for JPEG compression noise removal, we use the training subset (800 images) of the DIV2K

dataset [127] and LIVE1 dataset (29 images) for training and testing the proposed networks,

following the study of the state-of-the-art method [158]. An additional setting we made for our

experiment is that we re-sized the original DIV2K images (larger than 2000× 1000 for most of

them) to their half for training out network for computational efficiency.
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Training on Multiple Tasks

We jointly train the proposed network on multiple tasks in the following way. We split the

training into a series of cycles, in each of which the network is trained on a combination of

all the tasks. To be specific, each cycle contains one or more randomly chosen minibatches

per a single task. Considering that the loss decreases at a different speed for different tasks,

we choose the number of minibatches in one cycle, specifically, one for haze removal, one for

rain-streak removal, and three for motion blur removal. The minibatches are randomly chosen

from the training split of each dataset and packed in a random order in a row for the cycle. We

then iterate this cycle until convergence. Each input image in a batch is obtained by randomly

cropping a 256×256 region from an original training image. The learning rate is set to 0.0001

at beginning, and is divided by 10 when the training loss stops decreasing. For loss functions,

we use a weighted sum of SSIM and l1 loss, specifically, 1.1 × SSIM + 0.75 × l1 for training

all the CNNs. We use Adam [62] optimizer with (β1, β2) = (0.9, 0.999) and ε = 1× 10−8. We

use PyTorch [99] to conduct all the experiments.
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Figure 3-8: Experimental designs of an overall network consisting of the encoder f and task-

specific decorders g1, g2, and g3; h is a DuRB-M block.

3.5.2 Extended Design of the Entire Network

We have found in our preliminary experiments that while the architecture of a shared encoder

followed by multiple task-specific decorders (illustrated in Fig. 3-8 (a)) shows strong perfor-

mance, more general architectures achieves even better performance. By general architectures,

we mean those having extended DuRB-M blocks on top of the shared encoder, to which some

of the task-specific decorders are connected, as shown in Fig. 3-8 (b)-(d). To explore what

structure shows good performance, we consider the four architectural designs shown in Fig. 3-

8. When we have three target tasks, there are thirteen designs of assigning them to the four

architectures, which are listed in Table 3.1. In the table, we use B, H and R to denote motion

blur removal, haze removal, and rain-streak removal, respectively, and use “→” to denote one

DuRB-M block. In the table we report the performance of each of the thirteen designs in terms

of accuracy (PSNR/SSIM) averaged over the three tasks. In this experiment, we trained each of

our thirteen networks for 1× 105 iterations under the same experimental setting. It is seen that

R→B→H performs the best. This indicates differences among the three tasks cannot be fully

absorbed by the single encoder, and implies that there is a hierarchy that is probably associated
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Table 3.1: Comparison of performance of thirteen different designs of the network for three
tasks (B: motion-blur removal, H: haze removal, and R: rain-streak removal). The values
(PSRN/SSIM are averaged accuracy over the three tasks.

Alignment PSNR / SSIM

B→H→R 30.61 / 0.9244
B→R→H 30.42 / 0.9227
H→B→R 30.57 / 0.9244
H→R→B 30.34 / 0.9219
R→B→H 30.79 / 0.9246
R→H→B 30.29 / 0.9201

Alignment PSNR / SSIM

BH→R 30.24 / 0.9217
B→HR 30.36 / 0.9216
HR→B 30.02 / 0.9189
H→RB 30.41 / 0.9236
RB→H 30.47 / 0.9219
R→BH 30.38 / 0.9228
RBH 30.32 / 0.9206

with their difference in difficulty in this order.

3.5.3 Comparison with the State-of-the-art

We compare the proposed method with the state-of-the-art methods for different tasks. Table 3.2

shows the results. We choose the best four published methods (ranked by PSNR) for each task.

“Ours(3)” indicate our method trained on the three tasks. We report here the accuracy values

obtained for the best architecture found in the experiment explained above. It is observed that

the proposed method outperforms others for motion blur removal and haze removal and achieves

comparable performance to the previous methods for other tasks.

Table 3.2 also shows the results (“Ours(4)”) obtained by simultaneously training our net-

work on four tasks, i.e., the three tasks plus JPEG compression noise removal. It is seen that

the addition of this task contributes to further improvements on haze removal and rain-streak

removal. In the experiment, we search for a good design for the four tasks; to do this with a

modest computational cost, we considered only combinations of inserting either a new decorder

or a new decoder with a DuRB-M to the above three-task network. The best performer is the

one with additional DuRB-M inserted in between B and H, i.e., R→B→J→H, where J is the

JPEG compression noise removal. The results with “Ours(4)” in Table .3.2 is obtained by this

design. A few examples of the output images for the four tasks are shown in Fig. 3-10 and

Fig. 3-11.
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Table 3.2: Comparison of state-of-the-art methods in terms of accuracy (PSNR/SSIM) for four
different tasks. DuRN-M(3) and DuRN-M(4) are the proposed network trained on the three and
four tasks, respectively. The best one is in bold and the second is with underline. The value
with the superscript ∗ means a result unable to replicate.

motion blur removal haze removal

Xu et al.[140] 24.6 / 0.84 Li et al.[70] 19.06 / 0.85
Kupyn et al.[66] 27.2 / 0.95∗ Cai et al.[14] 21.14 / 0.85

Nah et al.[93] 28.3 / 0.92 Ren et al.[103] 22.30 / 0.88
Liu et al.[82] 29.9 / 0.91 Liu et al.[82] 32.12 / 0.98

DuRN-M(3) 30.18 / 0.92 33.90 / 0.98
DuRN-M(4) 30.17 / 0.92 34.16 / 0.98

rain-streak removal JPEG artifacts removal (q=10)

Fu et al.[34] 30.92 / 0.89 Dong et al.[25] 28.98 / 0.82
Li et al.[75] 32.48 / 0.91 Chen et al.[19] 29.15 / 0.81
Li et al.[72] 33.16 / 0.92 Zhang et al.[153] 29.19 / 0.81
Liu et al.[82] 33.21 / 0.93 Zhang et al.[158] 29.63 / 0.82

32.76 / 0.92 -/- DuRN-M(3)
32.87 / 0.92 28.20 / 0.83 DuRN-M(4)

3.5.4 Ablation Study

The proposed method consists of several components. To evaluate the contribution of each

component, we conducted two ablation tests.

Improved Attention Mechanism and Dual Redisual Block

In the first test, we evaluate the contributions of the three components, i) the channel-wise

total variation and ii) the channel-wise average pooling, both of which are used for attention

computation, and iii) the improved design of dual residual block that employ fused operations.

Table 3.3 shows the results on three different tasks when performing multi-task learning on the

same three tasks. It is first seen that the use of all the three components yields the maximum

accuracy for each task. It is also observed that each component has a certain amount of positive

impact on the resulting accuracy, although it differs for different degradation types.
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Impact of Multi-Task Learning

To evaluate the effectiveness of multi-task learning, we train the proposed network (the best

design for the three tasks explained in Sec. 3.5.2) on each of the three tasks separately. In this

experiment, we simply neglect other g’s than the one for the target task. The results are shown in

the bottom of Table 3.3. It is seen that multi-task learning improves performance on motion blur

removal and haze removal by a good margin, while it decreases the performance on rain-streak

removal.

Table 3.3: Results of an ablation test with different components and employment of multi-task
learning.

TV GAP Fusion motion blur removal haze removal rain-streak removal

7 7 7 28.25 / 0.8724 26.58 / 0.9646 31.32 / 0.8976
3 7 7 28.49 / 0.8809 29.15 / 0.9699 31.99 / 0.9003
7 3 7 28.11 / 0.8703 29.66 / 0.9721 32.01 / 0.9015
3 3 7 28.51 / 0.8811 29.06 / 0.9719 32.03 / 0.9014

3 3 3 28.91 / 0.8911 31.32 / 0.9778 32.15 / 0.9048

motion blur 27.87 / 0.8653 -/- -/-
haze -/- 28.58 / 0.9685 -/-

rain-streak -/- -/- 32.60 / 0.9139

3.5.5 Visualization of Internal Features

To explore how different types of degradation are learned and represented inside our network,

we visualize the internal activations of the best three-task model (i.e., R→B→H of Table 3.1).

We input each sample of the test splits from the datasets of these tasks to the trained network.

We then apply t-SNE [129] to the set of activations of selected intermediate layers to map them

to two-dimensional space. Figure 3-9 shows the results. It is observed that the images having

different degradation factors are quickly disentangled as they propagate through the layers and

are clearly separated at the final output of the encoder. This demonstrates that the proposed

network is able to learn different image restoration tasks with a single network. It also implies

that the proposed network clearly distinguishes different types of degradations and represents

them differently inside its layers. A further analysis is left for future studies.
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(a) (b) (c)

(d) (e) (f)

Figure 3-9: Visualization of activations of selected intermediate layers of our network trained

on the three tasks. Each feature space is mapped to two-dimensional space by t-SNE [129]. The

results of lower to higher layers are shown from left to right. (a) Output of the first ReLU layer.

