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Abstract 

 

The transportation sector constitutes approximately 25% of the total energy consumption and CO2 

emissions worldwide. Therefore, in the last decades, several studies have been conducted to improve 

the energy efficiency of vehicles. A principal method to evaluate the total environmental effect of a 

vehicle is through the analysis of its life cycle. However, most of those analyses focused on the 

production and use phase, and little work has been performed to understand the material value of end-

of-life vehicles (ELVs). Previous works have not comprehensively considered the benefits of the phase 

above that can provide a different perspective on the total vehicle life cycle. Firstly, our study clarifies 

how the materials obtained from scrapped vehicles are used, and we propose an analysis method to 

assess their benefits by defining the concepts of energy and CO2 reductions. The Japanese ELV market 

is presented as a case study, and the material flow is elaborated. The energy and CO2 reductions are 

calculated as 52.8 MJ and 2.80 kg CO2 per kilogram of vehicle, demonstrating the importance of the 

analyzed phase in the entire life cycle. Finally, possible changes in ELV recycling to improve their 

benefits are discussed. Secondly, reductions in energy consumption and CO2 emissions of vehicle 

lightweighting, considering the effects of the end of life vehicles (ELV) recycling is evaluated. For this 

propose, changes in the material composition of the body in white are assessed by an inventory analysis 

contemplating the entire life of the vehicles. The production phase is evaluated considering embodied 

energy and CO2 values; the use phase through the mass induced energy consumption; and end of life 

vehicle recycling considers the part reusing, material recycling and energy recovery as possible 

destinations. Moreover, the use of aluminum, advanced high strength steel (AHSS) and carbon fiber 

reinforced plastic (CFRP) as alternative material are compared. Furthermore, users cost comparison is 

addressed as an additional assessment variable. Our results show that the effect from the standpoint of 

energy consumption and CO2 emission of lightweighting materials on the production and end of life 

phase are essential as the benefits generated in its use phase. Moreover, material lightweight must be 

analyzed jointly with its possible recycling destination because when the first variable is considered 

individually maximum life cycle energy and CO2 reduction of 23.8 MJ and 1.82 kg-CO2 per kg of part 

to be lightweight can be expected; however, an adequate combination of both variables could almost 

double those benefits to 51.4 MJ and 3.34 kg-CO2, but also incorrect combinations could be counter-

productive guiding to an energy and CO2 increment of 92.5 MJ  and 6.71 kg-CO2. Finally, a model to 

forecast the number of critical materials recovered from lithium-ion batteries (LiB) through the 

recycling of end of life electric vehicles (EV) and analyze the potential of a closed-loop supply in Japan 

is proposed. Compare to a typical internal combustion engine vehicle (ICEV) the dependency of the 
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electric vehicle in its batteries have an important role. Efficient recycling of electric vehicle LiB to 

minimize its raw material supply risk but also the economic impact in its production process is going to 

be essential. Initially, this study forecast the vehicle fleet, sales, and end of life vehicles based on system 

dynamics modeling considering the growth of the vehicle ownership of the country and data of 

scrapping rates of vehicles by year of use. Then, the volume of the supplied critical materials (Li, Ni, 

Co, Mn) for LiB production and recovered from recycling are identified considering the power train of 

the scrapped vehicles, and variations in the size/type of its batteries. Moreover, economic analysis is 

conducted in conjunction with the identification of the current limitations to achieve a closed-loop in 

Japan. A timeframe of 2018 to 2035 was forecasted, and results indicate that 34% of the lithium, 50% 

of the cobalt, 28% of the  nickel and 52% of manganese  required in the production of new LiB could 

be supplied by batteries derives from end of life vehicles, however reduction of used electric vehicles 

exportation must be hardly diminished to achieve those objectives. This study, demonstrate the 

importance of clarifying the total benefits of the ELV in term of CO2, energy and material supply. The 

total benefits of the phase are quantified numerically, allowing also the reader to understand the close 

relationship it has with the restart of the phases and the material composition of its parts. Results 

presented, allow automakers and parts producers to develop more sustainable vehicles assessing the 

environmental benefits of new technology or material correctly for the vehicle production. Vehicle users 

could understand the total effect on the society of the acquired product. Moreover, dismantlers. material 

recycling and part reusing companies could plan the adaptation of its facilities or evaluate new business 

models having in mind the limitations and benefits of the upcoming parts and materials from new 

generation of vehicles. Finally, public entities including the local governments are going to be able have 

a whole picture of the ELV market, allowing them to identifies technologies to be supported for 

development to achieve sustainable a sustainable society. Even the approaches conducted above develop 

as case study the Japanese vehicle market, the analysis methods proposed in this research can be applied 

universally for any country.  

 

 

Keywords: ELV, recycling, material lightweighting, vehicle life cycle, energy, CO2, cost, Lithium-ion 

batteries recycling, critical materials, forecasting 
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Abbreviations 

AHSS : Advance high strength steel  

ASR : Automotive shredder residue  

BEV : Battery electric vehicles  

ASSY : Assembly  

Bus & trucks : Small trucks, standard trucks, small buses, large buses  

CASE : Connected, Autonomous, Shared, Electric  

Ca : Case aluminum  

CFRP : Carbon fiber reinforced plastic  

Co : Cobalt  

Cp : Case plastic  

Cs : Case steel  

ELV : End of life vehicles  

EV : Electric vehicles  

EVB : Electric vehicle batteries  

FCV : Fuel cell vehicles  

GDP : Gross domestic product  

HSS : High strength steel  

HV : Hybrid vehicles  

ICEV : Internal combustion engine vehicles  

Li : Lithium  

LiB : Lithium ion batteries  

LMO : Lithium ion manages oxide  

Mini : Mini passenger cars, mini trucks  

Misc : Miscellaneous  

Mn : Manganese  

Ni : Nickel  

NiMH : Nickel metal hybrid batteries  

NMC : Lithium nickel manganese cobalt oxide  

PHEV : Plug in hybrid vehicles  

Small & standard : Standard passenger cars, small passenger cars  

    

Nomenclatures 

A : Front surface [m2] 

Cw : Characteristic value   

CI : User’s cost increment [USD] 

𝐶𝑂2 : CO2 emission [kg-CO2 per vehicle] 

𝐶𝑂2𝑅 : CO2 reduction [kg-CO2 per vehicle] 

𝐶𝑂2𝐸 : Embodied CO2 for the automotive industry  [kg-CO2/kg] 
𝐶𝑂2𝑃       : CO2 emitted per kg of material produced [kg-CO2/kg] 

𝐸 : Energy consumption [kJ per vehicle] 

𝐸𝑅 : Energy reduction [kJ per vehicle] 

𝐸𝐷      : Disposal energy [kJ/kg] 

𝐸𝐸 : Embodied energy for the automotive 

industry  

[kJ/kg] 

𝐸𝐹 : CO2 emission factor per kg of material [kg-CO2 /kg] 

𝐸𝐹 ̕  CO2 emission factor per kJ of energy [kg-CO2 /MJ] 

𝐸𝑃 : Energy consumed for the production of 1kg [kJ/kg] 
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of materials 

𝐹𝐸   : Fuel economy [l/km] 

𝐺 : Weight  [kg] 

𝐺𝑅 : Weight ratio  

𝐻𝐻𝑉       : Higher heating value [kJ/kg] 

LiBV : Size of LiB of a vehicle [kwh/unit] 

𝐿𝐺𝑒𝑎𝑟 : Energy lost in the gearbox  

Price : Price [USD/l] 

Prof : Profit  

Psc : Probability of a vehicle to be scrapped  

RLiB : Amount of recovered LiB [kwh] 

RMat : Amount of recovered material from the LiBs [kg] 

𝑆𝑎𝑙𝑒𝑠           : Sales [units] 

𝑆𝑐𝑟𝑎𝑝𝑝𝑒𝑑      : Quantity of cars scrapped in the market  [unit/year]                       

SMat : Amount of supplied material for the 

production of LiBs 

[kg] 

Ss : Sale share of vehicle  

U : Energy density [MJ/l] 

V : Number of vehicles [units] 

VO : Vehicle ownership [units per 1000 people] 

VLiB : Rate of vehicles that use LiB for traction  

VSa : Number of vehicles sold [units] 

VSc : Number of vehicles scrapped [units] 

W : Work required to move the part i during the 

analyzed drive cycle 

[J] 

WMat : Weigh of material of a LiB from a vehicles [kg/kwh] 

𝑑         : Total traveled distance [km] 

g : Gravity [m/s2] 

r : Deceleration rate in the analyzed drive cycle  

α : Parameter alpha related to the shape of the 

function. 

 

β : Parameter beta related to the shape of the 

function. 

 

γ : Saturation level of the number of vehicles [units per 1000 people] 

𝜌 : Density [kg/l] 

𝜂𝐵𝑜𝑖𝑙 : Efficiency of the incinerator-boiler [%] 

𝜂𝑑𝑖𝑓𝑓 : Differential efficiency of the engine  

θ   : Speed of effect between the variables (0 <θ 

<1) 

 

    

    

Subscripts    

 

 

   

AM : Automakers  

ASR : Automobile shredder residues  

D : Dealers  

ELV : End of life vehicle phase  

ERE : Energy recovery  

Ideal : Ideal or maximum  
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JPN : Japan  

M : Material 

1- Steel 

2- Iron 

3- Plastic 

4- Glass 

5- Rubber 

6- Aluminum 

7- Copper 

8- Fluid 

9- Misc. 

10- Foam 

11- Textile 

12- Wood 

13- Paper 

14- Wire harness 

15- Mix metal 

16- Cement slag, others 

 

MR : Material recycling  

L : Aerodynamic resistance  

P : Production phase  

PR : Part reusing  

R : Rolling resistance  

RM : Recyclable materials  

Real : Real  

SP : Spare parts  

T : Total  

U : Use phase  

Veh : Vehicle  

VM : Virgin materials  

a : Acceleration resistance  

ave : Average of the Japanese market  

gas : Gasoline  

i , j : Part  

ker : Kerosene  

m.i. : Mass induced  

Other : Other  
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 Introduction 

 

 Background 

Several global efforts to combat climate change have been performed in the last decades. To unify the 

goals and efforts, the Paris agreement on climate change was established in December 2015, where 195 

nations agreed to maintain the temperature increase well below 2 °C (United Nations, 2015), 

demonstrating the global conscience and strong necessity to change the current measures regarding 

greenhouse gas emissions. 

The transportation area constitutes approximately 25% of the total energy consumption (U.S. 

Energy Information Administration, 2016) and CO2 emissions (International Energy Agency, 2009) 

worldwide. Therefore, over the past few decades, several studies have been conducted to improve the 

energy efficiency of vehicles. Moreover, in economic terms, the automotive industry accounts for a 

wide range of activities from material production, parts production, vehicle assembly, sales, 

transportation, and service. Only in Japanese territory, the number of people that work related to this 

sector includes 5.39 million people, representing 8.3% of the total Japanese workforce and being one 

of the main pillars of the local economy (Japan Automobile Manufacturers Association, 2018).   

 Nowadays, transportation means are essential for daily life of the human being and it is a necessity for 

the correct operation of the current society. Here, it is possible to mention the land, sea and air transport, 

where undoubtedly, the first one is the most important considering its constant use and accessibility.  

Land vehicles can be divided roughly in route transport or railway. The first one includes passenger 

cars, trucks, buses and motorcycles. However, considering economic, energy and CO2 point of view, 

this study does not consider the last type of vehicle in the analysis. 

A typical passenger car is composed of 20,000 to 30,000 parts (Japan automobile manufacturers 

association, 2018) produced mainly by part makers and assembled in the automakers. The vehicle parts 
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are designed mostly in the research and development centers of the second ones, considering a wide 

variety of materials as steel, iron, plastics, aluminum, rubbers, and others, to mentioning just a few of 

them. 

Currently, the vehicles that are exclusively propelled by fossil fuel dominate the market;  however, 

the automotive market is in an evolutive stage, where new technologies including alternative propulsion 

methods (electric vehicles, fuel cell vehicles, hybrid vehicles, and plug-in hybrid vehicles) are being 

introduced. 

Another aspect, where resources have been dedicated to the improvement of the vehicles, is in the 

development and use of lightweight material. Those type of materials reduce the weight of the vehicles 

and improve the fuel consumption of its use phase. The predominant material in a vehicle is the Steel, 

representing approximately 64% of the total weight of a vehicle (Singh Harry, 2012). However, 

alternative materials as aluminum and carbon fiber reinforced plastic are being used more regularly for 

the production of structural parts. 

To understand the total environmental impact of a product, this one must be assessed considering 

its entire life cycle, including the production, use, and end of life phases. The life cycle assessment is 

considered as an essential tool for different governments, and applied by important companies for 

environmental analysis of product and for the analysis of possible strategies (European Commission, 

2019; Honda Motor Co., 2009; Toyota Motor Corporation, 2009). However, the three phases mentioned 

above are not analyzed equitably, being the last one left aside in different studies (Schweimer et al., 

2000). 

Even so, the concept of reusing and recycling has found strong support in the last years. This can be 

understood because the concept of cyclical economy implies not only gaseous emissions or energy 

consumption used in the disassembly or scrap processing phase, but also the harnessing of the materials 

obtained from the end of life products. This harnessing implies, environmental points but also economic 

benefits and the assurance of critical materials for the production of parts related to new technologies 
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that help the society to be sustainable. A representative example is the case of critical materials needed 

for the production of lithium-ion batteries for the electrification of transportation.  

Lastly, even the analysis methods proposed in this research can be applied universally for any 

country, our study focusses on Japan considering that it is the third-largest economy of the world 

(World Bank, 2018) but also it has one of the biggest vehicle markets and its technological 

contribution to the development of the vehicle industry is indispensable. Word wide-scale automakers 

have its central office here leading the research and development of a wide variety of new vehicle 

models.  

