
TOHOKU UNIVERSITY
Graduate School of Information Sciences

Interconnection Networks for High-Performance
Stream Computing with FPGA Clusters

(FPGAクラスタによる高性能ストリーム計算の
ための相互接続網に関する研究)

A dissertation submitted for the degree of Doctor of Philosophy
(Information Sciences)

Department of Computer and Mathematical Sciences

by

Antoniette Pangilinan MONDIGO

January 14, 2020

Abstract

Interconnection Networks for High-Performance

Stream Computing with FPGA Clusters

Antoniette Pangilinan MONDIGO

Abstract

High Performance Computing (HPC), as a field that relies heavily on cutting-edge

technologies, is among the various domains affected by the impending end of Moore’s

Law and Dennard scaling. Many advancements in computing architecture across the

various technology stack levels are being considered and explored to meet and support

the growing demands of HPC applications. Field Programmable Gate Arrays (FPGAs),

along with other dedicated acceleration platforms, are playing significant roles in this

endeavor.

FPGAs, as reconfigurable devices, are recently seen as promising, energy-efficient hard-

ware solutions due to a good balance between their flexibility and efficiency characteristics.

Despite their typical lower operating frequency range than the other traditional platforms’,

creating custom hardware allows massively parallel operations with high utilization rates.

Fine-grained and coarse-grained parallelism could be enabled and exploited by creating

deep and wide computing pipelines with regular memory accesses. This allows continuous

data streams to pass through the pipelines, while increasing the number of operations per

memory access; therefore, fully utilizing the available bandwidth. All these make stream

computing with a data flow model suitable for low operational intensity applications, such

as stencil computing algorithms in FPGAs, which has been successfully demonstrated in

numerous case studies. However, the resource budget of a single FPGA limits further

performance scaling.

Just as clustered architectures dominate the current HPC trends, the utilization of

FPGA clusters is a promising approach. However, despite numerous, successful case

studies, FPGAs still lack widespread acceptance in general-purpose HPC installations.

With this premise, it is the general direction of this research to aim at making FPGAs

accelerators of HPC offloaded applications through system-wide custom computing. In

order to achieve high performance, the main strategies are to increase the design space

to support the increase of processing units, to reduce interconnection overhead, and to

improve HPC application algorithms through customization. In this regard, stream com-

puting with data flow is a suitable approach to fully exploit FPGA capabilities to meet

Abstract

high performance and high scalability demands in HPC.

Recently, large-scale deployments of FPGA clusters in data centers and cloud ser-

vices have demonstrated the feasibility of providing a system-wide custom computing

infrastructure with FPGAs. However, the inter-FPGA interconnection network is an

overhead-inducing region in the extended design space, which could affect the overall per-

formance. Thus, there is a need to investigate a network’s performance characteristics

in order to achieve low-latency and high-throughput communication, especially for high-

performance stream computing. Since the clustering architecture of FPGAs is typically

selected based on target workloads and its required performance, choosing an appropriate

interconnection network for FPGA clusters becomes an important aspect in this research.

This dissertation is focused on investigating scalable interconnection networks for high-

performance stream computing FPGA clusters. In particular, this dissertation focuses on

the comparison of direct and indirect networks, with specific focus for stream computing

requirements.

The main objective of this dissertation is to explore appropriate interconnection net-

works for high-performance stream computing FPGA clusters, where suitability and fea-

sibility of direct and indirect networks are investigated. Direct networks are a common

interconnect approach in existing FPGA clusters due to their low-latency and scalable

characteristics. Indirect networks, on the other end, are not widely explored in FPGA

clusters due to their overhead in communication latency, but promises a scalable and flex-

ible connectivity in creating a custom network datapath, which is necessary for forward

portability in HPC. In this dissertation, a 1D torus or ring topology and a tree topology

with switches are adopted in investigating a direct network and an indirect network of

FPGAs, respectively.

In Chapter 2, the requirements for stream computing in FPGA clusters are inves-

tigated. Most HPC applications, which include stream computing, require a scalable

network architecture with a small FPGA footprint, and an efficient, low-latency, high-

bandwidth communication. In addition, one functional requirement for stream computing

is the support backpressure signals in the backpressure-less channels of the inter-FPGA

network. Another challenge is the synchronization of communicating FPGAs. This chap-

ter proposes a lightweight and efficient hardware backpressure mechanism for direct and

indirect inter-FPGA communication. This is done by creating a custom network proto-

col with credit-based flow control for backpressure propagation between communicating

FPGAs. Furthermore, to achieve high-performance and highly-efficient communication,

which is important to stream computing, it is the goal of this chapter to identify the

proposed backpressure mechanism’s design parameters and understand how they affect

overall performance. While the hardware backpressure mechanism is implemented on a

direct network in this chapter, the same design principles and mechanism apply for an

Abstract

indirect network, which are further discussed in Chapter 4.

Chapter 3 focuses on direct interconnection networks with high-speed transceiver links.

Stream computing applications require low-latency and high-bandwidth communication.

Since the hardware resource of a single FPGA is limited, one idea to scale the performance

of FPGA-based HPC applications is to expand the design space with directly connected

FPGAs. This chapter presents a scalable architecture of a deeply pipelined stream com-

puting platform, where available parallelism and inter-FPGA performance characteristics

are investigated to achieve a scaled performance. For a practical exploration of this vast

design space, a performance model is presented and verified with the evaluation of a

tsunami simulation application implemented on Intel Arria 10 FPGAs. Scalability analy-

sis is also performed, where speedup is achieved when increasing the computing pipeline

over multiple FPGAs while maintaining the problem size of computation. Performance is

scaled with multiple FPGAs; however, performance degradation occurs with insufficient

available bandwidth and large pipeline overhead brought by inadequate data stream size.

An existing, hardware bandwidth-compression is applied to the communication links to

mitigate the performance degradation caused by the bottleneck-prone inter-FPGA links,

which resulted to improved efficiency.

In Chapter 4, indirect networks with high-speed Ethernet switches are investigated. As

FPGAs become a favorable choice in exploring new computing architectures for the post-

Moore era, a flexible network architecture for scalable FPGA clusters becomes increasingly

important in HPC. In this chapter, a scalable platform of indirectly-connected FPGAs is

presented, where its Ethernet-switching network allows flexibly customized inter-FPGA

connectivity. However, for certain applications such as in stream computing, it is nec-

essary to establish a connection-oriented datapath with backpressure between FPGAs.

Due to the lack of physical backpressure channel in the network, the Ethernet-switched

network utilizes the custom credit-based network protocol with flow control introduced

in Chapter 2 in order to provide receiver FPGA awareness and is tailored to minimize

overall communication overhead, introduced by the variable latency in using Ethernet

switches. To know its performance characteristics, necessary data transfer hardware on

Intel Arria 10 FPGAs is implemented, and its communication performance is modeled,

which is then compared to a direct network’s. Results demonstrate that the connection-

oriented Ethernet-switched network achieves equivalent performance to a point-to-point

network for stream computing with large data sets, which suggests good performance and

scalability for large HPC applications.

Through prototype implementations, obtaining performance characteristics, perfor-

mance modeling, design space explorations, and performance evaluations, these different

evaluation methods in this dissertation have demonstrated the suitability and feasibility

of direct and indirect networks for stream computing FPGA clusters. Since stream com-

Abstract

puting applications generally process large data sets, streaming these sufficiently large

data streams scale the performance linearly with more FPGAs on both direct and indi-

rect network types, since they are able to achieve equivalent network throughput. Due

to this, both direct and indirect networks would be good choices for inter-FPGA com-

munication for high-performance stream computing. On the other hand, performance

of insufficient data stream sizes on both network types demonstrates the communication

latency as an overhead-inducing factor, causing degradation of performance. In this case,

the indirect network’s total transmission time is higher than a direct network’s, in which

latency dominates, therefore, negatively affecting the overall performance.

For future work, design space exploration should be done with the newly released

Intel Stratix 10 FPGAs, where their transceiver links support 100 Gbps data rate. This

implies an improved effective network bandwidth, which suggests better performance for

both direct and indirect networks. Another area of future work is to provide a standard

platform for FPGA cluster management, such as mapping of applications and network

configurations. As a general direction, the indirect network provides a scalable and flexible

infrastructure for high-level synthesis compilers and virtualization management of a large-

scale FPGA cluster.

Table of Contents

Abstract

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Related Works . 9

1.3 Objectives . 14

1.4 Organization and Contributions . 14

2 Interconnection Network Requirements for Stream Computing in FPGA

Clusters 19

2.1 Introduction . 19

2.2 Custom Network Protocol with Backpressure 21

2.2.1 Credit-based Flow Control Mechanism 22

2.2.2 Flow Control Design Parameters and Performance Trade-offs 24

2.3 Results and Discussion . 25

2.3.1 Simulation of Inter-FPGA Backpressure Mechanism 25

2.3.2 Case Studies for Full and Half-Duplex Inter-FPGA Communication

with High and Low Data Transmission Rates 27

2.3.3 Implementation and Evaluation . 28

2.4 Conclusions . 29

3 Direct Networks with High-Speed Transceiver Links 37

3.1 Introduction . 37

Abstract

3.2 Design and Architecture . 39

3.2.1 Stream Computing and Available Parallelism 39

3.2.2 Direct Networks for FPGA Clusters 41

3.2.3 Lossless Bandwidth Compression for Inter-FPGA Communication . 44

3.2.4 Performance Model . 46

3.3 Results and Discussion . 48

3.3.1 Implementation . 48

3.3.2 Verification and Evaluation . 50

3.3.3 Mitigating Inter-FPGA Communication Bottleneck 52

3.4 Conclusions . 54

4 Indirect Networks with High-Speed Ethernet Switches 63

4.1 Introduction . 63

4.2 Design and Architecture . 66

4.2.1 Indirect Networks for FPGA Clusters 66

4.2.2 Ethernet-based Connection-oriented Links and Protocol 67

4.2.2.1 Ethernet L1 and L2 IP core: 67

4.2.2.2 Frame Encoder and Decoder: 69

4.2.2.3 Flow Controller (FC): . 69

4.2.3 Performance Model . 70

4.3 Results and Discussion . 73

4.3.1 Implementation . 73

4.3.2 Communication Time and Effective Network Bandwidth 75

4.3.3 Performance Estimation of Stream Computing 77

4.4 Conclusions . 79

5 Conclusions 85

Bibliography 91

Acknowledgments 105

List of Figures

1.1 Critical Areas for FPGA Research Identified by Underwood et al. [1] . . . 3

1.2 HPC architectures over time (November 2019) [2] 5

1.3 FPGA clustering architectures . 6

1.4 Classification of Interconnection Networks [3] 16

1.5 Inter-FPGA Network Choices for Tightly-coupled FPGA Clusters 17

2.1 Hardware implementation of credit-based flow control in half-duplex transfers 22

2.2 Timing diagram with constant RX buffer reads (no backpressure) 26

2.3 Timing diagram with intermittent RX buffer reads (with backpressure) . . 26

2.4 Full-duplex transmission with high data transfer rate 31

2.5 Full-duplex transmission with low data transfer rate 32

2.6 Half-duplex transmission with high data transfer rate 33

2.7 Half-duplex transmission with low data transfer rate 34

2.8 Half-duplex transmission with backpressure from receiver FPGA 35

2.9 Effective link throughput . 36

2.10 Resource Utilization using varied design parameters 36

3.1 Generalized steam computing model with stream processing elements (SPEs) 40

3.2 FPGA cluster in ring connection . 41

3.3 Available parallelism for FPGA clusters . 42

3.4 FPGA cluster in 1D ring topology showing SPEs in its computing cores . . 43

3.5 FPGA cluster in 1D ring topology with lossless bandwidth compression [4] 45

3.6 Acceleration platform with master-slave FPGAs 49

Abstract

3.7 Resource utilization with different SPE configurations 57

3.8 Validation of performance model with Cstream = 116, 104 cycles 58

3.9 Performance evaluation of tsunami simulation 58

3.10 Speedup vs. parallel efficiency . 59

3.11 Estimated performance of 2D9V LBM without compression Cstream = 720×

240 elements . 59

3.12 Estimated performance of 2D9V LBM with compression Cstream = 720×240

elements . 60

3.13 Estimated performance of 2D9V LBM without compression Cstream = 720×

240× 16 elements . 61

3.14 Estimated performance of 2D9V LBM with compression Cstream = 720 ×

240× 16 elements . 62

4.1 Connection-oriented links in dedicated FPGA networks 65

4.2 FPGA clusters when scaled . 66

4.3 Network hardware modules for Ethernet protocol 68

4.4 Protocol layers . 68

4.5 Network communication traversal . 71

4.6 Resource utilization of SL3 and E40G Ethernet modules 74

4.7 Modeled vs. measured network communication time 80

4.8 Effective network bandwidth of SL3 and E40G for cases (1), (2), and (3) . 81

4.9 Stream computing in a ring connection . 82

4.10 Performance estimation of stream computing in a ring connection 83

List of Tables

3.1 Performance parameters . 56

4.1 Parameters for network performance model 71

4.2 Measured latency parameters . 76

List of Acronyms

ALM Adaptive Logic Module

ASIC Application-specific Integrated Circuit

CPU Central Processing Unit

DMA Direct Memory Access

DSP Digital Signal Processing

FIFO First-In First-Out

FLOPS Floating-point Operations per Second

FPGA Field Programmable Gate Array

GPU Graphics Processing Unit

HPC High Performance Computing

LAB Logic Array Block

MLAB Memory Logic Array Block

NIC Network Interface Controller

OSI Open Systems Interconnection

XLAUI 40 Gbps Attachment Unit Interface

Chapter 1

Introduction

1.1 Background and Motivation

Advancements in computer architecture across the various abstraction levels are being

explored for many years. Various platforms, compute models, and architectural strategies

are being actively considered to improve both performance and power efficiency. This is

primarily due to the impending end of Moore’s law [5] and Dennard scaling [6], which

expedites the rising percentage of transistor capacity under-utilization, known as the dark

silicon [7].

One of the areas affected by this imminent phenomenon is High Performance Comput-

ing (HPC) which heavily relies on cutting-edge technologies to achieve higher performance.

HPC deals with modeling and simulation workloads from science, engineering, commerce,

and different industries, which requires extreme and complicated computations that of-

ten employ ultra-fast, high-capacity, large-scale computing architecture [8]. The use of

specialized accelerators, such as graphics processing units (GPUs), is one of the employed

strategies to meet the growing demands of HPC applications. However, similar to the

fate of CPUs, they are power-consuming devices, which limits deployment size and needs

to be addressed in large-scale utilization, such as in supercomputers.

Field Programmable Gate Arrays (FPGAs) are recently playing a major part in the

exploration of power-efficient architectural advances. FPGAs are reconfigurable devices

1

1.1. Background and Motivation

that contain generic logic and interconnect, which allows customized digital circuits on

its fabric. As a result, optimized circuits of target applications are often explored and

implemented. Traditionally, they were widely used for fixed-point digital signal process-

ing (DSP) but now, they offer high floating-point processing capacity, allowing them to

execute high-performance demanding applications [9–13]. Latest variants, such as Intel

Generation 10 FPGAs (Arria 10 and Stratix 10), have included hardened floating-point

DSP blocks and significantly increased their computing density, while advancing further

in performance and power efficiency [12,14,15]. The recently released Stratix 10 FPGAs,

for instance, can reach peak floating-point performance comparable to that of the latest

GPUs [10,16].

FPGAs are designed for low-power operation, which were originally intended for

application-specific integrated circuit (ASIC) emulation, and have been around longer

than GPUs. They have lower chip frequency range than typical GPUs’ and CPUs’,

which contributes to their power efficiency. Despite the lower operating frequency, creat-

ing custom hardware in the FPGA fabric allows massively parallel operations with high

utilization rates. Parallelism is enabled and exploited through a deep pipeline of computa-

tional units, which can deploy computation blocks with user-defined circuitry rather than

through processors that take instructions, such as in von Neumann architecture [17–19].

Numerous FPGA case studies for relevant HPC problems have been performed, which

have shown better performance when compared with CPU’s and/or GPU’s, such as in

geophysics [20], molecular dynamics [21], bioinformatics [22], climate modeling [19], and

computational fluid dynamics (CFD) [23]. In particular, FPGAs excel as efficient hard-

ware accelerators because of their ability to customize algorithms and exploit both fine-

grained and coarse-grained parallelism in offloaded applications [9, 24–26].

Despite the numerous promising results in reconfigurable computing research, FPGAs

have not garnered significant impact on general-purpose HPC systems, which is due to

an apparently huge gap between the potential and reality for FPGAs in HPC [27]. An

interesting position paper by Underwood et al. [1], which was published a decade ago,

proposed 12 specific areas to hasten FPGA adoption in HPC environments. These areas

2

1.1. Background and Motivation

State of FPGA Research Toward HPC (2009~)

Figure 1.1: Critical Areas for FPGA Research Identified by Underwood et al. [1]

are shown in Figure 1.1, where most FPGA research for HPC revolves within. Since

then, the ecosystem has been evolving through modifying applications (customization),

the need for energy efficiency solutions (low-power operations), and the discovery of killer

applications for FPGAs, such as in deep neural networks [16, 28–30] (real applications).

These developments bring about the continuous efforts in exploring FPGAs in the HPC

landscape. Presently, the observations and conclusions by Underwood still apply to some

extent, thus the need for further research within these areas to increase acceptance of

FPGAs in HPC [27].

Customization with streamed data flow through pipelined computations is the primary

key to achieve high performance gains with FPGAs [17]. To obtain peak performance of

FPGA applications, stream computing is one of the promising FPGA computing models,

which relies on exploiting parallelism by deep and wide pipelining [18,31–33]. Generally, it

is also known as a stream processing system, which consists of computing units that process

data in parallel and interconnected communication channels [34]. In the terminology

established by Buck [35], data is sequenced and organized into streams or collectively, a

data stream, in which its data elements are mutually independent. Operations applied

to each data element on the stream is called a kernel. Since data stream elements are

independent, data-level parallelism could be exploited by operating individual elements

3

1.1. Background and Motivation

in parallel at the kernel level. Task-level parallelism can be exploited through parallel

operations of independent kernels in a pipelined fashion [36]. Through deep and wide

pipelining, constant throughput is guaranteed, which contributes to high-performance

computations.

In contrast to standard processors with random memory accesses, stream computing

relies on sequential accesses to external memory to read and write data streams [32].

In FPGA stream computing model, this relies on direct memory access (DMA) to read

and supply continuous data stream to a kernel, which its internal pipelines process this.

In turn, the pipeline results are output as a stream to be written back to the memory.

Through regular memory accesses, the available memory bandwidth is exploited and

conceals memory access latency. This makes stream computing with data flow model

suitable for low operational intensity applications such as stencil computing algorithms

in FPGAs, which typically involve large-scale numerical calculations with large data sets

and have been successfully demonstrated in [33,37–42].

With large data sets to stream, stream computing performance is determined pri-

marily by its throughput since the processing kernels containing multiple operations are

pipelined. Factors affecting throughput include operating frequency, bit-width of the

pipeline and its datapath, and available memory bandwidth, which in turn affects perfor-

mance. Furthermore, performance scaling through deep and wide pipelines in the kernels

is limited by the FPGA’s on-chip resources.

On the other end, HPC research at a global scale has advanced different computing

architectures over the years, from a single-processor computer to dominating clustered

architecture in the present [2]. As shown in Figure 1.2, the trend has favored clustering

of commodity devices over the others, such as Massive Parallel Processing (MPP) and

Symmetric Multiprocessing (SMP) architectures. As of November 2019’s TOP500 list of

supercomputers, 91.6% of them have adopted the clustering architecture, while MPPs are

slowly decreasing at now 8.4%.

With this context, extending the focus to FPGA clusters in HPC seems natural, espe-

cially when performance scalability is limited by the available resources of a single FPGA.

4

1.1. Background and Motivation

Architectures

91.6%

8.4%

Figure 1.2: HPC architectures over time (November 2019) [2]

Currently, massive investments of FPGA clusters in data centers and cloud services are

deployed and explored [43–49], which have demonstrated the viability of mapping large

HPC applications into multiple FPGAs that could achieve a scaled performance otherwise

limited by a single FPGA chip [46,50–53]. These deployments demonstrate the feasibility

of providing a system-wide custom computing infrastructure with FPGAs as accelerators

of HPC offloaded applications, which is the general direction of this research.

The clustering architecture of FPGAs is typically selected based on target workloads

and its required performance [54]. An FPGA cluster is a set of loosely or tightly con-

nected FPGAs working together as a single system. Loosely-coupled clusters do not re-

quire communication between FPGAs and only need a connection to host processors [54].

This is a classical organization, which is typical for offloaded applications on a single

FPGA. On the other hand, tightly-coupled clusters, require frequent communication be-

tween FPGAs [54]. For the latter type, an FPGA interconnection network is beneficial

and practical since modern FPGAs now have high-speed transceiver links. This ded-

icated network would provide low-latency communication channels between frequently

5

1.1. Background and Motivation

a) Loosely-coupled FPGA cluster b) Tightly-coupled FPGA cluster

System Network

P P

M

M M

F F

P P

M

M M

F F

System Network

P P

M

M M

F F

P P

M

M M

F F

FPGA Network

M Memory F FPGAP Processor

Figure 1.3: FPGA clustering architectures

communicating FPGAs; therefore, eliminating the FPGA-to-processor bottleneck when

transmitting through standard network interface controllers (NICs), as with the case for

loosely-coupled types. Figure 1.3 shows simplified block diagrams of the two clustering

types.

