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Abstract

Combinatorial reconfiguration is one of the well-studied topics in the field of theoret-

ical computer science, which was introduced by Ito et al. in 2008. This topic deals

with a “dynamic transformation” of feasible solutions; more specifically, in a (combi-

natorial) reconfiguration problem, we wish to find a step-by-step transformation be-

tween feasible solutions such that all intermediate ones in the transformation are also

feasible solutions. In this thesis, we mainly studied reconfiguration problems from

the following two viewpoints. The first one is to develop polynomial-time algorithms

for reconfiguration problems whose feasible solutions are connected subgraphs. From

the previous studies, it is known to be hard to construct an efficient algorithm solv-

ing a reconfiguration problem if its feasible solutions are connected subgraphs. We

focused on several graph properties which require the connectivity, and analyzed

the computational complexity of reconfiguration problems of subgraphs satisfying

the property. Throughout this analysis, we developed many polynomial-time algo-

rithms solving the reconfiguration problems with connected subgraphs. The second

one is to introduce a new variant of reconfiguration problems, called “optimization

variant,” in which we do not need to specify a target solution and are asked for a

desirable solution that is reachable from an initial solution. As the first example

of this variant, we applied this variant to the reconfiguration problem of indepen-

dent sets which is one of the most well-studied reconfiguration problems. We then

analyzed its polynomial-time solvability and parameterized complexity.
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Chapter 1 Introduction

1.1 Combinatorial reconfiguration

Combinatorial reconfiguration [18] is one of the well-studied topics in the field

of theoretical computer science. (See surveys [17, 29].) This topic deals with a

“dynamic transformation” of feasible states; more specifically, we wish to find a step-

by-step transformation between feasible states such that all intermediate ones in the

transformation are also feasible states. Combinatorial reconfiguration has several

applications such as dynamic puzzle games (e.g. 15 puzzle [20]) and a transition of

system states which deliver continuous service.

As an example in the later application, consider a power supply system [18] in

which power stations with fixed capacity provide power to customers with fixed

demand. (See Figure 1.1.) In this system, each customer has several power stations

as candidates of supply source, and is indeed provided power from exactly one of the

candidates. Then it is necessary that for each power station, the sum of demands of

customers to which the station provides power is at most the capacity of the station;

such a supply is called a “feasible supply.” As an example, Figure 1.1 illustrates four

feasible supplies (a), (b), (c) and (d). We now consider a dynamic transformation

of states of the power supply system; we wish to transform a current feasible supply

into another feasible supply. To minimize interruption, this transformation needs to

be done by repeatedly switching the source power station of a single customer at a

time, while keeping feasibility during the transformation. For example, Figure 1.1

illustrates a transformation between the feasible supplies (a) and (d).
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100 80 80

50 20 60 30

100 80 80

50 20 60 30

100 80 80

50 20 60 30

100 80 80

50 20 60 30

(a) (b) (c) (d)

Figure 1.1: An example of a transformation from feasible supplies (a) to (d), where

square vertices correspond to power stations, circle vertices to customers, lines to

candidates for each customer, and black solid lines to feasible supply.

In general, a transformation of system states consists of the following framework:

We need to transform a feasible state into another feasible state by repeatedly apply-

ing a prescribed change operation at a time. In 2008, Ito et al. [18] formulated such

a dynamic situation as combinatorial reconfiguration. Generally, a (combinatorial)

reconfiguration problem studies the reachability/connectivity of feasible solutions in

a “solution space.” A solution space is defined as a graph such that the vertex set

corresponds to a set of all feasible states, and there is an edge between two feasible

states that are “adjacent,” according to a prescribed adjacency relation. Feasible

states in a solution space are often defined as feasible solutions of an instance of a tra-

ditional search problem, and hence feasible states are often called feasible solutions.

Then, a reachability variant of a reconfiguration problem asks to determine whether

or not there is a path in a solution space from a specified solution (called an initial

solution) to another specified solution (called a target solution). We call such a path

a reconfiguration sequence between the initial and target solutions, and if it exists,

we say that the initial and target solutions are reachable. There is another variant of

reconfiguration problems, called a connectivity variant. This variant asks to deter-

mine whether a reconfiguration graph is connected or not, that is, any two feasible

solutions are reachable or not. Since the 2000s, several reconfiguration problems

are introduced based on traditional search problems and studied its computational

complexity; for example, vertex coloring [6, 9, 35], vertex cover [18, 25], in-

dependent set [18, 22], matching [18], shortest path [4, 5, 21], clique [19],
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induced tree [34], and Hamiltonian cycle [33].

In this thesis, we mainly studied reconfiguration problems from the following

two viewpoints. The first one is to develop efficient (polynomial-time) algorithms

solving reconfiguration problems whose feasible solutions are connected subgraphs.

The second one is to introduce a new variant of reconfiguration problems called

“optimization variant,” in which we do not need to specify a target solution and are

asked for a desirable solution that is reachable from an initial solution.

1.2 Reconfiguration of (connected) subgraphs

In previous studies, many reconfiguration problems take subgraphs as its feasible

solutions, and many efficient algorithms were developed for these problems. How-

ever, there are few algorithms for reconfiguration problems whose feasible solutions

are “connected” subgraphs. We thus see that it is hard to develop an algorithm for

reconfiguration problem with connected subgraphs.

In the field of search problems, it is also known that developing an algorithm for

problem with connected subgraphs are quite hard. For example, in 1983, Baker [2]

gave a general approach for deriving a polynomial-time approximation schemes on

planar graphs. His method can be applied for many search problems, however, it

sometimes doesn’t work for problems with connectivity. Then, in 2007 (after more

than twenty years), Borradaile et al. [7] provided a new technique which deriver

a polynomial-time approximation schemes on planar graphs for a problem with

connectivity. Similar breakthrough was also occurred in the area of parameterized

complexity. It had been believed until very recently that there is no algorithm in

time faster than O∗(twtw) with respect to the treewidth tw of an input graph for

problems with connectivity However, in 2011, Cygan et al. [11] gave an algorithm

method which solves a problem with connectivity in time O∗(ctw) for some constant

c. Such a breakthrough is also desired in the area of combinatorial reconfiguration.
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1.2.1 Our problems

In Chapter 3 and 4, we aim to develop efficient (polynomial-time) algorithms for

reconfiguration problems that take connected subgraphs as its feasible solutions. We

use the term subgraph reconfiguration to describe a family of reconfiguration

problems with (not necessary connected) subgraphs. Each of the individual problems

in the family can be defined by specifying a solution space, that is, specifying the

vertex set (feasible solutions) and the edge set (adjacency relation) of the solution

space. In particular, feasible solutions are defined in terms of a graph structure

property Π which subgraphs must satisfy; for example, “a graph is a tree,” “a graph

is edgeless (an independent set),” and so on. In this thesis, we study the following

two problems that belong to subgraph reconfiguration.

Reconfiguration of fundamental graphs.

In the first problem, we focus on six fundamental graph properties as a property

Π; path, cycle, tree, clique, bi-clique, and diameter-two. For each property Π, we

consider a reconfiguration problem whose solution space is defined as follows.

Feasible solutions (i.e., vertices in the solution space) are defined as subgraphs

satisfying Π. By the choice of how to represent the subgraphs, we introduce three

versions; in each version, subgraphs are represented by vertex subsets or edge sub-

sets, as follows.

- Edge version: An edge subset induces a subgraph that satisfies Π.

- Induced version: A vertex subset induces a subgraph that satisfies Π.

- Spanning version: A vertex subset induces a subgraph that contains at least

one spanning subgraph satisfying Π.

As an example, Figure 1.2 illustrates several feasible solutions in each version with

the property “a graph is a path.” In this figure, V ′
1 is feasible in the spanning
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version, while is not feasible in the induced version, because it does not induce a

path. As can be seen by this simple example, in the spanning variant, we need

to pay attention to the additional complexity of finding a spanning subgraph and

the complications resulting from the fact that the subgraph induced by the vertex

subset may contain more than one spanning subgraph which satisfies Π.

We then define an adjacency relation (i.e., edges in the solution space). Since we

represent a feasible solution by a set of vertices (or edges) in any version, we can

consider that tokens are placed on each vertex (resp., edge) in the feasible solution.

Then, we mainly deal with the following two well-known adjacency relation [19, 22]:

- Token-jumping (TJ, for short): We say that two solutions are adjacent under

TJ if one can be obtained from the other one by moving a single token to any

other vertex (edge) in a given graph.

- Token-sliding (TS, for short): We say that two solutions are adjacent under

TS if one can be obtained from the other one by moving a single token to an

adjacent vertex (adjacent edge, that is sharing a common vertex).

As an example, Figure 1.2 shows reconfiguration sequences in each version under TJ.

(We note that in Chapter 5, we consider another well-studied adjacency relation,

called token-addition-and-removal (TAR, for short) [18, 19, 22], where we can add

or remove a single token at a time.)

In Chapter 3, we study the reachability variant of reconfiguration problems whose

solution spaces are defined above, that is, we are given two feasible solutions and

asked to determine whether or not there is a path between them in the solution

space.
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Figure 1.2: Reconfiguration sequences in the three versions under TJ with the prop-

erty “a graph is a path,” where the subgraphs satisfying the property by thick lines

and in (b) and (c), vertices forming solutions are depicted by gray circles.

Reconfiguration of Steiner trees.

In the second problem, we focus on the concept of “Steiner tree” as a property

Π; note that in the two breakthrough papers for search problems mentioned at the

beginning of this section, the search problem of Steiner trees is considered as a

typical problem with connectivity. For an unweighted graph G and a vertex subset

S ⊆ V (G), a Steiner tree of G for S is a subtree of G which includes all vertices

in S; each vertex in S is called a terminal. For example, Figure 1.3 illustrates four

Steiner trees. Then the second problem takes Steiner trees as a property Π. More

specifically, we consider reconfiguration problems whose solution spaces are defined,

as follows.

Feasible solutions (i.e., vertices in the solution space) are defined as all Steiner

trees of a given graph. Note that unlike the previous problem, a feasible solution is

a graph itself, not a vertex subset or an edge subset.

We then introduce adjacency relations. In this problem, we consider the following
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four adjacency relations:

- Vertex exchange (VE, for short): We say that two Steiner trees T and T ′ of G

for S are adjacent under VE if there exist two vertices v ∈ V (T ) and v′ ∈ V (T ′)

such that their removal results in the common vertex subset; it is equivalent to

the condition |V (T ) \ V (T ′)| = |V (T ′) \ V (T )| ≤ 1.

- Local vertex exchange (LVE, for short): We say that two Steiner trees T and

T ′ of G for S are adjacent under LVE if there exist two vertices v ∈ V (T ) and

v′ ∈ V (T ′) such that their removal results in the common subgraph of T and T ′.

- Local vertex exchange without changing neighbors (LVE-N for short):

We say that two Steiner trees T and T ′ of G for S are adjacent under LVE-N if

there exist two vertices v ∈ V (T ) and v′ ∈ V (T ′) such that (a) their removal

results in the common subgraph of T and T ′, and (b) the neighborhood of v in

T is equal to that of v′ in T ′.

- Edge exchange (EE, for short): We say that two Steiner trees T and T ′ of G

for S are adjacent under EE if there exist two edges e ∈ E(T ) and e′ ∈ E(T ′)

such that their removal results in the common edge subset (and hence, common

subgraph of T and T ′); it is equivalent to the condition |E(T )\E(T ′)| = |E(T ′)\

E(T )| ≤ 1.

As an example, in Figure 1.3, any two consecutive Steiner trees are adjacent under

VE. However, considering LVE, T1 and T2 are not adjacent because removing v2

from T1 and v′2 from T3 result in the different subgraphs. Under LVE-N, only two

Steiner trees T0 and T1 are adjacent, because v1 in T0 has the same neighborhood

with v′1 in T1. Under EE, only two Steiner trees T2 and T3 are adjacent, because the

subgraph of T2 obtained by removing e3 is equal to the subgraph of T3 obtained by

removing e′3. It should be note that v and v′ can be the same vertex in VE, LVE, and

LVE-N, and e and e′ can be the same edge in EE. (See T2 and T3 under VE or LVE in

Figure 1.3.) However, under LVE-N and EE, such an exchange must leads T = T ′.
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Figure 1.3: A sequence of Steiner trees, where the terminals are depicted by gray

squares, non-terminals by white circles, the edges in Steiner trees by thick lines.

In Chapter 4, we study the reachability variant of reconfiguration problems whose

feasible solutions are Steiner trees, that is we are given two Steiner trees, and asked

to determine whether or not there is a path between them in the solution space

defined above.

1.2.2 Known and related results

Although there has been previous work that can be categorized as subgraph re-

configuration, most of the related results appear under the name of the property

Π under consideration. Accordingly, we can view reconfiguration of independent

sets [18, 22] as the induced version of subgraph reconfiguration such that the

property Π is “a graph is edgeless.” Other examples can be found in Table 1.1. We

here explain only known results which are directly related to our contributions.

Reconfiguration of cliques can be seen as both the spanning and the induced ver-

sion; the problem is PSPACE-complete under any adjacency relation, even when

restricted to perfect graphs [19]. Indeed, for this problem, the rules TAR, TJ, and

TS have all been shown to be equivalent from the viewpoint of polynomial-time solv-

ability. It is also known that reconfiguration of cliques can be solved in polynomial

time for several well-known graph classes [19].

Wasa et al. [34] considered the induced version under the TJ and TS rules with the

property Π being “a graph is a tree.” They showed that this version under each of

the TJ and TS rules is PSPACE-complete, and is also W[1]-hard when parameterized
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Table 1.1: Subgraph representations and versions

Representations Versions Known reconfiguration problems

edge subset edge spanning tree [18]

matching [18, 27], and b-matching [27]

clique [19]

independent set [18, 22]

vertex subset induced induced forest [26]

induced bipartite [26]

induced tree [34]

shortest path [4, 5, 21]

spanning clique [19]

shortest path [4, 5, 21]

by both the size of a solution and the length of a reconfiguration sequence. They also

gave a fixed-parameter algorithm when parameterized by both the size of a solution

and the maximum degree of an input graph, under both the TJ and TS rules. In

closely related work, Mouawad et al. [26] considered the induced versions under the

TAR rule with the properties Π being either “a graph is a forest” or “a graph is

bipartite.” They showed that these versions are W[1]-hard when parameterized by

the size of a solution plus the length of a reconfiguration sequence.

Bonsma [4, 5] studied the induced and spanning versions under the TJ rule with

the property Π being “a graph is a shortest st-path;” note that these two versions

are equivalent for this property because of the shortestness of paths. He showed that

the problem is PSPACE-complete even for bipartite graphs [4], while polynomial-

time solvable for chordal graphs [4], craw-free graphs [4], and planar graphs [5].

Wrochna [35] also studied this problem and showed that it is PSPACE-complete

even for bounded bandwidth graphs. Although the hardness results for bipartite

graphs and bounded bandwidth graphs has been shown independently, a simple

observation implies that this problem remains PSPACE-complete even for bipartite

graphs with bounded bandwidth graph. We should note that this problem is special

case of the reconfiguration problem of Steiner trees under three adjacency relations,
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VE, LVE, and LVE-N; the reconfiguration problem of Steiner trees is equivalent to

that of shortest st-paths if the number of terminals are exactly two and given two

Steiner trees have minimum number of edges. Therefore, the hardness results for

the reconfiguration problem of shortest st-paths also hold for that of Steiner trees.

1.2.3 Our contribution

We first describe our results for the reconfiguration problems with six fundamental

graph properties. (Our results are summarized in Table 1.2, together with known

results, where an (i, j)-biclique is a complete bipartite graph with the bipartition of

i vertices and j vertices.) As mentioned above, since we consider the TJ and TS

rules, it suffices to deal with subgraphs having the same number of vertices or edges.

Subgraphs of the same size may be isomorphic for certain properties Π, such as “a

graph is a path” and “a graph is a clique,” because there is only one choice of a

path or a clique of a particular size. On the other hand, for the property “a graph

is a tree,” there are several choices of trees of a particular size. (We will show an

example in Section 3.3 with Figure 3.2.)

As shown in Table 1.2, we systematically clarify the complexity of reconfiguration

problems for the six fundamental graph properties. In particular, we show that the

edge version under TJ is computationally intractable for the property “a graph is

a path” but tractable for the property “a graph is a tree.” This implies that the

computational (in)tractability for various properties Π does not follow directly from

the inclusion relationships among the graph classes specified in the properties; one

possible explanation is that the path property implies a specific graph, whereas the

tree property allows several choices of trees, making the problem easier. To the best

of the author’s knowledge, entries missing from Table 1.2 (such as the examination

of several properties under TS) remain open problems.

We then describe our results for the reconfiguration problem of Steiner trees. As
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Table 1.2: Previous and new results

Property Π Edge Induced Spanning

version version version

path NP-hard (TJ) PSPACE-c. (TJ, TS) PSPACE-c. (TJ, TS)

[Thm. 3.2] [Thm. 3.7, 3.9] [Thm. 3.7, 3.9]

cycle P (TJ, TS) PSPACE-c. (TJ, TS) PSPACE-c. (TJ, TS)

[Thm. 3.3] [Thm. 3.8, 3.9] [Thm. 3.8, 3.9]

tree P (TJ) PSPACE-c. (TJ, TS) P (TJ)

[Thm. 3.6] [34] PSPACE-c. (TS)

[Thm. 3.11, 3.10]

(i, j)-biclique P (TJ, TS) PSPACE-c. for i = j (TJ) NP-hard for i = j (TJ)

[Thm. 3.5] PSPACE-c. for fixed i (TJ) P for fixed i (TJ)

[Cor. 3.1, Thm. 3.12] [Thm. 3.13, 3.14]

clique P (TJ, TS) PSPACE-c. (TJ, TS) PSPACE-c. (TJ, TS)

[Thm. 3.4] [19] [19]

diameter PSPACE-c. (TS) PSPACE-c. (TS)

two [Thm. 3.15] [Thm. 3.15]

any XP for solution XP for solution XP for solution

property size (TJ, TS) size (TJ, TS) size (TJ, TS)

[Thm. 3.1] [Thm. 3.1] [Thm. 3.1]

we mentioned, the problems under VE, LVE and LVE-N are generalizations of the

reconfiguration problem of shortest st-paths. Following the problem of shortest st-

paths, we studied the problems of Steiner trees with respect to graph classes. We first

showed that the problem under each of VE, LVE and EE is PSPACE-complete even for

split graphs and planar graphs, while polynomial-time solvable for cographs, interval

graphs and cactus graphs. (See Figure 1.4.) We further studied the special case

where given two Steiner trees have minimum number of edges. Then we showed that

the problem under EE is polynomial-time solvable for any graph, while that under

VE and LVE has the same computational complexity with the general (not necessary

minimum) case. For this special case, we also studied under LVE-N. Specifically, we

showed that the reconfiguration problem of minimum Steiner trees under LVE-N is

polynomial-time solvable for chordal graphs and planar graphs. (See Figure 1.5.)
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PSPACE-complete

Polynomial time

Figure 1.4: Our results for the reconfiguration problem of Steiner trees under VE,

LVE and EE, where each square corresponds to a graph class, and A → B means

that A contains B as a subclass.

By considering several properties with connectivity, we proposed several

polynomial-time algorithms solving reconfiguration problems whose feasible solu-

tions are connected subgraphs.

1.3 New variant of reconfiguration problems

In the reachability variant of reconfiguration problems, we need to specify a tar-

get solution. However, there may exist (possibly, exponentially many) desirable

solutions (candidates of a target solution); even if we cannot reach a given target

solution from the initial solution, there may exist another desirable solution which

is reachable.

1.3.1 Our problem

In this thesis, we propose a new variant of reconfiguration problems in which we

are only given an initial solution and asked to find more desirable solution that is

reachable from the initial solution. We call this variant the optimization variant. As



1.3 New variant of reconfiguration problems 13

general

perfect
bounded

treewidth
planar

chordal bipartite
bounded

bandwidth

cograph inerval split
bipartite with

bounded bandwidth
cactus

threshold tree

PSPACE-complete

Polynomial time

Figure 1.5: Our results for the reconfiguration problem of minimum Steiner trees

under LVE-N, where each square corresponds to a graph class, and A → B means

that A contains B as a subclass.

the first example of this variant, we consider independent set reconfiguration

(the reconfiguration problem of independent sets) under TAR rule [18, 22] because

it is one of the most well-studied reconfiguration problems.

For a graph G, an independent set of G is a vertex subset I ⊆ V (G) in which

no two vertices are adjacent. Then, independent set reconfiguration is a re-

configuration problem whose reconfiguration graph is defined as follows: The vertex

set is a set of all independent sets whose cardinalities are at least a given number l,

and two independent sets are adjacent if the size of symmetric difference of them is

exactly one; this adjacency relation is one of the well-studied relation, calledtokne-

addtion-and-removal (TAR, for short) [18, 19, 22]. Figure 1.6 illustrates an example

of reconfiguration sequence between two independent sets I0 and I3 under TAR for

the lower bound l = 1.

Then we consider the optimization variant of independent set reconfigu-

ration; for simple notation, we denoted by Opt-ISR the optimization variant of

independent set reconfiguration and by Reach-ISR the original reachabil-
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Figure 1.6: A sequence ⟨I0, I1, I2, I3⟩ of independent sets under TAR for the lower

bound l = 1, where the vertices in independent sets are colored with black.

ity variant of independent set reconfiguration. In Opt-ISR, we are given

a single solution I0 (an independent set of cardinality at least l), and asked to find

another solution Isol (an independent set) such that it can be reachable from the ini-

tial solution and the cardinality is maximized; we call such a solution Isol an output

solution.

Note that Isol is not always a maximum independent set of an input graph G. For

example, the graph in Figure 1.6 has a unique maximum independent set I ′r of size

four (consisting of the vertices on the left side), but I0 cannot be transformed into

it. Indeed, one of output solutions is I3 for this example when l = 1.

In Chapter 5, we study Opt-ISR from the viewpoints of polynomial-time solv-

ability and fixed-parameter (in)tractability.

1.3.2 Known and related results

Although Opt-ISR is being introduced in this thesis, some previous results for

Reach-ISR are related in the sense that they can be converted into results for

Opt-ISR. We present such results here.

Ito et al. [18] showed that Reach-ISR under TAR is PSPACE-complete. On the

other hand, Kamiński et al. [22] proved that any two independent sets of size at

least l+1 are reachable under TAR with the lower bound l for even-hole-free graphs.

Reach-ISR has been studied well from the viewpoint of fixed-parameter
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(in)tractability. Mouawad et al. [26] showed that Reach-ISR under TAR is W[1]-

hard when parameterized by the lower bound l and the length of a desired sequence

(i.e., the number of token additions and removals). Lokshtanov et al. [24] gave a

fixed-parameter algorithm to solve Reach-ISR under TAR when parameterized by

the lower bound l and the degeneracy d of an input graph.

From our problem setting, one may be reminded of the concept of local search

algorithms [1, 30]. To the best of our knowledge, known results for this concept do

not have direct relations to our problem, because they are usually evaluated exper-

imentally. In addition, note that our problem assumes that an initial independent

set I0 is given as an input. In contrast, a local search algorithm is allowed to choose

the initial solution, sometimes randomly.

1.3.3 Our contribution

We first study the polynomial-time solvability of Opt-ISR with respect to graph

classes, as summarized in Figure 1.7. More specifically, we show that Opt-ISR

is PSPACE-hard even for bounded pathwidth graphs, and remains NP-hard even

for planar graphs. On the other hand, we give a linear-time algorithm to solve the

problem for chordal graphs. We note that our algorithm indeed works in polynomial

time for even-hole-free graphs (which form a larger graph class than that of chordal

graphs) if the problem of finding a maximum independent set is solvable in polyno-

mial time for even-hole-free graphs; currently, its complexity status is unknown.

We next study the fixed-parameter (in)tractability of Opt-ISR, as summarized

in Table 1.3. In this paper, we consider mainly the following three parameters: the

degeneracy d of an input graph, a lower bound l on the size of independent sets,

and the size s of an output solution reachable from a given independent set I0. As

shown in Table 1.3, we completely analyze the fixed-parameter (in)tractability of

the problem according to these three parameters; details are explained below.
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Figure 1.7: Our results for Opt-ISR, where each square corresponds to a graph

class, and A→ B means that A contains B as a subclass.

We first consider the problem parameterized by a single parameter. We show that

the problem is fixed-parameter intractable when only one of d, l, and s is taken as

a parameter. In particular, we prove that Opt-ISR is PSPACE-hard for a fixed

constant d and remains NP-hard for a fixed constant l, and hence the problem

does not admit even an XP algorithm for each single parameter d or l under the

assumption that P ̸= PSPACE or P ̸= NP. On the other hand, Opt-ISR is W[1]-

hard for s, and admits an XP algorithm with respect to s.

We thus consider the problem taking two parameters. However, the problem still

remains NP-hard for a fixed constant d+ l, and hence it does not admit even an XP

algorithm for d+l under the assumption that P ̸= NP. Note that the combination of l

and s is meaningless, since we can assume without loss of generality that l+ s ≤ 2s.

On the other hand, we give a fixed-parameter algorithm when parameterized by

s+ d; this result implies that Opt-ISR parameterized only by s is fixed-parameter

tractable for planar graphs, and for bounded treewidth graphs.
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Table 1.3: Our results for Opt-ISR with respect to parameters.

(no parameter) lower bound l solution size s

(no parameter) NP-h. for fixed l W[1]-h., XP

— (i.e., no FPT, no XP) (i.e., no FPT)

[Corollary 5.1] [Theorems 5.4, 5.5]

degeneracy d PSPACE-h. for fixed d NP-h. for fixed d+ l FPT

(i.e., no FPT, no XP) (i.e., no FPT, no XP)

[Theorem 5.2] [Corollary 5.1] [Theorem 5.6]
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Chapter 2 Preliminaries

2.1 Graph-theoretical terminologies

In this section, we give the basic graph-theoretical terminologies [8, 10].

2.1.1 Graphs and subgraphs

A graph is a ordered pair (V,E), where V is a set of vertices and E ⊆ V × V is a

set of edges; we simply denote by uv the edge (u, v). We sometimes denote by V (G)

and E(G) the vertex set and the edge set of G, respectively. A graph G is called

simple if G does not contain an edge e = vv for all vertices v ∈ V (G) and more

than two edges e = uv for any pair of two vertices u, v ∈ V (G). A graph G is called

undirected if uv ∈ E(G) if and only if vu ∈ E(G); in this case, we identify uv and

vu. In this thesis, we consider simple undirected graphs unless otherwise stated.

For an edge e = uv, we say that u and v are adjacent; in this case, u is neighbor

of v, and symmetrically v is neighbor of u. We call each of u and v an endpoint of

e, and we say that e is incident to u and v. For a vertex v, the (open) neighborhood

of v in G, denoted by NG(v), is the set of all neighbors of v in G, and the closed

neighborhood of v in G, denoted by NG[v], is defined as NG(v) ∪ {v}.

For a graph G = (V,E), a subgraph of G is a graph G′ = (V ′, E ′) such that both

V ′ ⊆ V and E ′ ⊆ E hold. In particular, it is a spanning subgraph of G if V ′ = V

holds. For a graph G = (V,E) and a vertex subset S ⊆ V , a subgraph induced by

S is the subgraph G′ = (V ′, E ′) where V ′ = S and E ′ = {uv ∈ E | u, v ∈ S}; we

say that S induces G′. On the other hand, for an edge subset U ⊆ E, a subgraph
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induced by U is the subgraph G′ = (V ′, E ′) where V ′ =
∪

uv∈U{u, v} and E ′ = U ;

we say that U induces G′. For a vertex subset S ⊆ V (resp. an edge subset U ⊆ E),

we denote by G[S] (resp. G[U ]) the subgraph of G induced by S (resp. induced by

U).