 

 Objectives 

 General objectives 

 Clarify the importance of ELV recycling and reusing, and propose evaluation methods to 

assess its contribution to achieving sustainability in the automotive sector. 

 Specific objectives 

 Numerically clarify the current benefits of the ELV phase proposing a simple evaluation 

method for it. 

 Clarify the relationship between the different phases of the vehicle life cycle focusing on the 

benefits of the ELV phase. 

 Understand the potential of ELV recycling considering the electrification of transportation. 

 

 Relevance of the research 
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This research contributes towards a more comprehensive assessment of the vehicle life cycle focusing 

on the environmental and economic value of the material recovered from the ELVs in order to 

reinforce the sustainability of the transportation sector. 

  On the first step, current material flow of the ELVs are elaborated evaluating the energy and CO2 

benefits of this phase (chapter 3). Then this effect is evaluated considering changes in the material 

composition of the vehicle and the entire life cycle (chapter 4). Finally, benefits of the batteries obtained 

from ELV are forecasted through dynamic approach (chapter 5).  

The practical contribution of this work is the comprehensive analysis of the ELV phase. The total 

benefits of the phase are quantified numerically, allowing also the reader to understand the close 

relationship it has with the restart of the phases and the material composition of its parts. Results 

presented, allow automakers and parts producers to develop more sustainable vehicles assessing the 

environmental benefits of new technology or material correctly for the vehicle production. Vehicle users 

could understand the total effect on the society of the acquired product. Moreover, dismantlers. material 

recycling and part reusing companies could plan the adequation of its facilities or evaluate new business 

models having in mind the limitations and benefits of the upcoming parts and materials from new 

generation of vehicles. Finally, public entities including the local government, are going to be able have 

a whole picture of the ELV market, allowing them to identifies technologies to be supported for 

development to achieve sustainable a sustainable society. Additionally, compare the current situation of 

the country with other regions, and have a base scenario to verify the improvement considering future 

policies in the market are going to be possible.  

 

 

 Structure of the document 
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The aim of this study is to clarify the importance of the ELV phase and a comprehensive method to 

evaluate it. Even the analysis methods proposed in this research can be applied universally for any 

country, the Japanese vehicle market is analyzed as a case study. The rest of the document is 

structured as follows: In Chapter 2, the basic concepts regarding life cycle assessment are explained 

focusing on energy consumption and CO2 emissions; following concepts and tendencies in circular 

economy are detailed. Moreover, in order to understand changes in the automotive industry, functional 

concepts of the different types of electric vehicles are described; finally, introduction to system 

dynamics modeling is presented in order to allow the readers obtain the basic concepts of the tool used 

in the forecasting section of this document. Chapter 3, describes the current material flow of the 

vehicles scrapped in Japan clarifying the amount of material of the vehicle destined to energy 

recovering, material recycling and part reusing. Analysis of the energy and CO2 reduction are also 

carried in order to clarify the current benefits of this phase. Chapter 4 studies the relation between the 

benefits of lightweight materials with its possible recycling destinations. The body in white is 

analyzed considering alternative materials as AHSS, Aluminum, and CFRP. Here, as the previous 

section, effects in term of energy emission and energy consumption is analyzed but also economic 

point of view is added to verify possible limitations. Chapter 5 forecast the potential of battery 

recycling, which is the major and critical components for the fabrication of electric vehicles. System 

dynamic is considered for the modeling and variation of the material composition of the battery 

analyzed per powertrain, type of vehicle and variation in the technologies. The returning flow of ELV 

is calculated statistically dividing the vehicle fleet per year of life of the cars. Chapter 6 discussed 

integrally the aspects treated in chapters 3, 4 and 5. Finally, general conclusions are presented in 

Chapter 7.       
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 Theoretical framework 

 

 Life cycle assessment 

The life cycle assessment is one of the most used techniques to evaluate the environmental effect of a 

determinate product. To achieve those objectives the following phases are conducted (The 

International Organization for Standardization, 1997): 

 Clarifying relevant inputs and outputs of a product life 

 Evaluate the potential environmental impact associated with them 

 Interpretation of the results 

  Fig. 2.1 shows graphically the above concept. Moreover, the life of the product is generally 

divided into the following three sections. 

 Production: Including the environmental impact of the material extraction, raw material 

production, manufacturing to distribution 

 Use: consumption and emission related to the use of the evaluated product by the consumer or 

user. Here, the maintenance effect of the products is also included. 

 End of life: Effect of the disposal of the product but also recycling and reusing process should 

be evaluated. 

It is worth mentioning that the most representative aspects evaluated through this technique are 

energy consumption, green gas emissions, and water consumption. Define the boundary of the 

analysis and limitations is essential to conducting the assessment. 
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For specific cases of life cycle assessment of vehicles, Fig.2.2 and Fig 2.3 show the energy 

consumption and CO2 emission evaluation proposed by previous studies (Kobayashi, 1997). Here, as 

other reviewed studies, as Schweime (2000) benefits of the ELV are not considered. 

 

 Circular economy 

The concept of circular economy aims to change the current economic system based on the 

overconsumption of natural resources aspirating for sustainable growth of the society (Centre for 

European policy studies, 2017; European Commission, 2014). This transition is centered on reusing 

and recycling existing products and materials, turning the ‘waste’ of the take-make-dispose society 

into ‘resource’. The efficient use of materials but also environmental and economic benefits are 

expected. As an example, it is possible mentioning the case of Caterpillar, who, through the rebuilding 

of used parts reduces energy use 90% and the use of material 80% compared to parts made by virgin 

materials (National institute of science and technology policy, 2019).  Moreover, Government of the 

European Commission has settled different guidelines oriented to different sector in order to boost this 

concept (National institute of science and technology policy, 2019), where not only reduction of waste 

as plastics are expected, but also assurance of critical raw material through closed-loop recycling can 

be expected for essential products as lithium-ion batteries. 

 

 Electric vehicles 

Electric vehicles (EV) are the passenger or commercial vehicles that are propelled by electricity 

totally or partially. The following four types of EV (Un-Noor et al., 2017) are commercialized in the 

market depending on the level of electrification and energy source modes. 
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 Hybrid electric vehicles (HV): employ both internal combustion engine (ICE) and electrical 

power train. When the demanded power is low electric propulsion system is used, switching to 

ICE when higher speed is needed, also both drive trains can be used together for performance 

improvement. It uses batteries (Nickel hybrid batteries or Lithium-ion batteries) to store 

electric energy and standard tanks to storage fuel for propulsion. The motor turns to a 

generator when the vehicle is braking, charging the battery in the process.  

 Plug-in hybrid electric vehicles (PHEV): As HV, this type of EV can be propelled by ICE or 

electrical powertrain. However, the PHEV can be charged its battery directly from the grid. 

Moreover, compare to HV, those vehicles use electric propulsion as the main driving train, and 

in this sense, it requires a bigger battery. 

 Battery electric vehicles (BEV): utilize only electricity to propel its power train. They 

accumulate energy in the battery, charging them mainly by direct connection to the grid. The 

car runs between 100 to 500 km per charge depending model of the vehicles (Grunditz et al., 

2016); moreover, the capacity of their batteries have also an essential role in it. The time 

necessary for charging its batteries, which is much more longer than the time necessary for 

refueling a conventional ICE vehicle, and the high economic and technological dependence of 

the vehicle in their batteries, are still some of the disadvantages of the BEV. 

 Fuel cell electric vehicles (FCEV): As well as BEV, those vehicles are propelled only by 

electricity. However, they do not accumulate energy in batteries, been the hydrogen the source 

of energy, which 1are accumulated in high pressured tanks; fuel cells generate electricity and 

are used in the electric motor to drives the wheels. The vehicles are charged in hydrogen fuel 

stations which is still not frequently installed.  
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 System dynamics 

 System dynamics is a computer modeling method that considers different variables in order to 

numerically simulate nonlinear behavior over time. It was developed by J. W. Forrester of the 

Massachusetts Institute of technology in the late 1950s (Kyoto University, 2010). It applies to problems 

arising in complex social, managerial, economic, or ecological systems (System Dynamics Society, 

2019). Stocks, flows, and converters are used allowing the researcher clarifies the relation between the 

different variables considered in the model and predicts the change of state of elements and flows along 

a time scale. With representative and introductive aim, basic representation of a bathtub with system 

dynamics modeling is shown in Fig. 2.4. Here, the state of the bathtub (water volume) changes according 

the inflow rate controlled by the faucet and the outflow rate adjusted by the drain. 
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1 Fig. 2.1 Phases of an LCA 
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2 Fig. 2.2 Energy consumed in the vehicle life cycle proposed by previous studies 
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3Fig. 2.3 CO2 emitted in the vehicle Life cycle proposed by previous studies 
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4 Fig. 2.4 Bathtub model in system dynamic 
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 Energy and CO2 reduction assessments for end-of-life vehicle recycling 
 

 

 
 Introduction 

A typical method to evaluate the energy and CO2 efficiency of a vehicle is through its life cycle, and 

many approaches have been proposed during the last few decades. Some studies estimated that the 

production phase constitutes 7–22%, and the use phase 79–93% of the energy consumed and CO2 

emitted of the entire cycle (Schweimer et al., 2000; Kobayashi, 1997; Nemry et al., 2008). However, 

only some of them studied end-of-life vehicles (ELVs), as they are considered to be insignificant with 

respect to energy consumption and CO2 emission. Consequently, studies that evaluate the real benefits 

generated from ELVs are nonexistent. 

It is well known that large quantities of materials are destined to vehicle production. However, 

conscience regarding the waste generated at their disposal is low.  

From 2009 to 2013, an average of 3,474,000 units of ELVs have been scrapped in the Japanese 

vehicle market (Yano Research Institute Ltd., 2015); this value represents approximately 4.6 Mt of waste 

(Yano Research Institute Ltd., 2015; MOE, 2015b) and approximately 10% of the nonindustrial waste 

generated annually throughout Japan (SBJ, 2016). 

The processing of an ELV involves dismantling the vehicle through the steps detailed below. Initially, 

the discarded vehicles are sent to dismantling companies. Next, their fluids, batteries, tires, and airbags 

are removed as a preventive measure. Subsequently, based on the vehicle model and considering the 

market demand, specific automotive parts are selected and extracted to be resold as second-hand spare 

parts. At this stage of the procedure, other parts are also separated to be recycled as alternative raw 

materials. The remaining dismantled vehicles are pressed and sent to shredding companies, where they 

are ground, and metals are primarily separated magnetically. Finally, the automobile shredder residues 

(ASRs) that are composed primarily of plastics, foam, and textiles are obtained as remainders.  
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Moreover, reports from the Japanese government (METI, 2014a) indicate that 20–30% of the weight 

of each scrapped vehicle is reused as spare parts, 50–60% is separated as recyclable material, and the 

remaining 17% is processed as ASRs.  

As mentioned previously, the conventional life cycle studies focused on the analysis of the first two 

phases, and the end-of-life phase was typically neglected (Schweimer et al., 2000). Studies that included 

the indicated phase in their analyses, such as those of Bauer et al. (2015), Mitropoulos et al. (2015), and 

Lewis et al. (2014), based the calculation of the end-of-life stage on external databases without 

clarifying the contents of the proposed values or the calculation method. Wang et al. (2013), Mijailović 

(2013) and Zamel et al. (2006) approximated the ELV values using constants that depend only on the 

disposed vehicle mass. Meanwhile, representative databases and constants include the energy or 

emission required for dismantling vehicles for disposal, but do not include the material recycling or the 

energy recovery process (Burnham et al., 2006). Few studies that included energy recovery, such as that 

of Viñoles-Cebolla at al. (2015), did not analyze the recycling of vehicle parts and materials. Moreover, 

the most important factor of those approaches was that only the energy consumption and CO2 emission 

associated with the disposal process were considered, and the important benefits obtained from the 

vehicle recycling itself were not evaluated.  

Studies that analyzed the end-of-life stage specifically were centered in part of the vehicle recycling 

process, such as ASR processing (Kim et al., 2004; Passarini et al., 2012), the dismantling process (Che 

et al., 2011; El Halabi et al., 2015), material recycling (Ohno et al., 2014, 2015, 2017), those three 

processes together (Belboom et al., 2016), part reusing (Sato et al., 2018), or dismantling process and 

part reusing (Tian et al., 2016). Only a few studies, such as that of Sakai et al. (2014), analyzed the 

whole end-of-life phase; however, the benefits were assessed qualitatively instead of quantitatively. 

Meanwhile, the end-of-life stage is important for the vehicle lightweighting and life cycle 

optimization, and studies such as those of González et al. (2016) and O’reilly et al. (2016) recommended 

the analysis of the disposal process in future investigations.  
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This study considers the above-mentioned shortcomings of previous studies and analyze the ELV 

phase considering each recycling process, the total benefit obtained from them and proposes a 

quantitative assessment method through an inventory analysis of the ELV market.  

By understanding and considering the benefits of the ELV phase, we can assess the environmental 

benefits of a new technology or material correctly for the vehicle production, thus evaluating its possible 

effects comprehensively.  

The aim of this study is to demonstrate the importance of ELVs and propose a simple evaluation 

method to assess their current benefits numerically in terms of energy consumption and CO2 emission. 

Furthermore, possible changes in ELV recycling are discussed, and the Japanese market is presented as 

a case study.  

Finally, it is noteworthy that our study clarifies the material flow and destination of a disposed vehicle, 

which has not been described hitherto. 

 

 Methodology 

Figure 3.1 shows a basic flowchart of the ELV recycling system described in this study. Compared to 

previous conventional life cycle approaches, our analysis focuses on the recycling of an ELV parts and 

materials. 

The reuse of parts benefits the use phase of the vehicle life cycle, considering that the energy and 

CO2 necessary to produce brand-new spare parts for the vehicle maintenance will be reduced. 

Meanwhile, the ASR is subjected primarily to the energy recovery and thermal energy obtained. 

Additionally, recyclable materials are separated to be recycled as alternative raw materials. 

