
Study on Fast Affine Motion Parameter

Estimation for Efficient Video Coding

Antoine Chauvet

February 2019

School of Engineering

Tohoku University

Abstract

The aim of this thesis is to explore new ways to make efficient encoding faster and

more practical, through two aspects. First, we look at improving the reconstructed

picture through postfiltering, but with a processing speed that is acceptable for realtime

uses. Second, we show different and so far unexplored ways of determining affine motion

parameters in Affine Motion Prediction for video encoding. The speed improvement

comes from a faster parameter estimation algorithm and affine mode skip heuristics to

avoid computing affine parameters for every block.

In the review of the literature, we show that existing methods are very slow, which

make them hard to include because of the associated cost. Postfiltering methods using

Neural Networks take several seconds to process a single frame, which makes real time

processing impossible. Most Affine Motion Prediction methods use a gradient-based

approach for estimating the parameters. It requires often many iterations to converge

towards the best value, and in proposed papers, evaluates affine motion parameters for

every block.

Optical flow, designed to find the true motion between images, has been seldom used

for video coding, as most papers focus on achieving very high accuracy in their esti-

mation, which comes at the cost of a very slow processing. The frame interpolation

application could be used for video coding, but it places a high burden on the decoder

which has to compute the optical flow. However, some optical flow methods trade off

some accuracy for speed and could be used for video coding.

In the present thesis, we present two improvements for video coding: a fast postfilter

that uses shallow neural networks and a fast optical flow-based estimation of affine

parameters. The postfilter is able to improve the decoded picture while maintaining real-

time processing. The fast estimation is based on segmentation of blocks and classification

into three categories: blocks that should use translation, blocks that could benefit from

affine prediction, and blocks that should be split up. These heuristics allow avoiding the

parameter refinement process when affine prediction is likely to be worse than translation.

i

Abstract

We found that using the proposed approach, we can achieve a reduction in the affine

parameter estimation time by half, while keeping very close to the efficiency of the state

of the art methods. When combined with the proposed postfilter, it is able to improve

the end result, and on some sequences is more efficient than the existing methods.

ii

Contents

Abstract i

Acknowledgments ix

1 Introduction 1

1.1 Context . 1

1.2 Video Encoding process . 2

1.2.1 Block division . 3

1.2.2 Intra prediction . 3

1.2.3 Inter prediction . 4

1.2.4 Transform and quantization . 4

1.2.5 Entropy Coding . 5

1.3 Video Coding Artifacts . 6

2 Related Methods 8

2.1 Standard Motion Prediction . 8

2.1.1 Motion Vector Prediction and Motion Vector Difference 8

2.1.2 The Test Zonal Search (TZSearch) algorithm 9

2.2 Affine Motion Prediction . 9

2.2.1 Transform Representation . 11

2.2.2 Transform Implementation . 12

2.2.3 Gradient-based MV estimation . 12

2.2.4 BM-based MV estimation . 13

2.2.5 Motion Vector Prediction (MVP) 15

2.2.6 Entropy Coding . 16

2.3 Fast Mode and Block Partitioning Estimation 17

2.4 Filtering of Coding Artifacts . 19

2.4.1 In-loop filters of AVC and HEVC 19

2.4.2 Overlapped Block Motion Compensation (OMBC) 20

iii

Contents

2.4.3 Postfiltering . 20

2.5 Optical flow . 21

3 Reducing the Defects in Video through Postprocessing 23

3.1 Change of the input . 23

3.1.1 Filtering the whole image . 23

3.1.2 Size of input blocks . 24

3.2 Architecture of the proposed method . 24

3.2.1 Bidirectional filter . 24

3.2.2 Feature layers . 25

3.3 Implementation and measured speed . 25

4 Estimation of Affine Motion Parameters 26

4.1 Optical flow based segmentation and transform selection 26

4.1.1 Choice of the optical flow method 26

4.1.2 Ignoring some blocks . 27

4.2 Optical flow based transform estimation 29

4.2.1 Transform computation . 29

4.2.2 Transform Selection . 31

4.3 Transform Iteration . 31

4.3.1 Initial Iteration . 32

4.3.2 Further Refinement . 32

4.3.3 Bad Estimation Detection . 32

4.4 Implementation in HEVC . 32

4.4.1 Distance Scaling . 33

4.4.2 Parallel Processing . 33

4.4.3 Using gradient for iteration . 33

4.5 Improvement of Entropy Coding . 34

4.5.1 Differential coding using neighboring affine predicted blocks 34

4.5.2 Virtual Affine Motion Vector Prediction Candidate 34

4.5.3 Proposed AMVP Framework . 35

5 Results 36

5.1 Source Videos . 36

5.2 Post filtering of HEVC videos . 36

5.2.1 All intra mode . 37

5.2.2 Random access mode . 38

iv

Contents

5.3 Block segmentation and transform selection 42

5.4 Optical flow estimation of motion parameters 42

5.5 Evaluation of the implemented method in HEVC 46

5.5.1 Testing conditions . 46

5.5.2 Fast mode decision . 46

5.5.3 Fast parameter estimation . 47

5.5.4 3-parameter gradient refinement 51

5.5.5 Affine parameter evaluation skipping 52

5.5.6 Accuracy of mode decisions . 52

5.6 Improved Entropy Coding . 54

5.7 Combining Filtering and Affine Prediction 56

6 Conclusions 58

v

List of Figures

2.1 Overview of CP-based affine transforms 12

3.1 Representation of filtered blocks (in red) and input blocks (in green). Only

two input blocks are represented for clarity. One overlaps every filtered

block . 24

4.1 Overview of the optical flow process . 27

4.2 Overview of block segmentation algorithm 29

4.3 Comparison of prediction results when splitting or not blocks 30

5.1 Rate-Distortion Curve of the Rotating Disk sequence with the proposed

filter in All Intra mode . 39

5.2 Comparison of images from Basketball and Rotating Disk sequence with

and without applying the proposed filter 39

5.3 Segmentation on the Truck Train sequence 43

5.4 Comparison of prediction result on Rotating Disk sequence 45

5.5 Rate-Distortion Curve of the Station sequence with the various tested

methods . 50

5.6 Three frames extracted from the Tractor sequence. While the wheel is in

a more distant position in 5.6c than 5.6b, an acceptable prediction can be

done with 5.6c using the wheel rotational symmetry 53

vi

List of Tables

2.1 Overview of related Affine Motion Prediction methods 17

5.1 Video Sequences . 36

5.2 Filter results for All Intra mode . 38

5.3 PSNR values for two different QP values on each sequence for the proposed

filter and reference HEVC (All Intra) . 40

5.4 Filter results for Random Access mode . 40

5.5 PSNR values for two different QP values on each sequence for the proposed

filter and reference HEVC (Random Access) 41

5.6 Increase of predicted image PSNR with 32× 32 blocks 42

5.7 Increase of predicted image PSNR with 64× 64 blocks 42

5.8 Overview of the different tested transforms 44

5.9 Increase of predicted image PSNR with 64× 64 blocks 44

5.10 Comparison of coding efficiency and encoding speed in terms of BD-Rate

and ∆T . 47

5.11 Comparison of coding efficiency and encoding speed in terms of BD-Rate

and ∆T for the variants of the proposed method 48

5.12 PSNR and encoding time of the variants of the proposed method 49

5.13 Comparison of coding efficiency and encoding speed in terms of BD-Rate

and ∆T for the variants of the proposed method 51

5.14 Comparison of Coding Efficiency and Encoding Speed when using affine

mode skipping compared to only selecting the transform model 52

5.15 Evaluation of the model prediction accuracy and affine mode skip accuracy

of the proposed method compared to Tsutake 53

5.16 Comparison of Coding Efficiency and Encoding Speed with different en-

tropy coding methods . 55

vii

List of Tables

5.17 Comparison of coding efficiency in terms of BD-Rate when using the post-

filter on sequences encoded by the proposed method with the current state

of the art . 56

viii

Acknowledgments

This thesis would not have been possible without the support and guidance from many

people around me.

I would like to particularly thank the professors in my laboratory that have provided

me with a lot of insightful guidance over the years, Professor Shinichiro Omachi, Asso-

ciate Professor Yoshihiro Sugaya, and Assistant Professor Tomo Miyazaki. During my

research presentations, they asked me many challenging questions that made me think

about what direction to give my research at times where I was struggling. Their feedback

during my five years period in Omachi-Sugaya laboratory was very helpful. Professor

Omachi supported my idea to investigate affine motion compensation in video coding,

which am I very grateful for.

My deep gratitude also goes to Professor Toshiyuki Yoshida and Mr. Chihiro Tsutake,

from University of Fukui, for answering some questions I had about their method and

providing me with the source code of their implementation so that I could more easily

implement my method and compare it to theirs.

I would also like to thank my thesis committee members, Professors Akinori Ito and

Satoshi Shioiri, for their feedback during the last spurt of my work on this thesis and

giving me valuable ideas for completing it.

I am thankful to my labmates, especially Kento Tonosaki, who as my tutor helped my

a lot when I was starting in the lab. I have learned a lot from all of you, and have been

able to have often a great time when coming to the lab and in the events you organized

outside. While I have been in the laboratory long enough to have trouble remembering

the names of everyone, I have not forgotten about the happy times we shared.

I am very grateful to my family that supported my choice to go to Japan even though

it would mean I would rarely be able to see them, their continuous support despite the

distance and the many care packages sent from France that helped me through difficult

times.

ix

Acknowledgments

Lastly, I would like to thank my wife, Ai Narita, for her continuous love and support

during those three years. I do not think I would have been able to complete with thesis

without her by my side.

x

Glossary

AMP Affine Motion Prediction. vii, 9–13, 16, 17, 19, 34

AMVP Affine Motion Vector Prediction. iv, 34, 35, 54, 55

AVC Advanced Video Coding. 1, 3–5, 10, 19, 24

BD-R Bjøntegaard-Delta Rate. 18–22, 36–38, 46, 47, 51

Block Matching Algorithm for finding similar blocks to the current one for motion

estimation purposes. iii, 10, 13, 46

CABAC Context Adaptive Binary Arithmetic Coding. 5, 6, 16

Chroma Cb and Cr components in the YCbCr color space, representing colors. 3

Chroma Subsampling Action of increasing the sample period on the chroma compo-

nents of a signal to reduce its size. 20

CNN convolutional neural network. 20, 21, 58

CP Control Points. 10–13, 15, 16

DCT Discrete Cosine Transform. 2

HEVC High Efficiency Video Coding. 1, 3–8, 10, 19, 23, 24, 26, 32–34, 36, 37, 58

ITU-T International Telecommunication Union Telecommunication Standardization Sec-

tor. 1

JCT-VCT Joint Collaborative Team on Video Coding. 1, 8

JEM Joint Exploration Model. 2, 10–12, 19, 20, 33

xi

Glossary

JVET Joint Video Exploration Team. 2

JVET Joint Video Experts Team. 2, 10

Luma Y component in the YCbCr color space, representing brightness. 3

Motion Estimation Process of determining motion vectors. 8–10, 12, 14, 15, 17, 18, 29,

33, 42

MPEG Moving Picture Experts Group. 1, 2

Motion Vector Offset between the samples used for prediction in the reference picture

and the samples in the current picture. iii, 4–6, 8–17, 19, 20, 22, 26, 32–35, 55, 56

MVD Motion Vector Difference. iii, 8, 9, 16, 55

MVP Motion Vector Prediction. iii, 8–10, 15, 16, 34, 55

OMBC Overlapped Block Motion Compensation. iii, 20

Optical Flow Movement between two frames. iv–vi, 21, 22, 26–29, 31–34, 42, 46, 47,

58, 59

PSNR Peak Signal to Noise Ratio. vii, 7, 36–38, 42–44, 47

PU Prediction Unit. 18

QP Parameter defining the quantization level used for a block. 21, 37, 46

Rate Distortion Optimization Process that evaluates the cost of coding with a given

mode by simulating the encoding fully. 17, 18, 22, 53–55

Reference Picture Picture from which samples are sourced for inter-prediction. 4, 15,

26, 27, 29, 30, 58

Residual Error that remains after the prediction step. 2, 4, 6, 9

Reference Picture List List of pictures that can be used as reference by the current

picture. 33

SAD Sum of Absolute Differences. 9, 17, 32

xii

Glossary

SATD Sum of Absolute Transformed Differences. 9, 17, 19

SVM support vector machine. 18

Target Picture Picture that is being predicted. 4, 26, 27, 29, 30

TZSearch Test Zonal Search. iii, 8–10, 14

VCEG Video Coding Experts Group. 1, 2

VVC Versatile Video Coding. 2–4, 10–12, 19, 34, 55, 58

Zoom & Rotation 4-parameter model that represents translation, zooming and trans-

lation. 11, 13, 30, 43

xiii

1 Introduction

1.1 Context

Video has become ubiquitous in the current world. In a few years, it moved from the

analog era with analog TV and VHS tapes to the digital era with digital television,

DVDs and now High Definition. Outside of this change in quality, the latest years have

seen a change in how people view videos. While before the only sources of video were

TV broadcasts and tapes, it is now possible to watch anything we want to using Internet

streaming platforms such as Netflix, Hulu, etc. This created a large peak in bandwidth

usage for video as instead of one broadcast for many people, now each person gets their

own broadcast. Studies show that video already uses over three quarter of the total

bandwidth on the Internet, and this ratio is rising. In a white paper [1], Cisco says

that in 2017, IP video traffic made 75% of the total IP traffic, and they forecast it will

increase to 82% by 2022.

Because of this, encoding systems designed to handle this large increase of data have

become more and more important over the latest years.

Because it is important that people agree on the video encoding formats, standard-

ization groups such as the International Telecommunication Union Telecommunication

Standardization Sector (ITU-T), assemble experts in video coding to define new stan-

dards that everyone will use. Two of the biggest groups of experts are the Moving Picture

Experts Group (MPEG) and Video Coding Experts Group (VCEG), that have in recent

years joined forces to form the Joint Collaborative Team on Video Coding (JCT-VCT).

They have defined the most widely used video coding standards we use now for playing

DVDs, watching digital TV or streaming videos over the Internet. The latest standard

to have been released by the ITU-T is High Efficiency Video Coding (HEVC) [2]. It

was designed to handle bigger video than Advanced Video Coding (AVC), with support

for up to 8K video clearly defined into the standard. It also provides a more efficient

encoding with an efficiency approximately doubled on average over AVC [3].

1

1 Introduction

In 2015, MPEG and VCEG agreed to work together again on a new video coding

standard and formed the Joint Video Exploration Team (JVET). They created the Joint

Exploration Model (JEM), a new reference encoder that evaluate proposed changes.

They started with a Call of Evidence and followed it with a Call for Proposals[4]. JEM

design is modular, allowing to evaluate the efficiency of each proposal independently, as

did [5]. For each proposal they evaluated the encoding gains and the added complexity

in encoding and decoding time. These proposals formed the basis of the new encoding

standard that is currently being developed, Versatile Video Coding (VVC). JVET was

renamed Joint Video Experts Team (JVET), to keep the acronym. Not all proposals

were accepted, as some put too much burden on hardware implementations, or increase

decoding complexity too much. With the number of devices playing video at an all time

high, keeping decoding complexity reasonable is critical for easier adoption of newer

standards.