As with HPC clusters, computational units and interconnection network are the main

components of an FPGA cluster, which are also the major factors that determine the over-

all performance. To increase computational performance, there are three main strategies:

increase the processing units, reduce interconnection overhead, and improve the appli-

cation algorithm [55]. The first strategy could be achieved by increasing the number

of FPGAs, which expands the design space to accommodate increased parallelism. To

realize the second one, building a tightly-coupled FPGA cluster provides low-latency com-

munication channels dedicated for inter-kernel communication across FPGAs. For stream

computing applications, leveraging deep and wide pipelines on their customized kernels

addresses the third strategy.

Collectively, increasing the number of FPGAs proportionally increases the amount of

computational resources. The challenge is in the interconnection network region, where

6

1.1. Background and Motivation

there are many design factors to consider such as physical constraints, performance re-

quirements, scalability, and expected workloads. Since FPGA clusters are relatively new

in HPC, there is a need to investigate the interconnection network types and their perfor-

mance characteristics in order achieve high performance communication while minimiz-

ing overhead. Due to the customizable nature of FPGAs, including their interconnection

mechanism, the overall design space is huge.

A classification scheme for interconnection networks was introduced by Duato et al. [3],

as shown in Figure 1.4, which categorizes four major network types, based primarily on

network topology and was derived on the classification proposed in [56]. These are shared-

medium, direct, indirect, and hybrid networks. Figure 1.4 also indicates a few of these

networks implemented for parallel computers.

Shared-medium networks allow all communicating devices to share the transmission

medium, where only one device is allowed to use the network at a certain time, usually

with restricted bandwidth and an arbitration mechanism [3]. Due to the limited network

bandwidth, performance scalability is affected, especially when the shared medium could

only support a limited number of devices before it becomes a bottleneck. Two alternative

approaches to the shared-medium networks are the networks with directly connected

devices, known as direct networks, and networks with indirectly connected devices through

switches, known as indirect networks. Lastly, hybrid networks generally combine the

mechanisms of shared-medium networks and direct or indirect networks. They allow

an increase of bandwidth with respect to shared-medium networks and reduce distance

between devices with respect to direct or indirect networks [3]. However, for applications

requiring very high performance, direct and indirect networks achieve better scalability

than hybrid networks due to the constraints and performance limitations of the shared-

medium buses [3].

For tightly-coupled FPGA clusters, direct networks involve point-to-point links di-

rectly connecting neighboring FPGAs and are common choices for FPGAs, since it scales

well. To communicate between non-neighboring FPGAs, a transmitted information or

message has to pass through several intermediate FPGAs along some route in order to

7

1.1. Background and Motivation

reach its destination. A common component handling message communication and its

traversal, is a router, which earned direct networks the term router-based networks [3].

An FPGA, usually has an embedded router and is connected to the on-chip routers of its

neighbors through the transceiver links with pairs of unidirectional channels in opposite

directions. The more FPGAs are connected in the direct network, the total communica-

tion bandwidth, memory bandwidth, and processing capability of the FPGA cluster also

increases, making them a popular interconnection architecture for large-scale clusters [3].

Figure 1.5a shows a direct network with a 1D torus or ring topology with bidirectional

links interconnecting adjacent FPGAs. Meanwhile, Figure 1.5b illustrates a direct net-

work with on-chip routers to construct a 2D torus topology.

Indirect networks or switched-based networks, on the other hand, need one or more

external switches to interconnect the FPGAs, instead of direct connections [3]. Each

FPGA has a dedicated network adapter, which connects to a network switch through

its transceiver links. A switch have ports with input and output directions, where some

ports are connected to FPGAs, while others are connected to ports of other switches in

order to provide connectivity to more FPGAs [3]. Since message traversal is centralized

in the switches, network flexibility can be achieved through customized network datapath

between FPGAs, in which an arbitrary or virtual topology can be built according to a

target application’s actual communication patterns. Flexibility, in this aspect, supports

forward portability for other communication patterns, which is in line with the general

direction of this research: for FPGAs to be widely accepted as accelerators for HPC appli-

cations. Just as customization of the target application is one of the approaches to obtain

high performance in FPGAs, flexibility of the network datapath through customization is

likewise promising. Figure 1.5c presents an indirect network with a centralized Ethernet

switch, where an arbitrary topology can be configured based on the requirements of the

target application.

While interconnection networks for parallel computers are already widely explored [3],

only a few studies were done to explore dedicated networks for large-scale, tightly-coupled

FPGA clusters targeting high-performance applications, such as with the hardware stream

8

1.2. Related Works

computing model [17,18], which is efficient for FPGA computations. For existing FPGA

clusters, direct networks are a common choice, but not much exploration has been per-

formed with indirect networks, especially on a large-scale setup. In this work, the scope

is focused on the comparison of direct and indirect networks for high-performance stream

computing. In particular, a 1D torus or ring topology and a tree topology with switches

are adopted for investigating a direct network and an indirect network, respectively.

The main goal of this dissertation is to know the performance characteristics of direct

and indirect networks as dedicated interconnect topology for stream computing tightly-

coupled FPGA clusters. Since communication affects performance by introducing addi-

tional overhead, there is a need to explore these networks in order to obtain low-latency

and high-throughput communication necessary for stream computing applications. As

for general performance requirements, HPC applications, including stream computing

applications, usually demand for scalability, high-bandwidth, low-latency, and efficient

communication, with a small footprint on FPGA fabric. However, one of the functional

requirements of high-performance stream computing is to provide a high-bandwidth and

efficient communication with backpressure throughout the pipeline, which should extend

to its backpressure-less, asynchronous interconnection network. In this dissertation, such

backpressure mechanism is proposed for both direct and indirect inter-FPGA communi-

cation networks.

1.2 Related Works

Several computing FPGA clusters with direct networks for HPC have already been devel-

oped. For instance, the single configuration Cube [57] is a massively-parallel FPGA-based

platform that used eight boards with 64 Spartan-3 FPGAs. However, its fixed systolic

connection makes it less flexible than other existing FPGA clusters and limits the class

of suitable applications it could run. The Berkeley Emulation Engine 2 (BEE2) sys-

tem [58] was developed for event-driven network simulation and have five Xilinx Virtex-2

Pro FPGAs, hosted on a single printed circuit board (PCB). A star topology was used

9

1.2. Related Works

to connect the four computational FPGAs in a 64-bit ring and a control FPGA at the

center of the network. While the outer ring handles computationally intensive tasks, the

control FPGA runs a Linux operating system and manages an off-board I/Os, therefore,

introducing a complicated programming model. Another scalable FPGA cluster platform,

RAPTOR-Xpress [59] is built for rapid prototyping. It consists of a base board with 64

Xilinx Virtex-5 FPGAs on its 16 sub-board systems and communication interfaces. The

FPGAs are connected in a ring topology but the study did not examine the case of inter-

communication effects on performance. Since it is targeted for prototyping, they offer a

large amount of computing power but for specific computing requirements, the platform’s

resources may not be fully utilized.

These distributed FPGA systems vary in different forms that employ direct inter-

connects with various topologies that prioritize different requirements. A boxed cluster

like BlueHive [54, 60] is a custom 64-FPGA cluster with a full custom interconnect in-

tellectual property (IP), BlueLink, and custom communication protocol with reliability

layer. However, its reliability features were at the expense of a lower bandwidth efficiency.

Maxwell [61] has 64 FPGAs on a 2D torus with each link using a single multi-gigabit

transceiver. In [62], 32 FPGAs on eight enclosures are interconnected in different tech-

nologies and topologies on a Berkeley Emulation Engine 3 (BEE3) multi-FPGA platform

for network exploration. With these direct topologies, most of them are exploring small

to mid-scale clusters.

In academic research projects such as in [63–66], their FPGA clusters have addressed

high-speed and low-latency inter-FPGA communication. While these network solutions

exhibited good performance, they occupy a large area on the FPGA fabric, which means

lesser area for user applications. In EXTOLL research project [63] for instance, they intro-

duced a low-latency message exchange mechanism. However, reported device utilization

showed 85% of the FPGA resources were used up even after floorplanning optimization

procedures, which highly suggests high complexity of the approach.

Other works targeting large-scale clusters are typically for heterogeneous computing.

Datacenter-scale deployments such as Catapult v1 [43] uses a dedicated direct network for

10

1.2. Related Works

its 48 FPGAs, where they arranged 6x8 2D torus topology. In Catapult v2 [44], they used a

”bump-in-the-wire” approach, which accelerates network traffic by routing communication

through FPGA. They used a tree topology with top-of-rack (TOR) servers and used

User Datagram Protocol/Internet Protocol (UDP/IP) protocol over 40 Gbps Ethernet.

Another heterogeneous cloud data center-based FPGA cluster [53] uses OpenStack, a

cloud management tool offering several services, to virtualize FPGA utilization with other

heterogeneous resources, which involves multiple abstraction layers in its infrastructure

implying additional overhead. Direct networks for FPGA clusters are common and widely

used, but to the best of our knowledge, performance characteristics of FPGAs with an

indirect network using switches have not been extensively explored, particularly in a

large-scale setup. Interconnection networks form a vital role in the overall performance

of an FPGA cluster. Finding the acceptable balance between many factors affect the

appropriate choice of network for high-performance solutions. While there is no general-

purpose hardware architecture to harness the full potential of FPGAs for all intended

applications [24, 67], this dissertation proposes to have a generalized network framework

through custom network datapath, where a target application can reconfigure its necessary

topology appropriately.

In FPGA-based custom computations, several approaches can be implemented to

achieve high performance, such as latency hiding of independent functions and data

streaming through pipelined operations [9]. Azarian and Cardoso [68] investigated the

coarse-grained and fine-grained data flow synchronization approaches to achieve pipelin-

ing execution of the tasks in FPGA-based multicore architectures, in which results show

a speedup in the overall execution through the use of multiple intellectual property (IP)

cores provided by FPGAs. Primarily, they used a Xilinx Virtex 5 FPGA with MicroBlaze

soft microprocessors, which is inefficient in FPGA-based computations. Ziegler et al. in-

vestigated the effects of coarse-grain pipelining on multiple FPGAs [69]. They described

the effects of parallelizing sequential imperative programs into pipelined implementations

for FPGAs and increased throughput. They specifically focused on coarse-grain inter-loop

pipelining with considerations of the memory bandwidth. However, similar to the work

11

1.2. Related Works

in [59], they did not investigate the effects of inter-FPGA communication overhead on

overall system performance.

In stream computing applications, Murtaza et al. [70] demonstrated a Lattice Boltz-

mann method (LBM) in Maxwell, a multi-FPGA system, by exploiting parallelism to a

massively-parallel accelerator implementation of floating-point-based cellular automata.

LBM computation is a fluid simulation belonging to computational fluid dynamics (CFD)

methods, where its numerical algorithm is based on generalized cellular automata [71],

requiring multiple data accesses per unit operation. Results showed that speedup di-

verges from linear scalability for more than eight FPGAs, since parts of the computations

were co-processed by a CPU. In another study [72], a performance model of an LBM

accelerator implemented on a tightly-coupled FPGA cluster with 1D ring of accelerator

domain network (ADN) was presented. They utilized Intel Stratix IV and also predicted

the scalability when Stratix V FPGAs are used instead. It was found that the newer

Stratix V are much better than strong scaling with more FPGAs than the older Stratix

IV since it has a higher network bandwidth. In addition, it was reported that the mem-

ory bandwidth has less impact on strong scalability than the network bandwidth. As

an improvement, [73] presented a detailed design of processing elements for LBM with

fully-streamed computation for all LBM stages through ADN connection of a tightly-

coupled FPGA cluster using Stratix IV FPGAs. In [41], a fully-streamed computation

for all LBM computing stages was created and processed on a single FPGA, where the

CPU co-processing was eliminated. Results demonstrated 97.9% utilization of the peak

performance with a single pipeline of 18 cascaded computing units, where dedicated data

flow-based floating-point operations are defined. However, it was also discovered that

99.6% consumption of floating-point digital signal processors (DSPs) in a single FPGA

limits the scalability. Another stream computing application, tsunami simulation uses a

method of splitting tsunami (MOST) algorithm, as demonstrated in [40], and is capable

of delivering high throughput with FPGA-based stream computing approach. For a sin-

gle Arria 10 FGPA, the highest sustained performance was achieved by a single pipeline

with six cascaded computing units, where its scalability is also limited by the available

12

1.2. Related Works

floating-point DSPs. Similar to [41], this suggests the feasibility of extending the pipeline

depth into multiple FPGAs.

The use of multiple FPGAs also suggests the evaluation of the inter-FPGA commu-

nication. While Transmission Control Protocol/Internet Protocol (TCP/IP) is popular

for internetworking systems, it is resource-heavy and designed for complex, unpredictable

network, such as the Internet. A fully-customized protocol, BlueLink [54], showed better

area-performance characteristics than existing network protocols for their custom comput-

ing requirements. Jun et al. [74] presented a parameterized, low-overhead transport layer

network with virtual channels and end-to-end flow control for distributed FPGA applica-

tions. Their prototype cluster is made up of 20 Xilinx VC707 FPGA boards connected

through their high-speed serial transceiver links. Since their transport layer is param-

eterized, the communication buffer sizes and flow control features can be configured at

FPGA synthesis. In this dissertation, the proposed custom network protocol shares some

functional similarities with BlueLink, without fully customizing the entire network stack.

In addition, a credit-based flow control mechanism [75] is specifically added for backpres-

sure propagation between FPGAs. Unlike in [74], however, careful analysis based on the

physical constraints is done for the protocol’s communication buffer requirements, which

will be discussed in detail within the next section.

Popular implementations of flow control in existing FPGA interconnection networks

utilized either credit-based or backpressure (ON/OFF) techniques with dedicated chan-

nels [54, 76, 77]. In particular, the credit-based scheme, which was originally designed

for Asynchronous Transfer Mode (ATM) systems [75, 78], is selected for a number of

reasons [79,80]:

1. Credits sent carry numerical information about the available downstream buffer

space over a dedicated channel regularly, making credit-based flow control faster

than its rate-based flow control counterparts;

2. Receiver buffer allocation should be proportional to round trip time (RTT), implying

a smaller memory requirement than the other schemes;

13

1.3. Objectives

3. There is no data loss if there is any congestion since positive credits are never issued

unless there is availability in the downstream receiver buffer space; and

4. Data rate can be as high as the full link speed with no data loss, which promises

good network resource utilization.

1.3 Objectives

The main objective of this dissertation is to explore appropriate interconnection networks

for stream computing on FPGA clusters. Since the inter-FPGA communication could

be an overhead inducing component of the cluster, there is a need to investigate the

performance characteristics of its interconnection network in order achieve low-latency and

high-throughput communication necessary for stream computing. In this dissertation, the

particular focus is in comparing direct and indirect networks for tightly-coupled FPGA

clusters. The specific objectives are:

1. Investigate the suitability and feasibility of direct and indirect networks for stream

computing FPGA clusters;

2. Design and implement a lightweight and efficient hardware backpressure mechanism

for direct and indirect inter-FPGA communication; and

3. Investigate and evaluate performance scalability of stream computing on direct and

indirect networks.

1.4 Organization and Contributions

This dissertation is organized as follows. Chapter 2 details the interconnection require-

ments for stream computing in FPGA clusters and proposes a lightweight custom proto-

col for inter-FPGA backpressure mechanism. The contributions of this chapter are the

mechanism, hardware design, and implementation of a custom protocol for inter-FPGA

14

1.4. Organization and Contributions

backpressure; a design space exploration of its design parameters; and the discussion of

its performance trade-offs.

Chapter 3 discusses direct networks, while Chapter 4 introduces indirect networks,

in which both chapters evaluate the performance and scalability of a stream comput-

ing application. The contributions of Chapter 3 are the design and implementation of

a scalable, deeply pipelined hardware platform with inter-FPGA direct network; inves-

tigation of point-to-point network’s performance characteristics; performance model of

stream computing on directly-connected FPGAs; and its performance evaluation.

Similarly, the contributions of Chapter 4 are the design of connection-oriented net-

work with Ethernet switches; investigation of its performance characteristics and its per-

formance model; and performance evaluation of stream computing in an indirect net-

work. This chapter also demonstrates that connection-oriented Ethernet switched net-

work achieves equivalent performance to a point-to-point network for stream computing

with large data sets.

Finally, Chapter 5 concludes this dissertation and describes implications, limitations,

and future work.

15

1.4. Organization and Contributions

Figure 1.4: Classification of Interconnection Networks [3]

16

1.4. Organization and Contributions

FPGA

MAC

FPGA

MAC

FPGA

MAC

FPGA

MAC

FPGA

MAC

a) Direct network with 1D torus or ring topology

b) Direct network with 2D torus topology

c) Indirect network with Ethernet switch

FPGA FPGA FPGA FPGA FPGA

FPGA

Router

FPGA

Router

FPGA

Router

FPGA

Router

FPGA

Router

FPGA

Router

FPGA

Router

FPGA

Router

FPGA

Router

FPGA

Router

FPGA

Router

FPGA

Router

FPGA

Router

FPGA

Router

FPGA

Router

FPGA

Router

FPGA

MAC

FPGA

MAC

FPGA

MAC

FPGA

MAC

FPGA

MAC

Ethernet switch

(Arbitrary topology virtualized)

Figure 1.5: Inter-FPGA Network Choices for Tightly-coupled FPGA Clusters

17

1.4. Organization and Contributions

18

Chapter 2

Interconnection Network

Requirements for Stream Computing

in FPGA Clusters

2.1 Introduction

Stream computing in FPGAs is seen as a promising solution in delivering the necessary

performance and energy efficiency requirements of compute-intensive applications like

numerical simulations. The inherent structure and customizability of FPGAs naturally

make them the better alternative in achieving a highly-scalable computing design solu-

tion. FPGA’s architecture is structured to support custom hardware designs, which could

be optimized for efficient processing. At the same time, FPGA’s flexibility allows easy

connection to other devices via any physical standard or custom interface [81]. Aside

from interfacing with other devices like external memory, DSP blocks, I/Os with high-

speed transceivers, and other customized chips, FPGAs can be built to form clusters with

high-speed and low-latency communication, making them an appealing choice for scalable

designs, especially for stream computing.

Although FPGAs operate at clock frequencies lower than their GPU and CPU coun-

terparts, enabling parallelism allows internal processing units to achieve high utilization

19

2.1. Introduction

rates, even with limited memory bandwidth. This is done by creating a deep pipeline that

consists of a significant number of floating-point operations capable of regular memory ac-

cess. This overlap between memory access and computation conceals the communication

latency and is used to extract high-performance gains from the FPGA fabric [9]. This

makes stream computing with a data flow model suitable for low operational intensity ap-

plications such as stencil computing algorithms in FPGAs. However, the resource budget

of a single FPGA limits further performance scaling. In [39] for instance, the utilization of

logic elements reached 95% while the other resources only consumed less than 50%. One

way to overcome this is to extend the stream computing pipeline with multiple FPGAs.

One identified challenge with stream computing on multiple FPGAs is synchroniza-

tion of data streams, since the FPGAs are operating in different clock domains. Typically,

dual-clock FIFOs at both FPGA transceiver ports handle this by allowing FIFO read and

write access at different clocks. Flow control manages data synchronization between dif-

ferent asynchronous units such as FIFOs and the stream computing pipelines by supplying

backpressure signals. To provide receiver awareness across the interconnection network,

backpressure should also be supplied between the stream computing pipelines of two

communicating FPGAs.

In this dissertation, both direct and indirect networks of FPGA clusters are con-

sidered. Direct networks involve point-to-point connections between FPGA transceivers

while indirect networks involve FPGA connections to a central switching device. For

both classifications, different network layers of the Open Systems Interconnect (OSI) are

involved. Complex communication protocol stacks are available, such as commercial off-

the-shelf protocols for network interface controllers (NICs). However, most of them are

inefficient for hardware data transfers and involve unnecessary overhead. On the other

hand, designing a fully-customized interconnect benefits from a personalized approach to

applications, but at the expense of increased engineering effort. Choosing a partially cus-

tom interconnect allows using of commodity parts, such as physical Layer 1 (L1) and data

link Layer 2 (L2) hardware modules, while customizing other higher layer functionalities

such as the backpressure mechanism for stream computing applications.

20

2.2. Custom Network Protocol with Backpressure

In this chapter, a lightweight and efficient hardware backpressure mechanism for di-

rect and indirect inter-FPGA communication is proposed. This is done by creating a

custom network protocol with credit-based flow control [75] for backpressure propagation

between communicating FPGAs. By removing higher level network layers, a minimal

overhead is maintained. To keep high performance communication through low-latency

and high-bandwidth transfers, design considerations are also entailed in the custom net-

work protocol, which is discussed in this chapter. The specific contributions are:

1. Mechanism, hardware design, and implementation of a custom protocol for inter-

FPGA backpressure;

2. Design space exploration of its design parameters; and

3. Discussion of its performance trade-offs.

2.2 Custom Network Protocol with Backpressure

Synchronization is an identified challenge that involves streaming data across multiple

FPGAs that are operating in different clock domains across an interconnection network.

Since the inter-FPGA transceiver links are asynchronous along with other hardware mod-

ules, data streams coming in and out of communicating FPGAs across the network is not

always guaranteed to be successfully received by the other end. In this dissertation, a

lightweight and efficient custom credit-based network protocol is proposed to be utilized

along with L1 and L2 network functions for both direct and indirect networks.