The total energy and CO2 from ELV recycling are evaluated through the elaboration of its material 

flow. Hence, the concept of energy reduction is defined as the “energy conserved or energy generated 

owing to the correct use of ELVs,” and the CO2 reduction as the “CO2 not emitted owing to the correct 

use of ELVs.” 
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Expanding the definition indicated above, the total benefits from ELV recycling can be calculated 

using (1) and (2). 

 

𝐸𝑅𝑇 = 𝐸𝑅𝐴𝑆𝑅 + 𝐸𝑅𝑅𝑀 + 𝐸𝑅𝑆𝑃                                                                                   (1) 

 

𝐸𝑅𝑇    : Total energy reduction [kJ per vehicle]. 

𝐸𝑅𝐴𝑆𝑅 : Energy reduction because of the ASR [kJ per vehicle]. 

𝐸𝑅𝑅𝑀  : Energy reduction because of the recyclable materials (materials separated for    

             recycling obtained from disarmament and shredder companies) [kJ per   

             vehicle].  

𝐸𝑅𝑆𝑃   : Energy reduction because of the spare parts (parts extracted in dismantling  

             companies  

             to be reused) [kJ per vehicle].    

 

𝐶𝑂2𝑅𝑇 = 𝐶𝑂2𝑅𝐴𝑆𝑅 + 𝐶𝑂2𝑅𝑅𝑀 + 𝐶𝑂2𝑅𝑆𝑃                                                                  (2) 

 

𝐶𝑂2𝑅𝑇   : Total CO2 reduction [kg-CO2 per vehicle]. 

𝐶𝑂2𝑅𝐴𝑆𝑅: CO2 reduction because of the ASR [kg-CO2 per vehicle]. 

𝐶𝑂2𝑅𝑅𝑀 : CO2 reduction because of the recyclable materials [kg-CO2 per vehicle]. 

𝐶𝑂2𝑅𝑆𝑃  : CO2 reduction because of the spare parts [kg-CO2 per vehicle].    

 

It is noteworthy that in this study, the ASRs, recyclable materials, and spare parts are referred to the 

destination flow of the materials, instead of to the recycling methods where the materials are subjected 

to. Those methods are defined as material recycling, energy recovery, and part reusing. 
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 Material flow of the ELVs 

To better understand the destinations of the materials obtained from the ELVs, a material flowchart is 

elaborated. Hence, the material structure of a representative vehicle studied by Singh (2012) (Honda 

Accord 2011; 1,481 kg), shown in Fig. 3.2 (a), was considered. 

As mentioned previously, the material of an ELV contains three types of destinations: the spare parts 

(extracted in the dismantling companies), the recyclable materials (obtained from dismantling and 

shredder companies), and the ASRs (leftovers). Based on the report indicated earlier (METI, 2014a.), 

we conservatively selected 23% of the total weight of a vehicle destined to spare parts, 60% of the 

material separated as recyclable materials, and 17% as ASRs. 

The total weight of the material (m) in the studied vehicle can be expressed as follows: 

 

𝐺𝑣𝑒ℎ,𝑚 = 𝐺𝑣𝑒ℎ ∗ 𝐺𝑅𝑣𝑒ℎ,𝑚                                                                                                     (3) 

 

𝐺𝑣𝑒ℎ,𝑚    : Weight of the material (m) of the studied vehicle [kg per vehicle]. 

𝐺𝑣𝑒ℎ       : Weight of the studied vehicle. 

𝐺𝑅𝑣𝑒ℎ,𝑚  : Weight ratio of the material (m) in the vehicle, shown in Fig. 3.2 (a). 

 

(a) Material composition of the ASRs 

The ASRs are the leftovers rejected from the processing of an ELV. Because most of the metals are 

previously separated in the shredder company, the ASRs are composed primarily of plastics, rubbers, 

foam, and textiles.   

Figure 3.2 (b) shows the material composition of the Japanese ASRs based on reports of the Japanese 

government (MOE, 2015a; METI, 2014b), and The Japan Machinery Federation (The Japan Machinery 

Federation, 2004).  

The weight of the material (m) of the ASRs can be obtained using (4). 
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𝐺𝐴𝑆𝑅,𝑚 = 𝐺𝑣𝑒ℎ ∗ 𝐺𝑅𝑣𝑒ℎ,𝐴𝑆𝑅 ∗ 𝐺𝑅𝐴𝑆𝑅,𝑚                                                                         (4)       

 

 𝐺𝐴𝑆𝑅,𝑚      : Weight of the material (m) of the ASRs [kg per vehicle]. 

𝐺𝑅𝑣𝑒ℎ,𝐴𝑆𝑅  : Weight ratio of a vehicle destined to the ASR flow, 0.17 (METI, 2014a.).  

𝐺𝑅𝐴𝑆𝑅,𝑚     : Weight ratio of the material (m) in the ASRs, shown in Fig. 3.2 (b). 

 

The ASRs are subjected to different recycling methods depending on the treatment factory to which 

they are destined. The factories can be divided into two types: first, the energy recovery facilities that 

use the ASRs as fuel (i.e., smelting facilities, gasification melting facilities, incinerators, fluidized bed 

furnaces, carbonization furnaces, and cement factories); and second, the ones centered in material 

separation.  

As reported previously, 77.3 % (MOE, 2015a) of the ASRs are destined to the first one, where the 

ASRs are incinerated in boilers as fuel or used as raw material for the production of secondary products. 

In both cases, their burnable parts contribute to systems with thermal energy. Moreover, products such 

as cement, slag, mixed metals, and steel are obtained.  

Meanwhile, 22.2% (MOE, 2015a) of the ASRs are destined to material separation facilities. Here, in 

contrast to the energy recovery facilities, recyclable materials such as plastics, steel, aluminum, copper, 

and glass are initially separated before being subjected to the energy recovery process. It is assumed 

that the metals are primarily separated in these factories, and that recyclable glasses are obtained. 

Finally, the remaining 0.5 % (MOE, 2015a) of the ASR is destined to landfills.  

Figure 3.2 (c) shows the final destination of the ASR by weight percent (MOE, 2015a).  

 

(b) Material composition of the spare parts  

The material composition of the spare part flow was estimated through the evaluation in terms of 
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material composition, sales, and weights of 42 representative reused parts. Table 3.1 lists the analyzed 

parts by weight and sales based on studies conducted by Singh (2012), and data from NGP Japan 

Automobile Recycling Business Cooperative Association (NGP, 2016). It is noteworthy that the 

mentioned association controls approximately 30% of the Japanese second-hand spare part market share, 

and the column “sales” of the table indicates the total parts sold by them between September 2014 and 

August 2016. The 42 selected parts represent nearly 75% of the total weight of the studied vehicle 

(without considering the weight of the vehicle body, which is recycled as alternative raw materials, and 

airbags and fluids, which cannot be reused as spare parts). 

The generic “various parts” indicated at the bottom of the table, was calculated to reflect the effect 

of the remaining 280 reused parts (NGP, 2016) that are not included in our list. Their material 

composition was calculated as the material composition of an entire vehicle minus the composition of 

the 42 studied parts and the composition of the nonreusable parts.  

To calculate the material composition of the studied flow, the following equations are proposed. 

First, the sales of each part are reflected as the weight ratios: 

 

𝐺𝑅𝑆𝑃,𝑖 =
𝐺𝑖 ∗ 𝑆𝑎𝑙𝑒𝑠𝑖

∑ 𝐺𝑗𝑗 ∗ 𝑆𝑎𝑙𝑒𝑠𝑗
  (5) 

 

𝐺𝑅𝑆𝑃,𝑖  : Weight ratio of part (i) on the total spare parts flow.  

𝐺𝑖         : Weight of a unitary part (i) [kg per vehicle], shown in Table 3.1. 

𝑆𝑎𝑙𝑒𝑠𝑖   : Sales of parts (i) in the studied period (September 2014 to August 2016)  

               [units], shown in Table 3.1. 

 

Next, the obtained ratios are separated by the material composition of each part (6). 
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𝐺𝑅𝑆𝑃,𝑖,𝑚 = 𝐺𝑅𝑆𝑃,𝑖 ∗ 𝐺𝑅𝑖,𝑚                                                                                           (6) 

 

𝐺𝑅𝑆𝑃,𝑖,𝑚 : Weight ratio of the material (m) of the part (i) on the spare parts. 

𝐺𝑅𝑖,𝑚     : Weight ratio of the material (m) of the part (i), shown in Table 3.1. 

 

The calculated weight percent by materials of the spare part flow is shown in Fig. 3.2 (d). 

To transform the obtained relative weights into concrete weight values of a vehicle, this ratio is 

multiplied by the weight of the studied vehicle and the weight ratio of the vehicle reused as spare parts 

(7). 

 

𝐺𝑆𝑃,𝑖,𝑚 = 𝐺𝑣𝑒ℎ ∗ 𝐺𝑅𝑣𝑒ℎ,𝑆𝑃 ∗ 𝐺𝑅𝑆𝑃,𝑖,𝑚                                                                           (7) 

 

𝐺𝑆𝑃,𝑖,𝑚     : Weight of the material (m) of the part (i) as spare parts [kg per vehicle]. 

𝐺𝑅𝑣𝑒ℎ,𝑆𝑃 : Weight ratio of a vehicle destined to the spare parts flow, 0.23 (METI, 2014a.).    

 

(c) Material composition of the recyclable materials 

Finally, the material composition of the recyclable material flow can be approximated easily by equation 

(8).  

 

𝐺𝑅𝑀,𝑚 = 𝐺𝑣𝑒ℎ,𝑚 − 𝐺𝐴𝑆𝑅,𝑚 − ∑ 𝐺𝑆𝑃,𝑖,𝑚𝑖                                                                        (8) 

 

𝐺𝑅𝑀,𝑚 : Weight of the material (m) on the recyclable materials [kg per vehicle]. 

 

Figure 3.2 (e) shows the calculated weight percent by material of the recyclable material flow.  

It is noteworthy that, in its majority, the material collected in this stage returns to the production 
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phase as an alternative raw material. However, approximately 80% (JATMA, 2017) of the tires, which 

are the primary components of the rubber flow, are subjected to energy recovery, and the fuel is reused 

primarily for self-consumption. 

 

 Energy reduction by the recycling of ELVs 

In this subsection, energy reductions from ELVs are calculated depending on the recycling methods to 

which they are subjected (energy recovery, part reusing, or material recycling). 

 

(a) Energy reduction by energy recovery 

As mentioned previously, most of the materials obtained from the ASRs are used as alternative fuel. 

Thermal energy is obtained from its combustible part through incineration (9). 

 

𝐸𝑅𝐸𝑅𝐸 = 𝜂𝐵𝑜𝑖𝑙 ∑ 𝐻𝐻𝑉𝑚𝐺𝑚
𝐸𝑅𝐸

𝑚 = 𝐸𝑅𝐴𝑆𝑅
𝐸𝑅𝐸 + 𝐸𝑅𝑅𝑀

𝐸𝑅𝐸                                              (9)                  

 

𝐸𝑅𝐸𝑅𝐸   : Energy reduction by energy recovery [kJ per vehicle].   

𝐺𝑚
𝐸𝑅𝐸     : Weight of the material (m) recycled by energy recovery [kg]. 

𝐻𝐻𝑉𝑚 : Highest heating value of the combustible material (m) [kJ/kg], shown in Table 3.2. 

 𝜂𝐵𝑜𝑖𝑙  : Efficiency of the incinerator-boiler, which has been adopted as 63%  

(Tchobanoglous et al., 1993). 

𝐸𝑅𝐴𝑆𝑅
𝐸𝑅𝐸  : Energy reduction through the energy recovery of the materials obtained from    

             the ASR [kJ per vehicle]. 

 𝐸𝑅𝑅𝑀
𝐸𝑅𝐸 : Energy reduction through the energy recovery of the materials obtained from    

            the recyclable materials [kJ per vehicle]. 

 

(b) Energy reduction by part reusing 
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The reuse of vehicle parts implies that the energy consumed to produce new components for vehicle 

repairing/maintenance will be reduced. Das et al. (1995) defined the concept of embodied energy as 

“the energy contained in a fabricated material part, reflecting the energy required to process the material 

from raw material to finished product.” For example, in the vehicle roof, the mentioned value includes 

the energy spent in ore mining, smelting, steel rolling, and the final press processes. This study proposes 

specific values for automobile part production, and the energy reduction by the reuse of parts can be 

calculated using (10). 

 

𝐸𝑅𝑃𝑅 = ∑ ∑ 𝐸𝐸𝑚 ∗ 𝐺𝑖,𝑚
𝑃𝑅

𝑚𝑖 = 𝐸𝑅𝑆𝑃
𝑃𝑅                                                                             (10) 

 

𝐸𝑅𝑃𝑅 : Energy reduction by part reuse [kJ per vehicle]. 

𝐺𝑖,𝑚
𝑃𝑅    : Weight of the material (m) of the part (i) recycled by part reuse [kg]. 

𝐸𝐸𝑚  : Embodied energy for the material (m) for the automotive industry [kJ/kg],  

            shown in Table 3.2. 

𝐸𝑅𝑆𝑃
𝑃𝑅 : Energy reduction through part reusing of the spare parts [kJ per vehicle].    

 

(c) Energy reduction by material recycling 

Part of the material obtained from an ELV are recycled as alternative raw material and destined to 

produce different products, including vehicle parts.  

A product created from recycled materials requires less energy than a product created using virgin 

materials. This benefit can be calculated using (11). 

 

𝐸𝑅𝑀𝑅 =  ∑ (𝐸𝑃𝑉𝑀𝑚𝑚 − 𝐸𝑃𝑅𝑀𝑚
)𝐺𝑚

𝑀𝑅 = 𝐸𝑅𝐴𝑆𝑅
𝑀𝑅 + 𝐸𝑅𝑅𝑀

𝑀𝑅                                              (11) 

 

𝐸𝑅𝑀𝑅   : Energy reduction by material recycling [kJ per vehicle]. 
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𝐺𝑚
𝑀𝑅     : Weight of the material (m) recycled by material recycling [kg]. 

