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Chapter 1

Introduction

1.1 Background

Cloud Computing [1,2] is a service model where user devices are able to connect

to cloud servers. The servers have a significantly wide pool of resources (such as

communication bandwidth, energy reserves/sources, processors, computing ca-

pability, computer memory), a lot more than the user devices. Thus, the client

devices can use those resources to execute more demanding jobs and tasks whose

requirements go beyond what can be done locally by sending these tasks to the

servers. The cloud denomination comes from the offloading to remote machines

and the transparency of the service. Forbes [3] predicts that the cloud computing

market will reach US$411 billions by 2020, and many big companies already have

established cloud services, such as Google [4], Amazon [5], and Microsoft [6].

Cloud computing can work with remote servers, located far away from the

user device, which could be a static desktop computer in the case of Conven-

tional Cloud Computing [1, 2] or a mobile device in the case of Mobile Cloud

Computing [7,8]. Mobile devices make the situation significantly different. Desk-

top computers sometimes can use cabled connections to reach the cloud servers,
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Chapter 1: Introduction

Category Server
Location

Server
Capacity

Number
of Servers

Client
Profile

Scenario
Dynam-
icity

Conventional
Cloud Com-
puting

Distant
(backbone)

High Few Fixed Low

Mobile Cloud
Computing

Distant
(backbone)

High Few Mobile Medium

Edge Cloud
Computing

Near (edge) Low Many Fixed Medium

Mobile Edge
Computing

Near (edge) Low Many Mobile High

Table 1.1: Table summarizing the main characteristics of the different cloud
computing models.

whereas mobile devices more often than not must depend on wireless and cellular

networks in order to connect to the Internet and the cloud servers. Addition-

ally, mobile devices are even more limited than desktop environments, with fewer

resources and a smaller array of applications that can be executed locally [9].

This also means that they have more to benefit (i.e. the increase in the num-

ber of possible applications will be bigger) from cloud computing than desktop

computers. However, the need to use wireless communication and even the de-

vice’s limitations complicate the deployment and the implementation of cloud

computing services. To make matters more difficult, many mobile devices and

mobile applications, such as Virtual / Augmented Reality programs [10], Tactile

Internet applications [11], and Internet of Things (IoT) [12–14], need ultra-low

latency, which cannot be possibly delivered by Mobile Cloud Computing due to

the distance between the user devices and the cloud servers [15–18], which can

sometimes be located in different continents [19]. To enable the execution of

these applications, there have been recent efforts to create an Edge Cloud and

2



Chapter 1: Introduction

Mobile Edge Computing (MEC) [20,21] 1, where the cloud servers are, instead of

deployed remotely, installed on the edge of the network, near the users 2. In order

to make this possible, there must be an edge cloud server near all users, since

the main point of MEC is a close-range connection between the mobile device

and the server. However, this means a huge density of cloud edge servers, which

incurs an incapacitating financial cost. To counterbalance this, these edge cloud

servers are designed to be less powerful than the remote cloud servers, which are

more concentrated but fewer in number. Due to this smaller capacity, they have

been denominated cloudlets [27, 28]. In summary, MEC offers lower latency and

allows mobile devices to execute more demanding applications.

The possibility of using real-time applications and lifting device limitations

has made MEC and cloudlets to be considered for future network designs along

with the IoT [29–31] and 5G Networks [25]. However, there is another com-

plicating issue in this caused by a key characteristic of IoT and 5G: a massive

amount of devices. National Instruments estimates that 20 billions devices will

be connected through 5G by 2020 [32], while Ericsson predicts 18 billion devices

connected to IoT by 2022 [33]. Such scale cannot even be handled by Conven-

tional Cloud Computing alone, stressing even further the need for MEC [14,34].

But, even with low quantities of devices, many problems related to MEC are too

complex to be solved [35]. With this massive amount of devices also comes a

1Special note here to Fog Computing [22,23], a term defined by the OpenFog Consortium [24]
which denotes, similarly to MEC, a paradigm where cloud computation is moved closer to the
origin of the data and the requests, at the edge of the network. However, Fog Computing is
usually utilized specifically for deploying servers in Local Area Networks gateways.

2It is important to say here that MEC is also used to denote Multi-Access Edge Computing,
a term coined by the European Telecommunications Standards Institute [25, 26] to denote
the usage of edge cloud servers by mobile networks as well as Wi-Fi and other fixed access
technologies. Multi-Access Edge Computing is a more broad term, encompassing Edge Cloud
Computing and Mobile Edge Computing, but we opted to go with mobile over multi-access to
emphasize the dynamicity of the scenarios seen in the literature. Thus, MEC in this manuscript
refers to Mobile Edge Computing. Nonetheless, many of the considerations found here can be
applied to Multi-Access Edge Computing as well.
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Chapter 1: Introduction

great variety of services and applications. Designing a MEC environment that

takes into account the various kinds of wireless characteristics, device capabilities

and service requirements is yet another layer of difficulty that cannot be solved

by existing solutions and heuristical algorithms [36–38].

Table 1.1 summarizes the most important points between different types of

cloud computing service. Note how the location of the server and the type of

device vary between them. In this research project, we will focus on MEC and

how to solve its issues of problem dimensionality, number of parameters and

solution executability. Nonetheless, the considerations offered here could also be

applied to the other service models due to the similarities between all of them.

One alternative for dealing with these issues of parameter dimensionality and

algorithm feasibility in MEC is to use Machine Learning (ML) solutions [39,40].

The base behind ML is to allow and enable the computer program to analyze

and draw conclusions on the data by itself. The program is capable of doing this

by learning the intricacies of the problem it is attempting to solve and making

data-driven predictions and decisions, progressively improving its performance

in one pre-determined task [41, 42]. In this area, the programmer’s job is to

allow the program to learn the problem (i.e. train the program), which can

be done by feeding it historic input and output, or, in other words, what is

the output (performance) X of solution Y given the input Z. Given a large

enough amount of tuples (X,Y, Z) and a method for evaluating the value of

X, the program should be capable of drawing patterns and eventually creating

efficient solutions [43, 44]. This definition is very generic and broad and there

are many variations of it, but the fundamental is the same: ML programs are

capable of finding solutions that could not normally be devised (or sometimes

even understood) by its programmers. These solutions, albeit not necessarily

optimal, are usually efficient enough. Moreover, and more important in this

4



Chapter 1: Introduction

discussion, current convex optimization 3 techniques applied to MEC rely on

relaxation methods in order to deal with the high dimensionality of the realistic

scenarios, i.e. they cannot be applied to the original problems [35, 41], which

can only be tackled by ML [45]. Besides that, ML is also a very suitable option

for dynamic scenarios, since ML models can find efficient solutions even with

small changes in the problem, whereas conventional approaches may need a new

execution.

1.2 Research Objective

In this thesis, the main goal is to develop a framework for intelligently configuring

a MEC system. Our goal will be both to increase overall quality of service as well

as allow service providers to achieve a higher profit. Thus, we will minimize the

service latency experienced by users, which is key for a high quality service since

it makes sure that cloud computing services are transparent and the offloading to

the cloud is nearly unnoticeable (i.e. it feels as if all tasks are executed locally in

the user device). Besides that, a lower service delay means that users do not have

to be connected to the edge cloud servers for too long, freeing up the resources

so they can be assigned to new users, consequently increasing the profit of the

service providers. In addition to that, we will also configure the system so that

the number of users that can be serviced concurrently, while respecting a delay

threshold, is maximized while utilizing as few servers as possible, thus increasing

money income and decreasing costs. Moreover, as mentioned before, MEC should

be utilized by a massive amount of user devices as well as many servers and access

3ML itself is also used for optimization. Thus, to avoid confusion, we will use ”convex opti-
mization” when talking about the mathematical, more conventional variety of optimization and
simply ”optimization” when talking about learning-based techniques for optimizing a function.

5



Chapter 1: Introduction

points. Thus, all these solutions will be designed with scalability in mind and

should have a low execution time even with many variables. The specific MEC

problems we will tackle in this thesis are listed below:

• MEC resource allocation to users

• Edge server deployment policy

• Server activation decision

At first, we propose a method for allocating resources from MEC to the users.

This means deciding which users are assigned to which edge cloud servers in a

live scenario. This should be done in a way that no server is overloaded with too

many users, as that would create queues that are too long for the resources of

that particular server. A similar phenomenon can be observed with base stations,

as too many users connected to the same base station would create high interfer-

ence and collision around that base station. Thus, our method will balance user

assignment in such a way that service delay in overall is minimized.

Secondly, we present an algorithm for deciding where each edge cloud server

should be deployed. The location of the servers is significant as it affects the

latency needed for users to access them. We assume that servers are always

deployed in base stations, since this basically eliminates the transmission between

the access point and the server and base stations themselves are usually positioned

in strategic places already. However, it is not economically viable nor needed to

put a server in every single base station, so a policy is needed to decide which

base stations receive servers. Our proposal will do that while minimizing the

overall service delay.

Finally, once again in a live scenario, we propose a method for deciding which

servers should be turned on and which ones can be left turned off. This allows to

effectively control how many resources are present in the system. The objective

6



Chapter 1: Introduction

here is to utilize as few servers as possible, to lower the cost incurred on service

providers. Obviously, this should be done without compromising the quality of

service given to users. Thus, we establish a service delay threshold that must be

respected at all times. This also allows us to guarantee to users that their service

will be completed within a certain, pre-determined time window.

1.3 Summary and Organization of the Thesis

The remainder of thesis is organized as follows. Chapter 2 presents our detailed

assumptions regarding the MEC system, including a mathematical model of the

MEC with a formula for estimating the service delay. Chapter 3 shows our

resource allocation method. Chapter 4 presents our server deployment policy

method. Chapter 5 contains our server activation solution. Finally, concluding

remarks are provided in Chapter 6.
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Chapter 2

Mobile Edge Computing Model

2.1 Introduction

In this section, we will present the usual MEC service model that is generally uti-

lized in the literature. This service model can be configured, where configuration

is the set of options and parameters that operators can decide in order to deliver

the best service possible following some pre-determined evaluation. To find these

optimal parameters, some challenges and problems related to MEC have to be

solved; such issues are also explored in this section, but not before a presentation

of existing literature works on MEC.

The contents of this chapter refer to the following papers, which were written

based on our own research.

• T. K. Rodrigues, K. Suto, H. Nishiyama, J. Liu and N. Kato, ”Machine

Learning meets Computation and Communication Control in Evolving Edge

and Cloud: Challenges and Future Perspective,” in IEEE Communications

Surveys & Tutorials. Available online. c⃝ 2011 IEEE

• T. G. Rodrigues, K. Suto, H. Nishiyama, N. Kato and K. Temma, ”Cloudlets

Activation Scheme for Scalable Mobile Edge Computing with Transmission

9
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Power Control and Virtual Machine Migration,” in IEEE Transactions on

Computers, vol. 67, no. 9, pp. 1287-1300, September 2018. c⃝ 2011 IEEE

2.2 Service Model

As a prologue to the service model, it is important to explain the main enti-

ties in MEC [20, 27, 28, 46]. User Device (or user) is the one who contracts the

service and will create the tasks (or input, or requests) that must be executed

by the MEC system; additionally, the results (or output) of the tasks must be

sent back to the user device after it is done. Access Point is the device that is

used by the User Device to connect to the network and reach the MEC system,

such as a base station with a cellular antenna. The User Device must utilize

the Access Point to communicate with the other entities and the connection be-

tween Access Point and User Device is usually wireless. Cloudlet (or edge cloud

server) is a physical computer that works as a server located at the edge of the

network. The Cloudlet contains the resources needed for executing the requests

created by the User Device. Compared to Conventional Cloud Servers, Cloudlets

have lower capabilities (in computation, communication, etc.), hence their name.

Virtual Machine (or virtual server) is a virtual environment located inside the

Cloudlet, result of virtualization of the resources of the Cloudlet. This allows

for the creation of multiple ”servers” even if there is only one single physical

computer, making the separation of resources and their management easier. The

Virtual Machine receives the requests by the User Device, executes the requests,

and sends back the output. In order to execute these tasks, the physical server

(e.g. Cloudlet) allocates some of its resources to the Virtual Machine according

to the demands of the requests and a pre-determined policy. Each User Device

is associated with a single Access Point, a single Cloudlet and a single Virtual

Machine. Generally speaking, each Virtual Machine is only associated with one

10
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User Device (thus, users cannot send their requests to other virtual machines,

and the requests must be routed to the host of the virtual machine, regardless of

where the user is and whether the user moved to somewhere since the creation of

the virtual machine), while Access Points and Cloudlets can be associated with

many User Devices. In physical terms, Cloudlets are usually located in the same

location as Access Points, for convenience [27, 47–49]. Finally, there is also a

Central Office which aggregrates important information about the system (user

location, cloudlet workload, etc.) and utilizes this knowledge to make decisions

and configure the system.

Also of note is that in MEC (and cloud computing as a whole), there are

different products that can be offered as a service. Those are divided between

Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure

as a Service (IaaS) [50]. In SaaS, the whole application is offered by the cloud

service provider, and the users just supply the data that serves as input and in

return receive the corresponding output [51]. In PaaS, the service provider offers

everything up to the operating system and the client provides the application

that will be executed [52]. Thus, in PaaS, the user will send both its application

and the input for it, the application will utilize the cloud resources, and then the

user will collect the output. Finally, in IaaS the service provider makes available

to the user its computers, storage, networking equipment through virtualized

resources that the client can acquire as needed, while the user is responsible for

deploying everything from the operating system onward [53]. In other words, the

user provides and manages the platform, which will be run on top of the service

provider’s resources. Note, however, that all these models operate with virtual

servers on top of the physical resources from the provider, as shown in Figure 2.1.

Thus, the structure based around the virtual server described previously can still

be applied to MEC regardless of the product being offered.

11
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Figure 2.1: Comparison between SaaS, PaaS, and IaaS, specially in what is offered
by the users and what is offered by the Service Providers in each service model. c⃝
2019 IEEE

The MEC service model is usually assumed to be as follows [21, 27, 54–58].

When first entering the system, the user device makes an initial request that

is received by the closest cloudlet. This request may be forwarded to a remote

centralized entity (a central device with full information and control of the MEC

system) or resolved in that edge cloud server. The result of this request is the

creation of a Virtual Machine which will serve that user 1 (realistically speaking,

1The Virtual Machine is intrinsically connected to the service provided. Thus, if MEC is
offering a specific application as a service, the Virtual Machine is capable of performing any
routines related to that application. Conversely, if the platform or infrastructure is offered as

12
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Figure 2.2: Diagram illustrating a generic view of the service model in MEC
(although Access Point and Cloudlet are virtually different entities, they are
usually physically together and always at the edge). c⃝ 2019 IEEE

there is an overhead related to virtualizing the resources of the host server when

creating the virtual machine, which delays the beginning of the service by an

a service, the virtual machine can execute code sent by the user.
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amount that varies depending on what exact service is offered [59]). As for what

this service entails, it depends on the application, but it could go from task

offloading and extending the environment of the user to even content delivery

and caching, as mere examples. This virtual server will be hosted by one of

the cloudlets of the system, with the choice of which one being made following

a pre-determined policy. After this initial setup, the user will proceed to send

tasks to its corresponding virtual server, who will receive this input and process

them utilizing the local resources of the edge server. After finishing execution,

the virtual server sends the output of the task back to the device, which displays

it to the user as if it was a terminal. This communication between user device

and edge cloud / virtual server happens wirelessly between the device and the

access point and through a cable between the access point and the edge server.

Figure 2.2 shows a diagram illustrating a typical MEC service model and all

of its entities (note how the virtual server is inside the cloudlet). There are

some relevant variations to this model, with the most prevalent being: multiple

virtual servers [60,61], task fragmentation [62,63], virtual server migration [54,64],

cooperation with remote servers [65,66], and virtual containers [67,68].

As a minor sidenote, one service model variation that deserves more attention

is user mobility. The decision to consider user movement in the assumed scenario

can indeed increase significantly the difficulty to solve a problem [69]. The issue

comes from the uncertainty and dynamicity created by user mobility since the

channel proprieties are always at risk of changing due to the user moving [49,

61, 70]. This movement could simply put more distance between the user and

the access point, decreasing signal quality due to path loss, or even put the user

in an area with more interference and obstacles. Consequently, it is very much

a possibility that the user will transition to a state where a new access point is

more favorable, which further complicates things with handover between the base

14
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stations. Moreover, it may also mean that the user suddenly benefits more from

connecting to a new edge server. Finally, all these changes are very difficult to

predict, even if the users are assumed to follow some mobility models. Thus, a

lot of MEC research prefers to ignore user mobility altogether [62, 65, 71], which

is an option albeit not the best one in terms of choosing a realistic scenario.

As it is evident from the model and regardless of variations, service in MEC

can be divided into two main segments: the transmission element (the communi-

cation between the user and the cloudlet) and processing element (the execution

of the request sent by the user to the cloudlet) [21, 54, 55]. In the communica-

tion side, performance is mainly affected by interference between devices, band-

width available, physical propagation, noise, transmission power and payload

size [13, 62, 70, 72]. Meanwhile, in the computation side, performance mainly de-

pends on server processing speed, size of the task (number of instructions, cycles

required, etc.) and the competition for server resources [66, 73–75]. Some MEC

applications will generate heavier communication payload (e.g. content delivery,

where users may download videos and pictures that will put a lot of stress in the

network), some MEC applications need to execute many instructions for their

requests and will demand a lot of time from the processors at the cloud servers

(e.g. image processing, where the images sent by the user devices must be fully

analyzed while looking for points of interest), while some other MEC applica-

tions are a mix of both (e.g. big data analytics, where big databases must be

transmitted and then analyzed at the processors). These show examples of high

communication burden and high computation burden among MEC applications.

These different profiles and requirements further complicate MEC operation, as

the applications will need different resources and systems if an efficient service

is desired (e.g. for content delivery, investment in bandwidth is desired, while

for image processing, investment in more capable servers is desired; for servicing
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both simultaneously, either the network is heavily and expensively equipped or

the algorithm must be very efficient in resource allocation, which is obviously

preferred) [76].

Additionally, it is worth noting that the service model in MEC is virtually

identical to the one in Mobile Cloud Computing and Conventional Cloud Com-

puting, involving Virtual Machines and job offloading. Consequently, many of the

design and implementation problems in Mobile Cloud Computing and Conven-

tional Cloud Computing are similar to what we find in MEC. However, there are

some key differences. Firstly, due to lower latencies, MEC can service real-time

applications and devices that demand quick response times on top of all applica-

tions and devices that conventional cloud computing handles, meaning that MEC

has to work with a higher variety and bigger amounts of clients. Secondly, not only

there are more clients, mobile devices themselves have features that cannot be

ignored which may make local processing impossible or at least undesirable, such

as their battery level, memory, and transmission data rate [31]. Those resources

are particularly limited in mobile devices and their availability may change over

time, which makes decisions on offloading, for example, even more complicated.

Also, MEC also has to work with many more servers (actually, the concentrated

servers in Mobile Cloud Computing can even be considered as one single giant

server [77]). Finally, the networks in the edge are much more dynamic. These

characteristics mean that problems in MEC have more parameters, higher dimen-

sionality and incur higher volumes of data. For these reasons, solutions used in

Mobile Cloud Computing / Conventional Cloud Computing often do not apply

to MEC.
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2.3 Challenges

With an objective function (or a combination of more than one [62, 78]) chosen,

the cloudlet or the central office of the MEC service must then decide which

configuration to utilize in order to optimize this objective. This configuration

must answer possible questions regarding the service model of the system (e.g.

which cloudlet will host the virtual server, which jobs will be offloaded). In the

literature, this translates to a set of problems that are solved in order to raise

the efficiency of the MEC system. These problems are usually independent of

service variation or objective function. In the following sub-sections, we present

categories of notable MEC problems.

2.3.1 Offloading Decision

Given one of the objectives previously mentioned, the class of problems related

to offloading decision decides where the user-generated tasks should be executed.

The choices can be local, inside the user device itself; the edge cloud servers,

located near the user, following MEC; and the remote conventional cloud servers

(as in Mobile Cloud Computing). In case of choosing the edge cloud servers or

the remote cloud servers, a second possible choice is which server will execute

the task, although this can be omitted in both cases (e.g. no virtual server

migration so the host server is already decided; the remote cloud servers operate

jointly as a massive super server [73, 77]). Moreover, the whole definition of

the user task can vary between works, whereas some consider solid, indivisible

tasks [73,79] while others fragment them into subtasks (that can be dependent or

independent between themselves) [62] and some others even duplicate tasks for

redundancy [80]. Despite all these possible variations, the pattern is the same:

decide where the user-generated task will be executed such that the objective

function is optimized. Research work in this area usually concludes that offloading
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decision (even in simplified scenarios with a single user or a single server) is either

NP-hard [62] or NP-complete [73], such that relaxation or heuristic algorithms are

usually the proposed solutions. However, such algorithms have their complexity

order proportional to both the number of devices and servers, which renders them

unfeasible in the future networks with massive amounts of agents.