(b) The second ReLU layer. (c)-(e) Output of the first, third, and fifth DuRB-M blocks.

3.6 Summary and Conclusion

We have considered the design of a universal network applicable to multiple image restora-

tion tasks. We have shown through experiments that a single network can learn to perform

motion-blur removal, haze-removal, rain-streak removal and JPEG compression noise removal.

We have proposed two extensions to a backbone design of networks called the dual residual

network, which was recently proposed and shown to be effective for various image restoration

tasks. Our extensions are the improved attention mechanism that considers the spatial gradients

of feature maps to generate channel-wise attention weights and the basic block design named

DuRB-M that performs two operations in parallel and fuses them.

Discussion related to Chapter 2: In Chapter 2, We have made a foundation, e.g., a ba-

sic architecture (DuRB) of CNNs which is share-able cross multiple tasks, for developing new

CNN-based algorithms for image restoration tasks. In Chapter 3, from a methodological point

of view, we have shown for the first time that multi-task learning (MTL) of orthogonal tasks

of image restoration is feasible. This is achieved to a meaningful level by improving the de-
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sign of DuRB. It is thus not surprising that DuRN-M outperforms DuRNs on some restoration

tasks. The present study also provides the first counterexample to the current research trend –

(researchers) design/employ networks/formulations that are dedicated to individual degradation

types. The DuRN-M (Chapter 3) should not be considered as a rival to DuRN (Chapter 2) in

terms of restoration performance, but a continues development to discover new knowledge that

is academically interesting.
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Figure 3-10: Examples of qualitative results for rain-streak removal and motion blur removal
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Chapter 4

CNNs versus Human Vision

4.1 Introduction

The problem of classification, i.e., classifying an image to one of a few given classes, has been

studied for decades in computer vision and pattern recognition. In recent years, deep learn-

ing has been developed for this problem, which has led to significant improvement of perfor-

mance. A deep Convolutional Neural Network (CNN) constructed with residual connections

[48] achieved human’s level accuracy on classifying 10,000 large scale images to 1,000 classes

[108] in 2016. In the following year, a CNN [55] consisting of densely connected layers further

improved the performance on the same task. Beside this, CNNs have been applied to many

other tasks such as object detection and segmentation [78, 43], depth estimation [53] and im-

age generation [41], implying their great potential for solving various problems like humans

do. On the other hand, understanding how human’s perception work has been drawing great

attention in human vision and psychology research fields. This is a challenging problem for the

reason that human’s perception is hard to materialize and thus difficult to model. A promising

approach is employing a CNN as an agent that approximates the computation of human’s vi-

sion system. Conducting manipulation and analyses on the CNN, we intend to investigate how

human’s perception work for various problems. In this chapter, we focus on the task of material

classification. We are specifically interested in comparing perturbation tolerance of CNNs and

humans on this task. We first demonstrate a fact that CNNs that classify standard images of
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Figure 4-1: Performance comparison on FMD-test [114].

materials as accurately as humans do, has worse tolerance to Gaussion noise than humans. This

implies a difference between human’s perception and its computational model established by

the CNNs. Studying approaches that improve CNNs’ classification accuracy for noisy images,

we intends to explain why human vision is robust to perturbations such as Gaussian noise. We

consider two approaches in this chapter, i) employ an image restoration CNN (namely, cleaner),

specifically, a CNN that is trained for Gaussian noise removal, before the CNN (namely, clas-

sifier) employed for classifying standard images. This strategy in fact establishes a sequential

process, that first “clean” noisy images then classify them. This is made based on the hypothe-

ses that humans might infer the clear version of a noisy image so that to classify it correctly. ii)

Train a classifier using standard images with a number of noisy images. A hypotheses behind

this is, humans might have experienced classifying images with similar noise in their daily life,

which enable them to classify the noisy test images correctly. We investigate how likely are
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the two approaches the pattern of human’s, by comparing classification accuracy and behavior

(represented by confusion matrices) of theirs with humans’. It is seen by the results that both

approaches improved classification accuracy up to humans’ level.

4.2 Pioneering Studies

Material Recognition Early studies on reflectance properties (e.g.albedo, color) have been

considered related to humans material recognition [115]. Bloj et al.[10] showed that human’s

color perception is effected by light reflection. Boyaci et al.[11] proposed that surface orienta-

tion perceived by human observers is partially discount in estimating surface albedo. Nishida et

al.[96] demonstrated that luminance histogram is an important factor for surface reflectance per-

ception for human’s visual system. Robilotto and Zaidi et al.[104] examined whether humans

veridically perceive reflectances of real objects under natural viewing conditions. Motoyoshi et

al.[91] proposed that the skewness of the luminance histogram and the skewness of sub-band

filter outputs of an image, are diagnostic of its surface properties (i.e.glossiness and albedo).

Fleming et al.[32] found that humans use tacit knowledge about the statistics of real-world il-

lumination to estimate surface reflectance. Fleming et al.[31] studied on how humans identify

translucent materials. They suggested that humans’ visual system do that by gathering image

statistics from key regions of a translucent object. With the researches that have been con-

ducted in the literature of psychophysics and human vision, Sharan et al.[115] studied material

recognition on a combination of human vision and computer vision. They proposed i) a dataset,

Flicker Material Database (FMD), that consists of 1,000 material images, and ii) a recognition

system, which classifies material images with features found based on the studies of human

material recognition. The FMD has been used in many studies related to material recognition

[112, 156, 80, 81, 79] in computer vision, in the following years. Zhang et al.[156] proposed

an approach for selectively integrating features learned by CNNs for improving material recog-

nition accuracy. Liu et al.[81] demonstrated a poor perturbation tolerance of CNNs compared

to human’s on material recognition. Liu et al.[79] studied individual differences of humans on

recognition of material attributes such as glossiness, transparency and beauty. On the other

hand, many contributions have been made in recent years, for understanding materials and their
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properties. Sawayama et al.[109] showed increasing overall chromatic saturation, darkness and

glossiness of an image enhances the perception of wetness, and developed an effective wetness

enhancing transformation based on that. Sharan et al.[116] investigated how come humans can

fast and accurately classify materials and suggested that it is a distinct, basic ability of human’s

visual system. Sawayama et al.[110] proposed that material and shape perception of human’s

mainly relies on intensity gradient magnitude and intensity gradient order.

Development of CNNs’ architectures A pioneering study is conducted by LeCun et al.[68] in

1998, where a shallow network (LeNet-5) consisting of two convolutional layers and three fully-

connected (fc) layers was proposed for classifying handwritten digits. This study established a

standard architecture, i.e.a stack of convolutional layers followed by one or more fc layers, for

later studies on CNNs’ architecture. From 2012, various CNNs have been developed for solv-

ing classification problems. Krizhevsky et al.[65] proposed an eight layers CNN (AlexNet) for

this purpose. Simonyan et al.[118] developed a set of deeper versions (VGG-Nets) of AlexNet

for a better classification accuracy. He et al.[48] proposed a simple yet effective layer con-

nection style, residual connection, that adds the input x of a computation F to its output, for

classifying images. They designed a modular block (ResNet block) implementing this connec-

tion style, and built very deep CNNs (ResNets) by stacking the blocks repeatedly. Huang et

al.[55] proposed to build CNNs in a style different to the ResNets. In their proposed connection

style, each convolutional layer takes as input the feature maps of all preceding layers. They

designed a modular block (DenseBlock) to implement this style and build CNNs by repeatedly

stacking DenseBlocks. Hu et al.[52] proposed a channel-wise weighting mechanism, Squeeze-

and-Excitation mechanism, for selectively enhancing important features and suppress useless

features for classification. Detailed explanations for it are provided in Sec. 4.4.

Studies on CNNs and Humans CNNs have been developed successfully for many tasks. It is

promising to think that such a system has a good potential approximating human vision. This

starts a new trend of research that goes on the combination of human vision system and CNNs,

bridging one to another. Geirhos et al.[36] analyzed the robustness of humans and CNNs to

various types of image degradation on object classification. They showed that human visual

system is more robust than CNNs for most degradation types. They also showed that CNNs’
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performance surpasses human’s only when they are tested on the distortion types the CNNs were

trained on, and the strong robustness a CNN earned for one distortion type doesn’t generalize to

other types. Zhou et al.[159] studied CNNs and Humans with adversarial samples, i.e., images

that are altered for incorrect classification for CNNs. They showed that humans can predict to

what class an adversarial sample is incorrectly classified by a CNN. Geirhos et al.[37] proposed

that normally trained CNNs are strongly biased to using textures of an image to identify its

class. They pointed out that this is in contrast to human vision in terms of behavioural evidence,

and proposed to force a CNN to learn shape-based features for a human’s alike classification,

by distorting local textures of training images.