𝐸𝑃𝑉𝑀𝑚
   : Energy consumed in producing 1 kg of raw material through virgin  

              materials [kJ/kg], show in Table 3.2. 

𝐸𝑃𝑅𝑀𝑚
   : Energy consumed in producing 1 kg of raw material through recycled  

              materials [kJ/kg], show in Table 3.2. 

𝐸𝑅𝐴𝑆𝑅
𝑀𝑅    : Energy reduction through material recycling of the material obtained from the    

               ASRs  

               [kJ per vehicle]. 

𝐸𝑅𝑅𝑀
𝑀𝑅   : Energy reduction through material recycling of the material obtained from   

              recyclable materials [kJ per vehicle]. 

 

(d) Energy reduction by each material flow 

The proposed energy reductions are subjected specifically to the recycling method analyzed. To 

calculate the energy reduction per destination flow and the total energy reduction per ELV, those values 

are reflected in the equation (1) as follows. 

 

𝐸𝑅𝐴𝑆𝑅 =  𝐸𝑅𝐴𝑆𝑅
𝐸𝑅𝐸 + 𝐸𝑅𝐴𝑆𝑅

𝑀𝑅                                                                                                (12) 

   

𝐸𝑅𝑅𝑀 =  𝐸𝑅𝑅𝑀
𝐸𝑅𝐸 +  𝐸𝑅𝑅𝑀

𝑀𝑅                                                                                                (13) 

  

𝐸𝑅𝑆𝑃 = 𝐸𝑅𝑆𝑃
𝑃𝑅                                                                                                                 (14) 

 

 CO2 reduction by recycling ELVs 

Similar to energy reduction, CO2 reduction depends on the recycling method to which the ELV is 

subjected. The calculation methods by each recycling process are proposed below.  
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(a) CO2 reduction by energy recovery 

The boilers installed in Japan are fed primarily by kerosene, natural gas, or heavy oil. Energy 

production by the incineration of ASRs implies that the kerosene, natural gas, or heavy oil necessary to 

produce the same amount of energy is reduced. Similarly, CO2 emitted using traditional fuels is replaced 

by the emission generated by the incineration of ASRs.  

Meanwhile, considering that the energy recovery emits CO2 to the environment, the CO2 reduction 

in this process can present a negative impact depending on the emission factor of the incinerated material. 

Considering the emission value of kerosene as generic, the total CO2 reduction from energy recovery 

can be calculated by 

 

𝐶𝑂2𝑅𝐸𝑅𝐸 = 𝐸𝐹 ̕𝑘𝑒𝑟(𝐸𝑅𝐸𝑅𝐸 𝜂𝐵𝑜𝑖𝑙⁄ ) − ∑ 𝐸𝐹𝑚𝐺𝑚
𝐸𝑅𝐸

𝑚 = 𝐶𝑂2𝑅𝐴𝑆𝑅
𝐸𝑅𝐸 + 𝐶𝑂2𝑅𝑅𝑀

𝐸𝑅𝐸                    (15) 

 

𝐶𝑂2𝑅𝐸𝑅𝐸 : CO2 reduction by energy recovery [kg-CO2 per vehicle]. 

 𝐸𝐹𝑚         : Emission factor of the material (m) [kg-CO2 /kg], shown in Table 3.3. 

𝐸𝐹 ̕𝑘𝑒𝑟     : Emission factor of kerosene [0.07127 kg-CO2 /MJ] (EPA, 2014).  

𝐶𝑂2𝑅𝐴𝑆𝑅
𝐸𝑅𝐸 : CO2 reduction through the energy recovery of the materials obtained from the  

                  ASRs [kg-CO2 per vehicle]. 

𝐶𝑂2𝑅𝑅𝑀
𝐸𝑅𝐸 : CO2 reduction through the energy recovery of the materials obtained from the  

                  recyclable materials [kg-CO2 per vehicle]. 

 

(b) CO2 reduction by part reusing 

Similar to energy reduction, the reuse of vehicle parts implies that the CO2 emitted to produce new 

components for vehicle repairing/maintenance will be reduced.  

Nishimura et al. (2001 and 1997) calculated the embodied carbon for different productive sectors, 
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including the values for the Japanese passenger car industry. The CO2 reduction by reusing parts can be 

calculated using (16). 

 

𝐶𝑂2𝑅𝑃𝑅 = ∑ ∑ 𝐶𝑂2𝐸𝑚 ∗ 𝐺𝑖,𝑚
𝑃𝑅

𝑖𝑚 = 𝐶𝑂2𝑅𝑆𝑃
𝑃𝑅                                                                       (16) 

 

𝐶𝑂2𝑅𝑃𝑅: CO2 reduction by part reusing [kg-CO2 per vehicle]. 

𝐶𝑂2𝐸𝑚 :  Embodied CO2 for the material (m) for the automotive industry [kg-CO2/kg],  

                     shown in Table 3.3. 

𝐶𝑂2𝑅𝑆𝑃
𝑃𝑅 : CO2 reduction through the part reusing of spare parts [kg-CO2 per vehicle]. 

 

(c) CO2 reduction by material recycling 

As mentioned earlier, the materials obtained from ELVs are recycled as alternative raw materials. CO2 

is reduced in the production phase, and the related benefits can be calculated using (17). 

 

𝐶𝑂2𝑅𝑀𝑅 =  ∑ (𝐶𝑂2𝑃𝑉𝑀𝑚𝑚 − 𝐶𝑂2𝑃𝑅𝑀𝑚
)𝐺𝑚

𝑀𝑅 = 𝐶𝑂2𝑅𝐴𝑆𝑅
𝑀𝑅 + 𝐶𝑂2𝑅𝑅𝑀

𝑀𝑅                               (17) 

 

𝐶𝑂2𝑅𝑀𝑅 : CO2 reduction by material recycling [kg-CO2 per vehicle]. 

𝐶𝑂2𝑃𝑉𝑀𝑚
      : CO2 emitted in producing 1 kg of materials through virgin materials 

                [kg-CO2/kg], shown in Table 3.3. 

𝐶𝑂2𝑃𝑅𝑀𝑚
      : CO2 emitted in producing 1 kg of materials through recycled materials  

                 [kg-CO2/kg], shown in Table 3.3. 

𝐶𝑂2𝑅𝐴𝑆𝑅
𝑀𝑅  : CO2 reduction through material recycling of the materials obtained from the   

                  ASRs [kg-CO2 per vehicle]. 

𝐶𝑂2𝑅𝑅𝑀
𝑀𝑅  : CO2 reduction through material recycling of the materials obtained from the  

                 recyclable materials [kg-CO2 per vehicle]. 
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(d) CO2 reduction by each material flow 

The proposed CO2 reductions are subjected to the recycling methods analyzed. To calculate the CO2 

reduction per destination flow and the total CO2 reduction per ELV, those values are reflected in equation 

(2) as follows. 

 

𝐶𝑂2𝑅𝐴𝑆𝑅 =  𝐶𝑂2𝑅𝐴𝑆𝑅
𝐸𝑅𝐸 + 𝐶𝑂2𝑅𝐴𝑆𝑅

𝑀𝑅                                                                               (18) 

 

𝐶𝑂2𝑅𝑅𝑀 =  𝐶𝑂2𝑅𝑅𝑀
𝐸𝑅𝐸 +  𝐶𝑂2𝑅𝑅𝑀

𝑀𝑅                                                                                (19) 

  

𝐶𝑂2𝑅𝑃𝐹𝑅 = 𝐶𝑂2𝑅𝑆𝑃
𝑃𝑅                                                                                                     (20) 

 

 Primary assumption and limitations 

First, we analyze the ELV phase by presenting a case study of the Japanese market; moreover, energy 

and CO2 effects of vehicle recycling were calculated. However, those benefits do not impact the 

Japanese society exclusively, considering that part of the recyclable materials, as well as spare parts, are 

exported to other countries. 

Next, because the data used in the recycling process analysis are general for the entire market, the 

material composition of a Honda Accord was selected as generic considering that it does not represent 

a strong limitation for the calculation of the percentage values.  

Subsequently, the distances between dismantlers and reused part users were not included in the 

analysis considering that new parts were also transported from factories. Moreover, several factors such 

as durability, compatibility, and the safety of reused parts would be additional factors to be adjusted in 

future analysis.  

Finally, it is noteworthy that the recycling of rare metals were not considered in this study. 
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 Results and discussion 

 Material flow of ELVs 

Figure 3.3 shows the obtained material flow, where the ASRs, recyclable materials, and spare parts are 

subjected to different recycling methods. The methods are energy recovery, material recycling, and part 

reusing.  

It is noteworthy that, in the proposed figure, wood, paper, wire harness, and textile are included in 

miscellaneous, whereas foam is classified under plastic. 

As shown, in terms of the material weight, the vehicles are made primarily of steel, plastic, and 

aluminum. Meanwhile, most of the steel and aluminum are recycled as raw materials; however, the 

plastics are subjected primarily to energy recovery.   

 

 Energy reduction by the recycling of ELVs 

The ELV material flow is used in equations (9) to (14) to calculate energy reductions. Table 3.4 (a) 

summarizes the calculated reduction values per recycling method and destination flow. The total energy 

reduction was calculated as 78.3 GJ per vehicle, where 3.9 GJ corresponded to the energy reduction by 

the ASR, 34.4 GJ by the recyclable materials, and 39.9 GJ by the spare parts. 

Figure 3.4 (a) is elaborated considering the energy reduction per vehicle by each material and 

destination. As shown, the primary energy contributor in the ASRs is plastic, making up 64% of the 

energy reduction by this destination flow. Similarly, in cases of recyclable materials and spare parts, the 

primary contributor is aluminum, making up 68% and 47% of the respective reductions.  

Figure 3.4 (b) shows the energy reductions per unit (kg) of the material. As the diagram indicates, in 

all the destinations, the major energy contributor per kilogram of material is  aluminum; however, steel, 

which is the dominant material in a vehicle, has one of the lowest reduction values. Moreover, plastic 

has an acceptable level of energy reduction as being recycled ASR; however, it still presents an 

important energy reduction opportunity if it is separated as recyclable materials or spare parts. 
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Meanwhile, as shown in the last column of Fig. 3.4 (b), the flow with the highest reduction values per 

unit of material recycled is that of the spare parts, followed by those of the recyclable materials and  

ASRs. 

 

 CO2 reduction by recycling ELVs 

Table 3.4 (b) summarizes the CO2 reductions calculated from equations (15) to (20). The total CO2 

reduction by recycling an ELV was calculated as 4,160 kg-CO2, where -20 kg-CO2 corresponds to the 

CO2 emitted by the incineration of ASRs, 1,960 kg-CO2 corresponds to the CO2 reduced by the 

recyclable materials, and 2,220 kg-CO2 reduced by the spare parts. 

Figure 3.5 (a) shows the CO2 reductions of each material and destination per vehicle. As shown, the 

ASRs contribute negatively to the CO2 reduction as their incineration causes more pollution than the 

typically used fuel (kerosene).  Plastics are the major contributors of this negative value, not only owing 

to their relatively high emission factor but also because they comprise the primary component of ASRs.  

Steel and aluminum are the major contributors in the recyclable material and spare part flows, making 

up 82% and 57% of the reductions of each destination flow. However, it is noteworthy that the reason 

for the highly beneficial effect of steel is not its emission factor, but rather the large amount of steel that 

forms a vehicle. 

Figure 3.5 (b) shows the CO2 reduction per unit (kg) of material. Similar to the energy analysis, 

aluminum is the major CO2 contributor per kilogram of material in the recyclable material flow. 

However, the CO2 reduction difference is little between the materials in the spare part flow. As was 

expected, the plastics in the ASRs exhibit a negative CO2 reduction value; further, similar to energy, 

they present an important CO2 reduction opportunity if they are recycled as recyclable materials or spare 

parts. Finally, as shown in the last column of Fig. 3.5 (b), the flow with the highest CO2 reduction per 

unit of material is that of the spare parts, followed by those of the recyclable materials and ASRs. 
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 Energy and CO2 reductions for the entire Japanese market  

The results obtained above are only for a unit vehicle. To estimate the total benefit for the Japanese ELV 

market, its two representative aspects were considered: the average weight of a vehicle, and the number 

of vehicles scrapped annually. Both values were estimated based on the data between year 2009 to 2013, 

obtained from reports published by the Japanese government (Yano Research Institute Ltd., 2015; MOE, 

2015b). 

First, the total amount of waste generated by the scrapping of ELVs is calculated as follows.  

 

𝐺 𝐽𝑃𝑁 =  𝑆𝑐𝑟𝑎𝑝𝑝𝑒𝑑 ∗ 𝐺𝑣𝑒ℎ,𝑎𝑣𝑒                                                                                   (21)           

           

𝐺 𝐽𝑃𝑁          : Total weight of ELVs processed in the Japanese market [kg/year]. 

𝑆𝑐𝑟𝑎𝑝𝑝𝑒𝑑 : Number of cars scrapped in the Japanese market [unit/year].                            

𝐺𝑣𝑒ℎ,𝑎𝑣𝑒     : Average weight of the vehicles in the Japanese market [kg/unit].                          

       

Next, the total energy reduced in the Japanese market by the recycling of ELV is estimated using 

(22). 

 

𝐸𝑅𝐽𝑃𝑁 = 𝐸𝑅𝑇 ∗
𝐺 𝐽𝑃𝑁

𝐺 𝑣𝑒ℎ
  (22) 

 

𝐸𝑅𝐽𝑃𝑁: Total energy reduction by the recycling of ELVs in the Japanese market [kJ/year]. 