2.1.2 Path, cycle, and connectivity

Let G = (V,E) be a graph. For two vertices u, v ∈ V , a walk from u to v is a

sequence of vertices W = ⟨u = v0, v1, . . . , vℓ = v⟩ such that there is an edge vivi+1

for each i ∈ {0, 1, . . . , ℓ− 1}. ℓ is the length of the walk W . A walk W is called path

if all vertices v0, v1, . . . , vℓ inW are distinct. On the other hand, a walkW of length

at least three is called cycle if v0 = vℓ and vertices v0, v1, . . . , vℓ−1 are distinct. We

sometimes consider a walk (similarly, path and cycle) to be a graph whose vertex

set is {v0, v1, . . . , vℓ} and edge set is {vivi+1 | i ∈ {0, 1, . . . , ℓ− 1}}.

For a graph G and two vertices u, v ∈ V , the distance between u and v is the

minimum ℓ such that there exists a path between u and v of length ℓ; we denote by

distG(u, v) the distance between u and v on G. If there is no path between u and v,

we consider that the distance between u and v is infinite. G is connected if there is

a path between every pair of two vertices in G, and is disconnected otherwise. For

a connected graph G, a vertex v ∈ V (G) is called a cut-vertex if G[V (G) \ {v}] is

disconnected. For a connected graph G, the diameter of G is the longest distance

among all pairs of two vertices in G, that is, maxu,v∈V (G)distG(u, v).

2.1.3 Independent set and clique

For a graph G = (V,E), a vertex subset I ⊆ V is an independent set if no two

vertices are adjacent. On the other hand, a vertex subset C ⊆ V is a clique if any

two vertices are adjacent.
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2.1.4 Graph classes and parameters

In this subsection, we give the definitions of graph classes and graph parameters

which we deal with in this thesis. We first list the definitions of graph classes in the

following.

- Tree: A graph is tree if it is connected and contains no cycle as a subgraph.

- Cactus: A graph is cactus if every edge is part of at most one cycle.

- Planar: A graph is planar if it can be embedded in the plane without crossing

edges.

- Complete: A graph is complete if any two vertices in the graph are adjacent.

- Split: A graph G is split if its vertex set can be partitioned into an independent

set I ⊆ V (G) and a clique C = V (G) \ I.

- Bipartite: A graph G is bipartite if its vertex set can be partitioned into two

independent sets I1 ⊆ V (G) and I2 = V (G) \ I1. In particular, it is complete

bipartite or biclique if any pair of vertices v1 ∈ I1 and v2 ∈ I2 are adjacent.

- Cograph: A graph G is cograph if it contains no path of four vertices as an

induced subgraph.

- Chordal: A graph is chordal if it contains no cycle of more than four vertices as

an induced subgraph.

- Interval: A graph G with V (G) = {v1, v2, . . . , vn} is interval if there exists a

set I of (closed) intervals I1, I2, . . . , In such that vivj ∈ E(G) if and only if

Ii ∩ Ij = ∅ for each i, j ∈ {1, 2, . . . , n}. We call the set I of intervals an interval

representation of G.

We then list the definitions of graph parameters.

- Treewidth: For a graph G, a tree-decomposition of G is a tree T = (B, F ) such

that B = {B1, B2, . . . , Bk} is the family of vertex subsets of G (each vertex subset

in B is called a bag) and T satisfies the following three conditions:
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(a) each vertex v ∈ V (G) belongs to at least one bag, that is
∪

B∈B B = V (G);

(b) for each edge uv ∈ E(G), there exists at least one bag which contains both

u and v; and

(c) for each vertex v ∈ V (G), all bags containing v forms a subtree of T .

The width of a tree-decomposition is defined as maxi|Bi|+1. The treewidth of G

is the minimum t such that G has a tree-decomposition of width t.

- Pathwidth: For a graph G, a tree-decomposition T is also called a path-

decomposition if T is a path. The pathwidth of G is the minimum p such that G

has a path-decomposition of width p.

- Bandwidth: For a graph G, the bandwidth of G is the minimum b such that there

is an injection i : V (G)→ {1, 2, . . . , |V |} such that maxuv∈E(G)|i(u)− i(v)| ≤ b.

- Degeneracy: For an integer d ≥ 0, a graph G is called a d-degenerate graph

if every induced subgraphs of G has a vertex of degree at most d [23]. The

degeneracy of G is the minimum integer d such that G is a d-degenerate graph.

2.2 Algorithm-theoretical terminologies

In this section, we give the basic algorithm-theoretical terminologies [10, 28].

2.2.1 Problems and reductions

An abstract problem is defined to be a binary relation on a set I of problem

instances and a set S of problem solutions. Note that an instance may have more

than one solution. An abstract problem is called a decision problem if each instance

has a solution either “yes” or “no” solution, that is, problem solutions S consists of

{0, 1}. Many abstract problems are not decision problems, but rather optimization

problems, which require some value to be minimized or maximized. For example,

the reachability variant of a reconfiguration problem is a decision problem, while

the optimization variant is not a decision problem but an optimization problem. To
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solve an abstract problem by computers, we must represent the problem as a binary

string. Thus we sometimes assume that an abstract problem is represented as a

binary string. Then we say that an algorithm solves an abstract problem in time

O(T (n)) if it can output a solution for any instance of length n in time O(T (n)). An

abstract problem is polynomial-time solvable if there exists an algorithm solving the

problem in time O(nk) for some constant k; such an algorithm is called a polynomial-

time algorithm.

Let P ,P ′ be decision problems represented as binary strings. A polynomial-time

reduction from P ′ to P is an algorithm which computes an instance I of P for any

given instance I ′ of P ′ such that;

- the solution of I in P is “yes” if and only if that of I ′ in P ′ is “yes;” and

- the algorithm runs in time O(nk), where n = |I ′| is the length of the instance I

and k is some constant.

An abstract problem parameterized by p is defined to be a binary relation on a

set Ip of problem instances and a set S of problem solutions, where Ip is a set of

pairs consist of an instance of an abstract problem and a natural number, called

parameter; we call an abstract problem parameterized by some parameter a param-

eterized problem. Then an abstract problem parameterized by p is fixed-parameter

tractable if there exists an algorithm which can be output a solution for any instance

(I, p) in time O(f(p) · nk), where f is some computable function depending only on

p, n = |(I, p)| is the length of the instance (I, p), and k is some constant; we call

such an algorithm a fixed-parameter algorithm or an FPT algorithm. On the other

hand, we call an algorithm an XP algorithm if it runs in time O(nf(k)) where f is

an arbitrary function depending only on k.

Let P and P ′ be decision problems parameterized by p and p′, respectively. Then,

a parameterized reduction (or an FPT reduction) is an algorithm which computes

an instance (I, p) of P for any given instance (I ′, p′) of P ′ such that;
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- the solution of (I, p) in P is “yes” if and only if that of (I ′, p′) in P ′ is “yes;”

- p ≤ g(p′) holds for some computable function g depending only on p′; and

- the algorithm runs in time O(f(p′) · nk), where f is some computable function

depending only on p′, n = |(I ′, p′)| is the length of the instance (I ′, p′), and k is

some constant.

2.2.2 Class of computational complexity

In this subsection, we describe some classes of problems with respect to compu-

tational complexity.

NP is the class of all decision problems that can be verified by a polynomial-time

algorithm. An abstract problem P is NP-hard if for any problem P ′ in NP, there is

a polynomial-time reduction from P ′ to P . A decision problem P is NP-complete if

it is NP-hard and in NP. Note that there is no polynomial-time algorithm solving

an NP-hard problem, unless P = NP.

PSPACE is the class of all abstract problems that can be solved in polynomial

space. An abstract problem P is PSPACE-hard if for any problem P ′ in PSPACE,

there is a polynomial-time reduction from P ′ to P . An abstract problem P is

PSPACE-complete if it is PSPACE-hard and in PSPACE. Note that there is no

polynomial-time algorithm solving a PSPACE-hard problem, unless P = PSPACE.

XP and FPT is the class of all parameterized problems that can be solved by an XP

algorithm and an FPT algorithm, respectively. Note that FPT is a subclass of XP.

W[1] is the class of all parameterized problems such that for any problem P in W[1],

there is a parameterized reduction from it to weighted 2-cnf-satisfiability. A

parameterized problem P is W[1]-hard if for any problem P ′ in W[1], there is a

parameterized reduction from P ′ to P . Note that there is no FPT algorithm solving

a W[1]-hard problem, unless FPT = W[1].
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Chapter 3 Reconfiguration of

fundamental graphs

In this chapter, we study the complexity of the reachability variant of reconfiguration

problems with several graph properties.

3.1 Definition of problems and preliminaries

We formally define the reconfiguration problems of subgraphs satisfying a funda-

mental property; the property subgraphs must satisfy is specified as property Π. Let

G be an input graph. Feasible solutions are defined as subgraphs satisfying Π. More

specifically, we consider three versions according to how to represent subgraphs; in

each version, a feasible solution is defined, as follows:

- Edge version: an edge subset U ⊆ E(G) such that G[U ] satisfies Π.

- Induced version: a vertex subset S ⊆ V (G) such that G[S] satisfies Π.

- Spanning version: a vertex subset S ⊆ V (G) such that G[S] contains at least

one spanning subgraph satisfying Π.

Then, we consider the following two adjacency relations:

- Token-jumping (TJ, for short): Tow feasible solutions S, S ′ (edge subsets in the

edge version, and vertex subsets in the induced and spanning version) are adjacent

under TJ if |S \ S ′| = |S ′ \ S| = 1 holds.

- Token-sliding (TJ, for short): In the edge version, two feasible solutions U,U ′ ⊆

E(G) are adjacent under TS if |U \U ′| = |U ′ \U | = 1 holds and the unique edges

e ∈ U \ U ′ and e′ ∈ U ′ \ U have a common end point in G. In the induced and
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spanning versions, two feasible solutions S, S ′ ⊆ V (G) are adjacent under TJ if

|S \ S ′| = |S ′ \ S| = 1 holds and the unique vertices v ∈ S \ S ′ and v′ ∈ S ′ \ S

are adjacent in G.

Then, we deal with the reachability variant of reconfiguration problems whose solu-

tion spaces are defined above. More specifically, for a property Π and an adjacency

relation R ∈ {TJ,TS}, we consider the following problem: We are given a graph

G and two feasible solutions S0 and Sr in the solution space, then asked to deter-

mine whether or not there exists a reconfiguration sequence between S and S ′ in

the solution space.

We denote by (G, V0, Vr) an instance of a spanning version or an induced version

whose input graph is G and source and target solutions are vertex subsets V0 and

Vr of G. Similarly, we denote by (G,E0, Er) an instance of the edge version. We

may assume without loss of generality that |V0| = |Vr| holds for the spanning and

induced versions, and |E0| = |Er| holds for the edge versions; otherwise, the answer

is clearly no since under both the TJ and TS rules, all solutions must be of the same

size.

3.2 General XP algorithm

In this section, we give a general XP algorithm when the size of a solution (that

is, the size of a vertex or edge subset that represents a subgraph) is taken as the

parameter. For notational convenience, we simply use element to represent a vertex

(or an edge) for the spanning and induced versions (resp., the edge version), and

candidate to represent a set of elements (which does not necessarily satisfy the

property Π). Furthermore, we define the size of a given graph as the number of

elements in the graph.

Theorem 3.1 Let Π be any graph structure property such that we can check if a

candidate of size k satisfies Π in f(k) time, where f(k) is a computable function
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depending only on k. Then, all of the spanning, induced, and edge versions under

TJ or TS can be solved in time O(n2kk + nkf(k)), where n is the size of a given

graph and k is the size of a source (and target) solution. Furthermore, a shortest

reconfiguration sequence between source and target solutions can be found in the

same time bound, if it exists.

Proof. Our claim is that the reconfiguration graph can be constructed in the stated

time. Since a given source solution is of size k, it suffices to deal only with candidates

of size exactly k. For a given graph, the total number of possible candidates of size

k is O(nk). For each candidate, we can check in time f(k) whether it satisfies

Π. Therefore, we can construct the node set of the reconfiguration graph in time

O(nkf(k)). We then obtain the edge set of the reconfiguration graph. Since there

are O(nk) nodes in the reconfiguration graph, the number of pairs of nodes is O(n2k).

Since each node corresponds to a set of k elements, we can check if two nodes are

adjacent or not in O(k) time. Therefore, we can find all pairs of adjacent nodes in

time O(n2kk).

In this way, we can construct the reconfiguration graph in time O(n2kk+nkf(k)) in

total. The reconfiguration graph consists of O(nk) nodes and O(n2k) edges. There-

fore, by breadth-first search starting from the node representing a given source solu-

tion, we can determine in time O(n2k) whether or not there exists a reconfiguration

sequence between two nodes representing the source and target solutions. Notice

that if a desired reconfiguration sequence exists, then breadth-first search finds a

shortest one. 2

3.3 Edge versions

In this section, we study the edge version for five different properties, namely

those specifying that the graph be a path, a cycle, a clique, a biclique, or a tree.
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Figure 3.1: Reduction to the edge version under TJ for the property “a graph is a

path.”

We first consider the property “a graph is a path” under TJ.

Theorem 3.2 The edge version under TJ is NP-hard for the property “a graph is

a path.”

Proof. We give a polynomial-time reduction from theHamiltonian path problem.

Recall that a Hamiltonian path in a graph G is a path that visits each vertex of G

exactly once. Given a graph G and two vertices s, t ∈ V (G) of G, the NP-complete

problem Hamiltonian path is to determine whether or not G has a Hamiltonian

path which starts from s and ends in t [14].

For an instance (G, s, t) of Hamiltonian path, we construct a corresponding in-

stance (G′, Es, Et) of our problem, as follows. (See also Figure 3.1.) Let n = |V (G)|.

We first add two new vertices v and x to G with two new edges e1 = xv and e2 = vs.

We then add two paths Ps = ⟨s1, s2, . . . , sn+1, x⟩ and Pt = ⟨t1, t2, . . . , tn+1, x⟩, where

s1, s2, . . . , sn+1 and t1, t2, . . . , tn+1 are distinct new vertices. Each of Ps and Pt con-

sists of n+1 edges; we denote by es1, e
s
2, . . . , e

s
n+1 the edges s1s2, s2s3, . . . , sn+1x in Ps,

respectively, and by et1, e
t
2, . . . , e

t
n+1 the edges t1t2, t2t3, . . . , tn+1x in Pt, respectively.

We finally add a new vertex w with an edge e3 = tw, completing the construction

of G′. We then set Es = {es1, es2, . . . , esn+1, e1, e2} and Et = {et1, et2, . . . , etn+1, e1, e2};

these edge subsets clearly form paths in G′. We have thus constructed our corre-

sponding instance (G′, Es, Et) in polynomial time.

We now prove that an instance (G, s, t) of Hamiltonian path is a yes-instance
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if and only if the corresponding instance (G′, Es, Et) is a yes-instance.

To prove the only-if direction, we first suppose that G has a Hamiltonian path

P starting from s and ending in t. Then, we construct an actual reconfiguration

sequence from Es to Et using the edges in P . Notice that P consists of n− 1 edges.

Thus, we first move the n− 1 edges es1, e
s
2, . . . , e

s
n−1 in Es to the edges in P one by

one, and then move esn to e3. Next, we move esn+1 to etn+1, and then move the edges

in E(P ) ∪ {e3} to etn, e
t
n−1, . . . , e

t
1 one by one. By the construction of G′, we know

that each of the intermediate edge subsets forms a path in G′, as required.

We now prove the if direction by supposing that there exists a reconfiguration

sequence ⟨Es = E0, E1, . . . , Eℓ = Et⟩. Let Eq be the first edge subset in the sequence

such that E(Pt)∩Eq ̸= ∅; we claim that Eq contains a Hamiltonian path in G. First,

notice that the edge in E(Pt) ∩ Eq is etn+1; otherwise the subgraph formed by Eq is

disconnected. Since |Eq| = |Es| = n+3 and |E(Ps)| = n+1, we can observe that Eq

contains no edge in Ps; otherwise the degree of x would be three, or Eq would form

a disconnected subgraph. Therefore, the n+ 2 edges in Eq \ {etn+1} must be chosen

from E(G)∪{e1, e2, e3}. Since |V (G)| = n and Eq must form a path in G′, we know

that Eq \{etn+1} consists of e1, e2, e3 and n−1 edges in G. Thus, Eq \{etn+1, e1, e2, e3}

forms a Hamiltonian path in G starting from s and ending in t, as required. 2

We now consider the property “a graph is a cycle,” as follows.

Theorem 3.3 The edge version under each of TJ and TS can be solved in linear

time for the property “a graph is a cycle.”

Proof. Let (G,Es, Et) be a given instance. We claim that the reconfiguration graph

is edgeless, in other words, no feasible solution can be transformed at all. Then, the

answer is yes if and only if Es = Et holds; this condition can be checked in linear

time.

Let E ′ be any feasible solution of G, and consider a replacement of an edge e− ∈ E ′

with an edge e+ other than e−. Let u, v be the endpoints of e−. When we remove
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e− from E ′, the resulting edge subset E ′ \ {e} forms a path whose ends are u and

v. Then, to ensure that the candidate forms a cycle, we can choose only e− = uv as

e+. This contradicts the assumption that e+ ̸= e−. 2

The same arguments partially hold for the property “a graph is a clique,” and

we obtain the following theorem. We note that, for this property, both induced

and spanning versions (i.e., when solutions are represented by vertex subsets) are

PSPACE-complete under any adjacency relation [19].

Theorem 3.4 The edge version under each of TJ and TS can be solved in linear

time for the property “a graph is a clique.”

Proof. Suppose that (G,Es, Et) be a given instance. If the size of the clique (the

number of vertices of the subgraph) formed by Es (and Et) is at least three, then

the same arguments in the proof of Theorem 3.3 hold, and hence the instance can

be solved in linear time. We thus consider the other case where Es and Et form

2-cliques. In this case, we know |Es| = |Et| = 1. Then, under TJ, we observe that

it is always a yes-instance, since we can move the unique edge in Es into that in Et

directly. On the other hand, under TS, we observe that it is a yes-instance if and

only if Es and Et are contained in the same connected component of G. Therefore,

we can conclude that this case is also solvable in linear time. 2

We next consider the property “a graph is an (i, j)-biclique,” as follows.

Theorem 3.5 The edge version under each of TJ and TS can be solved in poly-

nomial time for the property “a graph is an (i, j)-biclique” for any pair of positive

integers i and j.

Proof. We may assume without loss of generality that i ≤ j holds. We prove the

theorem in the following three cases:

- Case 1: i = 1 and j ≤ 2;

- Case 2: i, j ≥ 2; and
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- Case 3: i = 1 and j ≥ 3.

We first consider Case 1, which is the easiest case. In this case, any (1, j)-biclique

has at most two edges. Therefore, by Theorem 3.1 we can conclude that this case

is solvable in polynomial time.

We then consider Case 2. We show that (G,Es, Et) is a yes-instance if and only

if Es = Et holds. To do so, we claim that the reconfiguration graph is edgeless,

in other words, no feasible solution can be transformed at all. To see this, because

i, j ≥ 2, notice that the removal of any edge e in an (i, j)-biclique results in a

bipartite graph with the same bipartition of i vertices and j vertices. Therefore, to

obtain an (i, j)-biclique by adding a single edge, we must add back the same edge e.

We finally deal with Case 3. Notice that a (1, j)-biclique is a star with j leaves,

and its center vertex is of degree j ≥ 3. Then, we claim that (G,Es, Et) is a yes-

instance if and only if the center vertices of stars represented by Es and Et are the

same. The if direction clearly holds, because we can always move edges in Es \ Et

into ones in Et\Es one by one. We thus prove the only-if direction; indeed, we prove

the contrapositive, that is, the answer is no if the center vertices of stars represented

by Es and Et are different. Consider such a star Ts formed by Es. Since Ts has

j (≥ 3) leaves, the removal of any edge in Es results in a star having j − 1 (≥ 2)

leaves. Therefore, to ensure that each intermediate solution is a star with j leaves,

we can add only an edge of G which is incident to the center of Ts. Thus, we cannot

change the center vertex. 2

In this way, we have proved Theorem 3.5. Although Case 1 takes non-linear

time, our algorithm can be easily improved under TJ so that it runs in linear time;

in Case 1, a subgraph forms a (1, j)-biclique if and only if it forms a tree, and hence

we can solve in linear time by Theorem 3.6 (presented later).

We finally consider the property “a graph is a tree” under TJ. As we have men-

tioned in the introduction, for this property, there are several choices of trees even
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Figure 3.2: Reconfiguration sequence ⟨E0, E1, E2⟩ in the edge version under TJ with

the property “a graph is a tree.”

of a particular size, and a reconfiguration sequence does not necessarily consist of

isomorphic trees (see Figure 3.2). This “flexibility” of subgraphs may yield the con-

trast between Theorem 3.2 for the path property and the following theorem for the

tree property.

Theorem 3.6 The edge version under TJ can be solved in linear time for the prop-

erty “a graph is a tree.”

Proof. Suppose that (G,Es, Et) is a given instance. We may assume without loss

of generality that |Es| = |Et| ≥ 2; otherwise |Es| = |Et| ≤ 1 holds, and hence

the instance is trivially a yes-instance. We will prove below that any instance with

|Es| = |Et| ≥ 2 is a yes-instance if and only if all the edges in Es and Et are contained

in the same connected component of G. Note that this condition can be checked in

linear time.

We first prove the only-if direction of our claim. Since |Es| = |Et| ≥ 2 and sub-

graphs always must retain a tree structure (more specifically, they must be connected

graphs), observe that we can exchange edges only in the same connected component

of G. Thus, the only-if direction follows.

To complete the proof, it suffices to prove the if direction of our claim. For nota-

tional convenience, for any feasible solution Ei we denote by Ti the tree represented

by Ei, and by Vi the vertex set of Ti. In this direction, we consider the following

two cases: (a) Vs ∩ Vt = ∅, and (b) Vs ∩ Vt ̸= ∅.

We consider Case (a), that is, Vs ∩ Vt = ∅. Since Ts and Tt are contained in one

connected component of G, there exists a path ⟨v0, v1, . . . , vℓ⟩ in G such that v0 ∈ Vs,
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vℓ ∈ Vt and vi /∈ Vs ∪ Vt for all i ∈ {1, 2, . . . , ℓ − 1}. Since Ts is a tree, it has at

least two degree-one vertices. Let vs be any degree-one vertex in Vs \ {v0}, and let

es be the leaf edge of Ts incident to vs. Then, we can exchange es with v0v1, and

obtain another tree represented by the resulting edge subset (Es ∪ {v0v1}) \ {es}.

By repeatedly applying this operation along the path ⟨v1, v2, . . . , vℓ⟩, we can obtain

a solution Ek such that Vk ∩ Vt = {vℓ} ̸= ∅; this case will be considered below.

We finally consider Case (b), that is, Vs ∩ Vt ̸= ∅. Consider the graph (Vs ∩

Vt, Es∩Et). Then, (Vs∩Vt, Es∩Et) is a forest, and let G′ = (V ′, E ′) be a connected

component (i.e., a tree) of (Vs ∩Vt, Es ∩Et) whose edge set is of maximum size. We

now prove that there is a reconfiguration sequence between Es and Et by induction

on k = |Es \E ′| = |Et \E ′|. If k = 0, then Es = E ′ = Et and hence the claim holds.

We thus consider the case where k > 0 holds. Since G′ is a proper subtree of Tt,

there exists at least one edge et in Et \E ′ such that one endpoint of et is contained

in V ′ and the other is not. We claim that there exists an edge es in Es \ E ′ which

can be moved into et, that is, the subgraph represented by the resulting edge subset

(Es ∪ {et}) \ {es} forms a tree. If both endpoints of et are contained in Vs (not just

V ′), Es ∪{et} contains a cycle; let C ⊆ Es ∪{et} be the edge set of the cycle. Since

the subgraph Tt has no cycle, there exists at least one edge in C \Et, and we choose

one of them as es. On the other hand, if just one endpoint of et is contained in Vs,

then we choose a leaf edge of Ts in Es \ E ′ as es. Note that there exists such a leaf

edge since G′ is a proper subtree of Ts. From the choice of es and et, we know the

subgraph represented by the resulting edge subset (Es ∪ {et}) \ {es} forms a tree;

let Ek = (Es ∪ {et}) \ {es}. Furthermore, since Ek ∩ Et includes E
′ ∪ {et} and the

subgraph formed by E ′ ∪ {et} is connected, the subgraph formed by Ek ∩ Et has a

connected component whose edge set has size at least |E ′| + 1. Therefore, we can

conclude that Ek is reconfigurable into Et by the induction hypothesis. 2



3.4 Induced and spanning versions 33

3.4 Induced and spanning versions

In this section, we deal with the induced and spanning versions where subgraphs

are represented as vertex subsets. Most of our results for these versions are hardness

results, except for Theorems 3.11 and 3.14.

3.4.1 Path and cycle

In this subsection, we show that both induced and spanning versions under TJ

or TS are PSPACE-complete for the properties “a graph is a path” and “a graph is

a cycle.” All proofs in this subsection make use of reductions that employ almost

identical constructions. Therefore, we describe the detailed proof for only one case,

and give proof sketches for the other cases.

We give polynomial-time reductions from the shortest path reconfigura-

tion problem [4, 5, 21]. For a simple, unweighted, and undirected graph G and

two distinct vertices s, t of G, shortest path reconfiguration is defined as

the induced (or spanning) version under TJ for the property “a graph is a shortest

st-path.” As we mentioned in the introduction, there is no difference between the

induced version and the spanning version for this property, because any shortest

path in a simple graph forms an induced subgraph. This problem is known to be

PSPACE-complete [4].

Let d be the (shortest) distance from s to t in G. For each i ∈ {0, 1, . . . , d}, we

denote by Li ⊆ V (G) the set of vertices that lie on a shortest st-path at distance i

from s. Therefore, we have L0 = {s} and Ld = {t}. We call each Li a layer. Observe

that any shortest st-path contains exactly one vertex from each layer, and we can

assume without loss of generality that G has no vertex which does not belong to

any layer.

We first give the following theorem.
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Theorem 3.7 For the property “a graph is a path,” the induced and spanning ver-

sions under TJ are both PSPACE-complete on bipartite graphs.

Proof. Observe that these versions are in PSPACE. Therefore, we construct a

polynomial-time reduction from shortest path reconfiguration.

Let (G, Vs, Vt) be an instance of shortest path reconfiguration. Since any

shortest st-path contains exactly one vertex from each layer, we can assume without

loss of generality that G has no edge joining two vertices in the same layer, that is,

each layer Li forms an independent set in G. Then, G is a bipartite graph. From

(G, Vs, Vt), we construct a corresponding instance (G′, V ′
s , V

′
t ) for the induced and

spanning versions; note that we use the same reduction for both versions. Let G′

be the graph obtained from G by adding four new vertices s1, s2, t1, t2 which are

connected with four new edges s2s1, s1s, tt1, t1t2. Note that G
′ is also bipartite. We

then set V ′
s = Vs ∪ {s1, s2, t1, t2} and V ′

t = Vt ∪ {s1, s2, t1, t2}. Since each of Vs and

Vt induces a shortest st-path in G, each of V ′
s and V ′

t is a feasible solution to both

versions. This completes the polynomial-time construction of the corresponding

instance.