4.3 Noise Tolerance of CNNs and Humans

CNNs and Datasets We employ four popular CNNs for our experiments, VGG16 [118],

ResNet50 [48], ResNet101 [48] and DenseNet161 [55]. These CNNs are firstly trained on the

ImageNet [108] dataset1 for object recognition, then fine-tuned on two datasets consisting of

material images. Adopting this two-step training procedure, we intends to enable the CNNs

to re-use the features learned for object recognition for achieving human-level performance on

material recognition [80]. The two datasets for material recognition are i) Extended Flicker

Material Database (EFMD) [156] which consists of 10,000 images (1000/class for 10 material

classes); and ii) Flicker Material Database (FMD) [116], which consists of 100 images/class for

the same 10 classes (1,000 images in total). We randomly split the 100 images in a class into

50/50 for training/test for all the classes for FMD. We denote the training/test subset of FMD

by FMD-train and FMD-test. All the CNNs are trained on ImageNet, then EFMD, and then

FMD-train; and tested on FMD-test.

Data Augmentation We use data augmentation for training the CNNs on the two material

datasets. We employed random cropping (of size 224×224) and random horizontal flip for

EFMD and FMD, and random vertical flip, color jitter and Random re-sized cropping [125]

for EFMD alone. By color jitter we mean the process that randomly change the brightness,

1We use the pre-trained model provided by PyTorch [99]

63



input tensor

𝒲" 𝒲# ⨂

output tensor

GAP

Figure 4-2: The Squeeze-and-Excitation (SE) block.

contrast and saturation of an image. By Random re-sized cropping, we mean the process on an

image that first produce a crop of random size of 0.08 to 1.0 of the original size and a random

aspect ratio of 3/4 to 4/3 of the original aspect ratio, then resize the crop to a fixed size which is

224×224.

Details for Training and Testing CNNs In training, we use a SGD optimizer with momentum

= 0.9. The learning rates are set to 0.001 and 0.0001 for training the CNNs on EFMD and FMD-

train. We don’t change learning rate during the training. All the input images are first re-resized

to 256×256, then processed by the aforementioned data augmentation. For loss function, we

employ cross entropy loss. The networks are trained for 50 and 40 epochs on EFMD and FMD-

train. In order to have a reliable result, we generated 10 splits of FMD-train and FMD-test with

random sampling. We train and test each CNN on the 10 splits of FMD, and use the average

result for our analysis.

Humans’ Data We collect classification results of noise-free and noisy images for humans

on FMD-test, using Amazon Mechanical Turk (AMT). Each image is viewed by five human

subjects via the AMT system. The majority of their decisions is used as a human classification

result. We collect human classification results for the test set of one split of FMD but all the 10

splits, unlike we do for the CNNs.

Results It is seen in Fig. 4-1 that the CNNs can classify materials as accurately as humans

do on noise-free images, while the categorization accuracy dropped with the noise level more

steeply for the CNNs than for humans, implying lower perturbation tolerance for the CNNs. In

the following sections, we introduce two approaches for improving classification accuracy on

noisy images to human’s level for noisy images.
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Figure 4-3: The SE-ResNet module.

4.4 Squeeze-and-Excitation Mechanism

Squeeze-and-excitation (SE) mechanism is originally proposed with deep neural networks for

object recognition [52]. It is in fact a channel-wise weighting mechanism for selectively en-

hancing important features and suppress useless features on the internal tensors of a network.

To determine the weight on each channel, it computes the averages of activation values of chan-

nels; then, they are converted by two fully-connected layers with ReLU and sigmoid activation

functions to generate channel-wise weights. The aggregation of activation values is equivalent

to global average pooling. We illustrate this mechanism in Fig. 4-2. Towards better leverag-

ing the potential of a SE block, this mechanism is built into a ResNet Module [48], following

previous studies such as [52, 82]. We illustrate it in Fig. 4-3 and name it as SE-ResNet module.

4.5 Squeeze-Excitation-Distillation (SED) Modular for Im-

age Restoration

We propose a novel modular for restoring clear images from their noisy version. The mod-

ular consists of i) a SE-ResNet module that enhances important features of natural images

and suppress features of noise, ii) a module consisting of two sets of [convolution (with 1×1

kernels)+batch normalization+ReLU] where the convolutional layer in the first and the second

set has d and d/2 channels, and iii) a convolutional layer with 3×3 kernels and d channels

followed by a batch normalization layer and a ReLU layer. It is noteworthy in ii), that setting

less channels (d/2) for the second convolutional layer against to the first’s (d) encourages this

module to extract essential features and remove noise’s features on its input tensor enhanced by
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i). Constructing a modular in such a way, we intend to enhance, then extract the essences of

a natural image from its noisy version, and reconstruct the detailed information of the natural

image using its essential features. The proposed modular is illustrated in Fig. 4-4.

SE-ResNet
Module 𝑏𝑛 𝑐$ 𝑏𝑛 𝑐% 𝑏𝑛𝑐&

d d/2 h
Enhance Distillation Reconstruction

Figure 4-4: The proposed Squeeze-Excitation-Distillation (SED) modular.

4.6 Image Restoration for Improving Classification Accuracy

Image Restoration Network We construct a CNN (SEDNet) for Gaussian noise removal

using the proposed SED modular. We show the architecture of the network in Fig .4-5. Batch

normalization layers and ReLU layers used in the network are not illustrated in the figure for

the sake of simplicity. It consists of two initial convolutional layers for down-scaling an input

image into its 1/4 size, and a stack of four SED modules in the middle of the network, and a

[up, SED, up] block at the last of the network. The up means a 1:2 up-scaling operation (by

nearest-neighbor interpolation) and a convolutional operation with 3× 3 kernels.

Results Visual examples of input noisy images, internal feature maps, restored images and

clear images are shown in Fig 4-8. The images shown in the 2nd, 3rd and 4th columns are

produced by summing up the values of internal tensors along their channels on the last SED

modular of the SEDNet. The enhance, distill and reconstruct means that the images are com-

puted on the output of the enhance, distillation and reconstruction module of the SED modular

(see Fig. 4-4), respectively. It is seen that the SEDNet restores noisy images to a good extent.
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Figure 4-5: The proposed network (SEDNet) for Gaussian noise removal. A up contains a

up-sampling operation by nearest and a convolutional layer.

4.7 Training CNNs with Noisy Images for Improving Their

Perturbation Tolerance

It is a widely known approach that training a CNN with distorted images improves its robustness

to the distortion. We adopt this approach to our training procedure introduced in Sec. 4.3. Given

a training image of EFMD, we add an equal sized noise mask onto it. The noise mask consists

of values randomly generated under a Gaussian distribution with mean = 0 and std. = q, q is

randomly selected from [0.1, . . . , 0.8]. We set the probability to 10% that adding a noise mask

to an image for all the training images. The results are shown in Fig. 4-6.

4.8 Experimental Analysis

We plot classification accuracy on noise-free/noisy images for the standard CNNs, the human

subjects and the two approaches (i.e.noise fine-tune and restoration) in Fig. 4-6. We use std.= 0

to represent noise-free images for all the four sub-figures. It is seen that the both approaches

can improve accuracy of classifying noisy images to humans’ level. In addition, we demonstrate

the behaviours of CNNs’ and humans’ on the classification using confusion matrices. We show

examples of the VGG16 in Fig. 4-7. It is seen that the both approaches managed to make the

VGG16 behave like humans do.
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Figure 4-6: Performance comparison.
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standard noise-finetune restorationhuman

Figure 4-7: Performance comparison by confusion matrices.
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Figure 4-8: Examples of result.
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Chapter 5

Artificial Intelligent System under Human

Individual Differences

5.1 Introduction

Owing to the advancement of deep learning, artificial systems are now rival to humans in several

pattern recognition tasks, such as visual recognition of object categories. However, this is only

the case with the tasks for which correct answers exist independent of human perception. There

is another type of tasks for which what to predict is human perception itself, in which there

are often individual differences. Then, there are no longer single “correct” answers to predict,

which makes evaluation of artificial systems difficult. In this section, focusing on pairwise rank-

ing tasks sensitive to individual differences, we propose an evaluation method. Given a ranking

result for multiple item pairs that is generated by an artificial system, our method quantifies the

probability that the same ranking result will be generated by humans, and judges if it is distin-

guishable from human-generated results. We introduce a probabilistic model of human ranking

behavior, and present an efficient computation method for the judgment. To estimate model pa-

rameters accurately from small-size samples, we present a method that uses confidence scores

given by annotators for ranking each item pair. Taking as an example a task of ranking im-

age pairs according to material attributes of objects, we demonstrate how the proposed method

works.
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Standard recognition tasks, in which some entities (e.g., labels) are to be predicted from an

input (e.g., an image etc.), can be roughly categorized into two groups:

T1: Tasks in which what to predict is given independent of human perception.