 

Similarly, the total CO2 reduction by the recycling of ELVs in the Japanese market is estimated using 

(23). 
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𝐶𝑂2𝑅𝐽𝑃𝑁 = 𝐶𝑂2𝑅𝑇 ∗
𝐺 𝐽𝑃𝑁

𝐺 𝑣𝑒ℎ
  (23) 

 

𝐶𝑂2𝑅𝑇 𝐽𝑃𝑁 : Total CO2 reduction by the recycling of ELVs in the Japanese vehicle market [CO2-

kg/year]. 

 

The average weight of the Japanese vehicles was calculated as 1,345 kg/unit, and the number of 

vehicles scrapped annually as 3,474,000 units/year. Table 3.4 (c) lists the estimated weight, energy 

reduction, and CO2 reduction by ELV recycling for the entire market. Moreover, Fig. 3.6 shows the 

comparisons between the obtained reduction values and the total energy consumption, and the CO2 

emissions for different sectors in Japan (Takita et al., 2015). These results highlight the significant effect 

of ELV recycling  even when the energy and CO2 values of an entire country are analyzed, reducing 

2.2% of the energy consumption and 1.1% of the CO2 emission of the country. This also indicates that 

a wrong decision or policy making through an insufficient analysis of this phase could generate a 

national level energy and CO2 inconvenient effecting the current reduction values.   

  

 Sensitivity analysis 

(a) Specific benefits expected by the modification of the recycling destination. 

Figures 3.4 (b) and 3.5 (b) indicate that the amount of energy and CO2 reduced per kilogram of the same 

material can vary widely among the recycling destinations (ASR, recyclable materials, and spare parts) 

to which the parts/materials are subjected. This section clarifies how these benefits vary when the 

recycling destinations of the primary materials of a vehicle (plastics, steel, and aluminum) are modified. 

Figure 3.7 shows the current recycling destination of the materials, and the following cases are analyzed. 

 

・ Case plastic (Cp): One unit (kg) of plastic changes the recycling destination from ASRs to 
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recyclable materials (CpASR-RM), from recyclable materials to spare parts (CpRM-SP), or from ASRs 

to spare parts (CpASR-SP). 

・ Case steel (Cs): One unit (kg) of steel changes the recycling destination from ASRs to recyclable 

materials (CsASR-RM), from recyclable materials to spare parts (CsRM-SP), or from ASRs to spare 

parts (CsASR-SP). 

・ Case aluminum (Ca): One unit (kg) of aluminum changes the recycling destination from ASRs to 

recyclable materials (CaASR-RM), from recyclable materials to spare parts (CaRM-SP), or from ASRs 

to spare parts (CaASR-SP). 

 

Figure 3.8 (a–c) and Fig. 3.9 (a–c) show the comparisons between the cases and indicate that, in 

terms of energy and CO2, the differences between the recycling destinations to which steel is subjected 

are relatively low (a maximum of 57.1 MJ and 4.35 kg-CO2 per kg of steel). This is because the steel 

included in the ASR flow is also recycled as raw material through magnetic separation or by melting it 

to become a mixed metal. Meanwhile, the manufacturing/forming of steel parts do not consume as much 

energy compared to aluminum. 

Moreover, changing the recycling method of one unit of aluminum can yield a higher energy 

reduction (a maximum of 302 MJ per kg of aluminum); however, CO2 reduction is barely affected 

because of the high utilization of gas in its forming processes. 

 

(b) Total benefits expected by the modification of the recycling destinations 

This section clarifies the total potential and benefits by modifying the current recycling destination of 

plastics, steel, and aluminum. Similar to the approach presented above, the following cases are proposed.  

 

・ Case total plastic (CpT): All the plastics of the ASRs change the recycling destination to recyclable 

materials (CpT
ASR-RM), all the plastic of recyclable materials change the recycling destination to 
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spare parts (CpT
RM-SP), or all the plastics of the ASRs change the recycling destination to spare parts 

(CpT
ASR-SP). 

・ Case total steel (CsT): All the steel of the ASRs change the recycling destination to recyclable 

materials (CsT
ASR-RM), all the steel of the recyclable materials change the recycling destination to 

spare parts (CsT
RM-SP), or all the steel of the ASRs change the recycling destination to spare parts 

(CsT
ASR-SP). 

・ Case total aluminum (CaT): All the aluminum of the ASRs change the recycling destination to 

recyclable materials (CaT
ASR-RM), all the aluminum of the recyclable materials change the recycling 

destination to spare parts (CaT
RM-SP), or all the aluminum of the ASRs change the recycling 

destination to spare parts (CaT
ASR-SP). 

 

Figure 3.8 (d) and Fig. 3.9 (d) show the potential energy and CO2 reduction per vehicle if all the 

aluminum, steel, or plastics of the ASRs are recycled as recyclable materials. These increments are 

possible through improvements in the separation process of the materials. As shown, the benefits of 

changing the recycling destination of 1 kg of plastic from the ASRs to recyclable materials are low; 

however, considering the total plastic content of the ASRs (123 kg), its beneficial potential of 3,070 MJ 

and 146 kg-CO2 per vehicle is much higher than that of the other materials.  

Figure 3.8 (e) and Fig. 3.9 (e) show the potential energy and CO2 reduction per vehicle if the 

recyclable materials are reused as spare parts. As shown,  the total beneficial potential of steel and 

aluminum is much higher than the total potential calculated for plastics in the ASRs. This reduction 

potential was estimated as 28,200 MJ and 1,990 kg-CO2 per vehicle for steel and 21,100 MJ and 271 

kg-CO2 per vehicle. However, the increased quantity of the materials/parts reused as spare parts depends 

on the market demand and changing the recycling process does not yield a significant effect. 

Additionally, the recycled steel is obtained primarily from the vehicle body that is not reused as a part. 

Finally, Fig. 3.8 (f) and Fig. 3.9 (f) show the high potential by reusing plastic as a spare part owing 
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to its high quantity in the ASRs. This reduction potential was estimated as 3,070 MJ and 1,040 kg-CO2 

per vehicle. However, the limitation of the market demand mentioned previously is also applied here. 

 

 Comparisons and the total impact in the entire life cycle 

To evaluate the obtained values, different life cycle comparisons are proposed in this study.  

First, our results and those of previous studies performed by Schweimer et al. (2000) are compared. 

Here, the total energy consumption and CO2 emission in the life cycle of a Volkswagen Golf A4’s (1,059 

kg) are calculated, and the ELV phase is considered negligible. 

Next, our results are compared with the values calculated through a classic life cycle approach. Hence, 

a rough simulation of the energy consumption and CO2 emission in the life cycle of the studied vehicle 

is proposed. Here, the environmental effect of its production phase is approximately equal to the total 

energy necessary for the production of its vehicle parts (24). 

 

𝐸𝑃 = ∑ 𝐸𝐸𝑚 ∗ 𝐺𝑣𝑒ℎ,𝑚𝑚                                                                             (24) 

 

𝐸𝑃: Energy consumed in the production phase [kJ per vehicle]. 

 

Meanwhile, the energy consumption in the use phase can be calculated using (25). 

 

𝐸𝑈 = 𝐹𝐸 ∗ 𝑑 ∗ 𝜌𝑔𝑎𝑠 ∗ 𝐻𝐻𝑉𝑔𝑎𝑠                                                                (25) 

 

𝐸𝑈            : Energy consumed in the use phase [kJ per vehicle]. 

𝐹𝐸           : Fuel economy, e.g., Honda Accord, 2011, 9.046 l/ 100 km  

(U.S. Department of Energy, 2011). 

𝑑              : Total traveled distance, 100,000 km. 



54 
 

𝐻𝐻𝑉𝑔𝑎𝑠    : Higher heating value of gasoline, 46.4 MJ/kg (Demirel, 2012). 

𝜌𝑔𝑎𝑠         : Density of gasoline, 0.75 kg/l (Demirel, 2012). 

 

The energy consumed in the disposal process of the ELV can be obtained using (26). 

 

𝐸𝐸𝐿𝑉 = 𝐸𝐷 ∗ 𝐺𝑣𝑒ℎ                                              (26) 

 

𝐸𝐸𝐿𝑉     : Energy consumed in the ELV disposal process [kJ per vehicle]. 

𝐸𝐷       : Disposal energy, 602 kJ/kg (Schuckert et al., 1996). 

 

It is noteworthy that the ELV recycling benefits calculated in this research correspond to the energy 

reduced, and do not include the process calculated by (26) that corresponds exclusively to the 

consumptions. 

In terms of CO2 emissions, the following equations are proposed. First, the CO2 emission in the 

production phase is calculated as follows. 

 

𝐶𝑂2𝑃
= ∑ 𝐶𝑂2𝐸𝑚 ∗ 𝐺𝑣𝑒ℎ,𝑚𝑚                                                                                      (27) 

 

𝐶𝑂2𝑃
: CO2 emitted in the production phase [kg-CO2 per vehicle] 

 

Moreover, the CO2 emission in the use phase is obtained as follows. 

 

𝐶𝑂2𝑈
= 𝐹𝐸 ∗ 𝑑 ∗ 𝜌𝑔𝑎𝑠 ∗ 𝐸𝐹𝑔𝑎𝑠                               (28) 

 

𝐶𝑂2𝑈
: CO2 emission in the vehicle use phase [kg-CO2 per vehicle]. 
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𝐸𝐹𝑔𝑎𝑠   : Emission factor from the combustion of 1 kg of gasoline, 3.3 kg-CO2/ kg 

(Demirel, 2012). 

 

Finally, the CO2 emission in the disposal process is neglected owing to its low value (Wang et al., 

2013; Zamel et al., 2006). 

Figure 3.10 (a) shows a comparison between the obtained energy consumption values expressed in 

GJ per kg of vehicle. The superior values of the first column are calculated through the classical 

approach, and the inferior values of the same column are proposed herein as the current energy 

reductions by ELV recycling. These benefits represent approximately 16% of energy reduction in the 

entire vehicle life cycle. The second column, indicated as “improved,” is added to demonstrate the effect 

in the life cycle when the plastics in the ASRs are totally separated and recycled as raw material (CpASR-

RM). The third column, indicated as “maximized,” demonstrates the effect when all the plastic, steel, and 

aluminum recycled as ASRs and recyclable materials are reused as spare parts (CpT
RM-SP+CsT

RM-

SP+CaT
RM-SP+CpT

ASR-SP+CsT
ASR-SP+CaT

ASR-SP). Finally, the third column indicates the values proposed 

by Schweimer et al. (2000). 

Figure 3.10 (b) shows a comparison between the obtained CO2 emission values. Similar to energy, 

the superior part of the first column indicates the values calculated through the classical approach, and 

the inferior part of the same column the values proposed herein as the current CO2 reductions by ELV 

recycling. The recycling benefits represent approximately 13% of CO2 reduction in the entire vehicle 

life cycle. A second column is added to indicate the improved life cycle through the increase in plastic 

separation, and a third column to indicate the life cycle with the maximized utilization of the plastic, 

steel, and aluminum of the ELV. Finally, the fourth column indicates the values proposed by Schweimer 

et al. (2000). 

The proposed comparisons demonstrate not only the compatibility of the obtained results but also 

emphasizes the importance of the ELV phase in the entire vehicle life cycle.  
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Wang et al. (2013) and Zamel et al. (2006) estimated the energy consumption of vehicle scrapping 

as 307 to 370 kJ per kilogram of vehicle; however, we calculated that the studied phase generates a 

positive 52 MJ of energy reduction. Additionally, considering the data used by Viñoles-Cebolla et al. 

(2015), and that 17% of the vehicle weight is destined as ASR, the CO2 emission of the ELV phase can 

be calculated as 0.261 kg-CO2 per kilogram of vehicle; our study shows a positive 2.80 kg-CO2 of CO2 

reduction. 

In contrast to the classic life cycle approaches where only direct consumption and emission are 

considered, our results assess the cycle comprehensively in that the demerits and benefits of the phases 

are evaluated.  

 

 Possible changes in ELV recycling 

The ELVs are recycled efficiently in terms of energy and CO2. However, it still presents an important 

reduction potential. 

 The increased quantity of reused vehicle parts exhibits the highest effect in terms of energy and CO2 

reductions. However, this opportunity is limited by the demand of the aftermarket and vehicle models, 

and possible measures in terms of improving the restricted recycling process.  

The diminution of the material recycled as ASRs can also improve the reduction benefits of the ELVs 

considerably. Hence, improvements in plastic separation and recycling are the key factors. As an 

example, the unification of plastics used in vehicle production (PP, ABS, and others) to facilitate the 

related recycling process can be studied. 

In terms of the recyclable materials, aluminum exhibits the highest energy and CO2 reduction values 

per kilogram of material owing to the significant difference between the energy and CO2 necessary for 

the production of virgin and recycled aluminum. This implies that the initial energy and CO2 

“investments” necessary for the production of virgin aluminum can be compensated by the energy and 

CO2 reduced in its recycling and by its lightweighting benefits.  
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Finally, steel, which is the principal material of a vehicle, exhibits a low reduction level per unit of 

material recycled and can be substituted by alternative lightweight materials with high recyclability 

benefits. 

Future studies should target either cost or probabilistic analysis to numerically assess the percentage 

of energy reduction and CO2 reduction that are actually feasible through the proposed changes.  

Compared with previous studies, our study concludes the vehicle life cycle through a recycling 

assessment. The results provided insights into the proposal of new approaches for life cycle analysis 

including the introduction of alternative lightweight materials during vehicle design. Hence, limitations 

in vehicle design should be considered. The results of this research will be important as a basis for the 

analysis of cyclical resource strategies of high quantities of rare metals used in the production of electric 

vehicles. 

The results of our study indicate that currently, ELVs represent 16% and 13% of energy and CO2 

reductions in the vehicle life cycle, respectively, highlighting the importance of the study phase. These 

values were calculated for the Japanese vehicle market and can vary depending on the country being 

analyzed. However, the high energy and CO2 reduction potential expected by correct recycling and the 

proposed evaluation method can be applied without considering this limitation. 