Consider any vertex subset V ′ ⊆ V (G′) that satisfies the following conditions (a)

and (b);

(a) s2, s1, s, t, t1, t2 ∈ V ′; and

(b) V ′ contains exactly one vertex from each layer of G.

Note that V ′ is not necessarily a feasible solution. Then, these conditions ensure

that V ′ \ {s2, s1, t1, t2} forms a shortest st-path in G if and only if the subgraph

represented by V ′ induces a path in G′. Thus, we finally prove the following claim,

which ensures that an instance (G, Vs, Vt) of shortest path reconfiguration

is a yes-instance if and only if the corresponding instance (G′, V ′
s , V

′
t ) of the induced

or spanning version is a yes-instance.

Claim Let V ′ ⊆ V (G′) be any solution for the induced or spanning version which is
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reachable by a reconfiguration sequence from V ′
s (or V ′

t ) under TJ. Then, V
′ satisfies

Conditions (a) and (b).

We first prove that Condition (a) is satisfied. Notice that both V ′
s and V ′

t sat-

isfy this condition. Because V ′ is reconfigurable from V ′
s or V ′

t , it suffices to show

that we cannot move any of s2, s1, s, t, t1, t2 in a reconfiguration sequence starting

from V ′
s or V ′

t . Suppose for sake of contradiction that we can move at least one of

s2, s1, s, t, t1, t2. Then, the first removed vertex v ∈ {s2, s1, s, t, t1, t2} must be either

s2 or t2; otherwise the resulting subgraph would be disconnected. Let w be the ver-

tex with which we exchanged v. Then, w ∈ V (G′)\{s2, s1, s, t, t1, t2} = V (G)\{s, t}.

Therefore, the resulting vertex subset cannot induce a path, and hence it cannot be

a solution for the induced version. Similarly, the induced subgraph cannot contain

a spanning path, and hence it cannot be a solution for the spanning version.

We next show that Condition (b) is satisfied. Recall that d denotes the number

of edges in a shortest st-path in G. Then, we have |V ′| = |V ′
s | = |V ′

t | = d + 5. By

Condition (a), we know that V ′ contains s2, s1, t1, t2, and hence in both induced and

spanning versions, s and t must be connected by a path formed by d + 1 vertices

in V ′ \ {s2, s1, t1, t2}. Since the length of this st-path is d, this path is shortest and

hence V ′ must contain exactly one vertex from each of d+ 1 layers of G. 2

Similar arguments give the following theorem.

Theorem 3.8 Both the induced and spanning versions under TJ are PSPACE-

complete for the property “a graph is a cycle.”

Proof. Our reduction is the same as in the proof of Theorem 3.7 except for the

following point: instead of adding four new vertices, we connect s and t by a path

of length three with two new vertices s1 and t1. Then, the same arguments hold as

in the proof of Theorem 3.7. 2

We now consider TS. Notice that, in the proofs of Theorems 3.7 and 3.8, we
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exchange only vertices contained in the same layer. Since any shortest st-path in a

graph G contains exactly one vertex from each layer, we can assume without loss of

generality that each layer Li of G forms a clique. Then, the same reductions work

for TS, and we obtain the following theorem.

Theorem 3.9 Both the induced and spanning versions of under TS are PSPACE-

complete for the properties “a graph is a path” and “a graph is a cycle.”

3.4.2 Tree

Wasa et al. [34] showed that the induced version under TJ and TS is PSPACE-

complete for the property “a graph is a tree.” In this subsection, we show that the

spanning version for this property is also PSPACE-complete under TS, while it is

linear-time solvable under TJ.

We first note that our proof of Theorem 3.9 yields the following theorem.

Theorem 3.10 The spanning version of under TS is PSPACE-complete for the

property “a graph is a tree.”

Proof. We claim that the same reduction as in Theorem 3.9 applies. Let V ′ ⊆ V (G′)

be any solution which is reachable by a reconfiguration sequence from V ′
s (or V ′

t )

under TS, where (G′, V ′
s , V

′
t ) is the corresponding instance for the spanning version,

as in the reduction. Then, TS ensures that s2, s1, s, t, t1, t2 ∈ V ′ holds, and V ′

contains exactly one vertex from each layer of G. Therefore, any solution forms a

path even for the property “a graph is a tree,” and hence the theorem follows. 2

In contrast to Theorem 3.10, the spanning version under TJ is solvable in linear

time. We note that the reduction in Theorem 3.10 does not work under TJ, because

the tokens on s2 and t2 can move (jump) and hence there is no guarantee that a

solution forms a path for the property “a graph is a tree.”
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Theorem 3.11 The spanning version of under TJ can be solved in linear time for

the property “a graph is a tree.”

Proof. Suppose that (G, Vs, Vt) is a given instance. We assume that |Vs| = |Vt| ≥ 2

holds; otherwise it is a trivial instance. Then, Theorem 3.11 can be obtained from

the following claim.

Claim (G, Vs, Vt) with |Vs| = |Vt| ≥ 2 is a yes-instance if and only if Vs and Vt are

contained in the same connected component of G.

We first prove the only-if direction of the claim. Notice that the property requires

subgraphs to be connected. Because |Vs| = |Vt| ≥ 2 and we exchange only one vertex

at a time, we can exchange a vertex only with another vertex in the same connected

component. Therefore, Vs and Vt are contained in the same connected component

of G if (G, Vs, Vt) is a yes-instance.

Next, we prove the if direction of the claim for the case where |Vs| = |Vt| = 2. In

this case, G[Vs] and G[Vt] consist of single edges, say es and et, respectively. Since

Vs and Vt are contained in the same connected component of G, there is a path in

G between es and et. Thus, we can exchange vertices along the path, and obtain a

reconfiguration sequence from Vs to Vt. In this way, the if direction holds for this

case.

Finally, we prove the if direction of the claim for the remaining case, that is,

|Vs| = |Vt| ≥ 3. Consider any spanning trees Ts of G[Vs] and Tt of G[Vt]. Since

|Vs| = |Vt| ≥ 3, each of Ts and Tt has at least two edges. Then, if we regard

(G,E(Ts), E(Tt)) as an instance of the edge version under TJ for the property “a

graph is a tree,” we know from the proof of Theorem 3.6 that it is a yes-instance.

Thus, there exists a reconfiguration sequence E = ⟨E(Ts) = E0, E1, . . . , Eℓ = E(Tt)⟩

of edge subsets under TJ. We below show that, based on E , we can construct a

reconfiguration sequence between Vs and Vt for the spanning version under TJ.
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Figure 3.3: Illustration for the proof of Theorem 3.11.

For each Ei in E , let Vi be the vertex set of the tree represented by Ei. Notice

that Vi is a feasible solution for the spanning version, and that V0 = Vs and Vℓ = Vt

hold. We claim that the sequence ⟨Vs = V0, V1, . . . , Vℓ = Vt⟩ of vertex subsets

is a reconfiguration sequence for the spanning version under TJ (after removing

redundant vertex subsets if needed). To show this, it suffices to prove |Vi \ Vi−1| =

|Vi−1 \ Vi| ≤ 1 for all i ∈ {1, 2, . . . , ℓ}. Suppose for the sake of contradiction that

there exists Vi such that |Vi \ Vi−1| ≥ 2 holds. (See also Figure 3.3.) Since |Ei| ≥ 2

and |Ei \ Ei−1| = 1 hold, we have Ei ∩ Ei−1 ̸= ∅ and hence Vi ∩ Vi−1 ̸= ∅. Then

there is at least one edge e = uv in Ei \ Ei−1 joining a vertex u ∈ Vi \ Vi−1 and

v ∈ Vi ∩ Vi−1, because Ei must form a connected subgraph. Since |Vi \ Vi−1| ≥ 2,

there is another vertex u′ ̸= u in Vi \ Vi−1, and there is an edge e′ incident to u′.

Note that e ̸= e′. Furthermore, we know that e′ ∈ Ei \ Ei−1 because u′ ∈ Vi \ Vi−1.

Therefore, we have e, e′ ∈ Ei \ Ei−1, which contradicts the fact that |Ei \ Ei−1| = 1

holds. 2

3.4.3 Biclique

For the property “a graph is an (i, j)-biclique,” we show that the induced version

under TJ is PSPACE-complete even if i = j holds, or i is fixed. On the other

hand, the spanning version under TJ is NP-hard even if i = j holds, while it is

polynomial-time solvable when i is fixed.

We first give the following theorem for a fixed i ≥ 1.
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Figure 3.4: Reduction for the property “a graph is an (i, j)-biclique” for any fixed

i ≥ 1.

Theorem 3.12 For the property “a graph is an (i, j)-biclique,” the induced version

under TJ is PSPACE-complete even for any fixed integer i ≥ 1.

Proof. We give a polynomial-time reduction from the maximum independent

set reconfiguration problem [35]. The Maximum independent set recon-

figuration problem is defined as the induced version for the property “a graph

is edgeless” such that two given independent sets are maximum. This problem is

known to be PSPACE-complete under TJ and TS [35].

Suppose that (G, Vs, Vt) is an instance of maximum independent set recon-

figuration. We now construct a corresponding instance (G′, V ′
s , V

′
t ) of the in-

duced version under TJ for the property “a graph is an (i, j)-biclique,” where i is

any fixed positive integer. (See also Figure 3.4.) Let L and R be distinct sets of

new vertices such that |L| = i and |R| = 1. The vertex set of G′ is defined as

V (G′) = V (G) ∪ L ∪ R, and the edge set of G′ as E(G′) = E(G) ∪ {uv | u ∈

V (G), v ∈ L} ∪ {vw | v ∈ L,w ∈ R}, that is, new edges are added so that there are

edges between each vertex of L and each vertex of V (G) ∪ R. Let V ′
s = Vs ∪ L ∪ R

and V ′
t = Vt ∪ L ∪ R. Since L, R, Vs and Vt are all independent sets in G′, both

V ′
s and V ′

t form (i, j)-bicliques, where i = |L| and j = |Vs ∪ R| = |Vt ∪ R|. We

have now completed the construction of our corresponding instance, which can be

accomplished in polynomial time.

We first show the claim that for any feasible solution V ′ ⊆ V (G′) which is recon-

figurable from V ′
s or V ′

t under TJ, the vertex subset V ′ ∩ V (G) forms a maximum
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independent set of G. Because V ′ induces a bipartite graph (more specifically, an

(i, j)-biclique) and each vertex in L is connected to all vertices in V (G), at least

one of the following conditions holds; (a) V ′ ∩ L = ∅; and (b) V ′ ∩ V (G) forms an

independent set. However, we can see that (a) does not hold, as follows. We know

that all vertices in L ∪R are initially contained in V ′
s and V ′

t . Consider exchanging

u ∈ L ∪ R with v ∈ V (G); if |L| = 1 and u ∈ L then the resulting subgraph would

be disconnected, and otherwise both Conditions (a) and (b) would be violated since

Vs∩V (G) and Vt∩V (G) are maximum independent sets of G. Therefore, we cannot

exchange any vertex in L ∪R with a vertex in V (G), and hence the claim holds.

On the other hand, we observe by the construction of G′ that if a vertex subset

V ′′ ⊆ V (G) forms a (maximum) independent set of G, then V ′′ ∪ L ∪R induces an

(i, j)-biclique in G′.

By the above discussion, we can conclude that an instance (G, Vs, Vt) of max-

imum independent set reconfiguration is a yes-instance if and only if our

corresponding instance (G′, V ′
s , V

′
t ) is a yes-instance. 2

The corresponding instance (G′, V ′
s , V

′
t ) constructed in the proof of Theorem 3.12

satisfies i = j if we set i = |Vs|+1 = |Vt|+1. Therefore, we can obtain the following

corollary.

Corollary 3.1 For the property “a graph is an (i, j)-biclique,” the induced version

under TJ is PSPACE-complete even if i = j holds.

We next give the following theorem.

Theorem 3.13 For the property “a graph is an (i, j)-biclique,” the spanning version

under TJ is NP-hard even if i = j holds.

Proof. We give a polynomial-time reduction from the balanced complete

bipartite subgraph problem, defined as follows [14]. Given a bipartite graph G

and a positive integer k, the balanced complete bipartite subgraph problem
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Figure 3.5: Reduction for the property “a graph is a (k, k)-biclique.”

is to determine whether or not G contains a (k, k)-biclique as a subgraph; this

problem is known to be NP-hard [14].

Suppose that (G, k) is an instance of balanced complete bipartite sub-

graph, where G is a bipartite graph. Then, we construct a corresponding instance

(G′, Vs, Vt) of the spanning version under TJ for the property “a graph is a (k, k)-

biclique.” We first construct a graph G′. (See Figure 3.5.) Let G0 be a graph which

is isomorphic to G and (A0, B0) be the bipartition of G0. We add to G0 two new

(k, k)-bicliques G1 and G2; let (A1, B1) be the bipartition of G1, and (A2, B2) be

that of G2. We then add edges between any two vertices x ∈ B1 and y ∈ A0, and

between any two vertices x ∈ B0 and y ∈ A2. Therefore, G
′[B1∪A0] and G′[B0∪A2]

are bicliques in G′. This completes the construction of G′. We then set Vs = V (G1)

and Vt = V (G2). Then, Vs and Vt are solutions, since G′[Vs] and G′[Vt] contain

(k, k)-bicliques G1 and G2, respectively. In this way, the corresponding instance can

be constructed in polynomial time.

By the construction of G′, any reconfiguration sequence between Vs = V (G1)

and Vt = V (G2) must pass through a (k, k)-biclique of G0. Therefore, the theorem

follows. 2

We now give a polynomial-time algorithm solving the spanning version for a fixed

constant i ≥ 1.

Theorem 3.14 For the property “a graph is an (i, j)-biclique,” the spanning version
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under TJ is solvable in polynomial time when i ≥ 1 is a fixed constant.

We give such an algorithm as a proof of Theorem 3.14. We will refer to the i

vertices in the bounded-size part of the biclique as hubs, and the j vertices in the

other part as terminals. Let H ⊆ V (G) be an arbitrary vertex subset such that

|H| = i. We denote by C(H) ⊆ V (G) the set of all common neighbors of H in G,

i.e., C(H) =
∩

v∈H{u ∈ V (G) | uv ∈ E(G)}. We write C[H] = C(H) ∪ H. We

denote by S(H) the set of all solutions that contain (i, j)-bicliques with the hub set

H. We know that S(H) ̸= ∅ if and only if |C(H)| ≥ j holds; if |C(H)| ≥ j, then

H ∪ T is in S(H) for any subset T ⊆ C(H) such that |T | = j. We also observe that

W ⊆ C[H] holds for any solution W ∈ S(H). It should be noted that a solution in

the spanning version is simply a vertex subset V ′ of V (G), and there is no restriction

on how to choose a hub set from V ′. (For example, if a solution V ′ induces a clique

of size five, then there are ten ways to choose a hub set from V ′ for (2, 3)-bicliques.)

Therefore, S(H) ∩ S(H ′) ̸= ∅ may hold for distinct hub sets H,H ′.

We describe two key observations in the following. The first one is that for a hub

set H, any two solutions W,W ′ ∈ S(H) are reconfigurable because we can always

move vertices in W \W ′ into ones in W ′ \W one by one. The second one is that

for any two distinct hub sets Ha and Hb, if there exist Va ∈ S(Ha) and Vb ∈ S(Hb)

such that |Va \ Vb| = |Vb \ Va| ≤ 1 (this means that Va and Vb are reconfigurable by

one reconfiguration step, or Va = Vb), then all pairs of solutions in S(Ha) ∪ S(Hb)

are reconfigurable.

Based on these observations, we construct an auxiliary graph A for a given instance

(G, Vs, Vt), as follows. Each node in A corresponds to a set H of i vertices (hubs) in

the input graph G such that |C(H)| ≥ j; we represent a node in A simply by the

corresponding hub set H. Two nodes Ha and Hb are adjacent in A if there exist

Va ∈ S(Ha) and Vb ∈ S(Hb) such that |Va \ Vb| = |Vb \ Va| ≤ 1. We first prove the

following lemma.
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Lemma 3.1 Let Hs and Ht be any two nodes in A such that Vs ∈ S(Hs) and

Vt ∈ S(Ht), respectively. Then, there is a reconfiguration sequence between Vs and

Vt if and only if there is a path in A between Hs and Ht.

Proof. We first suppose that there is a path P = ⟨Hs = H0, H1, . . . , Hℓ′ = Ht⟩

in A between Hs and Ht. We know that any two consecutive nodes Hi and Hi+1

in P are adjacent in A. Then, as we mentioned above, all pairs of solutions in

S(Hi)∪ S(Hi+1) are reconfigurable. Since Vs ∈ S(Hs) and Vt ∈ S(Ht), we conclude

that there is a reconfiguration sequence between Vs and Vt.

We now suppose that there exists a reconfiguration sequence R = ⟨Vs =

V0, V1, . . . , Vℓ = Vt⟩ between Vs and Vt. For each solution Vi in R except for Vs

and Vt, we choose an arbitrary node Hi in A which satisfies Vi ∈ S(Hi). Consider

any two consecutive solutions Vi and Vi+1 in R. Then, by the construction of A,

the chosen nodes Hi and Hi+1 are adjacent in A (or sometimes Hi = Hi+1) because

|Vi \ Vi+1| = |Vi+1 \ Vi| = 1. In this way, we can ensure the existence of a desired

path in A. 2

Our algorithm first constructs an auxiliary graph A, and checks whether or not

there is a path between Hs and Ht; the correctness of the algorithm follows directly

from Lemma 3.1. However, it is not so obvious how to construct the auxiliary graph

A in the desired running time. To this end, we give the following lemma.

Lemma 3.2 Any two nodes Ha and Hb in A are joined by an edge in A if and only

if all the following four conditions hold:

(a) |C[Ha] ∩ C[Hb]| ≥ i+ j − 1;

(b) |Ha \ C[Hb]| ≤ 1;

(c) |Hb \ C[Ha]| ≤ 1; and

(d) |Ha ∪Hb| ≤ i+ j + 1.

Proof. Suppose that two nodes Ha and Hb in A are joined by an edge in A.
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Then, there exist two solutions Va ∈ S(Ha) and Vb ∈ S(Hb) such that |Va \ Vb| =

|Vb \ Va| ≤ 1. Let V ′ = Va ∩ Vb. Notice that we have V ′ ⊆ C[Ha] ∩ C[Hb], because

both Va ⊆ C[Ha] and Vb ⊆ C[Hb] hold. Then, Condition (a) holds because |V ′| ≥

|Va| − 1 = i + j − 1. Furthermore, we observe that |Ha \ C[Hb]| ≤ |Ha \ V ′| ≤

|Va \ V ′| ≤ 1, and hence we obtain Condition (b). Similarly, Condition (c) holds,

too. Finally, Condition (d) holds, because we observe that Ha ∪Hb ⊆ Va ∪ Vb and

|Va ∪ Vb| ≤ i+ j + 1. In this way, we have all the four conditions.

Conversely, suppose that all four conditions hold. We first prove the following

claim, and then use it to complete the proof of the if direction.

Claim There exists a vertex subset V ′ ⊆ C[Ha] ∩C[Hb] of size i+ j − 1 such that

|Ha \ V ′| ≤ 1 and |Hb \ V ′| ≤ 1.

Proof of the claim. By Condition (b) we know that at most one vertex in Ha is not

contained in C[Hb]. Let va ∈ Ha \C[Hb] if |Ha \C[Hb]| = 1, and otherwise va is any

vertex in Ha \Hb; recall that Ha ̸= Hb and |Ha| = |Hb| = i, and hence Ha \Hb ̸= ∅.

Let H ′
a = Ha \ {va}. Then, H ′

a ⊆ C[Hb]. Furthermore, since H ′
a ⊆ Ha ⊆ C[Ha],

we have H ′
a ⊆ C[Ha] ∩ C[Hb]. Similarly, let vb ∈ Hb \ C[Ha] if |Hb \ C[Ha]| = 1,

and otherwise vb is any vertex in Hb \ Ha. Let H ′
b = Hb \ {vb}; then we have

H ′
b ⊆ C[Ha] ∩ C[Hb]. Therefore, H ′

a ∪ H ′
b ⊆ C[Ha] ∩ C[Hb], and by Condition (d)

we have |H ′
a ∪ H ′

b| ≤ i + j − 1. Thus, by Condition (a) we can choose a vertex

subset V ′ ⊆ C[Ha] ∩ C[Hb] of size exactly i + j − 1 which contains all vertices in

H ′
a ∪H ′

b. (Note that V ′ may contain va and vb, due to the cardinality constraint.)

Since V ′ contains all vertices in H ′
a ∪H ′

b, we have |Ha \ V ′| ≤ 1 and |Hb \ V ′| ≤ 1 as

claimed. ⊓⊔

We now prove the if direction of the lemma. It suffices to prove that there exist

Va ∈ S(Ha) and Vb ∈ S(Hb) such that |Va \ Vb| = |Vb \ Va| ≤ 1; then two nodes Ha

and Hb in A are joined by an edge in A. Let v′a be the unique vertex in Ha \ V ′ if

|Ha\V ′| = 1, and otherwise v′a is any vertex in C(Ha)\V ′; recall that |Ha∪C(Ha)| ≥
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i + j and hence C(Ha) \ V ′ ̸= ∅. We define Va = V ′ ∪ {v′a}. Then, Va contains all

hubs in Ha. Furthermore, since Va ⊆ C[Ha], every vertex in Va\Ha is adjacent to all

hubs in Ha. Therefore, Va contains an (i, j)-biclique with the hub set Ha, and hence

we have Va ∈ S(Ha). Similarly, let v′b be the unique vertex in Hb \V ′ if |Hb \V ′| = 1,

and otherwise v′b is any vertex in C(Hb) \ V ′. We define Vb = V ′ ∪ {vb}, and have

Vb ∈ S(Hb). Then, |Va \ Vb| = |Vb \ Va| ≤ 1 holds, as required. 2

Finally, we give the following lemma, which completes the proof of Theorem 3.14.

Lemma 3.3 The algorithm runs in O(n2i+1) time.

Proof. We first construct an auxiliary graph A. Let n be the number of vertices in

G. The number of choices (subsets) of i vertices is O(ni). For each choice H, we can

check in O(i ·n) time whether |C(H)| ≥ j or not. Thus we can construct the vertex

set of A in O(ni+1) time. For any two nodes Ha and Hb in A, we can determine in

O(i · n) time whether there is an edge between them using Lemma 3.2. In this way,

we can construct the edge set of A in O(n2i+1) time, since the size of the vertex set

of A is in O(ni).

We finally check in O(V (A) + E(A)) = O(n2i) time whether there is a path

between Hs and Ht by breadth-first search on A. In this way, we can conclude that

our algorithm runs in O(n2i+1) time. 2

3.4.4 Diameter-two graph

In this subsection, we consider the property “a graph has diameter at most two.”

Note that the induced and spanning versions are the same for this property.

Theorem 3.15 Both induced and spanning versions under TS are PSPACE-

complete for the property “a graph has diameter at most two.”

Proof. Since the induced version and the spanning version are the same for this

property, it suffices to show PSPACE-hardness only for the induced version. We give



46 Chapter 3 Reconfiguration of fundamental graphs

(a) G (b) G’

v
1

v
2

v
3

v
4

v
5

v
6

l
1

l
5

l
2

l
4

r
1

r
2 
= r

r
4

r
5

r
6

l
3

l
6

r
3

x

Figure 3.6: Reduction for the property “a graph has diameter at most two.” The

vertices of Vs in G and of V ′
s in G′ are depicted by gray vertices, where rx = r2.

a polynomial-time reduction from the clique reconfiguration problem, which

is the induced version (also the spanning version) of subgraph reconfiguration

for the property “a graph is a clique.” This problem is known to be PSPACE-

complete under both TJ and TS [19]; we give a reduction from the problem under

TS.

Suppose that (G, Vs, Vt) is an instance of clique reconfiguration under TS

such that |Vs| = |Vt| ≥ 2; otherwise it is a trivial instance. Then, we construct a

corresponding instance (G′, V ′
s , V

′
t ) of the induced version under TS. Let V (G) =

{v1, v2, . . . , vn}, where n = |V (G)|. We form G′ by making two copies of G and

adding edges between corresponding vertices of the two graphs. (See Figure 3.6.)

More formally, the vertex set V (G′) is defined as V (G′) = L ∪ R, where L =

{li | vi ∈ V (G)} and R = {ri | vi ∈ V (G)}, and the edge set E(G′) is defined as

E(G′) = El∪Er∪Ec, where El = {lilj | vivj ∈ E(G)}, Er = {rirj | vivj ∈ E(G)} and

Ec = {liri | vi ∈ V (G)}. For each i ∈ {1, 2, . . . , n}, we call li and ri corresponding

vertices, and liri ∈ Ec a connecting edge. For a vertex subset V ′ ⊆ V (G′), we say

that a vertex li ∈ V ′ ∩ L (resp. rj ∈ V ′ ∩ R) is exposed in V ′ if the corresponding

vertex ri ∈ R (resp. lj ∈ L) does not belong to V ′. We construct V ′
s and V ′

t so that

each of them has exactly one exposed vertex, as follows. Let x and y be any indices

such that vx ∈ Vs and vy ∈ Vt, respectively. Then, we let V
′
s = {li, ri | vi ∈ Vs}\{rx}

and V ′
t = {li, ri | vi ∈ Vt} \{ry}. Note that lx and ly are the unique exposed vertices
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in V ′
s and V ′

t , respectively. Since Vs and Vt form cliques in G, both G′[V ′
s ] and G′[V ′

t ]

have diameter at most two. We have thus constructed our corresponding instance

in polynomial time. The following claim completes the proof of the theorem.

Claim (G, Vs, Vt) of clique reconfiguration is a yes-instance if and only if

the corresponding instance (G′, V ′
s , V

′
t ) is a yes-instance.

We first prove the only-if direction of the claim. Suppose that there exists a

reconfiguration sequence ⟨Vs = V0, V1, . . . , Vℓ = Vt⟩ of cliques in G. Then, we show

that V ′
s is reconfigurable into V ′

t by induction on ℓ. If ℓ = 0 and hence Vs = Vt, then

we can obtain V ′
t from V ′

s by exchanging ry in V ′
s with rx (or V ′

s = V ′
t already holds).

We then consider the case where ℓ ≥ 1. Let V ′
1 be the solution obtained from V1 in

the same way that we obtained V ′
s from Vs, i.e., for any index z such that vz ∈ V1, let

V ′
1 = {li, ri | vi ∈ V1} \ {rz}. Then, by the induction hypothesis, we know that there

exists a reconfiguration sequence between V ′
1 and V ′

t . Thus it suffices to show that

we can reconfigure V ′
s = V ′

0 into V ′
1 . Let p and q be indices such that {vp} = V0 \ V1

and {vq} = V1 \ V0, respectively. Note that vp and vq are adjacent in G, because

two cliques V0 and V1 appear consecutively in the reconfiguration sequence under

TS. Then we consider two vertex subsets:

V ′
a = {li, ri | vi ∈ V0} \ {rp} = V ′

0 ∪ {rx} \ {rp}; and

V ′
b = {li, ri | vi ∈ V1} \ {rq} = V ′

1 ∪ {rz} \ {rq}.