T2: Tasks in which what to predict is human perception itself.

For the sake of explanation, we limit our attention to visual tasks in what follows, although

the discussions apply to other modalities. Then, examples of T1 are visual recognition of

object categories and individual faces, and examples of T2 are prediction of aesthetic quality

([92, 85, 64, 24]) and memorability ([57]) of images. In order to build a machine-learning-

based system for task group T2, it is first necessary to materialize what humans perceive from

images. This can be performed by, for example, asking human subjects to give a score for an

image or asking them to rank multiple images. Then, we consider training artificial systems

(e.g., convolutional neural networks) so that they will predict the scores or ranking results as

accurately as possible. As is well recognized, CNNs can now rival humans for several visual

recognition tasks ([48, 125]), when they are properly trained in a supervised manner. Although

it may not be widely recognized, this is only the case with task group T1, in which labels to

predict are given independent of human perception and thus there should exist correct answers

to predict; therefore it is straightforward to define and measure the performance of CNNs. For

task group T2, however, it remains unclear whether CNNs can achieve the human level of per-

formance, although the advancement of deep learning arguably has contributed to significant

performance boost. This may be attributable to individual differences of annotators that often

emerge in tasks of T2. When there are individual differences, there is no unique correct answer

to predict, which makes it difficult to evaluate the performance of artificial systems. Figure 5-

1 shows an example of such cases, that is, pairwise ranking of images according to material

attributes of objects. While, for some image pairs and attributes, human annotators will give

unanimous ranking as depicted in Figure 5-1(a), for others, they will give diverged rankings.

The latter can be divided into two cases, i.e., when the annotators confidently make diverged

rankings, which mostly occurs for subjective cases, as in Figure 5-1(b), and when they are

uncertain and give diverged rankings, as in Figure 5-1(c).
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Which is harder?

Which is harder?

Which is more beautiful? Which is more aged?

Which is smoother? Which is more fragile?

(a) Unanimous (b) Confident and diverged (c) Uncertain and diverged

Figure 5-1: Examples of pairwise ranking of images according to material attributes of objects.

Rankings given by different annotators are (a) unanimous, (b) diverged with confidence, or (c)

uncertain and diverged.

In order to build an artificial system that rivals humans for this type of tasks, we need to

answer the following questions:

Q1. How can we measure its performance or judge its equivalence to humans?

Q2. How can we build such an artificial system?

In this paper, targeting at pairwise ranking tasks, we attempt to give answers to these questions.

For Q1, we propose a method that is based on a probabilistic model of ranking results given by

human subjects. Suppose that an artificial system predicts ranking of N image pairs. The pro-

posed method quantifies how probable it is that the same ranking result is generated by human

annotators for the same N image pairs. It properly considers the above individual differences.

Despite its simplicity, there are a few difficulties to overcome with this approach. One is the

difficulty with obtaining an accurate probabilistic model of human ranking from small sample

size data1. To resolve this, we propose to collect confidence scores from annotators for ranking

each item pair, and utilize them to accurately estimate a probabilistic model of human ranking

(Sec.5.3). Thus, our proposal includes an annotation scheme for achieving the goal. Another

difficulty is with computational complexity. The presence of individual differences increases

1We have M human annotators rank each of N item pairs. Considering data collection cost, increasing both
M and N is prohibitive. As N needs to be large, M has to be small.
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the number of ranking patterns that humans can generate for N item pairs, making naive com-

putation infeasible. We present a method that performs the necessary computation efficiently

(Sec.5.2.3). Following the proposed data collection scheme, we have created a dataset named

Material Attribute Ranking Dataset (MARD), on which we tested the proposed method. The

dataset will be made publicly available. For Q2, we argue that learning to predict distribution

of rankings given by multiple annotators performs better than previous methods. In previous

studies ([98, 26, 13]), individual differences are usually ignored; the task is converted to binary

classification by taking the majority if there are individual differences. Our experimental results

support this argument.

5.2 Distinguishing Artificial Systems from Humans

5.2.1 Outline of the Proposed Approach

We consider a pairwise ranking task using N pairs, where, for instance, two images in each

pair (i = 1, 2, . . . , N) are to be ranked. We denote a ranking result of a human subject (or an

artificial system) by a sequence X , {x1, x2, . . . , xN}, where xi is a binary variable, such that

xi = 1 if a subject chooses the first image, and xi = 0 if the subject chooses the second image.

Considering the aforementioned individual differences, we introduce a probabilistic model for

X . Let p(X) be the probability mass function of human generated sequences X’s. Given a

sequence X generated by an artificial system, we wish to use p(X) to estimate how probable

a human can generate X. If the probability is very low, it means that X is distinguishable from

human sequences; then, we may judge the artificial system behaved differently from humans.

If it is high, then we cannot distinguish X from human sequences, implying than the artificial

system behaves similarly to humans, as far as the given task/dataset is concerned. Ideally, any

X’s with p(X) 6= 0 can be generated from human subjects, and thus it could be possible to use

p(X) = 0 or 6= 0 for the above judgment. However, this is not appropriate. As the exact p(X) is

not available, we have to use an approximate model built upon several assumptions. Moreover,

p(X) is estimated from the data collected from human subjects, which could contain noises.

It tends to have a long-tail (i.e., many sequences with a very small probability). Thus, the
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model p(X) may be unreliable particularly for X’s with low p(X)’s. These sequences are also

considered to be minor and eccentric sequences that the majority of humans will not generate.

Therefore, we use a criterion that excludes such minor sequences with the lowest probabilities.

Let S denote a subset of 2N possible sequences for the N pairs. In particular, we consider a

subset S with the minimum cardinality |S| that satisfies the following inequality:

∑
X∈S

p(X) > 1− ε, (5.1)

where ε is a small number. We denote it by Sε. Sε indicates a set of sequences that humans

are likely to generate. The complementary set S0 \ Sε contains the above-mentioned minor

sequences. Given a ranking result X created by an artificial system for the same N pairs, we

check if X belongs to Sε, i.e., whether X ∈ Sε or not. We declare X to be indistinguishable from

human results if X ∈ Sε, and to be distinguishable if X /∈ Sε.

5.2.2 Model of Human Ranking

We now describe the model p(X). Assuming that ranking results of different pairs are indepen-

dent of each other, we model the probability of a sequence X by

p(X) = p(x1, x2, . . . , xN) =
N∏
i=1

p(xi). (5.2)

We then model p(xi) using a Bernoulli distribution with a parameter θi, that is,

p(xi = 1) = θi and p(xi = 0) = 1− θi. (5.3)

Determination of θi will be explained later. Human subjects can provide many different se-

quences; each sequence X will occur with probability p(X).

It should be noted that the Bradley-Terry model, a popular model of pairwise ranking, is not

fit for our problem. It considers a closed set of items (e.g., sport teams and scientific journals),

and is mainly used for the purpose of obtaining a ranking of all the items in the set from ob-

servations of ranking of item pairs). On the other hand, in our case, we consider an open set
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x1   x2   x3        … xN Rank
01 0 1
11 0 1
01 1 0

10 0 1

11 0 0
00 1 1

1
2
3

2N

r
r+1

p (X )

1 - 𝜖

…
…
…

…
…

…

Figure 5-2: Each N bit sequence represents an instance of pairwise rankings for N item pairs.

These sequences are sorted in the descending order of their probabilities. The hatched area of

p(X) on the right indicates the cumulative probability of 1− ε. We check a machine-generated

sequence is ranked above the lowest rank r. This test is efficiently performed by calculating its

percentile value Q and see if Q < 1− ε. It is noteworthy that p(X) has a long-tail.

of items. Our interest is not with the item set itself but with evaluation of an intelligent system

performing the task.

5.2.3 Percentile of a Sequence in Probability-Ordered List

Percentile Value Q As mentioned above, we want to check whether X ∈ Sε or /∈ Sε. To

perform this, we calculate the percentile of X in the ordered list of all possible sequences X’s

in the order of p(X). It is defined and computed as follows (see Fig.5-2): i) Sort all (i.e.,

2N ) possible binary sequences X’s in descending order of p(X) of (5.2) and ii) Compute the

percentile of X (denoted by Q) using the cumulative sum of probabilities from the first rank to

the position where X is ranked. Using Q thus computed for the target X, the condition X ∈ Sε
is equivalent to Q ≤ 1 − ε (and X /∈ Sε is equivalent to Q > 1 − ε). It is noteworthy that

Q represents how close the sequence is to the most probable ranking result of humans, which

corresponds to Q = 0.