 

 Conclusion 

A principal method to assess the environmental effect of a vehicle is through the analysis of its life 

cycle; nevertheless, according to the author’s knowledge, no comprehensive work has been dedicated 

to understand the total benefits of ELV recycling.    

This paper highlighted the importance of the aforementioned phase, providing a new framework to 

assess vehicle life environmentally, and also showed that a wrong decision or policy making through 

the insufficient analysis of this phase could generate a national level energy and CO2 inconvenient 

affecting the current reduction values. The recycling process of ELVs was clarified and their material 
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flow elaborated. The scrapped vehicles were dismantled in three flows (ASR, recyclable materials, and 

spare parts), and recycled through three different methods (energy recovery, material recycling, and part 

reusing).  

The primary conclusions of the study are listed below: 

 

 The energy reduction by ELV recycling was estimated as 52 MJ per kilogram of vehicle (16% of 

energy reduction in the life cycle), and the benefits for the entire Japanese market as 247 PJ/ year. 

 The CO2 reduction by ELV recycling was estimated as 2.80 kg-CO2 per kilogram of vehicle (13% 

of the CO2 reduction in the life cycle), and the benefits for the entire Japanese market as 13.1 Mt-

CO2/ year. 

 The flow with the highest level of contribution in terms of energy and CO2 was that of the spare 

parts, followed by those of the recyclable materials and ASRs.  

 In general, the ELVs were recycled efficiently, however, it still presented an important reduction 

potential. The increased use of reused spare parts presented significant effects in terms of energy 

and CO2 reductions. Additionally, these benefits could be improved through the reduction in the 

recycled materials as ASRs. Hence, improvements in plastic separation and recycling were shown 

to be vital.  

 The metals were primarily separated as recyclable materials. Here, aluminum was the primary 

contributor in terms of energy and CO2 reductions. Steel demonstrated low reduction levels per 

unit of material recycled, and the substitution of steel with alternative lightweight materials with 

high recycling potential should be evaluated. 

 

Finally, we conclude that the correct evaluation of the ELV could be important for future vehicle life 

cycle improvement strategies, where not only the first two phases should be considered but also the 

benefits generated through its recycling process.  
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1 Table 3.1 Weight, sales and material composition of the studied 42 reused parts 

Part name 
Weight  

(kg) 

Sales 

(units) 

Material composition   

Steel Iron Plastic Foam Glass Rubber Alum Copper Misc. Source 

Exterior parts                         

Front bumper ASSY 13.86 142,646 57.43%   42.57%             c) 

Rear bumper ASSY 12.34 119,059 63.21%   36.79%             c) 

Right fender 4.03 116,786 100.00%                 c) 

Left fender 4.03 121,557 100.00%                 c) 

Front right door ASSY 28.18 70,588 63.96%   9.55%   9.85% 3.83%     12.81% c) 

Front Left door ASSY 28.18 84,269 63.96%   9.55%   9.85% 3.83%     12.81% c) 

Rear right door ASSY 23.73 56,094 62.31%   9.54%   13.06% 4.07%     11.02% c) 

Rear Left door ASSY 23.73 104,220 62.31%   9.54%   13.06% 4.07%     11.02% c) 

Windshield 13.94 5,471         100.00%         b) 

Right door mirror 1.32 99,152     65.00%   25.00%   2.00% 2.00% 6.00% a) 

Left door mirror 1.32 114,313     65.00%   25.00%   2.00% 2.00% 6.00% a) 

Right headlight ASSY 3.43 159,516     85.00%     8.00%   2.00% 5.00% a) 

Left headlight ASSY 3.43 158,654     85.00%     8.00%   2.00% 5.00% a) 

Bonnet hood 17.90 108,469 84.92%               15.08% c) 

Trunk lid 12.37 11,136 80.44%               19.56% c) 

Rear right taillight 1.27 133,780     85.00%     8.00%   2.00% 5.00% a) 

Rear left tail light 1.27 125,928     85.00%     8.00%   2.00% 5.00% a) 

Rear window glass 7.44 8,342         100.00%         b) 

Interior parts                         

Front seat (driver) 22.87 7,614 69.96%   9.01% 12.02%         9.01% c) 

Front seat (assistant) 22.87 1,787 69.96%   9.01% 12.02%         9.01% c) 

Rear seat 21.03 1,850 37.80%   2.95% 33.86%         25.39% c) 

Engine parts                         

Engine ASSY 169.90 135,853 46.13%           21.68%   32.19% c) 

Muffler ASSY 14.29 831 99.99%               0.02% b) 

Fuel tank 12.00 11,133     100.00%             a) c) 

Starter motor / cell motor 1.50 143,790 36.10%           36.10% 27.80%   a) b) 

Alternator / dynamo 1.50 177,027 36.10%           36.10% 27.80%   a) b) 

Radiator 4.42 65,265 5.00%           85.00%   10.00% a) 

Underbody parts                         

Transmission 96.70 58,820 30.00% 30.00% 5.00%     5.00% 30.00%     b) 

Steering rack & pinion 8.24 58,394 30.00%   5.00%       53.00%   12.00% a) c) 

Right front drive shaft 7.60 64,079 100.00%                 b) 

Left front drive shaft 7.60 79,251 100.00%                 b) 

Right front strut ASSY 7.40 47,709 100.00%                 b) 

Left front strut ASSY 7.40 54,637 100.00%                 b) 

Tire 43.44 226,505           100.00%       a) c) 

Wheel 46.96 70,369 100.00%                 b) 

Right rear strut ASSY 5.10 7,673 100.00%                 b) 

Left rear strut ASSY 5.10 8,208 100.00%                 b) 

Right front knuckle ASSY 21.45 17,150   69.70%         26.18%   4.13% a) c) 

Left front knuckle ASSY 21.45 20,385   69.70%         26.18%   4.13% a) c) 

Electrical parts                         

Cooler compressor 5.74 108,303 10.00% 35.00%         35.00%   20.00% a) 

Cooler condenser 4.20 38,580             90.00%   10.00% a) 

Battery 12.40 15,089     6.10%           93.90% b) 

                          

Various parts 0.97 2,988,408 0.93% 5.58% 42.94%   0.08% 2.26% 35.08% 7.00% 6.14%   

(280 parts)                         

                          

a) Authors estimation                         

b) Data from Burnham et al., 2006, 2012                     

c) Data from Singh, 2012                       
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 2Table 3.2 Energy reduction coefficients for each proposed method 

[kJ/kg] 

Material 

Energy recovery 
 

Part reusing 
 

Material recycling 

Heating value 
 Embodied 

energy 

 Material production 

100% virgin   100% recycled  

   Ref.   Ref.    Ref. 

Steel n/a    63,965  c)  40,000  30,000  d),e),f) 

Iron n/a    63,965  c)  40,000  30,000  d),e),f) 

Plastic 38,016 a)  108,651  c),g)  90,000  45,000  d),e),f) 

Glass n/a    55,126  c)  30,000  15,000  d),e),f) 

Rubber 23,121 a)  153,749  c)  70,000  43,600  d),e),f) 

Aluminum n/a    341,924  c)  220,000  40,000  d),e),f) 

Copper n/a    126,768  c)  100,000  45,000  d),e),f) 

Fluid 43,400 b), g)  46,985  c)  46,985  0  c),g) 

Misc. n/a    63,965  c),g)  40,000  30,000  d),e),f),g) 

Foam 18,962 a)  n/a    n/a n/a   

Textile 17,041 a)  n/a    n/a n/a   

Wood 15,719 a)  n/a    n/a n/a   

Paper 16,916 a)  n/a    n/a n/a   

Wire harness 20,711 a)  n/a    n/a n/a   

Mix metal n/a    n/a    40,000  30,000  d),e),f),g) 

Cement, slag, others n/a    n/a    0  0  g)* 

                  

                  

a) Kim et al., 2004   
 

e) Schuckert et al., 1996 
 

      

b) DUKES, 2017   
 

f) Wang et al., 2013   
 

      

c) Das et al., 1995   
 

g) Author estimation   
 

      

d) Weiss et al., 2000   
 *Considered as sub-product of the recycling process   

 

 

 

 

 



67 
 

 

3Table 3.3 CO2 reduction coefficients for each proposed method 

 [kg-CO2/kg] 

 

  

Material 

Energy recovery  Part reusing  Material recycling 

Emission factor 
 Embodied 

CO2 

 CO2 emitted 

100% virgin    100% recycled 
  Ref.   Ref.    Ref. 

Steel n/a    5.510  c)  2.100  0.400  d) 

Iron n/a    7.710  c)  2.100  0.400  d),g) 

Plastic 2.652  a)  8.070  c)  2.100  1.300  e) 

Glass n/a    1.468  c)  0.380  0.230  d) 

Rubber 2.652  a)  13.579  c)  3.040  1.893  f),g) 

Aluminum n/a    7.648  f),g)  6.660  1.100  f) 

Copper n/a    6.239  c)  2.580  1.161  f),g) 

Fluid 2.222  b)  8.441  c)  7.380  0  c),g) 

Misc. n/a    5.510  c),g)  2.100  0.400  d),e),f),g) 

Foam 2.652  a)  n/a    n/a n/a   

Textile 1.280  a)  n/a    n/a n/a   

Wood 0.568  a)  n/a    n/a n/a   

Paper 1.279  a)  n/a    n/a n/a   

Wire harness 0.884  a),g)  n/a    n/a n/a   

Mix metal n/a    n/a    2.100  0.400  d),g) 

Cement, slag, others n/a    n/a    0  0  g)* 

                  

                  

a) McDougall et al., 2001     e) Hillman et al., 2015      

b) EPA, 2014       f) GREET, 2015         

c) Nishimura et al., 2001 and 1997     g) Author estimation     

d) CEPA, 2011   *Considered as sub-product of the recycling process 
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4Table 3.4 End-of-life vehicle recycling benefits in Japan 

 

a) Energy reduction per vehicle by recycling methods and material destinations 

  
[GJ per vehicle] 

  

Energy 

recovery 

Material 

recycle 

Part reuse Total 

  

            

ASR 3.4  0.5    3.9    

Recyclable materials 1.7  32.8    34.4    

Spare parts     39.9  39.9    

Total 5.1  33.3  39.9  78.3    

 

b) CO2 reduction per vehicle by recycling methods and material destinations 

   
[kg-CO2 per vehicle] 

  

Energy 

recovery 

Material 

recycle 

Part reuse Total 

            

ASR -60  30    -20      

Recyclable materials 20  1,940  
  

1,960      

Spare parts     2,220  2,220      

Total -40  1,970  2,220  4,160      

 

c)  Waste generated and benefits for the entire Japanese vehicle market 

         

 

 

 

  

Analyzed item Waste and benefits     Share *) 

Scrapped material 𝐺 𝐽𝑃𝑁 4.67  Mt/year 10 % 

Energy reduction              𝐸𝑅𝐽𝑃𝑁 247  PJ/year 2.2 % 

CO2 reduction  𝐶𝑂2𝑅𝐽𝑃𝑁 13.1 Mt-CO2/year 1.1 % 

  *) Considering the total nonindustrial waste generated in Japan as 44.87 Mt/year (SBJ, 2016), total 

energy consumption as 11.33 EJ/year (Takita et al., 2015), and total CO2 emitted as 1,246 Mt-CO2/year 

(Takita et al., 2015) 

 

𝐸𝑅𝐸𝑅𝐸
 𝐸𝑅𝑀𝑅

 𝐸𝑅𝑃𝑅
 𝐸𝑅 

𝐶𝑂2𝑅𝑀𝑅 𝐶𝑂2𝑅𝑃𝑅 𝐶𝑂2𝑅 𝐶𝑂2𝑅𝐸𝑅𝐸 
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5Fig. 3.1 Current vehicle life cycle and recycling system  
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7 Fig. 3.3 Current material flow of an ELV 
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(b) Per unit of material and destination           

8  Fig. 3.4 Energy reductions  

(a) Per vehicle and destination 
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(b) Per kg of material and destination 

9Fig. 3.5 CO2 reductions 

 

(a) Per vehicle and destination 
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a) Energy demand by sector 

 

 

 

b) CO2 emission by sector 

 

10Fig. 3.6 Effects of the ELV recycling on energy consumption and CO2 emission 

 

 

 

  

References: Takita et al., 2015  

 

References: Takita et al., 2015   
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CaRM-SP 

CaASR-SP 

11 Fig. 3.7 Destination of the plastic, steel and aluminum of an ELV, and case settings for the 

sensitivity analysis 

 

[kg/vehicle] 
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12Fig. 3.8 Potential energy reduction by changing the recycling destination of ELV 
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13Fig. 3.9 Potential CO2 reduction by changing the recycling destination of ELV  
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14Fig. 3.10 Comparative between life cycle studies 
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 Assessment of vehicle lightweighting on recycling benefits considering life cycle 

energy and CO2 reductions 

 

 Introduction 

A typical method of evaluating the energy and CO2 efficiency of a vehicle is through the analysis of its 

life cycle, and many approaches of it have been proposed during the last decades. Some studies 

estimated that the production phase constitutes 7–22% and the use phase 79–93% of the energy 

consumed and CO2 emitted of the entire cycle (Schweimer et al., 2000; Kobayashi Osamu, 1997; Nemry 

et al., 2008). Moreover, previous studies performed by most of the authors considered the end-of-life 

vehicles (ELVs) insignificant, representing at the most 1% of the energy consumption and CO2 emission 

of the vehicle life cycle.  

At present, approximately 50%–60% of the end of life vehicle weight is separated as recyclable 

material, 20%–30% reused as second-hand spare parts and 17% processed as automotive shredder 

residue (ASR) (METI, 2014 (a)). Moreover, those material are subjected to three recycling methods; 

material recycling, parts reusing, and energy recovery. Previous studies (Sato et al., 2018, 2019) 

highlight the importance of this phase indicating that the ELV phase represents 16% and 13% of energy 

and CO2 reduction of the entire vehicle life cycle, but also emphasized that the benefits of recycling 

depend strongly on the material composition of the vehicle and the recycling method they are subjected.  