2.3.2 Resource Allocation

Even if the offloading target is decided, service may be affected and changed by

allocating more or fewer resources to the user. Because in real-life situations,

both the user and the cloud server, either at the edge or at a remote location,

have a limited amount of resources, the decision of how many to allocate to the

MEC service is an important one in order to operate the network efficiently and

to unleash the full potential of the system [65]. This resource allocation can be

done either in the fronthaul, i.e. directly involving the user and its relation with

the rest of the system, or in the backhaul, i.e. without direct relation to the

user. The resource allocation decision can be made by a centralized office, with

full [65,74] or partial knowledge [81] of the system, or individually by each server /

user device [13,82]. These resources are mostly related to the communication side

(sending input and output between the user device and the server), although there

are some mentions to the applicability in the computation side (the execution of

the task). For communication, examples are channel bandwidth [65, 74] and

transmission power [54, 55], among others. All these affect the communication

latency between the user and the server, so they consequently have effects on the

service latency. Transmission power has a direct effect on the energy consumption

of the nodes, while the communication delay itself has an indirect consequence

in that the nodes may have to spend more time transmitting. The same can be

said about profit, relating the money spent on energy and the monetary gain by
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finishing more tasks in less time. Regarding resources in the computation side,

notable examples are number of processors in a single server [65, 74] and even

the speed of these processors [62], although research involving such parameters

is rather scarce. Specifically related to backhaul resource allocation, notable

mentions are servers sharing workload [72], servers sharing resources [83], virtual

servers being migrated [61, 70], among others. The problem of deciding how

many resources to allocate in order to optimize a system-wide metric is also

usually solved by heuristic algorithms that are usually more complex if the model

of the scenario is more realistic. Furthermore, since this allocation is taken with

a system view, it is also affected by the number of devices and servers, which

renders them unfeasible in the future networks with massive amounts of agents.

2.3.3 Server Deployment

A problem that is very characteristic of MEC is the choice of where the servers will

be deployed. Being edge servers, there are usually multiple choices of where they

could be installed. As mentioned before, they are typically located near network

access points, but since it is not viable or necessary to have one server in each

access point, there is still a choice to be made [47,48]. The conclusion is that there

must be a choice of where to deploy the servers, which naturally should be guided

by an objective function, trying to optimize a pre-determined goal, such as the

ones listed in our previous sub-section. This usually means deploying servers near

places where users conglomerate, so more clients can be served (raising profit)

with shorter connection distance [48, 84]. However, in MEC particularly, users

can move, which may turn a deployment location from a desirable one into a bad

position [49]. Moreover, differently from virtual machines, server deployments are

usually permanent, or at the very least expensive to change, demanding extra care

when choosing. Furthermore, the deployment choice also comes with important
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financial consideration, as the number of servers and their locations all come

with associated costs [85, 86]. The deployment places may have to be rented

or equipment has to be acquired, making this an essential consideration even

if the objective function is not based on the service provider’s profit. From this

discussion, it is clear that solutions to the deployment challenge depend heavily on

how many servers will be deployed and how many choices are there, which in itself

already means a complex scenario. Furthermore, the dynamicity of MEC means

that the scenarios keep changing, which comes in contrast to the permanency of

the deployment decision, making the choice of a good location even more difficult,

especially in a future with the massive amount of servers and devices to be served.

2.3.4 Overhead Management

Finally, another point of note is how all these configurations and actions incur

significant overhead. The choices of where to offload and how many resources to

allocate are all performed online, meaning that until such decisions are made, the

received requests will not be processed nor answered, increasing the latency and

decreasing service quality [87,88]. Moreover, there are other actions in the service

model of MEC that result in overhead as well, particularly the ones related to

the virtual server. Not only a choice has to be made of which physical server will

host the virtual server for each client, the virtualization process itself and the

initial setup of the virtual server takes time [59]. Additionally, in scenarios with

virtual server migration, this transfer of the virtual machine between servers also

takes time, during which the service is potentially paused [60]. Other possible

causes for overhead cost include handover between networks when the user moves

[89,90], orchestrating the cooperation between different domains [19,72], deciding

the routing between the user device and the associated servers [91, 92], among

others. Most works tend to ignore some if not all of these overhead sources,
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but for a more realistic modeling of the scenario, they should be considered.

However, not only the calculation of overhead itself is quite difficult, overhead

costs themselves will probably ramp up as more devices and more servers are

considered since these extra agents mean more complications for the algorithms

responsible for calculating the configurations, which means they will take longer

to execute [36,38].

2.4 Mathematical Model

In this section, we will present a mathematical model for calculating the estimated

average Service Delay in MEC as a function of time and the scenario scale (i.e.,

the number of users). We will begin by presenting our assumed scenarios. Then,

we will model user mobility and how to calculate the number of users associated

with each cloudlet. Finally, we will present equations for calculating Transmission

Delay, Processing Delay, and Backhaul Delay before joining the entire model into

a calculation of the average Service Delay.

2.4.1 Assumed Scenario

For starters, we will discuss several assumptions about our scenario. We have a

bounded area A (where A denotes the area and its size in square meters). Inside

this area, we have the cloudlets and the clients that will be associated with them.

λ(X, tk) denotes how many users are in point X at timeslot tk. Therefore, users

are initially disposed in A following a density function λ(X, 0). However, users are

mobile and can roam from this positions to any point inside of A. Furthermore,

to symbolize a growing demand, we have that at timeslot tk, α(X, tk) new users

appear in point X, where α(X, tk) is our spawning function. We assume this

infinitely increasing workload so we can test our proposal and other methods
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Figure 2.3: Illustrative example of six users and two cloudlets and their associa-
tions. c⃝ 2018 IEEE

under extreme stress conditions; if they behave well in this scenario, they are

able to handle simpler cases as well [139]. There are |C| cloudlets in the scenario,

which all belong to set C; we denote them by ci, with 0 ≤ i < |C|.

For now, we will assume that all base stations have a co-located cloudlet.

This allows us to treat cloudlets both as servers and as base stations. Users have

a physical and a virtual association [93]. The physical association determines

with which cloudlet they communicate through a direct wireless connection. The

user will send their tasks and receive output from this cloudlet. The virtual

association determines which cloudlet will host the VM server associated with

the user that will actually execute the tasks created and produce the output. If

a user is physically associated to cloudlet ci and virtually associated to cloudlet

cj, then ci and cj will communicate through a backhaul link to exchange the task

(received at ci from the user) and the output (produced by cj and then sent to
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the user by ci). We assume there is a switch in the backhaul that connects all

cloudlets, and each cloudlet has a physical link connected to this switch [94].

Physical association is decided by RSS, where clients will always associate

with the cloudlet that currently offers them the highest RSS value. This means

that area A will be divided following a Voronoi diagram between the cloudlets.

However, unlike conventional Voronoi diagrams, the subareas are decided based

on RSS instead of only Euclidean distance. Therefore, area A is divided into |C|

subareas Aci , where all users inside Aci are associated with and will send tasks to

cloudlet ci. If a user leaves Aci and goes into Acj , then its physical association is

changed from ci to cj. The virtual association is determined by the initial position

of the user only, i.e. the user will virtually associate with the cloudlet that offers

the highest RSS at the timeslot the user shows up in the system. Even if the user

moves, its virtual association (the host of its VM server) will not change.

As mentioned, λ(X, tk) defines how many total users are in X in timeslot tk.

All these users are physically associated to ci if X ∈ Aci , but λ(X, tk) tells us

nothing about their virtual association. Therefore, let us define a new density

function λci(X, tk) that represents the total number of users virtually associated

to cloudlet ci that are located in X at timeslot tk. Note how λci(X, tk) ≤ λ(X, tk).

Figure 2.3 illustrates the difference between those two values. Here, Acα is light

gray and Acβ is dark gray. In the light gray area,
∫∫

λ(X, tk)dX is two because

there are two users in that region, the red user and the yellow user, who are

represented by circles. Also in the light gray area,
∫∫

λcα(X, tk)dX is one instead

of two because, of the two users in that area, only one user (the yellow one) has

its VM server (represented by the triangle) hosted by cα. Analogously, in the

dark gray area,
∫∫

λcα(X, tk)dX is two because two users in that area (the purple

and orange ones) have their VM servers hosted by cα; these users are not in the

light gray area, i.e., not physically associated to cα, so they will use the backhaul
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link and cβ as a relay to reach their VM servers.

If Service Delay increases too much (for example, because of an overload

on the backhaul caused by mobility) and goes beyond the acceptable limit, the

system enters a Configuration Phase. For example, transmission power levels can

be changed to create a more efficient cloudlet configuration. Physical and virtual

associations are then reset to the new resulting RSS Voronoi Diagram, which may

lead to VMs being migrated.

For this mathematical model, we will denote initial moment as t0, which rep-

resents the initial moment of any cloudlet configuration. This can mean either

the beginning of the service, or after Virtual Machines are migrated, or after a

new cloudlet is activated. Basically, t0 means the timeslot after a new config-

uration of transmission power levels is set (with the possibility of VMs having

been migrated) and the virtual association of the users follows the RSS Voronoi

Diagram. As a final note, it is important to say that some variables here are

calculated at each timeslot while others are calculated only once considering the

initial user distribution. This was chosen for simplicity, because calculating every

single variable for all timeslots would be too complex. The selection of which

variables would be considered was based on how susceptible they are to changes

in the number of users. For example, variables related to queues vary exponen-

tially with number of users and arrival rate. This variation is also relevant to the

migration of users.

2.4.2 User Mobility

We assume users move thusly [95]: the time dimension is divided into timeslots

with equal length T; at each timeslot tk, each user chooses a random direction

and moves towards it with speed dictated by a probability density function ζ()

(maximum speed is v). Each direction has an equal chance of being selected, so
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the probability that a particular direction is picked is 1
2π
.

Therefore, the expected value of λ(X, tk) (and λci(X, tk)) is determined by

how many users ended in point X at the end of timeslot tk. To calculate such

number, we utilize a double integral using the number of users at the previous

timeslot, the odds of those users picking the direction of X, and the odds of the

users picking the speed that will land exactly into X at the end of the timeslot,

over the area dictated by Ω(X), which is a circle with a radius of Tv and centered

in X. Additionally, we must also consider the users that spawned in the point in

this timeslot (α(X, tk)). Here, rYX is the Euclidean distance between X and Y ,

and αci(X, tk) is analogous to α(X, tk), but considers the spawning of users that

are virtually associated to cloudlet ci only (αci(X, tk) is equal to α(X, tk) if X

is inside the association area of ci; i.e. the area where ci offers the highest RSS

among all cloudlets, denoted by Aci ; and it is zero otherwise).

E[λ(X, tk)] = α(X, tk) +

∫∫
Ω(X)

(
1

2π
ζ

(
rYX
T

)
λ(Y, tk−1)

)
dY (2.1)

E[λci(X, tk)] = αci(X, tk) +∫∫
Ω(X)

(
1

2π
ζ

(
rYX
T

)
λci(Y, tk−1)

)
dY (2.2)

2.4.3 Number of Users

As previously mentioned, the number of users in an area Aci at timeslot tk is

determined by the expected value of λ(X, tk). Therefore, if UAci
(tk) is the number

of users in area Aci at timeslot tk (incidentally also the number of users physically

25



Chapter 2: Mobile Edge Computing Model

associated to cloudlet ci at tk), then we can find this value by calculating the

double integral of λ(X, tk) over the desired area.

UAci
(tk) =

∫∫
Aci

E[λ(X, tk)]dX (2.3)

The number of virtually associated users, i.e. the number of Virtual Machines

receiving new tasks inside of cloudlet ci, in instant tk is determined by Vci(tk) in

an analogous way but using λci(X, tk) instead.

Vci(tk) =

∫∫
Aci

E[λci(X, tk)]dX (2.4)

2.4.4 Transmission Delay

We assume that the channel capacity for transmission follows the Shannon Hart-

ley theorem [96], shown below. Here, C is the channel capacity (bits per second),

B is the channel bandwidth (Hertz), S is the RSS (Watts), N is the Additive

White Gaussian Noise [97] spectral density (Watts per Hertz) and I is the sensed

interference (Watts).

C = Blog2

(
1 +

S

BN + I

)
(2.5)

Additionally, we have the formula for RSS below, for a transmitter aTX and a

receiver aRX . The formula calculates the signal power in decibels through the

transmission power (ωaTX
), the antenna gains at both nodes (GaTX

and GaRX
),

the Rayleigh power fading constant (H, which is the value corresponding to 0.5 in

the cumulative distribution function for average [98]) and the path loss between
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both nodes (LaTX
aRX

), all given in decibels. It then converts this value to Watts.

SaTX
aRX

= 10(ωaTX
+GaTX

+GaRX
+H−L

aTX
aRX)10/1000 (2.6)

Path loss is given by the Dual Path Empirical Path Loss model, shown below for

a transmitter aTX and a receiver aRX . Here, raTX
aRX

is the distance between the

transmitter and the receiver, n1 and n2 are the path loss constants for short and

long distance, respectively, and rb is the breakpoint between both classifications.

LaTX
aRX

= L1 + 10n1log10r
aTX
aRX

+ 10(n2 − n1)

(
1 +

raTX
aRX

rb

)
(2.7)

The Transmission Delay for each task is given by the average time needed

to traverse the distance between user and cloudlet twice (once for downlink and

once for uplink), where the average distance for clients of cloudlet ci is gci and the

propagation speed is γ; the average time needed to send a packet in the uplink

at instant tk (Dup
ci
(tk)); and the average time needed to send a packet in the

downlink (Ddown
ci

). Thus, the average Transmission Delay for clients of cloudlet

ci in timeslot tk is given by

Ṫci(tk) = 2
gci
γ

+Dup
ci
(tk) +Ddown

ci
(2.8)

In order to find gci , we utilize another double integral with the density function,

but this time utilizing the distance between the point and cloudlet ci. Again,

because this is an average, we must divide by the total amount of users.

gci =

∫∫
Aci

(
λ(X, 0)rXci

)
dX∫∫

Aci

λ(X, 0)dX
(2.9)

In the uplink, we can calculate the average time needed to send a packet

through (2.5) by using the average size of an uplink packet, denoted by pup as
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shown below. Here, Bup is the uplink bandwidth (in Hertz) and Ici is the inter-

ference suffered by cloudlet ci, which is the receiver used here. Once again, we

utilize a double integral to obtain the value for all users in the area and divide

the value by the total number of users to find the average.

Qup
ci

=

∫∫
Aci

λ(X, 0) pup

Buplog2

(
1+

SX
ci

BupN+Ici

)
 dX∫∫

Aci

λ(X, 0)dX
(2.10)

For the uplink, we assume users of the same cloudlet follow round-robin scheduling

[99] to send their packets. This eliminates collision between users of the same

cloudlet, but still leaves the possibility of interference from users of other cloudlets

who may be transmitting at the same time. However, because they also follow

round-robin scheduling, only one user from each other cloudlet could cause this

interference. To calculate the average interference sensed by ci, we must calculate

the average signal power received from users of each of the other cloudlets and

sum these values. This value is found by taking a double integral of the total

signal power generated by all users, and dividing by the number of users for

average, as shown below.

Ici =

cj ̸=ci∑
cj∈C


∫∫
Acj

(
λ(X, 0)SX

ci

)
dX∫∫

Acj

λ(X, 0)dX

 (2.11)

If the users follow a round-robin scheduling, then they follow an M/D/1 queue

model [99, 100], where 1 represents the single channel for transmission, D means

that the timeslot size is a constant value (τ), and M represents the Poisson

process that users follow when generating new packets (tasks) and putting them

in the queue while waiting for the channel to be available. The average rate of

this process is determined by the average task generation rate for a single user
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(denoted by Λ1) multiplied by the number of physical users currently associated

to ci in instant tk, with the addition of users that did not finish sending their

packets at the current timeslot. This last value can be calculated as follows.

We first calculate the chance that the user will finish in the current timeslot by

dividing the length of the timeslot (τ) by the total time needed (Qup
ci
). Because we

want the opposite of that (the chance that the user does not finish), we subtract

such value from 1; this gives us the rate of users that do not finish per timeslot,

so we divide that by the length of the timeslot to obtain the value at users per

second. It is noteworthy how this value is only applicable if a single timeslot is

not sufficient to send a packet; otherwise, it is ignored. Finally, the formula for

the arrival rate of packets at this queue for sending to cloudlet ci at instant tk is

given by

ϕci(tk) =

Λ1Uci(tk) +
1− τ

Q
up
ci

τ
, if Qup

ci
> τ

Λ1Uci(tk) , otherwise.

(2.12)

From this value, the average wait time in the uplink queue for clients of cloudlet

ci at instant tk follows immediately from queuing theory and is given by

ϖci(tk) =
ϕci(tk)τ

2

2(1− ϕci(tk)τ)
(2.13)

Finally, to calculate the total time spent to send a packet in the uplink, we must

first determine how many timeslots are necessary by using Qup
ci

and τ . Because

all timeslots involve a waiting time prior to obtaining the channel for the length

of the timeslot, we multiply that latter number by the sum of the wait time and

τ , which leads us to the formula below.

Dup
ci
(tk) =

⌈
Qup

ci

τ

⌉
(ϖci(tk) + τ) (2.14)
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For the downlink, we assume that each user is allocated a fraction of the

total bandwidth through OFDM [101]. This allows us to concurrently transmit

to all users of a single cloudlet without worrying about collision (because the

frequency bands are different). We can also utilize this to implement fairness

into the model by allocating wider bandwidths to users in less favorable locations

(i.e., ones that receive a weaker RSS). To do so, we allocate bandwidth to each

user that is proportional to the ratio of the inverse of the logarithm base 2 of the

RSS it receives from its cloudlet when compared to the sum of the same value for

all users of that cloudlet (this value is obtained through a double integral that

involves the density function and the corresponding area). Because we use the

inverse, users with higher RSS will get less bandwidth, and vice versa. Thus,

assuming that X0 ∈ Aci and Bdown is the total downlink bandwidth (Hertz), the

bandwidth allocated to a user in X0 is

bdown
X0

= Bdown

(
Sci
X0

)−1(∫∫
Acj

(λ(X, 0)Sci
X) dX

)−1 (2.15)

Here, although transmissions to clients of the same cloudlet do not interfere with

each other, there is still interference coming from the other cloudlets. This occurs

because there is no coordination between cloudlets, so they do not allocate the

same wavelengths to their users. Therefore, we calculate the interference at that

previous user in X0 associated to ci by summing the RSS received by the other

cloudlets.

IX0 =

cj ̸=ci∑
cj∈C

S
cj
X0

(2.16)

Finally, the average total time for transmission in the downlink is calculated

in the same way as performed in (2.10), but using the average packet size for
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downlink (pdown), and the new values for bandwidth ((2.15)) and interference

((2.16)) instead.

Ddown
ci

=

∫∫
Aci

λ(X, 0) pdown

bdown
X log2

(
1+

S
ci
X

bdown
X

N+IX

)
 dX∫∫

Aci

λ(X, 0)dX
(2.17)

These formulas allow us to calculate the average Transmission Delay at times-

lot tk for all users in the system. This is accomplished by utilizing the average for

the users physically associated to each cloudlet, multipliying by the number of

users physically associated to that cloudlet, and then dividing the sum of those

numbers by the total amount of users for averaging.

Tdelay(tk) =

∑
ci∈C

(
UAci

(tk)Ṫci(tk)
)

∑
ci∈C

UAci
(tk)

(2.18)

2.4.5 Processing Delay

We assume that the access to the processors at each cloudlet follows an M/M/k

queue [100], where k is the number of processors for each physical cloudlet, the

individual processing time for the tasks comes from a Poisson process with average

µ, and tasks arrive following yet another Poisson process. The rate for this

former process comes from the average task generation time of a single user (Λ1)

multiplied by the total amount of VM servers hosted by cloudlet ci at that timeslot

(Vci(tk)). The total arrival rate at timeslot tk for cloudlet ci is given by

Λci(tk) = Vci(tk)Λ1 (2.19)

Queuing theory tells us that the average occupation rate for cloudlet ci at timeslot
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tk can then be derived by

ρci(tk) =
Λci(tk)

kµ
(2.20)

From this, the chance of waiting in the processors’ queue at cloudlet ci at instant

tk also comes instantly from queuing theory.