We observe that rx and rp are adjacent in G′ if rx ̸= rp, because both vx and vp

are contained in the clique V0. Thus, we can reconfigure V ′
0 into V ′

a (or already

V ′
0 = V ′

a if rx = rp). Similarly, we observe that rz and rq are adjacent in G′, and we

can reconfigure V ′
1 into V ′

b (or already V ′
1 = V ′

b if rz = rq); since reconfiguration is
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reversible, we can also reconfigure V ′
b into V ′

1 . Furthermore, it holds that

V ′
b = {li, ri | vi ∈ V1} \ {rq}

= {li, ri | vi ∈ V0} ∪ {lq, rq} \ {lp, rp, rq}

= V ′
a ∪ {lq} \ {lp}.

Since vp and vq are adjacent in G, lp and lq are adjacent in G′. Thus, we can

reconfigure V ′
a into V ′

b . In this way, we obtain from V ′
0 , V

′
a, V

′
b , V

′
1 (by removing

redundant ones if needed) the reconfiguration sequence from V ′
0 and V ′

1 .

We now prove the if direction of the claim. Suppose that there exists a reconfigu-

ration sequence V ′ = ⟨V ′
s = V ′

0 , V
′
1 , . . . , V

′
ℓ = V ′

t ⟩ of solutions (vertex subsets) whose

induced subgraphs are of diameter at most two. We show that any solution V ′
i in

V satisfies the following two conditions: (a) V ′
i contains exactly one exposed vertex;

and (b) either V ′
i ∩ L or V ′

i ∩ R forms a clique of size |Vs| = |Vt| in G′. To see this,

it suffices to show that if V ′
i−1 satisfies both Conditions (a) and (b), then V ′

i also

satisfies them; recall that V ′
s = V ′

0 initially satisfies the two conditions. Consider

the case where V ′
i−1 has the unique exposed vertex in the side L, say lp ∈ V ′

i−1, and

hence rp ̸∈ V ′
i−1; the other case is symmetric. Because G′[V ′

i ] must have diameter

at most two, we know that V ′
i is obtained from V ′

i−1 by one of the following three

moves: (1) a token on a vertex r ∈ V ′
i−1 ∩ R is moved to rp; (2) the token on lp is

moved to its corresponding vertex rp; or (3) the token on lp is moved to a vertex in

L\V ′
i−1 which is adjacent to all vertices V ′

i−1∩L. Notice that any other move makes

the resulting graph have diameter more than two. For each of the three moves, we

observe that the resulting subgraph V ′
i satisfies Conditions (a) and (b). Then, by

Condition (b), each V ′
i ∈ V ′ induces a clique of size |Vs| = |Vt| in either L or R, and

we can obtain a desired sequence of cliques between Vs and Vt. 2
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Chapter 4 Reconfiguration of

Steiner trees

In this chapter, we study the complexity of reconfiguration problems of Steiner trees

under several adjacency relations. In Section 4.1, we give formal definitions for the

reconfiguration problems of Steiner trees which we deal with in this chapter. In Sec-

tion 4.2, we introduce another reconfiguration problem with the concept “Steiner

sets;” we call the problem the auxiliary problem. This problem play important

roles in this chapter. Specifically, the auxiliary problem can be reduced from/to the

reconfiguration problem of Steiner trees under several adjacency relations without

changing an input graph. We thus study in Section 4.2 the complexity of the aux-

iliary problem. In Section 4.3 to 4.6, we study the reconfiguration problem under

each adjacency relations.

4.1 Definition of problems and preliminaries

We formally define the reconfiguration problems of Steiner trees. Recall that for

an unweighted graph G and a vertex subset S ⊆ V (G), called a terminal set, a

Steiner tree of G for S is a subtree of G which contains all vertices in S. A Steiner

tree of G for S is minimum if it has the minimum number of edges among all Steiner

trees of G for S. Note that minimum Steiner trees can be seen as a generalization of

shortest paths, because any shortest path in G between two vertices s and t forms

a minimum Steiner tree of G for S = {s, t}. We use the terms node for Steiner trees

and vertex for input graphs.

Let G be an input graph and S be an input terminal set. Then, feasible solu-
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tions are defined as all Steiner trees of G for S, and we consider the following four

adjacency relations:

• Vertex exchange (VE, for short): We say that two Steiner trees T and T ′ of G

for S are adjacent under VE if there exist two vertices v ∈ V (T ) and v′ ∈ V (T ′)

such that;

- V (T ) \ {v} = V (T ′) \ {v′}.

• Local vertex exchange (LVE, for short): We say that two Steiner trees T and

T ′ of G for S are adjacent under LVE if there exist two vertices v ∈ V (T ) and

v′ ∈ V (T ′) such that;

- T [V (T ) \ {v}] = T ′[V (T ′) \ {v′}].

• Local vertex exchange without changing neighbors (LVE-N for short):

We say that two Steiner trees T and T ′ of G for S are adjacent under LVE-N if

there exist two vertices v ∈ V (T ) and v′ ∈ V (T ′) such that;

- T [V (T ) \ {v}] = T ′[V (T ′) \ {v′}]; and

- NT (v) = NT ′(v′).

• Edge exchange (EE, for short): We say that two Steiner trees T and T ′ of G

for S are adjacent under EE if there exist two edges e ∈ E(T ) and e′ ∈ E(T ′)

such that;

- E(T ) \ {e} = E(T ′) \ {e′}.

Consider each adjacency relation R in VE, LVE, LVE-N and EE and two Steiner trees

T and T ′. Then we write T
R↔ T ′ if they are adjacent in the solution space under R,

and T
R↭ T ′ if there exists a reconfiguration sequence in the solution space under

R. T LVE-N↭ T ′.

Then, we deal with the reachability variant of reconfiguration problems whose

solution spaces are defined above; we use the terms Steiner tree reconfig-

uration for the reconfiguration problem with the solution space, and denote by

Reach-STR the reachability variant of Steiner tree reconfiguration. More
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specifically, for an adjacency relation R ∈ {VE, LVE, LVE-N,EE}, we consider the

following problem: We are given a graph G, a terminal set S ⊆ V (G), and two

Steiner trees T0 and Tr, then asked to determine whether T0
R↭ Tr or not.

We denote by a 4-tuple (G,S, T0, Tr) an instance of the problems. In this chapter,

we assume without loss of generality that |V (T0)| = |V (Tr)| (and hence |E(T0)| =

|E(Tr)|) holds; otherwise it is clearly a no-instance.

4.2 Auxiliary problem: reconfiguration of Steiner

sets

In this section,we first introduce the concept of “Steiner sets” and their reconfigu-

ration. Then, we study the computational complexity of the problem that determine

the existence of the reconfiguration sequence of Steiner sets. We again note that

Reach-STR under several adjacency relations can be reduced from/to this problem

with Steiner sets without changing an input graph.

4.2.1 Steiner sets and their reachability problem

For a graph G and a terminal set S, a Steiner set of G for S is a vertex subset

F ⊆ V (G) such that S ⊆ F and G[F ] is connected. A Steiner set F of G for S

is minimum if the cardinality of F is minimum among all Steiner sets of G for S.

On the other hand, a Steiner set F of G for S is minimal if F contains no Steiner

set other than F itself. Notice that if a subtree T of G is a Steiner tree for S, then

V (T ) is a Steiner set of G for S. Conversely, if F is a Steiner set of G for S, then

any spanning tree of G[F ] is a Steiner tree for S. In particular, a Steiner tree T is

minimum if and only if a Steiner set V (T ) is minimum.

For two Steiner sets F and F ′ of G for S, a sequence ⟨F = F0, F1, . . . , Fℓ = F ′⟩

of Steiner sets of G for S is called a Steiner set sequence between F and F ′ if

|Fi \ Fi+1| = |Fi+1 \ Fi| = 1 holds for each i ∈ {0, 1, . . . , ℓ− 1}. We write F ↔ F ′ if
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|F \ F ′| = |F ′ \ F | = 1, and F ↭ F ′ if there exists a Steiner set sequence between

F and F ′. We say that two Steiner sets F and F ′ are reachable if F ↭ F ′. Note

that all Steiner sets in the sequence have the same cardinality.

Then we study in this section the following problem; we call the problem the

auxiliary problem: We are given a graph G, a terminal set S ⊆ V (G), and two

Steiner sets F0 and Fr, then asked to determine whether there exists a Steiner set

sequence between them. We denote by a triple (G,S, F0, Fr) an instance of the

auxiliary problem.

4.2.2 PSPACE-hardness for planar graphs.

In this subsection, we consider planar graphs, and give the following theorem.

Theorem 4.1 The auxiliary problem is PSPACE-hard for planar graphs even if two

given Steiner sets are minimum.

To prove the theorem, we construct a polynomial-time reduction from the mini-

mum vertex cover reconfiguration (MVCR, for short) problem.

Recall that a vertex cover C of a graph G is a vertex subset of G which contains at

least one of the two endpoints of every edge in G. A vertex cover C of G is minimum

if the cardinality of C is minimum among all vertex covers of G. Then a solution

space of MVCR is defined as follows: Feasible solutions are defined as all minimum

vertex covers of an input graph, and there is an edge between two minimum vertex

covers C and C ′ if they are adjacent under TJ (i.e. |C \ C ′| = |C ′ \ C| = 1 holds).

We here consider the reachability variant of MVCR, that is, we are given a graph G

and two minimum vertex covers C0 and Cr of G, then asked to determine whether

there exists a reconfiguration sequence between them in the solution space. We

denote by a triple (G,C0, Cr) an instance of MVCR. This problem is known to be

PSPACE-complete for planar graphs [16].1

1Precisely, Hearn and Demaine [16] showed the PSPACE-completeness for the recon-
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Reduction. Let (G′, C ′
0, C

′
r) be a given instance of MVCR such that G′ is a planar

graph. We fix a planar embedding of G′ arbitrarily, and denote by face(G′) the set

of all faces (including the outer face) of G′. We construct the corresponding instance

(G,S, F0, Fr) of the auxiliary problem, as follows. (See Figure 4.1 as an example.)

We first construct the corresponding graph G from G′. For each face f ∈ face(G′),

we add a new vertex wf , and join wf and all vertices on the boundary of f by adding

new edges. Then, we subdivide each original edge e = uv ∈ E(G′) by adding a new

vertex we. Let G be the resulting graph. Then, G is a planar graph.

We then define the corresponding terminal set S as the set of all newly added

vertices, that is, S = {wf | f ∈ face(G′)} ∪ {we | e ∈ E(G′)}; each wf is called a

face-terminal, while each we is called an edge-terminal.

We finally define the corresponding minimum Steiner sets F0 and Fr as the set

C ′
0 ∪ S and C ′

r ∪ S, respectively; we will prove later in Lemma 4.1 that both F ′ and

F ′ form minimum Steiner sets of G for S.

This completes the construction of (G,S, F0, Fr). The construction can be done

in polynomial time.

Correctness. We start with showing that both F and F ′ form minimum Steiner

sets of G for S.

Lemma 4.1 Let C ′ be a vertex subset of V (G′). Then, C ′ is a minimum vertex

cover of G′ if and only if C ′ ∪ S is a minimum Steiner set of G for S.

Proof. It suffices to show that C ′ is a (not necessary minimum) vertex cover of G′

if and only if C ′ ∪ S is a (not necessary minimum) Steiner set of G for S.

We first prove the if direction. Suppose that F = C ′∪S is a Steiner set of G for S.

For each edge e ∈ E(G′), the corresponding edge-terminal we ∈ S is contained in F .

Then, we know that at least one of the two adjacent vertices of we is also contained

figuration of maximum independent sets. However, it immediately yields the PSPACE-
completeness of MVCR.
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(a) G′ (b) G

Figure 4.1: (a) An input graph G′ of MVCR with a minimum vertex cover C ′,

where the vertices in C ′ are depicted by gray vertices, and (b) its corresponding

planar graph G of the auxiliary problem together with the minimum Steiner set to

C ′, where face-terminals are depicted by triangles, edge-terminals by squares, and

connected subgraph corresponding to the minimum Steiner set by thick lines.

(a) H′ (b) G

w
p′

′

w
q

w
p

P

w
q

′

Figure 4.2: (a) The dual graph of the graph G in Figure 4.1(a) with a path P ′

between w′
p and w′

q depicted by thick lines, and (b) a walk between wp and wq

corresponding to P ′ depicted by thick lines.

in F , since |F \ {we}| > 0 and G[F ] is connected. Furthermore, it is observed that

such a vertex is in C ′. Therefore, we can conclude that for each edge e ∈ E(G′), C ′

contains at least one of the two endpoints of e, and hence C ′ is a vertex cover of G′.

We thus prove the only-if direction. Suppose that C ′ is a vertex cover of G′. Then,

it suffices to show that G[C ′ ∪ S] is connected, since S is clearly contained in the

vertex subset C ′ ∪ S. To this end, we show the following three claims:

(A) each edge-terminal is adjacent to at least one vertex in C ′ on G;

(B) each vertex in C ′ is adjacent to at least one face-terminal on G; and
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(C) for any pair of two face-terminals, there exists a walk between them in G[C ′∪

S].

We first consider the claim (A). Since C ′ is a vertex cover of G′, C ′ contains at least

one of the two endpoints of every edge in G′. We thus know that C ′ contains at

least one of the two adjacent vertices of each edge-terminal in G, and hence the

claim (A) follows. The claim (B) can be easily obtained, since any vertex in C ′

(more specifically, V (G′)) belong to at least one face of G′. We finally consider the

claim (C). Let wp, wq be any face-terminals in G. Then we show that there exists a

walk between wp and wq on G. (See Figure 4.2 as an example.) Suppose that H ′

be the dual graph of G′. We notice that each face-terminal in G corresponds to a

vertex in H ′. Let w′
p and w′

q be the vertices in H ′ which correspond to wp and wq,

respectively. Since the dual graph H ′ is connected, there is a path between w′
p and

w′
q on H ′; we denote such a path by the sequence P ′ = ⟨w′

p = w′
0, w

′
1, . . . , w

′
ℓ′ = w′

q⟩

of vertices in H ′. Then we show in the following that for any consecutive vertices

w′
i and w′

i+1 in P ′, there exists a path on G between the face-terminals wi and wi+1

corresponding to w′
i and w′

i+1. Since H ′ is the dual graph of G′, there exists an

one-to-one correspondence between E(H ′) and E(G′). Therefore, there exists an

edge e′ in G′ which corresponds to the edge w′
iw

′
i+1 in H ′. Then at least one of the

two endpoints of e′ is contained in C ′; let u′ ∈ C ′ be such a endpoint of e′. We

then know from the construction of G that there exist two edges wiu
′ and u′wi+1 in

G, and hence there exists a path between wi and wi+1 on G. In this way, we can

conclude that there exists a walk between wp and wq on G. Therefore, the claim

(C) follows. 2 Lemma 4.1 ensures the existence of two minimum Steiner trees T0

and Tr in our reduction.

The following lemma completes the proof of Theorem 4.1.

Lemma 4.2 (G′, C ′
0, C

′
r) is a yes-instance of MVCR if and only if (G,S, F0, Fr) is

a yes-instance of the auxiliary problem.
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Proof. First, suppose that there exists a Steiner set sequence ⟨F0 = F0, F1, . . . , Fℓ =

Fr between F0 and Fr. Then, Lemma 4.1 implies that the sequence ⟨C ′
0 = F0\S, F1\

S, . . . , Fℓ \ S = C ′
r⟩ is a vertex cover sequence on G′ between C ′

0 and C ′
r.

Second, suppose that there exists a vertex cover sequence ⟨C ′
0, C

′
1, . . . , C

′
ℓ′ = C ′

r⟩

between C ′
0 and C ′

r. Then, Lemma 4.1 implies that the sequence ⟨F0 = C ′
0 ∪S,C ′

1 ∪

S, . . . , C ′
ℓ′ ∪ S = Fr⟩ is a Steiner set sequence on G between F0 and Fr. 2

4.2.3 PSPACE-hardness for split graphs.

In this subsection, we consider split graphs, and give the following theorem.

Theorem 4.2 The auxiliary problem is PSPACE-hard for split graphs even if two

given Steiner sets are minimum.

To prove the lemma, we again construct a polynomial-time reduction from MVCR.

Reduction. Let (G′, C ′
0, C

′
r) be an instance of MVCR. We assume without loss

of generality that |E(G)| ≥ 2; otherwise, the instance is a trivial instance. Then

we construct the corresponding instance (G,S, F0, Fr) of the auxiliary problem, as

follows. (See Figure 4.3 as an example.) We first construct a graph G. Let K be a

complete graph with V (K) = V (G′). For the edge set E(G′) = {e1, e2, . . . , e|E(G′)|},

we consider an edge less graph I with V (I) = {w1, w2, . . . , w|E(G′)|}; each vertex wi

in V (I) corresponds to an edge ei in E(G′). For each edge ei = vpvq ∈ E(G′), we add

two edges joining wi ∈ V (I) and vp, vq ∈ V (K). This completes the construction of

G; notice that G is a split graph. We then define S as V (I). We finally define F0 as

C ′
0∪S, and Fr as C

′
r∪S; we will prove later in Lemma 4.3 that both F ′ and F ′ form

minimum Steiner sets of G for S. This completes the construction of (G,S, T0, Tr).

Correctness. The proof of the correctness is almost same as that for planar graphs

in Section 4.2.2. We start with showing the following lemma, which corresponds to
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Figure 4.3: (a) An example of an input graph G′ of MVCR with a vertex cover

C ′ represented by colored vertices, and (b) its corresponding split graph G of the

auxiliary problem with the Steiner set corresponding to C ′, where terminals are

depicted by squares, and the connected subgraph corresponding to the Steiner set

by thick lines.

Lemma 4.1.

Lemma 4.3 Let G′ be a graph with at least two edges and C ′ be any vertex subset

of V (G′). Then C ′ is a minimum vertex cover of G′ if and only if C ′∪S = C ′∪V (I)

is a minimum Steiner set of G for S.

Proof. It suffices to show that C ′ is a (not necessary minimum) vertex cover of G′

if and only if C ′ ∪ S is a (not necessary minimum) Steiner set of G for S.

We first prove the only-if direction. Suppose that C ′ ⊆ V (G′) is a vertex cover

of G′. To prove C ∪ V (I) is a Steiner set for S = V (I), it suffices to show that

G[C ∪ V (I)] is connected. For each edge ei = vjvk ∈ E(G′), we have vj ∈ C or

vk ∈ C. Since G[C] forms a clique and G has two edges wivj and wivk for the

vertex wi ∈ V (G) corresponding to ei ∈ E(G′), we thus obtain that G[C ∪ V (I)] is

connected.

We then prove the if direction. For a vertex subset C ⊆ V (G′), suppose that

C ∪ V (I) is a Steiner set for S = V (I). Since V (I) forms an independent set of G,

every vertex wi ∈ V (I) must be adjacent to at least one vertex vj ∈ C in F . By

the construction of the graph G, the edge ei in G′ (corresponding to wi ∈ V (G)) is

incident to vj ∈ V (G′). Thus, C forms a vertex cover of G′. 2



58 Chapter 4 Reconfiguration of Steiner trees

Lemma 4.3 ensures the existence of two minimum Steiner trees T0 and Tr in our

reduction. The following lemma completes the proof of Theorem 4.2; the proof is

omitted, since it is almost same as that for Lemma 4.2.

Lemma 4.4 (G′, C ′
0, C

′
r) is a yes-instance of MVCR if and only if (G,S, F0, Fr) is

a yes-instance of the auxiliary problem.

4.2.4 Linear-time algorithm for cographs

In this subsection, we consider cographs, and give the following theorem.

Theorem 4.3 Suppose that G is a cograph and S ⊆ V (G) is a terminal set of G.

Then, for any two Steiner sets of G for S with the same size, there is a Steiner set

sequence between them on G. Thus, the auxiliary problem is linear-time solvable for

cographs.

To prove the theorem, we use the following proposition that holds for any cograph.

Proposition 1 Any connected cograph G has at most one cut-vertex.

Proof. We first claim that any cut-vertex vc in G is adjacent to all vertices in

V (G) \ {vc}. Suppose for a contradiction that there exists a vertex w ∈ V (G) \ {vc}

which is not adjacent to vc. We choose such a non-adjacent vertex w which is closest

to vc. (See Figure 4.4.) Then, G has a path ww′vc, where w′ is adjacent to both

w and vc. Since vc is a cut-vertex of G, the induced subgraph G \ {vc} consists

of at least two connected components; we denote by G1 the connected component

containing both w and w′, and by G2 an arbitrary connected component in G \ {vc}

other than G1. Let u be a vertex in V (G2) which is adjacent to vc. Then, u is

adjacent to neither w nor w′, and hence G[{w,w′, vc, u}] is a path of four vertices.

This contradicts the assumption that G is a cograph.

We now prove the proposition. Suppose for a contradiction that a connected

cograph G has more than one cut-vertices, say uc, vc ∈ V (G). However, G \ {uc}
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Figure 4.4: Illustration for the proof of Proposition 1.

is connected, because vc is adjacent to all vertices in V (G) \ {vc} as we mentioned

above; a contradiction. 2

We then prove the theorem 4.3.

Proof of Theorem 4.3. Let Fp and Fq be any two Steiner sets for S such that

|Fp| = |Fq| and k = |Fp \ Fq| = |Fq \ Fp|. We prove the theorem by induction on k.

If k ≤ 1, then we have either Fp = Fq or Fp ↔ Fq. Therefore, Fp ↭ Fq holds for

k ≤ 1.

Consider the case where k ≥ 2. Since G[Fq] is connected, there exists at least one

vertex u in Fq \Fp which is adjacent to a vertex in Fp ∩Fq. Notice that Fp ∩Fq ̸= ∅

holds, because S ⊆ Fp∩Fq and S ̸= ∅. Since |Fp\Fq| = k ≥ 2, Proposition 1 implies

that Fp \ Fq contains at least one vertex w which is not a cut-vertex of G[Fp]. Note

that w /∈ S holds, because S ⊆ Fp ∩ Fq. Let F ′
p = (Fp \ {w}) ∪ {u}, then F ′

p is a

Steiner set for S. Therefore, we have Fp ↔ F ′
p. Since |F ′

p \ Fq| = |Fq \ F ′
p| = k − 1,

by the induction hypothesis F ′
p ↭ Fq holds. Therefore, we can conclude that

Fp ↔ F ′
p ↭ Fq. ⊓⊔

4.2.5 Linear-time algorithm for interval graphs

In this subsection, we consider interval graphs, and give the following theorem.

Theorem 4.4 Suppose that G is an interval graph and S ⊆ V (G) is a terminal

set of G. Then, for any two Steiner sets of G for S with the same size, there is a

Steiner set sequence between them on G. Thus, the auxiliary problem is linear-time
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solvable for interval graphs.

We prove the theorem by giving two lemmas. We first give the following lemma,

which holds for not only interval graphs but also any graph.

Lemma 4.5 For a graph G and a terminal set S ⊆ V (G), let Fp and Fq be any two

Steiner sets for S such that |Fp| = |Fq| and Fp ∩ Fq ̸= ∅. Then, Fp ↭ Fq if there

exists a Steiner set F such that F ⊆ Fp ∩ Fq.

Proof. Suppose that there exists a Steiner set F such that F ⊆ Fp∩Fq; we take the

maximal one, that is, F ∪ {w} is not a Steiner set for any vertex w ∈ (Fp ∩ Fq) \ F .

Note that, since F ⊆ Fp ∩ Fq, we have |Fp \ F | = |Fq \ F |. We prove the lemma by

induction on k = |Fp \F | = |Fq \F |. If k = 0, then we have Fp = F = Fq and hence

Fp ↭ Fq.

Consider the case where k ≥ 1. (See Figure 4.5(a).) We consider any vertex

ordering u1, u2, . . . , uk of Fp \ F such that G[F ∪ {u1, u2, . . . , ui}] is connected for

each i ∈ {1, 2, . . . , k}; such a vertex ordering always exists because G[Fp] = G[F ∪

{u1, u2, . . . , uk}] is connected. Then, since F is maximal, we know that u1 ∈ Fp \

(Fp ∩Fq) = Fp \Fq. Similarly, consider any vertex ordering w1, w2, . . . , wk of Fq \F

such that G[F ∪ {w1, w2, . . . , wi}] is connected for each i ∈ {1, 2, . . . , k}; we know

that w1 ∈ Fq \ Fp. Then, let F ′
p = (Fp ∪ {w1}) \ {uk}, and let F ′ = F ∪ {w1}, as

illustrated in Figure 4.5(b). To apply the induction hypothesis, we now claim that

(a) F ′
p is a Steiner set for S such that |F ′

p| = |Fq|; and

(b) F ′ is a Steiner set for S such that F ′ ⊆ F ′
p∩Fq and |F ′

p \F ′| = |Fq \F ′| = k−1.

Then, by applying the induction hypothesis, we have F ′
p ↭ Fq and hence Fp ↔

F ′
p ↭ Fq holds.

We first prove Claim (a). Since F is a Steiner set for S and uk ∈ Fp \F , we know

that uk ̸∈ S. Since S ⊆ Fp, we thus have S ⊆ (Fp ∪ {w1}) \ {uk} = F ′
p. In addition,

since G[Fp] is connected and F ⊆ Fp, the choice of uk and w1 implies that G[F ′
p] is

connected. Furthermore, |F ′
p| = |Fp| = |Fq|. We thus verified that Claim (a) holds.
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Figure 4.5: Illustration for the proof of Lemma 4.5.

We then prove Claim (b). Since F is a Steiner set for S, by the choice of w1 we

obtain that F ′ = F ∪ {w1} (⊇ S) is a Steiner set for S, too. Since uk /∈ F and

F ⊆ Fp ∩ Fq, we have F ⊆ (Fp \ {uk}) ∩ Fq ⊂ F ′
p ∩ Fq. In addition, since w1 is

contained in both F ′
p and Fq, we can conclude that F ′ = F ∪{w1} ⊆ F ′

p∩Fq. Then,

since w1 ∈ Fq \ Fp, we have |F ′
p \ F ′| = |Fq \ F ′| = k − 1. 2

The following lemma completes Theorem 4.4 by combining it with Lemmas 4.5.

Lemma 4.6 For an interval graph G and a terminal set S ⊆ V (G), let Fp and Fq

be any two Steiner sets for S such that |Fp| = |Fq|. Then, there always exist two

Steiner sets F ′
p and F ′

q such that Fp ↭ F ′
p, Fq ↭ F ′

q, and there exists a Steiner set

F ′ for S such that F ′ ⊆ F ′
p ∩ F ′

q.

Proof. Let G be an interval graph with V (G) = {v1, v2, . . . , vn}, and let I =

{I1, I2, . . . , In} be an interval representation of G such that Ii corresponds to vi ∈

V (G) for each i ∈ {1, 2, . . . , n}. For an interval Ii ∈ I, we denote by l(Ii) and r(Ii)

the left and right coordinates of Ii, respectively; we sometimes call the values l(Ii)
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and r(Ii) the l-value and r-value of Ii, respectively. We may assume without loss

of generality that all l-values and r-values are distinct. For notational convenience,

we sometimes identify a vertex vi ∈ V with its corresponding interval Ii ∈ I, and

simply write l(vi) = l(Ii) and r(vi) = r(Ii). Let sleft be the terminal in S which

has the minimum l-value, that is, l(sleft) = min{l(s) | s ∈ S}, while let sright be the

terminal in S which has the maximum r-value, that is, r(sright) = max{r(s) | s ∈ S}.

Note that sleft = sright may hold.