A vehicle is made by more than 20,000 parts, and the materials used in its production are selected 

from the standpoint of security, environment, functional, productivity, as well as, economic perspective.  

Moreover, it is well known that steel and iron accounts for the majority of vehicle weight and represent 

approximately the 64% of the total weight of a vehicle (Singh Harry, 2012).  

Various studies about the environmental effects of lightweighting have been carried out focusing the 

attention on the production and/or use phase of the vehicle without considering the ELV phase 
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(González Palencia et al. 2014, 2015; Das et al., 2016; Luk et al., 2017; Koffler et al., 2009); and it is 

said that 100 kg of mass reduction in an automobile results in a fuel saving of 0.1 l to 0.32 l per 100 km 

driven (Cheah et al., 2007; Pagerit et al., 2006; Carlson et al., 2013; Kim et al., 2016) . Few studies as 

Das (2000, 2005, 2011) and Modaresi et al. (2014) include the ELV benefits in their study. However, 

those studies analyze one type of alternative material and comparison with other lightweight materials 

are not conducted. Mayyas et al. (2012) and Lewis et al. (2014), Dhingra et al. (2014) and Kim et al. 

(2013) analyze different types of lightweight materials but they consider fictitious scenarios where only 

material recycling is contemplated and other possible destinations as part reusing and energy recovery 

are disregarded. Other studies as O'Reilly et al. (2016) emphasize the importance of ELV phase in 

lightweight scenarios; however, numerical analysis is not conducted.  

In this sense and according to the author’s knowledge, no comprehensive work has been dedicated to 

understanding the total effect of material lightweighting in the vehicles including the effect of the 

possible recycling destinations of its parts.   

Currently, steel from ELVs are efficiently separated through magnetic segregation; non-ferrous 

metals as aluminum and copper partially separated by operators (Toyota Metal Corp., 2019); and 

plastics mainly subjected to energy recovery (Sato et al., 2019). Future massive migration from vehicle 

parts made of steel to lightweight materials will drastically change the current benefits of the ELV phase. 

Our study analyzes those possible scenarios numerically clarifying the life cycle energy and CO2 

emission effects of new materials cases for the upcoming vehicles.  

New technologies and materials for vehicle production can be correctly assessed when the ELV phase 

is also considered. Carmakers, part-makers, and governments should define strategies and policies to 

achieve a sustainable transportation sector understanding the environmental limitations of each material 

to reach a circular economy. In this sense our approach can help to identify recycling and material 

separation process to be prioritized for development.  
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Finally, vehicle users are going to be able to comprehend the total environmental effect of the selected 

vehicles if results of the proposed assessment are placed at the disposal of the clients, promoting in this 

way a more socially responsible purchase. 

This section aims to quantitively evaluate the reductions in energy consumption and CO2 emissions 

of vehicles by the introduction of lightweight materials considering also the possible effects of its 

recycling system. For this propose, the entire life cycle of the vehicle is assessed for the Japanese market. 

Here, lightweighting of the body in white through the use of aluminum, advanced high strength steel 

and carbon fiber reinforced plastic is analyzed as a case study. 

 

 Methodology 

Fig. 4.1 shows the concept of this research, where the total energy consumption and CO2 emission of a 

vehicle vary depending on the material composition of its parts and the recycling method they are 

subjected to. Moreover, Fig. 4.2 shows the analysis flow of this research.  

Here, the total life cycle energy consumption and CO2 emission of the vehicle (i.e., production, use 

and ELV phase) is calculated as the sum of the consumptions and emissions of its parts and components 

(1)(2). 

 

 𝐸𝐿𝐶𝑣𝑒ℎ𝑖𝑐𝑙𝑒
= ∑ 𝐸𝐿𝐶𝑖𝑖                                                                                                                           (1) 

 

 𝐸𝐿𝐶𝑉𝑒ℎ𝑖𝑐𝑙𝑒
   : Energy consumed in the vehicle life cycle [MJ].    

 𝐸𝐿𝐶𝑖
           : Energy consumed in the vehicle life cycle related to part i [MJ]. 

 

 𝐶𝑂2 𝐿𝐶𝑣𝑒ℎ𝑖𝑐𝑙𝑒
= ∑ 𝐶𝑂2 𝐿𝐶𝑖𝑖                                                                                                                  (2) 
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 𝐶𝑂2 𝐿𝐶𝑉𝑒ℎ𝑖𝑐𝑙𝑒
 : CO2 emitted in the vehicle life cycle [kg-CO2]. 

 𝐶𝑂2 𝐿𝐶𝑖
         : CO2 emitted in the vehicle life cycle related to part i [kg-CO2]. 

 

 Energy consumption assessment for vehicle parts 

The energy consumption in the vehicle life cycle related to a specific part can be calculated as the 

sum of the energy consumed of its phases (3). 

 

 𝐸𝐿𝐶𝑖
= 𝐸𝑃𝑖

+ 𝐸𝑈𝑖
+ 𝐸𝐸𝐿𝑉𝑖

                                                                              (3) 

 

  𝐸𝑃𝑖
      :  Energy consumed in the production phase related to vehicle part i. [MJ]. 

       𝐸𝑈𝑖
      :  Energy consumed in the use phase related to part i [MJ]. 

       𝐸𝐸𝐿𝑉𝑖
   :  Energy consumed in the ELV phase related to part i [MJ]. 

 

Das et al. (1995) defined the embodied energy as “The energy contained in a fabricated material 

part, reflecting the energy required to process the material from raw material to finished product”.  The 

energy consumed in the production phase of a part is calculated considering those values and the weight 

of the materials utilized in its production (4). 

 

 𝐸𝑃𝑖
= ∑ 𝐸𝐸𝑚𝑚 ∗ 𝐺𝑖,𝑚                                                                                                    (4) 

 

   𝐸𝐸𝑚: Embodied energy of the material m for vehicle part production [MJ/kg]. 
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        𝐺𝑖,𝑚 : Weight of the material m of a part i [kg]. 

 

The energy consumption in the use phase of a part can be divided into two; the “mass induced energy 

consumptions” and “other energy consumptions” (5).  

 

 𝐸𝑈𝑖
= 𝐸𝑈(𝑚.𝑖.)𝑖

+ 𝐸𝑈(𝑜𝑡ℎ𝑒𝑟)𝑖
                                                                                                              (5) 

 

𝐸𝑈(𝑚.𝑖.)𝑖
     : Mass induced energy consumption in the use phase related to vehicle part i.      

                      [MJ].  

      𝐸𝑈(𝑜𝑡ℎ𝑒𝑟)𝑖
  : Other energy consumption in the use phase related to vehicle part i. [MJ]. 

  

Here, the mass induced energy consumption is defined as the consumption in the use phase of the 

vehicle related to the analyzed part that varies depending on the weight of it. This value is calculated 

base on previous studies of Koffler et al. (2010) and O’reilly et al. (2016) (6). 

 

𝐸𝑈(𝑚.𝑖.)𝑖
=

𝑑

𝑑𝐷𝐶
∗ 𝑊𝑇𝑖

∗ (1 + 𝐿𝐺𝑒𝑎𝑟) ∗ 𝜂𝑑𝑖𝑓𝑓 ∗ 𝑈𝑔𝑎𝑠 (6) 

 

          𝑊𝑇𝑖
   : Total work required to move the part i during the analyzed drive cycle. [J]. 

          𝑑       : Distance travelled by the vehicle, 100,000 km. 

          𝑑𝐷𝐶   : Distance of the analyzed drive cycle [km]. 

          𝜂𝑑𝑖𝑓𝑓 : Differential efficiency of the engine, adopted as 0.0731 l/MJ (Koffler et al., 2009). 
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          𝐿𝐺𝑒𝑎𝑟 : Energy lost in the gearbox, adopted as 0.02 (Koffler et al., 2009). 

          𝑈𝑔𝑎𝑠  : Energy density of the gasoline, adopted as 32 MJ/l. 

 

It should be made clear that this value represents the energy needed to transport the parts, and that 

engines, h-vac, and electric components are subjected to additional energy consumption explicitly 

related to its functionalities. Those values are included in other energy consumptions. 

Reducing the mass of the vehicle part, the acceleration and the roll resistance of the vehicle will also 

decrease. On the other hand, the part shape affects the aerodynamic resistance. Total work required to 

move the part derives from the mentioned three types of resistances and its relation can be represented 

by the equations (7). 

 

𝑊𝑇𝑖
= (1 − 𝑟) 𝑊𝑅𝑖

+ 𝑊𝐿𝑖
+ 𝑊𝑎𝑖

                                                                              (7) 

 

   𝑊𝑅𝑖
   : Work needed to overcome the rolling resistance of the part i. [J] 

         𝑊𝐿𝑖
  : Work needed to overcome the aerodynamic resistance of the part i [J]. 

         𝑊𝑎𝑖
  : Work needed to overcome the acceleration resistance of the part i [J]. 

         𝑟      : Deceleration rate in the analyzed drive cycle 

 

The values of each work are calculated by the following equations (8)(9)(10) (Koffler et al., 2010; 

O’reilly et al., 2016 ). 
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𝑊𝑅𝑖
= 𝐺𝑖 ∗ 𝑔 ∗ 𝑓𝑅 ∗ 𝐶𝑊𝑅                                                                                (8) 

 

𝑊𝐿𝑖
= (

𝜌

2
) ∗ 𝑐𝑤 ∗ 𝐴 ∗ 𝐶𝑊𝐿                                                                    (9) 

 

𝑊𝑎𝑖
= 𝐺𝑖 ∗ 𝐶𝑊𝑎                                                                               (10) 

 

         𝐶𝑊𝑅  : Characteristic values related to rolling resistance, 4,165 m 

                          (Koffler et al., 2010) 

         𝐶𝑊𝐿  : Characteristic values related to aerodynamic resistance, 699,767 m3/s2  

            (Koffler et al., 2010) 

         𝐶𝑊𝑎  : Characteristic values related to acceleration resistance, 687 m2/s2  

                                     (Koffler et al., 2010) 

          𝐺𝑖    : Weight of the part i [kg] 

          𝑔     : Gravity [m/s2] 

         𝑓𝑅     : Rolling resistance, 0.01 (Koffler et al., 2010) 

           𝜌    :  Air density [kg/m3] 

         𝑐𝑤    : Air drag coefficient 

           𝐴    :  Front surface [m2] 
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The above characteristic values depend on the analyzed driving cycle. Here, they are subjected to the 

Japanese 10-15 mode.  

Finally, the energy consumption in the ELV phase is analyzed based on the approaches of Sato et al. 

(2018, 2019) considering that the reuse and recycle of vehicle parts have a beneficial impact on the total 

vehicle life cycle. Here, the total effect is calculated as the difference of the energy consumed in the 

dismantling process and the energy saving by the recycling of its parts and materials (11). As previously 

stated, ELVs are recycled through three methods; energy recovery, material recycling, and part reusing. 

Firstly, the reuse of vehicle parts implies that the energy consumed to produce new components is saved 

and it can be calculated considering the embodied energy used in the analysis of the production phase 

(12). Secondly, make a product from recycled materials requires less energy than making the same 

product using virgin materials (13). Finally, the energy reduction by energy recovery is the thermal 

energy generated by the incineration of the materials as an alternative fuel.  

 

𝐸𝐸𝐿𝑉𝑖
= 𝐸𝑑𝑖𝑠 ∗ 𝐺𝑖 − (𝐸𝑅𝑃𝑅,𝑖 + 𝐸𝑅𝑀𝑅,𝑖 + 𝐸𝑅𝐸𝑅,𝑖)                                                              (11) 

𝐸𝑅𝑃𝑅,𝑖 = ∑ 𝐸𝐸𝑚𝑚 ∗ 𝐺𝑃𝑅,𝑚,𝑖                                                                                                   (12) 

 

𝐸𝑅𝑀𝑅,𝑖 =  ∑ 𝐸𝑃∆𝑀𝑚𝑚 ∗ 𝐺𝑀𝑅,𝑚,𝑖                                                                                              (13) 

 

𝐸𝑅𝐸𝑅𝐸,𝑖 = 𝜂𝐵𝑜𝑖𝑙 ∑ 𝐻𝐻𝑉𝑚 ∗ 𝐺𝐸𝑅,𝑚,𝑖𝑚 + ∑ 𝐸𝑃∆𝑀𝑚
∗𝑚 𝐺′𝐸𝑅,𝑚,𝑖                                                 (14) 

 

  𝐸𝑑𝑖𝑠   : Energy consumed for the disposal of vehicle parts [MJ/kg] 

𝐸𝑅𝑃𝑅,𝑖  : Energy reduction by the reusing of part i [kJ]. 

𝐸𝑅𝑀𝑅,𝑖    : Energy reduction by material recycling of part i [kJ]. 

𝐸𝑅𝐸𝑅𝐸,𝑖    : Energy reduction by energy recovery of part i [kJ].   
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𝐺𝑃𝑅,𝑚,𝑖  : Weight of the material m of the part i subjected to part reusing [kg]. 

𝐺𝑀𝑅,𝑚,𝑖 : Weight of the material m of part i destined to material recycling [kg]. 

    𝐺𝐸𝑅,𝑚,𝑖  : Weight of the material m of part i destined to energy recovery [kg]. 

    𝐺′𝐸𝑅,𝑚,𝑖  : Weight of the material m of part i recovered after energy recovery [kg]. 

𝐸𝑃∆𝑀𝑚
   : Difference between the energy consumed in producing 1 kg of material m through 

virgin and recycled resources [kJ/kg]. 

𝐻𝐻𝑉𝑚  : Highest heating value of the combustible material m) [kJ/kg], shown in  

                     Table 3.2 a). 

  𝜂𝐵𝑜𝑖𝑙   : Efficiency of the incinerator-boiler, which has been adopted as 63%  

(Tchobanoglous et al., 1993). 