For universality, the proposed protocol targets both point-to-point FPGA transfers (di-

rect network) and a switched communication (indirect network). In addition, it performs

an initial synchronization process to establish a connection-oriented datapath between

the FPGAs, which guarantees the communication line and the other transceiver end to

be active and ready for data transfers. Since FPGA’s transceiver links are capable of

half-duplex and full-duplex communication, this protocol supports both types, without

21

2.2. Custom Network Protocol with Backpressure

FPGA 0

Network Modules

TX Buffer

RX Buffer

Flow Controller

L1 &
L2 IP
core

TX

RX

TX

RX

Network Modules

TX Buffer

RX Buffer

Flow Controller

TX

RX

TX

RX
data flits +

control flits

control flits

FPGA 1

D ... D D D C D ... D D D C

Control flit

link

L1 &
L2 IP
core

Credit Counter

data stream

data stream

A
p

p
li
c
a
ti

o
n

backpressure

backpressure

Credit Counter

A
p

p
li
c
a
ti

o
n

FC packet header (28 bits)
Len*

(12 bits)
SOP*

(1)
EOP*

(1)
CO*
(1)

res*
(1)

CU*
(12)

*Len: Length of payload in packet, SOP: Start of packet flag, EOP: End of packet flag, CO: Credit only flag, res: reserved bit, CU: Credit update

Payload (divided into Data flits)

Figure 2.1: Hardware implementation of credit-based flow control in half-duplex transfers

any user or application intervention. As for the inter-FPGA backpressure propagation, a

credit-based flow control [75] mechanism is adopted and implemented.

2.2.1 Credit-based Flow Control Mechanism

The main purpose of flow control is to provide receiver status awareness between two

communicating FPGAs through the exchange of credits, which provides transmission re-

liability to any chosen network protocol for the transceiver links. Figure 2.1 shows two

FPGAs with their respective network modules, which involve flow controllers (FC) and

L1/L2 modules for data link and physical layer functionalities. The FC module has a

full-duplex symmetry, where the same modules are placed on both communicating ends.

It also operates autonomously in either half or full-duplex data transfers, for both direct

and indirect networks.

FC handles initial inter-FPGA synchronization, where both FPGAs are ensured to

be available for communication. This follows after a system reset, where the network

22

2.2. Custom Network Protocol with Backpressure

datapath is configured. For a direct network, this means the physical cabling connections

between FPGAs. For an indirect network on the other hand, this means the interme-

diate switches and the FPGAs are ready for communication. For both network types,

this synchronization process establishes the logical link connection, which is similar to

a handshaking procedure. In the transmit direction, this procedure involves continuous

sending of sync flits, with each one composed of a unique bit sequence recognized by the

receiver FPGA’s FC. Here, a flow control digit flit, is defined as a smaller unit of data

from a larger payload size that is sent in one cycle, in which a single flit has a:

(Flit size) =
w-bit width

8
[bytes]. (2.1)

Sync flits are sent until receiving FPGA responds with its own sync flits and are received

by the transmitting FPGA.

After synchronization, FC receives data from the application containing the stream

processing pipelines. The incoming data stream or payload is divided into smaller packets

composed of data flits. In each FC packet, a header is inserted and is the first flit to be

sent out into the network. This is also known as a control flit, in which other information

are embedded in order to reconstruct the original payload in the receive direction. As

shown in Figure 2.1, the FC header includes the payload length, start-of-packet (SOP)

and end-of-packet (EOP) flags, and credit only (CO) flag to indicate a zero-payload packet

for half-duplex transfers.

Credit update (CU) field embeds the credit sent for the other FPGA’s credit counter,

which keeps track of its own sent data flits. The FC transmitter (TX) only sends a flit

when its credit counter has a positive numerical value (non-zero), indicating that the

receiver FPGA can still accommodate incoming data flits, and thus, should send credit

updates regularly. The credit-based scheme allows TX to transmit only when there is

available buffer space (credits) in the downstream receiver (RX) FPGA, which mimics

the backpressure effect of a physical channel. Figure 2.1 shows a half-duplex transfer,

where one direction inserts control flits within data flits, while the other direction is only

23

2.2. Custom Network Protocol with Backpressure

sending control flits for the credit updates. In the case of a full-duplex communication,

both channels will be sending control flits and data flits in both directions.

2.2.2 Flow Control Design Parameters and Performance Trade-

offs

The CU frequency depends on the size of the FC packet, since the credits are embedded

in the packet headers. This is important since it also allows the FC receiver (RX) to

identify incoming flits as control or data flits. The size of the FC packet is dependent on

the depth of the store-and-forward TX buffer, which is set as a parameter.

In this dissertation, the allocated size for both TX and RX buffers is considered to

minimize area consumption without sacrificing performance. However, sufficient depth

is necessary to reduce overhead while minimizing additional latency. In particular, the

TX buffer should have shallow depth to minimize induced latency, but large enough to

occupy more data flits in a single packet for a lesser TX overhead. Equation (2.2) shows

the inter-FPGA link delay:

Dlink = ((link latency)× F) + (TX buffer depth)+

(RX buffer write-forward cycles) [cycles],

(2.2)

where (link latency) is the time it takes for a TX-sent flit to reach RX, F is the operating

frequency, (TX buffer depth) is the TX buffering delay, and (RX buffer write-forward

cycles) is the number of cycles before received flits become available from the RX buffer.

Transmission overhead is the ratio of control flit to the total number of flits sent in

one packet, and is defined in Equation (2.3). Transmission of more data flits per packet

leads to a lesser overhead, which maximizes network bandwidth utilization. Since there

is one control flit in one FC packet, then:

(TX overhead) =
1

1 + (TX buffer depth)
. (2.3)

24

2.3. Results and Discussion

To operate at a high rate, RX buffer depth must be sufficiently larger than the round-

trip time and credit update delay [75]. For bursty traffic, this large allocation allows high

link utilization. Equation (2.4) summarizes RX buffer depth requirement:

(RX buffer depth) > (Dlink × 2) + DCU, (2.4)

where (Dlink × 2) is the round-trip time or the round-trip link delay, and DCU is the CU

frequency or the interval at which RX sends a credit upstream. Since DCU is equal to the

TX buffer allocation: (TX buffer depth) = DCU, which has implications for performance

and area, an upper bound is set for the CU frequency, which is:

DCU <= (link latency). (2.5)

2.3 Results and Discussion

2.3.1 Simulation of Inter-FPGA Backpressure Mechanism

To verify the interaction between credit counter and the design parameters (TX/RX buffer

allocations and CU frequency), timing diagrams are shown in Figure 2.2 and Figure 2.3.

Credit counter in the transmitter (TX) is initially set to the receiving (RX) buffer alloca-

tion and decrements whenever a data flit is sent. In this simulation, a link latency of 128

cycles is assumed. Based on Equation (2.5), the maximum DCU is set to 128 (DCU = 128),

which is equal to (TX buffer depth).

Figure 2.2 shows TX0 from FPGA 0 continuously sends data stream to RX1 of FPGA

1, where no backpressure is applied from the receiver FPGA. This implies a constant

throughput at RX1 buffer, which sends a credit every (DCU = 128) buffer reads to update

TX0 of RX1 buffer status. When credit is sent by RX1 to TX0, it takes a number of

cycles (represented by the link latency), 128 cycles in this case, before it arrives at TX0,

which in turn, updates its credit counter. As shown in Figure 2.2, the credit counter is

always updated every 128 cycles, which implies the availability of RX1 buffer.

25

2.3. Results and Discussion

TX0

RX1

0 128 256 384 512 640 768 896

0 128 128 128 128 128 128

arrives

data sent

read from RX Buffer (no backpressure received)

link latency

credit sent

Credit counter =

512 384 256 256 256 256 256 256

credit added

Figure 2.2: Timing diagram with constant RX buffer reads (no backpressure)

TX0

RX1

0 128 256 384 512 640 768 896

0 64 128 64 128 64 128

arrives

data sent

read from RX Buffer (backpressure asserted at every other cycle)

link latency

credit sent

Credit counter =

512 384 256 128 128 0 128 0

credit added

Figure 2.3: Timing diagram with intermittent RX buffer reads (with backpressure)

Figure 2.3, on the other hand, initially shows a high data transmission rate. However,

the receiving end’s RX1 buffer is simulated to receive backpressure signals at every other

cycle from its application’s sink port, which reads the buffer. This causes the RX1 buffer

reads twice as long to reach (DCU = 128) compared with the other case, which delays the

sending of credits to TX0. On the TX0’s end, its credit counter eventually gets depleted

due to its infrequent updates, which mimics the backpressure signal to stop transmission,

as propagated from the RX1 buffer. In Figure 2.3, data transmission rate is shown to be

balanced between the transmitting FPGA and the receiving FPGA. This demonstrates

the correct assumption of setting an upper bound for DCU in Equation (2.5).

26

2.3. Results and Discussion

2.3.2 Case Studies for Full and Half-Duplex Inter-FPGA Com-

munication with High and Low Data Transmission Rates

The interaction between the communicating FPGAs in both full-duplex and half-duplex

operations are investigated in this section. Here, the same design parameters are assumed:

link latency is 128 cycles, DCU = 128, and TX buffer depth is 128.

Figure 2.4 shows a loop back configuration, where FPGA 0 sends data streams and

FPGA 1 receives them, then sends it back. TX0 initiates transmission when its TX0

buffer is full. After 128 cycles of propagating the link, the header or control flit, along

with a credit of the first FC packet arrives at RX1, followed by its succeeding data flits.

After DCU = 128 RX1 buffer reads, TX1 begins sending back the data streams to RX0.

For both communicating ends, the received credits are added to their respective credit

counters to update the RX buffer status of the receiving FPGA. Since this case illustrates

a high data transmission rate and there is no backpressure assumed from both RX0 and

RX1 buffers, then continuous transfers for both directions occur seamlessly.

Figure 2.5, on the other hand, shows a low data transfer rate case for full-duplex

channels, where intermittent data transfers are initiated by TX0. As with the other case,

RX1 receives the incoming data streams, and transmits them back through TX1 when

its TX buffer is full. No backpressure from application is likewise assumed in this case,

and credits are still added as soon as they arrive. In this figure, a force send occurs when

data flits occupy a TX buffer after a certain period (TX1 buffer in the figure), which

guarantees the transmission of all TX buffer entries in the event that it never becomes

full.

Meanwhile, Figure 2.6 shows a high transmission data rate in half-duplex data trans-

fers. The same operations and interaction between the design parameters are observed

here, except that only one direction is utilized (from TX0 to RX1). After DCU = 128 RX1

buffer reads, its corresponding TX1 sends credits encapsulated in control flits to RX0, in

order to update FPGA0’s credit counter. Likewise, credits are added when they arrive

and since no backpressure from FPGA1’s application is assumed, then data transmission

27

2.3. Results and Discussion

from TX0 to RX1 is uninterrupted.

Figure 2.7 shows half-duplex intermittent data transfers from TX0 to RX1. No back-

pressure is still assumed from the application in FPGA 1, so the transmission rate is

balanced with the receiving rate. Sending credits by TX1 takes longer since RX1 buffer

also takes a longer time to fill and reach DCU = 128 buffer reads.

In Figure 2.8, continuous transmission is performed by TX0, in which transmitted data

streams are continuously received by RX1. However, a backpressure signal is assumed to

be asserted by the application in FPGA 1, where RX1 buffer reads are stopped. This

eventually results to depletion of credits in TX0 since no credit updates are sent by FPGA

1, which stops TX0 transmission, therefore implying backpressure propagation from the

receiving FPGA.

2.3.3 Implementation and Evaluation

To obtain the inter-FPGA link delay for FC evaluation, a prototype platform with the

network modules is implemented with a Terasic DE5A-NET board [82], which has an

Intel Arria 10 FPGA with four high-speed, low-latency quad small form-factor pluggable

(QSFP+) transceiver links, each with 40 Gbps data rate. For this initial evaluation, a

point-to-point connection is implemented, where two transceiver links are bundled to-

gether to obtain a peak bandwidth of 80 Gbps or 10 GB/s. Here, the network modules

for a direct network are considered and implemented, as shown in Figure 2.1, where point-

to-point L1/L2 IP cores are utilized with FC modules on both communicating ends. In

this experiment, a direct network is considered; however, the FC is universally designed

to be compatible with both network types. Further discussion on the implementation and

evaluation for an indirect network with an FC module is found in Chapter 4.

Based on the design parameters introduced in the previous section, the TX/RX com-

munication buffer depths are selected. Figure 2.9 shows the effective link throughput

when sending different data stream sizes with different TX buffer depths. For shorter

data streams, smaller allocation has a higher effective throughput due to a smaller TX

28

2.4. Conclusions

buffering overhead. However, this overhead becomes negligible in longer data streams,

where the three different buffer depths converged to an effective link throughput of 7.92

GB/s. Since the target is for a generalized FC design, TX buffer depth is set to 32. Mean-

while, point-to-point link latency is 365 ns, which is 82 cycles at F = 225 MHz. With

this, Dlink = (82)+(32)+(4) = 118 cycles (see Equation (2.2)), where TX buffer depth =

32 and RX buffer write-forward = 4 cycles. RX buffer depth = 512 is selected, which is

sufficiently larger than (118×2)+(32) = 268 (see Equation (2.2)). Here, DCU = 32 cycles

and is a statically chosen interval that satisfies Equation (2.4).

Figure 2.10 shows possible design parameters, where as expected, the network modules

with TX buffer depth of 25 = 32 and RX buffer depth of 29 = 512 consume the least

resources with only about 1.12% of the internal memory resources (Kbits), indicating a

tiny footprint.

For an indirect network, it is expected that the link latency is slightly higher than the

point-to-point’s, due to the switch. In this case, TX buffer depth and CU frequency may

be kept constant for both networks; however, the RX buffer may need to have a larger

allocated size. This is further discussed in Chapter 4.

2.4 Conclusions

This chapter presents a lightweight and efficient hardware backpressure mechanism for

inter-FPGA communication in direct and indirect networks, which is required for certain

applications such as stream computing. This is achieved through a general-purpose hard-

ware design of a credit-based flow control mechanism for communicating FPGAs, which

results to a custom network protocol for additional reliability. The flow control design

handles both synchronization, which ensures both communicating FPGAs’ active status,

and the sending of credits, which serves as backpressure mechanism for receiver status

awareness. Furthermore, flow control autonomously supports half-duplex and full-duplex

transfers.

To keep low-latency and high-bandwidth communication requirements, design parame-

29

2.4. Conclusions

ters of flow control mechanism were identified and explored. A point-to-point inter-FPGA

connection is implemented with network modules, including flow controllers for both ends.

Important design parameters such as the TX and RX buffer depths are evaluated in rela-

tion to performance and area consumption. For the store-and-forward TX buffer, which

is equal to the credit update frequency, sufficient depth is necessary to reduce transmis-

sion overhead while minimizing additional latency. The RX buffer depth is based on

the actual inter-FPGA’s TX-to-RX link latency and must be more than its round-trip

time and credit update frequency to allow high link utilization and reduced transmission

time. However, it should have a minimum depth to allocate more area for the application.

Equations (2.2), (2.3), and (2.4) summarize these important relationships. By utilizing

the design parameters with the least resource utilization, the network link throughput

averages at 7.92 GB/s.

Although the evaluation of the flow controller module is through the implementa-

tion and investigation of design parameters in a direct network, the same concepts follow

for an indirect network. With a longer link latency, it is expected that the flow con-

troller’s RX buffer allocation for an indirect or switched connection will be larger than

the point-to-point’s (direct’s), which affects area consumption. This is investigated further

in Chapter 4.

30

2.4. Conclusions

T
X
0

R
X
1

0

1
2
8

 2

5
6

3
8
4

 5

1
2

 6
4
0

7
6
8

 8
9
6

c
re

d
it
 &

 d
a
ta

 a
rr

iv
e
s

li
n
k
 l
a
te

n
c
y

c
re

d
it
 &

 d
a
ta

 s
e
n
t

C
re

d
it
 c

o
u
n
te

r
=

5
1
2

 3

8
4

2
5
6

 2

5
6

2
5
6

 2
5
6

 2
5
6

c
re

d
it
s
 a

d
d
e
d
 w

h
e
n
 t

h
e
y
 a

rr
iv

e

R
X
0

T
X
1

c
re

d
it
 &

 d
a
ta

 s
e
n
t

d
a
ta

 r
e
a
d
 f

ro
m

 R
X
1
 B

u
ff

e
r

(n
o
 b

a
c
k
p
re

s
s
u
re

 f
ro

m
 a

p
p
li
c
a
ti
o
n
)

c
re

d
it
 &

 d
a
ta

 a
rr

iv
e
s

C
re

d
it
 c

o
u
n
te

r
=

5
1
2

3
8
4

 2

5
6

 2
5
6

2
5
6

 2

5
6

c
re

d
it
s
 a

d
d
e
d
 w

h
e
n
 t

h
e
y
 a

rr
iv

e

d
a
ta

 r
e
a
d
 f

ro
m

 R
X
0
 B

u
ff

e
r

(n
o
 b

a
c
k
p
re

s
s
u
re

 f
ro

m
 a

p
p
li
c
a
ti
o
n
)

Figure 2.4: Full-duplex transmission with high data transfer rate

31

2.4. Conclusions

T
X
0

R
X
1

0

1
2
8

 2
5
6

3
8
4

 5
1
2

 6
4
0

7
6
8

 8
9
6

0

 3
2

3
2

 3
2

 3
2

3
2

3
2

3
2

 3
2

3
2

1
6

 3
2

li
n
k
 l
a
te

n
c
y

c
re

d
it
 &

 d
a
ta

 s
e
n
t

C
re

d
it
 c

o
u
n
te

r
=

5
1
2

4
8
0

 4
1
6

2
8
8

 2
4
4

3
5
2

 3
5
2

3
3
6

4
3
2

4
0
0

R
X
0

T
X
1

fo
rc

e
 s

e
n
d

c
re

d
it
s
 a

d
d
e
d
 w

h
e
n
 t

h
e
y
 a

rr
iv

e

c
re

d
it
 &

 d
a
ta

 s
e
n
t

c
re

d
it
 &

 d
a
ta

 a
rr

iv
e
s

c
re

d
it
 &

 d
a
ta

 a
rr

iv
e
s

C
re

d
it
 c

o
u
n
te

r
=

5
1
2

 3
8
4

 4
1
6

3
8
4

 4
1
6

4
1
6

 4
4
8

 4
8
0

4
4
8

c
re

d
it
s
 a

d
d
e
d
 w

h
e
n
 t

h
e
y
 a

rr
iv

e

d
a
ta

 r
e
a
d
 f

ro
m

 R
X
1
 B

u
ff

e
r

(n
o
 b

a
c
k
p
re

s
s
u
re

 f
ro

m
 a

p
p
li
c
a
ti
o
n
)

d
a
ta

 r
e
a
d
 f

ro
m

 R
X
0
 B

u
ff

e
r

(R
e
a
d
y
 =

 a
lw

a
y
s
 1

)
0

 3
2

 3
2

3
2

3
2

 3
2

3
2

3
2

Figure 2.5: Full-duplex transmission with low data transfer rate

32

2.4. Conclusions

T
X
0

R
X
1

0

1
2
8

 2

5
6

3
8
4

 5

1
2

 6
4
0

7
6
8

 8

9
6

0

1
2
8

 1

2
8

 1

2
8

1
2
8

 1

2
8

c
re

d
it
 &

 d
a
ta

 a
rr

iv
e
s

li
n
k
 l
a
te

n
c
y

c
re

d
it
 s

e
n
t

C
re

d
it
 c

o
u
n
te

r
=

5
1
2

 3

8
4

2
5
6

 2

5
6

2
5
6

 2

5
6

 2

5
6

c
re

d
it
 a

rr
iv

e
s

R
X
0

T
X
1

d
a
ta

 r
e
a
d
 f
ro

m
 R

X
 B

u
ff
e
r

(n
o
 b

a
c
k
p
re

s
s
u
re

 f
ro

m
 a

p
p
li
c
a
ti
o
n
)

c
re

d
it
s

a
d
d
e
d
 w

h
e
n
 t

h
e
y
 a

rr
iv

e

c
re

d
it
 &

 d
a
ta

 s
e
n
t

Figure 2.6: Half-duplex transmission with high data transfer rate

33

2.4. Conclusions

T
X
0

R
X
1

0

1
2
8

 2
5
6

3
8
4

 5
1
2

 6
4
0

7
6
8

 8
9
6

0

 3
2

 3

2

6
4

 9
6

9
6
 1

2
8

3
2

6
4

9
6

 9

6
 1

2
8

3
2

3
2
 4

8

4
8

8
0

1
1
2

li
n
k
 l
a
te

n
c
y

c
re

d
it
 s

e
n
t

C
re

d
it
 c

o
u
n
te

r
=

5
1
2

4
8
0

 4
1
6

2
8
8

 2
4
4

3
5
2

 3
5
2

3
3
6

4
3
2

4
0
0

R
X
0

T
X
1

d
a
ta

 r
e
a
d
 f

ro
m

 R
X
 B

u
ff

e
r

(n
o
 b

a
c
k
p
re

s
s
u
re

 f
ro

m
a
p
p
li
c
a
ti
o
n
)

fo
rc

e
 s

e
n
d

c
re

d
it
s
 a

d
d
e
d
 w

h
e
n
 t

h
e
y
 a

rr
iv

e

c
re

d
it
 a

rr
iv

e
s

c
re

d
it
 &

 d
a
ta

 s
e
n
t

c
re

d
it
 &

 d
a
ta

 a
rr

iv
e
s

Figure 2.7: Half-duplex transmission with low data transfer rate

34

2.4. Conclusions

T
X
0

R
X
1

0

1
2
8

 2

5
6

3
8
4

 5

1
2

 6

4
0

7
6
8

 8

9
6

0

1
2
8

 1

2
8

 3

2

3
2

 3

2

3
2

3
2

c
re

d
it
 &

 d
a
ta

 a
rr

iv
e
s

li
n
k
 l
a
te

n
c
y

c
re

d
it
 s

e
n
t

C
re

d
it
 c

o
u
n
te

r
=

5
1
2

 3

8
4

2
5
6

 2

5
6

2
5
6

 1

2
8

 0

c
re

d
it
 a

rr
iv

e
s

R
X
0

T
X
1

d
a
ta

 r
e
a
d
 f
ro

m
 R

X
 B

u
ff
e
r

(w
it
h
 b

a
c
k
p
re

s
s
u
re

 f
ro

m
 a

p
p
li
c
a
ti
o
n
)

c
re

d
it
s

a
d
d
e
d
 w

h
e
n
 t

h
e
y
 a

rr
iv

e

c
re

d
it
 &

 d
a
ta

 s
e
n
t

s
to

p
s
 t

r
a
n

s
m

is
s
io

n

Figure 2.8: Half-duplex transmission with backpressure from receiver FPGA

35

2.4. Conclusions

0

2

4

6

8

10

4 8 16 32 64 128 256 512 1024 4096 8192 16384 32768

E
ff

e
c
ti

v
e
 L

in
k
 T

h
ro

u
g

h
p

u
t

[G
B

/s
]

Size of data stream [KB]

TX buffer depth = 32 (TX overhead = 3%)

TX Buffer depth = 64 (TX overhead = 1.5%)

TX buffer depth = 128 (TX overhead = 0.8%)

Figure 2.9: Effective link throughput

0%

25%

50%

75%

100%

A
L

M
s

R
e

g
s

K
b

it
s

D
S

P
s

A
L

M
s

R
e

g
s

K
b

it
s

D
S

P
s

A
L

M
s

R
e

g
s

K
b

it
s

D
S

P
s

A
L

M
s

R
e

g
s

K
b

it
s

D
S

P
s

TX buff depth = 32
RX buff depth = 512

TX buff depth = 32
RX buff depth = 1024

TX buff depth = 64
RX buff depth = 512

TX buff depth = 64
RX buff depth = 1024

R
e
s
o

u
rc

e
 U

ti
li
z
a
ti

o
n

 [
%

]

Peripherals Network: L1/L2 IP cores

Network: FC 0 Network: FC 1

Unused

NW total Kbits: 1.12% 2.07% 1.18% 2.13%

Figure 2.10: Resource Utilization using varied design parameters

36

Chapter 3

Direct Networks with High-Speed

Transceiver Links

3.1 Introduction

FPGA’s architecture is structured to support custom hardware designs, which could be

optimized for efficient processing. At the same time, FPGA’s flexibility allows easy con-

nection to any other device via any physical standard or custom interface [81]. Aside

from interfacing to other devices like external memory, DSP blocks, I/Os with high-speed

transceivers, and other customized chips, FPGAs can be built to form clusters with low-

latency communication, making them an appealing choice for scalable designs.