Efficient Computation of Q When N is large, it is not feasible to naively perform the above

procedure, as the number of possible sequences explodes. It is also noted that θi may differ

for each i, and thus the standard statistics of binomial distribution cannot be computed for the
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whole sequence. Thus, we group the elements having the same θi to a subsequence, which are

specified by an index set Ig , {i | θi = θg} for a constant θg. Suppose that this grouping splits

X into G subsequences X1, X2, . . . , XG. Using the independence of the elements, we have

p(X) =
G∏
g=1

p(Xg). (5.4)

In this grouping, we may redefine the variable xi by swapping the first and second images so

that θi ≥ 0.5. This enables us to minimize the number G of groups without loss of generality to

improve computational efficiency as will be discussed below.

Let ng be the number of elements belonging to Xg (i.e., ng = |Ig|), and θg be their Bernoulli

parameter (i.e. θg = θi for any i ∈ Ig). Then, the probability of Xg being a sequence Xg is

computed by

P (Xg = Xg) = θkgg (1− θg)(ng−kg), (5.5)

where kg is the number of 1’s (i.e., xi = 1) in Xg. Note that the number of possible sequences

having kg 1’s is
(
kg
ng

)
, and each of them has the same probability computed as above. For the

entire sequence, the probability of X being a sequence X is given by

P (X = X) =
G∏
g=1

P (Xg = Xg). (5.6)

Using (5.6) along with (5.5), we can compute the probability that a sequence X consists of

subsequences Xg(g = 1, 2, . . . , G), each of which has kg 1’s. The number of such sequences is

calculated by M(k1, k2, . . . , kg) ,
G∏
g=1

(
kg
ng

)
, and each sequence has the same probability.

Now, we consider sorting all 2N sequences of X . We construct a sequence {k1, k2, . . . , kG}

by choosing each of its elements kg (the number of 1’s in the gth group) from [0, ng]. We

obtain M(k1, k2, . . . , kG) sequences having the same probability by employing this assignment

scheme. We denote the jth assignment by Kj (j = 1, 2, . . . , J), where J is the number of

possible assignments, which is given by
∏G

g=1(ng + 1). (Note that
∑J

j=1M(Kj) = 2N .)

As it is not necessary to sort sequences having the same probability, we only need to sort

J blocks of sequences instead of 2N individual sequences. For each jth block associated with
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an assignment Kj , we use (5.6) for computation of the probability of each sequence belonging

to this block. Let Pj be this probability. Then, using Pj , we sort J blocks, which can be done

much more efficiently than sorting 2N sequences.

Finally, we compute Q for a sequence X. In order to compute its rank, we count the number

of 1’s in X (more specifically, the number of 1’s in each Xg of X = {X1, X2, . . . , XG}, and find

the block jX to which X belongs. Let IX be the index set of blocks ranked higher than jX, i.e.,

IX , {j |Pj ≥ PjX}. Then, the cumulative probability down to block jX (including it) can be

computed by

Q =
∑
j∈IX

M(Kj)Pj. (5.7)

5.3 Estimation of the Bernoulli Parameter Using Confidence

Scores

5.3.1 Small-sample Estimate of θi

We modeled human ranking by the Bernoulli distribution as in (5.3). We now consider how

to estimate its parameter θi,∀i. Suppose ni subjects participate in ranking the ith image pair,

∀i. Let n′i(≤ ni) be the number of subjects who chose the first image. Considering a pairwise

ranking task with exclusive choice, the number of subjects who chose the second image is

ni − n′i. Then, the maximum likelihood estimate (MLE) of θi is immediately given by

θi =
n′i
ni
,∀i. (5.8)

Despite its simplicity, this method could have an issue when the subjects unanimously

choose the same image of an image pair, i.e., either n′i = ni or n′i = 0. In this case, the

above MLE gives θi = 1 or θi = 0, which leads to p(xi = 0) = 0 or p(xi = 1) = 0. However,

this result is quite sensitive to (in)accuracy of θi and thus results may not be useful. If a CNN

chooses the one with p(xi) = 0 for only a single unanimous pair, then p(X) immediately van-

ishes irrespective of ranking of other pairs (i.e., Q = 100%), declaring that this CNN behaves

completely differently from human. The estimate (5.8) could be inaccurate if ni is not large
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enough. Although this issue will be mitigated by using a large ni, it will first increase the cost

of data collection; it will also increase the computational complexity of Q (because the number

G of groups having an identical θi tends to increase).

5.3.2 A More Accurate Estimate Using a Confidence Score

Therefore, we instead consider collecting additional information from human subjects. For

each image pair i, we ask them to additionally give a confidence score of their ranking. We

use a score s ∈ {0, 1, 2}, which correspond to “not confident”, “somewhat confident” and

“very confident”, respectively. As we ask ni subjects for a single image pair i, we introduce

an index h(= 1, . . . , ni) to represent each subject and denote the ranking choice and score of

h-th subject by xih and sih, respectively. Let X(i) = [xi1, . . . , xini
] and S(i) = [si1, . . . , sini

].

Assuming independence of individual annotations, we have

p(X(i), S(i)|θi) =
ni∏
h=1

p(xih, sih|θi)

=

ni∏
h=1

p(sih|xih, θi)p(xih|θi).
(5.9)

We use this model to perform maximum likelihood estimation for the unanimously ranked

pairs. Suppose that all ni subjects chose the first image. Then we have

ni∏
h=1

p(xih = 1|θi) = θi
ni . (5.10)

To model p(sih|xih, θi), we consider the probability of occurrence of each score s = 0, 1, 2; we

denote it by q(i)s ≡ p(sih = s). Then we have

ni∏
h=1

p(sih|xih = 1, θi) = q0
n0q1

n1q2
n2 , (5.11)

where n0, n1 and n2 denotes the number of subjects who chose confidence scores 0, 1, and 2,

79



respectively; we omit the superscript in q0, q1, q2 etc. for simplicity. Thus, from (5.9) we have

p(X(i) = 1, S(i)|θi) = θi
niq0

n0q1
n1q2

n2 . (5.12)

Given the observations S(i) and (n0, n1, n2), we want to maximize the likelihood (5.12) with

respect to θi as well as the introduced unknowns q0, q1, and q2. As they are probabilities, there

are a few constraints for q0, q1, and q2 defined as

q0 + q1 + q2 = 1, (5.13a)

0 ≤ q0, q1, q2 ≤ 1. (5.13b)

We then assume a relation between the confidence scores and θi leading to the following equa-

tion:
1

2
q0 +

3

4
q1 + q2 = θi. (5.14)

This equation indicates that the three scores, not confident, confident, and very confident, are

mapped to θi = 0.5, 0.75, and 1.0, respectively. In other words, subjects who are not confident

irrespective of the choice xi = 1 will choose the other with 50% in the future; those who

are very confident will always do the same choice in the future; those who have intermediate

confidence will do the same with the intermediate probability 75% in the future.

Using the constraints (5.13) and (5.14), we can maximize the likelihood (5.12) with respect

to the unknowns. To be specific, we eliminate, say, q0 and q1, from (5.12) using (5.13a) and

(5.14) and maximize it for θi and q2 with the inequality constraints (5.13b). Any numerical

constrained maximization method can be used for this optimization. As a result, we have the

MLE for θi. It should be noted that we use this estimation method only when the ranking results

are unanimous; we use the standard estimate (5.8) otherwise.

Discussion on the Use of Confidence Score As is described above, we propose to use a con-

fidence score to estimate each θi. An alternative use of confidence scores is to simply eliminate

the ranking results with a confidence score less than 2 and go with only maximally confident

ranking results. We do not adopt this approach due to the following reason. We think that

80



there are two cases for how individual differences emerge (see also Fig.5-1): i) annotators make

selections confidently, which are nevertheless split (subjectivity); and ii) annotators make selec-

tions without confidence, which makes their decisions fluctuated and then split (uncertainty).

Elimination of samples with score 0 or 1 will remove data of type (ii). This will be fine when

we are only interested in data of type (i), which seems to be the case with most existing studies.

On the other hand, our study also considers data type (ii). Suppose, for instance, the case where

people perceive very similar glossiness for two different objects, e.g., a plastic cup and a glass

mug; uncertainty will be fairly informative for such cases. This is why we attempt to model the

uncertainty instead of eliminating it. As we are interested in modeling individual differences,

we don’t eliminate samples with low inter-rater agreement, either.