1.2 Video Encoding process

To encode a video efficiently, many techniques must be used. This section will first go

over the techniques used for any video coding before going into more depth about some

specific techniques relevant to this thesis.

A video is composed of frames, or pictures, that are related to each other. Video

coding, in contrast to still picture coding, uses this feature to reduce the size of the

compressed output while maintaining a good visual quality. Each frame is divided into

blocks, and for each block a decision is made. The block is predicted from either a

constant value, values of a neighboring block in the same picture or values from a different

already coded picture. The first two cases do not require previous frames to be known,

so it is always used for the first picture in a sequence, and often at periodic positions to

allow moving forward in the video without having to decode every single picture. The

latter case is an addition of video coding, called motion compensation or inter (frame)

prediction, with the former called in contrast intra prediction. The residual is the error

that remains after prediction. Typically, the aim of prediction is to make the residual

as small as possible. The next step is a transform, typically something based on the

Discrete Cosine Transform (DCT), which aims to put the low frequency components of

the residual in the top left corner of the matrix while the high frequency components

are moved to the bottom right. The next step is quantization, which introduces errors

on purpose to reduce the size of the coding. Instead of storing the precise value, values

2

1 Introduction

are made smaller and lose precision, with high frequency components losing the most

precision. The last step is entropy coding, which has to code all the decisions and the

values after quantization in a lossless way.

1.2.1 Block division

In older coding standards, such as AVC, there was very little flexibility for block sizes.

However, with HEVC, blocks can be of various shapes and sizes, and have their maximum

size extended. It is also important to note that while predictions and transforms are

both block-based, they can use a different block partitioning. In contrast to earlier video

coding standards as well, chroma and luma samples do not have to use the same blocks.

VVC goes even further by allowing even larger blocks and more flexibility to splits. This

gives a great improvement in efficiency, at the cost of additional complexity for coding

the splitting and also requires to evaluate more possibilities when deciding the most

efficient encoding of a given picture. Each standard has also a requirement that blocks

have to be encoded in a certain order. This is necessary to allow blocks to use neighbors

are reference, so blocks on the left and above the current block have to be encoded first.

Even when flexibility for block sizes is allowed, only splits inside the largest possible

blocks are allowed, and they are all coded in order from top left horizontally. Within

the largest possible blocks, a specific order is also required for the subblocks, to ensure

the availability of neighbors for prediction.

1.2.2 Intra prediction

When no other blocks to use for reference are available, DC prediction is used. It simply

uses one value and sets every pixel in the block to it. Outside of specific cases like black

bars in the video, it is not very precise and usually results in a large residual. The other

prediction modes use a direction and copy values from already coded blocks in the same

frame. Because blocks are coded in a specific order, only blocks on the left and top of the

current block can be used. Possible directions are mandated in the standard, and their

number has increased in more recent ones. In HEVC, the number of possible directions

is 33, which is increased to 65 in VVC.

3

1 Introduction

1.2.3 Inter prediction

Inter prediction has known some very significant changes compared to the earlier stan-

dards. For example, H.261 only allowed to predict from a previous frame using an integer

displacement. This was very fast since the operation only required to copy bits without

any other processing, but was not very precise. Newer standards have allowed for more

precise motion vectors (MVs), from full pixel precision to 1/16 sample in VVC. Another

improvement is allowing prediction for two reference frames for the same block, also

called bi-prediction. In AVC and more recent standards, more pictures are kept in the

decoded picture buffer, which allows using different reference frames for each block and

choosing the most appropriate. This requires additional memory, which is often an issue

for hardware decoders, which made for example using the full 16 reference frames in

AVC very costly for embedded hardware.

This prediction can be represented using the following equation:

[

x′

y′

]

=

[

x

y

]

+

[

vx

vy

]

(1.1)

where
[

x′ y′
]t

represent the coordinates of the points on the reference picture,
[

x y
]t

the coordinates of the target picture, and
[

vx vy

]t

the motion vector.

1.2.4 Transform and quantization

In most cases, prediction (either intra or inter) is not perfect, and some errors remain.

This error is called residual. The encoder has two options: either ignore the error

and code the image using just the prediction, common in low bitrate situations for bi-

predicted blocks that are “good enough”, or code the error in some way to allow a better

reconstruction.

In some coding standards, like HEVC, it is possible to code the residual directly,

using a lossless coding. In the most common cases, however, lossy coding is used. The

transform aims to preserve to change the representation of the residual from the space

domain to the frequency domain. By doing, so this isolates the low and high-frequency

components.

The next step is called quantization, and aims at reducing the cost of coding the

4

1 Introduction

residual by reducing the number of possible levels. For example, a parameter could see

its range reduced from (0, 100) to (0, 10), reducing precision but requiring less bits to

code the value. Quantization typically reduces precision of high frequency components

more than low frequency components. It is common for many values to be reduced to

zero, reducing greatly the coding cost.

1.2.5 Entropy Coding

The encoding modes, MVs and transformed residual values must be coded losslessly for

the decoder to read them and decode the video doing the opposite process as the encoder.

This coding must be efficient if one wants to obtain an efficient coding standard. Entropy

coding works by attributing a probability to each possibility and defining a code that is

efficient for this probability. A coding scheme is efficient if it gets as close as possible to

Shannon’s source coding theorem defined as follows:

N = − log2(P) (1.2)

where N is the number of bits required for coding a symbol with probability P .

The most common and easy to implement variable length coding is Huffman coding,

which has to use an integer number of bits for each symbol, so unless each symbol has a

probability that will result in an integer in Equation1.2, it will not be the most efficient.

Arithmetic coding is similar, but can be seen as being able to code symbols with non-

integer code lengths, with some limitations for ease of computation. It can be visualized

as calculating the Huffman coding of a whole sequence of symbols at once. As the length

N of the message grows, the loss from having to keep an integer size decreases.

Encoding Mode Coding

In recent standards such as AVC and HEVC, Context Adaptive Binary Arithmetic Cod-

ing (CABAC) is used. Its main features are as stated in the name, context adaptive and

binary arithmetic. Context adaptivity is a very important feature in recent encoders,

and a very large source of encoding efficiency gains. Each symbol has an associated

probability with it, which can change depending on the actual occurrence of the symbol.

For example, if the DC prediction mode is used very often, the encoder will “learn”

about it and increase the probability of DC prediction, lowering the cost of coding it.

5

1 Introduction

The learning is a very simple process, so it uses very little additional processing power,

as it only has to count the number of times a symbol is used.

Using binary coding helps greatly for the structure of the entropy coder. The encoding

mode decisions can be seen as a binary tree, with each branch having a weight repre-

senting its probability. In HEVC, the tree structure for blocks can be easily represented

as a succession of binary decisions, such as split/no split, split1/split2, etc.

For values that do not make sense as a binary decision, such as MVs values, the symbol

is binarized so that it can be encoded by the CABAC encoder. In most cases, unary

coding is used. Probability is still adaptive for those cases, so in the case previous values

were big, coding can switch to a different mode representing larger values for less bits.

Golomb-Rice codes are very useful for this purpose, as it is possible to change the coding

size depending on the average value of the value being coded. However, Golomb-Rice

coding only works if the symbol follows a geometric distribution. If the symbol follows

a uniform distribution, fixed-length coding would be the most efficient.

Transform Residual Coefficients Coding

Coding the residual coefficients requires a very different approach than the encoding

modes. Residual coefficients are encoded from top left, where the most important low

frequency components are, to bottom right, where the least important coefficients are.

The encoder follows a diagonal, or zigzag pattern with increasing distance from the top

left. Coding zeroes can be done very cheaply using run-length encoding, as in the JPEG

image format.

Modern coding standards use more advanced coding tricks, that can achieve even

higher efficiency. For example, it can adapt the coding according to the probability dis-

tribution of the coefficients by using Golomb-Rice code and varying the Rice parameter.

Reference [6] shows the details of the implementation of the coefficient coding in HEVC.

1.3 Video Coding Artifacts

In most practical applications, the video encoding is not lossless, since the required

bitrate would be too important. Quantization is the step that introduces errors by

making coefficients smaller, reducing greatly the coding cost. Some errors will appear

6

1 Introduction

in the reconstructed stream. In most applications, the quality, through Peak Signal to

Noise Ratio (PSNR) control, can be maintained high. However, in many situations, such

as videoconferencing, the available bitrate can become very low. In those situations, the

defects from video coding appear so clearly that everyone notices them, while they were

usually impossible to notice even to a trained eye at higher bitrates.

Dividing the picture into blocks has one major disadvantage, as it creates boundaries

that can be visible as there are no continuity guarantees between two blocks. For this

reason, many encoders and decoders try to maximize visual quality and hide those

artifacts. The easier way is to reduce the resolution, either through encoding a smaller

size in the first place, or applying blurring to the output at the decoder stage. This

is usually not desired because it removes the details of the image. The main way that

is being used now is the application of various filters that are trained to remove the

encoding artifacts. Some are now in video coding standards like HEVC, which includes

a deblocking filter and sample adaptive offset filter. Many other people have proposed

filtering techniques to be applied on the reconstructed picture, with many using neural

networks in the recent years.

Another approach for reducing blocking artifacts is to limit the amount of block bound-

aries, which is possible in recent standards as blocks become bigger. However, the motion

is not always constant for a larger section of the image, making smaller blocks neces-

sary for accurate prediction. This is where high order motion models shine, representing

complex motions that translations are not suited for. For example, using an affine model

for motion allows representing camera motions like zooming and rotating objects very

accurately, eliminating the need for translation approximations in many small blocks.

7

2 Related Methods

2.1 Standard Motion Prediction

In video coding standards up to HEVC, the only prediction available was the translation.

Finding optimal MVs is already a complex problem with only two dimensions. While

performing Motion Estimation (ME) over all possibilities would yield the best solution,

it is also very slow, especially as newer methods allow finer level precision, with up to

1/16 sample. For fast computation, various methods have been used.

For efficient coding of the MVs, the standard mandates the use of Motion Vector

Prediction (MVP) and Motion Vector Difference (MVD).

The standard does not mandate a specific method as any encoder can find motion

parameters the way it wants, but the reference encoder HM [7], released by the JCT-

VCT, implements a fast ME method called Test Zonal Search (TZSearch).

2.1.1 Motion Vector Prediction and Motion Vector Difference

The use of MVP is critical for efficient video coding, as it allows entropy coding to work

much more efficiently. In most cases, the MV of a block will be similar with a neighboring

block, which is already coded. Since we know this MV already, we can use it to allow

for a differential coding. In HEVC, MVPs are generated using the neighboring already

decoded MVs. Then, we use an index to tell which MV we want to use as predictor.

When coding the MV, only the difference between the MVs is coded, mvd = mv−mvp,

where mv is the MV we want to code, mvp the MV of the block we predict from, and

mvd the coded MVD.

8

2 Related Methods

2.1.2 The Test Zonal Search (TZSearch) algorithm

Motion is often similar in the blocks around the current block, which makes MVP very

efficient for entropy coding as only MVD are coded, but also for ME, since the algorithm

can start with a good initial estimation. A good starting point is to take the median

of available MVs from blocks on the left, top, and top-right from the current block.

Then, the encoder will compute the transform with this starting estimation and 8 points

around it, in a diamond or a square pattern. To evaluate which is the best transform

quickly, Sum of Absolute Differences (SAD) is used. Using x for the value of the sample

and x′ for the predicted value, it can be represented as follows:

SAD =
∑

|x− x′| (2.1)

After the new best estimation is found, the process is repeated, halving the step size

when the best value is the same as the previous best. For performance reasons, the

ME process always starts with integer-valued MVs, as it does not require interpolation

of pixels which would take more time. In the later stages, before deciding on the best

transform to add to the list of candidate modes, Sum of Absolute Transformed Differ-

ences (SATD) is used. It is similar to SAD but performs a transform on the residual,

and is able to measure more accurately the cost of coding the residual.

This process has been tweaked and improved in various ways [8–10]. For example.

References [8, 9] proposes to search in 6 directions using an hexagonal pattern instead

of the diamond or square pattern. Reference [10] proposes terminating ME early when

some conditions are fulfilled, leading to a decrease of half of the encoding time.

2.2 Affine Motion Prediction

Affine Motion Prediction (AMP) has been the subject of significant research. For a

long time, it has been apparent that the standard block-matching approaches provide

a limited precision for predicting motion in the picture, as it was shown in [11]. How-

ever, proposals failed to gain enough support to be included in standards because of the

complexity increasing too much. There has been many representations and coding meth-

ods for higher motion compensation, with very different complexity and efficiency. The

canonical form, coming from mathematics, uses a matrix to represent the coefficients.

9

2 Related Methods

However, it is also possible to represent the movement using Control Points (CP), which

was demonstrated in [12]. While the most common models use 4 or 6 parameters, [13]

shows that there are many models that can be used for prediction, with up to 12 pa-

rameters being tested. However, while more parameters can offer greater precision, each

additional parameter provides a smaller benefit for representing movement accurately,

but incurs the same overhead for coding. Because of this, models with fewer parameters

are overall more efficient.

There has been a large increase in papers suggesting some sort of AMP since HEVC.

The most likely reason is the increased potential of affine motion prediction compared to

previous standards. While older standards like AVC were limited to prediction blocks of

16×16, HEVC allows larger blocks, going up to 64×64. When coding a larger block, the

additional cost from coding the affine parameters is relatively smaller and more justifiable

when the prediction accuracy improves. Furthermore, while a constant displacement is

typically a good approximation for a smaller block, this falls apart with larger block

sizes. In [14], the efficiency gains are compared for various block sizes, and at least in

this experiment, it is clear that when limited to small block sizes, affine prediction offers

limited efficiency gains, which would not be enough to be worth the added complexity.

In [13–15], a gradient-based approach is used to find the parameters. In [16], the authors

use a different method closer to classical Block Matching (BM) techniques. It is similar

to the Test Zonal Search algorithm used for the translation ME.

During the Call for Papers of JEM, several papers were discussed concerning AMP,

each bringing something new. Reference [12] proposed the Control Points (CP) repre-

sentation with 6-parameters with a way to code the MVs with the entropy coding of

HEVC. Reference [17] proposed a new merge candidates that also allows using AMP in

HEVC. Reference [18] improves on [12], reducing complexity by reducing the parame-

ters to 4, and revising the iteration method for reducing its complexity. Another major

change was stopping to compute the MV for each sample, but instead expanding the

granularity to 4×4 blocks, reducing the decoder complexity. As it had a lower impact on

decoding time than others methods while offering good performance, it was proposed to

JVET [19] and was adopted in JEM. When the VVC project started, a modified version

of [19] was included in the standard, which will likely still change further until finalizing.

Further work has continued, with [20] reintroducing the 6-parameter affine transform

and improving the MVP candidates. The 6-parameter affine transform is an additional

option, with the encoder being able to choose which transform to use and disable them

on a frame basis if it is not useful or wants to skip evaluating the additional modes.