Even with all the advantages, FPGAs still have a lower memory bandwidth than

GPUs, which ultimately, could cause a lower sustained performance. In addition, fitting

custom numerical computations into an FPGA-mapped implementation has become a

design challenge. Motivated by these drawbacks, previous studies such as [38, 83–85]

have observed that stream computation is a suitable and scalable approach for stencil

computing algorithms. This was achieved by creating a deep pipeline over successive

iterations with a constant external memory bandwidth. This dedicated hardware stream

computing design on the FPGA provides parallel computations due to regular memory

access for data streaming. Furthermore, the deep pipelines also increase the number of

37

3.1. Introduction

operations per memory access; therefore, fully utilizing the available bandwidth.

Increasing the pipeline depth of stream-based computation over multiple FPGAs could

further scale up the computing performance. Unlike system-on-chips (SoCs) that need

network-on-chips (NoCs) for intercommunication, FPGAs could be directly connected to

each other through their high-speed transceiver links. Although present FPGAs have

multiple high-speed serial transceiver channels, the bandwidth for inter-FPGA commu-

nication may still be insufficient compared to the external memory bandwidth, leading

to a bottleneck. To address this matter, a previous work on hardware-based bandwidth

compression [4, 86–88] is applied to enhance the communication bandwidth for floating-

point data streams. The compression scheme is based on a prediction-based lossless data

compression algorithm [89], which is essential in keeping the integrity of the data streams.

It was also demonstrated in [4, 86–88] that a single-precision floating-point data can be

compressed down to a quarter of its original size.

Since interconnecting FPGAs does not provide infinite scalability, the main goal of

this chapter is to know its performance characteristics of a direct network by perform-

ing scalability analysis. A performance model for multiple FPGAs is presented, which

considers parallelism options of the stream computing pipeline [41]. In this chapter, the

network modules presented in Chapter 2 including the flow controller (FC) modules, are

implemented on the FPGA cluster with a direct network. Performance characteristics

of its inter-FPGA communication links, which interconnect FPGAs through their high-

speed transceivers, is also investigated. In addition, the extended design space is explored,

where a stream computing application is implemented and the performance model is ver-

ified. To achieve the final goal, a scalability analysis of the deeply pipelined FPGAs is

performed by evaluating speedup against its parallel efficiency.

While Chapter 2 introduced and discussed interconnection network requirements for

extending a stream computing pipeline over multiple FPGAs, this chapter focuses on the

suitability of point-to-point FPGA interconnection for stream computing applications.

The specific contributions of this chapter are:

38

3.2. Design and Architecture

1. Design and implementation of a scalable, deeply pipelined hardware platform with

inter-FPGA direct network;

2. Investigation of point-to-point network’s performance characteristics;

3. Performance model of stream computing on directly-connected FPGAs; and

4. Performance evaluation of stream computing on a direct network.

3.2 Design and Architecture

3.2.1 Stream Computing and Available Parallelism

Stream computing is an approach that can be effectively utilized to achieve high through-

put even with constant and limited memory bandwidth. To obtain computational results

from a custom computing region in an FPGA, data is read from an external memory and

continuously supplied as inputs to the computing units. Figure 3.1a presents a generalized

stream computing unit, which is a computing pipeline with floating-point operations of a

custom application. It takes in Win words of input stream and generates a computational

output stream of Wout words synchronously every clock cycle. Figure 3.1a shows a unit

pipeline, where it takes Dpipe cycles to produce the computational output, which is pro-

portional to the number of pipeline stages. A deeper pipeline means more computational

operations are performed at a constant throughput. One domain appropriate for stream

computing is iterative stencil kernels.

Figure 3.1 also shows the available parallelism on the design space with the compu-

tational pipeline. Here, stream processing element (SPE) is defined to contain a single

unit pipeline. With each input stream, an SPE computes for its corresponding single

time-step output. When Win = Wout words of stream width, the computational output

of an SPE can be connected as the next time-step input to a replicated SPE. Figure 3.1b

illustrates cascading m SPEs to form a single deep pipeline, which enables multiple time-

step computations with a single data stream. This is similar to loop unrolling approach,

39

3.2. Design and Architecture

Unit

pipeline

SPE 1

SPE m

SPE 1 (x n)

cycles

latency

Dpipe

Dtotal

pipe 1 pipe 1 (x n)

a) Pipeline of FP

 operations

b) m-cascaded pipelines

(temporal parallelism)

c) n-parallelized pipelines

(spatial parallelism)

words of input stream Win

x0 x1 x(W in-1)

y0 y1 y(W out -1)

words of output stream Wout

x0 x1 x(W in-1) x0 x1 x(W in-1) x0 x1 x(W in-1)

y0 y1 y(W out -1)
y0 y1 y(W out -1) y0 y1 y(W out -1)

SPE m (x n)

Figure 3.1: Generalized steam computing model with stream processing elements (SPEs)

which exploits temporal parallelism. This allows an increase in performance without

increasing the number of memory accesses while concealing memory access latency. How-

ever, a deeper pipeline produces a large inefficient overhead and while computations are

processed, the intermediate results are not stored to memory.

An SPE can also contain n-parallelized unit pipelines, which has n times higher per-

formance in a single time-step, which exploits spatial parallelism. These pipelines can

take in successive words from the input data stream, which made domain decomposition

unnecessary for parallel computation. For the same number of operations utilized in tem-

poral parallelism, there is lesser overhead in spatial parallelism since the pipeline depth is

reduced. However, this approach increases the input stream bandwidth requirement be-

cause it needs an n times wider data stream. If available bandwidth is insufficient, stalls

may occur, often leading to a decrease in performance. Figure 3.1c shows m-cascaded

SPEs with n-parallelized unit pipelines.

In the FPGA’s design space, SPEs can be either cascaded or parallelized to exploit fine-

grained temporal or spatial parallelism, as presented in Figures 3.1b and c, respectively.

This (n,m) SPE configuration is placed in the FPGA’s user-defined logic region, called

a computing core or simply a core, which contains custom implementation of a stream

40

3.2. Design and Architecture

Host node 1

Memory

FPGA 1

Memory

FPGA 4

Host node 4

Memory

FPGA 13

Memory

FPGA 16

17.067

GB/s

10

GB/s

Figure 3.2: FPGA cluster in ring connection

computing algorithm.

Since there is a trade-off between temporal versus spatial parallelism, careful analysis

should be done to balance the performance versus pipelining effect. Furthermore, a single

FPGA has limited resources; thus, the number of SPEs is also limited. A workaround

for this is to increase the number of SPEs over multiple FPGAs to further scale the

performance.

3.2.2 Direct Networks for FPGA Clusters

Multiple FPGAs could be directly connected to form a cluster, which ideally scales the

computing performance. A general overview of an FPGA cluster for a numerical stream

computing approach is shown in Figure 3.2. It is composed of four host nodes with four

FPGA boards each. When the (n,m) SPE configuration on a computing core is replicated

over multiple FPGAs, an even deeper computing pipeline is implemented. There are

several choices on how to connect the FPGAs, but a 1D ring is the most straightforward

topology, where it allows the inter-FPGA transceiver links to be bundled together to

double the available bandwidth and achieve a higher network throughput. A ring topology

connection of FPGAs is formed by connecting them through the FPGA’s high-speed links.

Inside each FPGA, a pipeline of custom computing cores with corresponding SPEs is

41

3.2. Design and Architecture

Memory

Memory

SPE

FPGA 1

SPE

FPGA 8

Memory

Memory

SPE

FPGA 9

SPE

FPGA 16

a) Cascaded pipeline b) Spatially parallel

Figure 3.3: Available parallelism for FPGA clusters

implemented. This computing pipeline takes an input stream from memory and outputs

a data stream as the computation result for a certain number of time steps. To utilize the

FPGAs for parallel computation, there are generally two ways, as shown in Figure 3.3.

Figure 3.3a shows a cascaded pipeline approach of FPGAs, with one master FPGA

and one or more slave FGPAs. The master FPGA has an exclusive access to the external

memories and cascades the data stream down to the slave FPGAs. In addition, only the

master FPGA is allowed to access its host node for system control. The slave FPGAs are

implemented only with stream computing pipelines, in which the last slave device returns

the output back to the master FPGA for storage control to memory. On the other hand,

Figure 3.3b presents a cluster of spatially-paralleled FPGAs, which all have access to

their respective external memories and host devices. Figure 3.3b is more advantageous in

terms of the aggregate bandwidth of distributed memories, therefore, allowing multiple

data streams to be processed simultaneously. However, since all the FPGAs will be

receiving the data streams from their respective memories, there is a need to distribute

the data accordingly prior to the start of computation, which may result to an inefficient

data pre-processing overhead. Furthermore, a control mechanism should be implemented

42

3.2. Design and Architecture

Host machine 1

FPGA 1

core

Memory
17.067

GB/s
10 GB/s

Host 4

(power supply)

Master Slave

Exclusive

memory access

core

Slave

FPGA 16

core

core

Memory

FPGA 2

SPE 1

SPE 2

SPE m

SPE array

link

Figure 3.4: FPGA cluster in 1D ring topology showing SPEs in its computing cores

in this cluster to facilitate multi-FPGA operations, like DMA control and communication

initialization commands, which could be complicated. Due to these disadvantages, this

chapter specifically focuses on adopting the cascaded parallelism of Figure 3.3a due to

the simplicity in the localization of computational data to a single memory. Since the

master FPGA can exclusively access the centralized memory and its host system, the

complicated control mechanism is eliminated and prior to computation, data streams are

directly transferred to a single memory.

Through the PCI-Express (PCIe) interface, the pre-computational data streams are

transferred from the host to the master FPGA’s memory. The master and slave FP-

GAs are implemented with stream computing pipelines, which accepts the data streams

through the master. After the master handles the initial computations, the cascaded slave

FPGAs receive the resulting data streams and handle all the consequent computations

before returning the final results back for storage to memory. The 1D ring topology is

shown in Fig. 3.4, which illustrates the master-slave configuration on 16 clustered FPGAs

connected to four host machines, with an option to scale the number of hosts and FPGAs

if necessary.

43

3.2. Design and Architecture

3.2.3 Lossless Bandwidth Compression for Inter-FPGA Com-

munication

FPGA clusters with wide stream computing pipelines often suffer from insufficient commu-

nication bandwidth. Likewise, the performance of multi-FPGA designs are often limited

by the available bandwidth of its inter-FPGA communication. This is the case, partic-

ularly in cascaded FPGAs, since an entire data stream passes through the inter-FPGA

path as if it were a part of a deep, huge pipeline. As a consequence, the bandwidth of

inter-FPGA communication eventually becomes a bottleneck in stream computing. Since

the performance of stream computing with FPGAs depend only on its throughput, it is

therefore, almost impossible to improve the performance of multi-FPGA systems because

the communication bandwidth limits the entire performance, even if the computing core

itself has a high theoretical performance.

To solve this problem, a lossless data compression [4, 86, 88] could be applied to the

data stream communicated between the FPGAs, which reduces the required bandwidth of

data stream with a slightly additional latency [4,86,88]. The hardware-based lossless com-

pression is particularly designed for effective and efficient numerical floating-point data

streams. The compression algorithm exploits continuity of numerical data streams which

always have spatial and temporal continuity to reduce an amount of data by employing

prediction and subtraction processes. For the lossless compression, two more modules are

included in the design, namely, compression (CHW) and decompression (DHW) hardware.

The input of CHW is connected to the output of SPEs directly, and the output of

CHW is connected to the transceiver module, which transmits (TX) the data stream to

the next FPGA. CHW receives a data stream from the SPEs which has multiple channels

corresponding to variables of numerical computing. CHW compresses the input data

stream and also bundles these channels into one data channel for transmission to the next

FPGA. To exploit the available bandwidth of inter-FPGA communication, the output

width of CHW is fixed, which is the same as the width of the communication channel.

DHW receives (RX) a compressed and transmitted data stream from the previous FPGA.

44

3.2. Design and Architecture

Figure 3.5: FPGA cluster in 1D ring topology with lossless bandwidth compression [4]

DHW then, distributes the received data to the correct channel in the original multi-

channel stream, and then, data are decompressed to the original data in each channel.

After the decompression, the data stream becomes the input to the next SPEs again.

Figure 3.5 shows the design of the master and slave FPGAs with the lossless compres-

sion algorithm hardwares. Every FPGA has both CHW and DHW to reduce the required

bandwidth of the data stream. In this design, since the compression ratio of each CHW

fluctuates because of lossless compression, the effect of compression also fluctuates. With

this, the bandwidth improvement, which is equivalent to the compression ratio at a partic-

ular time can be expected. Moreover, the compression and decompression almost have no

effect on computational time because CHW and DHW are pipelined and their depths are

relatively tiny, whose pipeline depth is around 20. Therefore, this bandwidth compression

improves the bandwidth of inter-FPGA communication with small hardware footprint and

extremely small delay.

45

3.2. Design and Architecture

3.2.4 Performance Model

The performance model for stream computing with (n,m) SPE configuration [40,41] is:

Ptheory(n,m) =
nmFOpipe

1 +
mDpipe

Cstream

min(Bmem, bcore)

bcore

[GFlops], (3.1)

where Opipe is the number of operations per unit pipeline, Dpipe(n) is the pipeline depth

of a unit pipeline, Bmem is available memory bandwidth, and bcore(n) is the required

computing core bandwidth. Here, bcore(n) = nWpipeF , where Wpipe is the input/out-

put width of a unit pipeline [bytes]. Since having n-parallelized pipelines requires n

times wider data, the total number of stream cycles Cstream is inversely proportional to

n: Cstream(n) = dNgrid/ne, where Ngrid is the number of computational grid points to

stream. In this dissertation, Equation (3.1) is extended to estimate the performance in

the multi-FPGA platform. The contributing parameters are summarized in Table 3.1.

OFPGA is introduced as the number of operations per FPGA, where OFPGA(n,m) =

nmOpipe. To stream data with Cstream cycles, the total number of operations with M

cascaded FPGAs is:

Ototal = MOFPGACstream = nmMOpipeCstream [ops]. (3.2)

Cascading FPGAs introduces the communication links into the model. Let Blink be

the available link bandwidth. When there is insufficient available bandwidth, pipeline

stalls will occur. Generally, this happens when either Bmem or Blink is less than bcore.

Here, stall ratio rstall is defined as the ratio of stall cycles to total cycles and utilization

ratio (1− rstall) as the ratio of utilized cycles to total cycles:

rstall =

1− Blink

bcore
, Blink < min(Bmem, bcore)

1− Bmem

bcore
, Bmem < min(Blink, bcore)

0 , otherwise;

(3.3)

46

3.2. Design and Architecture

(1− rstall) =
min(Blink, Bmem, bcore)

bcore

. (3.4)

While the available external bandwidth Bmem is fixed, it should be noted that for

utilizing the lossless bandwidth compression, the bandwidth of the compressed links Blink

can vary with respect to the compression ratio rcomp, so Blink = rcompWlinkFlink, where Wlink

and Flink are the link’s data width [bytes] and transmission frequency [Hz], respectively.

On another side note, compression ratio is:

rcomp =
(size of original data stream)

(size of compressed data stream)
[4]. (3.5)

The entire computation for a single data stream takes (Cstream + Dtotal) cycles, where

Dtotal(M) is the total propagation delay from start to end of the entire computing pipeline.

Here, Dtotal(M) = M(Dcore +Dlink), where core delay Dcore(m) = mDpipe and Dlink is the

inter-FPGA link delay, as introduced in Equation (2.2) on Chapter 2. Since pipeline stalls

are anticipated with an insufficient available bandwidth, the total number of cycles for

computation is:

Ctotal =
Cstream + M(Dcore + Dlink)

(1− rstall)

=
Cstream + M(mDpipe + Dlink)

(1− rstall)
[cycles].

(3.6)

If compression is applied, its corresponding latency, Dcomp is considered in the total prop-

agation delays, where Dtotal(M) = M(Dcore + Dlink + Dcomp). Correspondingly,

Ctotal =
Cstream + M(mDpipe + Dlink + Dcomp)

(1− rstall)
[cycles]. (3.7)

47

3.3. Results and Discussion

Finally, total performance Ptheory(M,n,m) is:

Ptheory =
(Total number of operations)

(Total computing time)
[GFlops]

=
Ototal

Ctotal

(
1
F

) =
MFOFPGACstream

Ctotal

=
nmMFOpipeCstream(1− rstall)

Cstream + M(mDpipe + Dlink + Dcomp)

=
nmMFOpipe

1 +
M(mDpipe+Dlink+Dcomp)

Cstream

min(Blink, Bmem, bcore)

bcore

.

(3.8)

Based on Equation (3.8), the following scaling factors are identified. First, nmMFOpipe

defines the peak performance with M cascaded FPGAs, where nmFOpipe is the peak for

a single FPGA. On the other hand, performance degradation due to pipeline overhead

is indicated by M(mDpipe + Dlink + Dcomp)/Cstream. This suggests that the overhead

increases as the data stream size gets larger with respect to the total pipeline depth

M(mDpipe + Dlink + Dcomp). Since M FPGAs would also scale the total propagation

delay, therefore, adding more FPGAs will likewise contribute to the pipeline overhead.

Finally, min(Blink,Bmem,bcore)
bcore

is the effect of insufficient available bandwidth, caused by either

the links or by having n-parallelized pipelines in the core.

3.3 Results and Discussion

3.3.1 Implementation

The acceleration platform with master and slave FPGAs is shown in Figure 3.6. It is

implemented with eight Terasic DE5A-NET boards [82] on two host machines. Each

board includes an Intel Arria 10 10AX115N3F45I2SG FPGA, two DDR3-2133 SDRAMs,

a PCIe Gen2 x8 interface, and four high-speed, low-latency quad small form-factor plug-

gable (QSFP+) transceiver links, each of which has a bandwidth of 40 Gbps. Other

necessary peripherals include: two DDR3 controllers, four scatter-gather direct memory

access (SGDMA) modules, hardware cycle counters, and dual clock FIFOs (DCFIFOs).

Data-width converters (WidthConv) convert the required bit-stream width for the com-

48

3.3. Results and Discussion

512

512 bit-width

512

5
1
2

6
4

6
4

6
4

5
1
2

5
1
2

5
1
2

512 bit-width

5
1
2

5
1
2

6
4

6
4

64

Figure 3.6: Acceleration platform with master-slave FPGAs

putation and communication modules. Different clock domains are also utilized: 250 MHz

for PCIe, 266.67 MHz for DDR3 controllers, and an operating range of up to 225 MHz is

available for the computing core. Each SDRAM has a peak bandwidth of 17.067 GB/s,

while the two bundled 40 Gbps transceiver links claimed to reach 10 GB/s. However,

as evaluated on Chapter 2, the sustained link throughput with the communication sub-

systems averages at 7.92 GB/s (see Figure 2.9). In a single FPGA, two sets of network

modules are implemented (FC module and L1/L2 IP core), as introduced in Figure 2.1 on

Chapter 2. For a direct network’s L1/L2 IP core, Intel’s proprietary Serial Lite III (SL3)

protocol [90] for lightweight, low-latency, high-speed serial protocol for high-bandwidth

applications is utilized.