5.4 Experimental Results

5.4.1 Material Attribute Ranking Dataset

To test our method, we have created a dataset of a pairwise ranking task. It has been shown

([33, 30]) that humans can visually perceive fairly accurately the “material attribute” of an

object surface, such as hardness, coldness, lightness etc. Motivated by this, we chose a task of

ranking a pair of images according to such material attributes. We consider thirteen material

attributes, namely aged, beautiful, clean, cold, fragile, glossy, hard, light, resilient, smooth,

sticky, transparent, and wet.

The dataset, which we name Material Attribute Ranking Dataset (MARD), consists of 1,000

training and 300 testing samples for each of the thirteen attributes. Each sample contains rank-

ing results of an image pair of five Mechanical Turkers. For test samples for which the initial

five Turkers make a unanimous selection, the dataset provides additional ranking results of ten

more Turkers as well as three-level scores of their confidence in their ranking.

It should be noted that MARD differs from any of similar existing datasets of pairwise

ranking, e.g., Emotion Dataset ([148]). The existing datasets simply discard individual differ-

ences by taking the majority of nonunanimous annotations, which is equivalent to regarding the

most probable ranking result of humans as the only correct prediction. Although this greatly
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simplifies the problem, this makes it impossible to consider individual differences in any ways.

Details of Creation of MARD MARD uses images of the Flicker Material Database (FMD)

([116]), a benchmark dataset of classification of ten materials categories. We split 1,000 FMD

images into two sets of non-overlapping 500 images (one set is used for training and the other

set is used for testing). We then created 1,000 and 300 image pairs by randomly choosing

images from each set, respectively. We asked five Turkers to rank each image pair in terms

of each of the thirteen material attributes by showing the paired images in a row. (The same

image pairs were used for all the attributes.) Specifically, we asked them to choose one of three

options, the first image, the second image, and “unable to decide”, for each pair. We discarded

the image pairs with three or more “unable to decide” in the training set and those with one or

more “unable to decide” in the test set. For the image pairs of the test set which were ranked

unanimously for an attribute by the five Turkers, we further have ten more Turkers rank the same

image pair and attribute. In this second task, we removed the “unable to decide” option, and

also asked the Turkers to additionally provide their confidence on their ranking by choosing one

of three level confidence, i.e., “Not confident”, “Somewhat confident”, and “Very confident”.

The confidence scores are used in order to estimate the parameter θi to mitigate the sensitivity

issue with unanimous ranking, as was discussed in Section 5.3.

5.4.2 Evaluation of Differently Trained CNNs

Using the MARD, we conducted experiments to test our evaluation method. To see how it

evaluates different prediction methods, we consider four methods. The first three are existing

methods that convert the task into binary classification by regarding the majority of human

ranking results as the correct label to predict. For the fourth method, we present a method that

considers the individual differences as they are.

• RankCNN ([26]): A CNN is trained to predict binary labels by minimizing weighted

squared distances computed for each training sample to its binary label.

• RankNeth ([98]): In their original work, a linear classifier is trained to predict binary

labels by searching for maximum-margin hyper-planes in a feature space. In this study,
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we instead employ a hinge-loss.

• RankNetp ([13]): A neural network (a CNN in this study) is trained to predict binary

labels by minimizing the cross-entropy loss.

• RankDist (ours): A CNN is trained to predict the distribution of ranking of each item pair.

To be specific, it is trained to predict the ML estimate (5.8) of the Bernoulli parameter θi.

(Recall that training samples do not provide scores.) The cross-entropy loss is used.

We applied the above four methods to the training set of the MARD. For all the four meth-

ods, we use the same CNN, VGG-19 ([118]). It is first pretrained on the ImageNet and fine-

tuned on the EFMD ([156]). Then it is trained using the MARD where its ten lower weight

layers are fixed and the subsequent layers are updated. It is used in a Siamese fashion, provid-

ing two outputs, from which each loss is computed. The losses for all the thirteen adjectives are

summed and minimized. Note that the four methods differ only in their employed losses.

Table 5.1 shows theQ values of the four methods for the thirteen attributes that are computed

using the test set of the MARD. When choosing 90.0% for the threshold for Q, any ranking

results with Q ≥ 90.0% are declared to be distinguishable from human ranking. It is observed

that the number of such attributes is 3, 2, 3, and 1, for RankCNN, RankNeth, RankNetp, and

RankDist, respectively. RankDist tends to provide smaller Q’s for many attributes, indicating

that its ranking results are closer to the most probable human results than other three. The three

methods show more or less similar behaviours.

In summary, the proposed evaluation method enables to show which method provides rank-

ing that are (in)distinguishable from human ranking for which attribute. For instance, the rank-

ing results for the attribute hard are the most dissimilar to human ranking, implying that there is

room for improvements. Our method also makes it possible to visualize the different behaviours

of the four methods; in particular, RankDist that considers individual differences performs dif-

ferently from the three existing methods that neglect individual differences.
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Table 5.1: Evaluation of four differently trained CNNs on the MARD dataset. Numbers which
are larger than 90% are displayed in bold fonts, indicating that the ranking results are distin-
guishable from human-generated results.

(VGG19) RankCNN RankNeth RankNetp RankDist

aged 0.7 1.9 4.0 3.4
beautiful 39.8 38.9 32.3 38.3

clean 31.6 5.7 27.9 16.3
cold 1.8 8.4 10.7 0.2

fragile 99.3 97.4 98.7 89.1
glossy 72.4 88.0 90.9 32.9
hard 100 100 100 93.8
light 35.9 20.8 36.5 4.9

resilient 18.6 26.9 16.5 4.3
smooth 54.3 61.3 71.5 33.1
sticky 31.2 31.2 10.0 12.5

transparent 100 10.0 7.4 8.7
wet 25.3 27.2 7.9 0.3

5.5 Summary

In this study, we have discussed how to compare artificial systems with humans for the task

of ranking a pair of items. We have proposed a method for judging if an artificial system is

distinguishable from humans for ranking of N item pairs. More rigorously, we check if an N -

pair ranking result given by an artificial system is distinguishable from those given by humans.

It relies on a probabilistic model of human ranking that is based on the Bernoulli distribution.

We have proposed to collect confidence scores of ranking each item pair from annotators and

utilize them to estimate the Bernoulli parameter accurately for each item pair. We have also

shown an efficient method for the judgment that calculates and uses the percentile value Q of

the target N -pair ranking result. Taking annotation noises and inaccuracies with the models

into account, Q is compared with a specified threshold (e.g., 90.0%); if it is smaller than the

threshold, we declare the artificial system is indistinguishable from humans for rankings of the

N -item pairs. The value Q may also be used as a measure of how close the ranking result of the

artificial system is to the most probable ranking result of humans.
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Chapter 6

Conclusions

In this thesis, we have studied image restoration on a number of distortion factors. Evidence

that CNNs are not robust to image distortions, have been shown in many works including this

thesis. This can result in failures in applications of CNNs. Various studies have tackled this

problem from the perspective of domain-shift. By domain-shift, we mean the data on which a

CNN was trained is different from those on which the CNN is used for inference. However,

their approaches are either not applicable to many factors of image distortion, or not powerful

enough to achieve a good improvement of performance on the factors. Towards developing

powerful approaches for restoring clear images from their various distorted versions. We have

proposed a style of residual connection, dubbed “dual residual connection”, aiming to exploit

the potential of paired operations for image restoration tasks. We have shown the design of

a modular block (DuRB) that implements this connection style, which has two containers for

the paired operations such that the user can insert any arbitrary operations to them. We have

also shown choices of the two operations in the block as well as the entire networks (DuRN)

containing a stack of the blocks for five different image restoration tasks. The experimental

results obtained using nine datasets show that the proposed approach consistently works better

than previous methods. This is introduced in Chapter 2.

In Chapter 3, we have further proposed a universal network that has a single input and

multiple output branches, to solve multiple image restoration tasks in the same model. We have

shown through experiments that the single network can learn to perform motion-blur removal,
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haze-removal, rain-streak removal and JPEG compression noise removal. We have proposed

two extensions to the backbone design of the dual residual network, which was proposed in

Chapter 2. The extensions are the improved attention mechanism that considers the spatial

gradients of feature maps to generate channel-wise attention weights and the basic block design

named DuRB-M that performs two operations in parallel and fuses them. Experimental results

show that the universal netowrk achieves a new state-of-the-art performance on motion blur

removal, haze removal (both in PSNR/SSIM) and JPEG artifact removal (in SSIM).

In Chapter 4, we first demonstrate that CNNs have worse tolerance to Gaussion noise than

humans. This implies differences between human’s perception and its computational model

established by the CNNs. We investigated two approaches that improves classification accuracy

on noisy images up to humans’ level, intending to explain how come is human vision robust to

noise. Although this study is still in an experimental stage, our experimental findings provide

novel insights into human visual mechanism for material recognition.