We prove the lemma by constructing two Steiner sets F ′
p and F ′

q such that Fp ↭

F ′
p, Fq ↭ F ′

q, and [l(sleft), r(sright)] is covered by the intervals in F ′
p ∩ F ′

q. Then, we

can obtain a Steiner set F ′ from F ′
p ∩ F ′

q, because all intervals in S are contained in

[l(sleft), r(sright)].

We sweep the interval representation I from left to right, starting from l(sleft)

and ending at r(sright). Let x be the first coordinate such that Fp ∩ Fq contains no

interval (vertex) covering x. If such an x does not exist in [l(sleft), r(sright)], then Fp

and Fq are desired Steiner sets already.

We thus consider the case where such an x exists in [l(sleft), r(sright)]. (See

Figure 4.6.) For notational convenience, for a vertex subset V ′ and a coordi-

nate x, we denote by (V ′)x the set of all vertices in V ′ that cover x, that is,

(V ′)x = {v ∈ V ′ | l(v) ≤ x ≤ r(v)}. Then, (Fp ∩ Fq)x = ∅. Since G[Fp] and

G[Fq] are connected, we have (Fp \Fq)x ̸= ∅ and (Fq \Fp)x ̸= ∅. Let u be the vertex

in (△FpFq)x whose r-value is maximum. Note that u /∈ S, because S ⊆ Fp ∩ Fq

holds. We may assume that u ∈ Fq \Fp; the other case is symmetric. Then, we will

prove that there is a vertex w in Fp \Fq such that (Fp∪{u})\{w} remains a Steiner

set for S. Notice that, since w ∈ Fp \ Fq and hence w /∈ S, it suffices to show that

G[(Fp ∪ {u}) \ {w}] is connected. Therefore, we are done if (Fp \ Fq)x contains a

vertex w such that G[(Fp ∪ {u}) \ {w}] is connected. (See Figure 4.6(a).)

We thus consider the remaining case: G[(Fp ∪ {u}) \ {w′}] is not connected for
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Figure 4.6: Illustration for the proof of Lemma 4.6, where the intervals in Fp are

depicted by thick gray lines and those in Fq by thin black lines.

any vertex w′ in (Fp \ Fq)x. (See Figure 4.6(b).) Then, there is a coordinate y such

that (Fp)y = w′. Since w′ /∈ Fq, by the definition of x we know that y < l(sleft).

Therefore, Fp has a vertex w′′ such that r(w′′) < y < l(sleft). Among such vertices in

Fp, we choose the one w having the minimum r-value. Then, w is not a cut-vertex

of G[Fp], and hence G[(Fp ∪ {u}) \ {w}] is connected.

In this way, we can continue sweeping the interval representation I until we reach

the coordinate r(sright). Then, the resulting Steiner sets F ′
p and F ′

q are desired ones,

and hence the lemma follows. 2

4.2.6 Polynomial-time algorithm for cactus graphs

In this subsection, we consider cactus graphs, and give the following theorem.

Theorem 4.5 The auxiliary problem is polynomial-time solvable for cactus graphs.

In our algorithm, we greedily reconfigure given two Steiner sets into other Steiner

sets, called “canonical” canonical Steiner sets. Then we show that the instance

is yes-instance if and only if the obtained canonical Steiner sets have the same
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“characteristic.”

Preliminaries for algorithm.

We first introduce some definitions and concepts used in our algorithm. Let

(G,S, F0, Fr) be an instance of the auxiliary problem, where G is a cactus graph.

We denote by n and ns the number of vertices in G and F0 (the same with Fr),

respectively. We say that v ∈ V (G) is critical if G[V (G) \ {v}] has no connected

component G′ containing all terminals, that is, S ⊆ G′; notice that every terminals

are critical. We observe that any Steiner set must contain all critical vertices. Let

K ⊆ V (G) be a set of all critical vertices of G.

Consider a set of cycles C = {C1, C2, . . . , C|C|} where C has all cycles of G which

contains at least two and at most |Ci| − 1 critical vertices. We consider each Ci in

C as a vertex subset. Then, 2 ≤ |Ci ∩K| ≤ |Ci| − 1 for each Ci ∈ C. We subdivide

each cycle Ci in C into subpaths Pi,1, Pi,2, . . . by removing all critical vertices from

Ci, that is, each Pi,j is a connected component of G[Ci \ K]. We again consider

each subpath Pi,j as a vertex subset. Let Pi = {Pi,1, Pi,2, . . . , Pi,|Pi|} be a set of

all subpaths in Ci constructed by the above operation. In the set of subpaths, we

assume without loss of generality that |Pi,j| ≤ |Pi,k| for j < k. Note that we have

|Pi| ≥ 1 since any cycle in C contains at least one non-critical vertex.

Suppose that F is any Steiner set of G for S which has the cardinality ns. For each

cycle Ci in C, F ∩Ci induces a path or a cycle (specifically, a connected subgraph of

G), since G is a cactus graph and F induces a connected subgraph of G. We know

that if F ∩ Ci induces a cycle, then all subpaths in Pi are contained in the induced

cycle. On the other hand, if F ∩Ci induces a path, then exactly |Pi|−1 subpaths in

Pi are contained in the induced path; in other words, there is the unique path Pi,j in

Pi which satisfies Pi,j ⊈ F ∩Ci (actually, Pi,j ⊈ F ). Then, we define the lack path of

F for Ci, as follows. If F ∩Ci induces a path, the lack path of F for Ci is the unique
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subpath in Pi which is not contained in F ∩Ci, while if F ∩Ci induces a cycle, the

lack path of F for Ci is the subpath Pi,|Pi| in Pi (i.e. the subpath whose second index

is maximized in Pi). Let L(F ) ∈ {1, . . . , |P1|} × {1, . . . , |P2|} × . . .× {1, . . . , |P|C||}

be a vector of |C| elements such that the ith element indicates the second index

of the lack path of F for Ci; we call L(F ) the lack-path vector of F . For a lack-

path vector L(F ), we denote by L(F, i) the number of ith element in L(F ). We

sometimes consider just a lack-path vector without the corresponding Steiner set.

In this case, we use a capital letter like X without specifying a Steiner set, and we

denote by X(i) the number of ith element in X. For two lack-path vectors X and

Y , let δ(X,Y ) = |{i | X(i) ̸= Y (i)}|.

For any Steiner set F of size ns, consider a subset F ′ of F which consists of all

critical vertices and all subpaths for each cycle in C except for the lack path, that

is;

F ′ = K ∪
|C|∪
i=1

(

|Pi|∪
j=1

(Pi,j) \ Pi,L(F,i)) ⊆ F.

Then, F ′ forms a minimal Steiner set of G for S; the size of F ′ may not be ns.

Furthermore, for any Steiner sets with the same lack-path vector, the corresponding

minimal Steiner sets defined above are identical. We denote by Fm(X) the minimal

Steiner set defined above which contained in Steiner sets having the lack-path vector

X.

Then, we have the following sufficient condition for reachability.

Lemma 4.7 Let Fp and Fq be any Steiner sets of size ns. If L(Fp) = L(Fq), then

Fp ↭ Fq.

Proof. We know that there exists the minimal Steiner tree Fm(L(Fp)) = Fm(L(Fp))

which is contained in both Fp and Fq. Then we can conclude by Lemma 4.5 that

Fp ↭ Fq. 2
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Canonical Steiner set.

We now give the definition of canonical Steiner sets. To this end, we first introduce

a binary relation “→” and a partial order “⪯” over a set of lack-path vectors. Let

X and Y be two lack-path vectors such that δ(X,Y ) = 1 where exactly one index

i ∈ {1, . . . , |C|} satisfies X(i) < Y (i) and every j ̸= i satisfy X(j) = Y (j). Then

we define a binary relation →, as follows: X → Y if and only if there exist two

Steiner sets Fx with L(Fx) = X and Fy with L(Fy) = Y such that Fx ↔ Fy. By

using the concept of the binary relation, we introduce a partial order ⪯, as follows:

For two lack-path vectors X and Y , X ⪯ Y if and only if there exists a sequence of

L = ⟨X = X0, X1, . . . , Xℓ = Y ⟩ of lack-path vectors such that Xi → Xi+1 holds for

each i ∈ {0, 1, . . . , ℓ− 1}. It is observed from Lemma 4.7 that ⪯ is a partial order.

For two lack-path vectors X and Y , we say that X and Y are comparable if X ⪯ Y

or Y ⪯ X holds, and incomparable otherwise. Notice that two Steiner sets Fx and

Fy satisfy Fx ↭ Fy if L(Fx) ⪯ L(Fy). We say that a Steiner set F of size ns is

canonical if its lack-path vector is maximal on the partial order ⪯.

In the following, we show that for any Steiner set F , any canonical Steiner sets

reachable from F have the same lack-path vector. This implies that F0 and Fr are

reachable if and only if a canonical Steiner set reachable from F0 and that from Fr

have the same lack-path vector. To this end, we first give two lemmas about the

binary relation →.

For any Steiner set F of size ns, we call a vertex which belongs to F but not to

Fm(L(X)) a free vertex of F . It is observed that any two Steiner sets Fx and Fy of

size ns satisfying L(Fx) = L(Fy) have the same number of free vertices. We denote

by f(X) the number of free vertices of a Steiner set of size ns whose lack-path vector

is X. Notice that f(L(Fx)) ≤ f(L(Fy)) holds for any two Steiner set Fx and Fy

such that Fx ⪯ Fy, since for any i ∈ {1, . . . , |C|}, we have X(i) ≤ Y (i), and hence
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|Pi,X(i)| ≤ |Pi,Y (i)|. Then, we give the following two lemmas.

Lemma 4.8 Let X and Y be two lack-path vectors such that δ(X,Y ) = 1, where

X(i) < Y (i) for the unique index i and X(j) = Y (j) for every j ̸= i. Then, X → Y

if and only if f(X) ≥ |Pi,X(i)| − 1.

Proof. We first prove the only-if direction. Suppose that X → Y holds, that

is, there exist two Steiner sets Fx and Fy such that L(Fx) = X, L(Fy) = Y , and

Fx ↔ Fy. Since X(i) < Y (i), we know that X(i) does not take the maximum

number (i.e. X(i) ̸= |Pi|), and hence the lack path Pi,X(i) satisfies Pi,X(i) ⊈ Fx.

On the other hand, Fy contains Pi,X(i) because the lack path is changed between

Fx and Fy. It implies that Fx contains at least |Pi,X(i)| − 1 vertices in Pi,X(i) since

|Fx \ Fy| = |Fy \ Fx| = 1. Then such vertices in Pi,X(i) are free vertices of Fx, and

hence we can conclude that f(X) ≥ |Pi,X(i)| − 1.

We now prove the if direction. Suppose that f(X) ≥ |Pi,X(i)| − 1 holds. Let

vx and vy be two vertices in Pi,X(i) and Pi,Y (i), respectively. We then consider

any Steiner set Fx of size ns such that L(Fx) = X and Fx contains all vertices in

Fm(X) ∪ (Pi,X(i) \ {vx}); since f(X) ≥ |Pi,X(i)| − 1, such a Steiner set Fx always

exists. We now consider another Steiner set Fy = Fx \{vy}∪{vx}. Then Fy satisfies

L(Fy) = Y and Fx ↔ Fy, and hence we have X → Y . 2

Lemma 4.9 Let Fx be a Steiner set. If there exists a Steiner set Fy such that

Fx ↭ Fy and L(Fx, i) < L(Fy, i) for some i ∈ {1, . . . , |C|}, then there exist a

lack-path vector Z such that L(Fx)→ Z.

Proof. Suppose that such a Steiner set Fy exists. Since Fx ↭ Fy, there exists

a Steiner set sequence F = ⟨Fx = F0, F1, . . . , Fℓ = Fy⟩ between Fx and Fy. Let

Fj be the first Steiner set in F such that there exists an index i ∈ {1, . . . , |C|}

satisfying L(Fx, i) < L(Fj, i), that is, for any j′ ∈ {1, . . . , j− 1}, L(Fx, i) ≥ L(Fj′ , i)

holds for every index i; by the definition of Fx and Fy, such a Steiner set Fj always
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exists. Since L(Fx, i) ≥ L(Fj−1, i) holds for every index i, we have f(L(Fx)) ≥

f(L(Fj−1)). We have L(Fj−1) → L(Fj) from the following three facts: (a) Fj−1 ↔

Fj, (b) L(Fj−1, k) < L(Fj, k) for exactly one index k, and (c) δ(L(Fj), L(Fj−1)) = 1.

Then, combining it with Lemma 4.8, we have f(L(Fj−1)) ≥ |Pk,L(Fj−1,k)| − 1. Since

L(Fj−1, k) ≤ L(Fx, k), we have |Pk,L(Fj−1,k)| ≥ |Pk,L(Fx,k)|. We then finally obtained

that;

f(L(Fx)) ≥ f(L(Fj−1))

≥ |Pk,L(Fj−1,k)| − 1

≥ |Pk,L(Fx,k)| − 1

Then we can conclude that there exist a desired lack-path vector by Lemma 4.8. 2

From the above two lemmas, we have the following desired lemma.

Lemma 4.10 Let F be any Steiner set of size ns. Then every canonical Steiner

sets reachable from F have the same lack-path vectors.

Proof. Assume for a contradiction that there exist two canonical Steiner sets

Fx and Fy such that F ↭ Fx, F ↭ Fy, and L(Fx) ̸= L(Fy). Then, we know

Fx ↭ Fy via F . Since L(Fx) ̸= L(Fy), we can assume without loss of generality

that L(Fx, i) < L(Fy, i) holds for at least one index i ∈ {1, . . . , |C|}; otherwise, the

proof is symmetric. Then, by Lemma 4.9, there exists a lack-path vector Z such

that L(Fx)→ Z. This contradicts the fact that Fx is canonical. 2

Let Lc(F ) be the unique lack-path vector of canonical Steiner sets that reachable

from F . Then, we have the following corollary.

Corollary 4.1 Let F and F ′ be two Steiner sets of size ns. Then F ↭ F ′ if and

only if Lc(F ) = Lc(F
′).
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Finding a canonical Steiner set.

We finally show that the auxiliary problem on cactus graphs is polynomial-time

solvable. By Corollary 4.1, if we know Lc(F0) and Lc(Fr), then we can determine

whether F0 ↭ Fr or not by checking if Lc(F0) = Lc(Fr) or not. Therefore, the

following lemma completes the proof of Theorem 4.5.

Lemma 4.11 For any Steiner set F , we can compute Lc(F ) in polynomial time.

Proof. If F is canonical, then we have already completed the computation. We

now assume that F is not canonical. Considering any canonical Steiner set Fc that

reachable from F , the lack-path vector L(Fc) = Lc(F ) satisfies L(F, i) < L(Fc, i)

for some i ∈ {1, . . . , |C|}. Therefore there exists another Steiner sets F ′ such that

L(F )→ L(F ′) by Lemma 4.9. Such a Steiner set F ′ can be obtained in polynomial

time by checking if the condition in Lemma 4.9 for each cycles in C. Thus by greedily

applying the above operation finding another Steiner set at most n times, we finally

obtain a canonical Steiner set and its lack-path vector Lc(F ). 2

4.3 Vertex exchange

In this section, we study the complexity of Reach-STR under VE. It is observed

that two Steiner trees T and T ′ are adjacent under VE if and only if the corresponding

Steiner sets V (T ) and V (T ′) satisfy |V (T ) \V (T ′)| = |V (T ′) \V (T )| ≤ 1. Therefore

we obtain the following observation:

Observation 1 Let T and T ′ be Steiner trees of a graph G for a terminal set S.

Then, T
VE↭ T ′ holds if and only if there exists a Steiner set sequence between two

Steiner sets V (T ) and V (T ′) of G for S.

We observe that Reach-STR under VE is in PSACE. Therefore, combining Obser-

vation 1 and theorems in Section 4.2, we have the following corollary.
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Corollary 4.2 Reach-STR under VE is PSPACE-complete for split graphs and

planar graphs, even if given two Steiner trees are minimum. On the other hand,

Reach-STR under VE is linear-time solvable for cographs and interval graphs, and

polynomial-time solvable for cactus graphs.

4.4 Local vertex exchange

In this section, we study the complexity of Reach-STR under LVE. The following

is the main theorem in this section.

Theorem 4.6 Let T and T ′ be Steiner trees of a graph G for a terminal set S.

Then, T
LVE↭ T ′ holds if and only if there exists a Steiner set sequence between two

Steiner sets V (T ) and V (T ′) of G for S.

We observe that Reach-STR under LVE is in PSPACE. Therefore, combining The-

orem 4.6 and theorems in Section 4.2, we have the following corollary.

Corollary 4.3 Reach-STR under LVE is PSPACE-complete for split graphs and

planar graphs, even if given two Steiner trees are minimum. On the other hand,

Reach-STR under VE is linear-time solvable for cographs and interval graphs, and

polynomial-time solvable for cactus graphs.

In the remainder of this section, we give the proof for Theorem 4.6. We have the

only-if direction, as follows. Suppose that there exists a reconfiguration sequence

⟨T = T0, T1, . . . , Tℓ = T ′⟩ between T and T ′ under LVE. Then we know that |V (Ti) \

V (Ti+1)| = |V (Ti+1) \ V (Ti)| ≤ 1 for each i ∈ {0, 1, . . . , ℓ − 1}. Therefore, we can

obtain a Steiner set sequence from V (T ) and V (T ′) by removing redundant ones

from the sequence ⟨V (T ) = V (T0), V (T1), . . . , V (Tℓ) = V (T ′)⟩ of Steiner sets.

We thus show the if direction in the following. Suppose that there exists a Steiner

set sequence F = ⟨V (T ) = F0, F1, . . . , Fℓ = V (T ′)⟩. To prove the direction, we show
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that for each Steiner set Fi in F , there are two Steiner trees T−
i with V (T−

i ) = Fi

and T+
i with V (T+

i ) = Fi which satisfy the following three conditions;

(a) T = T−
0 and T ′ = T+

ℓ ;

(b) T−
i

LVE↭ T+
i for each i ∈ {0, 1, . . . , ℓ}; and

(c) T+
i

LVE↭ T−
i+1 for each i ∈ {0, 1, . . . , ℓ− 1}.

We start with showing the existence of two Steiner trees satisfying the condition (c).

Lemma 4.12 For any consecutive Steiner sets Fi and Fi+1 in F , there exists two

Steiner trees T+
i with V (T+

i ) = Fi and T−
i+1 with V (T−

i+1) = Fi+1 such that T+
i

LVE↭

T−
i+1.

Proof. Since Fi and Fi+1 are consecutive in F , we know |Fi \Fi+1| = |Fi+1 \Fi| = 1;

let {vi} = Fi \ Fi+1 and {vi+1} = Fi+1 \ Fi. Notice that Fi ∩ Fi+1 = Fi \ {vi} =

Fi+1 \{vi+1}. Let U be any spanning forest of G[Fi∩Fi+1] such that each connected

component is maximal. Since G[Fi] = G[(Fi ∩ Fi+1) ∪ {vi}] is connected, there

exists at least one vertex in each (maximal) connected component in U which is

adjacent to vi in G[Fi]. Therefore, by adding vi and edges connecting all connected

components with vi to U , we can obtain a Steiner tree T+
i such that V (T+

i ) = Fi.

Similarly, we can obtain a Steiner tree T−
i+1 such that V (T−

i+1) = Fi+1, by adding

vi+1 and edges connecting all (maximal) connected components with vi+1. Then, we

have T+
i [V (T+

i )\{vi}] = T−
i+1[V (T−

i+1)\{vi+1}] = U . We thus conclude that T+
i and

T−
i+1 are adjacent under LVE, and hence T+

i

LVE↭ T−
i+1. 2

We now notice that T−
0 and T+

ℓ are not defined in Lemma 4.12. We then excep-

tionally define T−
0 as T , and T+

ℓ as T ′; then the condition (a) is satisfied. We finally

show that Steiner trees defined above also satisfy the condition (b); this completes

the proof of Theorem 4.6.

Lemma 4.13 For each i ∈ {0, 1, . . . , ℓ}, T−
i

LVE↭ T+
i holds.

Proof. Let i be any index in {0, 1, . . . , ℓ}. By the definition, we know that V (T−
i ) =
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Figure 4.7: (a) An example of a cycle in H with P depicted by thick lines, and (b)

the corresponding reconfiguration sequence ⟨Tj = T ′
3, T

′
2, T

′
1, T

′
0 = Tj+1⟩ under LVE

between Tj and Tj+1.

V (T+
i ) = Fi holds. Then, we know by the known result [18, Proposition 1] that

there is a sequence ⟨T−
i = T0, T1, . . . , Tℓ′ = T+

i ⟩ between T−
i and T+

i such that

V (Tj) = V (Tj+1) and |E(Tj) \ E(Tj+1)| = |E(Tj+1) \ E(Tj)| = 1 hold for each

j ∈ {0, 1, . . . , ℓ′ − 1}.

Our claim is that Tj
LVE↭ Tj+1 for each j ∈ {0, 1, . . . , ℓ′ − 1}. Let ej be the

unique edge in E(Tj) \ E(Tj+1) and ej+1 be the unique edge in E(Tj+1) \ E(Tj).

Consider the subgraph H obtained by adding ej+1 to Tj, that is, V (H) = V (Tj)

and E(H) = E(Tj)∪ {ej+1} = E(Tj+1)∪ {ej}. Then H has exactly one cycle which

contains both ej and ej+1, since Tj and Tj+1 are trees. (See Figure 4.7(a) as an

example of such a cycle.) Therefore H contains exactly two subpaths which start

from ej and end in ej+1; we denote one of such subpaths by the sequence of edges

P = ⟨ej = e0, e1, . . . , ep = ej+1⟩. We can obtain a Steiner tree by removing any

single edge in P from H; we denote by T ′
q the Steiner tree obtained by removing eq

in P from H. Consider the sequence ⟨Tj = T ′
p, T

′
p−1, . . . , T

′
0 = Tj+1⟩ of Steiner trees.

(See Figure 4.7(b) as an example of such a sequence corresponding to the path P

in (a).) Then, any consecutive Steiner trees T ′
q, T

′
q−1 in the sequence are adjacent

under LVE, since T ′
q[V (T ′

q) \ {vq,q−1}] = T ′
q−1[V (T ′

q−1) \ {vq,q−1}] holds where vq,q−1 is

the common endpoint of eq and eq−1. Therefore, we can conclude that Tj
LVE↭ Tj+1

for each j ∈ {0, 1, . . . , ℓ′ − 1}; this completes the proof of Lemma 4.13. 2
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4.5 Local vertex exchange without changing

neighbors

In this section, we show that Reach-STR under LVE-N is solvable in polynomial

time for cographs, chordal graphs, and for planar graphs if given two Stiner trees

are minimum. To this ends, we introduce the concept of Steiner tree embeddings

and their reconfiguration, which gives a necessary condition for the existence of a

reconfiguration sequence under LVE-N.

4.5.1 Steiner tree embeddings and their reconfiguration

We first introduce the concept of Steiner tree embeddings. Let T be a Steiner

tree of a graph G for a terminal set S. An injection φ : V (T ) → V (G) is called a

T -embedding into G if the following two conditions hold:

- φ(x)φ(y) ∈ E(G) if xy ∈ E(T ); and

- φ(s) = s holds for each s ∈ S ⊆ V (T ).

Thus, a T -embedding φ defines a Steiner tree Tφ of G for S. Observe that no two

distinct T -embeddings define the same Steiner tree. A Steiner tree T ′ is said to be

T -embeddable if there exists a T -embedding φ which defines T ′. Note that T itself is

T -embeddable. We write φ(V ′) = {φ(x) | x ∈ V ′} for any node subset V ′ ⊆ V (T ).

We now give the following lemma.

Lemma 4.14 Let Ta and Tb be any two Steiner trees of a graph G for a terminal

set S. If Ta
LVE-N↭ Tb, then Tb is Ta-embeddable.

Proof. Let T = ⟨Ta = T0, T1, . . . , Tℓ = Tb⟩ be a reconfiguration sequence between

Ta and Tb under LVE-N. Recall again that Ta = T0 is Ta-embeddable. Then, we

observe from the definition of LVE-N that T1 is also Ta-embeddable. Considering

the same observation for each consecutive Steiner trees in T , we know that Tb is

Ta-embeddable. 2
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By taking a contrapositive of Lemma 4.14, we can conclude that a given instance

(G,S, T0, Tr) is a no-instance if Tr is not T0-embeddable; this can be checked in

polynomial time. Thus, in the remainder of this section, we assume without loss of

generality that Tr is T0-embeddable.

We then introduce the reconfiguration of Steiner tree embeddings. Let T be a

Steiner tree of a graph G for a terminal set S. We say that two T -embeddings φ and

φ′ are adjacent if exactly one node in T is mapped into different vertices between φ

and φ′, that is, |{x ∈ V (T ) | φ(x) ̸= φ′(x)}| = 1 holds. For two T -embeddings φ and

φ′, an embedding sequence between φ and φ′ is a sequence ⟨φ = φ0, φ1, . . . , φℓ = φ′⟩

of T -embeddings such that φi and φi+1 are adjacent for each i ∈ {0, 1, . . . , ℓ − 1}.

We write φ
emb↭ φ′ if there exists an embedding sequence between φ and φ′. Then,

we have the following lemma.

Lemma 4.15 Suppose that Ta and Tb are any two Steiner trees of a graph G for a

terminal set S such that Tb is Ta-embeddable. Let φa and φb be Ta-embeddings which

define Ta and Tb, respectively. Then, Ta
LVE-N↭ Tb if and only if φa

emb↭ φb.

Proof. Suppose that there exists a embedding sequence ⟨φa = φ0, φ1, . . . , φℓ = φb⟩

between φa and φb. Then we can construct the reconfiguration sequence ⟨Ta =

T0, T1, . . . , Tℓ = Tb⟩ between Ta and Tb, where for each i ∈ {0, 1, . . . , ℓ}, Ti is the

Steiner tree that φi defines. On the other hand, suppose that there exists a reconfig-

uration sequence ⟨Ta = T0, T1, . . . , Tℓ = Tb⟩ between Ta and Tb. Since each Ti in the

sequence is reachable from T0, we know that Ti is T0-embeddable by Lemma 4.14,

and hence there is a T0-embedding φi. Then the sequence ⟨φa = φ0, φ1, . . . , φℓ = φb⟩

is a desired embedding sequence. 2

By Lemmas 4.14 and 4.15, Reach-STR under LVE-N can be rephrased to the

following problem: Given a graph G, a terminal set S, a Steiner tree T (actually

T0), and two T -embeddings φ0 and φr into G, we are asked to determine whether

or not there exists an embedding sequence between φ0 and φr. Therefore, we also
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denote by (G,S, T, φ0, φr) an instance of Reach-STR under LVE-N.

4.5.2 Layers for Steiner trees

We here introduce one more important concept, called layers, which was originally

introduced by Bonsma [4] for shortest path reconfiguration. Bonsma [4]

introduced the natural concept of layers for a shortest path. We generalize the

concept to Steiner trees.

Let T be a Steiner tree of a graph G for a terminal set S. For each x ∈ V (T ), let

LT (x) = {φ(x) ∈ V (G) | φ is a T -embedding into G}; we call LT (x) the layer of x.

Notice that LT (s) = {s} holds for each s ∈ S. We write LT (V
′) =

∪
x∈V ′ LT (x) for

any node subset V ′ ⊆ V (T ). Then, we have the following property, which says that

the layers are disjoint.