For evaluation and benchmark purposes, a practical stream computing tsunami simu-

lation [40] with real ocean-depth data is implemented on the proposed stream computing

approach on a direct network, indicated by custom computing core shown in Figure 3.6.

Its different SPE configurations are generated using a domain specific language-based

49

3.3. Results and Discussion

stream computing compiler (SPGen) [91], where all operations are in IEEE754 single pre-

cision floating-point format. Adders and multipliers are implemented using Intel IP cores

on the floating-point-DSP blocks, while dividers and square root logic are generated using

a floating-point generation tool, FloPoCo [92]. For design space exploration, SPE con-

figuration arrays of (n,m) = (1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (1, 5), and (1, 6) are selected,

based on a previous work on tsunami simulation [40]. Using Intel Quartus Prime Pro

18.0, the entire acceleration platform design is generated.

As a result of master FPGA having more peripherals than its slave counterpart, it

can fit only up to five SPEs, whereas the slave can accommodate six SPEs, where the

limiting factor is the combination of both adaptive logic modules (ALMs) and DSPs. It

is also noteworthy that the utilization of DSPs is solely by the computing core only, as

shown in Figure 3.7. For (n,m) = (1, 4) and (2, 2), they used the same number of DSPs in

their SPEs (nm = 4); however, there is a noticeable difference in other areas like ALMs,

registers (Regs), and block memories (Kbits) since having n-parallelized pipelines allowed

them to share the same stencil buffers in the SPEs [40].

3.3.2 Verification and Evaluation

The scalability and performance of the multi-FPGA platform with direct network using

tsunami simulation’s SPEs is investigated, in which one SPE with nm = 1 has 288

operations. Based on Equation (3.8), the peak performance nmMFOpipe is obtained with

F = 225 MHz and Opipe = 288. To obtain the theoretical sustained performance brought

by degradation factors, Dpipe(n) = 3099 and 1808 for n = 1 and 2, respectively; while

Dlink = 118, as obtained in Chapter 2 (see Equation 2.2). For the available bandwidth,

Bmem = 17.067 GB/s, and sustained Blink = 7.92 GB/s. The required bandwidth for

tsunami simulation core is bcore(n) = n × 32 × 0.225 = 7.2n GB/s, where Wpipe = 32

Bytes. In this evaluation, link compression is not applied.

Using actual ocean-depth data requires a sufficiently large Ngrid, in this case, with

2581 × 2879 data grid, which is equivalent to Cstream(1) = 7, 430, 699 cycles. To initially

50

3.3. Results and Discussion

validate the model in Equation (3.8), a relatively smaller Ngrid with Cstream(1) = 116, 104

cycles is used, which is roughly 64 times smaller than the Ngrid for tsunami simulation.

Using up to M = 4 FPGAs, the peak, theoretical Ptheory, and sustained performances of

different SPE configurations were obtained, as shown in Figure 3.8. Using the hardware

counters in Figure 3.6, the stall cycles and total computing cycles were measured for

the sustained performance ratings. Figure 3.8 also shows the similarity ratio between

theoretical and sustained performances, which is close to 100%, therefore, validating the

model in Equation (3.8).

Figure 3.9 shows the performance evaluation of tsunami simulation with actual ocean-

depth data using up to M = 8 FPGAs. In Figure 3.9, its peak, theoretical, and sustained

performances are illustrated for Cstream(1) = 7, 430, 699. For n = 1, the available band-

width is sufficient (Bmem > Blink > bcore(1)), making sustained performance close to its

peak. In the case of nm = 4, two SPE configurations are implemented: (1, 4) and (2, 2),

where n = 2 caused an increase of bandwidth requirement (Bmem > bcore(2) > Blink)

when bcore(2) = 2 × 32 × 0.225 = 14.4 GB/s. This led to pipeline stalls resulting to a

lower sustained performance. For M = 8 FPGAs, (n,m) = (1, 5) obtained the highest

performance with 2.5 TFlops, which is 98% of its peak performance. This shows that

the total pipeline depth of 8 × 5 = 40 cascaded SPEs is sufficiently enough to accom-

modate the input Cstream, without being affected by the pipeline overhead. In the case

where Cstream(1) = 116, 104 cycles, as shown in Figure 3.8, the pipeline overhead is visibly

reflected with the significant difference between the peak and sustained performances as

the pipeline depth increases.

Figure 3.10 shows the speedup and parallel efficiency of the largest SPE configurations

that can fit the master and slave FPGAs for efficient resource utilization: (1, 5), (1, 4),

and (2, 4). The expected speedup is achieved for n = 1, when M FPGAs are increased.

The differences among the three SPE configurations are significantly observed with more

FPGAs due to the pipeline overhead caused by the fixed ocean-depth data grid. (1, 5)

has the best speedup but its parallel efficiency is slightly lower than (1, 4)’s, due to the

pipeline overhead when the problem size of computation is maintained. (2, 2) has the

51

3.3. Results and Discussion

lowest speedup rate and efficiency because of the insufficient bandwidth caused by having

n-parallelized pipelines. This illustrates the performance model’s prediction on the factors

causing performance degradation, which in this case, is the bottleneck in the inter-FPGA

links due to insufficient Blink.

With this, expanding the design space with multiple FPGAs supports further per-

formance scaling. The key is finding the balance between the M , n, and m to achieve

the best speedup and parallel efficiency rates. In the case of tsunami simulation, the

large ocean-depth data grid allowed performance scaling when the pipeline depth is in-

creased over multiple FPGAs. Ideally, n-parallelized pipelines would be the best approach

since it would mean lesser computing cycles. However, this requires a larger bandwidth

requirement, where Blink was not able to satisfy. Based on Figure 3.10, implementing

(n,m) = (1, 5) is the best option in terms of area, speedup, and efficiency, even though

the latter is slightly lower than (1, 4)’s. With the currently utilized data grid, cascading

up to 16(1, 5) = 80 SPEs and 32(1, 5) = 160 SPEs, have parallel efficiencies of 97% and

94%, respectively, which can still be acceptable rates. However, M > 32 FPGAs will

bring a rapid rate of decreasing efficiency due to pipeline overhead.

3.3.3 Mitigating Inter-FPGA Communication Bottleneck

In this evaluation, mitigating inter-FPGA bottleneck is investigated by implementing the

compression-decompression (CHW and DHW) modules. To complete the evaluation of

this approach, another stream computing application, 2D9V Lattice Boltzmann method

(LBM) [41] is implemented as the custom application with SPEs on the FPGA, which

has a maximum pipeline depth of 16 stages. Since adding wider pipelines inherently

increase the system’s required bandwidth, the scaling effect of bandwidth compression

is also investigated. The compression ratio per communication link is also measured to

verify the increased performance. In addition, the strong scalability of the multi-FPGA

approach is investigated using LBM-specific parameters on the performance model. In the

2D9V LBM case, nm = 1 has 131 operations and its peak performance nmMFOpipe and

52

3.3. Results and Discussion

sustained performance Ptheory is obtained with F = 175 MHz, Opipe = 131, Dpipe(n) =

1550, 830, and 470 for n = 1, 2, and 4, respectively, Cstream = 720× 240 = 172800 cycles,

Bmem = 17.067 GB/s, Blink = 7.92 GB/s, and Wcore = 40 bytes. The required bandwidth

is bcore = n× 40× 0.175 = 7n GB/s.

Figure 3.11 shows the peak and sustained performances for Cstream = 720×240, where

no bandwidth compression is applied. Since the required bandwidth, bcore = 7n GB/s, is

less than the available bandwidth, for both Bmem and Blink when n = 1, then the available

bandwidth for external memory and inter-FPGA communication is sufficient, causing no

pipeline stalls. In the case of (1, 16), the sustained performance is obtained as 318.828

GFlops, which is about 87% of its peak performance. However, when M starts to increase,

the difference between sustained and peak performances starts to differ significantly. In

the case of (1, 256), the sustained-to-peak performance ratio decreases to just 29%. This

is due to the inefficient pipeline overhead caused by the increasing number of FPGAs and

a relatively short but fixed data stream. Figure 3.13 shows the same scenario, however,

with a larger data stream, Cstream = 720× 240× 16 = 2764800 cycles, where at (1, 256),

the sustained performance is 92% of its peak performance. This goes to illustrate that

having more FPGAs is more effective and efficient when the size of the data stream is

sufficiently large.

In the case of n = 2 and 4, where Cstream = 720 × 240 and without bandwidth com-

pression, as shown in Figure 3.11, the parallel n pipelines increased the core bandwidth

requirements, bcore = 14 and 28 GB/s, respectively. This results to an insufficient commu-

nication link leading to pipeline stalls. Stall ratio for n = 2 and 4, is 28.57% and 64.29%,

respectively, resulting to reduced performance. In (2, 16), the sustained performance is

448.79 GFlops, which is 61% of its peak, while in (4, 16), the sustained performance is

435.99 GFlops, which is 30% of its corresponding peak. It is interesting to note that with

n = 4, its sustained performance is a bit lower than n = 2, considering that it has more

parallel pipelines. This intriguing case is believed to be caused by a higher stall ratio of

n = 4 and the unproportional core delays Dcore for the different n cores, contributing to

the overall pipeline overhead.

53

3.4. Conclusions

To relieve the communication bottleneck, bandwidth compression is applied and the

performance estimation is shown in Figure 3.12. In the case of 2D9V LBM application,

it is measured that the compression ratios are 2.643 for n = 1, 2.392 for n = 2, and

1.853 for n = 4, where the maximum compression ratio is about 2.875. With bandwidth

compression, the sustained performances of (2, 16) and (4, 16) has increased to 626.31

and 739.55 GFlops, which are 85% and 50% of their respective peak performances. In

addition, the bandwidth compression also reduced the stalls: 39.05% stall ratio for n = 4

and no stalls for n = 2. Furthermore, when bandwidth compression is applied to a larger

data stream, Cstream = 720× 240× 16 = 2764800 cycles, the sustained performances get

closer to their peak performances, as shown in Figure 3.14, proving that pipeline overhead

caused by the multiple FPGAs is weakened by the sufficiently long data stream.

3.4 Conclusions

This chapter presents the investigation of a direct network’s performance characteristics

for a stream computing FPGA cluster. Here, the design and architecture of a deeply

pipelined stream computing platform on a ring connection of master and slave FPGAs

with point-to-point connections is introduced. Temporal and spatial parallelism in the

stream computing pipelines are explored to efficiently utilize the hardware resources. Fine-

grained temporal parallelism is achieved by m-cascaded SPEs while spatial parallelism is

explored by having n-parallelized pipelines. By cascading the SPEs on multiple FPGAs,

a deeper computing pipeline with a vast design space is achieved to support further

performance scaling.

Since scalability is finite, a performance model is also presented and validated by im-

plementing a custom practical application on the stream computing prototype platform

with eight cascaded FPGAs at 80 Gbps links. With this, a practical and efficient explo-

ration of the vast design space can be achieved with the model. Tsunami simulation using

real ocean-depth data set is implemented and evaluated on the master and slave FPGAs.

The highest scaled performance on eight FPGAs is achieved with a single pipeline of

54

3.4. Conclusions

five cascaded SPEs (n,m) = (1, 5), where 40 SPEs in a deep pipeline delivered a scaled

performance of 2.5 TFlops and a parallel efficiency of 98%. In this chapter, scalability

factors are identified. The peak performance is directly affected by the number of FPGAs

and the operating frequency. On the other hand, performance degradation dictates the

sustained performance, mainly caused by the pipeline overhead and bottleneck from the

network.

The implementation of bandwidth-compressed links weakened the effects of commu-

nication bottleneck, therefore, allowing increased sustained performances, especially for

longer data streams. In the case of M = 16 FPGAs, the best performance for a 2D9V

LBM application is predicted at n = 4, when 739.55 GFlops of sustained performance

is achieved through an enhanced communication bandwidth and with a moderate data

stream size of 720× 240 elements. When a longer data stream is fed to the multi-FPGA

pipeline, the closer the sustained performance is to its peak, making the pipeline overhead

relatively insignificant.

55

3.4. Conclusions

Table 3.1: Performance parameters

Parameters Description Unit

Ototal Total number of operations [ops]

Ctotal Total computing cycles [cycles]*

F Operating frequency [Hz]

Cstream Number of elements in data stream -

m Number of cascaded SPEs per FPGA -

n Number of parallel pipelines per FPGA -

M Number of cascaded FPGAs -

Opipe Number of operations in a unit pipeline [ops]

OFPGA Number of operations per FPGA [ops]

Bmem Available memory bandwidth [Bytes/s]

Blink Available inter-FPGA link bandwidth [Bytes/s]

Wlink Width of inter-FPGA link [Bytes]

bcore Required computing core bandwidth [Bytes/s]

Wpipe Input and output width of a unit pipeline [Bytes]

rstall Stall ratio -

Dtotal Total propagation delay [cycles]*

Dpipe Pipeline stages/delay in an unit pipeline [cycles]*

Dcore Pipeline stages/delay in a core [cycles]*

Dlink Inter-FPGA link delay [cycles]*

Dcomp Compression latency/delay [cycles]*

*All delays are measured in cycles at the same operating frequency F .

56

3.4. Conclusions

R
e

s
o

u
rc

e
 U

ti
li

z
a

ti
o

n
 [

%
]

(n, m) SPE configuration in Master FPGA

0%

25%

50%

75%

100%

A
L
M

s
R

e
g
s

K
b
it
s

D
S

P
s

A
L
M

s
R

e
g
s

K
b
it
s

D
S

P
s

A
L
M

s
R

e
g
s

K
b
it
s

D
S

P
s

A
L
M

s
R

e
g
s

K
b
it
s

D
S

P
s

A
L
M

s
R

e
g
s

K
b
it
s

D
S

P
s

A
L
M

s
R

e
g
s

K
b
it
s

D
S

P
s

(1, 1) (1, 2) (1, 3) (1, 4) (2, 2) (1, 5)

Peripherals MOST core Comm subsystem Unused

nm = 4

(n, m) SPE configuration in Slave FPGA

0%

25%

50%

75%

100%

A
L
M

s
R

e
g
s

K
b
it
s

D
S

P
s

A
L
M

s
R

e
g
s

K
b
it
s

D
S

P
s

A
L
M

s
R

e
g
s

K
b
it
s

D
S

P
s

A
L
M

s
R

e
g
s

K
b
it
s

D
S

P
s

A
L
M

s
R

e
g
s

K
b
it
s

D
S

P
s

A
L
M

s
R

e
g
s

K
b
it
s

D
S

P
s

A
L
M

s
R

e
g
s

K
b
it
s

D
S

P
s

(1, 1) (1, 2) (1, 3) (1, 4) (2, 2) (1, 5) (1, 6)

Peripherals MOST core Comm subsystem Unused

nm = 4

R
e

s
o

u
rc

e
 U

ti
li

z
a

ti
o

n
 [

%
]

Figure 3.7: Resource utilization with different SPE configurations

57

3.4. Conclusions

P
e

rf
o

rm
a

n
c
e

 [
G

F
lo

p
s

]

M num of FPGAs (n, m) SPE configuration

S
im

il
a

ri
ty

 R
a

ti
o

 [
%

]

0%

20%

40%

60%

80%

100%

0

200

400

600

800

1000

1200

1400

1
 (

1
,
1
)

1
 (

1
,
2
)

1
 (

1
,
3
)

1
 (

1
,
4
)

1
 (

2
,
2
)

1
 (

1
,
5
)

2
 (

1
,
1
)

2
 (

1
,
2
)

2
 (

1
,
3
)

2
 (

1
,
4
)

2
 (

2
,
2
)

2
 (

1
,
5
)

4
 (

1
,
1
)

4
 (

1
,
2
)

4
 (

1
,
3
)

4
 (

1
,
4
)

4
 (

2
,
2
)

4
 (

1
,
5
)

Peak Performance
Theoretical (model)
Sustained (measured)
Similarity ratio [%]

nm = 4

nm = 4

nm = 4

Similarity ratio [%] = (model / measured) x 100

Figure 3.8: Validation of performance model with Cstream = 116, 104 cycles

P
e

rf
o

rm
a

n
c

e
 [

G
F

lo
p

s
]

M num of FPGAs (n, m) SPE array

S
im

il
a

ri
ty

 R
a

ti
o

 [
%

]

0%

20%

40%

60%

80%

100%

0

500

1000

1500

2000

2500

3000

1
 (

1
,
1
)

1
 (

1
,
2
)

1
 (

1
,
3
)

1
 (

1
,
4
)

1
 (

2
,
2
)

1
 (

1
,
5
)

2
 (

1
,
1
)

2
 (

1
,
2
)

2
 (

1
,
3
)

2
 (

1
,
4
)

2
 (

2
,
2
)

2
 (

1
,
5
)

4
 (

1
,
1
)

4
 (

1
,
2
)

4
 (

1
,
3
)

4
 (

1
,
4
)

4
 (

2
,
2
)

4
 (

1
,
5
)

8
 (

1
,
1
)

8
 (

1
,
2
)

8
 (

1
,
3
)

8
 (

1
,
4
)

8
 (

2
,
2
)

8
 (

1
,
5
)

Peak Performance

Theoretical (model)

Sustained (measured)

Similarity ratio [%]

nm = 4
nm = 4

nm = 4
Similarity ratio [%] = (model / measured) x 100

nm = 4

Figure 3.9: Performance evaluation of tsunami simulation

58

3.4. Conclusions
S

p
e
e
d

u
p

M FPGAs

P
a
ra

ll
e
l
E

ff
ic

ie
n

c
y
 [

%
]

0%

20%

40%

60%

80%

100%

0

200

400

600

800

1000

1200
1 2 4 8

1
2

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

Speedup: M (1, 4)

Speedup: M (2, 2)

Speedup: M (1, 5)

Parallel Efficiency: M (1, 4)

Parallel Efficiency: M (2, 2)

Parallel Efficiency: M (1, 5)

Figure 3.10: Speedup vs. parallel efficiency

Figure 3.11: Estimated performance of 2D9V LBM without compression Cstream = 720×
240 elements

59

3.4. Conclusions

Figure 3.12: Estimated performance of 2D9V LBM with compression Cstream = 720× 240
elements

60

3.4. Conclusions

Figure 3.13: Estimated performance of 2D9V LBM without compression Cstream = 720×
240× 16 elements

61

3.4. Conclusions

Figure 3.14: Estimated performance of 2D9V LBM with compression Cstream = 720 ×
240× 16 elements

62

Chapter 4

Indirect Networks with High-Speed

Ethernet Switches

4.1 Introduction

Modern FPGAs have optimized interconnect fabrics, which allow low-latency communi-

cation in a dedicated network. Physically connecting FPGAs through their high-speed

transceiver links in a direct network, as presented in Chapter 3, is a straightforward

method. However, as the size of the cluster grows larger, the possibility of utilizing all

FPGAs for a particular application decreases. This also requires multiple hop counts to

reach a destination, which is inefficient with a large network diameter. On-chip FPGA

routers could route data to its destination with more hops, but this may become ineffi-

cient especially with a large network diameter. In addition, a large-scale FPGA cluster

could potentially service multiple applications that can be mapped strategically to max-

imize resource utilization, which requires network flexibility. Just as customized circuits

in FPGAs is the key to performance gains, the interconnection network should ideally be

scalable and flexible for its target applications.

To address these issues, an indirect network, where FPGAs are connected through

switches seems promising. In this chapter, a scalable Ethernet-switched FPGA cluster

is presented, where the transceiver links are physically connected to ports of high-speed

63

4.1. Introduction

Ethernet switches. With offloaded switching or routing functions, this may mean shorter

transmission time for a large network diameter due to lower hop counts. As a long-term

standard, Ethernet is a good choice of protocol, which supports easier migration to higher

data-rates and has adequate support for FPGAs through intellectual property (IP) cores.

With its accelerating momentum towards 400+ Gbps within the next coming years [93],

using Ethernet for the proposed switched network follows the design principle of inde-

pendence, which facilitates incremental scaling and forward compatibility. However, its

upper layer protocols such as TCP/IP are resource-heavy and expensive in hardware [54].

For the switched network, Layer 2 (L2) Ethernet is used. By supplying source and

destination media access control (MAC) addresses in Ethernet frames, an FPGA could

send data to a specified receiver FPGA; thus, providing flexibility without changing phys-

ical cabling structures. For some applications such as data flow stream computing, it is

necessary to establish a connection-oriented link with backpressure support over the net-

work. For usability, the custom credit-based network protocol with flow control presented

in Chapter 2 is utilized in this switched network.

This chapter aims to know the performance characteristics of the proposed indirect

network. By implementing the necessary data transfer hardware on FPGA, the com-

munication performance is modeled, obtained, and compared with the direct networked

FPGA cluster presented in Chapter 3, which uses Intel’s proprietary Serial Lite III (SL3)

protocol [90]. Figure 4.1 shows the connection-oriented inter-FPGA links and the neces-

sary network hardware modules. To demonstrate scalability, the communication time of a

streamed computing case in a large-scale cluster is estimated, along with its performance

by modeling data stream traversal through a network in a ring connection. The following

are this chapter’s specific contributions:

1. Design of connection-oriented network with Ethernet switches for scalable and flex-

ible FPGA clusters;

2. Investigation of performance characteristics and performance model of connection-

oriented switched network;

64

4.1. Introduction

FPGA 0 FPGA 1

Frame encoder

Application

Flow controller

Ethernet IP

Frame decoder

Flow controller

Ethernet IP

Application

Ethernet switch

Intel SL3 IP

Application

Flow controller

FPGA 0

FPGA 1

Intel SL3 IP

Application

Flow controller

link

link

a) Direct network b) Indirect network (switched)

Figure 4.1: Connection-oriented links in dedicated FPGA networks

3. Performance evaluation of stream computing in indirect network; and

4. Demonstration that connection-oriented Ethernet switched network achieves equiv-

alent performance to a point-to-point network for stream computing.