10

2 Related Methods

2.2.1 Transform Representation

The two most commonly used models for AMP are the Zoom & Rotation (Z&R) model

and the affine model, which use respectively 4 and 6 parameters. The canonical repre-

sentation of these transforms is given by the following equations:

[

x′

y′

]

=

[

a b

−b a

][

x

y

]

+

[

vx

vy

]

(2.2)

[

x′

y′

]

=

[

a b

c d

][

x

y

]

+

[

vx

vy

]

(2.3)

where a, b, c, d are the affine parameters. The Zoom & Rotation (Z&R) model is a

simplification of the affine model, a special case where a = d and b = −c.

In some papers, such as [12], and in JEM and VVC, Control Points (CP) are used. In

this case, the affine parameters a, b, c, d are replaced with motion vectors mv0, mv1, mv2,

respectively defined by
[

mvx
0

mvy
0

]t

,
[

mvx
1

mvy
1

]t

, and
[

mvx
2

mvy
2

]t

. The former

equations are replaced by the following equivalent form:







mvx(x, y)

mvy(x, y)






=







mvx
1
−mvx

0
−(mvy

1
−mvy

0
)

mvy
1
−mvy

0
mvx

1
−mvx

0







[

x

y

]

1

w
+







mvx
0

mvy
0






(2.4)







mvx(x, y)

mvy(x, y)






=







mvx
1
−mvx

0
−(mvy

2
−mvy

0
)

mvy
1
−mvy

0
mvx

2
−mvx

0













x
w

y
h






+







mvx
0

mvy
0






(2.5)

CPs can be seen as two (or three) different MVs that represent the motion at a given

point. In the former equation, mv0 is the MV for the top left of the block, mv1 the MV

for the top right, and mv2 the MV for the bottom left. The two images in Figure 2.1

from [20] show how the CPs work.

11

2 Related Methods

(a) 4-parameter affine model with two CPs. (b) 6-parameter affine model with three CPs.

Figure 2.1: Overview of CP-based affine transforms

2.2.2 Transform Implementation

While all methods may use, in essence, the same formula to compute the displacement of

each sample, as the coordinates for the reference samples are real-valued, interpolation

is necessary. In [14, 16], the quarter-pel interpolation from HEVC followed by bilinear

interpolation between the quarter-pel positions is used. This has the advantage of not

requiring an additional interpolating filter that could be expensive to implement, as bi-

linear is the fastest interpolation outside of nearest neighbor. In [13, 15], more expensive

interpolation filters are used to deliver a 1/16-pel precision. For JEM and VVC, all

MVs, even in translation mode, use 1/16-pel precision. However, in contrast to [13, 15],

where a MV for each sample is used, one MV is used for a block of 4 × 4 samples. In

other words, in this case, AMP is only a way to specify many translation MVs for small

blocks at once, with one additional feature: filtering is applied at the blocks boundaries,

which avoids the blocking noise that would happen with independent MVs. While the

interpolation filters from VVC provide a better precision, they are limited to 1/16 for

each sample, while the bilinear filter used by the other methods can provide samples

at arbitrary positions without rounding. However, in practice, further precision offers

limited benefit.

2.2.3 Gradient-based MV estimation

While the various methods using gradient for ME differ, the base algorithm is the same.

This subsection will start with introducing the common aspects of those methods, and

the following will focus on the differences.

Each method starts with an initial MV. In the most common case, the translation

12

2 Related Methods

parameters have been estimated as they serve as a comparison point to decide if the

mode should be used. Affine parameters can be predicted from neighboring blocks, and

in case they are not available, they are set to zero. Additionally, when two models are

available like in [20], the 6-parameter transform can reuse the result of the 4-parameter

transform estimation. For methods using Control Points, this means all MVs are equal.

See Subsection 2.2.5 for details on starting values for the gradient process. If multiple

starting candidates are available, the best among the candidates will be selected for

further iteration.

2.2.4 BM-based MV estimation

While the gradient-based methods have proven to be quite good at finding good affine

MVs, they require a very different type of processing compared to the classical BM

approaches. This means that for a hardware implementation, new silicon is required

for these computations, and their cost could mean that many hardware encoders could

decide to not use AMP entirely. In [16], the proposed BM algorithm is very similar to

existing ones, which would greatly help making implementation easier. The proposed

method can be seen as an extension of the square pattern search to more dimensions.

Because the number of operations required at each step scales exponentially with the

amount of parameters in the MV, some modifications are made to limit the complexity.

3-parameter models

As more parameters make estimation too costly, the authors decided to reduce the

number of parameters from the most commonly used Z&R model. In many sequences,

there is zooming or rotation but not both at the same time. So instead of allowing both

the zooming and the rotation parameters to vary at the same time, the authors propose

two 3-parameter models, one that represents zooming combined with translation, and

the other rotation combined with translation. The two models can be represented using

the following equations:

13

2 Related Methods

[

x′

y′

]

=

[

1 + s 0

0 1 + s

][

x

y

]

+

[

vx

vy

]

(2.6)

[

x′

y′

]

=

[

1 −r

r 1

][

x

y

]

+

[

vx

vy

]

(2.7)

In these equations, s represents the zooming factor and r the rotation factor. As the

maximal rotation angle is small, the approximation in Equations 2.6 and 2.7 is good

enough.

Expanding TZSearch to more parameters

As with gradient-based methods, the initial starting value is based on the result of

the translation ME. Starting from the best translation-only MV, values for the affine

parameter (either r or s) are tested. To limit the search space, only 32 possible values for

the affine parameter are allowed. To avoid an exhaustive search, the first step searches

every possible parameter using a step size 4.∆, where ∆ is the step between quantized

values, with value 1/256 in the paper. After the best value is found, the two neighbors

with a step size of 2.∆ are tested. Then, the translation MV is refined by looking at all

nine neighboring candidates with a quarter pel distance. Refinement of r or s with a

step size of ∆ follows, then the former two steps are repeated until either a maximum

number of iterations is attained or no further improvement is achieved at a given step.

By separating the refinement into two steps, the exponential complexity is avoided.

For each step, only 8 estimations for the translation and 2 for the affine parameter are

required, while using a 3-dimensional diamond pattern would result in 26 (33 − 1) oper-

ations per step. However, as the number of affine predictions tested is still much higher

than gradient-based approaches, pixel interpolation should be faster to compensate.

Pixel interpolation

To reduce the need for expensive pixel interpolation using the 1/16 pel precision com-

puted for every estimation as in other methods [13, 15, 19–21], the image is interpolated

entirely and stored in a buffer. Because storing an entire image interpolated with such

precision would use too much memory, it is restricted to quarter pixel.

14

2 Related Methods

Positives and Drawbacks compared to gradient-based methods

Using a simpler model makes ME easier, but it also requires doing it twice. While it

may be faster than a gradient-based approach done twice for selecting the best model,

with a software implementation it takes a similar time or is slower compared to a four-

parameter gradient-based estimation. While the lower accuracy in the prediction is good

for lowering decoding complexity, it also limits the accuracy of the prediction, so it will

not be able to achieve the same performance if processing power is sufficient for the

higher complexity methods.

2.2.5 Motion Vector Prediction (MVP)

For good starting points in the iteration process and for efficient entropy coding, pre-

dicting the MVs is very important. For methods using translation and affine values, the

same prediction is used for the translation MV as with normal prediction. The affine

parameters can be predicted from a neighboring block that also uses affine prediction,

if available. The major drawback from this approach is that if no neighbor uses affine

prediction, no prediction can be done and the parameters are simply set to zero.

For the CP based methods, having neighbors that use affine prediction is not required.

Instead, each MV can be predicted from the neighboring block closest to it. To predict

mv0, the block on the upper left is used, for mv1 the top right and for mv2 the bottom

left. If one is not available, the missing one can be deduced from the other two, which

will result in a 4-parameter transform. CPs also make scaling transforms using different

reference picture easier, as they can use the same scaling as regular MVs.

Both [13] and [16] code the affine parameters using differential coding. However, this

does not work well if the reference frames are not identical, limiting its use. In [21],

the authors propose a way to implement motion scaling with the affine parameters by

decomposing the 4-parameter transform into three different transforms that can each

be scaled: a translation, a rotation and a scaling transform. For the 6-parameter affine

transform, they decompose it using an additional transform representing shearing, and

use 2 parameters for the scaling transform. However [16], who uses 3-parameter trans-

forms that are easier to decompose and scale, does not implement this optimization in

their method.

15

2 Related Methods

2.2.6 Entropy Coding

As these methods use additional parameters compared to the regular translation-based

prediction, these parameters need to be coded, preferably efficiently so that the improve-

ment in prediction accuracy is bigger than the increased cost in signaling the prediction.

In CP-based methods like [18, 20], the encoder codes Motion Vector Difference (MVD)

like with regular motion compensation, except that instead of coding a single MV, it

will code two or three. Like with normal prediction, an index is used to signal which

MVP is used and then codes MVD defined as follows:

mvdi = mvi −mvpi (2.8)

where mvdi is the coded MVD, mvpi the predicted MVP and mvi the MV for the

current block, with i representing the two or three MVs.

In [20], further improvement was made on the coding as it appears that there is a high

correlation between the mvdi. They proposed to code alternative differences defined as:

{

mvd′1 = mvd1 −mvd0

mvd′2 = mvd2 −mvd0
(2.9)

As mvd′
1
and mvd′

2
are usually smaller than mvd1 and mvd2, this allows for a gain in

efficiency for very little additional processing.

For [13, 15, 16, 21], the encoder codes the translation parameters as usual and code the

difference in affine parameters if a block using AMP is available. While [13, 15, 21] give

little detail as to how they code the parameters and decided on the quantization, [16]

shows results using different step size for parameters and investigated the parameters

probability. The probability distribution they obtained showed that truncated unary

code was the most efficient coding. They also use additional CABAC symbols for the

sign of the affine motion parameters when not coding in differential mode, as they tend

to often be similar throughout the picture.

In Table2.1, a summary of the differences between the various methods described so

far is presented to highlight the differences.

16

2 Related Methods

Table 2.1: Overview of related Affine Motion Prediction methods

Method Model Parameter Parameter Iteration Iteration
representation coding init process

JEM [18] 4 2 MVs MVD MVP + Gradient
MVt

VVC [20] 4+6 2/3 MVs MVD′ MVP + Gradient
MVt +
MVparent

Heithausen [15] 4/6 T:MV + T:MVD MVt Gradient
Affine A:diff

Tsutake [16] 4* (3+3) T:MV + T:MVD MVt BM
Affine A:diff

2.3 Fast Mode and Block Partitioning Estimation

One of the major tasks of an encoder is to find the optimal way to partition blocks

and chose the mode (intra, inter, merge, skip) to use for each block. The sure way to

find it is to perform an exhaustive search. However, it requires an incredible amount

of time, especially for newer encoding standards as the number of options increases.

Motion Estimation is far from the only time consuming operation in the encoding process.

Performing Rate Distortion Optimization (RDO) over all possible modes to find out

which is the most efficient takes a very long time. It has to predict the values, transform

then, quantize the residual and entropy code everything, leading to the cost function

Jmode = SSE + λmodeBmode (2.10)

where SSE is the squared error from quantizing the residual, Bmode the number of bits

to code the current block, and λmode a Lagrange multiplier to optimize for a certain

trade-off between quality and bitrate.

To limit the time requirements, some faster estimators were designed. For example,

when trying to find the best transform, comparing MVs based on the prediction error is

much faster than performing full RDO. The first steps will use SAD and the finer steps

SATD. After getting the best transforms for each mode, RDO is desired to pick the best

accurately. To limit the number of evaluations required, it is possible to estimate with

SATD the top X candidates, and only perform RDO on them. The higher the number

17

2 Related Methods

of candidates, the more likely the encoder will pick the right transform, but the more

time it will take to do that.

There has been a lot of research in choosing modes optimally. A common way to limit

complexity is avoiding splitting blocks as it requires less ME evaluations. Some simple

heuristics, as demonstrated in [10, 22, 23], show improvements around a reduction in half

of the encoding time for a minor in encoding efficiency. To evaluate encoding efficiency

objectively, almost every paper uses Bjøntegaard-Delta Rate (BD-R) as defined in [24].

Reference [10] offers 56.75% for a 1.3% increase in bitrate,while reference [22] shows 40%

for 0.05dB, and reference [23] demonstrates 45% for 0.1dB loss.

More recent work often uses machine learning, with Bayesian Decision Rule [25],

support vector machine (SVM) [26–29], Adaptive Decision Trees [30], and also Neural

Networks [31].

In [25], the encoder is able to update its weights online and adapt with the current

sequence being encoded. It reduces encoding time by 54% for the Random Access mode

for a 0.71% increase in bitrate. In SVM-based methods, the block-splitting decision is

seen as a binary decision problem. Reference [26] achieves 44.7% complexity reduction

on average with only 1.35% BD-R increase. In [27], the classifiers are trained for each

block size, and some online learning is also proposed. It offers a 51.5% reduction for

just below 2% coding efficiency loss. Reference [28] expands SVM decision-making to

Prediction Unit (PU) partitioning. It is able to offer even encoding speed, with a 65.6%

decrease for a cost of 3.7% BD-R increase.

Reference [29] is very thorough in analyzing the various features and which are relevant

for accurate mode decision. They have found features that are good predictors that had

not been used so far. The training focused on RDO instead of classification accuracy.

This means that misclassifications matter much more when they incur a large efficiency

cost. They also devised a threshold to adjust the bias of the encoder towards trying more

splits or skipping more often. This allows getting different speed/efficiency tradeoffs

points that one can select according to their needs. With a cautious bias, they achieve a

40.4% time save for 0.18% loss in efficiency or 48% time save for 0.48% BD-R increase.

Reference [31] shows a hardware encoder that uses a convolution neural network to

make mode decisions. One advantage of neural networks is they are extremely parallel,

which allows for a fast processing without requiring a high frequency which would incur

a large power cost. The proposed design saves 61% of encoding time for an increase

18

2 Related Methods

in BD-R of 2.67%. For a 1080p sequence, the proposed encoder is able to encode 55

frames/s with a power consumption of 16.2mW.

Reference [30] uses decisions trees trained with a few videos to determine the optimal

thresholds for each decision. They use only two features, the SATD and the entropy of

the current block. If the SATD is small, it means the current block already offers a good

prediction. Conversely, if it is large, smaller different transform could be more accurate.

They show a high level of correlation between SATD and actual splits in the reference

encoder.

A different way to solve the splitting problem could be to compute object boundaries

and segment blocks around. In [32], the authors propose segmenting blocks arbitrarily

with inexpensive signaling as it is based on samples values in a reference block. The

resulting two blocks use two MVs, one also being used for computing the boundary

between the two blocks.

2.4 Filtering of Coding Artifacts

With standard translation-based prediction, and even in the proposed AMP implemen-

tation in JEM and VVC, there are many discontinuities in the MV that cause disconti-

nuities in the reconstructed pictures. As they are high-frequency components, they are

the most affected by quantization, and can be most visible at lower bitrates that uses

more aggressive quantization.

2.4.1 In-loop filters of AVC and HEVC

AVC and HEVC, include a deblocking filter [33, 34] that aims to reduce the artifacts

created by block boundaries. HEVC also introduced a new Sample Adaptive Offset

(SAO) filter [35]. The deblocking filter shows a large improvement in removing block

artifacts, with however the downside of sometimes filtering too much and removing

details, as there is no advanced heuristic to know when there is a real edge or an artifact,

other than some threshold that depends on the quantization level. The SAO filter is

very useful at reducing ringing artifacts, which are a consequence of the quantization of

the high frequency parameters of the residual.