Ψci(tk) =
(kρci(tk))

k

k!(
(1− ρci(tk))

k−1∑
n=0

(kρci(tk))
n

n!
+

(kρci(tk))
k

k!

)−1

(2.21)

Because queuing theory also gives us the average waiting time for these users of

cloudlet ci at instant tk based on the previous variables (the first factor of the

right-hand side in the formula below), we can calculate the average Processing

Delay for the clients of cloudlet ci at timeslot tk by adding this value to the

average time needed to process each task.

Ṗci(tk) = Ψci(tk)
1

1− ρci(tk)

1

kµ
+

1

µ
(2.22)

Finally, the average Processing Delay for all users in the system can be obtained

in the same way that (2.18) was calculated.

Pdelay(tk) =

∑
ci∈C

(
Vci(tk)Ṗci(tk)

)
∑
ci∈C

Vci(tk)
(2.23)
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2.4.6 Backhaul Delay

As mentioned before, all cloudlets are connected to a backhaul switch [94]. This

connection is comprised of |C| fiber optic links (one for each cloudlet, connecting

them to the switch), and it is used when a user is physically and virtually asso-

ciated to two different cloudlets. Let us consider cloudlets ci and cj. Through

Wavelength-Division Multiplexing (WDM) [102], a dedicated wavelength is re-

served in the links connecting ci and cj to the switch; this band will be used

exclusively for backhaul communications between these two cloudlets, i.e., by

users who are physically associated to ci and virtually associated to cj or vice-

versa. Let us assume this band has a length of Rci,cj (the order between ci and

cj is irrelevant here), where, for all pairs of cloudlets in C, Rci,cj Hz are reserved

exclusively for that pair. These Rci,cj Hz are equally divided between all users

(and their VMs) of that pair of cloudlets who need it (users virtually associated to

ci located in Acj and vice-versa). Thus, we have that, for the pair ci and cj, users

will have the following bandwidth available to them for backhaul communications

during timeslot tk.

rci,cj(tk) =
Rci,cj∫∫

Aci

E[λcj(X, tk)]dX +
∫∫
Acj

E[λci(X, tk)]dX
(2.24)

Such bandwidth is utilized both for sending the input packet (from the user to

its VM) and the output packet (from the VM to the corresponding user) between

both cloudlets. Sending such packets through this dedicated wavelength band is

what creates the backhaul delay. Below is a calculation of the average backhaul

delay across all users during timeslot tk. Note how even though the delay is only

considered for the users that utilize the backhaul, the division for getting the
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average considers the total amount of users.

Bdelay(tk) =

ci ̸=cj∑
(ci,cj)∈C2

(∫∫
Aci

E[λcj(X, tk)]dX
pup+pdown

rci,cj (tk)

)
∑
ci∈C

Vci(tk)
(2.25)

2.4.7 Service Delay

Finally, Service Delay can be calculated at each timeslot by adding the delays

related to transmission, processing, and the backhaul.

Sdelay(tk) = Tdelay(tk) + Pdelay(tk) +Bdelay(tk) (2.26)

2.5 Summary

This chapter offers important considerations for modeling problems in MEC. This

includes a basic service model, with its entities and variations. More importantly,

this chapter presents broad categories of MEC challenges, which are a useful start-

ing point for research. In this sense, it is important to also discuss what are the

current directions and trends in each challenge. For example, in the Offload-

ing Decision category, the final goal is obviously to utilize multiple and various

servers, in the edge or not, as possible destinations [9, 27]. This means a lot of

variables to consider, as discussed previously. Compounded by a high quantity

of users, the resulting problem ends up being very difficult to solve. Thus, more

and more literatures pieces published recently are using a user-centric approach,

where they focus on solving the problem for a single user [82,103,104]. This means

a simpler (and thus feasible) solution that could be applied in a user-by-user case.

This idea is also applicable to and can be seen in resource allocation, both in the

fronthaul and the backhaul [105,106]. However, for resource allocation, it is also
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notable how more and more research is being made combining both the Com-

munication and Computation planes of the service model [81, 107]. Previously,

a lot of MEC work would focus on a single aspect, e.g. how to minimize the

transmission delay, how to maximize processor utilization [13]. However, both

transmission and processing are important for the quality of service and they

are also dependent on each other, so much so that modifying communication

parameters will affect the computation part of MEC. Thus, it is necessary when

building a realistic solution to consider the whole service model of MEC, despite

how complex this is [76]. In the case of Server Deployment, it is interesting to

investigate other deployment locations besides next to base stations. Obviously,

this comes with the drawback of the connection between the edge server and the

base station, to integrate it with the network, which must be considered in the

final model and objective function. Nonetheless, there are some benefits to this,

as there may be locations with lower monetary costs (e.g. cheaper rent) or better

energy infrastructure to set up the edge servers, bringing benefits to the service

provider [108]. Moreover, there can be already existing servers that perform dif-

ferent, local functions in the edge (e.g. servers in a company or university) that

could secondarily be utilized as MEC servers [27]. These possibilities are not

very touched in the literature. Finally, Overhead Management as a whole is not

studied enough, so there is plenty of work that could be performed in this field

yet [87,88]. The estimation and calculation of the overhead cost associated with

each action and the integration of this with the other decision (e.g. the offload-

ing destination or resource allocation ones), including its impact in the objective

function, are useful future perspectives. This goes especially in contrast with the

many research works that mainly assume that their proposed solutions will either

be performed offline always or will have negligible cost, which is not realistic in

most scenarios [87, 88, 90]. Finally, the chapter concludes with a mathematical
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respresentation of the assumed MEC model. This includes a method for estimat-

ing the service delay of the system, including the latency needed for processing

the user-generate tasks and transmitting them from the users to the access points

and from the access points to the cloudlets.
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Chapter 3

Machine Learning-based

Resource Allocation

3.1 Introduction

In this chapter, we propose a method for lowering both Processing Delay and

Transmission Delay in a scenario with an undetermined amount of cloudlets. The

proposal utilizes Virtual Machine Migration to move Virtual Machines related

to users from one cloudlet to another, and Transmission Power Control at the

base stations to determine the signal strength received at the users and thus

the communication quality. Those main technologies are used for achieving the

following goals: effectively lower Service Delay as much as possible, provide a

high Quality of Service for various application profiles, and stay computationally

feasible. We utilize a mathematical model with a Particle Swarm Optimization

(PSO) model [109], a Machine Learning technique, to achieve a low execution

time and high efficiency.

The contents of this chapter refer to the following papers, which were written

based on our own research.
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• T. G. Rodrigues, K. Suto, H. Nishiyama and N. Kato, ”Hybrid Method for

Minimizing Service Delay in Edge Cloud Computing Through VM Migra-

tion and Transmission Power Control,” IEEE Transactions on Computers,

vol. 66, no. 5, pp. 810-819, May 2017. c⃝ 2011 IEEE

• T. G. Rodrigues, K. Suto, H. Nishiyama and N. Kato, ”A PSO Model with

VM migration and Transmission Power Control for Low Service Delay in

the Multiple Cloudlets ECC Scenario,” in Proceedings of the 2017 IEEE

International Conference on Communications (ICC), Paris, pp. 1-6, May

2017. c⃝ 2011 IEEE

3.2 MEC Resource Allocation in the Literature

As mentioned before, the main requirement in MEC, to lower the Service Delay,

can be translated to lowering the Transmission Delay and the Processing Delay.

We define Transmission Delay as the time required for the user to send its task

to the cloudlet plus the time it takes for the cloudlet to send this task’s output

back to the user. Since these actions are performed in the wireless medium, it is

straightforward that parameters related to the wireless environment are the ones

who affect this delay. Meanwhile, we define Processing Delay as the time required,

inside the cloudlet, for the task to be executed and its output to be produced.

This involves the time the task spends in the processor queue, waiting for access to

the processor, as well as the time the processor takes to actually execute the task.

Therefore, this type of delay is intrinsically connected to the efficient utilization

of the processors of the cloudlets. Finally, we define Service Delay as the simple

sum of the Transmission Delay and the Processing Delay. Through this division,

we can separate existing approaches to handle the Service Delay requirement in

the literature into two classifications: those related to Processing Delay, and those
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related to Transmission Delay.

In the computation side, existing methods for lowering Processing Delay are

mainly based on balancing the workload between the physical cloudlet servers,

attempting to avoid overwork and/or wasted resources in any of the cloudlets.

Since such goal leads to efficient use of the processor resources, it is an effective

way of controlling Processing Delay. This can be achieved by always associat-

ing new users with cloudlets that currently have the least amount of work, in

a technique called Work Scheduling [110, 111]; this would balance the workload

and guarantee that the difference in amount of hosted Virtual Machine servers

between cloudlets is minimal. Another existing approach, called Virtual Machine

Migration [112, 113], deals with fixing situations where the workload is already

unbalanced; it is based on migrating Virtual Machine servers from busy cloudlets

to underworked ones, avoiding the wasting of resources on the latter group and

keeping the workload more balanced. Finally, one other possibility is to divide

the task into mutually independent components that can be executed in parallel;

some of these components are executed locally, in the mobile device, while others

are offloaded to one or more cloudlets. This technique, called Application Par-

titioning [114–117], is based on deciding which components to offload and which

cloudlets should be their destination, with the choice being based on minimizing

Processing Delay by avoiding sending requests to servers that are already over-

worked and would take longer to execute the task than the mobile device, and

also spreading your components so that no single server is overwhelmed.

As it was mentioned before, Transmission Delay is closely connected to the

wireless medium where the transmission is performed. For this reason, approaches

focused on communication elements mainly concentrate on metrics such as Signal

to Interference plus Noise Ratio (SINR), latency, and throughput. One existing

technique is called Access Point Scheduling [118,119], where users are associated
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to the cloudlet closest to them, in order to minimize transmission distance, which

in turn improves signal quality and propagation time; some variations of this

technique involve mixed offloading to cloudlets and conventional cloud servers

[120]. Many parallels can be drawn between Access Point Scheduling and Work

Scheduling, but the main difference that separates them is their ultimate goal: the

former focuses on improving Transmission Delay, while the latter is concentrated

on Processing Delay. Another communication based strategy is Transmission

Power Control [121,122], where the transmission power of the cloudlets is carefully

set with the final goal of lowering the latency. Due to its tight connection to signal

quality, interference, and channel capacity [96], controlling transmission power is

an efficient method of controlling Transmission Delay. Yet another approach

related to communication elements is Resource Allocation [123, 124], where the

available resources, such as channel bandwidth, are thoughtfully allocated in order

to provide fairness among users. This allows for provisioning a good quality

service even to users in disfavorable contexts (such as locations with high levels of

interference), which consequently results into an improved average Transmission

Delay.

It can be seen that there are plenty of approaches for lowering Service Delay

in MEC, both in the communication side and in the computation side. How-

ever, none of them attempts to integrate and combine elements of both sides, i.e.

the approaches have had a single focus on either communication or computation

instead of a dual focus. Our proposal, therefore, aims at lowering both Trans-

mission Delay and Processing Delay. The strategy chosen for this is to utilize

Transmission Power Control to manage the Transmission Delay, while making

use of Virtual Machine Migration to lower Processing Delay. This would enable

us to alter both types of delay, which is necessary to achieve our objectives of

truly lowering Service Delay, and providing a high quality service independent of
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the characteristics (e.g. heavier burden on communication, or a higher necessity

of computation) of the application. This last part is important because more

and more profiles of application are being utilized; for example, while scientific

experiments usually involve time-consuming computations in the cloudlet and

small input and output packets for transmission, database driven applications

have short computation in the form of looking up an entry and long transmission

to send the possibly great amount data that composes such entry. This means

that for some users the Processing Delay will have a bigger effect, while for others

the Transmission Delay will have a bigger effect. A method for lowering Service

Delay must be able to handle all types of application however. Moreover, while

there may be other delays involved in the Service Delay (e.g., delay to migrate

the Virtual Machine servers, delay to start the service), in this paper we consider

a long timescale, an infinity horizon, where other delays are irrelevant when com-

pared to Processing Delay and Transmission Delay (since the former are related

to actions performed much less frequently than the ones related to the latter).

3.3 Particle Swarm Optimization

Given the mathematical model of Service Delay from Chapter 2, it is intuitive

to mathematically optimize it by making the transmission power levels the de-

cision variables (since they decide user association and received signal strength,

they relate to both Processing Delay and Transmission Delay) and minimizing

Equation (2.26). This approach was taken in the literature before [54], using in-

tegrals and partial derivatives. The problem is that this is only feasible for small

amounts of cloudlets (such as 2 in the reference), since that number corresponds

to the number of transmission power levels and consequently decision variables.

Moreover, brute force has a complexity that is exponential on the amount of de-

cision variables, Linear Programming techniques do not apply since this is not a
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linear equation system, and derivatives and integrals only work with few decision

variables (anything else is too complex).

This is why we utilize PSO for optimizing Equation (2.26) instead. PSO [109]

works with a set of particles that intelligently move in the search space (where

each position is a possible solution), trying to improve the best local (i.e. for that

particle) and global (i.e. among all particles) solutions. The intelligence part

comes from the bias on movement, that tends to go towards the best solutions

found so far. Through this mechanism, PSO is capable of nearly optimizing

the fitness function at a low execution time [125]. For our PSO model, shown in

Algorithm 1, the solutions will be configurations for the transmission power levels

of all cloudlets; therefore, our search space is N -dimensional. Initial positions

and speed for all particles are random. The fitness function, f(·), is Equation

(2.26). R is the number of particles; L is the number of iterations; qr, vr and

hr are respectively the position, the speed and the best local solution of particle

r; g is the best global solution; ϑ is the inertia constant; and ϱh and ϱg are the

acceleration biases for the best personal and global solutions respectively.

In our proposal, a central office (CO), which aggregates information about

users and cloudlets and can control the servers, would execute Algorithm 2. The

CO would use as input the topography of the scenario, execute the PSO algorithm

(which means solving the equation model from Chapter 2) and, through this, find

a transmission power configuration for all cloudlets that lowers the Service Delay.

Figure 3.1 illustrates this process. The frequency of execution of the procedure

depends on the scenario; more dynamic cases should execute the algorithm more

often, since the overhead would be compensated by the corrections to the Service

Delay, while more static cases can execute the algorithm less often.
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Algorithm 1 PSO model for MEC multiple cloudlets scenario

1: for all r ∈ R do initialize qr as a random N -tuple
2: end for
3: for all r ∈ R do initialize vr as a random N -tuple
4: end for
5: while executed iterations < L do
6: for all r ∈ R do
7: y ← f(qr)
8: if y < f(hr) then hr ← qr
9: end if

10: if y < f(g) then g ← qr
11: end if
12: φh ← randomInt(0, 1)
13: φg ← randomInt(0, 1)
14: vr ← ϑ · vr + φh · ϱh · (qr − hr) + φg · ϱg · (qr − g)
15: qr ← qr + vr
16: end for
17: end while
18: return g

Algorithm 2 Integrated transmission power and Virtual Machine migration con-
trol for Service Delay minimization

1: Collect the physical location of users and cloudlets
2: Use Algorithm 1 to find configuration for lowering Equation (2.26)
3: Set transmission power levels of cloudlets according to the configuration found
4: Decide user association based on Equation (2.6)
5: Execute Virtual Machine Migration if user association changed

3.4 Performance Evaluation

To evaluate the performance of our proposal, we prepared three study cases, with

parameters shown in Table I. Each study case was run 100 times, with different

randomly generated topologies (i.e. physical location of users and cloudlets)

each run. Results shown here are the average across all 100 runs, calculated

through the model in Section III. We assume users are static, and bandwidth and

44



Chapter 3: Machine Learning-based Resource Allocation

Figure 3.1: Illustration of Procedure 2 being executed. In the initial moment, α is
overworked while β and γ have wasted resources. After executing the procedure,
the green and blue VM servers have been migrated away from α to balance the
workload, and α has lowered its transmission power level while β and γ raised
theirs, to better reflect their associated users’ positions. This way, all cloudlets
can efficiently reach their users, and work is equal. c⃝ 2017 IEEE

average packet size are the same both in uplink and downlink. For the path loss

model, the level at 1m is 20dBm, the coefficients for short and long distances are

respectively 2 and 4, and the breakpoint is 100m [126]. For the PSO model, there

are 30 particles, the inertia constant is 0.7, and both accelerations are 2 [109].

For Study Case 1, we compared the performance of our proposal at each iter-

ation with optimal values calculated through brute force. As seen in Figure 3.2,

the Proposed Approach reaches values close to optimality, with the difference

being under 5ms after 50 iterations. However, the proposal manages this with an

execution time 11.57% that of the method used for calculating the optimal value;
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and, as mentioned before, this value tends to be smaller in a higher scale. Thus,

Study Case 1 shows how the Proposed Approach is a valid and still computation-

ally feasible way of approaching optimality.

For Study Cases 2 and 3, we compared the Proposed Approach with two con-

ventional ones. For the No Migration Approach, users send their tasks to the

closest cloudlet, which also hosts their corresponding VM servers; this results in

minimum transmission distance, but can lead to congestion, as too many users

try to send packets to the same cloudlet, and overwork, as a single cloudlet hosts

too many VM servers. In the Conventional Approach [112], users also send their

tasks to the closest cloudlet, but now we assume VM servers are migrated as to

result in all cloudlets hosting the same amount of VM servers; this gives mini-

mum Processing Delay, but can still lead to congestion (tasks sent to cloudlets

which do not host the corresponding VM server are transmitted through a wired

connection of insignificant latency to the correct cloudlet, with the task output

doing the opposite route afterwards). Regarding complexity, both conventional

approaches and the proposal are O(N ·M), where N and M are respectively the

number of cloudlets and users. In Study Case 2, computation burden is varied

in the form of the average task execution time, and in Study Case 3, communi-

cation burden is varied in the form of packet size. The results for Study Case 2

(Figure 3.3) and Study Case 3 (Figure 3.4) show how the No Migration Approach

and the Conventional Approach have similar performances, while the proposal is

consistently better. The difference to the Conventional Approach is smaller when

computation use is high, since this approach minimizes Processing Delay, but the

proposal has an advantage because it is the only one to consider Transmission

Delay. This is more evident as the use of communication increases. The results

show how a dual focus approach leads to significant improvement in performance

when compared to single focus. It also shows how the proposal can deal with var-
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Table 3.1: Study Cases Parameters

Study Case 1 2 3

Average packet size 500kB 500kB 0.5 to 1.5MB

Average task service time 500ms 50 to 1500ms 500ms

Number of cloudlets 3 40

Number of users 120 500

Number of PSO iterations 250 100

Total area size 0.04km2 0.25km2

Bandwidth (up and downlink) 1GHz

User transmission power 27dBm

User device total gain 8.35dBi

Cloudlet total gain 24.5dBi

Noise spectral density 4*10−19W/Hz

Wireless propagation speed 3*108m/s

Processors per cloudlet 8

Single user task arrival rate 6 tasks/min

Round robin timeslot 85ms

ious application profiles (i.e. mix of computation and communication burdens)

better than the conventional approaches. The improvement (of between 0.2s and

1.3s) may seem small for a single task, but users’ jobs are composed of multiple

tasks, increasing the importance of the proposal’s performance enhancement.

3.5 Summary

In this chapter, we proposed a PSO-enhanced method of lowering Service De-

lay in MEC together with a mathematical model for calculating Service Delay.

The proposed method, which considers both communication and computation
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Figure 3.2: Results for Study Case 1. c⃝ 2017 IEEE

elements, was shown to be significantly better than an existing approach which

only improves Processing Delay. This corroborates our theory that a combined

method of improving Transmission Delay and Processing Delay is the most effi-

cient way of dealing with Service Delay. The proposal was also shown to be near

optimal while being computationally feasible. Since the expectation in the next

generation of mobile devices is to rely more on communication (due to higher

data rates), our proposal will be even more relevant, since it was shown to be

superior specially in scenarios with high transmission burdens.
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Chapter 4

Intelligent Edge Server

Deployment Policy

4.1 Introduction

Since cloudlets are not all located in a single physical place as in conventional

cloud computing, we must actively decide where to deploy them. Most works

consider that cloudlets are deployed in base stations [48, 49, 55], and for good

reasons. Base stations are often in central positions for reaching users and having

cloudlets co-located with them also further lowers the latency as the propagation

between the base station and cloudlet becomes negligibly low. Nonetheless, it is

too expensive and usually not necessary to put a cloudlet in each base station,

so there is still a decision to be made regarding which base stations will receive

cloudlets.