In this chapter, it was observed that the indirect network with 40 Gbps Ethernet

(E40G) has obtained an effective network bandwidth of 4.41 GB/s, which is approximately

3% higher than a 40 Gbps SL3 point-to-point FPGA network. This result indicates

a good communication performance of applications requiring high-bandwidth and large

data transfers, such as stream computing, despite the overhead introduced by variable

latency of a switched network. Generally, the scalability and flexibility features of the

switched framework provide feasible groundwork for efficient high-level synthesis (HLS)

compilers, which target to generate and map customized HPC applications in a large-scale

FPGA cluster.

65

4.2. Design and Architecture

FPGA 0

RouterRouter Router

RouterRouter Router

RouterRouter Router

Leaf

FPGA 0

FPGA n

Spine switch

a) Mesh/torus topology (direct) b) Leaf-spine architecture (indirect)

Leaf Leaf Leaf

Spine switch

Figure 4.2: FPGA clusters when scaled

4.2 Design and Architecture

This section presents the proposed scalable indirect network framework with its design

and architecture, including the custom protocol and model.

4.2.1 Indirect Networks for FPGA Clusters

A direct network based on point-to-point connection is popular for inter-FPGA commu-

nication because of its practical and extensive features. Since it allows close physical

proximity between FPGAs, high-speed and high-bandwidth data transfers are often im-

plied. A fully-connected network is ideal to keep low-latency transfers but unrealistic

when scaled with more FPGAs. To minimize the network diameter, high-radix routers

are employed but are usually constrained with the limited number of transceiver links.

There is also a high-resource penalty for on-chip routers, which reduces FPGA area for

application. Figure 4.2a shows a mesh/torus topology where their routers determine the

datapath of a message. In comparison, the absence of a router in Figure 4.1a presented a

point-to-point connection with a fixed datapath between two FPGAs.

An indirect or switch-based network enables the FPGA fabric to offload the routing or

switching functions to a dedicated switch. Using a switch may introduce some additional

latency but with a larger network diameter, there will be lesser hops to reach a destination

66

4.2. Design and Architecture

compared to a direct network. However, scalability is limited by the number of switch

ports. To mitigate this, a multi-stage interconnection network may be constructed by

cascading switches such as in a leaf-spine architecture [94, 95], (also known as spine-leaf

or a two-tier fat tree/folded Clos network) shown in Figure 4.2b. In this two-layer network

topology, FPGAs are connected to leaf switches. These switches are then fully meshed

to a series of spine switches, which allows scaling with more FPGAs and provides better

support for increased east-west traffic flows [96]. Unless two communicating FPGAs are in

the same leaf switch, this mesh provides a fixed number of hops to a destination regardless

of their physical location in the network, thus minimizing latency while keeping it at a

predictable level even when scaled.

4.2.2 Ethernet-based Connection-oriented Links and Protocol

To establish connectivity from one FPGA to another in the switched network, L2 Ether-

net is opted, which involves configuring source and destination MAC addresses on Eth-

ernet frames. For some applications like stream computing, establishing this connection-

oriented datapath with backpressure is necessary. Even without Layer 3 (L3) routing

features, L2 MAC address switching is sufficient for the logical point-to-point connec-

tions. However, there is no physical inter-FPGA backpressure channel, which is necessary

to propagate receiver availability towards an upstream transmitter. In this chapter, Fig-

ure 4.3 presents the necessary hardware modules for a single link in an Ethernet-based

switching network, which includes the flow controller (FC), frame encoder and decoder,

and Ethernet IP core for L2 and Layer 1 (L1) functions.

4.2.2.1 Ethernet L1 and L2 IP core:

As a standard protocol, there are existing off-the-shelf Ethernet IP cores with different

incorporated layers and functionalities available for use. For the proposed indirect net-

work, a low-latency 40/100 Gbps Ethernet IP core with L2 MAC and L1 PHY functions

is selected, which follows the IEEE 802.3ba 2010 High Speed Ethernet Standard [97].

67

4.2. Design and Architecture

A
p
p
lic

a
ti
o
n

FIFO TX buffer

RX buffer

Flow controller

Frame Encoder

Frame DecoderFIFO

Ethernet (L1&L2) IP core

TX MAC

PHY

RX MAC

w

link

w

w

Network modules
FPGA

E
th

e
rn

e
t
s
w

it
c
hw-bit width data

Figure 4.3: Network hardware modules for Ethernet protocol

Header (8 bytes)

Start

(1 byte)
Preamble

(6)

SFD*

(1)

Pads

(0-46)

CRC32*

(4)

IPG*

(12)

Tail

Payload (46~1500 bytes)

Header (14 bytes)

Dst MAC Add*

(6 bytes)

Src MAC Add*

(6)

T/L*

(2)

Header (28 bits)

Len*

(12 bits)

SOP*

(1)
EOP*

(1)

CO*

(1)

res*

(1)
CU*

(12)
Payload

Provided by

Ethernet IP core

Provided by

Frame Encoder

Provided by Flow Controller

Provided by application

a) Standard Ethernet frame

from a) *SFD: Start of frame delimiter, CRC32: 32-bit cyclic redundant check, IPG: Inter-packet gap

from b) *Dst MAC Add: Destination MAC address, Src MAC Add: Source MAC address, T/L: Type or length of Ethernet frame

b) Ethernet frame with data link header

c) Flow control (FC) packet

d) Application packet

from c) *Len: Length of payload in packet, SOP: Start of packet flag, EOP: End of packet flag, CO: Credit only flag,
 res: reserved bit, CU: Credit update

Payload

Payload

Figure 4.4: Protocol layers

This IP core supports frame encapsulation but without a data link header containing the

MAC addresses. It also does not include any upper Ethernet layers, which is sufficient for

stream computing requirements. Figure 4.4a shows its standard Ethernet frame output.

In the transmit direction, TX MAC accepts an w-bit width input frame and inserts a

header and tail, as shown in Figure 4.4a. This is then passed to the PHY, which encodes

it to serialized data for the FPGA transceiver links. In the receive direction, PHY passes

deserialized data to RX MAC, which performs checksum calculations, removes the header

and tail, and outputs the rest of the frame.

68

4.2. Design and Architecture

4.2.2.2 Frame Encoder and Decoder:

The frame encoder and decoder handle the flow of data between FC and Ethernet IP

core. Essentially, the encoder’s main function is to accept data from FC, inserts the data

link header into an Ethernet frame, and passes it to the Ethernet IP core. As shown in

Figure 4.4b, the encoder inserts the MAC addresses and the type/length (T/L) of the

frame. In the receive direction, the decoder strips off the data link header before passing

the payload to the FC module.

This module accepts a maximum payload of 1500 bytes, which is the standard max-

imum transmission unit (MTU) and can be changed as a parameter. A jumbo frame

is also supported, as long as the Ethernet switch ports support handling a payload size

greater than the standard MTU. However, when the encoder receives data in the form of

a packet, which has start of packet (SOP) and end of packet (EOP) signals, the packet

is considered a unit payload and is encapsulated directly with a header without other

modifications.

4.2.2.3 Flow Controller (FC):

The FC module presented in Chapter 2 is utilized for the proposed switching network. The

main purpose of this module is to provide receiver status awareness between two commu-

nicating FPGAs through the exchange of credits, which provides transmission reliability.

It operates autonomously in either half or full-duplex data transfers. In this chapter, Eth-

ernet compatibility is emphasized and supported through frame encapsulations handled

by the encoder and Ethernet IP core.

FC receives data from the application, which could be divided into smaller packets

composed of data flits. In each FC packet, a header is inserted. This is also known as a

control flit, in which other information are embedded in order to reconstruct the original

payload in the receive direction. The protocol is shown in Figure 4.4c.

As discussed in Chapter 2, the credit update (CU) frequency depends on the FC

packet size, which is set as a parameter in this module. In order to embed the payload

69

4.2. Design and Architecture

length in the header, incoming data is placed in a store-and-forward transmitter buffer,

FC TX buffer. To minimize induced waiting time for longer payload sizes, CU should

be transmitted frequently enough by setting it to every DCU flits. This means that a

maximum FC packet sent to the frame encoder is (DCU + 1) flits including the control

flit. This is equivalent to:

(Maximum FC packet size) =
(w-bit width)(DCU + 1)

8
[bytes], (4.1)

which should satisfy the encoder’s payload size requirements.

Another important parameter, as presented in Chapter 2, is the depth of the receiver

buffer, FC RX buffer. In order to operate at a high rate, FC RX buffer allocation must

be sufficiently larger the round-trip time plus CU frequency, DCU [75].

4.2.3 Performance Model

In this section, a model is derived to estimate communication time as performance metric,

which is dependent on various factors such as communication patterns and the network

topology. To simplify and generalize the model, an FPGA-to-FPGA communication for

both direct and indirect networks is derived. Table 4.1 lists the parameters affecting

network performance.

For any point-to-point connection, a simple model to describe the total transfer time

of a message or payload with m bytes is:

Tpoint-to-point = TL +
m

B

Tpoint-to-point = tN + tPL +
m

B
[s], (4.2)

where TL is the total propagation latency [s] and B is the peak network bandwidth [GB/s],

representing latency and streaming factors of a message transfer, respectively. Here,

TL = tN + tPL, where tN is the node latency [s], also known as start-up latency, which

refers to the message handling delays at the sending and receiving nodes, and tPL is the

70

4.2. Design and Architecture

Table 4.1: Parameters for network performance model

Parameters Description Unit

m Message (payload) size [bytes]

B Network link bandwidth [GB/s]

tN Node latency (start-up latency) [s]

tPL Physical link latency [s]

l Number of physical links -

s Number of switch hops -

tS Average switching latency [s]

TL Propagation latency [s]

T Total communication time [s]

FPGA
tPL

a) Physical link latency (direct)

b) Physical link latency (indirect)

c) Intra-leaf hop (indirect)

d) Inter-leaf via spine hop (indirect)

FPGA

FPGA Leaf

FPGA Leaf FPGA

FPGA Leaf Spine Leaf FPGA

tPL

tPL tPL

tPL

tS

tS tStS
tPL

tPL tPL

Figure 4.5: Network communication traversal

physical link latency [s], which refers to the time for a node to send and for another node

to receive a zero-payload message across a network, as illustrated in Figure 4.5a. Here,

an FPGA is defined as a node.

For the switched network, the node-to-node communication time is considered by

breaking down the network datapath into parts, as shown in Figure 4.5b-d. In an indirect

connection, an FPGA is connected to a leaf switch, as shown in Figure 4.5b. Figure 4.5c

shows the communication pattern between two FPGAs in a single leaf switch, with its

71

4.2. Design and Architecture

transfer time as:

Tintra-leaf hop = TL +
m

B

Tintra-leaf hop = tN + 2tPL + tS +
m

B
[s], (4.3)

since there are two physical links and the transfer included a single leaf switch hop with

a switching latency, tS, which is included in TL. Therefore, for an intra-leaf switch data

transfer, the communication time is:

Tintra-leaf hop = TL +
m

B

Tintra-leaf hop = tN + ltPL + tS +
m

B
[s], (4.4)

where l is the number of physical links.

Figure 4.5d presents the FPGA-to-FPGA transfer in separate leaf switches, which

involves a spine switch hop. Assuming this is a fully non-blocking full-bandwidth leaf-

spine topology with no contention, then its transfer time is:

Tinter-leaf hop = TL +
m

B

Tinter-leaf hop = tN + 4tPL + 3tS +
m

B
[s], (4.5)

since there are four physical links and three switch hops, assuming the same switching

latency for both leaf and spine. To generalize this inter-leaf switch pattern, the commu-

nication time is:

Tinter-leaf hop = TL +
m

B

Tinter-leaf hop = tN + ltPL + stS +
m

B
[s]. (4.6)

72

4.3. Results and Discussion

Consequently, the effective network bandwidth for both network types is:

Beffective =
m

T
=

m

TL + m
B

[GB/s], (4.7)

where T is the total communication time.

4.3 Results and Discussion

In this section, the performance characteristics of the switched network is investigated

and compared to a direct network. Resource utilization, latency, and effective network

bandwidth of the connection-oriented links are obtained. By applying the measured

parameters, the model is used to evaluate scalability.

4.3.1 Implementation

For fundamental evaluation, the network hardware modules are implemented on a Terasic

DE5A-NET FPGA board [82], which includes an Intel Arria 10 FPGA. There are four

quad small form-factor pluggable (QSFP+) transceiver ports, but only two are utilized

for the experiments. For each port, an instance of the network modules is implemented.

For the Ethernet IP core, Intel’s Low Latency 40 Gbps Ethernet IP core (E40G) [98]

is selected to match the tranceiver’s 40 Gbps Attachment Unit Interface (XLAUI). As

per E40G IP’s specification, Avalon Streaming (Avalon-ST) interface [99] is used with a

w = 256-bit width datapath for the network modules. To complete the indirect network

setup, a 16-port Mellanox SN2100 Open Ethernet switch [100] is used, with its ports

configured to 40 Gbps in order to match the data rate of Arria 10 FPGA links.

Two transceiver ports with their own direct network modules are prepared on an-

other DE5A-NET board, which includes an FC module connected to a 40 Gbps SL3 IP

core [90] per port, as shown in Figure 4.1a. Unlike in Chapter 2 and Chapter 3, the

transceiver links in this setup are unbundled. For a fair comparison, 1-meter passive cop-

per QSFP+ transceiver link cables are used for both network types and utilized the same

73

4.3. Results and Discussion

R
e

s
o

u
rc

e
 U

ti
li

z
a

ti
o

n
 [

%
]

0%

25%

50%

75%

100%

A
L
M
s

R
e
g
is
te
rs

K
b
it
s

M
2
0
K
s

D
S
P
s

A
L
M
s

R
e
g
is
te
rs

K
b
it
s

M
2
0
K
s

D
S
P
s

Point-to-point with SL3 (no router) Switched with E40G

Peripherals Network Unused

about 10% increase for all (except for DSPs)

Figure 4.6: Resource utilization of SL3 and E40G Ethernet modules

cross-platform FC module for both SL3 and E40G setup.

For FC buffer allocations, TX buffer has a depth of 32 flits, where the CU frequency is

set to send a credit every DCU = 32 flits, as discussed in Chapter 2. Using Equation (4.1),

the maximum FC packet size sent to the frame encoder is (256)(32 + 1)/8 = 1056 bytes,

which satisfies the frame encoder payload size requirements. To fully maximize the net-

work bandwidth, this may be increased to 1500 bytes, with DCU = 45 flits and a TX buffer

depth of 64 flits, but this would incur additional logic and an increase in area. Thus, a

32-flit TX buffer allocation for both SL3 and E40G network is retained to maintain equal

flow control protocol overhead in this evaluation.

To operate at high data rate, RX buffer depth relies on the link latency, in which

SL3’s RX buffer depth is at a minimum of 512 flits (see Chapter 2). For the switched

network, this is not sufficient due to the additional latency of two or more switch hops;

thus, the need to increase E40G’s RX buffer allocation to a relatively larger size. For

E40G network, FC RX buffer depth is set to 2048 flits, while maintaining 512 flits for

SL3.

Figure 4.6 shows the resource utilization of adaptive logic modules (ALMs), registers,

74

4.3. Results and Discussion

memory logic array blocks (MLAB Kbits), M20K memory blocks, and digital signal pro-

cessors (DSPs). As shown in green, point-to-point’s network modules consume lesser area,

while the switched network’s consume about 6x, 7x, 18x, and 3x more ALMs, registers,

Kbits, and M20Ks, respectively, than the former. This is due to increased logic and mem-

ory needed for the frame encoder, decoder, and FC RX buffer allocation. For the E40G

switched network, this is around 70-75% of resources, which is a fair amount considering

that large application is targeted to be mapped across multiple FPGAs. In addition, it is

noteworthy that the SL3 direct network does not include an on-chip router, which when

implemented, would imply an increase on its consumption.

4.3.2 Communication Time and Effective Network Bandwidth

To measure parameters for the performance model in Equation (4.6), hardware cycle

counters are setup and used for the following cases: (1) point-to-point with SL3, (2)

point-to-point with E40G, and (3) a switched network with E40G, as shown in Figure 4.7a.

Aside from a switched E40G case (3), a point-to-point connection with E40G case (2) is

also considered to obtain the average switching latency, tS.

Table 4.2 shows the measured values for node latency, tN and physical link latency,

tPL for a zero-payload equivalent, which in E40G, is encapsulated in a minimum-sized

Ethernet frame with 46-byte padded payload. For SL3 case (1), tN only includes FC

latency, while for E40G cases (2) and (3), this includes FC, frame encoder, and frame

decoder delays; hence, the higher latency of E40G. Due to IP restrictions on SL3 and

E40G IP cores, tPL could only be measured by including their protocol overheads; thus,

the noticeable difference of their values. Using the measured values of tN and tPL, the RX

buffer allocation is also verified to maintain a high data rate transmission.

In order to obtain the effective bandwidth, the total communication time is measured

by sending various payload sizes and used it in Equation (4.7). Case (1) shows the highest

bandwidth for smaller payload sizes due to its lower communication latency, as illustrated

in Figure 4.8. Meanwhile, case (2) shows a lower effective bandwidth than case (1). This

75

4.3. Results and Discussion

Table 4.2: Measured latency parameters

Network Unit tN tPL tS

(1) Point-to-point with SL3 [us] 0.245 0.354 N/A

(2) Point-to-point with E40G [us] 0.336 0.496 N/A

(3) Switched with E40G [us] 0.336 0.496 0.318

is due to the additional protocol overhead of Ethernet and the extra latency of passing

through more modules, i.e. frame encoder and decoder, as with case (3). However, the

latter shows the lowest effective bandwidth due to a longer communication time via the

switch.

For larger payload sizes, it is observed that the effective bandwidth for case (1) is

4.29 GB/s with 86% efficiency. For (2) and (3), both reached a effective bandwidth of

4.41 GB/s at 88% efficiency, which is surprisingly higher than SL3’s (approximately 3%).

This is caused by SL3 protocol’s transmission overheads and lane rate calculations [90],

where the required network clock frequency derived was 150.813962 MHz, resulting to

4.83 GB/s peak throughput. For E40G IP core, there is no clock frequency requirement

and 154.99442 MHz clock frequency has been utilized, which correspondingly results to

a higher peak throughput of 4.96 GB/s. These results demonstrate that even with the

switched network’s additional overhead, which includes Ethernet protocol and a higher

communication latency, it has achieved an equivalent performance to a point-to-point

network with sufficiently large payload sizes, since latency no longer dominates transfer

time.

Correspondingly, the measured total communication time is also used to validate the

performance model by comparing it with our estimated results. By using the obtained

parameters such as tN and the effective bandwidth, the transmission time was estimated,

as shown in Figure 4.7b-d. Based on the plotted values, the model closely matches the

measured time, which can be used to estimate communication performance in larger

FPGA clusters.

76

4.3. Results and Discussion

4.3.3 Performance Estimation of Stream Computing

A stream computing case is considered since it is a promising approach to achieve high

throughput data streams from its deep pipelines. A direct network is often the typical

choice, thus, its performance in the proposed switching framework is investigated. Two

FPGAs in a ring connection were used to perform fundamental evaluation on a switched

network, as shown in Figure 4.9a and compared with its equivalent point-to-point ring

connection with SL3. The total communication time is obtained and its effective band-

width is mapped in Figure 4.9b. As anticipated, latency prevails in smaller payload

sizes, in which the point-to-point connection has higher effective bandwidth. For larger

payload sizes, however, the effective bandwidth of the switched E40G connection satu-

rates at 4.41 GB/s, which still performed better than its direct network counterpart at

4.29 GB/s. This means that an indirect network can achieve equivalent throughput to

a direct network when streaming large data sets, which is typical for stream computing

applications. Even with the additional communication latency introduced by an indirect

network, this becomes negligible when data stream size becomes sufficiently large for its

network datapath.

Using Equation (4.2) for SL3 and Equation (4.3) for E40G, the communication time

is also estimated by scaling the propagation latency, TL by a factor of two, since this

ring connection is equivalent to two point-to-point connections. As shown in Figure 4.9b,

the modeled values approximates the measured points, which is expected since the model

only accounts for the network communication without interaction.

To evaluate scalability, the communication time of both network connections with a

larger cluster setup is estimated. A radix-64 switch (k = 64) is assumed, which could

accommodate up to n = 64 FPGAs. When n > 64, the leaf-spine architecture is used

to expand the network diameter, where the uplink to downlink ratio is assumed to be

balanced (no oversubscription). To build a two-layer, full-bisection bandwidth leaf-spine

topology, a total of n = k × k
2

= 2048 FPGAs can be connected, with a = 2n
k

= 64 leafs,

and b = a
2

= 32 spines, which are connected in a full bipartite graph with k
a

= 1 uplink

77

4.3. Results and Discussion

per leaf to all 32 spines.

In this ring connection, the lowest latency traversal is assumed, where data stream

from an FPGA hops to their neighboring FPGA first via intra-leaf hops (see Figure 4.5c),

before performing an inter-leaf hop through the spine (see Figure 4.5d). With n <= 64,

TL is scaled by n, since there are n FPGA-to-FPGA transfers in the ring through a single

leaf (a = 1). With n > 64, the scaling factor for TL is a(k
2
− 1), since the FPGAs on

the edges of the leaf have to perform an inter-leaf transfer. Consequently, an inter-leaf

communication’s scaling factor for TL is a, when a > 1. By hypothetically assuming the

measured parameters in Table 4.2 and the measured effective bandwidth, the total time

is estimated, T = TL + m
B

, by accumulating the scaled TL values for both intra-leaf and

inter-leaf hops, which forms the communication pattern of the ring, while increasing the

FPGA cluster size.