Lemma 4.16 Let T be any Steiner tree of a graph G for a terminal set S. If T is

minimum, then LT (x) ∩ LT (y) = ∅ holds for any two distinct nodes x, y ∈ V (T ).

Proof. Suppose that T is minimum. Assume for a contradiction that LT (x) ∩

LT (y) ̸= ∅ holds for some two distinct nodes x, y ∈ V (T ), that is, there exists a

vertex u ∈ LT (x)∩LT (y). Then there exist two T -embeddings φ1 and φ2 such that

φ1(x) = u and φ2(y) = u, respectively.

Consider the unique subpath between x and y in T . By removing any edge in

the subpath from T , we obtain two subtrees of T ; note that one of them contains

x and the other one contains y. Let Tx and Ty be such subtrees of T containing x

and y, respectively. Suppose that G′ is the subgraph of G induced by φ1(V (Tx)) ∪

φ2(V (Ty)). Then we have S ⊆ V (G′), since S ⊆ V (Tx) ∪ V (Ty). Furthermore, we

know that G′ is connected, since both G[φ1(V (Tx))] and G[φ2(V (Ty))] are connected

and contain the same vertex u. Therefore, any spanning tree T ′ of G′ is a Steiner

tree of G for S. Then, since u ∈ φ1(V (Tx))∩φ2(V (Ty)), we have |V (T ′)| = |V (G′)| <
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|φ1(V (Tx))| + |φ2(V (Ty))| = |V (Tx)| + |V (Ty)| = |V (T )|; this contradicts the fact

that T is a minimum Steiner tree of G for S. 2

4.5.3 Polynomial-time algorithm for cographs

In this subsection, we show that Reach-STR under LVE-N is polynomial-time

solvable for cographs. We first prove the following lemma.

Lemma 4.17 Suppose that G is a cograph and S ⊆ V (G) is a terminal set. Then

any minimum Steiner tree T of G for S contains at most one non-terminal node.

Proof. We can assume without loss of generality that G is connected cograph. It

is known that for any connected cograph G, the vertex subset can be partitioned

into two non-empty vertex subsets A ⊂ V (G) and B = V (G) \A such that any two

vertices a ∈ A and b ∈ B are adjacent.

We first consider the case where either S ⊆ A or S ⊆ B holds; we here consider

only the case where S ⊆ A, since the proof is symmetric otherwise. In this case, we

can construct a Steiner tree whose vertex set is S ∪{b} for any vertex in B, because

b is adjacent to all vertices in S (actually, A); such b always exists since B ̸= ∅.

Thus the lemma follows.

We then consider the remaining case where both A and B contains at least one

terminal. In this case, a terminal in A is adjacent to all terminals in B, and a

terminal in B is adjacent to all terminals in A. Thus, there exists a (minimum)

Steiner tree such that all nodes are terminals. Therefore, the lemma follows. 2

The following is the main theorem in this subsection.

Theorem 4.7 Reach-STR under LVE-N is polynomial-time solvable for cographs.

Proof. From Lemma 4.14, we can assume without loss of generality that given two

minimum Steiner trees T0 and Tr are T0 embeddable; otherwise, it is a no-instance

and it can be checked in polynomial time. Furthermore, we know from Lemma 4.17
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that these two minimum Steiner trees contain at most one non-terminal vertices.

Then we observe that T0
LVE-N↔ Tr holds since they are T0-embeddable. Thus the

theorem follows. 2

4.5.4 Polynomial-time algorithm for chordal graphs

In this subsection, we show the following theorem.

Theorem 4.8 Reach-STR under LVE-N is polynomial-time solvable for chordal

graphs if given two Steiner trees are minimum.

In our proof, we deal with the well-known characterization of chordal graphs in

terms of perfect elimination orderings [8]. For a graph G of n vertices, an ordering

of vertices ⟨v1, v2, . . . , vn⟩ is called a perfect elimination ordering if for each i ∈

{1, 2, . . . , n}, the closed neighbor of vi in Gi = G[{vi, vi+1, . . . , vn}] induces a clique

in Gi. It is known that a graph is chordal if and only if it has a perfect elimination

ordering.

Let (G,S, T, φ0, φr) be an instance of Reach-STR under LVE-N, where G is

chordal and T is a minimum Steiner tree of G for S. Then, Theorem 4.8 is obtained

by the following lemma.

Lemma 4.18 There always exists an embedding sequence between φ0 and φr.

Proof. Let V0 = φ0(V (T )) and Vr = φr(V (T )). Suppose that k is the size of the

symmetric difference of V0 and Vr, that is, k = |V0∆Vr| = |(V0 \ Vr)∪ (Vr \ V0)|. We

show the lemma by induction of k.

If k = 0, then we have V0 = Vr. Recall that any T -embedding contains exactly one

vertex from each layer and any two layers are disjoint from Lemma 4.16. Therefore,

we know that φ0 = φr, and hence the lemma follows.

We now consider the case where k ≥ 1. Suppose that G′ is the subgraph of G

induced by V0∪Vr; since G is chordal, G′ is also chordal. Let P = ⟨v1, v2, . . . , vn′⟩ be
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a perfect elimination ordering of G′, where n′ is the number of vertices in G′. Then

we focus on the first vertex vp in P which contained in V0∆Vr, that is, vp /∈ V0 ∩ Vr

and vi ∈ V0∩Vr for any i < p. We assume without loss of generality that vp ∈ V0\Vr;

otherwise, our proof is symmetric. Let x ∈ V (T ) be the node such that φ0(x) = vp.

Notice that φr(x) ̸= φ0(x) = vp by the definition of vp; let vq = φr(x). Then we

know p < q. Roughly speaking, our claim is that we can exchange the mapping of

x in φ0 from vp to vq. Formally, our claim is the following (the correctness will be

presented later):

Claim There exists a T -embedding φ′
0 such that φ′

0(y) = φ0(y) for each y ̸= x and

φ′
0(x) = φr(x) = vq.

We observe that φ0 and φ′
0 are adjacent. Furthermore, for V ′

0 = φ′
0(V (T )), we

have |V ′
0∆Vr| = k − 2 holds. Therefore, we know by the induction hypothesis that

φ′
0 and φr are reconfigurable; then the lemma follows.

We finally give the correctness of the claim. It suffices to show that for each

neighbor y ∈ NT (x) of x in T , φ0(y) is adjacent to φr(x) = vq in G′ (then also in

G). Let φ0(y) = vi. We then consider separately in the following two cases.

- If i < p, then we know vi ∈ V0 ∩ Vr, that is, φ0(y) = φr(y) = vi. Thus, we know

that vi is adjacent to vq in G′.

- We know consider the case where i > p. In this case, we again focus on the

vertices faster than vi in P . We first show that there exists at least one neighbor

z of x in T such that φ0(z) appears faster than vp in P . Assume for a contradiction

that such a neighbor does not exist. Then for all neighbors z ∈ NT (x), φ0(z)

appears after vp in P , and hence φ0(z) is contained in G′
p = G′[{vp, vp+1, . . . , vn}].

Therefore, we know by the definition of a perfect elimination ordering that the

vertex subset φ0(NT (x)) forms a clique in G′
p (and hence also in G′). Since we

know vp is not a terminal (because vp /∈ Vt), we can construct a Steiner tree in G′

(and hence in G) whose vertex set is Vs \ {vp}; this contradicts the fact that the
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Steiner tree defined by φ0 is minimum. We thus know that there is a neighbor

z ∈ NT (x) such that φ0(z) = vj with j < p. Then, since both vp and vq are

adjacent to vj and they are contained in G′
j = G′[{vj, vj+1, . . . , vn′}], there is an

edge between vp and vq in G′
j (and hence also in G′). Furthermore, since vq and

vi are adjacent to vp and they are contained in G′
p = G′[{vp, vp+1, . . . , vn′}], we

can conclude that there is an edge between vq and vi. This completes the proof

for the claim.

In this way, we obtain the correctness of the claim. 2

4.5.5 Polynomial-time algorithm for planar graphs

In this subsection, we give the following theorem.

Theorem 4.9 Reach-STR under LVE is polynomial-time solvable for planar

graphs if given two Steiner trees are minimum.

As a proof of the Theorem 4.9, we construct a polynomial-time algorithm to solve

the problem. Roughly speaking, our idea is to decompose a given instance ofReach-

STR under LVE-N into several shortest path reconfiguration (SPR, for short)

instances for planar graphs. (See Subsection 3.4.1 for the definition of SPR). Then,

we can solve each SPR instance by using the polynomial-time algorithm for SPR on

planar graphs [5]. Finally, we combine the answers to SPR instances, and output

the answer to the original Reach-STR instance under LVE-N.

Computing actual layers.

To decompose a given instance of Reach-STR under LVE-N to instances, we

need to compute actual layers for a give instance. Then we need some additional

properties of layers.

We first give the following property of layer; note that the property holds for

general graphs.
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Figure 4.8: An example of Lemma 4.19, where (a) a subtree T ′, and (b) G′ corre-

sponding to T ′ and an embedding φ such that φ(x) = u.

Lemma 4.19 Let T be a Steiner tree of a graph G for a terminal set S, and T ′ be

any subtree of T containing at least one terminal. Then the subgraph of G induced

by LT (V (T ′)) is connected.

Proof. Let G′ be the subgraph of G induced by LT (V (T ′)), and let s ∈ S be any

terminal contained in T ′. Then it suffices to show that for any vertex u ∈ V (G′),

there exists a path between s and u in G′. Let u ∈ V (G′) be any vertex in G′, and

let x ∈ V (T ′) be the node such that u ∈ LT (x). (See Figure 4.8.) Since x, s ∈ V (T ′),

T ′ includes the unique path ⟨x = x0, x1, . . . , xℓ = s⟩ between x and s. Then, by

the definition of G′, LT (xi) ⊆ V (G′) holds for each i ∈ {0, 1, . . . , ℓ}. Consider any

T -embedding φ such that φ(x) = u. Then we know that φ(xi) ∈ LT (xi) ⊆ V (G′)

for each i ∈ {0, 1, . . . , ℓ}, and φ(xi)φ(xi+1) ∈ E(G′) for each i ∈ {0, 1, . . . , ℓ − 1}.

Note that φ(s) = s. In this way, we can conclude that there exists a path between

s and u in G′. 2

For a Steiner tree T , we call a node x ∈ V (T ) a branching node of T if |NT (x)| ≥ 3.

Let B(T ) be the set of all branching nodes of T . Then, we show that a layer of each

node in B(T ) contains at most two vertices if a given graph is planar.

Lemma 4.20 Let T be any minimum Steiner tree of a graph G for a terminal set

S. If G is planar, then |LT (x)| ≤ 2 holds for every branching node x ∈ B(T ).

Proof. Suppose for a contradiction that |LT (x)| ≥ 3 holds for some node x ∈ B(T ).

Since x has degree at least three in T , we obtain at least three subgtrees by removing
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Figure 4.9: An example of Lemma 4.20, where (a) T with a branching node x, and

(b) G with subgraphs G1, G2, and G3.

x from T ; let T1, T2, T3 be any three among such subtrees. (See Figure 4.9.) By the

minimality of T , each of T1,T2,T3 contains at least one terminal. Therefore, consid-

ering the subgraphs G1, G2, G3 of G induced by LT (V (T1)),LT (V (T2)),LT (V (T3)),

respectively, then each of them is connected by Lemma 4.19. Since the vertices of

G1, G2, G3 are disjoint by Lemma 4.16, we obtain three distinct vertices u1, u2, u3 by

contracting all edges in G1, G2, G3, respectively. Then, since u1, u2, u3 are adjacent

to all vertices in LT (x) and |LT (x)| ≥ 3 holds, we know that G has a complete

bipartite graph K3,3 as a minor; this contradicts that G is planar. 2

We now explain how to compute the layers for a Steiner tree. In SPR [4], we

can easily find the layers for a shortest path by computing the distances from the

two terminals to each vertex in the underlying graph. This is because the subpath

between each node and each terminal is always a shortest path in the underlying

graph. On the other hand, this property does not always hold if |S| ≥ 3, and hence

it is difficult to find the layers simply by computing the distances. (For example,

see Figure 4.10.)

Our idea is to compute the “refined” layers for a Steiner tree, instead of computing

the layers completely. Let (G,S, T, φ0, φr) be a given instance ofReach-STR under

LVE-N. Then, for all nodes x ∈ V (T ), it suffices to find vertex subsets L′
T (x) such

that
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s

x

Figure 4.10: The subtree T depicted by thick lines is a minimum Steiner tree.

However, the subpath on T between s and x is not a shortest path in the underlying

graph.

(a) L′
T (x) ⊆ LT (x); and

(b) φ(x) ∈ L′
T (x) holds for any T -embedding φ satisfying φ0

emb↭ φ or φr
emb↭ φ.

To avoid a confusion, we call such a vertex subset L′
T (x) the refined-layer of x, while

call the (original) layer LT (x) the complete-layer of x. We know that the vertices in

LT (x) \ L′
T (x) are useless when we want to check if φ0

emb↭ φr or not. The following

lemma says that the refined-layers can be found in polynomial time.

Lemma 4.21 Let (G,S, T, φ0, φr) be a given instance of Reach-STR under LVE-

N such that G is a planar graph. Then, there exists a polynomial-time algorithm to

compute the refined-layers for all nodes in T .

We prove the lemma by giving an actual algorithm which computes the refined-

layers. We say that two nodes x, y ∈ B(T ) ∪ S are close if the unique path on T

between x and y contains no vertex in (B(T )∪S) \ {x, y}. To avoid the duplication

of {x, y} and {y, x}, we choose one of the ordered pairs (x, y) and (y, x) arbitrarily

for each pair of close nodes, and define the set C(T ) of all ordered pairs (x, y) of

close nodes x, y in B(T ) ∪ S; we call each pair in C(T ) a close pair. Then, the

following is an algorithm finding the refined-layer for each node in T ; its correctness

will be proved later.

1: Compute distG(u, v) for all pairs of vertices u, v ∈ V (G).

(Initializing each node in V (T ) and finding a refined-layer for each node in S)

2: Initialize L′
T (x) ← {φ0(x), φr(x)} for each node x ∈ V (T ), and B′ ← {x ∈
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Figure 4.11: An example of Line 3 in the algorithm, where (a) a branching node x

with its close nodes y1, y2, and y3, and (b) a vertex u we look for in Line 3.

B(T ) | |L′
T (x)| < 2}.

(Finding a refined-layer for each node in B(T ))

3: For each node x ∈ B′, look for a vertex u ∈ V (G) \L′
T (x) such that there exists

a vertex v ∈ L′
T (y) for each close node y of x satisfying distG(u, v) = distT (x, y).

If such a vertex u exists, then update L′
T (x)← L′

T (x)∪{u} and B′ ← B′ \ {x}.

4: Repeat Line 3 until B′ = ∅ holds or updating of L′
T (x) and B′ does not occur

for any node v ∈ B′.

(Finding a refined-layer for each node in V (T ) \ (B(T ) ∪ S))

5: For each node x ∈ V (T ) \ (B(T ) ∪ S), let y, z ∈ B(T ) ∪ S be close nodes

such that the unique path between y and z in T contains x. Then look for a

vertex u ∈ V (G) \ L′
T (x) such that there exist vertices v ∈ L′

T (y) satisfying

distG(u, v) = distT (x, y) and w ∈ L′
T (z) satisfying distG(u,w) = distT (x, z). For

all such vertices u, update L′
T (x)← L′

T (x) ∪ {u}.

6: Output L′
T (x) for each node x ∈ V (T ).

Notice that we can compute the refined-layer L′
T (s) (actually, the complete-layer

LT (s)) for each s ∈ S in Line 2, since LT (s) = {s} and φ0(s) = φr(s) = s.

Figure 4.11 and 4.12 illustrate examples of a vertex u which we should find in

Line 3 and 5, respectively.

Lemma 4.22 The algorithm runs in polynomial time.
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Figure 4.12: An example of Line 5 in the algorithm, where (a) a node x with close

nodes y and z such that the unique path y and z contains x, and (b) a vertex u we

look for in Line 5.

Proof. Let n be the number of vertices in G. It is observed that Line 1 can be done

in O(n3) time, and Line 2 and 6 can be done in linear time. Thus we now refer to

Line 3, 4, and 5. In Line 3, we have |B′| ≤ n. For each node x ∈ B′, candidates

which may be included in LT (x) by updating are at most n. We can check in time

O(n) whether each candidate satisfies the condition to belong to L′
T (x). We thus

conclude that Line 3 can be done in time O(n3). In Line 4, for each updating in

Line 3, the number of vertices in B′ decreases exactly one. Thus the total time for

Line 3, 4 is O(n4). In Line 5, the number of vertices in V (T ) \ (B(T ) ∪ S) is at

most n. For each node x ∈ V (T ) \ (B(T ) ∪ S), candidates which may be included

in LT (x) by updating are at most n. We can check in time O(n) whether each

candidate satisfies the condition to belong to L′
T (x). We thus conclude that Line 5

can be done in time O(n3). In this way, we can conclude that the running time of

the algorithm is O(n4). 2

The following ensures that each vertex subset obtained by the algorithm is a

relevant refined-layer.

Lemma 4.23 For any node x ∈ V (T ), the vertex subset L′
T (x) obtained by the

algorithm satisfies the following two conditions:

(a) L′
T (x) ⊆ LT (x); and

(b) for any T -embedding φ satisfying φ0
emb↭ φ or φr

emb↭ φ, φ(x) ∈ L′
T (x).

Proof. We first prove the condition (a). In Line 2, we observe that {φ0(x), φr(x)} ⊆

LT (x) holds for any node x ∈ V (T ). Thus L′
T (x) for each x ∈ V (T ) obtained in
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Line 2 satisfies the condition (a). Therefore, it suffices to show that for each updating

L′
T (x)⇐ L′

T (x)∪ {u} in Line 3, 5, if all current layers satisfy (a), then the vertex u

is also contained in LT (x). Suppose that updating L′
T (x)⇐ L′

T (x) ∪ {u} occurs for

some node x and vertex u in Line 3 or 5. Then we give an actual T -embedding φ such

that φ(x) = u. Let Y ⊆ V (T ) be a set of all close nodes of x for Line 3, or a set of

two close nodes such that the unique path between them in T contains x for Line 5.

By the operation of the algorithm, for any node y ∈ Y , L′
T (y) contains a node v

such that there exists a path between u and v in G with length distT (x, y). We know

that such paths are vertex-disjoint; otherwise we can construct a Steiner tree with

edge set smaller than T , contradicting the minimality of T . Then, φ is constructed

as follows. For each node y ∈ Y , we first set a path ⟨u = u0, u1, . . . , udistT (x,y) = v⟩

between u and v in G as an embedding of a path ⟨x = x0, x1, . . . , xdistG(u,v) = y⟩

between x and y in T of φ, that is, φ(xi) = ui for each i ∈ {0, 1, . . . , distT (x, y)}.

Consider the unique path between x and y in T , and remove the edge incident to y

in the path from T . Then we obtain two subtrees of T ; let Ty be one of the subtrees

containing y. Since u ∈ L′
T (y), there exists a T -embedding φ′ such that φ′(y) = u.

We then set φ(w) = φ′(w) for each node w ∈ V (Ty). Applying these operation to

each node y ∈ Y , we obtain a desired T -embedding φ.

We then prove the condition (b). We prove the claim only for the case of φ0
emb↭

φ; the other case of φr
emb↭ φ can be proved by similar way. Suppose that the

condition (b) does not hold. Let Φ be a set of all T -embeddings such that they

are reconfigurable from φ0 and contain a vertex which does not belong to L′
T (x)

for some node x ∈ V (T ). Let φ ∈ Φ be any T -embedding such that there exists a

embedding sequence ⟨φ0 = φ0, φ1, . . . , φℓ = φ⟩ where φi /∈ Φ holds for each i < ℓ.

Suppose that x ∈ V (T ) is a node such that φ(x) /∈ L′
T (x). Let Y ⊆ V (T ) be a set

of all close nodes of x if x ∈ B(T ) ∪ S, and otherwise a set of two close nodes such

that x is contained in the unique path between them in T . Then by the existence
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of φ, we know that for each y ∈ Y , there exists a path between φ(x) and φ(y) in

G of length distT (x, y). Furthermore, by the definition of φ, we have φ(y) ∈ L′
T (y)

for any node y ∈ V (T ) \ {x}. Therefore, the algorithm can find φ(x), contradicting

φ(x) /∈ L′
T (x). 2

Given an instance (G,S, T, φ0, φr) of Reach-STR under LVE-N, we can compute

refined-layers in polynomial time by Lemma 4.21. Since the vertices in LT (x)\L′
T (x),

x ∈ V (T ), are useless, we can remove such useless vertices from G. In this way, we

can assume without loss of generality that each vertex in G belongs to exactly one

(complete-)layer, and we indeed know the layer LT (x) for each node x ∈ V (T ).

Decomposition of a given instance into SPR instances.

Suppose that (G,S, T, φ0, φr) is an instance of Reach-STR under LVE-N, and

that we have the layer LT (x) for each node x ∈ V (T ). For each close pair (x, y) in

C(T ), we now construct the corresponding instance SPR(x, y) = (G′, S ′, T ′, φ′
0, φ

′
r)

such that |S ′| = 2, as follows. Let P be the unique path on T between x and y. Note

that by the definition of close pairs, P is a shortest path on G between x and y.

Consider the subgraph of G induced by the vertices in LT (V (P )). We add two new

vertices sx and ty to the subgraph so that sx is joined to all vertices in LT (x) and

ty is joined to all vertices in LT (y); note that each of sx and ty is indeed adjacent

to one or two vertices. Let G′ be the resulting graph, and let S ′ = {sx, ty}. We

then define T ′ as the path on G′ between sx and ty obtained by adding sx and ty to

P . Note that T ′ is a shortest path on G′ between sx and ty. We finally define φ′
0

as a T ′-embedding into G′ such that φ′
0(sx) = sx, φ

′
0(ty) = ty, and φ′

0(x) = φ0(x)

for each x ∈ V (P ). Similarly, we define φ′
r as a T ′-embedding into G′ such that

φ′
r(sx) = sx, φ

′
r(ty) = ty, and φ′

r(x) = φr(x) for each x ∈ V (P ). This completes the

construction of SPR(x, y). The corresponding instance SPR(x, y) can be obtained

in polynomial time, and satisfies the following property.
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Lemma 4.24 If G is planar, then G′ is also planar.

Proof. We know that G[LT (V (P ))] is planar because it is a subgraph of G. If

|LT (x)| = 1 (resp. |LT (y)| = 1) holds, then added vertex s (resp. t) has degree

exactly one. Therefore adding s (resp. t) does not destroy the planarity.

We thus suppose that |LT (x)| = 2 (Notice that |LT (x)| > 2 does not occur since

x is a branching node); the case of |LT (y)| = 2 can be proved by similar way. In

this case, we show that s can be obtained by contracting some edges in G. Since

|LT (x)| = 2, we know that x is an internal node of T ; if x is a leaf of T , x must be

a terminal by minimality of T , and hence |LT (x)| = 1. Therefore, by removing x

from T , we obtain at least two subtrees of T . Let T ′′ be one of the subtrees which

does not contain y. By the minimality of T , we know that T ′′ contains at least one

terminal. Thus, by Lemma 4.19, G[LT (V (T ′′))] is connected, and hence we obtain a

single vertex by contracting all edges in G[LT (V (T ′′))]. Furthermore, the obtained

vertex is adjacent to two vertices in LT (x). Therefore, we can conclude that s can

be obtained by contracting some edges in G, and hence G′ is planar. 2

Determination of the reachability.

We finally determine the reachability between two given minimum Steiner trees.

By Lemma 4.24 we can solve the instance SPR(x, y) for each close pair (x, y) ∈ C(T )

by the polynomial-time algorithm for SPR on planar graphs [5]. We can immediately

conclude that the given instance (G,S, T, φ0, φr) of Reach-STR under LVE-N is

a no-instance if there exists at least one instance SPR(x, y) whose answer is no.

However, even if the answers are yes to all instances SPR(x, y), (x, y) ∈ C(T ), it

is not always possible to extend their embedding sequences to a whole embedding

sequence between φ0 and φr for the original instance (G,S, T, φ0, φr). To check this,

we introduce further notion.

Consider an embedding sequence R = ⟨φ = φ0, φ1, . . . , φℓ = φ′⟩ between two
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T -embeddings φ and φ′. For each node x ∈ V (T ), we say that R is x-touching if

the assignment of x is changed by R at least once; otherwise it is x-untouching.

Note that if φ(x) ̸= φ′(x) for a node x ∈ V (T ), then any embedding sequence

between φ and φ′ must be x-touching. On the other hand, if |LT (x)| = 1, then

any embedding sequence must be x-untouching. For each close pair (x, y) ∈ C(T )

and its corresponding instance SPR(x, y) = (G′, S ′, T ′, φ′
0, φ

′
r), we define the set

Touch(x, y) ⊆ {(u, u), (u, t), (t, u), (t, t)}, as follows:

- (u, u) ∈ Touch(x, y) if and only if there exists an embedding sequence between

φ′
0 and φ′

r which is x-untouching and y-untouching;

- (u, t) ∈ Touch(x, y) if and only if there exists an embedding sequence between φ′
0

and φ′
r which is x-untouching and y-touching;

- (t, u) ∈ Touch(x, y) if and only if there exists an embedding sequence between φ′
0

and φ′
r which is x-touching and y-untouching; and

- (t, t) ∈ Touch(x, y) if and only if there exists an embedding sequence between φ′
0

and φ′
r which is x-touching and y-touching.

Note that Touch(x, y) = ∅ if there is no embedding sequence between φ′
0 and φ′

r.

Then, we have the following lemma.

Lemma 4.25 For each close pair (x, y) ∈ C(T ), Touch(x, y) can be computed in

polynomial time.

To prove the lemma, we give necessary and sufficient conditions for the statements

(u, u) ∈ Touch(x, y), (u, t) ∈ Touch(x, y), and (t, t) ∈ Touch(x, y), respectively;

the condition for (t, u) ∈ Touch(x, y) is symmetric to the condition for (u, t) ∈

Touch(x, y).

Before giving the conditions, we introduce another probelm, called generalized

shortest path reconfiguration (GSPR, for short) [5], defined as follows. In

the problem, we are given a graph G, a terminal set S of size exactly two, a minimum

Steiner tree T (actually, a shortest path), a T -embedding φ0, and a vertex subset
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Vr ⊆ V (G). Then, we are asked to determine whether or not there exists a T -

embedding φr such that φ0
emb↭ φr and Vr ⊆ φ(V (T )). It is known that GSTR is

solvable in polynomial time if G is planar and |Vr| = 1 holds [5, Theorem 31]. We

denote by a 5-tuple (G′, S, T, φ0, Vr) an instance of GSPR.

Then we now give necessary and sufficient conditions for the statements (u, u) ∈

Touch(x, y), (u, t) ∈ Touch(x, y), and (t, t) ∈ Touch(x, y). To simplify notation, for

a vertex subset V ′ ⊆ V (G), we denote by G − V ′ a subgraph of G induced by

V (G) \ V ′, that is, G− V ′ = G[V (G) \ V ′].

Lemma 4.26 Let SPR(x, y) = (G,S, T, φs, φt). Then, (u, u) ∈ Touch(x, y) if and

only if the following three conditions hold;

(a) φ0(x) = φr(x);

(b) φ0(y) = φr(y); and

(c) (G′, S, T, φ0, φr) of SPR is a yes-instance,

where G′ = G− (LT (x) \ {φ0(x)})− (LT (y) \ {φ0(y)}).