In this chapter, we propose a cloudlet deployment policy for MEC based

on the Machine Learning algorithms k-Means Clustering (kMC) and Particle

Swarm Optimization (PSO). The objective of our proposal is to find a deployment

solution where cloudlet resources are used as efficiently as possible while service
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delay is minimized. Efficient resource usage means lower operational costs for

service providers and lower service price for clients while a low service delay is

essential for real-time and latency-intolerant applications (as well as maintaining

transparency in cloud systems in general). Furthermore, the use of Machine

Learning should allow our solution to be applicable in 6G IoT environments, i.e.

scenarios with massive amounts of users and frequent requests. Our proposal will

decide simultaneously where the cloudlets should be deployed and how to allocate

their resources among the clients of the service. To prove the efficacy of our idea,

the proposal’s performance is compared with other deployment policies under a

scenario that mimics 6G IoT.

The contents of this chapter refer to the following paper, which was written

based on our own research.

• T. K. Rodrigues, K. Suto and N. Kato, ”Edge Cloud Server Deployment

with Transmission Power Control through Machine Learning for 6G In-

ternet of Things,” IEEE Transactions on Emerging Topics in Computing.

Available online. c⃝ 2011 IEEE

4.2 Shortcomings of Current MEC Deployment

Strategies

Intuition tells us that deciding the location of the cloudlets based on a pre-

determined objective function would result in better service. Despite this, the

vast majority of MEC research works with the assumption that servers are in

already defined and immutable positions. Since no deployment policy is explicitly

mentioned, it is safe to say that the cloudlets are randomly placed in the service

area. Some research works directly state so [54, 55]. However, ignoring cloudlet

placement decision means the final service is not optimized, even if the cloudlets
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themselves are configured in a way that resource allocation is optimized. Thus,

to offer the best service possible (in our case, the one with the lowest delay), we

will carefully decide where to deploy the cloudlets.

Some few research works agree with us and thus proposed cloudlet deployment

policies of their own. K. Xiao et al. [86] utilize a Markov chain structure to model

the whole MEC service, including both communication and computation phases.

This model is then used to predict workload for each cloudlet in each possible

position and then decide deployment so that there is no overload (i.e. work is

balanced across all servers). However, their solution is not exactly scalable and

would result in extremely long execution times in scenarios with many servers

and, more worryingly, base stations. Thus rendering their proposal unfeasible for

IoT and 6G.

Some authors offer more scalable proposals for the cloudlet deployment prob-

lem. Y. Li and S. Wang [85] use Machine Learning in the shape of PSO to decide

where to deploy the cloudlets. They model the energy consumption of the whole

system and then use PSO to find out the locations that lead to higher energy effi-

ciency. Alternatively, B. Li et al. [84] use kMC instead as their Machine Learning

algorithm. For this research work, the goal was to minimize service delay and

kMC was utilized to choose cloudlet locations that would lead to the lowest com-

pletion times for the users. Both works utilize Machine Learning and thus provide

solutions that can handle high numbers of clients, servers and requests. However,

the service model considered by them is lacking. They properly model the com-

putation aspect of MEC, but in the communication side, they ignore collision

and contention of resources, only considering a constant latency. Consequently, if

applied to real-world scenarios, their solutions would not lead to optimal results

as important aspects which they ignored would inevitably arise.

Table 4.1 summarizes the related works in MEC deployment and what is
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Table 4.1: Existing works in ECC server deployment and what is lacking on them.

Literature reference Shortcoming
Random deployment (most of the lit-
erature)

No objective function to guide de-
ployment means that the final perfor-
mance is usually not optimal

K. Xiao et al. [86] Complexity depends on number of
servers and base stations making it
not feasible for 6G and IoT

Y. Li and S. Wang [85], B. Li et al. [84] Ignores communication element of
ECC, resulting in an overall less than
optimal performance

missing in each of them. In this chapter, we propose a MEC cloudlet deploy-

ment solution that is both feasible and which considers the entire service model.

Feasibility even in scenarios with many servers and/or clients will be achieved by

using Machine Learning in the shape of kMC and PSO. Meanwhile, our service

model will consider both computation and communication resources and their

allocation, which is essential to realistically represent MEC [76].

4.3 Machine Learning-based Selection of Base

Stations

From Chapter 2, we can see that the Service Delay is highly controlled by the

associations of the users, both the virtual and physical ones. Logically, a proper

solution would contain mechanisms for choosing such associations carefully to

minimize the latency. Additionally, as mentioned before, users physically asso-

ciated with the base station that offers the highest signal power. As shown by

Equation (2.6), the easiest way to do this would be to utilize Transmission Power

Level Control [54] on the base stations to individually choose their transmission
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power levels and through that control how many and which users connect to each

one. We can directly assign the virtual associations, i.e. which cloudlet serves

which user. For the transmission power level configuration, we will use PSO as

specified in [55]. In that work, the machine learning algorithm is used for balanc-

ing the communication workload between the base stations. However, for that

work, transmission power is used to decide both physical and virtual associations.

This results in a simple solution, but has the drawback of not allowing optimal

configuration: if the optimal solution has users physically associated with a base

station and virtually associated to a cloudlet co-located with a different base sta-

tion, the solution in [55] will never find it. Indeed, that solution ignores these

configurations completely. Thus, we will adapt PSO to only configure the trans-

mission power levels and thus only choose physical associations. For the virtual

association, we will utilize kMC.

4.3.1 Particle Swarm Optimization

PSO [127] works by having multiple agents looking on the space of all possible

solutions for the optimal configuration. Each position in this space represents

a possible solution to the problem being tackled by PSO. The agents, called

particles, move around this space, evaluating each the solutions corresponding to

the positions they stop on before moving to a new position. Their movement is

biased towards the best solution found so far globally, i.e. they swarm around

the best solution found by the set of all particles. To avoid getting stuck in local

optimum points, the movement is also biased towards what is called local best,

which is the best solution found by that particular particle and biased towards

the direction and speed of their previous movement, which is called the inertia

component. These three elements (global best, local best, and inertia) have

weights associated with them to dictate how much they influence the solution
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search. Moreover, the swarming behavior around the global/local best solutions

is usually also conditioned by random variables that can take any value between

0 and 1 that change in each iteration. The goal of these elements is to balance

the search between exploitation (the swarm around the best solutions found) and

exploration (the random search for new elements to avoid getting stuck in local

optima).

In our problem, we want to find the optimal configuration of transmission

power levels for all base stations. Thus, our solutions are tuples of V elements,

one transmission power level for each base station. We will assume that vir-

tual associated are already defined before the algorithm starts, so PSO can only

change physical associations. The objective function that will dictate what the

global/local best are will be Equation (2.26) so our algorithm can find the config-

uration that leads to minimum delay for our users. Our implementation of PSO

is shown in Algorithm 3. RPSO is the total number of PSO iterations we want

to run. The particles are represented by P. qP and VP are correspondingly the

position and velocity of particle P. Bl
P is the best local solution found by particle

P so far while Bg is the global best solution found by all particles so far. Fl and

Fg are the random variables applied respectively to the local and global best that

change with each iteration. Wi is the inertia weight, Wl is the local best weight

and Wi is the global best weight. Finally, f(·) represents our objective function.

4.3.2 k-Means Clustering

kMC [128] is an algorithm for dividing elements into clusters based on distance.

The total number of clusters is decided beforehand to be K. The algorithm starts

by selecting a random location for the centroid of each one of its K clusters.

Then, for each element, it will be associated with the centroid that is physically

closest to them. After this phase, for each cluster, the centroid is moved to the
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average center of all elements of that cluster. Then, all elements are assigned

new clusters based on these new centroids. This cycle of assigning elements to

clusters/moving the centroids based on the elements is repeated until no centroid

changes location. The overall performance of the algorithm is dependent on the

initial random centroids. To eliminate this bias, this entire process is repeated for

multiple iterations, with different initial random locations for the centroids. For

each iteration, the performance of the final clusters, as judged by an objective

function, is recorded. The output of kMC will be the clusters from the iteration

that resulted in the best performance.

For our problem, we will make some adaptations to kMC. We will use kMC

for deciding the virtual association of the users. Thus, we will use the algorithm

for deciding K clusters, one for each cloudlet. As such, the location of the cluster

centroids (i.e. cloudlets) will be limited to the location of the base stations.

We will assume that physical associations are already decided based on the best

offered signal power at each user before the algorithm starts and that kMC will

only change the virtual associations. Consequently, using physical distance to

determine which cluster the users will join is not the best choice. Instead, users

will cluster with cloudlets whose co-located base station has the shortest backhaul

path in terms of propagation to the physical association of the corresponding user.

Only in case of ties, we will utilize the physical distance between user and cloudlet.

Moreover, as is, the algorithm is susceptible to overloading cloudlets by creating

clusters that are too big in cases where many users are concentrated around a

base station. This is bad because it leads to long processing delays. Thus, we

will limit the cluster sizes so that all cluster have the same number of users (in

our case, that would be U/K). Finally, the iteration with the best configuration

of clusters will be determined through Equation (2.26). Our implementation of

kMC will be shown in the next subsection.
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Figure 4.1: How the proposed algorithm works by assigning users to cloudlets
with kMC and then using PSO to adjust the transmission power levels. c⃝ 2019
IEEE

4.3.3 Proposed Algorithm

The main idea behind our deployment solution is utilizing PSO to decide the phys-

ical associations and using kMC to decide the virtual associations. By choosing

transmission power levels, PSO can directly control transmission delay. Addition-

ally, by deciding which cloudlet the users send their tasks to, kMC can control

processing delay. Finally, both algorithms try to lower backhaul delay. PSO can

do it by coinciding physical and virtual associations in the same base station or

at least associating a user physically to a base station that is close to the virtual

association of that user. kMC does it by clustering users based on the resulting

backhaul propagation of the virtual association. Thus, we can control all aspects

of the service delay. The proposal works by first setting all base stations with

the same transmission power level. This is done so we have physical associa-

tions to start working with. Then, it uses kMC to select the virtual associations

and, at the end of each kMC iteration, PSO to determine the transmission power

levels. This is done in every kMC iteration. By the end of the algorithm, the

output is the configuration (deployment locations for cloudlets, virtual associa-

tions for users and transmission power levels for base stations) corresponding to
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the iteration that received the best performance according to Equation (2.26).

An illustration of how the algorithm works can be seen in Figure 4.1. The

figure first shows the location of the base stations and the users. Then, kMC

is utilized by first deploying the cloudlets in random base stations. Users are

assigned to the cloudlets based on the backhaul propagation needed to reach

them while at the same time keeping the workload balanced between the servers.

Users have the same icon (circle or square) as their corresponding cloudlets. Then,

kMC moves the cloudlets to the base station closest to the users in their clusters.

This is shown by moving the cloudlet with the circle icon to a different base

station. With virtual associations decided, PSO is used to finally determine

the transmission power levels and change some physical associations. It can be

seen in the figure how this allows for keeping one user with the square icon from

having to use the backhaul links to access its cloudlet (which means zero backhaul

delay for this user and more bandwidth for the users that much use those links).

This also means we can reduce the transmission power level of the bottom right

base station, which in turn means less interference overall in the system. Both

measures improve the overal transmission and backhaul delay of the users.

The full algorithm can be seen in Algorithm 4. RkMC is the total number of

kMC iterations we want to run. K is an auxiliary set we use to represent all

cloudlets that still have not reached our desired amount of users. V is another

auxiliary set we use, this time to contain all base stations that do not have a

cloudlet co-located with them yet. This can be seen in lines 15 through 17, where

the cloudlets (centroids) are moved to the base station closest to the center of its

cluster of associated users. Since there cannot be two cloudlets in the same base

station, as per our assumptions, once a cloudlet is moved to a base station vi,

then vi is removed from V to guarantee that no other cloudlet is moved there.
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Algorithm 3 -PSO: implementation for determining transmission power levels
for the base stations.
1: for all particles P do set qP with random V values
2: end for
3: for all particles P do set VP with random V values
4: end for
5: for all particles P do Bl

P ← qP
6: end for
7: Bg ← argmin

particles P
f(Bl

P)

8: for RPSO iterations do
9: for all particles P do

10: if f(qP) < Bl
P then Bl

P ← qP
11: end if
12: if f(qP) < Bg then Bg ← qP
13: end if
14: Fl ← random number between 0 and 1
15: Fg ← random number between 0 and 1
16: VP ←Wi · VP + Fl ·Wl · (qP − Bl

P) + Fg ·Wg · (qP − Bg)
17: qP ← qP + VP
18: end for
19: end for
20: return Bg

4.4 Performance Comparison of Different Poli-

cies

In this section, we will present results to support our claim that our proposal is

a valid solution for the ECC deployment problem. Our objective is to prove that

our algorithm brings substantial performance improvements when compared to

the random placement of servers (which is the conventional method taken in most

of the literature). The results shown here are obtained through simulation. To

achieve statistical reliability, the results shown are an average of 1000 different

random simulations (unless stated otherwise), with each simulation having dis-

tinct locations randomly chosen for base stations and users. The backhaul links
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Algorithm 4 -kMC: proposed algorithm for deploying cloudlets and configuring
associations.
1: for all vi ∈ V do ωvi ← base transmission power level
2: end for
3: for RkMC iterations do
4: V← V
5: for all cloudlets k do
6: Choose random vi ∈ V
7: Deploy k in vi
8: Remove vi from V
9: end for

10: repeat
11: K← all cloudlets
12: for all ui ∈ U do
13: zui

← k ∈ K with min. propagation to hui

14: In case of ties, choose based on dui
k

15: if zui
has U/K users then remove zui

from K
16: end if
17: end for
18: V← V
19: for all cloudlets k do
20: Move k to vi ∈ V closest to its users
21: Remove vi from V
22: end for
23: until no cloudlet changes location
24: Execute PSO for setting transmission power levels
25: end for
26: return configuration with best performance

are decided based on distance and, as mentioned before, form a passive optical

network. The propagation distance is determined by the distance between the

base stations, while the speed is taken as the speed of light. Additionally, the

simulations utilize as parameters the values shown in Table 3 unless explicitly

stated otherwise. These values follow estimates of what should be expected in

6G IoT networks [129, 130]. We assume values are the same in the uplink and

the downlink. The parameters for the machine learning algorithms were obtained
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Table 4.2: Parameters used in the simulations.

User average task rate 1 task/s
Average task execution time 50 ms
Number of processors per cloudlet 16
Path loss floating intercept 75.85 dB
Average path loss exponent 3.73
Total area size 10000 m2

Number of base stations 10
Number of cloudlets 3
Number of users 10000
Base station antenna gain 24.5 dBi
Rayleigh fading coefficient -1.59175
User transmission power 27 dBm
User antenna gain 2.15 dBi
Noise density 4 · 10-19W/Hz
Wireless channel bandwidth 1 THz
Packet size 128 KB
Data rate per backhaul link 10 Gb/s
Number of kMC iterations 6
Number of PSO iterations 6
Number of PSO particles 7
PSO inertia bias 2
PSO local best bias 18.5
PSO global best bias 2.5

from experimentation aimed at what works best for this specific problem.

Different scenarios will be evaluated to show how our proposal has the best

performance. For comparison we will utilize another deployment policy conven-

tionally seen in the literature, where cloudlets are randomly deployed, indepen-

dently of the location of users, in any available base station. Virtual associations

are decided based on backhaul propagation. PSO is utilized to decide transmis-

sion power levels and physical associations. Additionally, cloudlets also will serve

U/K users each (i.e. balanced workload among cloudlets) in the random policy.

These last two points mean that the differences in performance come strictly from
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Figure 4.2: MEC service delay variation as the number of base stations is in-
creased. c⃝ 2019 IEEE

the deployment decisions.

For the first graph, we will vary the number of base stations. The results can

be seen in Figure 4.2. As expected, more base stations lead to lower service delay

for all policies. This is reasonable as adding base stations means a lower commu-

nication workload per base station which consequently lowers transmission delay.

Moreover, scenarios with few base stations often mean those base stations will

need a high transmission power level to reach isolated users, which leads to high

transmission delay due to longer propagation and poor signal for those users and

higher interference across the whole system. Conversely, more base stations mean

less isolated users. The random deployment policy has the worst performance,

as it has no way to position cloudlets in the best base stations. Our kMC-based

proposal actually chooses the best locations to deploy the cloudlets and that is

where the relevant difference in performance comes from. This difference can

be observed regardless of whether many or few base stations are in the system.
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Figure 4.3: MEC service delay variation as the number of cloudlets is increased.
c⃝ 2019 IEEE

Our proposal is also capable of efficiently using the resources in scenarios where

there are few base stations such that adding new base stations brings insignificant

improvements.

Next, we will analyze the policies as the number of servers increase. Results

are shown in Figure 4.3. An interesting behavior can be seen where adding

servers after 5 for our proposal leads to the performance becoming worse, despite

the system having more resources. Adding cloudlets improves the service by

lowering the processing workload per cloudlet, which leads to lower queue times

for the processors as there are fewer users per cloudlet. However, if you have

enough cloudlets, this wait time is so low that it becomes irrelevant. Additionally,

adding cloudlets beyond that worsens the service because servers are forced to

all have U/K users. Given this, more cloudlets mean a higher chance that a

user will be forced to connect to a server that is farther away since the closest

server is at the pre-determined limit already, i.e. adding more cloudlets after
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Figure 4.4: MEC service delay variation as the number of users is increased. c⃝
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queue time is already low does not improve processing time and in fact, makes

transmission time worse. In this scenario, there are not enough cloudlets for the

random deployment policy to experiment this behavior. The graph also shows

how, again, the random policy is worse for not selecting where to deploy the

cloudlets. The proposal is better regardless of how many cloudlets are in the

scenario.

Finally, a comparison is made while the number of users is varied. The results

are presented in Figure 4.4. As expected, more users result in worse service delay

all around. This is easily explained by how users are sharing the same resource

pool, both in communication and computation. Thus, more users mean fewer

resources per user and consequently longer service delays. This is worst in the

random policy, as there is no deployment choice to counterbalance the higher

workload. kMC can position the servers according to the user locations, which

results in a lower increase to the service delay, as seen in the graph.
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4.5 Summary

MEC is a very important technology for providing resources to users. It allows

for those resources to be used cheaply on-demand and shared among different

clients. Moreover, differently from conventional cloud computing, the latency

between users and servers is lower so even real-time applications can make use

of the cloud resources. Thus, MEC is a very important technology. Because in

MEC, servers are deployed in the edge instead of a single core place, the location

of the deployment matters and affects the resulting service quality. Despite this,

most MEC research disregards deployment and presumes a random deployment

policy.

In this chapter, we proposed a deployment policy for 6G IoT environments

that utilizes machine learning algorithms PSO and kMC. The proposal takes con-

sideration of processing, transmission, and backhaul communication to effectively

lower service delay. Our proposal has a low complexity and execution time and

can be applied to scenarios with many variables. This is a consequence of the

machine learning algorithms and it is essential for utilizing MEC with IoT and

6G that comes with massive amounts of users, servers, and requests. Moreover,

the simulations showed that the proposal is significantly better than random de-

ployment. This should prove that deployment decision is important for improving

service delay in MEC and that considering transmission, processing, and back-

haul communication are all relevant elements to consider when designing such a

solution. The service is relevantly slower if deployment is not done properly and

our proposal is capable of offering a faster service by intelligently selecting where

to put each cloudlet according to user requirements.
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Cloudlet Activation Method in

Dynamic MEC

5.1 Introduction

The main obstacle to the low Service Delay requirement is dynamic scenarios

where MECmust work. For example, MEC is very attractive in situations where a

high number of clients are expected, such as sports events or academic conferences

[131]. With MEC, all attendees of such events would have access to powerful

cloud computing resources on their mobile devices. However, this type of benefit

is accompanied by a need for scalability, because if the cloudlets are overloaded

with requests, Service Delay and Quality of Service will break their required

thresholds and service transparency will be lifted. Furthermore, not only does the

total number of users have to be considered, it is also necessary to consider user

movement and congregation. There may be moments where the majority of users

will move near a fraction of the cloudlets and consequently connect to them, thus

overworking those servers while the remaining cloudlets have idle resources [132].

A straightforward solution to both absolute and local scalability is to activate
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additional cloudlets. However, there are clear problems with this in the form

of the sheer economic cost that it entails and the time necessary to identify the

problem and activate a new physical server. Thus, we conclude that the best

option would be to reconfigure the existing cloudlets and balance the workload

between them so that Service Delay can be controlled and minimized (or at the

very least kept under the desired threshold) without the need of any additional

server activation. Indeed, this solution is preferred in the literature [21].