These filters are in-loop filters, mandated by the standard and their output is used for

19

2 Related Methods

the reference picture. This means that not only they improve the current picture, they

can also improve the other pictures by having a better picture to predict from.

2.4.2 Overlapped Block Motion Compensation (OMBC)

Because the affine prediction in JEM is actually a lie and is just a way to describe 4× 4

MVs more efficiently, blocking artifacts will appear at all these boundaries. To avoid

this issue, Overlapped Block Motion Compensation (OMBC) can be used.

OMBC is not a new concept, as there were papers proposing it (and coining the term)

as far back as 1992 [36]. Because it can compensate for the irregularities that arise

from discontinuity in the prediction, it was adopted in JEM and proved it could give

large gains in [5]. However, it also requires more time to decode, which is a significant

problem.

While the implementation is different than the deblocking filter and the SAO filter,

its is quite similar in principle. The biggest difference is that it is applied during the

prediction phase, instead of after everything else like the two other filters. Its main

objective is to smooth out the transition between the predicted blocks.

2.4.3 Postfiltering

Adding a filter in a coding standard is no easy task, and it can only provide a benefit

when people adopt it years later. The only way to increase video quality right now is to

do processing on an already encoded video.

Postprocessing video is not new and is in fact part of any practical video player, as

it will have to handle resizing of the video to match a given size. Outside the very

uncommon case of no chroma subsampling, the chroma components will have to be

scaled to the size of the luma component.

In the recent years, there have been numerous proposals of filters that perform post

processing to improve video quality, such as [37–39]. They all use convolutional neural

networks (CNNs), which have become popular in recent years because of the great results

they achieve in computer vision competitions.

Reference [37] uses a very deep network of 20 layers to achieve an overall reduction in

bitrate of 1.6% with the BD-R metric. It adapts for different quality settings by training

20

2 Related Methods

for various Quantization Parameter (QP) values. This could require more processing to

transmit the QP information to the filter. It works only on the luma component. Paper

is unclear but it looks like the same sequences are used for both training and testing,

which could boost the results.

Reference [38] work is based on super resolution CNN (SRCNN), but replaces the low

resolution images with the degraded images from the encoding process. Same as [37],

they train for several QP values. They show results for All Intra, Random Access and

Low Delay P, with up to 4.8% BD-R improvement for the All Intra mode. They manage

to filter images faster than [37], but it is still quite slow as 1.2 seconds for one frame of

size 832× 480. It also uses the same training and testing sequences.

Reference [39] shows a 4.6% reduction in bitrate over many sequences. It proposes

a filter than also works on the chroma components, however it is even slower than

the others, processing a 176 × 144 picture in almost a second. They present a GPU

implementation that is twice as fast, but that is still very slow, as for a FullHD (1080p)

picture, time (assuming linear scaling), would go over a minute per frame.

In previous work [40, 41], we have studied more efficient ways to provide similar

improvements to videos, but while keeping real time processing in mind. While we

achieved only 3.4% improvement in the best case, it was possible to filter several frames

per second on a laptop.

2.5 Optical flow

Estimating the movement between two images has been a subject of research for a long

time, as it has numerous applications. For video coding, it is necessary for finding motion

vectors, and is often done through computationally expensive methods that check the

error for each possible motion vector, with more recent methods improving the search

algorithms to keep the encoding time reasonable. In those cases, only the cost for the

whole block is considered, so the movement estimation is often not accurate at a more

granular level.

However, in many applications, the movement for each pixel is desired. This is typi-

cally referred to as optical flow. A recent application that also shows potential for video

coding is frame interpolation, where by computing the movement for each pixel between

the two frames, it is possible to estimate the missing frame with remarkable accuracy,

21

2 Related Methods

which was demonstrated in [42]. It is even possible to use the MVs that were computed

during encoding in the construction of the optical flow, increasing the speed of compu-

tation greatly [43]. While the computed interpolated frame could be used in encoding

with a new kind of prediction, [43] is still too slow, especially as it puts a large burden

not only on the encoder but the decoder as well. While methods that increase encoder

complexity will easily be included in the standard if they offer a good improvement in

BD-R, decoder complexity increases the complexity of decoder hardware that has to

support it, while hardware encoders can choose to not use specific modes if they want.

For example, a fast encoder can skip RDO and modes that are used rarely, decreasing

efficiency but increasing speed a lot.

One of the most famous and popular methods for estimating optical flow is the Lucas-

Kanade method [44]. It has been used a lot and gives satisfying results for simple

movements. It is quite fast, which is one of the reasons for its popularity. On the other

hand, there are some methods that achieve much higher accuracy, like the state-of-the-

art EPICFlow [42]. However, they rely on finding common points in the two images,

and this takes over 15 seconds in a 1024× 436 pixels image, even with a fast CPU. This

is too slow for practical encoding applications, which aim to achieve real time processing

or at least process several frames per second.

Ce Liu’s method [45] offers results that are better than Lucas-Kanade, but is not too

slow to be impractical. It is based on [46] and [47]. The increased speed is achieved by

replacing the costly solving of large linear systems by a conjugation gradient method.

This means using several filtering and weighting steps, which are easy to parallelize and

process with vectorized instructions. On a similar CPU as used in the EPICFlow test,

processing takes less than a second without multi-threading. The number of steps and

the weighting can be adjusted. Reducing the number of steps decrease accuracy but

improves the processing speed greatly.

22

3 Reducing the Defects in Video through

Postprocessing

This work expands on my master thesis [41], which performed filtering on blocks based

on block boundaries. This presents a different filtering approach that targets all blocks.

3.1 Change of the input

In the previous method only blocks around a block boundary were filtered, which reduced

its effectiveness with Random Access mode, as it usually uses larger blocks compared to

All Intra mode. Moreover, this made learning difficult because fewer blocks were avail-

able for training. It was also running the filter in two directions, requiring transposition

of the block data to use it with the same filter.

3.1.1 Filtering the whole image

In HEVC, blocks are organized in a quad-tree structure, the largest blocks being 64×64

samples large, and the smallest 4×4, but only some blocks are allowed to be that small.

In practice, 8× 8 are more common.

Because of this, we decided to center the filtered blocks on the 8 × 8 boundary. In

other words, the center of the blocks can be defined by
[

N × 8 M × 8
]t

, where both

N and M are strictly positive integers.

Instead of running the filter on only some blocks, the filter runs on every possible

block in the image, allowing for more improvement in the Random Access mode.

The previous filter was only focused on the luma component, but with this architecture

it is easier to process chroma as well, so it was included. The input blocks are the same

for both luma and chroma samples, with filtering parameters trained separately.

23

3 Reducing the Defects in Video through Postprocessing

Figure 3.1: Representation of filtered blocks (in red) and input blocks (in green). Only
two input blocks are represented for clarity. One overlaps every filtered block

3.1.2 Size of input blocks

When filtering errors out of data, having more context is usually better. However,

this also incurs a significant cost. We decided on filtering 8 × 8 blocks, with a larger

12 × 12 input for context. The outputs do not overlap, which is critical to allow fast

processing. In contrast to the filters in AVC and HEVC, there is no required order when

processing the blocks, which helps parallelism greatly. Figure 3.1 shows how the blocks

are organized to avoid overlapping.

3.2 Architecture of the proposed method

The architecture is inspired from the one used in my master thesis, with a few key

changes that allow better improvement.

3.2.1 Bidirectional filter

In the previous work, the filter was designed to work on only one edge. To this end, it

has a 12 × 4 convolution in the direction of the boundary. As with the present blocks

24

3 Reducing the Defects in Video through Postprocessing

boundaries can be present on either (or none) of the possible directions, a symmetric

structure is preferable.

The first convolution was thus changed to 7 × 7. The following fully connected layer

was adjusted in size to match the different input.

3.2.2 Feature layers

The previous solution used 32 features layers, which already slowed down the processing

greatly when processing only a subset of the total amount of possible blocks. To keep

processing time reasonable, we decided to reduce the amount of feature layers to 8. This

would make near real time processing possible on a standard computer using CPU.

The proposed method as it is described here was published in the journal IIEEJ

Transactions on Image Electronics and Visual Computing in the June 2009 issue [48].

3.3 Implementation and measured speed

We measured the speed of the proposed filter with our initial optimization using Matlab

and the library MatConvNet [49]. It performed slightly better than the previous method,

with 2.5 fps per thread on the test computer.

Using Intel’s MKL library [50], we achieved better performance through more opti-

mized routines. With a better implementation, we achieved over 5 fps per thread, with

32 fps when using the whole CPU.

This is not yet completely real time as the processor needs to decode the image as

well, but it shows that with either more modern CPUs with more cores or a GPU

implementation, real time is quite realistic.

The fully connected layer is very easy to compute efficiently, but we did not find an

optimized 7× 7 convolution, which is not able to perform as many operations per cycle

as the fully connected layer. It could be possible to change the size of the convolution

to get more speed, but this was not investigated in the present study.

25

4 Estimation of Affine Motion Parameters

The key to fast estimation of affine motion parameters lies in two aspects. First, finding

good initial estimations that are very close the the optimal MVs, and second an iteration

method that converges quickly towards the optimal value without being too slow. The

best way to save time is to avoid computing motion parameters when they are not

needed, which will be the focus of Section 4.1. The following, Section 4.2 will focus on

using optical flow to find good initial estimations. Then, Section 4.3 will describe the

iteration algorithm that converges towards the desired MV. The last, Section 4.4, will

detail the implementation in HEVC and some compromises made for preserving speed.

To allow easier comparison with existing methods on solely parameter estimation over

variances in the implementation of the coding and representation of transforms, the

computed transform use the two 3-parameter models proposed by [16].

4.1 Optical flow based segmentation and transform selection

4.1.1 Choice of the optical flow method

In this thesis, the optical flow method from Ce Liu [45] was considered because the

computation cost varies solely on the size of the input image and the parameters for the

number of iterations. This makes it easier to tune for a compromise between time and

accuracy.

It also offers very nice properties for hardware implementation, as all the operations

are highly parallel in nature, which makes them very easy to implement in hardware.

Computing optical flow requires two images. When using it in an encoding context,

the first picture is already known by the encoder/decoder, and further referred to as

reference picture, while the second is the picture we are currently encoding or decoding,

further referred to as target picture. An example using colors for visualization of the

26

4 Estimation of Affine Motion Parameters

(a) Reference picture (b) Target picture

(c) Visualization of the optical flow between 4.1a and 4.1b. Color intensity shows absolute
value of the motion vector and tint the direction

Figure 4.1: Overview of the optical flow process

optical flow can be seen on Figure 4.1.

4.1.2 Ignoring some blocks

As computing affine transforms require more processing power than normal ones, a good

way to limit the additional processing is to estimate when it will not be able to get good

results and avoid the costly affine motion estimation in the first place. To this end, a

very simple heuristic, fast to compute is used: the variance of the optical flow.

27

4 Estimation of Affine Motion Parameters

x̄ =

N
∑

i=0

N
∑

j=0

flowx(i, j)

N2
(4.1)

σ2

x =
N
∑

i=0

N
∑

j=0

(flowx(i, j)− x̄)2

N2
(4.2)

ȳ =

N
∑

i=0

N
∑

j=0

flowy(i, j)

N2
(4.3)

σ2

y =

N
∑

i=0

N
∑

j=0

(flowy(i, j)− ȳ)2

N2
(4.4)

σxy =
√

σ2
x + σ2

y (4.5)

When the variance is below a certain threshold, the optical flow is mostly identical for

the whole block, which means translation will work perfectly. Conversely, when it is too

high, it usually correlates with object boundaries. Splitting the block would be advised.

Lower variance can happen even in case of large discontinuities, but that is most likely

to happen if only a few pixels should belong to a different block, but the overhead of

coding these pixels separately would not be worth the entropy saved by the reduction

in the residual. Between those two extremes, affine motion estimation is likely to offer

gains. The estimation of affine motion parameters will be detailed in Section 4.2

In this thesis, the thresholds for σxy are 0.1 and 4. The mode decision can be sum-

marized with the following:















translation if σxy < 0.01

affine if 0.01 < σxy < 4

split if σxy > 4

(4.6)

For the translation case, it is possible to reuse x̄ and ȳ as initial values and perform

refinement with existing methods. Square search was used because it is fast and delivers

good results.

When variance is very high, splitting the block becomes necessary, but most encoders

require a very expensive search for all possible splits, which require a lot of time. If the

splitting threshold is met, segmentation is performed using K-Means. The flows for the x

28

4 Estimation of Affine Motion Parameters

(a) Variance σxy, scaled for a
maximum level of 4

(b) Blocks with variance over
the threshold

(c) Result of k-means segmentation
on each block from 4.2b

Figure 4.2: Overview of block segmentation algorithm

and y displacements for the given region are combined in an array of (x, y) pairs, then fed

into the algorithm, with a number of classes of 2. This results in a partition of the block,

with each class belonging to a different object with a different motion. An example of

such partition can be seen in Figure 4.2, and a comparison of the prediction results in

Figure 4.3. It shows that with the proposed split around the face, the discontinuities in

motion that created sharp edges in the left picture are less present in the second one. As

both cases still use only translation, the prediction is not perfect even with the correct

block segmentation.

4.2 Optical flow based transform estimation

4.2.1 Transform computation

Computing a transform requires three images: a reference picture, the target picture and

a picture representing the optical flow. However, instead of using the reference picture

after reconstruction by the encoder, the original picture is used. This offers two advan-

tages: first, this allows optical flow to be computed before the picture is encoded, and

second, the Motion Estimation is more accurate and follows the real movement better,

especially when the quantization parameter is large and the reconstructed image is of

lower quality. As the optical flow estimation of movement tracks the actual movement

of pixels, it can be thought that the ground truth is identical for both before and after

encoding pictures.

After obtaining an approximate displacement for each pixel in the picture, the esti-

mation is performed for each block. The estimation is based on resolving the following

29

4 Estimation of Affine Motion Parameters

(a) Target picture predicted with a translation
for each block

(b) Target picture predicted with two transla-
tions for split blocks

Figure 4.3: Comparison of prediction results when splitting or not blocks

linear equation for the 4-parameter (Z&R) model transform:













x′
0

y′
0

x′
1

y′
1













=













a b 0 0

−b a 0 0

0 0 a b

0 0 −b a

























x0

y0

x1

y1













+













vx

vy

vx

vy













(4.7)

where
[

x0 y0

]t

and
[

x1 y1

]t

represent the coordinates of two points in the tar-

get picture and
[

x′
0

y′
0

]t

and
[

x′
1

y′
1

]t

the corresponding two points in the reference

picture.

For computing the parameters a and b, at least two points are required. Using x =

x1 − x0 as the difference in the input points and x′ = x′
1
− x′

0
as the difference between

the output points, we can estimate a and b with the following equations:

a = 1 + s =
xx′ + yy′

x2 + y2

b = −r =
x′y − xy′

x2 + y2

(4.8)

30

4 Estimation of Affine Motion Parameters

After we get the values of a and b, finding
[

vx vy

]t

is easy, by using them in the first

two lines of Equation 4.7:

vx = x′0 − ax0 − by0

vy = y′0 + bx0 − ay0
(4.9)

To get good results, the points should be far enough apart, so points around the edge

of the current block are used. If the points are too close together, cancellation is likely

to occur, as the subpixel motion estimation through optical flow is imprecise. To remove

the risk of bad estimations from outliers, the values of a and b are estimated for multiple

couples of points, and the median value is retained. When the block is on the edges of

the image and contains pixels outside the source picture, which happens when the input

size is not a multiple of the block size, points that are within the input frame are used.