Proof. We first prove the only-if direction. Suppose that (u, u) ∈ Touch(x, y)

holds, that is, there exists a embedding sequence R between φ0 and φr which is

x-untouching and y-untouching. Then the conditions (a) and (b) clearly hold. Since

R is x-untouching and y-untouching, we know that all T -embeddings in R do not

contain a vertex in LT (x) \ {φ0(x)} and in LT (y) \ {φ0(y)}. Thus the condition (c)

hold.

We then prove the if direction. Suppose that all conditions in the lemma hold.

Then by conditions (a) and (b), we have φ0(V (T )) ⊆ V (G′) and φr(V (T )) ⊆ V (G′),

and hence φ0 and φr are suitable T -embedding into G′. Since condition (c) holds,

there exists a embedding sequence R between φ0 and φr on G′. By the definition

of G′, we observe that layers of x, y in G′ satisfy |LT (x)| = 1 and |LT (y)| = 1, and

hence R is x-untouching and y-untouching. Since G′ is an induced subgraph of G,

R is a embedding sequence also on G. Thus R is a desired embedding sequence
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between φ0 and φr on G which is x-untouching and y-untouching. 2

Lemma 4.27 Let SPR(x, y) = (G,S, T, φs, φt). Then, (u, t) ∈ Touch(x, y) if and

only if the following four conditions hold;

(a) φ0(x) = φr(x);

(b) |LT (y)| = 2;

(c) (G′, S, T, φ0, φr) of SPR is a yes-instance; and

(d) (G′, S, T, φ0, LT (y) \ {φ0(y)}) of GSPR is a yes-instance,

where G′ = G− (LT (x) \ {φ0(x)}).

Proof. We first prove the only-if direction. Suppose that (u, t) ∈ Touch(x, y)

holds, that is, there exists a embedding sequence R between φ0 and φr which is

x-untouching and y-touching. Then the conditions (a) and (b) clearly hold. Since

R is x-untouching, we know that all T -embeddings in R do not contain a vertex in

LT (x) \ {φ0(x)}. Thus the condition (c) hold. Furthermore R is y-touching, there

exists a T -embedding in R containing the unique vertex in LT (y) \ {φ0(y)}. Thus

the condition (d) hold.

We then prove the if direction. Suppose that all conditions in the lemma hold.

Then by the condition (a), we have φ0(V (T )) ⊆ V (G′) and φr(V (T )) ⊆ V (G′),

and hence φ0 and φr are suitable T -embedding into G′. By the condition (c), we

know φ0
emb↭ φr on G′. Since the condition (b) hold, we have |LT (y) \ {φ0(y)}| = 1.

Then by the condition (d), we know that there exists a T -embedding φ′
r such that

φ0(y) /∈ φ′
r(V (T )) and φ0

emb↭ φ′
r. Therefore we can construct a embedding sequence

R = ⟨φ0, . . . , φ
′
r, . . . , φ0, . . . , φr⟩ since φ0

emb↭ φ′
r and φ0

emb↭ φr hold; then R is

y-touching. Furthermore by the definition of G′, we observe that layers of x in G′

satisfy |LT (x)| = 1, and hence R is x-untouching. Since G′ is induced subgraph of

G, R is a embedding sequence also on G. Thus R is a desired embedding sequence

between φ0 and φr on G which is x-untouching and y-touching. 2
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Lemma 4.28 Let SPR(x, y) = (G,S, T, φs, φt). Then, (t, t) ∈ Touch(x, y) if and

only if the following four conditions hold;

(a) |LT (x)| = |LT (y)| = 2;

(b) (G,S, T, φ0, φr) of SPR is a yes-instance;

(c) (G,S, T, φ0, LT (x) \ {φ0(x)}) of GSPR is a yes-instance; and

(d) (G,S, T, φ0, LT (y) \ {φ0(y)}) of GSPR is a yes-instance,

where G′ = G− (LT (x) \ {φ0(x)}).

Proof. The only-if direction is trivial. We thus prove the if direction. Suppose that

all conditions in the lemma hold. By the condition (b), we know φ0
emb↭ φr. By the

condition (a), we have |LT (x)\{φ0(x)}| = 1 and LT (y)\{φ0(y)}| = 1. Then since the

condition (c) holds, we know that there exist a T -embedding φ′
r such that φ0(x) /∈

φ′
r(V (T )) and φ0

emb↭ φ′
r. Similarly, since the condition (d) holds, we know that

there exist a T -embedding φ′′
r such that φ0(y) /∈ φ′′

r(V (T )) and φ0
emb↭ φ′′

r . Then we

can construct a embedding sequenceR = ⟨φ0, . . . , φ
′
r, . . . , φ0, . . . , φ

′′
r , . . . , φ0, . . . , φr⟩

since φ0
emb↭ φ′

r, φ0
emb↭ φ′′

r , and φ0
emb↭ φr hold; then R is x-touching and y-touching.

This is a desired embedding sequence. 2

Since all conditions in Lemma 4.26, 4.27, and 4.28 can be checked in polynomial-

time, we can compute Touch(x, y) in polynomial time.

We finally solve the given instance (G,S, T, φ0, φr) of Reach-STR under LVE-N.

Assume that SPR(x, y) are yes-instances for all close pairs (x, y) ∈ C(T ), and hence

Touch(x, y) ̸= ∅; otherwise (G,S, T, φ0, φr) is a no-instance. Consider an assignment

α : B(T ) ∪ S → {u, t}. Then, we say that α is synchronizing if (α(x), α(y)) ∈

Touch(x, y) holds for every close pair (x, y) ∈ C(T ).

Lemma 4.29 We can determine in polynomial time whether or not there exists a

synchronizing assignment α.

Proof. We construct a 2CNF formula F which is satisfiable if and only if there

exists a synchronizing assignment α; note that satisfiability of 2CNF can be checked
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in polynomial time [32]. In the remainder of the proof, we replace the letter t, u

by the boolean value true, false, respectively; for example, (t, u) ∈ Touch(x, y) for a

close pair (x, y) is replaced by (true, false) ∈ Touch(x, y).

Let k = |B(T ) ∪ S|. For the node set B(T ) ∪ S = {x1, x2, . . . , xk}, we define a

variable set X = {X1, X2, . . . , Xk} in which each variable Xi corresponds to xi ∈

B(T ) ∪ S. Let R = {true, false}. For a boolean value a ∈ R and a variable Xi ∈ X ,

let Xa
i be a literal Xi if a = false, and ¬Xi if a = true. For each close pair (xi, xj) ∈

C(T ), we define the formula Fi,j as follows:

Fi,j =
∧

(a,b)∈R2\Touch(xi,xj)

(Xa
i ∨Xb

j ).

Then the formula F is defined as follows:

F =
∧

(xi,xj)∈C(T )

Fi,j.

We then show that F is satisfiable if and only if there exists a synchronizing

assignment α. For any close pair (xi, xj) ∈ C(T ), let Pi,j be a set of all pairs of

assignment (Xi, Xj) ∈ R2 satisfying Fi,j. Then it suffices to show that Pi,j is equal

to Touch(xi, xj). We observe that a set of all pairs of assignment satisfying a single

clause (Xa
i ∨Xb

j ) is R
2 \ {(a, b)}. Therefore, we have

Pi,j =
∩

(a,b)∈R2\Touch(xi,xj)

R2 \ {(a, b)} = R2 \ (R2 \ Touch(xi, xj)) = Touch(xi, xj).

In this way, we can conclude that the lemma follows. 2

The following two lemmas complete the proof of Theorem 4.9, which say that an

given instance is a yes-instance if and only if there exists a synchronizing assignment.

Lemma 4.30 Suppose that (G,S, T, φ0, φr) is an instance of Reach-STR under

LVE-N such that G is a planar graph. If the instance is a yes-instance, there exists

a synchronizing assignment α.

Proof. Suppose that an instance (G,S, T, φ0, φr) of Reach-STR under LVE-

N is a yes-instance, and hence there exists a embedding sequence R = ⟨φ0 =
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φ0, φ1, . . . , φℓ = φr⟩ between φ0 and φr. Then for each node x ∈ B(T )∪S, it is deter-

mined that R is x-touching or x-untouching; let α : B(T )∪S → {u, t} be an assign-

ment which means thatR is x-touching or x-untouching for each node x ∈ B(T )∪S.

Consider SPR(x, y) = (G′, S ′, T ′, φ′
0, φ

′
r) for any close pair (x, y) ∈ C(T ), and let

P be the unique path between x and y in T . Then for each i ∈ {0, 1, . . . , ℓ}, con-

sider the function φ′
i : V (P ) ∪ {s, t} → V (G′) such that φ′

i(s) = s, φ′
i(t) = t, and

φ′
i(z) = φi(z) for each z ∈ V (P ). We then obtain (by removing redundant ones

if needed) the embedding sequence ⟨φ′
0 = φ′

0, φ
′
1, . . . , φ

′
ℓ = φ′

r⟩ between φ′
0 and φ′

r.

Furthermore, we observe that the embedding sequence is x-untouching if α(x) = u,

and x-touching otherwise. Similarly, the embedding sequence is y-untouching if

α(y) = u, and y-touching otherwise. Thus we know that (α(x), α(y)) ∈ Touch(x, y).

In this way, we can conclude that α is synchronizing assignment. 2

Lemma 4.31 Suppose that (G,S, T, φ0, φr) is an instance of Reach-STR under

LVE-N such that G is a planar graph. If there exists a synchronizing assignment α,

the instance is a yes-instance.

Proof. Suppose that there exists a synchronizing assignment α. For any subset

C ′ ⊆ C(T ), let T (C ′) be a subgraph of T induced by
∪

(x,y)∈C′ V (Pxy), where Pxy is

the unique path between x and y in T . Then, we show the following claim by the

induction on |C ′|.

Claim: Let T ′ be any subtree of T such that there exists a subset C ′ ⊆ C(T )

satisfying T ′ = T (C ′). Then, there exists a sequence R′ = ⟨φ′
0, φ

′
1, . . . , φ

′
ℓ′⟩ of

mapping such that;

(a) for each i ∈ {0, 1, . . . , ℓ′}, the mapping φ′
i : V (T ′) → V (G) is injective homo-

morphism from T ′ to G such that φ′
i(x) ∈ LT (x) holds for any x ∈ V (T ′);

(b) for each x ∈ V (T ′), both φ′
0(x) = φ0(x) and φ′

ℓ′(x) = φr(x) hold;

(c) for each i ∈ {0, 1, . . . , ℓ′ − 1}, |{x ∈ V (T ′) | φ′
i(x) ̸= φ′

i+1(x)}| = 1 holds; and
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(d) for each x ∈ V (T ′)∩ (B(T )∪S), there exists φ′
i in R′ such that φ′

0(x) ̸= φ′
i(x)

if and only if α(x) = t.

Note that, if T ′ = T (that is, C ′ = C(T )), R′ is a embedding sequence between φ0

and φr.

Consider the base case where |C ′| = 1. Let (x, y) ∈ C ′ be the unique close

pair in C ′, and let SPR(x, y) = (G′′, S ′′, T ′′, φ′′
0, φ

′′
r). Then there exists a embed-

ding sequence ⟨φ′′
0 = φ′′

0, φ
′′
1, . . . , φ

′′
ℓ′′ = φ′′

r⟩ between φ′′
0 and φ′′

r corresponding to

(α(x), α(y)) ∈ Touch(x, y). For each i ∈ {0, 1, . . . , ℓ′′}, we set φ′
i(x) = φ′′

i (x) for any

x ∈ V (T (C ′)). Then the sequence ⟨φ′
0, φ

′
1, . . . , φ

′
ℓ′′⟩ is a desired sequence.

We then consider the case where |C ′| > 1. Let (x, y) ∈ C ′ be any close pair such

that T (C ′ \ {(x, y)}) is a tree; such a close pair always exists. Let T p = T (C ′ \

{(x, y)}) and T q = T ({(x, y)}). By the induction hypothesis, there exists for T p a

sequence Rp = ⟨φp
0, φ

p
1, . . . , φ

p
ℓp⟩ which satisfies the above four conditions. Similarly,

by induction hypothesis, there exists for T q a sequence Rq = ⟨φq
0, φ

q
1, . . . , φ

q
ℓq⟩ which

satisfies the above four conditions. We then construct a desired sequence for T ′ =

T (C ′) by combining Rp and Rq. By the definition of T p and T q, either V (T p) ∩

V (T q) = {x} or V (T q) ∩ V (T p) = {y} holds. We assume without loss of generality

that V (T p) ∩ V (T q) = {x} holds; otherwise the proof is symmetric. Let φ[i, j] :

V (T ′)→ V (G) be the mapping such that φ[i, j](z) = φp
i (z) for any z ∈ V (T p) and

φ[i, j](z) = φq
j(z) for any z ∈ V (T ′) \ V (T p) = V (T q) \ {x}.

If α(x) = u, x does not move at all in both Rp and Rq. We thus have

φp
i (x) = φq

j(x) for any pair of indices i ∈ {0, . . . , ℓp} and j ∈ {0, . . . , ℓq}. Further-

more, from Lemma 4.16, reconfiguring a vertex in T p and that in T q can be done

independently, except for reconfiguring x. Therefore, ⟨φ[0, 0], φ[1, 0], . . . , φ[ℓp, 0],

φ[ℓp, 1], . . . , φ[ℓp, ℓq]⟩ is a desired sequence satisfying above four conditions.

We thus consider the other case where α(x) = t. Let P = {p1, p2, . . . , p|P |} be

the set of all indices in Rp such that φp
pi
(x) ̸= φp

pi+1(x) for any pi ∈ P , where
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p1 < p2 < . . . < p|P |. Similarly, let Q = {q1, q2, . . . , q|Q|} be the set of all indices in

Rq such that φq
qi
(x) ̸= φq

qi+1(x) for any qi ∈ Q,where q1 < q2 < . . . < q|Q|.

We first consider the easy case where |P | = |Q| holds. Then we consider the

following sequence:

⟨ φ[0, 0], φ[1, 0], . . . , φ[p1 − 1, 0], φ[p1 − 1, 1], . . . , φ[p1 − 1, q1 − 1],

φ[p1, q1], φ[p1 + 1, q1], . . . , φ[p2 − 1, q1], φ[p2 − 1, q1 + 1], . . . , φ[p2 − 1, q2 − 1],

...

φ[pi, qi], φ[pi + 1, qi], . . . , φ[pi+1 − 1, qi], φ[pi+1 − 1, qi + 1], . . . , φ[pi+1 − 1, qi+1 − 1],

...

φ[p|P |, q|Q|], φ[p|P | + 1, q|Q|], . . . , φ[ℓ
p, q|Q|], φ[ℓ

p, q|Q| + 1], . . . , φ[ℓp, ℓq] ⟩

Then we show that the sequence is a desired sequence satisfying above four condi-

tions. By the induction hypothesis for T p and T q, we observe that conditions (b),

(c), and (d) are satisfied. For any φ[i, j] in the sequence, we also observe by the

induction hypothesis that φ[i, j](x) ∈ LT (x) holds for any x ∈ V (T ′); this implies

that φ[i, j] is an injection. Therefore, to show that the condition (a) holds, it suf-

fices to show that φ[i, j] is a homomorphism, and hence it suffices to show that

φp
i (x) = φq

j(x). Since φp
0(x) = φq

0(x) and |LT (x)| = 2, we have φp
pk
(x) = φq

qk
(x)

for each k ∈ {0, 1, . . . , |P | = |Q|}. Then by the definition of P and Q, for

each k ∈ {0, 1, . . . , |P | − 1}, we know that φp
i (x) = φq

j(x) for any pair of indices

i ∈ {pk, . . . , pk+1− 1} and j ∈ {qk, . . . , qk+1− 1}, where p0 = q0 = 0 for convenience.

By similar reason, we know that φp
i (x) = φq

j(x) for any pair of indices i ≥ p|P | and

j ≥ q|Q|. In this way, we obtain the required statement that φp
i (x) = φq

j(x) for any

φ[i, j] in the sequence.

We finally consider the case of |P | ̸= |Q|. We assume without loss of generality

that |P | > |Q|; otherwise the proof is symmetric. Since |LT (x)| = 2, φp
0(x) = φq

0(x),

and φp
ℓp(x) = φq

ℓq(x), we know |P | − |Q| is even. In the sequence Rq, if we repeat
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⟨φp
p|Q|−1, φ

q
q|Q|
⟩, that is, considering ⟨φq

0, φ
q
1, . . . , φ

q
q|Q|−1, φ

q
q|Q|

, φq
q|Q|−1, φ

q
q|Q|

, . . . , φq
ℓq⟩,

then we can increase |Q| by 2, because φq
q|Q|−1(x) ̸= φq

q|Q|
(x). By repeating this

operation, we can always obtained the new sequence for T q such that |P | = |Q|, and

then, this case is included by the previous case. 2

4.6 Edge exchanges

In this section, we study the complexity of Reach-STR under EE. In Subsec-

tion 4.6.1, we give a sufficient condition and a necessary condition for the existence of

a reconfiguration sequence under EE between two Steiner trees, which can be checked

in polynomial-time. In Section 4.6.2, the remaining instances (i.e. instances which

satisfy nether the sufficient condition nor the necessary condition) can be converted

to instances of the auxiliary problem. This conversion give us many complexity

results for Reach-STR under EE with respect to graph classes.

In this section, we sometimes S ̸= ∅. Otherwise, the instance is also an instance

of the edge version under TJ with the property “a graph is a tree.” We have shown

that it can be linear-time solvable in Theorem 3.6.

4.6.1 Sufficient condition and necessary condition

We first give a sufficient condition, as follows.

Theorem 4.10 Let (G,S, T0, Tr) be an instance of Reach-STR under EE. If

V (T0) = V (Tr), then it is a yes-instance.

Proof. Suppose that V (T0) = V (Tr) holds. Then, we have G[V (T0)] = G[V (Tr)].

Therefore, both T0 and Tr form spanning trees of G[V (T0)] = G[V (Tr)]. It is known

that any two spanning trees are reconfigurable each other by exchanging a single

edge at a time [18, Proposition 1], and hence the theorem follows. 2

Theorem 4.10 says that any two Steiner trees are reconfigurable each other as long
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as they consist of the same node set. On the other hand, since we can exchange only

a single edge at a time, two adjacent Steiner trees having different node sets satisfy

a special property. In the following, we focus on a special node, called “free leaf.”

For convenience, although any Steiner tree T for S is not a rooted tree generally, we

call each degree one node of T a leaf of T . We say that a leaf vf of T is free if it is

a non-terminal, that is, vf ∈ V (T ) \ S. Thus, T [V (T ) \ {vf}] is also a Steiner tree

for S, and hence a Steiner tree having a free leaf is not minimal. Then we have the

following proposition.

Proposition 2 Let T and T ′ be two Steiner trees for a terminal set S in a graph

G. Suppose that T
EE↔ T ′ and V (T ) ̸= V (T ′). Then,

(a) V (T ) \ V (T ′) consists of exactly one node vf , and vf is a free leaf in T ; and

(b) V (T ′) \ V (T ) consists of exactly one node v′f , and v′f is a free leaf in T ′.

Proof. We prove only the claim (a), because the proof is symmetric for the claim

(b).

Suppose for a contradiction that V (T ) \ V (T ′) consists of more than one node.

Since S ̸= ∅ and both T and T ′ are Steiner trees for S, we have S ⊆ V (T )∩V (T ′) ̸=

∅. Then, since T is connected, T has at least two edges incident to vertices in

V (T ) \ V (T ′) and hence |E(T ) \ E(T ′)| ≥ 2. This contradicts the assumption that

T ↔ T ′.

In this way, we have verified that V (T ) \ V (T ′) contains exactly one vertex vf .

Since T has just one edge incident to vf , it is a leaf in T . Since both T and T ′ are

Steiner trees for S, we have V (T ) \ V (T ′) ⊆ V (G) \ S. Thus, vf is free. 2

We now give a sufficient condition for no-instance; by taking a contrapositive, this

yields a necessary condition for yes-instance.

Theorem 4.11 Let (G,S, T0, Tr) be an instance of Reach-STR under EE. Then,

it is a no-instance if the following two conditions (a) and (b) hold:
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(a) V (T0) ̸= V (Tr); and

(b) at least one of G[V (T0)] and G[V (Tr)] has no Steiner tree for S with a free

leaf.

Proof. Suppose for a contradiction that (G,S, T0, Tr) is a yes-instance even though

it satisfies both Conditions (a) and (b). Then, there exists a reconfiguration sequence

T between T0 and Tr. Let Ti+1 be the first Steiner tree in T such that V (Ti+1) ̸=

V (T0); such a Steiner tree exists since V (T0) ̸= V (Tr). Then, the Steiner tree Ti

in T satisfies Ti
EE↔ Ti+1 and V (Ti) = V (T0). By Proposition 2, V (Ti) \ V (Ti+1)

contains exactly one node vf which is a free leaf in Ti. Since V (Ti) = V (T0), we

can conclude that G[V (T0)] has a Steiner tree Ti for S with a free leaf vf . By the

symmetric arguments, G[V (Tr)] has a Steiner tree for S with a free leaf, too. This

contradicts the assumption that Condition (b) holds. 2

We notice that both Theorems 4.10 and 4.11 can be checked in polynomial time.

Furthermore, we know that for any minimum Steiner tree T , G[T ] has no (minimum)

Steiner tree having a free leaf; otherwise, it contradicts the fact that T is minimum.

Therefore, by combining Theorems 4.10 and 4.11, we have the following necessary

and sufficient condition for the reachability between minimum Steiner trees.

Theorem 4.12 Reach-STR under EE is linear-time solvable if given two Steiner

trees are minimum.

4.6.2 Reduction from/to auxiliary problem

We now show that instances which satisfy neither Theorem 4.10 nor Theorem 4.11

can be converted to instances of the auxiliary problem.

Let (G,S, T0, Tr) be such an instance of Reach-STR under EE. Since it does

not satisfy Theorem 4.10, we have V (T0) ̸= V (Tr). Furthermore, it also does not

satisfy Theorem 4.11, G[V (T0)] and G[V (Tr)] have Steiner trees T
′
0 and T ′

r with free
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leaves, respectively. We know by Theorem 4.10 that T ′
0 is reachable from T0 and T ′

r

is reachable from Tr. We thus assume without loss of generality that both T0 and

Tr have a free leaf v0 and vr, respectively.

This is the main claim in this subsection.

Lemma 4.32 Let (G,S, T0, Tr) be an instance of Reach-STR under EE such that

T0 and Tr have free leaves v0 and vr, respectively. Then, T0
EE↭ Tr if and only if there

exists a Steiner set sequence between two Steiner sets V (T0)\{v0} and V (Tr)\{vr}.

Proof. We first prove the if direction. (See Figure 4.13.) Suppose that there exists

a Steiner set sequence F = ⟨F0, F1, . . . , Fℓ⟩ between V (T0) \ {v0} and V (Tr) \ {vr},

where F0 = V (T0) \ {v0} and Fℓ = V (Tr) \ {vr}. For each i ∈ {1, 2, . . . , ℓ − 1},

consider any spanning tree T ′
i of G[Fi]; let T ′

0 = T0 \ {v0} and T ′
ℓ = Tr \ {vr}.

Then, T ′
i is a Steiner tree whose vertex set is of size |V (T0)| − 1 = |V (Tr)| − 1.

For each i ∈ {0, 1, . . . , ℓ − 1}, let Fi+1 \ Fi = {v+i }, and let T+
i be a Steiner tree

obtained by adding v+i to T ′
i as a free leaf. Similarly, for each i ∈ {1, 2, . . . .ℓ}, let

Fi−1 \Fi = {v−i }, and let T−
i be a Steiner tree obtained by adding v−i to T ′

i as a free

leaf. Let T−
0 = T0 and T+

ℓ = Tr. Then, we have T−
i

EE↔ T+
i (or T−

i = T+
i ) for each

i ∈ {0, 1, . . . , ℓ}, because T+
i can be obtained by exchanging the edge incident to

the free leaf v−i of T−
i with the edge incident to the free leaf v+i of T+

i . In addition,

V (T+
i ) = V (T ′

i ) ∪ {v+i } = V (T ′
i+1) ∪ {v−i+1} = V (T−

i+1) for each i ∈ {0, 1, . . . , ℓ− 1},

by Theorem 4.10 we have T+
i

EE↭ T−
i+1. In this way, we can conclude that T0

EE↭ Tr

holds.

We then prove the only-if direction. Suppose that T0 ↭ Tr, and hence there exists

a reconfiguration sequence T between T0 and Tr. We subdivide T into maximal

subsequences T1, T2, . . . , Tk so that all Steiner trees in each Tj, j ∈ {1, 2, . . . , k},

have the same vertex set; let Tj,0 and Tj,r be the first and last Steiner trees in

each subsequence Tj, respectively. Then, for each j ∈ {1, 2, . . . , k − 1}, we have

V (Tj,r) ̸= V (Tj+1,0). Since Tj,r
EE↔ Tj+1,0, by Proposition 2 the Steiner trees Tj,r and
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Figure 4.13: (a) A sequence of induced subgraphs G[Fi] obtained by a Steiner set

sequence F = ⟨F0, F1, . . . , Fℓ⟩, and (b) its corresponding reconfiguration sequence.

Tj+1,0 have free leaves vj,r and vj+1,0, respectively; we let v1,0 = v0 and vk,r = vr

for convenience. Let Fj,0 = V (Tj,0) \ {vj,0} for each j ∈ {1, 2, . . . , k}. Then, it

forms a Steiner set for S, because Tj,0 \ {vj,0} is a Steiner tree for S. Similarly,

for each j ∈ {1, 2, . . . , k}, Fj,r = V (Tj,r) \ {vj,r} is a Steiner set for S. Since

Tj,r
EE↔ Tj+1,0 and they differ only in free leaves vj,r and vj+1,0, we have Fj,r =

V (Tj,r) \ {vj,r} = V (Tj+1,0) \ {vj+1,0} = Fj+1,0 for all j ∈ {1, 2, . . . , k − 1}. In

addition, since V (Tj,0) = V (Tj,r) for each j ∈ {1, 2, . . . , k}, we have Fj,0\Fj,r = {vj,r}

and Fj,r \ Fj,0 = {vj,0} and hence Fj,0 ↔ Fj,r holds. In this way, we can obtain

a Steiner set sequence ⟨F1,0, F2,0, . . . , Fk,0, Fk,r⟩ between F1,0 = V (T0) \ {v0} and

Fk,r = V (Tr) \ {vr}, and hence V (T0) \ {v0}↭ V (Tr) \ {vr} holds. 2

We observe that Reach-STR under EE is in PSACE. When we are given an

instance of Reach-STR, we can check in polynomial time if it satisfies Theo-

rems 4.10 and 4.11; in particular, we can do it in linear time on interval graphs

and cographs. Therefore, combining Lemma 4.32 and theorems in Section 4.2, we

have the following corollary.

Corollary 4.4 Reach-STR under EE is PSPACE-complete for split graphs and

planar graphs. On the other hand, Reach-STR under EE is linear-time solvable
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for cographs and interval graphs, and polynomial-time solvable for cactus graphs.
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Chapter 5 Optimization variant

In this chapter, we study the complexity of the optimization variant of indepen-

dent set reconfiguration (Opt-ISR, for short).