Figures 4.9c-e show the transmission time for a large data stream (227 MB), a mid-

sized data stream (1 MB), and a small message size (4 KB), respectively. For the large

data stream size, a lower transmission time is observed for the E40G switched network

up to n = 1024 FPGAs, due to its higher effective bandwidth. With n = 2048, the

data stream size is no longer sufficient with the increased network datapath and the

latency factor catches up, making the point-to-point connection with SL3 perform better

(see Figure 4.9c). For the mid-sized data stream, as shown in Figure 4.9d, the higher

effective bandwidth of the switched network keeps the time difference at a minimum only

for a small FPGA cluster (up to n = 16 FPGAs). Meanwhile, for small message sizes,

as illustrated in Figure 4.9e, the lower latency of a point-to-point connection dominates

the total transfer time. This highlights the overhead-inducing component of an indirect

network’s higher communication latency.

To demonstrate performance scalability, Figures 4.10a-c illustrate the corresponding

estimated performance of the ring connection with the same data stream size classifica-

tions: large data stream (227 MB), a mid-sized data stream (1 MB), and a small message

size (4 KB), respectively. Here, overlapped communication and computation is assumed.

Using the stream computing performance model in Equation (3.8) and assuming the

78

4.4. Conclusions

number of operations, Ototal of tsunami simulation (see Equation (3.2)), performance esti-

mation results are obtained. As expected, streaming a sufficiently large data set scales the

performance linearly with more FPGAs on both network types, since they achieve equiv-

alent network throughput. This can be generalized for stream computing applications,

since they typically process large data stream sizes, such as an actual ocean depth data set

(7,430,699 data elements = 227 MB) used in tsunami simulation (see Figure 4.10a). On

the other hand, Figures 4.10b and c show the performance estimation of mid-sized data

stream and small message size, respectively. In both cases, higher latency of the indirect

network largely affects performance due to both pipeline and communication overheads,

when data stream size is insufficient in the ring network datapath.

4.4 Conclusions

This chapter presents a design and architecture of an Ethernet-based switched platform

for scalable FPGA clusters, where a connection-oriented datapath with backpressure over

the network is established. For usability and to setup connectivity, we utilized the credit-

based protocol with flow control over Ethernet and implemented the supporting network

modules to achieve high-throughput data transfers.

The performance characteristics of the connection-oriented links are investigated and

its communication performance is modeled. By obtaining the communication time and

effective network bandwidth, the communication time of a streamed computing pattern

when scaled to a large-sized cluster is estimated. With the E40G switched network sat-

urating at a higher effective bandwidth for large data streams in comparison with its

point-to-point SL3 counterpart, the proposed indirect framework has demonstrated good

communication performance and scalability for applications requiring high-bandwidth and

large data transfers, despite its longer network propagation latency.

79

4.4. Conclusions

1

10

100

1000

10000 Point-to-point with E40G (Modeled)

Point-to-point with E40G (Measured)

T
im

e
 [

u
s
]

1

10

100

1000

10000

T
im

e
 [

u
s

]

Point-to-point with SL3 (Modeled)

Point-to-point with SL3 (Measured)

1

10

100

1000

10000

Payload Size [KB]

T
im

e
 [

u
s
]

Payload Size [KB]

Payload Size [KB]

FPGA

Ethernet switch(1) Point-to-point

with SL3

E40G

a) Experimental setup for cases (1), (2), and (3)

(2) Point-to-point

with E40G

(3) Switched

with E40G

b) Transmission time for case (1)

FPGA FPGA

c) Transmission time for case (2)

d) Transmission time for case (3)

E40GSL3

Switched with E40G (Modeled)

Switched with E40G (Measured)

Figure 4.7: Modeled vs. measured network communication time

80

4.4. Conclusions

 -

 1.0

 2.0

 3.0

 4.0

 5.0

 6.0

E
ff

e
c

ti
v

e
 L

in
k

 B
a

n
d

w
id

th
 [

G
B

/s
]

Payload Size [KB]

(1) Point-to-point with SL3

(2) Point-to-point with E40G

(3) Switched with E40G

Peak bandwidth

Figure 4.8: Effective network bandwidth of SL3 and E40G for cases (1), (2), and (3)

81

4.4. Conclusions

E
ff

e
c
ti

v
e
 N

e
tw

o
rk

 B
a
n

d
w

id
th

 [
G

B
/s

]

Payload Size [KB]

a) Switched network

Ethernet switch

FPGA 0

FPGA 1

b) Effective network bandwidth with two FPGAs

number of FPGAs

T
ra

n
s
m

is
s
io

n
 T

im
e
 [

m
s
]

Point-to-point with SL3

Switched with E40G

Point-to-point with SL3

Switched with E40G

Point-to-point with SL3

Switched with E40G

T
ra

n
s
m

is
s
io

n
 T

im
e
 [

m
s
]

T
ra

n
s
m

is
s
io

n
 T

im
e
 [

u
s
]

number of FPGAs number of FPGAs

c) Estimated time for large

data stream (227 MB)

d) Estimated time for mid-sized

data stream (1 MB)

e) Estimated time for small

message size (4 KB)

0

1

10

2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

1

10

100

1000

10000

2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

52

53

54

55

56

57

58

2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

 -

 1.0

 2.0

 3.0

 4.0

 5.0

 6.0

Point-to-point with SL3 (Modeled)

Point-to-point with SL3 (Measured)

Switched with E40G (Modeled)

Switched with E40G (Measured)

Peak bandwidth

Figure 4.9: Stream computing in a ring connection

82

4.4. Conclusions

1

10

100

1000

10000

100000

1000000

2 4 8 16 32 64 128 256 512 1024 2048

Point-to-point with SL3 Switched with E40G

P
e

rf
o

rm
a

n
c

e
 [

G
F

lo
p

s
]

number of FPGAs

a) Estimated performance for large data stream (227 MB*)

*Size of tsunami simulation's ocean depth data set

1

10

100

1000

10000

100000

b) Estimated performance for mid-sized data stream (1 MB)

2 4 8 16 32 64 128 256 512 1024 2048

number of FPGAs

P
e

rf
o

rm
a

n
c

e
 [

G
F

lo
p

s
]

1

10

100

1000

c) Estimated performance for small message size (4 KB)

2 4 8 16 32 64 128 256 512 1024 2048

number of FPGAs

P
e

rf
o

rm
a

n
c

e
 [

G
F

lo
p

s
]

Figure 4.10: Performance estimation of stream computing in a ring connection

83

4.4. Conclusions

84

Chapter 5

Conclusions

HPC is among the affected areas with the imminent end of Moore’s law and Dennard

scaling. Among the several strategies and architectural explorations being done over

the years, reconfigurable devices such as FPGAs are dominantly showing their potential

through exploiting parallelism with customization and the use of appropriate hardware

computing model, such as data flow stream computing. Despite numerous successful

studies, FPGAs do not have significant impact on general-purpose HPC systems due to

a huge gap between the potential and reality of FPGAs in HPC [27]. In response to a

few areas identified in [1] to hasten FPGA adoption in HPC systems, it is the general

direction and long-term goal of this research to make FPGAs available to HPC systems

as offload engines in a system-wide custom computing infrastructure. Since performance

scalability is limited by the available on-chip resources of a single FPGA, it is natural to

explore the suitability of tightly-coupled FPGA clusters.

Since FPGAs are relatively new in HPC and are highly customizable in nature, the

overall design space is huge, which extends to its interconnection networks. This disserta-

tion particularly focuses on the comparison of direct and indirect network types for FPGA

clusters, with specific intent for stream computing requirements. Since the interconnec-

tion network is an overhead-inducing component of an FPGA cluster, there is a need to

investigate the performance characteristics of both direct and indirect networks in order

achieve low-latency and high-throughput communication necessary for high-performance

85

stream computing.

The main objective of this dissertation is to explore appropriate interconnection net-

works for stream computing FPGA clusters, in which the following sub-objectives are

derived: (1) investigate the suitability and feasibility of direct and indirect networks for

stream computing FPGA clusters; (2) design and implement a lightweight and efficient

hardware backpressure mechanism for direct and indirect inter-FPGA communication;

and (3) investigate and evaluate performance scalability of stream computing on direct

and indirect networks. In this dissertation, the first and third sub-objectives were ad-

dressed in Chapters 3-4, while Chapter 2 addressed the second sub-objective.

Chapter 2 investigated the requirements for stream computing in FPGA clusters. For

most HPC applications, the following demands should be met: a scalable network ar-

chitecture; efficient, low-latency, and high-bandwidth communication; and with a small

footprint on the FPGA fabric. Since stream computing is a good approach to extract

high-performance gains in FPGAs, its requirements were also considered, where inter-

FPGA backpressure and synchronization must be available. To meet these requirements,

a lightweight and efficient hardware backpressure mechanism was designed and imple-

mented. This was achieved by designing a custom credit-based network protocol with

flow control, which supports half-duplex and full-duplex communication for both direct

and indirect networks. To keep low-latency and high-bandwidth requirements, design

parameters were explored and identified as the communication buffers and the credit up-

date frequency, which implies performance and area trade-offs. Using the parameters with

least area consumption, the effective network bandwidth was obtained. While the imple-

mented flow controller design in this chapter was on a direct network, the same design

principles and mechanism apply for an indirect network, which was investigated further

in Chapter 4.

Chapter 3 investigated the suitability of direct networks through point-to-point con-

nections for FPGA clusters. The design and architecture of a deeply pipelined stream

computing platform in a 1D torus or ring topology was presented and implemented. Avail-

able parallelism for stream computing was also explored to efficiently utilize the hardware

86

resources. Using the flow control mechanism in Chapter 2 for its network modules, the

performance characteristics of its inter-FPGA links were investigated. Through the deriva-

tion of a performance model, a practical and efficient design space exploration could be

achieved. Performance evaluation was also performed through the implementation of a

practical stream computing application. To mitigate the bottleneck-prone communica-

tion between FPGAs, lossless bandwidth-compression hardware [4, 86–88] was utilized

and investigated. Even with the insufficient link bandwidth caused by wide computing

pipelines, reduced stall ratios were obtained, which resulted to improved efficiency.

Chapter 4 explored the feasibility of a scalable and flexible architecture of indirect

networks with Ethernet switches. Since stream computing is one of the target applica-

tions, connection-oriented links with backpressure support was designed and implemented

for standard Ethernet protocol. Through implementation of the necessary network mod-

ules, which included the universal flow controller module introduced in Chapter 2, the

performance characteristics of the connection-oriented switched network was investigated,

and its corresponding performance model was proposed. Performance evaluation was also

done by comparing its performance with that of a point-to-point connection’s. By ob-

taining the communication time and effective network bandwidth, a stream computing

pattern was estimated on a large-scale FPGA cluster, where a tree topology of switches

were considered to increase the network diameter. In this chapter, it was observed and

demonstrated that an indirect network can achieve equivalent throughput to a direct net-

work’s when streaming large data sets, which is typical for stream computing applications.

Even with the additional communication latency introduced by an indirect network, this

becomes negligible when the data stream size becomes sufficiently large for its network

datapath.

Through prototype implementations, obtaining performance characteristics by empir-

ical measurements, performance modeling, design space explorations, and performance

evaluation by estimations and scalability analyses, these different evaluation methods

in this dissertation have demonstrated the suitability and feasibility of both direct and

indirect networks for stream computing FPGA clusters. For high-performance stream

87

computing applications, both direct and indirect networks would be good choices for

inter-FPGA communication due to their equivalent network throughput, where latency

would be deemed insignificant. Generally, since large data sets are being utilized and

processed, streaming these sufficiently large data streams scales the performance linearly

with more FPGAs for both network types. On the other hand, performance of insuffi-

cient data stream sizes on both network types demonstrates communication latency as an

overhead-inducing factor, causing degradation of performance. In this case, the indirect

network’s total transmission time would be higher than a direct network’s, which allows

latency to dominate and to negatively affect the overall performance.

With respect to the general direction and long-term goal of this research, an indirect

network is found to be a sufficient option for general usage in HPC systems, including

stream computing applications, due to its scalability and flexibility features. Moreover, a

smaller subset of FPGAs in a large-scale indirect network could be allocated for a target

application, while its appropriate datapath could also be customized without changing

physical connections. This means that an indirect network for large-scale tightly-coupled

FPGA clusters is a good infrastructure for offload engines in an HPC environment, such as

in supercomputers. As demonstrated in Chapter 4, a switched Ethernet network performs

better with larger data streams, compared to a direct network with SL3 protocol, which

generally demonstrates good communication performance. This discovery is particularly

useful for engineers and hardware designers in selecting an appropriate network protocol

and network type for different requirements.

For future work, other communication patterns should be investigated and evaluated

on the switched network to further evaluate its network flexibility. In addition, the per-

formance model for indirect network needs to be fine-tuned since it only focused on com-

munication time, without considering computation or interaction delays. Design space

exploration should be done with Stratix 10 FPGAs, where their transceiver links support

100 Gbps data rate. This implies improved effective network bandwidth, which suggests

an even better performance for both direct and indirect networks.

Another area of future work for the indirect network exploration is to provide a stan-

88

dard platform for FPGA cluster management, such as mapping of applications and net-

work configurations into the FPGA cluster. As a general direction, the indirect network

provides a scalable and flexible infrastructure for high-level synthesis compilers and vir-

tualization management of a large-scale FPGA cluster.

89

90

Bibliography

[1] K. D. Underwood, K. S. Hemmert, and C. D. Ulmer, “From silicon to science,”

ACM Transactions on Reconfigurable Technology and Systems, vol. 2, no. 4, pp.

1–15, Sep. 2009.

[2] TOP500, “Top500 supercomputers.” [Online]. Available: https://www.top500.org/

lists/top500/

[3] J. Duato, S. Yalamanchili, and L. M. Ni, Interconnection networks : an engineering

approach. Morgan Kaufmann, 2003.

[4] T. Ueno, K. Sano, and S. Yamamoto, “Bandwidth compression of floating-point

numerical data streams for fpga-based high-performance computing,” ACM Trans-

actions on Reconfigurable Technology and Systems, vol. 10, no. 3, pp. 1–22, May

2017.

[5] G. E. Moore, “Cramming more components onto integrated circuits,” Proceedings

of the IEEE, vol. 86, no. 1, pp. 82–85, 1998.

[6] R. H. Dennard, F. H. Gaensslen, H. N. Yu, V. L. Rideout, E. Bassous, and A. R.

Leblanc, “Design of ion-implanted mosfet’s with very small physical dimensions,”

pp. 256–268, 1974.

[7] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger, “Dark

silicon and the end of multicore scaling,” IEEE Micro, vol. 32, no. 3, pp. 122–134,

2012.

91

https://www.top500.org/lists/top500/
https://www.top500.org/lists/top500/

Bibliography

[8] K. Jim and H.-C. Hoppe, “The technology stacks of high performance computing

and big data computing: What they can learn from each other,” 2018. [Online].

Available: www.BDVA.eu

[9] M. C. Herbordt, T. VanCourt, Y. Gu, B. Sukhwani, A. Conti, J. Model, and

D. DiSabello, “Achieving high performance with fpga-based computing,” Computer,

vol. 40, no. 3, pp. 50–57, Mar. 2007.

[10] D. Lewis, G. Chiu, J. Chromczak, D. Galloway, B. Gamsa, V. Manohararajah,

I. Milton, T. Vanderhoek, and J. Van Dyken, “The stratixTM 10 highly pipelined

fpga architecture,” in Proceedings of the 2016 ACM/SIGDA International Sympo-

sium on Field-Programmable Gate Arrays - FPGA ’16. New York, New York,

USA: ACM, 2016, pp. 159–168.

[11] M. Vestias and H. Neto, “Trends of cpu, gpu and fpga for high-performance com-

puting,” in Proceedings of the 2014 24th International Conference on Field Pro-

grammable Logic and Applications (FPL). Munich, Germany: IEEE, Sep. 2014,

pp. 1–6.

[12] M. Langhammer and B. Pasca, “Floating-point dsp block architecture for fp-

gas,” in Proceedings of the 2015 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays - FPGA ’15. New York, New York, USA: ACM, 2015,

pp. 117–125.

[13] M. Parker, “Understanding peak floating-point performance claims,” Intel, Tech.

Rep., 2016.

[14] Altera, “Achieving one teraflops with 28-nm fpgas,” Altera White Paper, Sep. 2010.

[15] A. Davidson, “A new fpga architecture and leading-edge finfet process technology

promise to meet next-generation system requirements,” Intel FPGA White Paper,

2015.

92

www.BDVA.eu

Bibliography

[16] E. Nurvitadhi, S. Subhaschandra, G. Boudoukh, G. Venkatesh, J. Sim, D. Marr,

R. Huang, J. Ong Gee Hock, Y. T. Liew, K. Srivatsan, and D. Moss, “Can fpgas

beat gpus in accelerating next-generation deep neural networks?” in Proceedings

of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays - FPGA ’17. New York, New York, USA: ACM Press, 2017, pp. 5–14.

[17] A. DeHon, J. Adams, M. DeLorimier, N. Kapre, Y. Matsuda, H. Naeimi, M. Vanier,

and M. Wrighton, “Design patterns for reconfigurable computing,” in Proceedings

of the 12th Annual IEEE Symposium on Field-Programmable Custom Computing

Machines (FCCM’04), 2004.

[18] M. C. Herbordt, Y. Gu, T. Vancourt, J. Model, B. Sukhwani, and M. Chiu, “Com-

puting models for fpga-based accelerators.” IEEE Computing in Science and Engi-

neering, vol. 10, no. 6, pp. 35–45, Oct. 2008.

[19] L. Gan, W. Luk, W. Xue, X. Huang, Y. Zhang, G. Yang, H. Fu, X. Huang, G. Yang,

H. Fu, and C. Yang, “Solving the global atmospheric equations through heteroge-

neous reconfigurable platforms,” ACM Transactions on Reconfigurable Technology

and Systems, vol. 8, no. 2, 2015.

[20] O. Lindtjorn, R. G. Clapp, O. Pell, O. Mencer, M. J. Flynn, and H. Fu, “Beyond tra-

ditional microprocessors for geoscience high-performance computing applications,”

IEEE Micro, vol. 31, no. 2, pp. 41–49, Mar. 2011.

[21] M. Chiu and M. C. Herbordt, “Molecular dynamics simulations on high perfor-

mance recon-figurable computing systems,” ACM Transactions on Reconfigurable

Technology and Systems, vol. 3, no. 4, 2010.

[22] A. Mahram and M. C. Herbordt, “Ncbi blastp on high-performance reconfigurable

computing systems,” ACM Trans. Reconfig. Technol. Syst. 7, 4, Article, vol. 7,

no. 4, 2015.

93

Bibliography

[23] A. Ebrahimi and M. Zandsalimy, “Evaluation of fpga hardware as a new approach

for accelerating the numerical solution of cfd problems,” IEEE Access, vol. 5, pp.

9717–9727, 2017.

[24] M. Awad, “Fpga supercomputing platforms: A survey,” FPL 09: 19th International

Conference on Field Programmable Logic and Applications, pp. 564–568, Aug. 2009.

[25] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo, S. Alka-

lay, M. Haselman, L. Adams, M. Ghandi, S. Heil, P. Patel, A. Sapek, G. Weisz,

L. Woods, S. Lanka, S. K. Reinhardt, A. M. Caulfield, E. S. Chung, and D. Burger,

“A configurable cloud-scale dnn processor for real-time ai,” in 2018 ACM/IEEE

45th Annual International Symposium on Computer Architecture (ISCA). IEEE,

Jun. 2018, pp. 1–14.

[26] Q. Xiong, A. Skjellum, and M. C. Herbordt, “Accelerating mpi message matching

through fpga offload,” in 2018 28th International Conference on Field Programmable

Logic and Applications (FPL). IEEE, Aug. 2018, pp. 191–1914.

[27] C. Plessl, “Keynote 2 - fpga-accelerated high-performance computing – close to

breakthrough or pipedream?” in 2017 International Conference on ReConFigurable

Computing and FPGAs (ReConFig). IEEE, 2017.

[28] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing fpga-based

accelerator design for deep convolutional neural networks,” in Proceedings of the

2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays

- FPGA ’15. New York, New York, USA: ACM Press, 2015, pp. 161–170.

[29] R. DiCecco, G. Lacey, J. Vasiljevic, P. Chow, G. Taylor, and S. Areibi, “Caffeinated

fpgas: Fpga framework for convolutional neural networks,” in 2016 International

Conference on Field-Programmable Technology (FPT). Xi’an, China: IEEE, 2016.

[30] E. Wang, J. J. Davis, R. Zhao, H.-C. H.-c. Ng, X. Niu, W. Luk, P. Y. K. Cheung,

G. A. Constantinides, P. Y. K Cheung, G. A. Constantinides, H.-C. H.-c. Ng, X. Niu,

94

Bibliography

E. Wang, J. J. Davis, P. Y. K Cheung, G. A. Constantinides, R. Zhao, H.-C. H.-c.

Ng, and W. Luk, “Deep neural network approximation for custom hardware: Where

we’ve been, where we’re going,” ACM Comput. Surv. 1, 1, Article, vol. 1, no. 1,

Jan. 2019.

[31] S. Neuendorffer and K. Vissers, “Streaming systems in fpgas,” in Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), vol. 5114 LNCS, 2008, pp. 147–156.

[32] R. Sierra, F. Mangani, C. Carreras, and G. Caffarena, “High-performance decoding

of variable-length memory data packets for fpga stream processing,” in 29th Inter-

national Conference on Field Programmable Logic and Applications (FPL), 2019,

2019, pp. 307–313.