Therefore, in this chapter, we will utilize the analytical model of the Service

Delay in MEC from Chapter 2 (which encompasses Transmission Delay, Pro-

cessing Delay, and Backhaul Delay) together with Particle Swarm Optimization

(PSO, an Artificial Intelligence algorithm [109]) for encountering the configura-

tion that best controls all three elements of Service Delay, manages to minimize

latency, and, most importantly, maximize scalability in the form of how many

users the system can handle without violating Service Delay/Quality of Service

restrictions. To realize and enable the configuration calculated by our PSO al-

gorithm, we utilize Transmission Power Control [121, 122] and Virtual Machine

Migration [64,112,113] to manage the workload and parameters of the cloudlets.

The contents of this chapter refer to the following paper, which was written

based on our own research.

• T. G. Rodrigues, K. Suto, H. Nishiyama, N. Kato and K. Temma, ”Cloudlets

Activation Scheme for Scalable Mobile Edge Computing with Transmission

Power Control and Virtual Machine Migration,” in IEEE Transactions on

Computers, vol. 67, no. 9, pp. 1287-1300, September 2018. c⃝ 2011 IEEEs
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5.2 History of Improving MEC Scalability

As mentioned before, Service Delay (the time between the user producing the

task (input) and receiving the corresponding results (output)) is divided into

Transmission Delay, Processing Delay, and Backhaul Delay. Because all three

components occur in different independent mediums (i.e., the wireless medium

between the user and the connected cloudlet, inside the cloudlet that hosts the

Virtual Machine server, and the backhaul link connecting all physical cloudlets),

a simple course of action is to deal with them separately by focusing on a single

component and trying to more intelligently utilize the resources related to it.

This simultaneously lowers the respective delay and increases the respective scal-

ability (i.e., the number of users that can be serviced under a determined latency

threshold without activating new cloudlets). Indeed, this strategy of focusing on

a single component of the latency can be seen in the literature.

Because all Virtual Machine servers in the same cloudlet have to share the

same resource pool, Processing Delay tends to grow along with the number

of Virtual Machines contending for such resources (in an effect called multi-

tenancy [133]). Thus, if efforts are made to avoid cloudlets hosting more Virtual

Machine servers than necessary, it should be effective in managing Processing

Delay and improving computation scalability. As a result, balancing the amount

of Virtual Machine servers hosted by each cloudlet to intelligently use computa-

tion resources is often seen in the literature. S. Roy et al. [110] and J. Oueis et

al. [111] balanced the workload by always setting up the Virtual Machine servers

of new incoming users in the cloudlet with the least amount of Virtual Machines;

this guarantees that the difference between the amount of hosted Virtual Machine

servers among the cloudlets is always minimal. L. Gkatzikis and I. Koutsopou-

los [112], and M. Mishra et al. [113] achieve the same goal by using Virtual

Machine Migration to move Virtual Machines between cloudlets. If the migra-
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tion is done from overworked cloudlets to ones hosting few Virtual Machines,

then this would improve the efficiency of cloudlet usage by avoiding situations

where cloudlets are idle with wasted capacity. M. Jia et al. [134] offer a differ-

ent insight on Virtual Machine Migration. The authors point out that too many

migrations might be detrimental to Service Delay, even if Processing Delay is low-

ered, because of the time it takes to perform the migrations themselves and the

corresponding usage of the backhaul link (migrations often lead to users needing

to send tasks to cloudlets they are not directly connected to). S. Farrugia [116],

and X. Zhu et al. [117] propose a different approach to lowering Processing Delay.

Each task would be divided into smaller, independent sub-tasks that would be

individually assigned to the cloudlets. Such sub-task assignments take into con-

sideration the estimated completion time before a cloudlet is selected to send the

task to, therefore avoiding physical servers that are already too busy and would

take longer to finish processing.

Analogous to the approaches focusing on improving computation resources

efficiency, there are works in the literature that focus on more intelligently uti-

lizing the resources related to the communication between the user and the con-

nected cloudlet. Because such communication occurs in the wireless medium,

these approaches turn to improving metrics related to this channel, such as Sig-

nal to Interference Plus Noise Ratio (SINR), Received Signal Strength (RSS) and

throughput. Y. Li and W. Wang [118], and K. Suto et al. [119] propose to always

connect users to the cloudlet that is closest to them. In scenarios with homoge-

neous cloudlets (at least in the communication sense), this would mean that the

closest cloudlet offers the highest RSS and best communication conditions. While

their assumptions do hold for simple scenarios, it is easy to see how multiple users

connecting to the same cloudlet would create congestion that would degrade com-

munication, even if the transmission distance is minimized. L. Yang et al. [120]
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tackle this issue by not only connecting the user to the closest cloudlet, but also

by sending tasks to remote conventional cloud servers if the communication to

the former proves to be too troublesome. This is basically using the remote cloud

to increase scalability when the edge cloud is not sufficient. However, G. von

Zengen et al. [121], and T. Aota and K. Higuchi [122] propose utilizing Trans-

mission Power Control to control the individual transmission power levels of each

cloudlet in order to diminish the interference they cause between each other (cre-

ating a heterogeneous scenario). Because transmission power is tightly connected

to SINR, RSS, and channel capacity, control over it also allows for control over

most of the wireless medium parameters and Transmission Delay as a whole. M.

Peng et al. [123] propose dividing the resources of the physical layer (such as

channel bandwidth) between the users to compensate for poor communication

conditions by allocating more resources to users in worse situations. This is an

efficient way of improving fairness in Transmission Delay.

It is noteworthy that almost all methods for intelligently using cloudlet re-

sources mentioned so far only focus on either Processing Delay or Transmission

Delay; they ignore the other components of the latency. This is far from ideal

for multiple reasons [76]. Firstly, if all resources (i.e., related to all delays) are

not being efficiently utilized, then it is still possible to improve Service Delay and

increase scalability. In addition, an approach that focuses solely on Transmission

Delay would deliver poor service to an application that relies more on computa-

tion (and vice versa). This was also noted in the literature. Y. Mao, J. Zhang

and K. B. Letaief [135] utilize Transmission Power Control and task offloading

scheduling decision (that is, when and which tasks to send to the cloudlet) to

control Transmission Delay and Processing Delay, respectively, when intelligently

using the cloudlet, but their models and solutions are applicable to single-user

single-cloudlet scenarios only. S. Sardellitti et al. [136] control Processing Delay

71



Chapter 5: Cloudlet Activation Method in Dynamic MEC

by determining how many CPU resources to allocate to each user while also con-

trolling Transmission Delay. This is accompanied by selecting how many radio

resources to give to each user, but for a multiple-user single-cloudlet scenario

only. X. Chen et al. [20], Y. Yu et al. [135], and Wang et al. [79] also simultane-

ously consider Transmission Delay and Processing Delay under the same scenario

restrictions. Meanwhile, Y. Wang et al. [137], T. Q. Dinh et al. [62], and K. Sato

and T. Fujii [138] all consider the same problem (of improving computation and

communication scalability) under a single-user multiple-cloudlets scenario.

Our proposal aims at expanding the limitations of the current literature. We

will not focus solely on one element of Service Delay but will simultaneously con-

sider Transmission Delay, Processing Delay, and Backhaul Delay, because this is

the most efficient way of improving scalability for all possible application scenar-

ios [54]. Our method of achieving this is to utilize Transmission Power Control

to manage the parameters of the wireless medium and the throughput of the

communication, and to also use Virtual Machine Migration to balance the com-

putation workload between physical cloudlets and lower their Processing Delay.

Additionally, we will consider the load on the backhaul when determining which

and how many migrations to perform. Finally, our assumption is a multiple-user

multiple-cloudlet scenario, which is a scale above the scenarios considered by

currently existing approaches in the literature that have a hybrid focus on com-

putation and communication. These two points (consideration of all elements of

latency and assumption of a greater scenario) lead to a more complex problem

to be solved because of the number of extra variables introduced by both consid-

ering all types of delay and more users/cloudlets. This complexity is the main

difficulty of the problem tackled here, but we address it by analytically modeling

the delay and using a customized PSO as a heuristic algorithm.

Finally, our proposal is focused on MEC and computation offloading to cloudlets,
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Figure 5.1: Illustrative scenarios of how user mobility ((a) and (c)) and new users
((b) and (d)) can increase Service Delay and how cloudlet activation ((a) and (b))
and reconfiguration ((c) and (d)) can counteract this. c⃝ 2018 IEEE

but there are other variations of distributed computing where instead of cloudlets

the tasks are offloaded to other user equipments (as in Fog Computing [24] for

example). Theoretically, our proposal could be applied to those scenarios, but in

practice, it would need adaptations to the characteristic features of those situa-

tions. Such research is beyond the scope of this work.
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5.3 Artificial Intelligence for Activating Cloudlets

and Configuring MEC

As explained in the previous section, Service Delay can increase and violate its

threshold either because of mobility, which may cause cloudlets to be overrun with

physical associations and can cause congestion in the backhaul link, or because

of the influx of new users, which introduces new workload into the system that

the cloudlets may not be able to cope with. A straightforward solution would be

to activate a new cloudlet. MEC systems are composed of a limited number of

cloudlets, where ideally, for reducing system energy consumption, most cloudlets

are in hot-standby or completely turned off. Therefore, by activating one of

these deactivated cloudlets, we can introduce new resources to the system and

immediately reduce Service Delay. However, each active cloudlet raises energy

consumption and service cost; so, in our proposal, we opt to delay this as much

as possible by maximizing system scalability (i.e. the number of users that can

be serviced without introducing new active cloudlets). Therefore, we introduce a

Configuration Phase that occurs each time Service Delay breaks the threshold as

an alternative to cloudlet activation to lower Service Delay. In this phase, we use

Virtual Machine Migration [64, 112, 113] and Transmission Power Control [121]

to reconfigure the system to maximize scalability. Because Virtual Machine Mi-

gration controls virtual associations (by moving Virtual Machine servers between

cloudlets) and Transmission Power Control determines RSS and physical associ-

ations (changing the transmission power of the cloudlets changes which cloudlet

produces the most powerful signal for each user), these two techniques are perfect

candidates for lowering Service Delay. Only if this reconfiguration is unable to

lower Service Delay to below the limit that we activate a new cloudlet at the end

of the Configuration Phase.
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Algorithm 5 - NextViolation: estimate next time Service Delay will grow
beyond threshold H

Input: configuration g of transmission power levels of cloudlets, current time t0

1: t̂k ← t0
2: while Sdelay(t̂k) < H do
3: t̂k ← t̂k + 1
4: end while
5: return t̂k

Figure 5.1 shows examples of how Service Delay can grow beyond the thresh-

old as user mobility or new users introduce overwork and congestion. In the

figure, (1) represents the regular MEC Service Phase (with users and cloudlets

exchanging tasks and results). In (2a), user mobility causes congestion on the

right cloudlet (and the backhaul link), which is fixed by our proposed Configura-

tion Phase in (3a) by changing transmission power levels and migrating Virtual

Machines. In (2b), congestion is caused by a new user, but this is again fixed by

our Configuration Phase in (3b). Meanwhile, (3c) and (3d) show how the same

issues caused by mobility and new users can be fixed by activating the third

cloudlet. The key point of our proposal is to avoid solutions like (3c) and (3d) as

much as possible, only resorting to activating a new cloudlet if reconfigurations

like (3a) and (3b) are not enough to lower Service Delay to below limit.

The configuration that maximizes scalability is the one that gives the highest

output to our Algorithm 5; by delaying as much as possible the next violation of

the threshold, we are increasing the number of users that can be served without

a new reconfiguration/activation. Note that Service Delay is calculated in line

2 in the algorithm through Equation (2.26), with input g being utilized in this

calculation. We chose transmission power levels as the configuration because

both physical and virtual associations are reset in the Configuration Phase to

follow RSS levels, which are ultimately decided by the cloudlets transmission
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Algorithm 6 - PSO: algorithm for maximizing MEC scalability
Input: current time t0

1: for all m ∈M do initialize qm as a random |C|-tuple
2: end for
3: for all m ∈M do initialize vm as a random |C|-tuple
4: end for
5: while executed iterations < L do
6: for all m ∈M do
7: t̂k ← NextV iolation(qm, t0)
8: if t̂k > NextV iolation(hm, t0) then hm ← qm
9: end if

10: if t̂k > NextV iolation(g, t0) then g ← qm
11: end if
12: φh ← randomInt(0, 1)
13: φg ← randomInt(0, 1)
14: vm ← ϑvm + φhϱh(qm − hm) + φgϱg(qm − g)
15: qm ← qm + vm
16: end for
17: end while
18: return (g,NextV iolation(g, t0))

power levels. Input g is a tuple with |C| values. However, the problem of finding

the input that maximizes the output of Algorithm 5 has |C| decision variables,

making it too complex to be solved by conventional methods (e.g., mathematically

or through Linear Programming) for high amounts of cloudlets. Thus, because an

optimal solution is unreachable in a feasible time, we opted to utilize the Artificial

Intelligence algorithm PSO to find a near-optimal configuration.

PSO [109] is an algorithm where particles travel through the search space of

all possible solutions looking to maximize the value of a chosen fitness function;

each particle represents a possible solution to the problem. After each iteration,

the particles update their positions (and therefore their corresponding solutions)

based on their velocities, which are themselves updated at the end of iterations

based on three components: the previous velocity, the best solution found so far
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Algorithm 7 - ProposedCloudletsActivationScheme: using PSO for max-
imizing scalability
1: repeat
2: t0 ← current time
3: (g, t̂k)← PSO(t0) ▷ Configuration Phase
4: if t̂k > t0 then
5: configure cloudlets following g
6: calculate new physical and virtual associations
7: while Service Delay is below threshold do
8: continue ▷ Service Phase
9: end while

10: else
11: randomly activate one inactive cloudlet
12: end if
13: until no more cloudlets left to activate

locally (by that particle), and the best solution found so far globally (by all parti-

cles). Each of these components has a corresponding weight that determines the

degree to which they can influence the velocity. The inertia component (ϑ), lo-

cal acceleration (ϱh), and global acceleration (ϱg) are the corresponding weights.

Because the velocity is influenced by the best solutions found, the particles tend

to move towards better solutions at each iteration [125]. Furthermore, the initial

location and velocity of each particle are set randomly to allow for a thorough

search of the space (another way of improving this is adding a chance of ignor-

ing local and global best solutions when updating the velocity through binary

weights ϱh and ϱg). For our problem specifically, the search space is composed of

all possible combinations of possible values of transmission power levels for the

cloudlets (thus, a |C|-dimensional space) and the fitness function is defined by

Algorithm 5. The PSO algorithm we utilize is shown in pseudo-code in Algorithm

(6), where L is the number of iterations, M is the set of particles, and qr and vr

represent their position and velocity, respectively.

In summary, we propose to utilize the PSO algorithm depicted in Algorithm
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(6) at each Configuration Phase of the Service Model to calculate a new config-

uration (i.e. transmission power levels for the cloudlets and the resulting phys-

ical/virtual associations of the users). This procedure is shown in Algorithm

7, where the Service Phase is the regular behavior of MEC, with users sending

tasks and cloudlets responding with results. Our proposed scheme only resorts

to cloudlet activation when a reconfiguration through PSO is unable to lower

Service Delay below the threshold, i.e. Algorithm (6) returns as second output

that it cannot delay Configuration Phase beyond the current time.

Because of our choice of Algorithm 5 as a fitness function, the configuration

found by the particles maximizes scalability and avoids cloudlet activation. Fur-

thermore, because line 2 in Algorithm 5 takes into account Transmission Delay,

Processing Delay, and Backhaul Delay, our proposal considers all elements of Ser-

vice Delay. Regarding scalability, it is capable of handling multiple servers and

multiple users; the algorithm efficiency worsens with number of cloudlets (which

increases the search space), but it still can be used in large scale scenarios (i.e.

a Metropolitan Area Network with tens of servers) with good performance (as

shown in the next section) through PSO. These two points are in contrast to the

conventional methods from the literature presented in the previous section.

5.4 Proposal Evaluation

In this section, we will evaluate the performance of our proposal. Such evalua-

tion will be done both to optimize the PSO algorithm to our MEC scalability

maximization problem and also to compare the proposal with other conventional

methods to demonstrate how considering Transmission Delay, Processing Delay

and Backhaul Delay simultaneously is significantly better and can handle a higher

variety of applications when compared to focusing solely on one of those elements.
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Table 5.1: Simulation Parameters

Application A B C

Average packet size 1.5MB 1MB 2MB

Average task service time 550ms 600ms 500ms

User initial density 1000 users/km2

User arrival rate 1 user/(km2*s)

Total area size 0.01 km2

User maximum speed 3 m/s

User average speed 1.5 m/s

User speed variance 0.25 m/s

Bandwidth (up and downlink) 1GHz

User transmission power 27dBm

User device total gain 8.35dBi

Cloudlet total gain 24.5dBi

Noise spectral density 4*10−19W/Hz

Short distance path loss coefficient 2

Long distance path loss coefficient 4

Path loss distance breakpoint 100m

Wireless propagation speed 3*108m/s

Processors per cloudlet 16

Single user task arrival rate 6 tasks/min

Round robin timeslot 85ms

Service Delay threshold 2.5s

PSO particles 5

PSO iterations 20

5.4.1 Assumed Scenario

Table 1 contains the parameters utilized in all simulations results shown in this

section. The results are obtained from stochastic simulations based on the ana-
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lytical model presented in Section 3. We assume that users constantly enter the

system following a Poisson distribution of inter-arrival times; additionally, once

a user has joined the system, we assume it will never leave, in an extreme case

increasing workload scenario [139]. These two assumptions guarantee that our

system will have an increasing workload with time that must be handled by the

cloudlets to keep Service Delay below the acceptable threshold. If such restric-

tion is violated, then the system will first attempt to reconfigure itself to lower

Service Delay. The meaning of reconfiguration varies depending on the method

being used, but in the case of our proposal it means utilizing Algorithm 7. If the

Service Delay levels are above what is allowed even after reconfiguration, then

the system will activate a new cloudlet server. For all simulations, there is a max-

imum number of cloudlet servers. We evaluate the proposal based on how many

users can be served with the limited number of cloudlets while simultaneously

respecting the Service Delay threshold. Obviously, serving more users with this

guaranteed latency (service quality) means a higher scalability.

The results shown in this section come from an average of 50 different random

runs for added confidence, where each run has a different random seed for its

distributions and different random locations for the cloudlets. Application A

denotes an average application, Application B requires more processing (i.e. the

tasks have a higher average of needed service time) and Application C requires

more transmission (i.e. the tasks send bigger packets both in input and output).

User mobility follows a normal distribution while the user arrival location follows

a uniform distribution.

5.4.2 Hyper-Parameter Analysis

We begin by analyzing the behavior of the fitness function with different config-

urations of PSO hyper-parameters. This is important because PSO is a general

80



Chapter 5: Cloudlet Activation Method in Dynamic MEC

100

105

110

115

120

125

130

135

140

0 2 4 6 8 10

M
ax

im
u
m

N
u
m
b
er

of
U
se
rs

Inertia Constant (ϑ)

Figure 5.2: Maximum number of users served by our proposal with five cloudlets
under different values for PSO local inertia (ϑ). c⃝ 2018 IEEE

algorithm that we can tune to our respective problem. By doing this, we can

find better results in fewer iterations and with fewer particles. This analysis

will be done through variation of the value of the parameters and evaluation of

how many users can be served while respecting the threshold. For this section, we

work with five cloudlets initially activated and no further activations are possible,

which gives us the achievable scalability of our proposal with five servers under

different PSO hyper-parameter configurations. By analyzing which values give

us better results, we can profile our fitness function, which would not be possible

through conventional, pure mathematical methods due to its complexity.

The first parameter is the local inertia. It determines the weight of the pre-

vious iteration’s velocity when updating the speed of the particle. Because the

velocity is set as random initially, higher values of local inertia lead to a more
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Figure 5.3: Maximum number of users served by our proposal with five cloudlets
under different values for PSO local acceleration (ϱh). c⃝ 2018 IEEE

random search in the domain of possible solutions. However, as Figure 5.2 shows,

for our MEC scalability problem, low values of inertia are preferred (i.e. achieve

higher scalability and serve more users). This points to an inclination towards

exploitation of already found best results over random exploration of the search

space [140]. The lower the inertia, the less relevant the random initial speed,

leading the particles to rely more on the local best and the global best-found

solutions. Since a thorough random search of the space is not necessary, we can

deduce that there are not many maximum points in our function, so that it is bet-

ter to exploit the area near the maximum points already discovered than to waste

time sweeping through the search space looking for a better maximum point.