4.2.2 Transform Selection

When using a 3-parameter transform like in [16], it is necessary to evaluate both models

to pick the best. This doubles the required processing and makes finding parameters

quite slow. In the proposed method, one transform is selected according to the computed

parameters.

To see which 3-parameter model would fit best, the absolute values of s and r are

compared, and the model corresponding with the highest value is selected. In case neither

is bigger than a small threshold, affine motion estimation is skipped for the current block.

In those cases, affine transforms would not give enough additional precision to outweigh

the cost of coding them. By skipping those evaluations, time can be saved in the encoding

process.

4.3 Transform Iteration

While the parameters obtained from the initial estimation can be good and often superior

to the translation parameters, they are rarely optimal, so further refinement is desired.

31

4 Estimation of Affine Motion Parameters

4.3.1 Initial Iteration

While [16] goes over all possible values for the motion parameter with a step size of

4.∆,where ∆ is the quantized step size, only neighbors of the initial predicted value are

investigated. The refinement uses two steps, first of 2.∆, then of ∆. At each step, SAD

is computed for the three values and the best is used for the next. If at the end of the

two steps the best parameter is zero, further refinement is aborted and the translation

model is used.

4.3.2 Further Refinement

After the initial iteration is completed, the encoder evaluates neighboring translation

positions at a quarter-pel distance. The best in the nine MVs is picked as the final

transform.

4.3.3 Bad Estimation Detection

Sometimes optical flow gives bad results, especially when the motion was scaled too

much. In the event that the predicted value shows a SAD too large compared with the

translation estimate, parameters are estimated with the full search as described in [16].

The estimation is performed only for the transform determined by the optical flow, as

it showed great accuracy at finding the best transform model. We propose to perform

the full search if the initial estimation SAD is larger than the translation SAD.

4.4 Implementation in HEVC

Implementing a new transform in HEVC is a complex process, and reimplementing

related methods for comparison purposes adds further additional work. Tsutake et

al. [16] agreed to share their code to help with the implementation. They also shared

their implementation of [15] and a 3-parameter variant of it. In the proposed method, the

entropy coding and transform computations are left identical, with the major changes

being the computation of optical flow and a different algorithm for the motion parameters

estimation. We published the results of the HEVC implementation in the journal Applied

Sciences in January 2020 [51].

32

4 Estimation of Affine Motion Parameters

4.4.1 Distance Scaling

To avoid computing optical flow on every picture in the reference picture list (RPL),

optical flow is computed for only the first frame in the RPL, and distance scaling is used

for other pictures.

To predict values for other frames in the picture reference list, the displacement is

scaled proportionally to the number of frames. This approximation is typically accurate

enough when the movement stays similar. For example, if the first reference picture is

at a distance of 1 and the second at a distance of 2, the displacement values are doubled.

This works similarly to the distance scaling of HEVC or the one used in JEM with the

multiple MVs, except that it runs on the estimated MVs from the optical flow.

For the translation parameters, experiments showed that using the result from the

translation ME yielded better results than the estimation from optical flow, especially

when motion scaling is required.

4.4.2 Parallel Processing

The Optical Flow method requires no encoding information and can be performed while

other frames are being encoded. In a typical situation, while the first frame, which has

to be Intra, is being encoded, there is enough time for the optical flow computation for

the second frame, so if enough CPU cores are available, it can be computed before the

need for it arises. If a single frame delay is acceptable, this method will allow saving

a significant amount of time in the main encoding loop that iterates over all blocks,

as it must run in order. Even in the case where this one frame delay is unacceptable,

the optical flow method used can be parallelized very well, and as it performs only

basic mathematical operations with no branching, can easily run on a GPU or dedicated

hardware.

4.4.3 Using gradient for iteration

As the gradient method showed better results than Tsutake’s, we decided to try to use it

for refinement. We used the 3-parameter gradient code they provided and changed the

transform model decision. Instead of computing both transforms and measuring which

one gives the best results after finding the optimal values for each, we decide which

33

4 Estimation of Affine Motion Parameters

transform model to use based on the optical flow estimation.

4.5 Improvement of Entropy Coding

The code we obtained from Mr. Tsutake did not include the differential coding for coding

the affine parameters. As it should offer some efficiency gains without making coding

longer, I have worked on implementing it on top of the proposed method. The entropy

coding as described in [16] can also probably be improved further, using some techniques

that are used in VVC as described in [20]. First, we implement the differential coding as

proposed by [16], then we propose a Affine Motion Vector Prediction (AMVP) framework

for AMP in HEVC.

4.5.1 Differential coding using neighboring affine predicted blocks

As modes tend to be the same in neighboring blocks, we change the signaling to signal

more efficiently the transform mode. If at least one of the neighboring blocks use affine

prediction, we check if one uses the same transform model as the current block. In this

case, the first neighbor, using the MVP candidate list order, is used as reference. Coding

uses a sign bit followed by truncated unary coding, as described in [16].

When no neighbor or neighbors use only the other transform type, coding falls back

to the original method coding the parameter from scratch.

4.5.2 Virtual Affine Motion Vector Prediction Candidate

When no neighboring blocks use affine prediction, we would still want to predict affine

parameters as [12, 20] do by using the differences in neighboring MVs. We compute the

affine parameters a and b with Equation 4.8, setting mv0 as the top left point of the

block and mv1 as the top right point. If either block uses affine prediction, the MV at

the edge of the block is estimated by applying the transform. We also use motion scaling

for the MVs if the neighboring block uses a different reference picture than the current

block. As with the transform mode selection estimation, the biggest between r and s is

evaluated and the corresponding transform with the associated parameter is added to

the candidate parameter list.

34

4 Estimation of Affine Motion Parameters

It is possible to simplify Equation 4.8 as follows

a = 1 + s =
mvx

1
−mvx

0

w

b = −r =
mvy

1
−mvy

0

w

(4.10)

using x = w, y = 0, x′ = mvx
1
−mvx

0
and y′ = mvy

1
−mvy

0
. w is the width of the block,

which is also the distance between the two MVs.

In case neither r or s are different from zero, the virtual candidate is unavailable.

4.5.3 Proposed AMVP Framework

To avoid having to code the affine model to use and the parameters from scratch, the best

solution is to predict them accurately. The previous solution using the difference with

the neighbor still required to code the affine model. We create a AMVP candidate list

that will require coding to only use one symbol for the index in the list and another for

the difference, which should be smaller than with the previous methods. We populate the

AMVP candidate list with neighboring affine predicted blocks first, similar to [20], then

add the virtual AMVP candidate. If the list is not full, we add zero-valued transform of

the other type if only a single transform type was present. Like with normal candidates,

if one candidate would be equal to another it is skipped and not added to the list.

If no candidates outside the zero-valued candidates are found, coding is performed

with the two flags for the affine model and the sign of the parameter as described in [16].

This happens for the first block in the picture, as there are no already coded neighbors

to use. Virtual candidates are also unavailable for the top row as only one neighbor is

available.

35

5 Results

5.1 Source Videos

In the following experiments, the videos were sourced from two datasets: the ITE/ARIB

Hi-Vision Test Sequence 2nd Edition [52] and the Derf Test Media Collection [53]. The

list of sequences and the motions they present is listed in Table 5.1. Sequences from [52]

have their sequence number appended to their name for easier referencing.

Table 5.1: Video Sequences

Sequence Name Motion Frame Number

Ginko trees (s201) Zoom 100–159
Truck train (s202) Zoom 100–159
Cosmos flowers (s203) Camera tilting 100–159
Fountain dolly (s209) Dolly + Panning 100–159
Basketball (s214) Panning 100–159
Twilight scene (s215) Zoom 100–159
Horse racing (s218) Fast panning 100–159
Rotating disk (s251) Rotation 100–159
Colorful world (s259) Various 100–159
Fountain (s265) Rotation 100–159
Station Zoom 1–313
Stockholm Panning 4–604
Blue Sky Rotation 1–217
FungusZoom Zoom 1–240
Tractor Rotation + Zoom 1–690

5.2 Post filtering of HEVC videos

In this experiment, we will evaluate how much the proposed method can increase PSNR

of videos encoded using HEVC. We also compute the BD-R [24] of the proposed method,

36

5 Results

symbolizing how much bitrate could be saved by the use of the filter. We did so for every

component, and also calculated an overall gain regrouping luma and chroma that is used

in a famous paper for comparing encoding efficiency [3]. The formula used to compute

the aggregate PSNR PSNRYUV is:

PSNRYUV = (6× PSNRY + PSNRU + PSNRV)/8 (5.1)

When calculating the BD-R, we use the aggregate PSNR for the last value using the

aggregate. We used all sequences from [52], split in four groups for cross-validation. For

encoding, we used the open source and freely available x265 encoder [54], which is used

a lot in the industry, for example at Netflix where they have studied its performance

for their content in depth [55]. We used two encoding modes, inspired by All Intra and

Random Access standard modes for the reference HEVC encoder HM. The QP values

used mirror the standard test conditions with 22, 27, 32, 37 used.

5.2.1 All intra mode

The results we obtained when encoding the sequences with the All Intra configuration

are presented in Tables 5.2 and 5.3. The former shows the BD-R results and the second

the PSNR values obtained from the filter for 2 QP values, 22 and 32. Figure 5.1 shows

the Rate-Distortion curve of the proposed filter compared to HM.

With the exception of on sequence (Twilight scene), each sequence was improved,

especially the luma component, with over 4% reduction in bitrate for the sequence

rotating disk. The chroma component shows less improvement on average, but outside

of one outlier, it showed an improvement of at least half a percent, with 5.7% on the

Basketball scene. The median shows a much better typical result than the average,

showing how much the outlier skews the results. As this sequence is very dark while

others are typically quite bright, it is likely the training on the other sequences was

inadequate for this one. A larger dataset including similar sequences would be likely to

improve the results.

As it could be expected, sequences encoded with a low bitrate, having a lower PSNR,

are more improved by the filter.

Figure 5.2 shows the improvement when using the filter for the Basketball and Rotating

disk sequences. The visible encoding artifacts from the low-bitrate encoding are less

37

5 Results

Table 5.2: Filter results for All Intra mode

Sequence Y U V YUV

s201 (Ginko trees) -2.6% -2.7% -0.8% -2.4%
s202 (Truck train) -1.6% -2.7% -2.8% -1.7%

s203 (Cosmos flowers) -2.9% -1.4% -0.5% -2.6%
s209 (Fountain) -1.4% -1.7% -0.7% -1.4%
s214 (Basketball) -1.9% -5.7% -3.4% -2.5%

s215 (Twilight scene) 3.0% 16.0% 4.2% 4.2%
s218 (Horse racing) -1.1% -1.2% -1.5% -1.1%
s251 (Rotating disk) -4.4% -1.8% -1.0% -3.9%
s259 (Colorful World) -3.5% -2.9% -1.2% -3.2%

s265 (Fountain) -0.9% -3.2% -2.9% -1.0%

Median -1.7% -2.2% -1.1% -2.1%
Average -1.7% -0.7% -1.1% -1.6%

visible and more smoothed out.

5.2.2 Random access mode

The results we obtained when encoding the sequences with the All Intra configuration

are presented in Tables 5.4 and 5.5. The former shows the BD-R results and the second

the PSNR values obtained from the filter for 2 QP values, 22 and 32. Outside of one

sequence (Twilight scene), which suffers from the same issues as with the All Intra case,

all other sequences were improved with on overall -1.4% PSNRYUV. BD-R reduction. In

most cases, the luma component is improved the most with an average of -1.9% BD-R

improvement and up to -4.9%.

Compared to All Intra, there is less improvement on the chroma component. It could

be related to the lack of training, as chroma has less blocks to work with in a sequence

because of chroma subsampling, and in Random Access the various types of frames and

the different levels of degradation make learning harder.

It could be more efficient to train for each frame type, but this would require more

sequences to have enough data for sufficient training.

38

5 Results

Figure 5.1: Rate-Distortion Curve of the Rotating Disk sequence with the proposed filter
in All Intra mode

(a) Picture without filtering (b) Picture with the proposed filter

Figure 5.2: Comparison of images from Basketball and Rotating Disk sequence with and
without applying the proposed filter

39

5 Results

Table 5.3: PSNR values for two different QP values on each sequence for the proposed
filter and reference HEVC (All Intra)

QP22 QP32
Reference Proposed Method Reference Proposed Method

Y U V Y U V Y U V Y U V

Ginko trees 40.69 40.92 40.28 40.84 40.97 40.30 31.74 35.32 33.96 31.97 35.46 34.00

Truck train 41.23 41.55 42.63 41.37 41.56 42.65 33.09 38.72 39.43 33.16 38.77 39.49

Cosmos flowers 40.70 40.27 40.70 40.93 40.28 40.69 32.65 35.37 36.01 32.87 35.44 36.04

Fountain 41.25 44.61 43.87 41.33 44.61 43.87 35.99 43.50 40.80 36.03 43.52 40.81

Basketball 42.17 44.87 44.17 42.22 44.99 44.21 37.43 39.83 38.86 37.54 40.16 39.06

Twilight scene 41.31 41.85 41.55 41.24 41.76 41.52 37.02 39.11 37.37 36.91 38.63 37.18
Horse racing 42.25 43.84 46.19 42.27 43.85 46.20 37.69 39.65 41.64 37.75 39.71 41.71

Rotating disk 41.49 42.50 43.32 41.68 42.52 43.34 35.62 39.59 38.57 35.91 39.65 38.62

Colorful World 40.84 40.96 41.14 41.04 41.01 41.17 33.92 35.51 34.58 34.14 35.68 34.66

Fountain 41.42 43.43 44.72 41.49 43.44 44.73 36.18 42.64 42.37 36.19 42.67 42.44

Average 41.33 42.48 42.86 41.44 42.50 42.87 35.13 38.93 38.36 35.25 38.97 38.40

Table 5.4: Filter results for Random Access mode

Y U V YUV

s201 (Ginko trees) -2.1% -2.0% -1.4% -2.0%
s202 (Truck train) -0.8% -0.3% -1.1% -0.8%

s203 (Cosmos flowers) -4.7% -0.9% -0.3% -4.1%
s209 (Fountain) -1.5% -0.8% -0.3% -1.4%
s214 (Basketball) -1.8% -2.7% -1.5% -1.9%

s215 (Twilight scene) 3.2% 17.2% 6.8% 5.1%
s218 (Horse racing) -1.2% 0.1% -0.1% -1.0%
s251 (Rotating disk) -4.9% -0.3% -0.1% -4.0%
s259 (Colorful World) -4.4% -0.2% 1.4% -3.1%

s265 (Fountain) -1.2% -1.4% -1.0% -1.2%

Median -1.6% -0.5% -0.3% -1.6%
Average -1.9% 0.9% 0.2% -1.4%

40

5 Results

Table 5.5: PSNR values for two different QP values on each sequence for the proposed
filter and reference HEVC (Random Access)

