
3D Sensing by Light Transport Matrix Estimation and

Point Cloud Deep Learning

Naoya CHIBA

Abstract

With the cost reduction of 3D sensors and the performance improvement of com-

puters, the capture and processing of 3D data have become widely used. Methods

for handling 3D data have also recently been developed. This dissertation focuses

on robot vision, especially the utilization of 3D data for industrial robots. Industrial

robots are expected to be able to handle any object; however, due to the limitations

of 3D sensors, the objects that can be handled well are limited. In particular, to mea-

sure 3D shapes of metallic or translucent objects are often desired; however, because

they have complex lighting specifications, it is not easy to measure the shape in a

cost-effective way such as active stereo.

In this dissertation, I propose a new 3D measurement method based on the sparse

estimation of the Light Transport Matrix (LTM). The method uses only a calibrated

projector-camera system consisting of a single projector and a single camera; there-

fore, the system is inexpensive. The difficulty in successfully measuring the shape of

metallic or semi-transparent objects is due to their non-Lambert reflections. Assum-

ing a projector-camera system is used, the reflected light is captured by the camera

when the lights are projected from the projector onto the measurement scene. The

reflected light is divided into two components, a direct component and a global com-

ponent. Classical 3D measurement methods assume that the reflected light contains

only the direct component; therefore, if the reflected light contains global compo-

nents, these methods cannot measure the 3D shape og the scene accurately. When

the projector-camera system is utilized to measure the shape for the objects which

have the non-Lambertian reflects, they often make global components of the reflected

lights; thus, these objects are hard to measure their shape. The light reflection model

LTM describes the propagation from the projector pixel to the camera pixel by a

linear equation; therefore, this can be considered as the impulse response of the pro-

jection camera system. By using epipolar geometry, direct components can be easily

extracted from LTM.



Now, the 3D measurement problem can be considered how to obtain LTM effi-

ciently because LTM elements are all pairs of the projector pixels and the camera

pixels. I introduce a sparse estimation method to LTM estimation because LTM

should be sparse in principle. When the existing sparse estimation method is applied

directly, the estimation of LTM is still slow. I propose computational cost-reducing

methods for the LTM sparse estimation: the row-wise estimation, the multi-scale

estimation, introducing the Sherman-Morrison-Woodbury (SMW) formula for the

Alternating Direction Method of Multipliers (ADMM), and multi-row simultaneous

estimation. By applying them, I finally measure 3D shape in 41.74 [sec] for 256×256

projector-camera system in practice. In this method, the 3D surface can be measured

even if the scene contains metallic objects or semi-transparent objects.

It is found that the LTM model is not completely fitted to the actual observations.

Actual observations of projector-camera systems include saturation or under-exposure

problems. These non-linearities affect the accuracy degradation of the LTM estima-

tion. Therefore, I modify the sparse estimation algorithm to be capable of these

non-linearities. For LTM sparse estimation, I utilized ℓ1 minimization via ADMM;

thus, I apply the clipping and the crushing functions for the observation model of the

ℓ1 minimization problem. The LTM sparse estimation utilized the ADMM ℓ1 min-

imization. For the robustness, clipping function and fracture function were applied

to the observation model of ℓ1 minimization problem. I give a closed-form update

rule for this problem and demonstrate that the proposed method is robust against

saturation and under-exposure problems.

Although the proposed 3D measurement method is fast, it is still slow to apply real

robot vision tasks. I work on the bin-picking task for metallic rigid objects. In the bin-

picking task, measurement results are used for object detection and posture estimation

tasks. Existing handcraft feature-based methods require high-density point clouds as

an input such as approximately tens of thousands of points to a scene. Meanwhile,

the point cloud processing method using the neural network has rapidly developed in

these 4 years, and often consumes the point cloud of low density such as 1024 points

for the scene. I try to apply the point cloud deep learning architecture to the task:

the object detection and the 6 degree-of-freedom (DoF) posture estimation.

Finally, I integrate the 3D measurement method and robot to be the bin-picking

system. In the bin-picking experiment via high-density point cloud, I utilize the 256×
256 project camera system and evaluate that the proposed 3D measurement method

is sufficiently accurate as a 3D robot vision sensor. In the bin-picking experiment

via low-density point cloud, I try to integrate the 128 × 128 project-camera system



and the proposed object detection and attitude estimation method together to make

bin-picking faster. Moreover, I suggest the other application of the LTM, which is

material segmentation, in the section.

In conclusion, this dissertation is summarized, and follow-up works are described.