In Chapter 5, towards a deeper discussion between humans and CNNs, we have discussed

how to compare artificial systems with humans for the task of ranking a pair of items under

human individual differences. We have proposed a method for judging if an artificial system is

distinguishable from humans for ranking of N item pairs. More rigorously, we check if an N -

pair ranking result given by an artificial system is distinguishable from those given by humans.

It relies on a probabilistic model of human ranking that is based on the Bernoulli distribution.

We have proposed to collect confidence scores of ranking each item pair from annotators and

utilize them to estimate the Bernoulli parameter accurately for each item pair. We have also

shown an efficient method for the judgment that calculates and uses the percentile value Q of

the target N -pair ranking result. Taking annotation noises and inaccuracies with the models

into account, Q is compared with a specified threshold (e.g., 90.0%); if it is smaller than the

threshold, we declare the artificial system is indistinguishable from humans for rankings of the

N -item pairs. The value Q may also be used as a measure of how close the ranking result of the

artificial system is to the most probable ranking result of humans.
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Appendix A

Appendix for Dual Residual Networks

(Chapter 2)

This document provides additional explanations about the experimental setting for each of the

five image restoration tasks.

A.1 Implementation Details and Additional Results for the

Five Tasks

A.1.1 Details of Training Method

We use the Adam optimizer with (β1, β2) = (0.9, 0.999) and ε = 1.0× 10−8 for training all the

proposed DuRNs. For loss functions, we use a weighted sum of SSIM and l1 loss, specifically,

1.1 × SSIM + 0.75 × l1, for all the tasks. There are two exceptions. One is Gaussian noise

removal on the BSD500-grayscale dataset [86], where we use l2 loss. The other is raindrop

removal, where we use the same weighted loss for the first 4,000 epochs, and then switch it to

a single l1 loss for additional 100 epochs. The initial learning rate is set to 0.0001 for all the

tasks. All the experiments are conducted using PyTorch [99]. Our code and trained models are

made publicly available at https://github.com/liu-vis/DualResidualNetworks
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A.1.2 Noise Removal

Specification of ctl1 and ctl2 We show the specification of ctl1 and ctl2 for each DuRB-P in Table

A.1, in which l(= 1, . . . , 6) denotes the block-id of a DuRB; the “recep.” denotes the receptive

field of convolution. It is observed that the paired convolution has a large- and small- receptive

field for each DuRB-P (see each row in the table), and the size of the receptive fields of ctl1 and

ctl2 increases with l with an exception at l = 5, which is to avoid too large a receptive field. By

this design we intend to make each block look at the input image at an increasing scale with

layers in the forward direction.

Experimental Setting for Gaussian Noise Removal In training, we set batch size = 100.

Each input image in a batch is obtained by randomly cropping a 64×64 region from an original

training noisy image. We exactly followed the procedure of [122] to generate noisy images for

training our network.

Experimental Setting for Real-World Noise Removal In training, we randomly select 30

out of 40 pairs of a high resolution noisy image and a mean image (used as ground truth) for

constructing the training dataset. We set input patch size = 128×128, and use 30 patches (each

of which is randomly cropped from a different training image) to create one batch. To test the

CNNs including ours and the baselines, we use the remaining 10 image pairs; specifically, we

randomly crop ten 512× 512 patches from each of them, yielding 100 patches that are used for

the test.

Table A.1: The specification of ctl1 and ctl2 for DuRB-P’s for noise removal. The “recep.”
denotes the receptive field of convolution, i.e., delation rate× (kernel size - 1) + 1.

DuRB-P

layer kernel dilation recep. layer kernel dilation recep.

ctl=1
1 5 1 5×5 ctl=1

2 3 1 3×3
ctl=2

1 7 1 7×7 ctl=2
2 5 1 5×5

ctl=3
1 7 2 13×13 ctl=3

2 5 1 5×5
ctl=4

1 11 2 21×21 ctl=4
2 7 1 7×7

ctl=5
1 11 1 11×11 ctl=5

2 5 1 5×5
ctl=6

1 11 3 31×31 ctl=6
2 7 1 7×7
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A.1.3 Motion Blur Removal

Table A.2: The specification of ctl1 for DuRB-U’s for motion blur removal.

DuRB-U

layer kernel dilation recep.

ctl=1
1 3 3 7

ctl=2
1 7 1 7

ctl=3
1 3 3 7

ctl=4
1 7 1 7

ctl=5
1 3 2 5

ctl=6
1 5 1 5

Specification of ctl1 and ctl2 The specification of ctl1 is shown in Table A.2. For ctl2, we use an

identical configuration, kernel size = 3× 3, dilation rate = 1 and stride = 2, for all DuRB-U’s.

We intend to simply perform down-sampling with ctl2.

Experimental Setting on GoPro Dataset In training, we set batch size = 10. Each input

image in a batch is obtained by randomly cropping a 256× 256 patch from the re-sized version

(640 × 360) of an original training image of size 1280 × 720. In testing, we use the re-sized

version (640× 360) of the original test images of size 1280× 720 as in training.

Experimental Setting on Car Dataset The Car dataset was used only for evaluation. We

down-scale the blur images from their original size 720 × 720 to 360 × 360 and input them to

the DuRN-U trained using GoPro-train dataset for de-blurring. The result is then up-scaled to

700× 700 and fed into YOLOv3.

Additional Examples More examples of motion blur removal on GoPro-test dataset are shown

in Fig. A-1.

A.1.4 Haze Removal

Specification of ctl1 and ctl2 The specification of ctl1 is shown in Table A.3. For ctl2, we use

an identical configuration, i.e., kernel size = 3× 3, dilation rate = 1 and stride = 2, for all the

DuRB-US’s. We intend to simply perform down-sampling with ctl2.
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Table A.3: The specification of ctl1 for DuRB-US’s for haze removal.

DuRB-US

layer kernel dilation recep. layer kernel dilation recep.

ctl=1
1 5 1 5 ctl=7

1 11 1 11
ctl=2

1 5 1 5 ctl=8
1 11 1 11

ctl=3
1 7 1 7 ctl=9

1 11 1 11
ctl=4

1 7 1 7 ctl=10
1 11 1 11

ctl=5
1 11 1 11 ctl=11

1 11 1 11
ctl=6

1 11 1 11 ctl=12
1 11 1 11

Experimental Setting on Dehaze Dataset In training, we set batch size = 20. Each input

image in a batch is obtained by randomly cropping a 256× 256 region from an original training

image of size 512× 512.

Experimental Setting on RESIDE In training, we set batch size = 48. Each input image in

a batch is obtained by randomly cropping a 256 × 256 region from an original image of size

620× 460.

Visualization of Internal Layer Activation Figure A-5 shows activation maps of several

chosen blocks (i.e., DuRB-US’s) in the network for different input images. They are the sums

in the channel dimension of activation maps of the input to the first DuRB-US (l = 0), and of

the output from the third (l = 3), sixth (l = 6), and twelfth (l = 12) DuRB-US’s. It is seen that

the DuRN-US computes a map that looks similar to transmission map at around l = 3.

Additional Examples More examples of haze removal are shown on Figs. A-2, A-3 and A-4.

In Fig. A-4, we show the results for images of hazy scenes that are captured using iPhone-6 plus

by us.

A.1.5 Raindrop Removal

Specification of ctl1 and ctl2 The specification of ctl1 for the three DuRB-S’s and the six DuRB-

P’s is shown in Table A.4. For ctl2, we use an identical configuration, kernel size = 3 × 3 and

dilation rate = 1, for all the DuRB-S’s, and use an identical configuration, kernel size = 5 × 5

and dilation rate = 1, for all the DuRB-P’s.
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Table A.4: The specification of ctl1 for DuRB-S’s and DuRB-P’s of the DuRN-S-P for raindrop
removal.

DuRB-S

layer kernel dilation recep.

ctl=1
1 3 12 25

ctl=2
1 3 8 17

ctl=3
1 3 6 13

DuRB-P

layer kernel dilation recep.

ctl=1
1 3 2 5

ctl=2
1 5 1 5

ctl=3
1 3 3 7

ctl=3
1 7 1 7

ctl=3
1 3 4 9

ctl=3
1 7 1 7

Experimental Setting on RainDrop Dataset In training, we set batch size = 24. Each input

image in a batch is obtained by randomly cropping a 256× 256 region from the original image

of size 720× 480. As mentioned before, we train the network 1.1× SSIM+0.75× l1 using the

loss for 4,000 epochs, and then switch the loss to l1 alone, training the network for additional

100 epochs. We did this for faster converging.

Additional Examples More examples of raindrop removal are shown in Fig. A-6.

A.1.6 Rain-streak Removal

Specification of ctl1 and ctl2 We use the same configuration as noise removal. See Table. A.1.

Note that we use DuRB-S for this task.