Then we analyze the results achieved with different values of local acceleration

and global acceleration. These parameters decide the weight given to the best
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Figure 5.4: Maximum number of users served by our proposal with five cloudlets
under different values for PSO global acceleration (ϱg). c⃝ 2018 IEEE

solution found by that particular particle and all particles respectively. The

results are shown in Figure 5.3 and Figure 5.4. Both graphs show a preference

for high values, which corroborates our previous conclusion that exploitation is

better than exploration for our MEC scalability function: higher acceleration

values mean a higher focus on already found maximum points over a random

search [141]. We can also deduce from this preference for exploitation that our

maximum points and optimum point are not only few in number (which lowers

the chance of the particle getting stuck in a local and not global maximum) but

also surrounded by a wide area of constant increase that should be exploited more

to find the actual maximum point.

In summary, from these insights, we can conclude that exploitation is better

than exploration, there are few maximum points, and they are surrounded by
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wide areas of constant increase. Therefore, for the rest of the section, we use 0.7

for local inertia (which is low enough without completely ignoring exploration)

and 8 for both global and local acceleration.

5.4.3 Application Profile Analysis

Additionally, we compare the performance of our proposal with other conven-

tional methods from the literature. First we have the No Migration method [118],

where users always stay virtually associated to the same cloudlet (the one that

offered the highest RSS at the previous Configuration Phase). With no migration

or reconfiguration being executed, this is the simplest method and it is used as

a benchmark (what can be achieved by doing nothing). The second method is

the Minimum Processing method [112], where Virutal Machine servers are mi-

grated at all Configuration Phases and everytime a user joins the service. This

guarantees that the computation workload is perfectly balanced. In addition, it

minimizes Processing Delay by using the processor resources of all cloudlets as

efficiently as possible, but it also ignores Backhaul Delay (migrations are done

with no regards to the cost of transmission between cloudlets) and Transmission

Delay (cloudlets may perfectly share virtual associations, but no control is done

on physical associations). Finally, we have the Minimum Flow method [134],

where at each Configuration Phase, the cloudlets perform just enough migra-

tions between themselves so that the decrease in Processing Delay is enough to

keep the average Service Delay under the determined threshold. Because the

minimum number of necessary migrations is performed, this minimizes the load

in the backhaul link, but it still does nothing to control physical association and

Transmission Delay. In addition, the Minimum Flow only activates a new cloudlet

if the computing workload is already perfectly balanced, but latency is still too

high. The performance evaluation of these three conventional methods and our
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Figure 5.5: Probability that latency is below the threshold based on the number
of users using Application A (no relevant difference between communication or
computation burdens). c⃝ 2018 IEEE

proposal is done in scenarios that begin with one active cloudlet and allow up

to ten active cloudlets. Additionally, we analyze the results with three different

types of applications: A (which has no higher leaning towards either transmission

or processing), B (which needs more processing in the form of higher time needed

to execute the tasks) and C (which has bigger packets to be sent both in downlink

and uplink, therefore requiring more attention to transmission).

Figure 5.5 contains the performance of all methods in terms of what the

probability is that the latency is under the threshold with 10 or fewer cloudlets

activated, while utilizing Application A as a service. We can see here how the

Minimum Processing method, despite minimizing Processing Delay, behaves al-

most as bad as the No Migration method because of the high load it introduces
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Figure 5.6: Probability that latency is below the threshold given the number of
users using Application B (heavier burden on processing). c⃝ 2018 IEEE

to the backhaul link with its many migrations. Meanwhile, the Minimum Flow

method is capable of outperforming both due to its consideration of both Back-

haul Delay and Processing Delay; however, the proposed method is the best at

staying below the latency limit because it is the only method that considers com-

munication and control physical association with Transmission Power Control.

Because our method focuses on using as few cloudlets as possible, it aims at

delaying reconfigurations and cloudlet activations, which ends up increasing the

number of users served per cloudlet.

As seen in Figure 5.6, because of the higher burden on computation from

Application B, the Minimum Processing method has better relative performance

when compared to the Minimum Flow method because the former minimizes

Processing Delay. However, it is still worse than the latter because it ignores
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Figure 5.7: Probability that latency is below the threshold given the number of
users using Application C (heavier burden on transmission). c⃝ 2018 IEEE

Backhaul Delay. Analogously, both methods are still outperformed by our pro-

posal because we are the only one to consider Transmission Delay, which affords

us greater control over latency and to serve more users, even in scenarios where

computation is more relevant than communication. In fact, Transmission Delay

is very important even in this kind of scenario. Which is why the proposal is

capable of serving many more users, as evidenced by how early in comparison the

curves for the conventional methods end.

Finally, we measure the performance under Application C, which requires the

users and the cloudlets to send bigger packets, which demands more transmission

time. This higher importance of the Transmission Delay and Backhaul Delay

means the Minimum Processing method has its worse performance yet when

compared to the Minimum Flow method, as evidenced by Figure 5.7. This can
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be explained by the high burden that the former introduces in the link between

cloudlets, whose effect is accentuated by the bigger packets being sent in such

link. Nonetheless, the proposal is still the one to offer the best chances of having

the threshold respected because it is the only one to truly consider Transmission

Delay.

The advantages brought by our proposal are more clearly seen in Figure 5.8,

where it can be noted how we are able to serve up to three times more users when

compared with the conventional methods. We can also see here how the difference

between Minimum Processing and Minimum Flow is the smallest when compu-

tation is more relevant (Application B) and the biggest when it is less relevant

(Application C). In addition, it is obvious how all methods behave worse when

communication is more significant, which points to higher difficulties overall with
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dealing with Transmission Delay (even for our proposal). This only strenghtens

our point that considering Transmission Delay is essential both when lowering

Service Delay and when maximizing scalability.

5.5 Summary

MEC is a method for delivering powerful cloud resources to users on the edge of

the network. For this kind of service, the delay must be kept under a threshold to

maintain a high-quality experience and transparency. In high workload scenarios,

this can be achieved by activating new cloudlets or reconfiguring and optimizing

the already active ones, where the former is preferred due to its economy and

scalability.

In this chapter, we presented a method for reconfiguring cloudlets with the

goal of maximum scalability. Our proposal is the first to consider all aspects of

the Service Delay in MEC (namely Processing Delay, Transmission Delay and

Backhaul Delay) in a multi-user multi-cloudlet scenario. We have tuned PSO for

our proposal by a hyper-parameter study that proved that, in the MEC scalability

problem, exploitation is better than exploration on the search space of possible

solutions when looking for the optimal configuration. Additionally, we compared

our proposal with other methods that consider only a fraction of the elements

of Service Delay and proved how we can serve more users given a latency limit

by considering all elements simultaneously. Furthermore, the same high-quality

results can be achieved under different application profiles, proving how our pro-

posal is capable of providing a scalable service in scenarios with different types

of requirements.
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Conclusion

Mobile Edge Computing (MEC) is an essential technology for future networks.

Its main use and attractiveness is how it provides powerful and important cloud

resources to users from the edge of the network. Those resources allow mobile

devices to execute demanding applications in spite of their local limitations. Ad-

ditionally, because this is a cloud model, the resources are offered in demand,

when they are needed and as much as they are needed. Since the use of the cloud

server is shared between users, it is a cheap service model that is accessible to

users in general. Also of note is how MEC has the servers in the edge of the

network. This translates to low latencies that cannot be offered by conventional

cloud computing systems where the servers are far away from the users. Conse-

quently, MEC can be utilized even with real-time applications and services that

demand low delay. To make this possible, in MEC there are many servers so that

no user is too far from a server and low latency is always possible. To counterbal-

ance this economic cost, the servers in MEC are less powerful than conventional

cloud servers, earning their moniker of cloudlets. Because of all these advantages,

MEC is expected to be one of the supporting technologies in Internet of Things

(IoT) and 5G/6G networks. This comes with major difficulties however. First
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of all, MEC has the aforementioned high number of servers and also a very high

number of user devices and base stations because of its use in IoT and 5G/6G.

The problem is that all this elements make the MEC models too complex and

with too many variables. Thus, conventional, heuristic algorithms/protocols are

not applicable to solve and configure MEC as they would too long to execute.

Furthermore, MEC is utilized in the edge of the network with wireless devices

and environments. Consequently, it is subject to a highly dynamic scenario and

thus its protocols must be executed quickly and multiple times during the lifetime

of the service. Because of these complications, we envision that Machine Learn-

ing solutions are the best method for designing protocols for MEC. Under this

paradigm, the algorithms look for the best solutions by analyzing the patterns

of the problem and exploring different solutions to learn what works for each

problem. Machine Learning allows us to find near optimal configurations at very

low complexity and execution time. This is possible even in situations with too

many variables and data. With this in mind, in this thesis we provide different

protocols to configure MEC. Each protocol utilizes Machine Learning elements

to solve important MEC problems.

In Chapter 2, we presented an in-depth analysis of MEC based on existing

literature. From this analysis, we surmised a basic service model where users

generate tasks that are taken to cloudlets for execution through a system of

wireless connections and wired backhaul links. Then, the cloudlets send the

back the results of such tasks to the users. Also of note is how each user has a

corresponding Virtual Machine server located in one of the cloudles of the system.

This Virtual Machine server is useful for compartmentalizing resources and more

easily keeping data related to the corresponding user. From the literature we

also note how two metrics are very important in MEC: service delay and user

capacity. Service delay is the time between the generation of a task and the
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arrival of its results. Low delay is essential because it satisfies the real-time

applications, allows users to leave the system quicker, and releases resources to

be used with the other users. Thus, it is important to configure MEC to finish

the tasks as fast as possible. User capacity is how many users can be connected to

each cloudlet while still respecting the requirements of each user and the resource

limitations of the servers. HIgh user capacity is important because more users

means a higher profit to service providers which consequently results in lower

costs for users. Obviously, this should be done without compromising quality of

service. Based on these findings, we provide a mathematical model for estimating

the service delay and user capacity of a MEC system given its specifications. The

model is prepared to take into account user mobility and also processing delay,

transmission delay and backhaul. Thus, we can it realistically represents MEC

scenarios and it is very useful for designing solutions.

In Chapter 3, we provide a method to allocate MEC resources to users in

order to minimize service delay. Resource allocation is done by deciding which

base station and which cloudlet each user will connect to. This allows us to bal-

ance the workload between base stations and cloudlets and guarantee that their

resources are efficiently used and never idle. To decide these connections, we indi-

vidually decide the transmission power level of each MEC, thus controlling which

base station provides the highest signal to each user. Additionally, we migrate

Virtual Machine servers between cloudlets to decide which users are connected

to each one. To decide which transmission power level to set and how to mi-

grate the servers, we utilize a Machine Learning algorithm called Particle Swarm

Optimization. The algorithm efficiently explores configurations and exploits the

solutions with better performance. Thus, we propose a protocol that uses Particle

Swarm Optimization to find a configuration with minimum service delay. Our

proposal using this algorithm is shown to find near-optimal solutions at a small
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fraction of the time taken by conventional solutions to execute. Moreover, the

proposal is compared against other conventional methods and it provides lower

latency. This result holds even if different application profiles. With this, we

prove how Machine Learning is efficient for MEC and also that considering trans-

mission delay and backhaul delay is essential for lowering service delay (compared

to conventional methods that only optimize processing delay).

In Chapter 4, we propose a solution for deciding where to locate the cloudlets

in a MEC system. Contrary to conventional cloud systems, where the servers are

also put together in a single location, the cloudets in MEC are spread around the

edge of the network. The location of the cloudlets can significantly impact the

overall service delay of the system. In our proposal, we presume that the cloudlets

must be co-located with base stations, to minimize the backhaul delay between

base stations and cloudlets. Thus, we designed a system to decide which base

stations should receive cloudlets. We realize this by utilizing k-Means Clustering,

which is a Machine Learning algorithm. k-Means Clustering is able to cluster

elements efficiently which trying to optimize an objective function. This is done

by exploring different random locations of cluster centers, clustering users to

closest centers and adjusting the position of these centers based on the features

of the elements associated to it. This cycle is repeated as the algorithm looks for

the best solution. Our proposal thus uses k-Means Clustering to cluster users and

then deploys one cloudlet in the center of each cluster of user. Then, it utilizes

the protocol from Chapter 3 to allocate resources. This results in a significantly

lower delay when compared to random cloudlet deployment, which is the standard

method found in the literature. This result stands even with different amounts

of base stations, users and cloudlets.

In Chapter 5, we presume a system where cloudlets are already intelligently

deployed among base stations. Then, we proposal a protocol that decided which
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cloudlets should be turned on and which should be left turned off. This is im-

portant because turning on all cloudlets may not be necessary depending on how

many users are connected. Having unnecessary cloudlets turned on will increase

the operational expenses of the system, thus reducing profits and increasing the

price of the service. Obviously, our protocol is designed to decide which cloudlet to

be turned on without compromising in terms of quality of service. Thus, the pro-

tocol must keep enough cloudlets working such that the service delay requirements

of the users are respected. We once more use Particle Swarm Optimization as a

Machine Learning solution, thus guaranteeing that we find near-optimal configu-

rations with a low complexity. Our proposal is capable of deciding which cloudlets

to turn on despite users joining the system constantly, moving inside the area and

connecting to different base stations/cloudlets. Our proposal, when compared to

conventional solutions from the literature, is capable of service significantly more

users per cloudlet while respecting the service requirements. Depending on the

application profile, our proposal can serve more than twice as many users.

Finally, in Chapter 6, we offer concluding remarks to this thesis. The most

important results of this research are a mathematical model to properly represent

MEC in a realistic way, including the whole service stack and service delay and

the protocols to configure MEC. These protocols are all built based on Machine

Learning and consequently are capable of handling very high amounts of users,

base stations and cloudlets while still executing quickly. From the performance

of our protocols, it is clear that our solutions are relevantly better than what

it already existis in the literature. Additionally, Machine Learning is possibly

the only method to handle the high amount of users/base stations/cloudlets that

should exist in the future networks. We expect that this type of solutions will be

the standard for network design in the future.
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Pedro Rodrigues, as well as my mother-in-law Kuniko Koketsu, my brother-in-

law Masuhiro Koketsu and my sister-in-law Masayo Yamazaki. Ever single one of

these have offered me a home and a place to relax, both physically and mentally,

and thus have been an emotional fortress during these years.

I am deeply grateful to my academic advisor, Prof. Nei Kato, for giving me

this opportunity. I would not even be in this country if it was not for him, and

his guidance during this research is what made it possible for me to produce.

Learning under him was an incredibly period in my life.

I would like to express my gratitude to Prof. Takuo Suganuma, Prof. Hiroki

Nishiyama and Prof. Yuichi Kawamoto for composing the supervisory committee

of this thesis and offering their time, attention and guidance to improve this

research. Through their advices, I have greatly improved the quality of my work.

I also thank Prof. Katsuya Suto and Shikhar Verma for their discussions

regarding my research. Their support helped keep me in the right track and

their feedback enriched my research immensely. I am also thankful to Motoko

Shiraishi, Kaoru Chiba, Prof. Zubair Md. Fadlullah and Takako Kase for offering

support in many opportunities during my Doctor’s Course.

I gratefully acknowledge my friends for their support and companionship dur-

ing these difficult years. I want to mention João Paulo Apolinário Passos, Rafael

Viana Ribeiro, Athos Silva, Cassiano Cerqueira, Emanuel Abreu, Iure Rebouças,

Lucas Rodrigues, Paula Costa do Valle, and Warley Franciso Ribeiro. They were

always there to listen to me, no matter how stressed or tired I was. I would not

be where I am without them and I will always be thankful for their friendship.

Acknowledgments are also given to the Ministry of Education, Culture, Sports,

Science and Technology of Japan and the Japan Society for the Promotion of

96



Acknowledgments

Science (JSPS). Their financial support is what allowed me to do the research

shown here and greatly diminished my worries and allowed me to focus on my

work as a researched.

Finally, I want to thank my wife and partner, the love of my life, Ami Koketsu,

for being there for me all this time. Not a single step of this project would have

been possible without her. Her love, care, patience and attention are what drive

me forward and keep me up in the best and worst days. I will strive for the rest

of my life to repay all that she has given me and it will not be enough. I love

you, Ami.

And, as always, I thank God All Mighty for all the opportunities and results

in my whole life. Thank you for taking me where I am today and allowing me to

do all these things.

97



　



Bibliography

99



Bibliography

[1] R. Buyya, C. S. Yeo, and S. Venugopal,“Market-Oriented Cloud Com-

puting: Vision, Hype, and Reality for Delivering IT Services as Computing

Utilities,”in Proceedings of the 2008 10th IEEE International Conference

on High Performance Computing and Communications, September 2008,

pp. 5-13.

[2] Q. Ding, B. Tang, P. Manden, and J. Ren, “ A Learning-Based Cost

Management System for Cloud Computing,” in Proceedings of the 2018

IEEE 8th Annual Computing and Communication Workshop and Confer-

ence (CCWC), January 2018, pp. 362-367.

[3] L. Columbus. (2017, October) Cloud Computing Market Projected

To Reach $411B By 2020. Accessed: 2018-03-01. [Online]. Available:

https://www.forbes.com/sites/louiscolumbus/2017/10/18/cloudcomputing-

market-projected-to-reach-411b-by-2020/#370bda7278f2

[4] Google Cloud Platform: Google Cloud Computing, Hosting Services and

API. Accessed: 2018-03-01. [Online]. Available: https://cloud.google.com/

[5] Amazon Web Services (AWS) - Cloud Computing Services. Accessed: 2018-

03-01. [Online]. Available: https://aws.amazon.com/

[6] Microsoft Azure Cloud Computing Platform and Services. Accessed: 2018-

03-01. [Online]. Available: https://azure.microsoft.com/

[7] K. Kumar and Y. H. Lu,“ Cloud Computing for Mobile Users: Can Of-

floading Computation Save Energy?,”Computer, vol. 43, no. 4, pp. 51-56,

April 2010.

100



Bibliography

[8] S. Al-Janabi, I. Al-Shourbaji, M. Shojafar, and M. Abdelhag,“Mobile

Cloud Computing: Challenges and Future Research Directions,” in Pro-

ceedings of the 2017 10th International Conference on Developments in

eSystems Engineering (DeSE), June 2017, pp. 62-67.

[9] M. Satyanarayanan,“Fundamental Challenges in Mobile Computing,”in

Proceedings of the 1996 15th Annual ACM Symposium on Principles of

Distributed Computing, May 1996, pp. 1-7.

[10] M. Lopez-Nores, Y. Blanco-Fernandez, J. J. Pazos-Arias, A. Gil-Solla, and

M. Ramos-Cabrer,“Augmented Reality, Smart Codes and Cloud Comput-

ing for Personalized Interactive Advertising on Billboards,”in Proceedings

of the 2015 10th International Workshop on Semantic and Social Media

Adaptation and Personalization (SMAP), November 2015, pp. 1-6.

[11] A. A. Ateya, A. Vybornova, R. Kirichek, and A. Koucheryavy,“Multilevel

Cloud Based Tactile Internet System,”in Proceedings of the 2017 19th In-

ternational Conference on Advanced Communication Technology (ICACT),

February 2017, pp. 105-110.

[12] G. Premsankar, M. D. Francesco, and T. Taleb,“Edge Computing for the

Internet of Things: A Case Study,”IEEE Internet of Things Journal, vol.

5, no. 2, pp. 1275-1284, April 2018.

[13] F. Wang, J. Xu, X. Wang, and S. Cui,“ Joint Offloading and Computing

Optimization in Wireless Powered Mobile-Edge Computing Systems,” in

Proceedings of the 2017 IEEE International Conference on Communications

(ICC), May 2017, pp. 1-6.

[14] R. Saadoon, R. Sakat, and M. Abbod,“ Small Cell Deployment for Data

Only Transmission Assisted by Mobile Edge Computing Functionality,”in

Proceedings of the 2017 6th International Conference on Future Generation

Communication Technologies (FGCT), August 2017, pp. 1-6.

[15] A. A. Laghari, H. He, M. Shafiq, and A. Khan,“Assessing Effect of Cloud

Distance on End User’s Quality of Experience (QoE),”in Proceedings of

101



Bibliography

the 2016 2nd IEEE International Conference on Computer and Communi-

cations (ICCC), October 2016, pp. 500-505.

[16] K. Fogarty. (2013, March) In the Cloud, Distance Matters for

Compute Efficiency. Accessed: 2018-03-02. [Online]. Available:

https://www.networkcomputing.com/data-centers/cloud-distancematters-

compute-efficiency/1889266701

[17] K. Bierzynski, A. Escobar, and M. Eberl,“ Cloud, Fog and Edge: Co-

operation for the Future?” in Proceedings of the 2017 2nd International

Conference on Fog and Mobile Edge Computing (FMEC), May 2017, pp.

62-67.

[18] H. Huang, Y. Cai, and H. Yu,“Distributed-Neuron-Network Based Machine

Learning on Smart-Gateway Network Towards Real-Time Indoor Data An-

alytics,” in Proceedings of the 2016 Design, Automation Test in Europe

Conference Exhibition (DATE), March 2016, pp. 720-725.