5.1 Definition of problem and preliminaries

We formally define Opt-ISR. Recall that for a graph G, an independent set is a

vertex subset I ⊆ V (G) in which no two vertices are adjacent. Then, Independent

set reconfiguration under TAR [18, 22] is the reconfiguration problem whose

solution space is defined as follows: For a graph G and an integer l, feasible solutions

are defined as all independent sets of G of size at least l, and two feasible solutions

I and I ′ are adjacent if |I △ I ′| = |(I \ I ′) ∪ (I ′ \ I)| = 1 holds. This adjacency

relation is well studied as TAR [18, 19, 22]. Note that if no restriction on the size

of feasible solutions (i.e. l = 0), there is a reconfiguration sequence between any

two independent sets, because we can remove all vertices from one independent set

one by one, and add all vertices in the other one. Thus, considering the adjacency

relation TAR, we often restrict feasible solutions by setting the lower bound l on the

size of any independent set. To emphasize the lower bound l, we sometimes write

TAR(l) instead of TAR. We write I
l↭ I ′ if I and I ′ are reachable in the solution

space with TAR(l).

Our problem aims to optimize a given independent set under TAR Specifically,

Opt-ISR is defined as follows: We are given a graph G, an integer l ≥ 0, and an

independent set I0 of G such that |I0| ≥ l, then asked to find an independent set

Isol of G such that I0
l↭ Isol and |Isol| is maximized.
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We denote by a triple (G, l, I0) an instance ofOpt-ISR, and call a desired indepen-

dent set Isol of G an output solution to (G, l, I0). Note that a given independent set

I0 may itself be an output solution. Opt-ISR simply outputs a solution to (G, l, I0),

and does not require the specification of an actual reconfiguration sequence from I0

to the output solution.

We close this section with noting the following observation which says that Opt-

ISR for an instance (G, 0, I0) is equivalent to finding a maximum independent set

of G.

Lemma 5.1 Every maximum independent set Imax of a graph G is a solution to an

instance (G, 0, I0) of Opt-ISR, where I0 is any independent set of G.

5.2 Polynomial-time solvability

In this section, we study the polynomial-time solvability of Opt-ISR.

5.2.1 Hardness results

Lemma 5.1 implies that results for the maximum independent set problem

can be applied to Opt-ISR for l = 0. For example, we have the following theorem,

because maximum independent set remains NP-hard for planar graphs [14].

Theorem 5.1 Opt-ISR is NP-hard for planar graphs and l = 0, where l is a lower

bound on the size of independent sets.

It is known that the degeneracy of any planar graph is at most five [23], and hence

we have the following corollary.

Corollary 5.1 Opt-ISR is NP-hard for 5-degenerate graphs and l = 0, where l is

a lower bound on the size of independent sets.
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(a) G ,  I
r

′ ′

u

(b) G

Figure 5.1: (a) Graph G′ and its independent set I ′r for MISR, and (b) the cor-

responding graph G for Opt-ISR, where newly added edges are depicted by thick

dotted lines.

This corollary implies that Opt-ISR admits neither a fixed-parameter algorithm

nor an XP algorithm when parameterized by d + l under the assumption that P ̸=

NP, where d is the degeneracy of an input graph and l is a lower bound on the size of

independent sets. We will discuss the fixed parameter (in)tractability of Opt-ISR

more deeply in Section 5.3.

We then show that Opt-ISR is PSPACE-hard even if the pathwidth of an input

graph is bounded by a constant. The following theorem is the main result of this

subsection.

Theorem 5.2 Opt-ISR is PSPACE-hard for bounded pathwidth graphs.

Proof. We give a polynomial-time reduction from the reachability variant of maxi-

mum independent set reconfiguration problem (MISR for short), defined as

follows [35]: We are given a graph G′, and two maximum independent sets I ′0 and I ′r

of G′, and asked to determine whether or not I ′0
l′↭ I ′r, where l

′ = |I ′0|−1 = |I ′r|−1.

We denote by a triple (G′, I ′0, I
′
r) an instance of MISR. This problem is known to

be PSPACE-complete for bounded bandwidth graphs [35]. Since the pathwidth of a

graph is at most the bandwidth of the graph [31], MISR is PSPACE-complete also

for bounded pathwidth graphs.

Let (G′, I ′0, I
′
r) be an instance of MISR such that the pathwidth of G′ is bounded

by a constant. Then, we construct a corresponding instance (G, l, I0) ofOpt-ISR, as
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follows. (See also Figure 5.1.) We add a new vertex u to the graphG′, and join it with

all vertices in V (G′) \ I ′r; let G be the resulting graph, that is, V (G) = V (G′)∪ {u}

and E(G) = E(G′) ∪ {uv : v ∈ V (G′) \ I ′r}. Since the pathwidth of G′ is bounded

by a constant and V (G) = V (G′) ∪ {u}, the pathwidth of G is also bounded by a

constant. Let l = |I ′0| − 1 = |I ′r| − 1, and I0 = I ′0. This completes the construction

of the corresponding instance (G, l, I0) of Opt-ISR. This construction can be done

in polynomial time.

We now prove the correctness of our reduction. We first claim that G has only

one maximum independent set, and it is I ′r ∪ {u} of size |I ′r|+ 1. To see this, recall

that I ′r is a maximum independent set of G′. Therefore, if G has an independent

set I such that |I| > |I ′r|, it must contain u. Since u is adjacent to all vertices in

V (G′) \ I ′r, only I ′r ∪ {u} can be such an independent set of size |I ′r|+1, as claimed.

Therefore, to complete the correctness proof of our reduction, we prove that Opt-

ISR for (G, l, I0) outputs I
′
r ∪ {u} if and only if I ′0

l↭ I ′r on G′. Since I ′r ∪ {u} is

the unique maximum independent set in G, we indeed prove that I0
l↭ I ′r ∪{u} on

G if and only if I ′0
l↭ I ′r on G′.

We first prove the if direction. Suppose that I ′0
l↭ I ′r on G′. Since G contains

G′ as an induced subgraph, we have I0 = I ′0
l↭ I ′r on G. Then, I ′r ∪ {u} can be

obtained simply by adding u to I ′r, and hence we can conclude that I0
l↭ I ′r ∪ {u}

on G.

We next prove the only-if direction. Suppose that I0
l↭ I ′r ∪ {u} on G, that is,

there exists a reconfiguration sequence I = ⟨I0, I1, . . . , Iℓ = I ′r ∪ {u}⟩ on G under

the TARl rule. Let Iq+1 be the first independent set in I which contains u; notice

that Iq = Iq+1 \ {u} because we know u ̸∈ I0. Since Iq+1 is an independent set of

G, no vertex in Iq = Iq+1 \ {u} is adjacent to u. By the construction of u, we thus

have Iq ⊆ I ′r. Since Iq appears in I, we know |Iq| ≥ l. Therefore, we can construct

a reconfiguration sequence Iqr between Iq and I ′r under the TARl rule by simply
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adding the vertices in I ′r \ Iq one by one. Then, by combining ⟨I0, I1, . . . , Iq−1⟩ and

Iqr serially, we can obtain a reconfiguration sequence between I0 and I ′r under the

TARl rule such that all independent sets in the sequence do not contain u. We thus

have I ′0
l↭ I ′r on G′. 2

5.2.2 Linear-time algorithm for chordal graphs

A graph G is chordal if every induced cycle in G is of length three [8]. The main

result of this subsection is the following theorem.

Theorem 5.3 Opt-ISR is solvable in linear time for chordal graphs.

This theorem can be obtained from the following lemma; we note that a maximum

independent set Imax of a chordal graph can be found in linear time [13], and the

maximality of a given independent set can be checked in linear time.

Lemma 5.2 Let (G, l, I0) be an instance of Opt-ISR such that G is a chordal

graph, and let Imax be any maximum independent set of G. Then, a solution Isol to

(G, l, I0) can be obtained as follows:

Isol =

{
I0 if I0 is a maximal independent set of G and |I0| = l;

Imax otherwise.

Proof. We first consider the case where I0 is a maximal independent set of G

and |I0| = l. In this case, we cannot remove any vertex from I0 because |I0| = l.

Furthermore, since I0 is maximal, we cannot add any vertex in V (G)\ I0 to I0 while

maintaining independence. Therefore, G has no independent set I ′ (̸= I0) which is

reachable from I0, and hence Isol = I0.

We then consider the other case, that is, I0 is not a maximal independent set of

G or |I0| > l. Observe that it suffices to consider the only case where |I0| > l holds;

if |I0| = l and I0 is not maximal, then we can obtain an independent set I ′′0 of G

such that |I ′′0 | = l + 1 and I0
l↭ I ′′0 by adding some vertex in V (G) \ I0. To prove

Isol = Imax, we below show that I0
l↭ Imax holds if |I0| > l.
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Let I ′0 ⊆ I0 be any independent set of size l + 1. Then, I0
l↭ I ′0 holds, because

we can obtain I ′0 from I0 by removing vertices in I0 \ I ′0 one by one. Similarly, let

I ′ ⊆ Imax be any independent set of size l + 1; we know that I ′
l↭ Imax holds.

Kamiński et al. [22] proved that any two independent sets of the same size l+1 are

reachable under the TAR(l) rule for even-hole-free graphs. Since any chordal graph

is even-hole free, we thus have I ′0
l↭ I ′. Therefore, we have I0

l↭ I ′0
l↭ I ′

l↭ Imax,

and hence we can conclude that I0
l↭ Imax holds as claimed. 2

We note that Lemma 5.2 indeed holds for even-hole-free graphs, which contain

all chordal graphs. However, the complexity status of the maximum independent

set problem is unknown for even-hole-free graphs, and hence we do not know if we

can obtain Imax in polynomial time.

5.3 Fixed-parameter tractability

In this section, we study the fixed parameter (in)tractability of Opt-ISR. We

sometimes take the size s of output solution as the parameter; we call s a solution

size. More formally, for an instance (G, l, I0), the problem Opt-ISR parameterized

by solution size s asks whether G has an independent set I such that |I| ≥ s and

I0
l↭ I. We may assume that s > l; otherwise we are dealing with a yes-instance

because I0 itself is a solution. We sometimes denote by a 4-tuple (G, l, I0, s) an

instance of Opt-ISR parameterized by solution size s.

5.3.1 Single parameter: solution size

We first give an observation that can be obtained from independent set. Be-

cause independent set is W[1]-hard when parameterized by solution size s [28],

Lemma 5.1 implies the following theorem.

Theorem 5.4 Opt-ISR is W [1]-hard when parameterized by solution size s.
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This theorem implies that Opt-ISR admits no fixed-parameter algorithm with

respect to solution size s under the assumption that FPT ̸= W[1]. However, it

admits an XP algorithm with respect to s, as in the following theorem.

Theorem 5.5 Opt-ISR parameterized by solution size s can be solved in time

O(s3n2s), where n is the number of vertices in a given graph.

Proof. For an instance (G, l, I0, s), we construct an auxiliary graph GA, defined as

follows: Each node in GA corresponds to an independent set I of G such that l ≤

|I| ≤ s, and there is an edge in GA between two nodes corresponding to independent

sets I and I ′ if and only if |△II ′| = 1 holds. Notice thatGA has a node corresponding

to I0, since l ≤ |I0| ≤ s. Then, by breadth-first search starting from the node

corresponding to I0, we can check if there is an independent set I of G such that

|I| = s and I0
l↭ I.

We now estimate the running time of the algorithm. Let n and m denote the

numbers of vertices and edges in G, respectively. The number of (candidates of)

nodes in GA can be bounded by
∑

l≤j≤s

(
n
j

)
= O(sns). For each enumerated vertex

subset of G, we check if it forms an independent set of G; this can be done in time

O(n+m). Therefore, the node set V (GA) can be constructed in time O(sns(n+m)).

We then check each pair of nodes in V (GA); there are O(|V (GA)|2) = O(s2n2s) pairs.

We join the pair by an edge in GA if their corresponding independent sets differ in

only one vertex; we can check this condition in time O(s) for each pair of nodes. In

this way, we can construct the auxiliary graph GA in time O(s3n2s) in total. Since

breadth-first search can be executed in time O(|V (GA)|+ |E(GA)|) = O(s2n2s), our

algorithm runs in time O(s3n2s) in total. 2

5.3.2 Two parameters: solution size and degeneracy

As we have shown in Theorem 5.4, Opt-ISR admits no fixed-parameter algorithm

when parameterized by the single parameter of solution size s under the assumption
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that FPT ̸= W[1]. In addition, Theorem 5.2 implies that the problem remains

PSPACE-hard even if the degeneracy d of an input graph is bounded by a constant,

and hence Opt-ISR does not admit even an XP algorithm with respect to the single

parameter d under the assumption that P ̸= PSPACE. In this subsection, we take

these two parameters, and develop a fixed-parameter algorithm as in the following

theorem.

Theorem 5.6 Opt-ISR admits a fixed-parameter algorithm when parameterized by

s+ d, where s is the solution size and d is the degeneracy of an input graph.

Before proving the theorem, we note the following corollary which holds for planar

graphs, and for bounded treewidth graphs. Recall that Opt-ISR is intractable

(from the viewpoint of polynomial-time solvability) for these graphs, as shown in

Theorems 5.1 and 5.2.

Corollary 5.2 Opt-ISR parameterized by solution size s is fixed-parameter

tractable for planar graphs, and for bounded treewidth graphs.

Proof. Recall that the degeneracy of any planar graph is at most five. It is known

that the degeneracy of a graph is at most the treewidth of the graph. Thus, the

corollary follows from Theorem 5.6. 2

Outline of algorithm.

As a proof of Theorem 5.6, we give such an algorithm. We first explain our idea

and the outline of the algorithm. Our idea is to extend a fixed-parameter algorithm

for Reach-ISR when parameterized by l + d [24].

Consider the case where an input graph G consists of only a fixed-parameter

number of vertices, that is, |V (G)| can be bounded by some function of s+d. Then,

we apply Theorem 5.5 to the instance and obtain the answer in fixed-parameter time

(Lemma 5.4). We here use the fact (stated by Lokshtanov et al. [24, Proposition 2])
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that a d-degenerate graph consists of a small number of vertices if it has a small

number of low-degree vertices (Lemma 5.3).

Therefore, it suffices to consider the case where an input graph has many low-

degree vertices. In this case, we will kernelize the instance: we will show that

there always exists a low-degree vertex which can be removed from an input graph

without changing the answer (yes or no) to the instance. Our kernelization has two

stages. In the first stage, we focus on “twins” (two vertices that have the same closed

neighborhoods), and prove that one of them can be removed without changing the

answer (Lemma 5.5). The second stage will be executed only when the first stage

cannot kernelize the instance into a sufficiently small size. The second stage is a bit

involved, and makes use of the Sunflower Lemma by Erdös and Rado [12].

Graphs having a small number of low-degree vertices.

We now give our algorithm. Suppose that (G, l, I0, s) is an instance of Opt-ISR

parameterized by solution size such that G is a d-degenerate graph. We assume that

|I0| < s; otherwise (G, l, I0, s) is a yes-instance because I0 itself is a solution.

We start with noting the following property for d-degenerate graphs, which is a

little bit stronger claim than that of Lokshtanov et al. [24, Proposition 2]; however,

the proof is almost the same as that of [24].

Lemma 5.3 Suppose that a graph G is d-degenerate, and let D ⊆ V (G) be the set

of all vertices of degree at most 2d in G. Then, |V (G)| ≤ (2d+ 1)|D|.

Proof. Suppose for a contradiction that |V (G)| = (2d + 1)|D| + c holds for some

integer c ≥ 1. Then, |V (G) \D| = 2d|D|+ c, and hence we have

|E(G)| =
1

2

∑
v∈V (G)

|NG(v)| ≥
1

2

∑
v∈V (G)\D

(2d+ 1)

=
1

2
(2d+ 1)(2d|D|+ c) = d|V (G)|+ 1

2
c > d|V (G)|.



5.3 Fixed-parameter tractability 111

This contradicts the fact that |E(G)| ≤ d|V (G)| holds for any d-degenerate graph

G [23]. 2

Let D = {v ∈ V (G) : |NG(v)| ≤ 2d}, and let D′ = D \ I0. We introduce a

function f(s, d) which depends on only s and d; more specifically, let f(s, d) =

(2d + 1)!((2s + d + 1) − 1)2d+1. We now consider the case where G has only a

fixed-parameter number of vertices of degree at most 2d.

Lemma 5.4 If |D′| ≤ f(s, d), then Opt-ISR can be solved in fixed-parameter time

with respect to s and d.

Proof. Since D′ = D \ I0 and |I0| < s, we have |D| ≤ |D′|+ |I0| < f(s, d) + s. By

Lemma 5.3 we thus have |V (G)| ≤ (2d + 1)|D| < (2d + 1)(f(s, d) + s). Therefore,

|V (G)| depends only on s and d. Then, this lemma follows from Theorem 5.5. 2

First stage of kernelization.

We now consider the remaining case, that is, |D′| > f(s, d) holds. The first

stage of our kernelization focuses on “twins,” two vertices having the same closed

neighborhoods, and removes one of them without changing the answer.

Lemma 5.5 Suppose that there exist two vertices bi and bj in D′ such that NG[bi] =

NG[bj]. Then, (G, l, I0, s) is a yes-instance if and only if (G \ {bi}, l, I0, s) is.

Proof. We note that bi /∈ I0 and bj /∈ I0, because D
′ = D\I0. Then, the if direction

clearly holds, and hence we prove the only-if direction. Suppose that (G, l, I0, s)

is a yes-instance, and hence G has an independent set Isol such that |Isol| ≥ s and

I0
l↭ Isol. Then, there exists a reconfiguration sequence I = ⟨I0, I1, . . . , Iℓ = Isol⟩.

Since NG[bi] = NG[bj], we know that bi and bj are adjacent in G and hence no

independent set of G contains bi and bj at the same time. We now consider a new

sequence I ′ = ⟨I ′0, I ′1, . . . , I ′ℓ⟩ defined as follows: for each x ∈ {0, 1, . . . , ℓ}, let

I ′x =

{
Ix if bi /∈ Ix;

(Ix \ {bi}) ∪ {bj} otherwise.
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Since each Ix, x ∈ {0, 1, . . . , ℓ}, is an independent set of G and NG[bi] = NG[bj],

each I ′x forms an independent set of G. In addition, since | △ Ix−1Ix| = 1 for all

x ∈ {1, 2, . . . , ℓ}, we have |△I ′x−1I
′
x| = 1. Therefore, I ′ is a reconfiguration sequence

such that no independent set in I ′ contains bi. Since |I ′ℓ| = |Iℓ| = |Isol| ≥ s, we can

conclude that (G \ {bi}, l, I0, s) is a yes-instance. 2

We repeatedly apply Lemma 5.5 to a given graph, and redefine G as the resulting

graph; we also redefine D and D′ according to the resulting graph G. Then, any

two vertices bi and bj in D′ satisfy NG[bi] ̸= NG[bj]. If |D′| ≤ f(s, d), then we

have completed our kernelization; recall Lemma 5.3. Otherwise, we will execute the

second stage of our kernelization described below.

Second stage of kernelization.

In the second stage of the kernelization, we use the classical result of Erdös and

Rado [12], known as the Sunflower Lemma. We first define some terms used in the

lemma. Let P1, P2, . . . , Pp be p non-empty sets over a universe U , and let C ⊆ U

which may be an empty set. Then, the family {P1, P2, . . . , Pp} is called a sunflower

with a core C if Pi \ C ̸= ∅ holds for each i ∈ {1, 2, . . . , p}, and Pi ∩ Pj = C holds

for each i, j ∈ {1, 2, . . . , p} satisfying i ̸= j. The set Pi \ C is called a petal of the

sunflower. Note that a family of pairwise disjoint sets always forms a sunflower

(with an empty core). Then, the following lemma holds.

Lemma 5.6 (Erdös and Rado [12]) Let A be a family of sets (without dupli-

cates) over a universe U such that each set in A is of size at most t. If |A| >

t!(p−1)t, then there exists a family S ⊆ A which forms a sunflower having p petals.

Furthermore, S can be computed in time polynomial in |A|, |U |, and p.

We now explain the second stage of our kernelization, and make use of

Lemma 5.6. Let b1, b2, . . . , b|D′| denote the vertices in D′, and let A = {NG[b1],
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NG[b2], . . . , NG[b|D′|]} be the set of closed neighborhoods of all vertices in D′. In the

second stage, recall that NG[bi] ̸= NG[bj] holds for any two vertices bi and bj in D′,

and hence no two sets in A are identical. We set U =
∪

bi∈D′ NG[bi]. Since each

bi ∈ D′ is of degree at most 2d in G, each NG[bi] ∈ A is of size at most 2d + 1.

Notice that |A| = |D′| > f(s, d) = (2d + 1)!((2s + d + 1) − 1)2d+1. Therefore, we

can apply Lemma 5.6 to the family A by setting t = 2d + 1 and p = 2s + d + 1,

and obtain a sunflower S ⊆ A with a core C and p petals in time polynomial in

|A|, |U |, and p = 2s + d + 1. Notice that |A| ≤ n and |U | ≤ n, and hence we

can obtain S in time polynomial in n. Let S = {b′1, b′2, . . . , b′p} ⊆ D′ be the set

of p vertices whose closed neighborhoods correspond to the sunflower S, that is,

S = {NG[b
′
1], NG[b

′
2], . . . , NG[b

′
p]} ⊆ A. The following lemma says that all vertices

in S are contained in the p petals of the sunflower S (i.e., not in the core C), and

they form an independent set of G.

Lemma 5.7 S ∩ C = ∅ holds. Furthermore, vertices in S form an independent set

of G.

Proof. We first prove that S ∩ C = ∅. Assume for a contradiction that S ∩ C ̸= ∅

holds. Then we know that vertices in S ∩ C form a clique in G, because for any

two vertices b′i and b′j in S ∩ C, b′i ∈ C = NG[b
′
i] ∩ NG[b

′
j] holds and hence b′i and

b′j are adjacent. Since d-degenerate graph has no clique of size more than d + 1,

such a clique has the size at most d + 1, that is, |S ∩ C| ≤ d + 1. S contains

p = 2s+ d+ 1 > d+ 1 vertices, and hence we can find at least one vertex in S \ C;

let b′i be any vertex in S \ C and b′j be any vertex in S ∩ C. Then, b′i and b′j must

be adjacent because b′j ∈ C = NG[b
′
i] ∩NG[b

′
j], however, it contradicts the fact that

b′i /∈ C = NG[b
′
i] ∩NG[b

′
j].

We then show that S form an independent set of G. It can be obtained from the

fact that any two vertices b′i and b′j in S are not contained in C = NG[b
′
i] ∩ NG[b

′
j],

that is, they are not adjacent. 2
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b
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j′ ′

N
G
[b

i 
] N

G
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j 
]′ ′

v

C

Figure 5.2: Illustration for Lemma 5.8, where two vertices b′i, b
′
j ∈ S \C are depicted

by squares. By the definition of a sunflower, all vertices v adjacent to both b′i and

b′j must be contained in C = NG[b
′
i] ∩NG[b

′
j].

By using Lemma 5.7, We finally obtain the following lemma, as the second stage

of the kernelization.

Lemma 5.8 Let b′q be any vertex in S. Then, (G, l, I0, s) is a yes-instance if and

only if (G \ {b′q}, l, I0, s) is.

Proof. Note that b′q /∈ I0 since S ⊆ D′ ⊆ V (G) \ I0. Then, the if direction

clearly holds, and hence we prove the only-if direction. Suppose that (G, l, I0, s)

is a yes-instance, and hence G has an independent set Isol such that |Isol| ≥ s and

I0
l↭ Isol. Then, there exists a reconfiguration sequence I = ⟨I0, I1, . . . , Iℓ = Isol⟩.

If no independent set in I contains b′q, then the only-if direction holds. Therefore, we

consider the case where at least one independent set in I contains b′q. Let Ir+1 be the

first independent set in I which contains b′q, that is, b
′
q /∈ Ii for all i ∈ {0, 1, . . . , r}.

We assume without loss of generality that |Ii| < s holds for all i ∈ {0, 1, . . . , ℓ− 1}.

Let S ′ = S \ ({b′q}∪C ∪NG[Ir]), where NG[Ir] =
∪

v∈Ir NG[v]. We now claim that

I ′sol = Ir∪S ′ is an independent set of G such that |I ′sol| ≥ s and I0
l↭ I ′sol on G\{b′q};

then (G \ {b′q}, l, I0, s) is a yes-instance. Since S ′ ⊆ S, Lemma 5.7 says that S ′ is an

independent set of G. Furthermore, since S ′ does not contain any vertex in NG[Ir],

I ′sol = Ir ∪ S ′ is an independent set of G. Recall that I0
l↭ Ir holds on G \ {b′q},

and hence we know |Ir| ≥ l. Then, I0
l↭ Ir

l↭ I ′sol holds on G \ {b′q} by adding
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the vertices in S ′ to Ir one by one. We finally prove that |I ′sol| ≥ s by showing that

|S ′| ≥ s holds. Since |S \ C| = 2s + d + 1 ≥ 2s (by Lemma 5.7) and |Ir| < s, it

suffices to prove that |NG[v] ∩ (S \ C)| ≤ 1 holds for each vertex v ∈ Ir. Since Ir+1

is obtained by adding b′q to Ir, we know Ir ∩NG[b
′
q] = ∅. Since C ⊂ NG[b

′
q], we thus

have Ir ∩ C = ∅. Therefore, each vertex v ∈ Ir is adjacent to at most one vertex in

S \ C, because otherwise v must be contained in C. (See also Figure 5.2.) 2

We can repeatedly apply Lemma 5.8 to G until the resulting graph has the cor-

responding vertex subset D′ such that |D′| ≤ f(s, d). Then, by Lemma 5.4 we have

completed our kernelization. This completes the proof of Theorem 5.6.
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Chapter 6 Conclusions

In this thesis, we mainly studied reconfiguration problems from the following two

viewpoints; the first one is to develop efficient algorithms for reconfiguration prob-

lems whose feasible solutions are connected subgraphs, and the second one is to

introduce a new variant of reconfiguration problems in which we do not need to

specify a target solution and are asked for a desirable solution that is reachable

from an initial solution.

In Chapter 3 and 4, we focused on several graph properties: path, cycle, tree,

clique, biclique, diameter-two, and Steiner tree; all of them require the connectivity.

Then, for each property, we studied the computational complexity of the reconfig-

uration problem whose feasible solutions are subgraphs that satisfy the property.

In particular, we deeply analyzed the complexity of the reconfiguration problem of

Steiner trees with respect to graph classes.

In Chapter 5, we introduce the new variant of reconfiguration problems which

is called the optimization variant. As the first example of this variant, we applied

this variant to the reconfiguration problem of independent sets which is one of the

most well-studied reconfiguration problems. We then analyzed its polynomial-time

solvability with respect to graph classes and parameterized complexity for three

parameters, the lower bound of independent sets, the size of an independent set we

are asked for, and the degeneracy of an input graph.

Finally, we discuss about future works. We developed in this thesis several

polynomial-time algorithms solving the reconfiguration problems with connected

subgraphs. Then, one of future works is to solve other reconfiguration problems
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with connected subgraphs by using our algorithm techniques. Regarding the opti-

mization variant, since it has been just proposed, it is applied to little reconfigu-

ration problems; to the best of the author’s knowledge, it has been just applied to

independent set reconfiguration, dominating set reconfiguration [3],

and vertex coloring reconfiguration [15]. Therefore, a future work for this

variant is to introduce and study the optimization variant for other reconfiguration

problems.
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