Experimental Setting on DDN Data To train the DuRN-S, we set batch size = 40. Each input

image in a batch is obtained by randomly cropping a 64 × 64 region from an original training

image.

Experimental Setting on DID-MDN Data In training, we set batch size = 80. Each input

image in a batch is obtained by randomly cropping a 64 × 64 region from an original training

image.

Additional Examples More examples of rain-streak removal on synthetic rainy images and

on real-world rainy images are shown in Fig. A-7 and Fig. A-8, respectively.
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Table A.5: Performance (PSNR/SSIM) of the four versions of DuRBs (i.e., -P, -U, -US, and -S)
on different task.

Real-noise Motion blur Haze Raindrop Rain-streak

DuRB-P 36.83 / 0.9635 29.40 / 0.8996 29.33 / 0.9761 24.69 / 0.8067 32.88 / 0.9214
DuRB-U 36.63 / 0.9600 29.90 / 0.9100 30.79 / 0.9800 24.30 / 0.8067 33.00 / 0.9265

DuRB-US 36.61 / 0.9591 29.96 / 0.9101 32.60 / 0.9827 22.72 / 0.7254 32.84 / 0.9238
DuRB-S 36.82 / 0.9629 29.55 / 0.9023 31.81 / 0.9792 25.13 / 0.8134 33.21 / 0.9251

A.1.7 Performance of DuRBs on Non-target Tasks

We have presented the four versions of DuRB, each of which is designed for a single task. To

verify the effectiveness of the design choices, we examine the performance of each DuRB on

its non-target tasks. Specifically, we evaluate the performance of every combination of the four

versions of DuRB and the five tasks. For noise, motion blur, haze, raindrop and rain-streak

removal, we train and test networks consisting of each version of DuRB on Real-World Noisy

Image Dataset, GoPro Dataset, Dehaze Dataset, RainDrop Dataset and DID-MDN Data. The

results are shown in Table A.5. It is seen that in general, each DuRB yields the best performance

for the task to which it was designed. For motion blur removal, DuRB-US performs comparably

well or even slightly better than DuRB-U, which is our primary design for the task. We think this

is reasonable, as DuRB-US contains the same paired operation as DuRB-U (i.e., up- and down-

sampling), contributing to the good performance. Their performance gap is almost negligible

and thus DuRB-U is a better choice, considering its efficiency.
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DuRN-UDeBlurGANBlurred Sharp

Figure A-1: Examples for motion blur removal on GoPro-test dataset.
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Hazy image DCPDN DuRN-US Ground truth

Hazy image GFN DuRN-US Ground truth

Figure A-2: Examples of haze removal on synthetic hazy images.
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GFN DuRN-USDCPDNInput

Figure A-3: Examples of haze removal on the hazy images used in previous works such as

[103, 151, 44]
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GFN DuRN-USDCPDNInput

Figure A-4: Examples of haze removal on real-world hazy images.

𝑙 = 3 𝑙 = 6 𝑙 = 12

Input OutputTrans. map GT

𝑙 = 0 𝑙 = 3 𝑙 = 6 𝑙 = 12

Input OutputTrans. map GT

𝑙 = 0

𝑙 = 3 𝑙 = 6 𝑙 = 12

Input OutputTrans. map GT

𝑙 = 0 𝑙 = 3 𝑙 = 6 𝑙 = 12

Input OutputTrans. map GT

𝑙 = 0

Figure A-5: Visualization of internal activation maps of the DuRN-US.
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Rainy image Qian et al.DuRN-S-P Ground truth-Attention map Residual map

Figure A-6: Examples of raindrop removal along with interal activation maps of DuRN-S-

P. The “Attention map” and “Residual map” are the outputs of the Attentive-Net and the last

Tanh layer shwon in Fig. 13 in the main-text; they are normalized for better visibility.
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DID-MDNDDN-𝑙" RESCAN DuRN-S Ground truthRainy

Figure A-7: Examples of deraining on synthetic rainy images.

DID-MDNDDN-𝑙" RESCAN DuRN-SRainy

Figure A-8: Examples of deraining on real-world rainy images.
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Appendix B

Appendix for the Universal Network

Proposed for Jointly Solving Multiple

Restoration Tasks (Chapter 3)

B.1 Details of the Encoder

B.1.1 Overall Design

The proposed network consists of the shared encoder and the task-specific decorders. The

encoder is split into two parts, a stack of three convolutional layers and a stack of the proposed

dual residual blocks (i.e., DuRB-M’s). The initial three convolutional layers have 48, 96, and

96 channels, respectively. Each layer employs 3 × 3 kernels and a ReLU activation function

at its output. The details of the DuRB-M are described below. The task-specific decorders are

already explained in the main paper.

B.1.2 Detailed Internal Design of DuRB-M

Figure B-1 illustrates the design of our DuRB-M block. In our network, as mentioned above,

multiple DuRB-M’s are stacked on top of each other to form the dual residual structure, which

comprise the second part of the encoder mentioned above. As explained in the main paper, the
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Table B.1: The specification of ctl1 and ctl2 for DuRB-M for the proposed network. The “recep.”
denotes the receptive field of convolution, i.e., delation rate× (kernel size - 1) + 1.

DuRB-M, ctl1
layer kernel dilation recep. stride

ctl=1
1 3 2 5×5 1

ctl=2
1 5 1 5×5 1

ctl=3
1 3 2 5×5 1

ctl=4
1 5 1 5×5 1

ctl=5
1 7 1 7×7 1

ctl=6
1 7 2 13×13 1

ctl=7
1 11 1 11×11 1

DuRB-M, ctl2
layer kernel dilation recep. stride

ctl=1
2 3 1 3×3 2

ctl=2
2 3 1 3×3 2

ctl=3
2 5 1 5×5 2

ctl=4
2 5 1 5×5 2

ctl=5
2 5 1 5×5 2

ctl=6
2 5 1 5×5 2

ctl=7
2 5 1 5×5 2

major differences from the four DuRBs (i.e., -P, -U, -S, -US) in [41] are the employment of the

improved SE-ResNet module instead of a plain ResNet module (shown in the first rectangle of

Fig. B-1) and the two parallel paths of different operations in the last part (the third rectangle of

Fig. B-1).

Each DuRB-M in the stack has the same design except the two conv. layers cl1 and cl2, which

are shown in Fig. B-1. Following the network design in [41], we use different configurations

for cl1 and cl2 for each of the stacked DuRB-M’s according to its position l(= 1, . . . , 7). The

parameters for cl1 and cl2 with different l’s are shown in Table B.1. For all other components, we

use the same configuration for each of the stacked DuRB-M’s. We use 3×3 kernels for all other

convolution layers; their stride is set to 1 except “c” right before the concatenation (Fig. B-1),

where we perform 2:1 down-sampling that is paired with the up-sampling performed in “up”.

For the components “up” and “se”, we use the same design as in [41]. The channel size is 96

throughout the stack of DuRB-M’s. We don’t employ any normalization layer in DuRB-M’s.

Improved 
SE-ResNet 𝑢𝑝 𝑐$%

𝑐

𝑠𝑒 𝑐(%
concat 𝑐

Figure B-1: The proposed building block: DuRB-M.

The improved SE-ResNet module (Fig. B-2(a)) has a bottle neck layer that can have an
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Improved SE block

𝑐 𝑐 ⨁⨂
!" !#

(a) Improved SE-ResNet module

input tensor

GAP

TV

!" !#

⨂

output tensor
(b) Improved SE block

Figure B-2: (a) The improved SE-ResNet module. (b) The improved SE block inside the “im-

proved SE-ResNet module”.

arbitrary number of units (the vertical gray bar in the middle of “Improved SE Block” of Fig. B-

2(b)). We set it to 64. We utilized a code1 from a study of CNN visualization2 for implementa-

tion of the spatial derivatives (or equivalently total variation, represented as “tv” in Fig.B-2(b))

of layer activation.

Additional Results

We show more examples of restored images for rain-streak removal, haze removal, motion blur

removal, and JPEG compression noise removal, in Figs. B-3, B-4, B-5 and B-6, respectively.

1https://github.com/jacobgil/pytorch-explain-black-box
2R.C. Fong and A. Vedaldi. Interpretable Explanations of Black Boxes by Meaningful Perturbation. Proceed-

ings of ICCV 2017.
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DuRNRESCANDID-MDN DuRN-MInput Ground truth

Figure B-3: Results of rain-streak removal.
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Input DuRN-MDuRNDCPDNGFN

Figure B-4: Results of haze removal.
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Input DeblurGAN DuRN DuRN-M Ground truth

Figure B-5: Results of motion-blur removal.
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q = 10 DuRN-M Ground truth q = 20 DuRN-M Ground truth

Figure B-6: Results of JPEG compression noise removal. q means compression quality.
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