QP22 QP32
Reference Proposed Method Reference Proposed Method

Y U V Y U V Y U V Y U V

Ginko trees 38.91 41.09 41.00 38.95 41.09 41.06 32.71 36.28 34.88 32.85 36.36 34.92

Truck train 39.77 41.98 43.18 39.83 41.98 43.20 34.70 39.20 39.99 34.72 39.20 40.00

Cosmos flowers 39.22 39.80 40.57 39.46 39.80 40.58 32.04 35.65 36.22 32.26 35.67 36.23

Fountain 40.49 44.50 43.65 40.56 44.50 43.65 35.74 43.68 40.68 35.77 43.68 40.68

Basketball 41.41 44.87 43.92 41.46 44.89 43.94 37.60 40.65 39.47 37.65 40.75 39.53

Twilight scene 40.27 41.51 41.23 40.19 41.40 41.14 36.89 38.73 37.20 36.82 38.43 37.06
Horse racing 41.51 43.91 46.69 41.53 43.91 46.70 37.89 40.48 42.52 37.92 40.47 42.52

Rotating disk 40.54 42.74 43.91 40.68 42.74 43.92 36.36 40.25 39.53 36.52 40.25 39.51
Colorful World 39.57 41.02 41.78 39.68 41.00 41.76 35.21 36.55 35.81 35.38 36.58 35.74
Fountain 40.60 43.42 44.65 40.66 43.42 44.66 35.60 42.63 42.74 35.66 42.63 42.75

Average 40.23 42.48 43.06 40.30 42.47 43.06 35.47 39.41 38.90 35.56 39.40 38.90

41

5 Results

5.3 Block segmentation and transform selection

The first experiment with optical flow aims to evaluate the accuracy of the segmentation

of blocks using k-means as described in Section 4.1. Using only translations for blocks

with splitting around object boundaries, Tables 5.6 and 5.7 show the PSNR improve-

ment of the prediction. No refinement is done on the prediction, the output from ME

using optical flow only is used. Outside of the Fountain sequence, which shows a large

improvement in the two cases, the other two sequences show a much larger improvement

for the 64 × 64 blocks case. While in the case of larger blocks the reference method

which does not split the blocks shows a noticeable and expected decrease in prediction

accuracy, the proposed method manages to split blocks correctly and maintains the same

prediction accuracy. This proves the optical flow is able to estimate object boundaries

accurately enough for encoding purposes. Figure 5.3 shows the results of segmentation

on the Truck Train sequence.

Table 5.6: Increase of predicted image PSNR with 32× 32 blocks

Sequence Reference Proposed Increase

Truck Train 26.22dB 26.28dB 0.062dB
Fountain 32.33dB 32.85dB 0.522dB
Stockholm 25.27dB 25.55dB 0.288dB

Table 5.7: Increase of predicted image PSNR with 64× 64 blocks

Sequence Reference Proposed Increase

Truck Train 25.95dB 26.26dB 0.312dB
Fountain 32.35dB 32.86dB 0.504dB
Stockholm 24.91dB 25.48dB 0.572dB

5.4 Optical flow estimation of motion parameters

The second experiments aims to evaluate the accuracy of the predictions provided by

the optical flow-based estimation and measure the improvement from the iteration pro-

cess. Only the blocks that were classified as affine in Equation 4.6 are predicted with

affine transforms, the rest either used the proposed segmentation with translation for

each subblock or translation for the whole block. For comparison purposes, outside of

42

5 Results

(a) Reference Picture (b) Target Picture

(c) Result of k-means segmentation on each 32× 32 block for the area around the train

Figure 5.3: Segmentation on the Truck Train sequence

the proposed 3-parameter transform selected automatically, the Z&R model and affine

prediction are used to compare the prediction accuracy. For the Z&R transform, the

values are computed with Equations 4.8 and 4.9 as for the 3-parameter transform, but

without zeroing a parameter. For the affine transform, the OpenCV library [56] func-

tion getAffineTransform is used. For refinement, the proposed method uses the 2-step

refinement described in Section 4.3. All other methods use refinement on the transla-

tion parameters only, keeping the computation time roughly equal for each method. A

summary of the transforms used and the refinement methods is presented in Table 5.8.

Table 5.9 shows the prediction accuracy of each transform. Figure 5.4 shows the differ-

ence between the translation-based prediction and the proposed 3-parameter transform

after refinement on the Rotating Disk sequence. The discontinuity around the rotating

disk are much smaller with the proposed transform, which shows in the greatly increased

PSNR compared to the translation.

43

5 Results

Table 5.8: Overview of the different tested transforms

Transform Dimension Model Parameter Parameter
Estimation Refinement

Translation 2

[

x′

y′

]

=

[

x
y

]

+

[

vx
vy

]

Average of
values in block

Square Search

Zoom or
Rotation
(proposed)

3

[

x′

y′

]

=

[

1 + s 0
0 1 + s

] [

x
y

]

+

[

vx
vy

]

[

x′

y′

]

=

[

0 −r
r 0

] [

x
y

]

+

[

vx
vy

] Equation 4.8 Proposed

Zoom and
Rotation

4

[

x′

y′

]

=

[

a b
−b a

] [

x
y

]

+

[

vx
vy

]

Equation 4.8
Square Search

(
[

vx vy
]t

only)

Affine 6

[

x′

y′

]

=

[

a b
c d

] [

x
y

]

+

[

vx
vy

]

OpenCV function
Square Search

(
[

vx vy
]t

only)

Table 5.9: Increase of predicted image PSNR with 64× 64 blocks

Sequence Proposed ZR Affine Translation Transform Type Motion

Fountain 35.18 35.14 34.92 34.80 Scale 3 Rotation
Rotation 79

Station 24.16 24.00 23.92 23.82 Scale 426 Zoom

Rotating disk 24.88 24.76 24.31 24.08 Scale 45 Rotation
Rotation 273

Twilight scene 29.41 29.41 29.40 29.37 Scale 54 Zoom
Rotation 36

Cosmos flowers 22.32 22.35 22.48 22.20 Scale 160 Camera
Rotation 183 tilting

44

5 Results

(a) Translation

(b) Proposed 3-parameter transform

Figure 5.4: Comparison of prediction result on Rotating Disk sequence

45

5 Results

5.5 Evaluation of the implemented method in HEVC

5.5.1 Testing conditions

The HEVC reference encoder HM14 [7] is used as the anchor to estimate the Bjøntegaard-

Delta Rate (BD-R) [24] estimated bitrate savings and encoding time to compare the

various methods. The compared reference methods are [16], their implementation of [15],

and a 3-parameter variant of the gradient method to compare the parameter estimation

only as it uses the same entropy coding as [16]. For the encoding settings, the same

settings as [16] are used. The encoding mode is set to Low Delay P, and the QP values

are 22, 27, 32, 37.

To compute the encoding time, we used the following formula:

∆T =
Ttarget − THM14

THM14

(5.2)

For results aggregating different encoding quality settings, the extra encoding time

∆T is averaged over all QP values.

5.5.2 Fast mode decision

The first experiment evaluates the mode decision accuracy. In this experiment, the

iteration uses the same process as [16], but evaluates only one transform using the optical

flow information to decide which is likely better. Table 5.10 shows how the proposed

method compares to [16] and [15]. On average, the proposed method loses less than 1%

in BD-R, but the required encoding time goes down from over 20% to just over 11%,

about half of the time, which is expected from having to evaluate only half the affine

encoding modes.

However, when compared to the gradient approach, it fails to be either faster or

more efficient. In [16], the gradient method had a similar encoding time as Tsutake’s

Block Matching approach. It is likely that some of the speed gains of the gradient

approach comes from the different computer and compiler. The gradient operations

can be vectorized for a huge performance gain with a newer processor and compiler

supporting the extensions. In the present thesis, Microsoft’s latest version of Visual

C++ 2019 (VS14.2) was used with optimizations for the most recent instructions set

46

5 Results

extensions.

Table 5.10: Comparison of coding efficiency and encoding speed in terms of BD-Rate
and ∆T

Sequence name Proposed (model only) Tsutake [16] Heithausen [15]
BD-R[%] ∆T [%] BD-R[%] ∆T [%] BD-R[%] ∆T [%]

Station -23.75 14.54 -24.76 24.60 -25.62 12.81
Fountain -0.15 7.38 -0.16 16.20 -0.24 10.49
Fungus Zoom -16.18 19.77 -16.37 26.70 -15.23 17.35
Rotating Disk -24.07 10.23 -26.77 20.42 -29.28 11.24
Blue Sky -4.74 8.78 -5.13 19.18 -5.52 9.23
Tractor -3.71 8.44 -4.59 15.24 -4.82 7.68
Twilight Scene -0.26 11.05 -0.39 20.48 -0.51 10.15

Average -10.41 11.46 -11.17 20.40 -11.61 11.28

5.5.3 Fast parameter estimation

While the previous experiment proved that optical flow was able to determine the en-

coding mode accurately, finding good parameters is a more difficult problem. In this

experiment, two approaches will be compared. The first method, estimation only, uses

the process defined in Section 4.3, while the second method, mode + hint, performs

the bad estimation detection and goes back to [16] when the initial estimated proves

inaccurate.

The BD-R estimates and encoding time results are shown in Table 5.11, with mode

only representing the previous experiment method. Table 5.12 shows the PSNR (dB)

for all components along the bitrate (bits/s) and encoding time (s) for each QP value.

It appears that the initial estimation is often not good enough, as the results show a

clear degradation in encoding efficiency, which is not acceptable for the minor increase

in speed. For the second experiment, the encoder often ends up trying more values

as the initial estimation is not good enough. Better heuristics for switching iteration

modes are required. Looking at the detailed results in Table 5.12 with PSNR values

for all variants, it appears that using an initial estimation can give an advantage for

encoding time. However, it is still too inaccurate to give consistently good results. An

overview of the coding efficiency for the sequence Station using Rate-Distortion curves

47

5 Results

Table 5.11: Comparison of coding efficiency and encoding speed in terms of BD-Rate
and ∆T for the variants of the proposed method

Sequence name Estimation Model + hint Model only
BD-R[%] ∆T [%] BD-R[%] ∆T [%] BD-R[%] ∆T [%]

Station -18.03 14.32 -23.75 14.64 -23.75 14.54
Fountain -0.10 5.28 -0.15 7.45 -0.15 7.38
Fungus Zoom -11.38 16.77 -16.18 19.88 -16.18 19.77
Rotating Disk -13.22 6.98 -24.07 10.63 -24.07 10.23
Blue Sky -3.76 5.90 -4.74 9.10 -4.74 8.78
Tractor -1.66 5.79 -3.71 8.00 -3.71 8.44
Twilight Scene -0.27 8.01 -0.26 11.27 -0.26 11.05

Average -6.92 9.01 -10.41 11.57 -10.41 11.46

for each method tested, except the method with hint that showed similar results as the

mode only one can be seen in figure 5.5. All methods give a much higher efficiency that

the reference encoder HM, and while the proposed estimation-based method is clearly

below the others, the proposed method performs very well at all bitrates compared to

the existing methods.

48

5
R
esu

lts

Table 5.12: PSNR and encoding time of the variants of the proposed method

Sequence name QP Proposed (estimation) Proposed (model + hint) Proposed (model only)

bitrate Y Cb Cr Time bitrate Y Cb Cr Time bitrate Y Cb Cr Time
22 2401 41.01 44.36 45.01 9185 2242 41.00 44.36 45.01 10036 2141 41.02 44.38 45.04 10332

Station 27 560 39.18 42.89 43.33 7307 464 39.26 42.91 43.36 8060 441 39.34 42.98 43.44 8332
32 251 37.02 41.85 42.08 6460 214 37.21 41.83 42.13 8106 208 37.33 41.90 42.18 7458
37 132 34.75 41.26 41.38 6077 120 34.92 41.24 41.38 6820 118 35.07 41.23 41.47 7086

22 24344 40.14 43.33 44.41 3417 24333 40.14 43.33 44.41 3562 24333 40.14 43.33 44.41 3598
Fountain 27 12906 37.25 43.01 43.45 2821 12900 37.25 43.02 43.45 2952 12898 37.25 43.02 43.45 3009

32 5995 33.84 42.56 42.48 2315 5998 33.84 42.58 42.47 2445 5997 33.85 42.58 42.47 2501
37 2289 30.72 42.40 41.85 1875 2289 30.73 42.35 41.85 1999 2294 30.73 42.39 41.86 2058

22 426.7 38.43 39.63 40.41 454 406.5 38.41 39.61 40.40 496.9 392.4 38.40 39.61 40.39 497.0
Fungus Zoom 27 118.8 34.54 37.18 38.01 313 106.8 34.53 37.19 38.01 361.7 100.3 34.53 37.20 38.03 372.1

32 40.0 31.02 35.75 36.62 250 34.1 31.01 35.76 36.64 299.8 31.9 31.01 35.81 36.70 308.9
37 16.4 28.17 34.86 35.83 216 13.6 28.16 34.95 35.93 266.6 13.1 28.16 35.00 35.92 278.5

22 6974 39.92 42.43 43.22 2213 6621 39.89 42.40 43.18 2338 6372 39.87 42.41 43.20 2378
Rotating Disk 27 1765 37.65 41.04 40.85 1628 1605 37.70 41.02 40.82 1706 1416 37.75 41.05 40.86 1749

32 683 35.23 40.00 39.10 1342 592 35.32 39.99 39.09 1454 521 35.41 40.03 39.16 1523
37 337 32.51 39.14 37.79 1226 280 32.60 39.13 37.79 1338 258 32.76 39.16 37.82 1399

22 9214 41.83 41.81 43.15 9077 9129 41.82 41.81 43.15 9179 9121 41.82 41.81 43.15 9376
Blue Sky 27 3110 38.89 38.92 40.63 6792 3055 38.92 38.91 40.62 7233 3039 38.93 38.92 40.62 7443

32 1358 36.04 36.57 38.54 5743 1317 36.12 36.56 38.52 6190 1304 36.14 36.58 38.54 6374
37 652 33.13 34.77 36.97 5081 627 33.25 34.78 36.96 5498 621 33.26 34.77 36.95 5718

22 8280 41.46 42.71 43.43 38730 8246 41.46 42.71 43.43 39823 8151 41.46 42.71 43.44 40495
Tractor 27 3164 39.03 40.50 41.07 29761 3132 39.05 40.51 41.08 31486 3090 39.08 40.52 41.10 32113

32 1450 36.46 38.65 39.13 24598 1431 36.50 38.65 39.13 26309 1415 36.54 38.67 39.14 26892
37 725 33.81 37.37 37.82 21161 722 33.85 37.38 37.82 22763 716 33.88 37.37 37.82 23324

22 9626 40.07 41.36 40.92 2181 9634 40.07 41.37 40.93 2272 9633 40.07 41.36 40.92 2316
Twilight Scene 27 2832 38.22 40.00 38.94 1430 2826 38.22 39.99 38.94 1554 2825 38.21 39.99 38.93 1587

32 998 36.18 38.57 36.94 1206 993 36.18 38.57 36.94 1321 993 36.18 38.57 36.94 1369
37 428 34.21 37.61 35.60 1111 430 34.23 37.63 35.61 1219 430 34.22 37.62 35.62 1272

49

5 Results

Figure 5.5: Rate-Distortion Curve of the Station sequence with the various tested meth-
ods

50

5 Results

5.5.4 3-parameter gradient refinement

We also evaluated the proposed mode selection model with the 3-parameter gradient

method that was also included in the code provided by Tsutake et al.