[19] L. Wang, O. Brun, and E. Gelenbe,“ Adaptive Workload Distribution for

Local and Remote Clouds,”in Proceedings of the 2016 IEEE International

Conference on Systems, Man, and Cybernetics (SMC), October 2016, pp.

3984-3988.

[20] X. Chen, L. Jiao, W. Li, and X. Fu,“ Efficient Multi-User Computation

Offloading for Mobile-Edge Cloud Computing,”IEEE/ACM Transactions

on Networking, vol. 24, no. 5, pp. 2795-2808, October 2016.

[21] T. G. Rodrigues, K. Suto, H. Nishiyama, and N. Kato,“ A PSO Model

with VM Migration and Transmission Power Control for Low Service Delay

in the Multiple Cloudlets ECC Scenario,”in Proceedings of the 2017 IEEE

International Conference on Communications (ICC), May 2017, pp. 1-6.

[22] M. Aazam and E. N. Huh,“ Fog Computing and Smart Gateway Based

Communication for Cloud of Things,”in Proceedings of the 2014 Interna-

tional Conference on Future Internet of Things and Cloud, August 2014,

pp. 464-470.

102



Bibliography

[23] S. Lavanya, N. M. S. Kumar, S. Thilagam, and S. Sinduja,“ Fog Com-

puting Based Radio Access Network in 5G Wireless Communications,”in

Proceedings of the 2017 International Conference on Wireless Communi-

cations, Signal Processing and Networking (WiSPNET), March 2017, pp.

559-563.

[24]“ IEEE Standard for Adoption of OpenFog Reference Architecture for Fog

Computing,”IEEE Standard 1934-2018, pp. 1-176, August 2018.

[25] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,

“ On Multi-Access Edge Computing: A Survey of the Emerging 5G Net-

work Edge Cloud Architecture and Orchestration,”IEEE Communications

Surveys Tutorials, vol. 19, no. 3, pp. 1657-1681, May 2017.

[26] ETSI. (2019) Multi-access Edge Computing (MEC). Accessed: 2019-05-15.

[Online]. Available: https://www.etsi.org/ technologies/multi-access-edge-

computing

[27] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies,“ The Case for

VM-Based Cloudlets in Mobile Computing,”IEEE Pervasive Computing,

vol. 8, no. 4, pp. 14-23, October 2009.

[28] Z. Zhang and W. Hao,“Development of a New Cloudlet Content Caching

Algorithm Based on Web Mining,”in Proceedings of the 2018 IEEE 8th An-

nual Computing and Communication Workshop and Conference (CCWC),

January 2018, pp. 329-335.

[29] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash,

“ Internet of Things: A Survey on Enabling Technologies, Protocols, and

Applications,”IEEE Communications Surveys Tutorials, vol. 17, no. 4, pp.

2347-2376, June 2015.

[30] J. Pan and J. McElhannon,“Future Edge Cloud and Edge Computing for

Internet of Things Applications,”IEEE Internet of Things Journal, vol. 5,

no. 1, pp. 439-449, February 2018.

103



Bibliography

[31] V. Balasubramanian, N. Kouvelas, K. Chandra, R. V. Prasad, A. G. Voyi-

atzis, and W. Liu,“ A Unified Architecture for Integrating Energy Har-

vesting IoT Devices with the Mobile Edge Cloud,” in Proceedings of the

2018 IEEE 4th World Forum on Internet of Things (WF-IoT), February

2018, pp. 13-18.

[32] 5G: The Internet for Everyone and Every-

thing. Accessed: 2018-03-02. [Online]. Available:

http://www.ni.com/pdf/company/en/Trend Watch 5G.pdf

[33] Internet of Things Forecast. Accessed: 2018-03-02. [Online]. Available:

https://www.ericsson.com/en/mobility-report/internet-of-thingsforecast

[34] E. Renart, D. Balouek-Thomert, X. Hu, J. Gong, and M. Parashar,“

Online Decision-Making Using Edge Resources for Content-Driven Stream

Processing,”in Proceedings of the 2017 IEEE 13th International Conference

on e-Science (e-Science), October 2017, pp. 384-392.

[35] K. Intharawijitr, K. Iida, H. Koga, and K. Yamaoka,“ Practical Enhance-

ment and Evaluation of a Low-Latency Network Model Using Mobile Edge

Computing,”in Proceedings of the 2017 IEEE 41st Annual Computer Soft-

ware and Applications Conference (COMPSAC), July 2017, pp. 567-574.

[36] B. Ahlgren, M. Hidell, and E. C. Ngai,“Internet of Things for Smart Cities:

Interoperability and Open Data,” IEEE Internet Computing, vol. 20, no.

6, pp. 52-56, November 2016.

[37] U. S. Shanthamallu, A. Spanias, C. Tepedelenlioglu, and M. Stanley,“

A Brief Survey of Machine Learning Methods and Their Sensor and IoT

Applications,”in Proceedings of the 2017 8th International Conference on

Information, Intelligence, Systems Applications (IISA), August 2017, pp.

1-8.

[38] S. Das and M. J. Nene,“ A Survey on Types of Machine Learning Tech-

niques in Intrusion Prevention Systems,”in Proceedings of the 2017 Inter-

national Conference on Wireless Communications, Signal Processing and

Networking (WiSPNET), March 2017, pp. 2296-2299.

104



Bibliography

[39] A. L. Samuel,“ Some Studies in Machine Learning Using the Game of

Checkers,” IBM Journal of Research and Development, vol. 3, no. 3, pp.

210-229, July 1959.

[40] J. R. Koza, F. H. Bennet III, D. Andre, and M. A. Keane,“ Automated

Design of Both the Topology and Sizing of Analog Electrical Circuits Using

Genetic Programming,”in Artificial Intelligence in Design ’96, J. S. Gero

and F. Sudweeks, Eds. Springer, 1996.

[41] C. Bishop, Pattern Recognition and Machine Learning. SpringerVerlag New

York, 2006.

[42] N. M. Nasrabadi,“ Pattern Recognition and Machine Learning,”Journal

of Electronic Imaging, vol. 16, no. 4, pp. 1-2, October 2007.

[43] D. E. Goldberg and J. H. Holland,“Genetic Algorithms and Machine

Learning,”Machine Learning, vol. 3, no. 2, pp. 95-99, October 1988.

[44] O. Simeone. (2018, August) A Very Brief Introduction to Machine Learn-

ing With Applications to Communication Systems. Accessed: 2019-05-09.

[Online]. Available: https://arxiv.org/abs/1808.02342

[45] Z. M. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue, and K.

Mizutani,“State-of-the-Art Deep Learning: Evolving Machine Intelligence

Toward Tomorrow’s Intelligent Network Traffic Control Systems,”IEEE

Communications Surveys Tutorials, vol. 19, no. 4, pp. 2432-2455, November

2017.

[46] S. N. Shirazi, A. Gouglidis, A. Farshad, and D. Hutchison,“The Extended

Cloud: Review and Analysis of Mobile Edge Computing and Fog From a

Security and Resilience Perspective,” IEEE Journal on Selected Areas in

Communications, vol. 35, no. 11, pp. 2586-2595, November 2017.

[47] G. Yang, Q. Sun, A. Zhou, S. Wang, and J. Li,“ Access Point Ranking

for Cloudlet Placement in Edge Computing Environment,”in Proceedings

of the 2016 IEEE/ACM Symposium on Edge Computing (SEC), October

2016, pp. 85-86.

105



Bibliography

[48] L. Zhao, W. Sun, Y. Shi, and J. Liu,“Optimal Placement of Cloudlets for

Access Delay Minimization in SDN-Based Internet of Things Networks,”

IEEE Internet of Things Journal, vol. 5, no. 2, pp. 1334-1344, April 2018.

[49] C. Meurisch, J. Gedeon, A. Gogel, T. A. B. Nguyen, F. Kaup, F. Kohn-

haeuser, L. Baumgaertner, M. Schmittner, and M. Muehlhaeuser,“ Tem-

poral Coverage Analysis of Router-Based Cloudlets Using Human Mobility

Patterns,”in Proceedings of the 2017 IEEE Global Communications Con-

ference (GLOBECOM 2017), December 2017, pp. 1-6.

[50] S. Kachele, C. Spann, F. J. Hauck, and J. Domaschka,“ Beyond IaaS

and PaaS: An Extended Cloud Taxonomy for Computation, Storage and

Networking,” in Proceedings of the 2013 IEEE/ACM 6th International

Conference on Utility and Cloud Computing, December 2013, pp. 75-82

[51] G. Liu,“Research on Independent SaaS Platform,”in Proceedings of the

2010 2nd IEEE International Conference on Information Management and

Engineering, April 2010, pp. 110-113.

[52] R. Dua, A. R. Raja, and D. Kakadia,“Virtualization vs Containerization to

Support PaaS,”in Proceedings of the 2014 IEEE International Conference

on Cloud Engineering, March 2014, pp. 610-614.

[53] M. Kozlovszky, M. Torocsik, T. Schubert, and V. Poserne,“ IaaS Type

Cloud Infrastructure Assesment and Monitoring,” in Proceedings of the

2013 36th International Convention on Information and Communication

Technology, Electronics and Microelectronics (MIPRO), May 2013, pp. 249-

252.

[54] T. G. Rodrigues, K. Suto, H. Nishiyama, and N. Kato,“Hybrid Method for

Minimizing Service Delay in Edge Cloud Computing Through VM Migra-

tion and Transmission Power Control,”IEEE Transactions on Computers,

vol. 66, no. 5, pp. 810-819, May 2017.

[55] T. G. Rodrigues, K. Suto, H. Nishiyama, N. Kato, and K. Temma,

“ Cloudlets Activation Scheme for Scalable Mobile Edge Computing with

106



Bibliography

Transmission Power Control and Virtual Machine Migration,”IEEE Trans-

actions on Computers, vol. 67, no. 9, pp. 1287-1300, September 2018.

[56] H. Li, K. Ota, and M. Dong,“ Learning IoT in Edge: Deep Learning for

the Internet of Things with Edge Computing,”IEEE Network, vol. 32, no.

1, pp. 96-101, January 2018.

[57] Q. Fan and N. Ansari,“Workload Allocation in Hierarchical Cloudlet Net-

works,” IEEE Communications Letters, vol. 22, no. 4, pp. 820-823, April

2018.

[58] L. Zhao and J. Liu,“Optimal Placement of Virtual Machines for Supporting

Multiple Applications in Mobile Edge Networks,” IEEE Transactions on

Vehicular Technology, vol. 67, no. 7, pp. 6533-6545, July 2018.

[59] L. Chen, S. Patel, H. Shen, and Z. Zhou,“ Profiling and Understanding

Virtualization Overhead in Cloud,”in Proceedings of the 2015 44th Inter-

national Conference on Parallel Processing, September 2015, pp. 31-40.

[60] N. Tziritas, M. Koziri, A. Bachtsevani, T. Loukopoulos, G. Stamoulis, S.

U. Khan, and C. Xu,“ Data Replication and Virtual Machine Migrations

to Mitigate Network Overhead in Edge Computing Systems,”IEEE Trans-

actions on Sustainable Computing, vol. 2, no. 4, pp. 320-332, October 2017

[61] I. Farris, T. Taleb, M. Bagaa, and H. Flick,“ Optimizing Service Repli-

cation for Mobile Delay-Sensitive Applications in 5G Edge Network,” in

Proceedings of the 2017 IEEE International Conference on Communications

(ICC), May 2017, pp. 1-6.

[62] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. S. Quek,“Offloading in Mobile

Edge Computing: Task Allocation and Computational Frequency Scaling,

” IEEE Transactions on Communications, vol. 65, no. 8, pp. 3571-3584,

August 2017.

[63] C. Liu, Y. Cao, Y. Luo, G. Chen, V. Vokkarane, M. Yunsheng, S. Chen,

and P. Hou,“ A New Deep Learning-Based Food Recognition System for

Dietary Assessment on An Edge Computing Service Infrastructure,”IEEE

107



Bibliography

Transactions on Services Computing, vol. 11, no. 2, pp. 249-261, March

2018.

[64] S. Kim, X. de Foy, and A. Reznik,“ Practical Service Allocation in Mo-

bile Edge Computing Systems,” in Proceedings of the 2017 27th Interna-

tional Telecommunication Networks and Applications Conference (ITNAC),

November 2017, pp. 1-6.

[65] B. P. Rimal, D. P. Van, and M. Maier,“Mobile-Edge Computing Versus

Centralized Cloud Computing Over a Converged FiWi Access Network,”

IEEE Transactions on Network and Service Management, vol. 14, no. 3,

pp. 498-513, September 2017.

[66] A. Kapsalis, P. Kasnesis, I. S. Venieris, D. I. Kaklamani, and C. Z. Pa-

trikakis,“A Cooperative Fog Approach for Effective Workload Balancing,”

IEEE Cloud Computing, vol. 4, no. 2, pp. 36-45, March 2017.

[67] D. Bernstein,“Containers and Cloud: From LXC to Docker to Kubernetes,”

IEEE Cloud Computing, vol. 1, no. 3, pp. 81-84, September 2014.

[68] D. Zhao, M. Mohamed, and H. Ludwig,“ Locality-aware Scheduling for

Containers in Cloud Computing,”IEEE Transactions on Cloud Computing,

January 2018, available online.

[69] D. Towsley,“Mobility Models for Wireless Networks: Challenges, Pitfalls,

and Successes,” in Proceedings of the 2008 22nd Workshop on Principles

of Advanced and Distributed Simulation, June 2008, pp. 3-3.

[70] J. Plachy, Z. Becvar, and C. Strinati,“ Dynamic Resource Allocation Ex-

ploiting Mobility Prediction in Mobile Edge Computing,”in Proceedings of

the 2016 IEEE 27th Annual International Symposium on Personal, Indoor,

and Mobile Radio Communications (PIMRC), September 2016, pp. 1-6.

[71] A. Al-Shuwaili and O. Simeone,“Energy-Efficient Resource Allocation for

Mobile Edge Computing-Based Augmented Reality Applications,” IEEE

Wireless Communications Letters, vol. 6, no. 3, pp. 398-401, June 2017.

108



Bibliography

[72] A. Kiani and N. Ansari,“Toward Hierarchical Mobile Edge Computing: An

Auction-Based Profit Maximization Approach,”IEEE Internet of Things

Journal, vol. 4, no. 6, pp. 2082-2091, December 2017.

[73] X. Sun and N. Ansari,“Latency Aware Workload Offloading in the Cloudlet

Network,” IEEE Communications Letters, vol. 21, no. 7, pp. 1481-1484,

July 2017.

[74] X. Chen, W. Li, S. Lu, Z. Zhou, and X. Fu,“Efficient Resource Allocation

for On-Demand Mobile-Edge Cloud Computing,” IEEE Transactions on

Vehicular Technology, vol. 67, no. 9, pp. 8769-8780, October 2018.

[75] C. Vicentini, A. Santin, E. Viegas, and V. Abreu,“ A Machine Learn-

ing Auditing Model for Detection of Multi-Tenancy Issues Within Tenant

Domain,”in Proceedings of the 2018 18th IEEE/ACM International Sym-

posium on Cluster, Cloud and Grid Computing (CCGRID), May 2018, pp.

543-552.

[76] T. G. Rodrigues, K. Suto, H. Nishiyama, N. Kato, K. Mizutani, T. Inoue,

and O. Akashi,“ Towards a low-delay edge cloud computing through a

combined communication and computation approach,”in Proceedings of the

2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), September

2016, pp. 1-5.

[77] R. Tandon and O. Simeone,“ Harnessing Cloud and Edge Synergies: To-

ward an Information Theory of Fog Radio Access Networks,”IEEE Com-

munications Magazine, vol. 54, no. 8, pp. 44-50, August 2016.

[78] J. Zhang, W. Xia, Z. Cheng, Q. Zou, B. Huang, F. Shen, F. Yan, and

L. Shen,“ An Evolutionary Game for Joint Wireless and Cloud Resource

Allocation in Mobile Edge Computing,”in Proceedings of the 2017 9th In-

ternational Conference on Wireless Communications and Signal Processing

(WCSP), October 2017, pp. 1-6.

[79] C. Wang, F. R. Yu, C. Liang, Q. Chen, and L. Tang,“ Joint Computa-

tion Offloading and Interference Management in Wireless Cellular Networks

109



Bibliography

with Mobile Edge Computing,”IEEE Transactions on Vehicular Technol-

ogy, vol. 66, no. 8, pp. 7432-7445, August 2017.

[80] D. Ganguly, M. H. Mofrad, T. Znati, R. Melhem, and J. R. Lange,“ Har-

vesting Underutilized Resources to Improve Responsiveness and Tolerance

to Crash and Silent Faults for Data-Intensive Applications,” in Proceed-

ings of the 2017 IEEE 10th International Conference on Cloud Computing

(CLOUD), June 2017, pp. 536-543.

[81] X. Lyu, W. Ni, H. Tian, R. P. Liu, X. Wang, G. B. Giannakis, and A.

Paulraj,“ Optimal Schedule of Mobile Edge Computing for Internet of

Things Using Partial Information,” IEEE Journal on Selected Areas in

Communications, vol. 35, no. 11, pp. 2606-2615, November 2017.

[82] A. Crutcher, C. Koch, K. Coleman, J. Patman, F. Esposito, and P. Calyam,

“Hyperprofile-Based Computation Offloading for Mobile Edge Networks,”

in Proceedings of the 2017 IEEE 14th International Conference on Mobile

Ad Hoc and Sensor Systems (MASS), October 2017, pp. 525-529.

[83] K. Han, S. Li, S. Tang, H. Huang, S. Zhao, G. Fu, and Z. Zhu,“Application-

Driven End-to-End Slicing: When Wireless Network Virtualization Orches-

trates With NFV-Based Mobile Edge Computing,” IEEE Access, vol. 6,

pp. 26 567-26 577, May 2018.

[84] B. Li, K. Wang, D. Xue, and Y. Pei, “ K-Means Based Edge Server

Deployment Algorithm for Edge Computing Environments,” in Pro-

ceedings of the 2018 IEEE SmartWorld, Ubiquitous Intelligence Comput-

ing, Advanced Trusted Computing, Scalable Computing Communications,

Cloud Big Data Computing, Internet of People and Smart City Innovation

(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), October 2018,

pp. 1169-1174.

[85] Y. Li and S. Wang,“An Energy-Aware Edge Server Placement Algorithm

in Mobile Edge Computing,”in Proceedings of the 2018 IEEE International

Conference on Edge Computing (EDGE), July 2018, pp. 66-73.

110



Bibliography

[86] K. Xiao, Z. Gao, Q. Wang, and Y. Yang,“ A Heuristic Algorithm Based

on Resource Requirements Forecasting for Server Placement in Edge Com-

puting,”in Proceedings of the 2018 IEEE/ACM Symposium on Edge Com-

puting (SEC), October 2018, pp. 354-355.

[87] M. Marjanovic, A. Antonic, and I. P. Zarko,“Edge Computing Architecture

for Mobile Crowdsensing,”IEEE Access, vol. 6, pp. 10662-10674, January

2018.

[88] L. Tianze, W. Muqing, Z. Min, and L. Wenxing,“An Overhead-Optimizing

Task Scheduling Strategy for Ad-hoc Based Mobile Edge Computing,”

IEEE Access, vol. 5, pp. 5609-5622, March 2017.

[89] Y. Sun, S. Zhou, and J. Xu,“EMM: Energy-Aware Mobility Management

for Mobile Edge Computing in Ultra Dense Networks,”IEEE Journal on

Selected Areas in Communications, vol. 35, no. 11, pp. 2637-2646, November

2017.

[90] S. Wang, J. Xu, N. Zhang, and Y. Liu,“A Survey on Service Migration in

Mobile Edge Computing,” IEEE Access, vol. 6, pp. 23 511-23 528, April

2018.

[91] H. Trinh, P. Calyam, D. Chemodanov, S. Yao, Q. Lei, F. Gao, and K.

Palaniappan,“ Energy-Aware Mobile Edge Computing and Routing for

Low-Latency Visual Data Processing,”IEEE Transactions on Multimedia,

vol. 20, no. 10, pp. 2562-2577, October 2018.

[92] H. Zhang, Z. Chen, J. Wu, and K. Liu, “ FRRF: A Fuzzy Reasoning

Routing-Forwarding Algorithm Using Mobile Device Similarity in Mobile

Edge Computing-Based Opportunistic Mobile Social Networks,”IEEE Ac-

cess, vol. 7, pp. 35874-35889, March 2019.