[33] M. Koraei, O. Fatemi, and M. Jahre, “Dcmi: A scalable strategy for accelerat-

ing iterative stencil loops on fpgas,” ACM Transactions on Architecture and Code

Optimization, vol. 16, no. 4, Oct. 2019.

[34] R. Stephens, “A survey of stream processing,” Acta Informatica, vol. 34, no. 7, pp.

491–541, 1997.

[35] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Hanra-

han, “Brook for gpus: Stream computing on graphics hardware,” in SIGGRAPH04:

Special Interest Group on Computer Graphics and Interactive Techniques, 2004.

[36] F. Plavec, “Stream computing on fpgas,” Ph.D. dissertation, University of Toronto,

2010.

[37] M. Lin, S. Cheng, and J. Wawrzynek, “Cascading deep pipelines to achieve high

throughput in numerical reduction operations,” in 2010 International Conference

on Reconfigurable Computing Cascading. Quintana Roo, Mexico: IEEE, 2010.

[38] K. Dohi, K. Okina, R. Soejima, Y. Shibata, and K. Oguri, “Performance modeling

of stencil computing on a stream-based fpga accelerator for efficient design space ex-

95

Bibliography

ploration,” PAPER Special Section on Reconfigurable Systems, IEICE Transactions,

vol. E98-D, no. 2, 2015.

[39] K. Sano, S. Abiko, and T. Ueno, “Fpga-based stream computing for high-

performance n-body simulation using floating-point dsp blocks,” Proceedings of the

8th International Symposium on Highly Efficient Accelerators and Reconfigurable

Technologies - HEART2017, no. June, pp. 1–6, 2017.

[40] K. Nagasu, K. Sano, F. Kono, and N. Nakasato, “Fpga-based tsunami simulation:

Performance comparison with gpus, and roofline model for scalability analysis,”

Journal of Parallel and Distributed Computing, vol. 106, no. August, pp. 153–169,

2016.

[41] K. Sano and S. Yamamoto, “Fpga-based scalable and power-efficient fluid simulation

using floating-point dsp blocks,” IEEE Transactions on Parallel and Distributed

Systems, vol. PP, no. 99, 2017.

[42] H. R. Zohouri, A. Podobas, and S. Matsuoka, “Combined spatial and temporal

blocking for high-performance stencil computation on fpgas using opencl,” in Pro-

ceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable

Gate Arrays - FPGA ’18. New York, New York, USA: ACM Press, 2018, pp. 153–

162.

[43] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides, J. Demme,

H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Haselman, S. Hauck, S. Heil,

A. Hormati, J.-Y. Kim, S. Lanka, J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong,

P. Y. Xiao, D. Burger, A. M. Caulfield, A. Smith, J. Thong, P. Y. Xiao, D. Burger,

E. S. Chung, D. Chiou, K. Constantinides, J. Demme, H. Esmaeilzadeh, J. Fowers,

G. P. Gopal, J. F. Gopi, P. Gopal, J. Gray, M. Haselman, S. Hauck, S. Heil, A. Hor-

mati, J.-Y. Kim, S. Lanka, J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong,

P. Yi, X. Doug, and B. Microsoft, “A reconfigurable fabric for accelerating large-

scale datacenter services,” in ISCA ’14 Proceeding of the 41st annual international

96

Bibliography

symposium on Computer architecuture. Minneapolis, MN, USA: IEEE, 2014, pp.

13–24.

[44] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers, M. Haselman,

S. Heil, M. Humphrey, P. Kaur, J.-Y. Kim, D. Lo, T. Massengill, K. Ovtcharov,

M. Papamichael, L. Woods, S. Lanka, D. Chiou, and D. Burger, “A cloud-scale ac-

celeration architecture,” in MICRO-49 The 49th Annual IEEE/ACM International

Symposium on Microarchitecture, 2016.

[45] AWS, “Amazon ec2 f1 instances.” [Online]. Available: https://aws.amazon.com/

ec2/instance-types/f1/

[46] F. Chen, Y. Shan, Y. Zhang, Y. Wang, H. Franke, X. Chang, and K. Wang, “En-

abling fpgas in the cloud,” in CF ’14: Proceedings of the 11th ACM Conference on

Computing Frontiers. Association for Computing Machinery, 2014.

[47] S. Byma, J. G. Steffan, H. Bannazadeh, A. Leon-Garcia, and P. Chow, “Fpgas in the

cloud: Booting virtualized hardware accelerators with openstack,” in Proceedings

- 2014 IEEE 22nd International Symposium on Field-Programmable Custom Com-

puting Machines, FCCM 2014. Institute of Electrical and Electronics Engineers

Inc., Jul. 2014, pp. 109–116.

[48] S. A. Fahmy, K. Vipin, and S. Shreejith, “Virtualized fpga accelerators for efficient

cloud computing,” in Proceedings - IEEE 7th International Conference on Cloud

Computing Technology and Science, CloudCom 2015. Institute of Electrical and

Electronics Engineers Inc., 2015, pp. 430–435.

[49] J. Weerasinghe, F. Abel, C. Hagleitner, and A. Herkersdorf, “Enabling fpgas in

hyperscale data centers,” in Proceedings of the 2015 IEEE 12th Intl Conf on Ubiq-

uitous Intelligence and Computing and 2015 IEEE 12th Intl Conf on Autonomic

and Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and

Communications and Its Associated Workshops (UIC-AT. IEEE, Aug. 2015, pp.

1078–1086.

97

https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/

Bibliography

[50] C. Liang, C. Wu, X. Zhou, W. Cao, S. Wang, and L. Wang, “An fpga-cluster-

accelerated match engine for content-based image retrieval,” in FPT 2013 - Pro-

ceedings of the 2013 International Conference on Field Programmable Technology,

2013, pp. 422–425.

[51] J. Sheng, C. Yang, A. Sanaullah, M. Papamichael, A. Caulfield, and M. C. Herbordt,

“Hpc on fpga clouds: 3d ffts and implications for molecular dynamics,” in 2017 27th

International Conference on Field Programmable Logic and Applications, FPL 2017,

2017, pp. 5–8.

[52] J. Sheng, C. Yang, and M. C. Herbordt, “High performance communication

on reconfigurable clusters,” in 2018 28th International Conference on Field Pro-

grammable Logic and Applications (FPL), Dublin, Ireland, 2018.

[53] N. Tarafdar, T. Lin, E. Fukuda, H. Bannazadeh, A. Leon-Garcia, and P. Chow,

“Enabling flexible network fpga clusters in a heterogeneous cloud data center,”

New York, New York, USA, pp. 237–246, 2017.

[54] A. T. Markettos, P. J. Fox, S. W. Moore, A. W. Moore, A. Theodore Markettos, P. J.

Fox, S. W. Moore, and A. W. Moore, “Interconnect for commodity fpga clusters:

Standardized or customized?” Conference Digest - 24th International Conference

on Field Programmable Logic and Applications, FPL 2014, pp. 1–8, Sep. 2014.

[55] R. S. Correa, D. De, and G. Électrique, “Implementation of ultra-low latency and

high-speed communication channels for an fpga-based hpc cluster,” Ph.D. disserta-

tion, Université de Montréal, 2017.

[56] L. M. Ni, “Issues in designing truly scalable interconnection networks,” in Proceed-

ings of the International Conference on Parallel Processing Workshops. Institute

of Electrical and Electronics Engineers Inc., 1996, pp. 74–83.

98

Bibliography

[57] O. Mencer, K. H. Tsoi, S. Craimer, T. Todman, W. Luk, M. Y. Wong, and P. H. W.

Leong, “Cube: A 512-fpga cluster,” in Proceedings of the 2009 5th Southern Con-

ference on Programmable Logic (SPL). IEEE, Apr. 2009, pp. 51–57.

[58] C. Chang, J. Wawrzynek, and R. W. Brodersen, “Bee2: A high-end reconfigurable

computing system,” IEEE Design and Test of Computers, vol. 22, no. 2, pp. 114–

125, Apr. 2005.

[59] M. Porrmann, J. Hagemeyer, J. Romoth, M. Strugholtz, and C. Pohl, “Raptor-a

scalable platform for rapid prototyping and fpga-based cluster computing,” Ad-

vances in Parallel Computing, vol. 19, pp. 592–599, 2010.

[60] S. W. Moore, P. J. Fox, S. J. Marsh, A. T. Markettos, and A. Mujumdar, “Blue-

hive - a field-programable custom computing machine for extreme-scale real-time

neural network simulation,” in 2012 IEEE 20th International Symposium on Field-

Programmable Custom Computing Machines. IEEE, Apr. 2012, pp. 133–140.

[61] R. Baxter, S. Booth, M. Bull, G. Cawood, J. Perry, M. Parsons, A. Simpson,

A. Trew, A. McCormick, G. Smart, R. Smart, A. Cantle, R. Chamberlain, and

G. Genest, “Maxwell - a 64 fpga supercomputer,” in Second NASA/ESA Con-

ference on Adaptive Hardware and Systems (AHS 2007). IEEE, Aug. 2007, pp.

287–294.

[62] T. Bunker and S. Swanson, “Latency-optimized networks for clustering fpgas,” pp.

129–136, Apr. 2013.

[63] M. Nüssle, B. Geib, H. Fröning, and U. Brüning, “An fpga-based custom high perfor-

mance interconnection network,” in ReConFig’09 - 2009 International Conference

on ReConFigurable Computing and FPGAs, 2009, pp. 113–118.

[64] H. Fröning, M. Nüssle, H. Litz, and U. Brüning, “A case for fpga based accelerated

communication,” in 9th International Conference on Networks, ICN 2010, 2010, pp.

28–33.

99

Bibliography

[65] R. Ammendola, A. Biagioni, O. Frezza, F. Lo Cicero, A. Lonardo, P. Paolucci,

D. Rossetti, A. Salamon, F. Simula, L. Tosoratto, and P. Vicini, “A 34 gbps data

transmission system with fpgas embedded transceivers and qsfp+ modules,” in

IEEE Nuclear Science Symposium Conference Record, 2012, pp. 872–876.

[66] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore, “Netfpga sume:

Toward 100 gbps as research commodity,” IEEE Micro, vol. 34, no. 5, pp. 32–41,

Sep. 2014.

[67] I. Kuon, R. Tessier, and J. Rose, “Fpga architecture: Survey and challenges,” Elec-

tronic Design Automation, vol. 2, no. 2, pp. 135–253, 2008.

[68] A. Azarian and J. M. P. Cardoso, “Coarse/fine-grained approaches for pipelining

computing stages in fpga-based multicore architectures,” in Proceedings of the Euro-

pean Conference on Parallel Processing: Euro-Par 2014: Parallel Processing Work-

shops. Springer, 2014, pp. 266–278.

[69] H. Ziegler, Byoungro So, M. Hall, and P. Diniz, “Coarse-grain pipelining on multiple

fpga architectures,” in Proceedings of the 10th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines. Napa, CA, USA, USA: IEEE, 2002,

pp. 77–86.

[70] S. Murtaza, A. G. Hoekstra, and P. M. A. Sloot, “Cellular automata simulations

on a fpga cluster,” The International Journal of High Performance Computing Ap-

plications, vol. 25, no. 2, pp. 193–204, May 2011.

[71] P. A. Skordos, “Initial and boundary conditions for the lattice boltzmann method,”

Physical Review E, vol. 48, no. 6, pp. 4823–4842, Dec. 1993.

[72] Y. Kono, K. Sano, and S. Yamamoto, “Scalability analysis of tightly-coupled fpga-

cluster for lattice boltzman computation,” in Proceedings of the 22nd International

Conference on Field Programmable Logic and Applications (FPL 2012). IEEE,

Aug. 2012, pp. 120–127.

100

Bibliography

[73] K. Sano, Y. Kono, H. Suzuki, R. Chiba, R. Ito, T. Ueno, K. Koizumi, and S. Ya-

mamoto, “Efficient custom computing of fully-streamed lattice boltzmann method

on tightly-coupled fpga cluster,” ACM SIGARCH Computer Architecture News,

vol. 41, no. 5, pp. 47–52, Dec. 2013.

[74] S.-W. Jun, M. Liu, S. Xu, and Arvind, “A transport-layer network for distributed

fpga platforms,” in 2015 25th International Conference on Field Programmable

Logic and Applications (FPL). London, UK: IEEE, Sep. 2015, pp. 1–4.

[75] H. Kung and R. Morris, “Credit-based flow control for atm networks,” IEEE Net-

work, vol. 9, no. 2, pp. 40–48, 1995.

[76] R. Sass, W. V. Kritikos, A. G. Schmidt, S. Beeravolu, P. Beeraka, K. Datta, D. An-

drews, R. S. Miller, and D. Stanzione, “Reconfigurable computing cluster (rcc)

project: Investigating the feasibility of fpga-based petascale computing,” in Pro-

ceedings 2007 IEEE Symposium on Field-Programme Custom Computing Machines,

FCCM 2007. IEEE Computer Society, 2007, pp. 127–138.

[77] M. Nüssle, H. Fröning, S. Kapferer, and U. Brüning, “Accelerate communication,

not computation!” in High-Performance Computing Using FPGAs. New York,

NY: Springer New York, 2013, pp. 507–542.

[78] H. Kung and Koling Chang, “Receiver-oriented adaptive buffer allocation in credit-

based flow control for atm networks,” in Proceedings of INFOCOM’95. IEEE

Comput. Soc. Press, 1995, pp. 239–252.

[79] R. Jain, “Congestion control and traffic management in atm networks: Recent

advances and a survey,” Computer Networks and ISDN Systems, vol. 28, no. 13, pp.

1723–1738, Oct. 1996.

[80] S. Kamolphiwong, A. Karbowiak, and H. Mehrpour, “Flow control in atm networks:

a survey,” Elsevier Computer Communications, vol. 21, pp. 951–968, 1998.

101

Bibliography

[81] BERTEN DSP, “Gpu vs fpga performance comparison,” Proceedings of the 2017

ACM/SIGDA International Symposium on Field-Programmable Gate Arrays -

FPGA ’17, pp. 2–5, May 2016.

[82] “Terasic inc. web.” [Online]. Available: http://www.terasic.com.tw/en/

[83] K. Sano, Y. Hatsuda, and S. Yamamoto, “Scalable streaming-array of simple

soft-processors for stencil computations with constant memory-bandwidth,” in

Proceedings on the 2011 IEEE 19th Annual International Symposium on Field-

Programmable Custom Computing Machines. IEEE, May 2011, pp. 234–241.

[84] H. M. Waidyasooriya, M. Hariyama, H. Muthumala, W. And, M. Hariyama, H. M.

Waidyasooriya, and M. Hariyama, “Multi-fpga accelerator architecture for stencil

computation exploiting spacial and temporal scalability,” IEEE Access, vol. 7, pp.

53 188–53 201, 2019.

[85] K. Sano, Y. Hatsuda, and S. Yamamoto, “Multi-fpga accelerator for scalable stencil

computation with constant memory bandwidth,” IEEE Transactions on Parallel

and Distributed Systems, vol. 25, no. 3, pp. 695–705, Feb. 2014.

[86] T. Ueno, Y. Kono, K. Sano, and S. Yamamoto, “Parameterized design and evalua-

tion of bandwidth compressor for floating-point data streams in fpga-based custom

computing,” in Reconfigurable Computing: Architectures, Tools and Applications.

ARC 2013. Lecture Notes in Computer Science, P. Brisk, J. de Figueiredo Coutinho,

and P. Diniz, Eds., vol. 7806 LNCS. Los Angeles, CA, USA: Springer-Verlag Berlin

Heidelberg, 2013, pp. 90–102.

[87] K. Sano, K. Katahira, and S. Yamamoto, “Segment-parallel predictor for fpga-based

hardware compressor and decompressor of floating-point data streams to enhance

memory i/o bandwidth,” Data Compression Conference Proceedings, pp. 416–425,

2010.

102

http://www.terasic.com.tw/en/

Bibliography

[88] T. Ueno, Y. Kono, K. Sano, and S. Yamamoto, “Fpga-based implementation of

compact compressor and decompressor of floating-point data-stream for bandwidth

reduction,” in Proceedings of the International Conference on Engineering of Re-

configurable Systems and Algorithms (ERSA ’12), 2012, pp. 119–126.

[89] P. Lindstrom and M. Isenburg, “Fast and efficient compression of floating-point

data,” IEEE Transactions on Visualization and Computer Graphics, vol. 12, no. 5,

pp. 1245–1250, Nov. 2006.

[90] Intel, “Seriallite iii ip solution.” [Online]. Available: https://www.altera.com/

solutions/technology/transceiver/protocols/pro-seriallite-3.html

[91] K. Sano, “Dsl-based design space exploration for temporal and spatial parallelism

of custom stream computing,” in Proceedings of the Second International Workshop

on FPGAs for Software Programmers (FSP 2015), Aug. 2015, pp. 29–34.

[92] “Flopoco project web.” [Online]. Available: http://flopoco.gforge.inria.fr/

[93] Ethernet Alliance, “2019 roadmap - ethernet alliance,” 2019. [Online]. Available:

https://ethernetalliance.org/technology/2019-roadmap/

[94] M. Alizadeh and T. Edsall, “On the data path performance of leaf-spine datacen-

ter fabrics,” in Proceedings - IEEE 21st Annual Symposium on High-Performance

Interconnects, HOTI 2013. IEEE Computer Society, 2013, pp. 71–74.

[95] S. Walklin, “Leaf-spine architecture for otn switching,” in 2017 International Con-

ference on Computing, Networking and Communications, ICNC 2017. Institute of

Electrical and Electronics Engineers Inc., Mar. 2017, pp. 95–99.

[96] Cisco Systems, “Cisco data center spine-and-leaf architecture: Design overview

(white paper),” Cisco Systems, Inc., Tech. Rep., 2016.

[97] IEEE, “Ieee 802.3ba-2010 standard for information technology.” [Online]. Available:

https://standards.ieee.org/standard/802{ }3ba-2010.html

103

https://www.altera.com/solutions/technology/transceiver/protocols/pro-seriallite-3.html
https://www.altera.com/solutions/technology/transceiver/protocols/pro-seriallite-3.html
http://flopoco.gforge.inria.fr/
https://ethernetalliance.org/technology/2019-roadmap/
https://standards.ieee.org/standard/802{_}3ba-2010.html

Bibliography

[98] Intel, “Low latency 40-gbps ethernet ip core user guide.” [Online].

Available: https://www.intel.com/content/www/us/en/programmable/products/

intellectual-property/ip/interface-protocols/m-alt-40gb-ethernet.html

[99] Intel Altera, “Avalon interface specifications.” [Online]. Avail-

able: https://www.intel.com/content/www/us/en/programmable/documentation/

nik1412467993397.html

[100] Mellanox Technologies Ltd., “Sn2100 open ethernet switch,” 2019. [Online].

Available: https://www.mellanox.com/ethernet/switches.php

104

https://www.intel.com/content/www/us/en/programmable/products/intellectual-property/ip/interface-protocols/m-alt-40gb-ethernet.html
https://www.intel.com/content/www/us/en/programmable/products/intellectual-property/ip/interface-protocols/m-alt-40gb-ethernet.html
https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html
https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html
https://www.mellanox.com/ethernet/switches.php

Acknowledgments

Acknowledgments

In the course of this research, the help and cooperation of numerous individuals have

proven to be invaluable. I am sincerely and heartily grateful to my advisors, Profes-

sor Kentaro Sano and Professor Hiroyuki Takizawa, for the support and guidance they

have showed me throughout the entire process of this undertaking. I am sure this would

have not been possible without their help. To Professor Masanori Hariyama and Asso-

ciate Professor Ryusuke Egawa for taking the time to review my work, their comments

and suggestions are very well appreciated. I am also grateful to Ministry of Education,

Culture, Sports, Science, and Technology of Japan (MEXT), for the opportunity and fi-

nancial support. To the staff members, team members, students, and former students of

Takizawa-Egawa Laboratory in Tohoku University and Processor Research Team (Sano

Team) in RIKEN R-CCS, I thank them for being supportive co-researchers and friends.

To my precious family, my good friends, and my loving husband in the Philippines, with-

out their support that they sent me through well wishes, thoughts, and prayers, I would

not have seen through this. Lastly, to God Almighty I am grateful for the gift of life and

the countless blessings.

Antoniette Pangilinan MONDIGO

January 2020

105

	Abstract
	Introduction
	Background and Motivation
	Related Works
	Objectives
	Organization and Contributions

	Interconnection Network Requirements for Stream Computing in FPGA Clusters
	Introduction
	Custom Network Protocol with Backpressure
	Credit-based Flow Control Mechanism
	Flow Control Design Parameters and Performance Trade-offs

	Results and Discussion
	Simulation of Inter-FPGA Backpressure Mechanism
	Case Studies for Full and Half-Duplex Inter-FPGA Communication with High and Low Data Transmission Rates
	Implementation and Evaluation

	Conclusions

	Direct Networks with High-Speed Transceiver Links
	Introduction
	Design and Architecture
	Stream Computing and Available Parallelism
	Direct Networks for FPGA Clusters
	Lossless Bandwidth Compression for Inter-FPGA Communication
	Performance Model

	Results and Discussion
	Implementation
	Verification and Evaluation
	Mitigating Inter-FPGA Communication Bottleneck

	Conclusions

	Indirect Networks with High-Speed Ethernet Switches
	Introduction
	Design and Architecture
	Indirect Networks for FPGA Clusters
	Ethernet-based Connection-oriented Links and Protocol
	Ethernet L1 and L2 IP core:
	Frame Encoder and Decoder:
	Flow Controller (FC):

	Performance Model

	Results and Discussion
	Implementation
	Communication Time and Effective Network Bandwidth
	Performance Estimation of Stream Computing

	Conclusions

	Conclusions
	Bibliography
	Acknowledgments