This allows us to compare the two types of refinement to see which works best for 3

parameters in the event you only compute one. Table 5.13 shows the obtained BD-R

with the various methods. Mode (Tsutake) refers to the proposed method deciding which

transform to use then doing refinement with Tsutake’s algorithm. Mode (Gradient) refers

to the proposed method deciding which transform to use then doing refinement with the

gradient approach. We can see that contrarily to [16], where the 3-parameter gradient is

always slower than their method, in this case the opposite is true, the gradient approach

is always faster.

Using gradient for iteration is faster than Tsutake et almost every sequence, and more

efficient in every sequence but two. In the two sequences where it is a bit slower, the

efficiency is increased, especially for Rotating Disk, that gains 2% BD-R efficiency. On

the Station sequence, efficiency is a bit lower, but the loss is minimal and encoding

speed is better. The tractor sequence is highly challenging and the only sequence where

gradient shows a lower efficiency than Tsutake, so lower efficiency is to be expected.

Table 5.13: Comparison of coding efficiency and encoding speed in terms of BD-Rate
and ∆T for the variants of the proposed method

Sequence name Model (Tsutake) Model (Gradient) Tsutake Gradient 3
BD-R[%] ∆T [%] BD-R[%] ∆T [%] BD-R[%] ∆T [%] BD-R[%] ∆T [%]

Station -23.75 14.54 -23.45 12.04 -24.76 24.60 -24.61 22.22
Fountain -0.15 7.38 -0.15 6.29 -0.16 16.20 -0.17 10.07
Fungus Zoom -16.18 19.77 -16.47 17.31 -16.37 26.70 -16.64 23.15
Rotating Disk -24.07 10.23 -26.08 11.30 -26.77 20.42 -27.28 17.06
Blue Sky -4.74 8.78 -5.59 10.91 -5.13 19.18 -5.78 15.52
Tractor -3.71 8.44 -3.26 7.75 -4.59 15.24 -4.09 11.94
Twilight Scene -0.26 11.05 -0.50 12.81 -0.39 20.48 -0.65 16.43

Average -10.41 11.46 -10.79 11.20 -11.17 20.40 -11.32 16.62

51

5 Results

Table 5.14: Comparison of Coding Efficiency and Encoding Speed when using affine
mode skipping compared to only selecting the transform model

Sequence Model only Model + Affine Skip
name BD-R[%] ∆T [%] BD-R[%] ∆T [%]

Station -23.75 14.54 -23.68 13.25
Fountain -0.15 7.38 -0.15 5.10
Fungus Zoom -16.18 19.77 -16.42 19.92
Rotating Disk -24.07 10.23 -23.74 10.01
Blue Sky -4.74 8.78 -4.69 8.93
Tractor -3.71 8.44 -3.38 5.79
Twilight Scene -0.26 11.05 -0.42 10.65

Average -10.41 11.46 -10.35 10.52

5.5.5 Affine parameter evaluation skipping

In the previous experiments, unless neither of the estimated parameter was null, evalua-

tion of the best transform was performed, which made the time savings limited to about

half of the original time. The thresholds for mode selection are large enough to avoid

too much eagerness in the skipping, which would affect greatly efficiency. The results of

the fast skipping algorithm are presented in Table 5.14. With the proposed thresholds,

the proposed method is able to gain 1% of encoding speed with a negligible change in

efficiency. Two sequences were even improved by the proposed method, Station and

Fungus Zoom. Tractor was affected most negatively for efficiency, but it was also sped

up greatly. The tractor sequence is challenging because of the combined rotation and

zooming motion, and the presence of object boundaries that can be hard to estimate

well as they change greatly between frames. Rotation is the most challenging because

of the wheels rotating a lot between frames. This is illustrated in Figure 5.6

5.5.6 Accuracy of mode decisions

To understand better the results we obtained, we investigated the differences in mode

decisions between our proposed method and Tsutake [16]. For each block that would

use affine coding in the reference, we checked what decision would our proposed method

take, assuming it had already taken the same decisions as the reference, as the context

52

5 Results

(a) Current picture (POC N),
wheel angle 136

(b) reference picture 0 (POC
N-1), wheel angle 132

(c) reference picture 1 (POC
N-4), wheel angle 118

Figure 5.6: Three frames extracted from the Tractor sequence. While the wheel is in
a more distant position in 5.6c than 5.6b, an acceptable prediction can be
done with 5.6c using the wheel rotational symmetry

Table 5.15: Evaluation of the model prediction accuracy and affine mode skip accuracy
of the proposed method compared to Tsutake

Sequence Sensitivity Best block rate Correct Affine Skip
name Rotation[%] Zoom[%] Rotation[%] Zoom[%] Model[%] Bad[%] Missed[%]

Station 14.6 90.8 0.5 33.4 89.7 3.3 70.2
Fountain 71.2 8.0 2.0 0.4 59.8 35.3 59.8
Fungus Zoom 0.0 99.2 0.3 35.6 98.4 0.0 100.0
Rotating Disk 86.9 30.9 21.6 1.3 83.9 4.5 89.7
Blue Sky 92.8 20.4 10.2 0.7 88.2 4.5 93.6
Tractor 27.4 58.6 0.9 16.7 57.0 29.3 48.6
Twilight Scene 30.8 38.6 0.8 1.2 35.5 34.4 83.3

adaptivity of entropy coding makes investigating decisions very difficult. For example,

a decision that was different for in a previous block can make the optimal decision

different for the current block. So the proposed method could take the right decision

but be labelled as incorrect because of the different context.

We only evaluate the final coding decisions, so in the case affine prediction was the

best in RDO for a given block size but the split block version, evaluated later performs

better, the right decision will be classified as skipping. The results are presented in

Table 5.15.

Sensitivity shows if the proposed method can detect when a block should use a given

model. It is computed with the following formula:

53

5 Results

sensitivitymodel =
TPmodel

TPmodel + FNmodel

(5.3)

where TPmodel is the true positives for a given model (predicted and used model are the

same), and FNmodel the false negatives (prediction did not chose this model when the

reference used it).

The best block rate is the percentage of blocks that were encoded with this model. The

correct model represents how often when either affine model was the correct answer, the

proposed method chose the right affine model. It weighs the sensitivity values with the

prevalence of each model in the sequence. The skip statistics show when the proposed

method skipped while it should not have, and when it did not skip while it should have.

While both being as low as possible is desireable, it is hard to decrease one without

increasing the other, which creates a trade-off between encoding speed and efficiency.

As the previous results with the model selection show, the proposed method picks

between the two models with a high accuracy. Models that are used less often, like

rotation in Fungus Zoom, have a very low sensitivity because they typically offer little

improvement over the other model. In most cases, the less probable model only uses the

smallest possible transform. In some cases, like Twilight Scene, the efficiency was even

improved. The limitations of the RDO to estimate the best compromise between quality

and bitrate are a likely factor, but it is also possible that the change in occurrence of

some transform models reduced the entropy coding cost by influencing the context model

probabilities. Everything considered, we think the proposed skipping heuristics offer the

best compromise between speed and efficiency. Increasing the lower threshold results in

more skipping but also results in skipping affine transform blocks, and decreasing the

upper threshold similarly results in a lot of too eager skipping. The best values depend

on the sequence, so we have selected values that work acceptably for every sequence in

our dataset.

5.6 Improved Entropy Coding

We implemented the differential coding as proposed in [16] to evaluate the gains it offers.

We also implemented our proposed affine Affine Motion Vector Prediction (AMVP), to

evaluate its gains when compared to the more simple differential coding. Table 5.16

shows the difference between the three entropy coding methods that have been imple-

54

5 Results

Table 5.16: Comparison of Coding Efficiency and Encoding Speed with different entropy
coding methods

Sequence Parameter coding Differential coding AMVP
name BD-R[%] ∆T [%] BD-R[%] ∆T [%] BD-R[%] ∆T [%]

Station -23.68 13.25 -24.32 12.88 -22.32 11.65
Fountain -0.15 5.10 -0.12 5.92 -0.12 4.03
Fungus Zoom -16.42 19.92 -16.58 18.92 -16.49 18.52
Rotating Disk -23.74 10.01 -24.44 9.41 -23.77 9.20
Blue Sky -4.69 8.93 -4.96 8.29 -4.54 10.41
Tractor -3.38 5.79 -3.46 4.95 -3.25 4.46
Twilight Scene -0.42 10.65 -0.37 9.46 -0.34 9.21

Average -10.35 10.52 -10.57 9.97 -10.12 9.64

mented: parameter coding, differential coding using a neighbor, and AMVP.

Even without accounting for prediction that could use different reference pictures,

the differential coding is able to increase coding efficiency for no additional encoding

time. We believe that the variations in encoding time are likely to be from measurement

error as decisions are very similar and the process should take a little more time. When

using AMVP, we notice that for most sequences, the efficiency decreases compared to

the reference entropy coding and is always less efficient than differential coding. The

reduction in encoding time is caused by the encoder choosing less often the affine mode

after RDO. This suggests that in many cases, using the proposed prediction of motion

vectors uses more bits than the simple approach. The reasons for that are not entirely

understood, but there are some known possibilities. The first the changes in the context

models. In this approach, additional context models are required to store the index of the

predictor in the candidate list and the MVD. This increases overhead as the translation

part of the current MV already needs to code this information. Increasing the number

of context models also makes it harder for it to adapt, as each context is used less. The

second is that the model for the probability distribution of the error in the MVD is

inaccurate, leading to inefficient coding of the prediction error. Using a unified MVP

candidate list for both translation and affine prediction, like VVC does, is likely to be

the solution.

55

5 Results

5.7 Combining Filtering and Affine Prediction

While both approaches for improving the quality of coding videos described so far have

proved their ability when used independently, using them together could lead to lowered

efficiency. The postfiltering aims to reduce block noise, which mostly happens because

of the discontinuities in the prediction MVs. As affine prediction aims to reduce those

discontinuities by replacing them with a gradual change, it can be expected that the

filter would have less left to improve.

For this experiment, we used the network that was trained with the Random Ac-

cess mode in the filtering experiment. The training data excludes the three sequences

from [52] that were encoded using the proposed affine prediction: Twilight Scene, Foun-

tain, and Rotating Disk. Table 5.17 shows the improvement of the filter for each se-

quence.

Table 5.17: Comparison of coding efficiency in terms of BD-Rate when using the post-
filter on sequences encoded by the proposed method with the current state
of the art

Sequence name Proposed (no filter) Proposed (filter) Tsutake [16] Heithausen [15]
BD-R[%] BD-R[%] BD-R[%] BD-R[%]

Station -23.75 -25.88 -24.76 -25.62
Fountain -0.15 -3.37 -0.16 -0.24
Fungus Zoom -16.18 -13.61 -16.37 -15.23
Rotating Disk -24.07 -29.90 -26.77 -29.28
Blue Sky -4.74 -7.87 -5.13 -5.52
Tractor -3.71 -4.18 -4.59 -4.82
Twilight Scene -0.26 -0.23 -0.39 -0.51

Average -10.41 -12.15 -11.17 -11.61

With the exception of Twilight Scene, which already failed to attain improvement

in the previous experiments with the existing training dataset, all sequences but one

show significant improvement when using the proposed filter, and in multiple cases now

surpass in efficiency the current state of the art methods. On average, the efficiency is

increased by 1.74%, with almost 1% more average efficiency than Tsutake, and half a

percent compared to Heithausen. One sequence shows a large loss in efficiency: Fungus

Zoom. It is the only sequence with a different definition, using WQVGA (Wide Quarter

VGA format) with a definition of 416 × 240, while every other sequence uses FullHD

(1920 × 1080). This is likely to be the cause as the training data cannot adapt to such

56

5 Results

large changes in picture sizes. Because of the smaller picture size, it is also more difficult

to train for these sizes as more sequences a required to provide enough sample blocks for

acceptable training. The proposed method with the filter beats the existing state of the

art on four sequences: Station, Fountain, Rotating Disk and Blue Sky. While Fountain

achieved little gains with the affine prediction, making similar gains to the previous

filtering experiments unsurprising, Station and Rotating Disk obtained both over 20%

improvement from affine prediction and were still further improved significantly by the

filter, by almost 5% for Rotating Disk.

Combining the two methods shows impressive results, so if a small increase in decoding

time is acceptable, it is possible to beat the state of the art methods with a faster

encoding time. As it is often the case in video coding, large increases in efficiency

require many improvements combined together.

57

6 Conclusions

In this thesis, we have shown the feasibility of the CNN-based filters for HEVC-encoded

video that are able to process high definition content in real time. The proposed method

achieves results close to state of the art methods in a time ten to a hundred times shorter.

In the following chapter, we have demonstrated the feasibility of a new way to estimate

affine motion parameters. By using values obtained by the optical flow process, we can

get an estimate of motion parameters in a very short time.

Optical flow proved good enough for segmenting the image into regions that are likely

to use a given transform, and was able to discern object boundaries quite well.

In the HEVC implementation, prediction of the transform type (zooming or rotation)

showed very accurate, allowing for a reduction in half of the time required by Tsutake

et al. [16], and achieving similar performance with the state of the art gradient methods

like [15], with a small decrease in efficiency.

We proposed a method for scaling the optical flow for different reference pictures and

predicting the affine parameters values directly, but while there was a gain in encoding

speed, the efficiency dropped a lot. The fast optical flow method is not accurate enough

for precise parameter estimation.

Using gradient for the iteration algorithm showed great results, getting in most cases

better efficiency than with Tsutake’s iteration method in a slightly shorter time.

To get larger speed improvements, we used the segmentation information to exclude

blocks from the affine parameter search. This reduced the coding efficiency slightly, but

it greatly improved the encoding speed, especially on sequences with a lot of translation

motion.

We have also tested some variants to the entropy coding, taking inspiration of what

was included in VVC [20]. Using the differential coding as suggested by [16] offered a

small improvement over all sequences, but the VVC-inspired method was less efficient

58

6 Conclusions

than the straightforward parameter coding.

In our last experiment, we have combined both approaches for increasing coding effi-

ciency and measured that their gains stack, allowing us to beat the current state of the

art methods for affine prediction coding. As both methods were designed to be fast, the

combined approach is able to both reduce the total computing time and increase coding

efficiency.

In further work, we want to investigate some ways to improve the parameter estimation

when using a different picture than the one for which optical flow was computed. We also

want to improve the heuristics to reduce unnecessary estimations of affine parameters

while keeping the same coding efficiency. We will also investigate the issues faced by the

proposed entropy coding and find ways to improve it.

59

Achievements

Conferences

A. Chauvet, T. Miyazaki, Y. Sugaya, and S. Omachi, “Adaptive post filter for reducing

block artifacts in high efficiency video coding,” in 2016 International Conference on

Multimedia Systems and Signal Processing (ICMSSP), New Taipei, Taiwan, pp. 22–25,

September 2016.