[93] L. Gkatzikis and I. Koutsopoulos,“Migrate or Not? Exploiting Dynamic

Task Migration in Mobile Cloud Computing Systems,” IEEE Wireless

Communications, vol. 20, no. 3, pp. 24-32, June 2013.

111



Bibliography

[94] Y. J. Yu, T. C. Chiu, A. C. Pang, M. F. Chen, and J. Liu,“ Virtual

Machine Placement for Backhaul Traffic Minimization in Fog Radio Access

Networks,” in Proceedings of the 2017 IEEE International Conference on

Communications (ICC) , May 2017, pp. 1-7.

[95] C. Bettstetter, G. Resta, and P. Santi,“ The Node Distribution of The

Random Waypoint Mobility Model for Wireless Ad Hoc Networks,”IEEE

Transactions on Mobile Computing , vol. 2, no. 3, pp. 257-269, July 2003.

[96] C. E. Shannon,“ A Mathematical Theory of Communication,”The Bell

System Technical Journal, vol. 27, no. 3, pp. 379-423, 1948.

[97] K. McClaning and T. Vito, Radio Receiver Design. Noble Publishing Cor-

poration, 2000.

[98] B. Sklar,“ Rayleigh Fading Channels in Mobile Digital Communication

Systems. I. Characterization,” IEEE Communications Magazine, vol. 35,

no. 7, pp. 90-100, July 1997.

[99] G. Miao, J. Zander, K. W. Sung, and S. B. Slimane, Fundamentals of Mobile

Data Networks. Cambridge University Press, 2016.

[100] I. Adan and J. Resing, Queueing Theory. Eindhoven University of Technol-

ogy Eindhoven, 2002.

[101] E. Vanin,“ Analytical Model for Optical Wireless OFDM System with

Digital Signal Restoration,”in Proceedings of the 2012 IEEE GLOBECOM

Workshops, December 2012, pp. 1213-1218.

[102] C. A. Brackett,“Dense Wavelength Division Multiplexing Networks: Prin-

ciples and Applications,”IEEE Journal on Selected Areas in Communica-

tions, vol. 8, no. 6, pp. 948-964, August 1990.

[103] S. Rathore, P. K. Sharma, A. K. Sangaiah, and J. J. Park,“ A Hesitant

Fuzzy Based Security Approach for Fog and Mobile-Edge Computing,”

IEEE Access, vol. 6, pp. 688-701, January 2018.

112



Bibliography

[104] X. He, J. Liu, R. Jin, and H. Dai,“ Privacy-Aware Offloading in Mobile-

Edge Computing,”in Proceedings of the 2017 IEEE Global Communications

Conference (GLOBECOM 2017), December 2017, pp. 1-6.

[105] S. Matoussi, I. Fajjari, S. Costanzo, N. Aitsaadi, and R. Langar,“ A User

Centric Virtual Network Function Orchestration for Agile 5G Cloud-RAN,”

in Proceedings of the 2018 IEEE International Conference on Communica-

tions (ICC), May 2018, pp. 1-7.

[106] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief,“ A Survey on

Mobile Edge Computing: The Communication Perspective,”IEEE Com-

munications Surveys Tutorials, vol. 19, no. 4, pp. 2322-2358, November

2017.

[107] H. Wen, L. Yang, and Z. Wang,“ParGen: A Parallel Method for Partition-

ing Data Stream Applications in Mobile Edge Computing,”IEEE Access,

vol. 6, pp. 5037-5048, January 2018.

[108] D. Li, B. Dong, E. Wang, and M. Zhu,“ A Study on Flat and Hierarchi-

cal System Deployment for Edge Computing,” in Proceedings of the 2019

IEEE 9th Annual Computing and Communication Workshop and Confer-

ence (CCWC), January 2019, pp. 163-169.

[109] J. Kennedy,“Particle Swarm Optimization,”in Encyclopedia of Machine

Learning. Springer, 2011, pp. 760-766.

[110] S. Roy, R. Bose, and D. Sarddar,“ Fuzzy Based Dynamic Load Balancing

Scheme for Efficient Edge Server Selection in Cloud-Oriented Content De-

livery Network using Voronoi Diagram,” in Proceedings of the 2015 IEEE

International Advance Computing Conference (IACC), June 2015, pp. 828-

833.

[111] J. Oueis, E. C. Strinati, and S. Barbarossa,“ The Fog Balancing: Load

Distribution for Small Cell Cloud Computing,”in Proceedings of the 2015

IEEE 81st Vehicular Technology Conference (VTC Spring), May 2015, pp.

1-6.

113



Bibliography

[112] L. Gkatzikis and I. Koutsopoulos,“Migrate or Not? Exploiting Dynamic

Task Migration in Mobile Cloud Computing Systems,” IEEE Wireless

Communications, vol. 20, no. 3, pp. 24-32, June 2013.

[113] M. Mishra, A. Das, P. Kulkarni, and A. Sahoo,“Dynamic Resource Man-

agement using Virtual Machine Migrations,”IEEE Communications Mag-

azine, vol. 50, no. 9, pp. 34-40, September 2012.

[114] Y. Wang, X. Lin, and M. Pedram,“A Nested Two Stage Game-Based Op-

timization Framework in Mobile Cloud Computing System,”in Proceedings

of the 2013 IEEE 7th International Symposium onService Oriented System

Engineering (SOSE), March 2013, pp. 494-502

[115] D. S. AbdElminaam, H. M. A. Kader, M. M. Hadhoud, and S. M. El-

Sayed,“ Elastic Framework for Augmenting the Performance of Mobile

Applications using Cloud Computing,” in Proceedings of the 2013 9th In-

ternational Computer Engineering Conference (ICENCO), December 2013,

pp. 134-141.

[116] S. Farrugia,“Mobile Cloud Computing Techniques for Extending Compu-

tation and Resources in Mobile Devices,” in Proceedings of the 2016 4th

IEEE International Conference on Mobile Cloud Computing, Services, and

Engineering (MobileCloud), March 2016, pp. 1-10.

[117] X. Zhu, C. Chen, L. T. Yang, and Y. Xiang, “ ANGEL: Agent-Based

Scheduling for Real-Time Tasks in Virtualized Clouds,”IEEE Transactions

on Computers, vol. 64, no. 12, pp. 3389-3403, December 2015.

[118] Y. Li and W. Wang,“The Unheralded Power of Cloudlet Computing in the

Vicinity of Mobile Devices,”in Proceedings of the 2013 IEEE Global Com-

munications Conference (GLOBECOM), December 2013, pp. 4994-4999.

[119] K. Suto, K. Miyanabe, H. Nishiyama, N. Kato, H. Ujikawa, and K. I.

Suzuki, “ QoE-Guaranteed and Power-Efficient Network Operation for

Cloud Radio Access Network With Power Over Fiber,” IEEE Transac-

tions on Computational Social Systems, vol. 2, no. 4, pp. 127-136, December

2015.

114



Bibliography

[120] L. Yang, J. Cao, G. Liang, and X. Han,“ Cost Aware Service Placement

and Load Dispatching in Mobile Cloud Systems,” IEEE Transactions on

Computers, vol. 65, no. 5, pp. 1440-1452, May 2016.

[121] G. von Zengen, F. Bsching, W. B. Pttner, and L. Wolf,“ Transmission

Power Control for Interference Minimization in WSNs,” in Proceedings of

the 2014 International Wireless Communications and Mobile Computing

Conference (IWCMC), August 2014, pp. 74-79.

[122] T. Aota and K. Higuchi,“A Simple Downlink Transmission Power Control

Method for Worst User Throughput Maximization in Heterogeneous Net-

works,”in Proceedings of the 2013 7th International Conference on Signal

Processing and Communication Systems (ICSPCS), December 2013, pp.

1-6.

[123] M. Peng, K. Zhang, J. Jiang, J. Wang, and W. Wang,“ Energy-Efficient

Resource Assignment and Power Allocation in Heterogeneous Cloud Radio

Access Networks,” IEEE Transactions on Vehicular Technology, vol. 64,

no. 11, pp. 5275-5287, November 2015.

[124] J. Armstrong,“OFDM for Optical Communications,”Journal of Lightwave

Technology, vol. 27, no. 3, pp. 189- 204, February 2009.

[125] D. P. Tian,“ A Review of Convergence Analysis of Particle Swarm Opti-

mization,”International Journal of Grid and Distributed Computing, vol.

6, no. 6, pp. 117-128, December 2013.

[126] L. W. Barclay, Propagation of Radiowaves, 2nd Edition. Institution of En-

gineering and Technology, April 2003.

[127] L. Jiang, R. Wang, J. Yuan, H. Luo, L. Yu, and Y. Duan,“ Optimization

Design of Electromagnetic Relay Based on Improved Particle Swarm Opti-

mization Algorithm,”in Proceedings of the 2018 2nd IEEE Advanced Infor-

mation Management, Communicates, Electronic and Automation Control

Conference (IMCEC), May 2018, pp. 202-205.

115



Bibliography

[128] K. Xing, C. Hu, J. Yu, X. Cheng, and F. Zhang,“Mutual Privacy Preserving

k-Means Clustering in Social Participatory Sensing,” IEEE Transactions

on Industrial Informatics, vol. 13, no. 4, pp. 2066-2076, August 2017.

[129] S. J. Nawaz, S. K. Sharma, S. Wyne, M. N. Patwary, and M. Asaduzzaman,

“ Quantum Machine Learning for 6G Communication Networks: State-of-

the-Art and Vision for the Future,”IEEE Access, vol. 7, pp. 46 317-46 350,

April 2019.

[130] G. R. MacCartney, J. Zhang, S. Nie, and T. S. Rappaport,“ Path Loss

Models for 5G Millimeter Wave Propagation Channels in Urban Micro-

cells,”in Proceedings of the 2013 IEEE Global Communications Conference

(GLOBECOM), December 2013, pp. 3948-3953.

[131] S. Tang, X. Li, X. Huang, Y. Xiang, and L. Xu,“Achieving Simple, Secure

and Efficient Hierarchical Access Control in Cloud Computing,” IEEE

Transactions on Computers, vol. 65, no. 7, pp. 2325-2331, July 2016.

[132] D. Puthal, B. P. S. Sahoo, S. Mishra, and S. Swain,“ Cloud Computing

Features, Issues, and Challenges: A Big Picture,” in Proceedings of the

2015 International Conference on Computational Intelligence and Networks

(CINE), January 2015, pp. 116-123.

[133] J. Duan and Y. Yang,“ A Load Balancing and Multi-Tenancy Oriented

Data Center Virtualization Framework,” IEEE Transactions on Parallel

and Distributed Systems, vol. 28, no. 8, pp. 2131-2144, August 2017.

[134] M. Jia, W. Liang, Z. Xu, and M. Huang,“ Cloudlet Load Balancing in

Wireless Metropolitan Networks,”in Proceedings of the 2016 IEEE 35th In-

ternational Conference on Computer Communications (INFOCOM), April

2016, pp. 1-9.

[135] Y. Yu, J. Zhang, and K. B. Letaief,“ Joint Subcarrier and CPU Time

Allocation for Mobile Edge Computing,”in Proceedings of the 2016 IEEE

Global Communications Conference (GLOBECOM), December 2016, pp.

1-6.

116



Bibliography

[136] S. Sardellitti, G. Scutari, and S. Barbarossa,“ Joint Optimization of Ra-

dio and Computational Resources for Multicell Mobile-Edge Computing,”

IEEE Transactions on Signal and Information Processing over Networks,

vol. 1, no. 2, pp. 89-103, June 2015.

[137] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li,“Mobile-Edge Com-

puting: Partial Computation Offloading Using Dynamic Voltage Scaling,”

IEEE Transactions on Communications, vol. 64, no. 10, pp. 4268-4282,

October 2016.

[138] K. Sato and T. Fujii,“Measuring Exploration/Exploitation in Particle

Swarms using Swarm Diversity,” in Proceedings of the 2017 IEEE Wire-

less Communications and Networking Conference Workshops (WCNCW),

March 2008, pp. 1128-1134.

[139] M. Y. Nam, J. Lee, K. J. Park, L. Sha, and K. Kang,“Guaranteeing

the End-to-End Latency of an IMA System with an Increasing Workload,”

IEEE Transactions on Computers, vol. 63, no. 6, pp. 1460-1473, June 2014.

[140] M. J. Islam, X. Li, and Y. Mei,“ A Time-Varying Transfer Function for

Balancing the Exploration and Exploitation Ability of a Binary PSO,”

Applied Soft Computing, vol. 59, pp. 182-196, October 2017.

[141] O. Olorunda and A. P. Engelbrecht,“ Radio Environment Aware Compu-

tation Offloading with Multiple Mobile Edge Computing Servers,”in Pro-

ceedings of the 2008 IEEE Congress on Evolutionary Computation (IEEE

World Congress on Computational Intelligence), June 2017, pp. 1-5.

117



Publications

Journals

[1] Tiago Koketsu Rodrigues, Katsuya Suto and Nei Kato, ”Edge Cloud Server

Deployment with Transmission Power Control through Machine Learning

for 6G Internet of Things,” in IEEE Transactions on Emerging Topics in

Computing, available online.

[2] Tiago Koketsu Rodrigues, Katsuya Suto, Hiroki Nishiyama, Jiajia Liu and

Nei Kato, ”Machine Learning meets Computation and Communication Con-

trol in Evolving Edge and Cloud: Challenges and Future Perspective,” in

IEEE Communications Surveys and Tutorials, available online.

[3] Keisuke Miyanabe, Tiago Gama Rodrigues, Yunseong Lee, Hiroki Nishiyama

and Nei Kato, ”An Internet of Things Traffic-Based Power Saving Scheme

in Cloud-Radio Access Network,” in IEEE Internet of Things Journal, vol.

6, no. 2, pp. 3087-3096, April 2019.

[4] Hiroki Nishiyama, Tiago Gama Rodrigues and Jiajia Liu, ”A Probabilistic

Approach to Deploying Disaster Response Network,” in IEEE Transactions

on Vehicular Technology, vol. 67, no. 12, pp. 12086-12094, December 2018.

[5] Tiago Gama Rodrigues, Katsuya Suto, Hiroki Nishiyama, Nei Kato and

Katsuhiro Temma, ”Cloudlets Activation Scheme for Scalable Mobile Edge

Computing with Transmission Power Control and Virtual Machine Migra-

tion,” in IEEE Transactions on Computers, vol. 67, no. 9, pp. 1287-1300,

September 2018. (IEEE Transactions on Computers Sempter 2018 Spot-

118



Publications

light Paper) (2018 Best Paper Award from IEEE Transactions on Comput-

ers)

[6] Tiago Gama Rodrigues, Katsuya Suto, Hiroki Nishiyama and Nei Kato,

”Hybrid Method for Minimizing Service Delay in Edge Cloud Computing

Through VM Migration and Transmission Power Control,” in IEEE Trans-

actions on Computers, vol. 66, no. 5, pp. 810-819, May 2017.

Refereed Conference Papers

[7] Tiago Koketsu Rodrigues, Katsuya Suto and Nei Kato, ”Hyperparame-

ter Study of Machine Learning Solutions for the Edge Server Deployment

Problem,” 2019 IEEE 90th Vehicular Technology Conference (VTC-Fall),

Honolulu, HI, USA, September 2019, accepted.

[8] Tiago Gama Rodrigues, Katsuya Suto, Hiroki Nishiyama and Nei Kato,

”A PSO Model with VM Migration and Transmission Power Control for

Low Service Delay in the Multiple Cloudlets ECC Scenario,” 2017 IEEE

International Conference on Communications (ICC), Paris, France, May

2017.

[9] Katsuya Suto, Tiago Gama Rodrigues, Hiroki Nishiyama, Nei Kato, Hi-

rotaka Ujikawa and Ken-Ichi Suzuki, ”QoE-Guaranteed and Sustainable

User Position Guidance for Post-Disaster Cloud Radio Access Network,”

2016 IEEE Global Communications Conference (GLOBECOM), Washing-

ton, DC, USA, December 2016.

[10] Tiago Gama Rodrigues, Katsuya Suto, Hiroki Nishiyama, Nei Kato, Kim-

ihiro Mizutani, Takeru Inoue and Osamu Akashi, ”Towards a Low-Delay

Edge Cloud Computing through a Combined Communication and Compu-

tation Approach,” 2016 IEEE 84th Vehicular Technology Conference (VTC-

Fall), Montreal, QC, Canada, September 2016. (IEEE VTS Tokyo Chapter

2016 Young Researcher ’s Encouragement Award)

119



Publications

Non-Refereed Conference Papers

[11] Tiago Gama Rodrigues, ”A Study on Improving Service Delay and Sus-

tainability in Edge Cloud Computing,” Annual Workshop on A3 Foresight

Program, Pyeongchang, Korea, July 2016. (Best Presentation Award)

Domestic Conference Papers

[12] Tiago Gama Rodrigues, Katsuya Suto, Hiroki Nishiyama and Nei Kato,

”Cross-Acceleration Study of Particle Swarm Optimization Applied to Re-

source Minimization in Mobile Edge Computing,” 2018 IEICE General Con-

ference, Tokyo Denki University, Tokyo, Japan, March 2018.

[13] Tiago Gama Rodrigues, Katsuya Suto, Hiroki Nishiyama and Nei Kato,

” Parameter Analysis for the Application of Particle Swarm Optimization

to the Multiple Cloudlets Edge Cloud Computing Problem,” 2017 IEICE

Society Conference, Tokyo City University, Tokyo, Japan, September 2017.

Awards

[14] A3 Workshop 2016 Best Presentation Award - ”A Study on Improving

Service Delay and Sustainability in Edge Cloud Computing”

[15] IEEE VTS Tokyo Chapter 2016 Young Researcher’s Encouragement Award

- ”Towards a Low-Delay Edge Cloud Computing through a Combined Com-

munication and Computation Approach”

[16] Tohoku University Graduate School of Information Sciences Dean’s Award

2017

[17] 2017 IEEE ComSoc Sendai Chapter Student Excellent Research Award

[18] 2018 Tohoku University Graduate School of Information Sciences PhD Course

Midterm Best Presentation

120



Publications

[19] IEEE Transactions on Computers Sempter 2018 Spotlight Paper - ”Cloudlets

Activation Scheme for Scalable Mobile Edge Computing with Transmission

Power Control and Virtual Machine Migration”

[20] 2018 Best Paper Award from IEEE Transactions on Computers - ”Cloudlets

Activation Scheme for Scalable Mobile Edge Computing with Transmission

Power Control and Virtual Machine Migration”

121



　



Appendix

Copyright Permissions

In this appendix, we include the permissions that were used to write this thesis.

Please see the attached documents for a detailed description of permissions. The

used publications that were used to write this thesis are listed as follows:

• T. K. Rodrigues, K. Suto and N. Kato, ”MEdge Cloud Server Deployment

with Transmission Power Control through Machine Learning for 6G Inter-

net of Things,” in IEEE Transactions on Emerging Topics in Computing.

Available online.

• T. K. Rodrigues, K. Suto, H. Nishiyama, J. Liu and N. Kato, ”Machine

Learning meets Computation and Communication Control in Evolving Edge

and Cloud: Challenges and Future Perspective,” in IEEE Communications

Surveys & Tutorials. Available online.

• T. G. Rodrigues, K. Suto, H. Nishiyama, N. Kato and K. Temma, ”Cloudlets

Activation Scheme for Scalable Mobile Edge Computing with Transmission

Power Control and Virtual Machine Migration,” in IEEE Transactions on

Computers, vol. 67, no. 9, pp. 1287-1300, September 2018.

• T. G. Rodrigues, K. Suto, H. Nishiyama and N. Kato, ”Hybrid Method for

Minimizing Service Delay in Edge Cloud Computing Through VM Migra-

tion and Transmission Power Control,” in IEEE Transactions on Comput-

ers, vol. 66, no. 5, pp. 810-819, May 2017.

• T. G. Rodrigues, K. Suto, H. Nishiyama and N. Kato, ”A PSO Model with

VM migration and Transmission Power Control for Low Service Delay in

123



Appendix

the Multiple Cloudlets ECC Scenario,” in Proceedings of the 2017 IEEE

International Conference on Communications (ICC), Paris, pp. 1-6, May

2017.

In reference to IEEE copyrighted material which is used with permission in

this thesis, the IEEE does not endorse any of [university/educational entity’s

name goes here]’s products or services. Internal or personal use of this material is

permitted. If interested in reprinting/republishing IEEE copyrighted material for

advertising or promotional purposes or for creating new collective works for re-

sale or redistribution, please go to http://www.ieee.org/publications standards/

publications/rights/rights link.html to learn how to obtain a License from Right-

sLink.

124