A. Chauvet, T. Miyazaki, Y. Sugaya, and S. Omachi, “Optical Flow-Based Prediction

of Block Splitting,” in ICE2018 Conference, Daegu, South Korea, November 2018

Journal papers

A. Chauvet, T. Miyazaki, Y. Sugaya, and S. Omachi, “Fast image quality enhancement

for HEVC by postfiltering via shallow neural networks,” IIEEJ Transactions on Image

Electronics and Visual Computing, vol. 7, pp. 2–12, June 2019.

A. Chauvet, Y. Sugaya, T. Miyazaki, and S. Omachi, “Optical flow-based fast mo-

tion parameters estimation for affine motion compensation,” Applied Sciences, vol. 10,

pp. 729–743, January 2020.

60

Bibliography

[1] Cisco, “Cisco visual networking index: Forecast and trends, 2017-2022 white paper,”

Feb. 2019, document ID:1551296909190103.

[2] G. J. Sullivan, J. Ohm, W. Han, and T. Wiegand, “Overview of the high efficiency

video coding (HEVC) standard,” IEEE Transactions on Circuits and Systems for

Video Technology, vol. 22, no. 12, pp. 1649–1668, Dec. 2012.

[3] J.-R. Ohm, G. Sullivan, H. Schwarz, T. Tan, and T. Wiegand, “Comparison of the

coding efficiency of video coding standards—including high efficiency video cod-

ing (HEVC),” IEEE Transactions on Circuits and Systems for Video Technology,

vol. 22, no. 12, pp. 1669–1684, Dec. 2012.

[4] C. Segall, V. Baroncini, J. Boyce, J. Chen, and T. Suzuki, “JVET-H1002: joint call

for proposals on video compression with capability beyond HEVC,” JVET, Tech.

Rep., Jul. 2018.

[5] J. Chen, M. Karczewicz, Y.-W. Huang, K. Choi, J.-R. Ohm, and G. Sullivan,

“The joint exploration model (JEM) for video compression with capability beyond

HEVC,” IEEE Transactions on Circuits and Systems for Video Technology, pp. 1–1,

Oct. 2019.

[6] J. Sole, R. Joshi, N. Nguyen, T. Ji, M. Karczewicz, G. Clare, F. Henry, and A. Due-

nas, “Transform coefficient coding in HEVC,” IEEE Transactions on Circuits and

Systems for Video Technology, vol. 22, no. 12, pp. 1765–1777, Dec. 2012.

[7] JCT-VC, “High efficiency video coding (HEVC) test model 14 (HM

14.0),” Fraunhofer Heinrich Hertz Institute, 2014. [Online]. Available:

https://hevc.hhi.fraunhofer.de/

[8] N. Purnachand, L. N. Alves, and A. Navarro, “Fast motion estimation algorithm for

HEVC,” in 2012 IEEE Second International Conference on Consumer Electronics

- Berlin (ICCE-Berlin), Berlin, Germany, Sep. 2012, pp. 34–37.

61

Bibliography

[9] X. Li, R. Wang, W. Wang, Z. Wang, and S. Dong, “Fast motion estimation meth-

ods for HEVC,” in 2014 IEEE International Symposium on Broadband Multimedia

Systems and Broadcasting, Beijing, China, Jun. 2014, pp. 1–4.

[10] R. Khemiri, N. Bahri, F. Belghith, F. E. Sayadi, M. Atri, and N. Masmoudi, “Fast

motion estimation for HEVC video coding,” in 2016 International Image Processing,

Applications and Systems (IPAS), Hammamet, Tunisia, Nov. 2016, pp. 1–4.

[11] G. J. Sullivan and R. L. Baker, “Motion compensation for video compression us-

ing control grid interpolation,” in [Proceedings] ICASSP 91: 1991 International

Conference on Acoustics, Speech, and Signal Processing, vol. 4, Toronto, Ontario,

Canada, Apr. 1991, pp. 2713–2716.

[12] H. Huang, J. Woods, Y. Zhao, and H. Bai, “Control-point representation and dif-

ferential coding affine-motion compensation,” Circuits and Systems for Video Tech-

nology, IEEE Transactions on, vol. 23, pp. 1651–1660, Oct. 2013.

[13] C. Heithausen and J. H. Vorwerk, “Motion compensation with higher order motion

models for HEVC,” in 2015 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), Brisbane, QLD, Australia, Apr. 2015, pp. 1438–

1442.

[14] M. Narroschke and R. Swoboda, “Extending HEVC by an affine motion model,”

in 2013 Picture Coding Symposium (PCS), San Jose, CA, USA, Dec. 2013, pp.

321–324.

[15] C. Heithausen, M. Bläser, M. Wien, and J. Ohm, “Improved higher order motion

compensation in HEVC with block-to-block translational shift compensation,” in

2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ,

USA, Sep. 2016, pp. 2008–2012.

[16] C. Tsutake and T. Yoshida, “Block-matching-based implementation of affine mo-

tion estimation for HEVC,” IEICE Transactions on Information and Systems, vol.

E101.D, no. 4, pp. 1151–1158, Apr. 2018.

[17] N. Zhang, X. Fan, D. Zhao, and W. Gao, “Merge mode for deformable block motion

information derivation,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 27, no. 11, pp. 2437–2449, Nov. 2017.

62

Bibliography

[18] L. Li, H. Li, D. Liu, Z. Li, H. Yang, S. Lin, H. Chen, and F. Wu, “An efficient four-

parameter affine motion model for video coding,” IEEE Transactions on Circuits

and Systems for Video Technology, vol. 28, no. 8, pp. 1934–1948, Aug. 2018.

[19] S. Lin, H. Chen, H. Zhang, S. Maxim, H. Yang, and J. Zhou, “Affine transform pre-

diction for next generation video coding,” ITU-T, Tech. Rep., Sep. 2015, document

ITU-T SG 16.

[20] K. Zhang, Y. Chen, L. Zhang, W. Chien, and M. Karczewicz, “An improved frame-

work of affine motion compensation in video coding,” IEEE Transactions on Image

Processing, vol. 28, no. 3, pp. 1456–1469, Mar. 2019.

[21] C. Heithausen, M. Bläser, and M. Wien, “Distance scaling of higher order motion

parameters in an extension of HEVC,” in 2016 Picture Coding Symposium (PCS),

Nuremberg, Germany, Dec. 2016, pp. 1–5.

[22] K. Choi and E. S. Jang, “Fast coding unit decision method based on coding tree

pruning for high efficiency video coding,” Optical Engineering, vol. 51, no. 3, pp. 1

– 4, Mar. 2012. [Online]. Available: https://doi.org/10.1117/1.OE.51.3.030502

[23] M. B. Cassa, M. Naccari, and F. Pereira, “Fast rate distortion optimization for the

emerging HEVC standard,” in 2012 Picture Coding Symposium, Krakow, Poland,

May 2012, pp. 493–496.

[24] G. Bjøntegaard, “Calculation of average PSNR differences between RD-curves,”

in ITU—Telecommunications Standardization Sector STUDY GROUP 16 Video

Coding Experts Group (VCEG), 13th Meeting, Apr. 2001, document VCEG-M33.

[25] H. Kim and R. Park, “Fast cu partitioning algorithm for HEVC using an online-

learning-based bayesian decision rule,” IEEE Transactions on Circuits and Systems

for Video Technology, vol. 26, no. 1, pp. 130–138, Jan. 2016.

[26] X. Shen and L. Yu, “Cu splitting early termination based on weighted svm,”

EURASIP Journal on Image and Video Processing, vol. 2013, no. 4, pp. 1–11,

Jan. 2013.

[27] Y. Zhang, S. Kwong, X. Wang, H. Yuan, Z. Pan, and L. Xu, “Machine learning-

based coding unit depth decisions for flexible complexity allocation in high efficiency

video coding,” IEEE Transactions on Image Processing, vol. 24, no. 7, pp. 2225–

2238, Jul. 2015.

63

Bibliography

[28] L. Zhu, Y. Zhang, Z. Pan, R. Wang, S. Kwong, and Z. Peng, “Binary and multi-class

learning based low complexity optimization for HEVC encoding,” IEEE Transac-

tions on Broadcasting, vol. 63, no. 3, pp. 547–561, Sep. 2017.

[29] M. Grellert, B. Zatt, S. Bampi, and L. A. da Silva Cruz, “Fast coding unit partition

decision for HEVC using support vector machines,” IEEE Transactions on Circuits

and Systems for Video Technology, vol. 29, no. 6, pp. 1741–1753, Jun. 2019.

[30] X. Zheng, Y. Zhao, H. Bai, and C. Lin, “Fast algorithm for intra prediction of

HEVC using adaptive decision trees,” KSII Transactions on Internet and Informa-

tion Systems, vol. 10, pp. 3286–3300, Jul. 2016.

[31] Z. Liu, X. Yu, Y. Gao, S. Chen, X. Ji, and D. Wang, “Cu partition mode deci-

sion for HEVC hardwired intra encoder using convolution neural network,” IEEE

Transactions on Image Processing, vol. 25, no. 11, pp. 5088–5103, Nov. 2016.

[32] M. Bläser, C. Heithausen, and M. Wien, “Segmentation-based partitioning for mo-

tion compensated prediction in video coding,” in 2016 Picture Coding Symposium

(PCS), Nuremberg, Germany, Dec. 2016, pp. 1–5.

[33] P. List, A. Joch, J. Lainema, G. Bjøntegaard, and M. Karczewicz, “Adaptive de-

blocking filter,” IEEE Transactions on Circuits and Systems for Video Technology,

vol. 13, no. 7, pp. 614–619, Jul. 2003.

[34] A. Norkin, G. Bjøntegaard, A. Fuldseth, M. Narroschke, M. Ikeda, K. Andersson,

M. Zhou, and G. V. D. Auwera, “HEVC deblocking filter,” IEEE Transactions on

Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1746–1754, Dec.

2012.

[35] C. Fu, E. Alshina, A. Alshin, Y. Huang, C. Chen, C. Tsai, C. Hsu, S. Lei, J. Park,

and W. Han, “Sample adaptive offset in the HEVC standard,” IEEE Transactions

on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1755–1764, Dec.

2012.

[36] S. Nogaki and M. Ohta, “An overlapped block motion compensation for high quality

motion picture coding,” in [Proceedings] 1992 IEEE International Symposium on

Circuits and Systems, vol. 1. San Diego, CA, USA: IEEE, May 1992, pp. 184–187.

[37] C. Li, L. Song, R. Xie, and W. Zhang, “Cnn based post-processing to improve

HEVC,” in 2017 IEEE International Conference on Image Processing (ICIP), Bei-

jing, China, Sep. 2017, pp. 4577–4580.

64

Bibliography

[38] W. Park and M. Kim, “Cnn-based in-loop filtering for coding efficiency improve-

ment,” in 2016 IEEE 12th Image, Video, and Multidimensional Signal Processing

Workshop (IVMSP), Bordeaux, France, Jul. 2016, pp. 1–5.

[39] Y. Dai, D. Liu, and F. Wu, “A convolutional neural network approach for post-

processing in HEVC intra coding,” in MultiMedia Modeling, L. Amsaleg, G. Guo-

mundsson, C. Gurrin, B. Jónsson, and S. Satoh, Eds. Cham: Springer International

Publishing, Jan. 2017, pp. 28–39.

[40] A. Chauvet, T. Miyazaki, Y. Sugaya, and S. Omachi, “Adaptive post filter for reduc-

ing block artifacts in high efficiency video coding,” in 2016 International Conference

on Multimedia Systems and Signal Processing (ICMSSP), New Taipei, Taiwan, Sep.

2016, pp. 22–25.

[41] A. Chauvet, “Study on reducing block artefacts in HEVC video,” Master’s thesis,

Department of Electrical Engineering, Tohoku University, Feb. 2017.

[42] J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid, “EpicFlow: Edge-

Preserving Interpolation of Correspondences for Optical Flow,” in CVPR - IEEE

Conference on Computer Vision & Pattern Recognition. Boston, NA, USA: IEEE,

Jun. 2015, pp. 1164–1172. [Online]. Available: https://hal.inria.fr/hal-01142656

[43] D. Rüfenacht and D. Taubman, “HEVC-EPIC: Fast optical flow estimation from

coded video via edge-preserving interpolation,” IEEE Transactions on Image Pro-

cessing, vol. 27, no. 6, pp. 3100–3113, Jun. 2018.

[44] B. D. Lucas and T. Kanade, “An iterative image registration technique with

an application to stereo vision,” in Proceedings of the 7th International Joint

Conference on Artificial Intelligence - Volume 2, ser. IJCAI’81. Vancouver, BC,

Canada: Morgan Kaufmann Publishers Inc., Apr. 1981, pp. 674–679. [Online].

Available: http://dl.acm.org/citation.cfm?id=1623264.1623280

[45] C. Liu, “Beyond Pixels: Exploring New Representations and Applications for Mo-

tion Analysis,” Ph.D. Thesis, Massachusetts Institute of Technology, 2009.

[46] A. Bruhn, J. Weickert, and C. Schnörr, “Lucas/Kanade meets Horn/Schunck: Com-

bining local and global optic flow methods,” International Journal of Computer

Vision, vol. 61, pp. 211–231, Feb. 2005.

[47] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert, “High accuracy optical flow

estimation based on a theory for warping,” in Computer Vision - ECCV 2004,

65

Bibliography

T. Pajdla and J. Matas, Eds. Prague, Czech Republic: Springer Berlin Heidelberg,

May 2004, pp. 25–36.

[48] A. Chauvet, T. Miyazaki, Y. Sugaya, and S. Omachi, “Fast image quality enhance-

ment for HEVC by postfiltering via shallow neural networks,” IEEJ Transactions

on Image Electronics and Visual Computing, vol. 7, no. 1, pp. 2–12, Jun. 2019.

[49] A. Vedaldi and K. Lenc, “Matconvnet – convolutional neural networks for matlab,”

in Proceeding of the ACM Int. Conf. on Multimedia, 2015.

[50] Intel, “Math kernel library,” 2017. [Online]. Available:

https://software.intel.com/en-us/mkl

[51] A. Chauvet, Y. Sugaya, T. Miyazaki, and S. Omachi, “Optical flow-based

fast motion parameters estimation for affine motion compensation,” Applied

Sciences, vol. 10, no. 2, pp. 729–743, Jan. 2020. [Online]. Available:

http://dx.doi.org/10.3390/app10020729

[52] Institute of Image Information and Television Engineers, ITE/ARIB Hi-Vision Test

Sequence 2nd Edition, NHK Engineering Services, Inc., Sep. 2009.

[53] Derf, “Xiph.org video test media [derf’s collection],” 2018, [Online; accessed

10-October-2018]. [Online]. Available: https://media.xiph.org/video/derf/

[54] MulticoreWare, Inc., “x265 HEVC encoder version 2.1+69-c97c64ab8b8e,” 2016.

[Online]. Available: http://x265.org/

[55] I. Katsavounidis and L. Guo, “Video codec comparison using the dynamic

optimizer framework,” in Applications of Digital Image Processing XLI, A. G.

Tescher, Ed., vol. 10752, International Society for Optics and Photonics.

San Diego, CA, USA: SPIE, Sep. 2018, pp. 266 – 281. [Online]. Available:

https://doi.org/10.1117/12.2322118

[56] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.

66