 

Its worthily to mention that the ASR obtained from the scrapped vehicle is subjected to energy 

recovery, and materials such as cement, slag, mixed metals, and steel are recovered. Moreover, it has 

been estimated considering previous studies of Sato et al. (2019) and report of the Ministry of 

Environment (MOE, 2015) that 38% of the metals subjected to this process are recovered as recycled 

raw material. The related energy and CO2 benefits were calculated considering that the values of the 

recovered metals are similar to steel.   

 

 CO2 emission assessment for vehicle parts 

Similar to energy consumption, the CO2 emission related to the life cycle of a specific part can be 

calculated as the sum of the emissions on its phases (15). 

 

𝐶𝑂2 𝐿𝐶𝑖
= 𝐶𝑂2𝑃𝑖

+ 𝐶𝑂2𝑈𝑖
+ 𝐶𝑂2𝐸𝐿𝑉𝑖

                                                                 (15) 
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   𝐶𝑂2 𝑃𝑖
    : CO2 emitted in the production phase related to vehicle part i [kg-CO2]. 

𝐶𝑂2 𝑈𝑖
    : CO2 emitted in the use phase related to vehicle part i [kg-CO2].         

𝐶𝑂2 𝑅𝑖
     : CO2 emitted in the ELV phase related to vehicle part i [kg-CO2]. 

 

Nishimura et al. (1997, 2001) calculated different embodied CO2 including values for the Japanese 

car industry. The CO2 emission for the production of a vehicle part can be evaluated using (16). 

 

𝐶𝑂2𝑃𝑖
= ∑ 𝐸𝐶𝑂2𝑚𝑚 ∗ 𝐺𝑖,𝑚                                                                            (16) 

 

  𝐸𝐶𝑂2𝑚
 : Embodied CO2 of the material m for vehicle part production [kg-CO2/kg]. 

 

The CO2 emission in the use phase of a part can also be divided into two parts (17).  

 

   (17) 

 

 

Here, the mass induced CO2 emissions in the use phase of the part can be calculated considering 

the related energy consumptions and emissions of the gasoline combusted in the vehicle engine (18).  

 

𝐶𝑂2𝑈𝑖
= 𝐶𝑂2𝑈(𝑚.𝑖.)𝑖

+ 𝐶𝑂2𝑈(𝑜𝑡ℎ𝑒𝑟)𝑖
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            (18) 

 

 

    𝐻𝐻𝑉𝑔𝑎𝑠  : High heating value of the gasoline, 46.4 MJ/kg (Demirel, 2012). 

    𝐸𝐹𝑔𝑎𝑠      : Emission factor from the combustion of one kg of gasoline, 3.3 kg-CO2/ kg  

(Demirel, 2012) 

 

Finally, similar to energy consumption, previous studies of Sato et al. (2019) was contemplated and 

the CO2 emissions in the ELV phase calculated considering the CO2 reductions by each recycling 

methods the parts are subjected (19)(20)(21)(22). 

  

𝐶𝑂2𝐸𝐿𝑉𝑖
= −(𝐶𝑂2𝑅𝑃𝑅𝑖

+ 𝐶𝑂2𝑅𝑀𝑅𝑖
+ 𝐶𝑂2𝑅𝐸𝑅𝑖

)                                                              (19) 

𝐶𝑂2𝑅𝑃𝑅𝑖
= ∑ 𝐸𝐶𝑂2𝑚𝑚 ∗ 𝐺𝑃𝑅,𝑚,𝑖                                                                                           (20) 

 

𝐶𝑂2𝑅𝑀𝑅,𝑖 =  ∑ 𝐶𝑂2𝑃∆𝑀𝑚𝑚 ∗ 𝐺𝑀𝑅,𝑚,𝑖                                                                                     (21) 

 

𝐶𝑂2𝑅𝐸𝑅𝐸,𝑖 = 𝐸𝐹 ̕𝑘𝑒𝑟 ∑ 𝐻𝐻𝑉𝑚 ∗ 𝐺𝐸𝑅,𝑚,𝑖𝑚 − ∑ 𝐸𝐹𝑚𝐺𝐸𝑅,𝑚,𝑖𝑚 + ∑ 𝐶𝑂2𝑃∆𝑀𝑚
∗𝑚 𝐺′𝐸𝑅,𝑚,𝑖       (22) 

 

𝐸𝐹𝑚           : Emission factor of the material (m) [kg-CO2 /kg], shown in Table 3.3. 

𝐸𝐹 ̕𝑘𝑒𝑟       : Emission factor of kerosene [0.07127 kg-CO2 /MJ] (EPA, 2014).  

𝐶𝑂2𝑅𝑃𝑅,𝑖    : CO2 reduction by the reusing of part i [kg-CO2]. 

𝐶𝑂2𝑅𝑀𝑅,𝑖    : CO2 reduction by material recycling of part i [kg-CO2]. 

𝐶𝑂2𝑅𝐸𝑅𝐸,𝑖   : CO2 reduction by energy recovery of part i [kg-CO2].   

𝐶𝑂2𝑈(𝑚.𝑖.)𝑖
=

𝐸𝑈(𝑚𝑎𝑠𝑠 𝑖𝑛𝑑)𝑖
∗ 𝐸𝐹𝑔𝑎𝑠

𝐻𝐻𝑉𝑔𝑎𝑠
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𝐶𝑂2𝑃∆𝑀𝑚
    : Difference between the CO2 emitted in producing 1 kg of material m through 

                       virgin and recycled resources [kg-CO2/kg]. 

 

 

 Energy and CO2 reduction assessment for vehicle parts 

To assess the comprehensive benefits of the introduction of lightweight material in vehicle parts, energy 

consumption and CO2 emission reductions are calculated bearing in mind the potential changes in its 

recycling system. Here, possible combinations of lightweight materials and recycling process are 

denominated as “scenarios”, and the energy and CO2 reduction compared with a part made by 

conventional material and subjected to conventional recycling calculated using (23) (24). 

 

𝐸𝑅𝐿𝐶𝑖

𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠 = 𝐸𝐿𝐶𝑖

𝐶𝑜𝑛𝑣 − 𝐸𝐿𝐶𝑖

𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠                                                                                        (23) 

 

   𝐸𝑅𝐿𝐶𝑖

𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠   : Energy reduction in the vehicle life cycle related to part i for scenario s [MJ]. 

   𝐸𝐿𝐶𝑖

𝐶𝑜𝑛𝑣            : Energy consumption in the vehicle life cycle related to part i made by  

                           conventional material and subjected to conventional recycling [MJ]. 

  𝐸𝐿𝐶𝑖

𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠      : Energy consumption in the vehicle life cycle related to part i for a scenario s 

                           [MJ]. 

 

𝐶𝑂2𝑅𝐿𝐶𝑖

𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠 = 𝐶𝑂2𝐿𝐶𝑖

𝐶𝑜𝑛𝑣 − 𝐶𝑂2𝐿𝐶𝑖

𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠                                                                            (24)  

 

   𝐶𝑂2𝑅𝐿𝐶𝑖

𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠  : CO2 reduction in the vehicle life cycle related to part i for scenario s  
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                             [kg-CO2]. 

   𝐶𝑂2𝐿𝐶𝑖

𝐶𝑜𝑛𝑣
           : CO2 emission in the vehicle life cycle related to part i made by  

                              conventional  

         material and subjected to conventional recycling [kg-CO2]. 

  𝐶𝑂2𝐿𝐶𝑖

𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠    : CO2 emission in the vehicle life cycle related to part i for scenario s 

                                [kg-CO2]. 

 

 Sub-optimization of the material choice 

To find the best combination of parts to be lightweight, material to be use and recycling method to be 

prioritized, the following material choice procedures have been carried. Equation (25) propose the best 

combination to reduce the life cycle energy consumption of the vehicle, equation (26) to reduce the life 

cycle CO2 emission, and equation (27) to reduce the user’s life cycle cost increment.  

 

             (25) 

 

 (26) 

 

(27) 

 

 

𝐸𝑅𝐿𝐶          : Energy reduction in the vehicle life cycle [MJ]. 

   𝐶𝑂2𝑅𝐿𝐶      : CO2 reduction in the vehicle life cycle [kg-CO2]. 

𝑚𝑎𝑥 𝐸𝑅𝐿𝐶 = ∑(𝐸𝐿𝐶𝑖

𝐶𝑜𝑛𝑣 − 𝑚𝑖𝑛 𝐸𝐿𝐶𝑖

𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠)

𝑖

 

  𝑚𝑎𝑥 𝐶𝑂2𝑅𝐿𝐶 = ∑(𝐶𝑂2𝐿𝐶𝑖

𝐶𝑜𝑛𝑣 − 𝑚𝑖𝑛 𝐶𝑂2𝐿𝐶𝑖

𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠)

𝑖

 

𝑚𝑖𝑛 𝐶𝐼𝐿𝐶 = ∑ 𝑚𝑖𝑛 𝐶𝐼𝐿𝐶𝑖

𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠

𝑖
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   𝐶𝐼𝐿𝐶            : User’s cost increment in the vehicle life cycle [USD]. 

   𝐶𝐼𝐿𝐶𝑖

𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠 : User’s cost increment in the life cycle related to the part i for a case c [USD]. 

 

Here, the user’s life cycle cost is defined as the extra cost the user must pay for the use of alternative 

lightweight material in the vehicle parts (28)(29). The recycling fee pay by the users is supposed to be 

the same in all the proposed cases. 

 

                                                                                                                                                      (28) 

 

𝐶𝐼𝑈𝑠𝑒𝑖

𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠 = ( 𝐸𝑈(𝑚.𝑖.)𝑖

𝐶𝑜𝑛𝑣 − 𝐸𝑈(𝑚.𝑖.)𝑖

𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠) ∗
𝑃𝑟𝑖𝑐𝑒𝑔𝑎𝑠

𝑈𝑔𝑎𝑠
                                                                                (29) 

 

  𝐶𝐼𝑃𝑟𝑜𝑑𝑖

𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠 : User’s cost increment in the production phase of the vehicle related to the 

                        part i for scenario s [USD], shown in Table 4.1. 

   𝑃𝑟𝑜𝑓𝐴𝑀     : Profit of the automakers, considered in this study as 10% of the vehicle  

                       production cost. 

  𝑃𝑟𝑜𝑓𝐷       : Profit of the dealers, considered in this study as 10% of the vehicle cost. 

    𝐶𝐼𝑈𝑠𝑒𝑖

𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠  : User’s cost increment in the use phase of the vehicle related to the part i for 

                        scenario s [USD]. 

  𝐸𝑈(𝑚.𝑖.)𝑖

𝐶𝑜𝑛𝑣       : Mass induced energy consumption in the use phase related to vehicle part i  

                       made by conventional material and subjected to conventional recycling [MJ]. 

𝐶𝐼𝐿𝐶𝑖

𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠 =  𝐶𝐼𝑃𝑟𝑜𝑑𝑖

𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠 ∗ 𝑃𝑟𝑜𝑓𝐴𝑀 ∗ 𝑃𝑟𝑜𝑓𝐷 + 𝐶𝐼𝑈𝑠𝑒𝑖

𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠 
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  𝐸𝑈(𝑚.𝑖.)𝑖

𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠   : Mass induced energy consumption in the use phase related to vehicle part i           

                       for scenario s [MJ]. 

𝑃𝑟𝑖𝑐𝑒𝑔𝑎𝑠    : Price of gasoline in Japan, adopted as 1.30 USD/l (Trading economics, 2019). 

 

 Body in white lightweighting as a case study 

Considering the total weight of its parts in the vehicles and the material homogeneity of them, our study 

analyzes the body in white as a case study.  

Fig. 4.3 shows the eight parts that compose a body in white of a vehicle. Moreover, Table 4.1 lists 

those parts with its weights and production cost increment depending on the lightweight material used 

in its production. Here, the body in white of a Honda Accord (weight: 1,481kg) is analyzed as a generic 

vehicle, and AHSS, aluminum, and CFRP considered as alternative materials. 

Fig. 4.4 shows the current material flow of the body in white elaborated considering previous studies 

of Sato et al. (2018,  2019). Here, 87% of its weight is destined to material recycle, 13% reused as spare 

part, and the low percentage of metals processes as ASR (METI, 2014(b)) was considered negligible. 

Table 4.2 a) and b) shows the coefficients for the calculation of the energy consumption and CO2 

emission in the vehicle production and recycling of the body in white parts. Embodied energy and 

embodied CO2 values indicated in the first column of both tables were estimated considering average 

values for the production of the body in white parts. The second columns indicate the difference 

between the energy consumed and CO2 emitted for producing 1 kg of material through virgin and 

recycled resources. Here, it has been considered that the carbon fiber recycled as raw material 

accounts 29% of the mass of the CFRP and 98% of it is recovered through pyrolysis process (Das, 

2011). Meanwhile, the third columns indicate the highest heating value and the emission factor of the 

materials. 
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Finally, Table 4.3 indicates the twenty scenarios analyzed in this study where the material 

composition and recycling method of the parts are modified to calculate the possible energy and CO2 

reductions. It is noteworthy that the scenario indicated in the first column and the first row (A-1) 

represents the current material flow of the body in white shown in Fig. 4.4. 

 

 Primary assumption and limitations 

First, the relation between vehicle lightweighting and recycling is analyzed considering as a case study 

the body in white part in the Japanese market. Here, the vehicle life cycle energy, CO2 and cost 

reductions were calculated. However, those benefits do not affect the Japanese society exclusively, 

considering that part of the raw materials and component of the vehicle are produced and imported from 

foreigner suppliers; and the dismantled ELVs exported as second-hand part, recyclable material and 

ASR. 

Secondly, some approximations, such as constant engine efficiency and constant energy lost, have 

been set to simplify the calculations. On the other hand, there is a considerable dependence of the 

equations proposed for the analysis of the benefits in the production and ELV phases on the embodied 

energy and embodied CO2. Changes in those values can guide us to different numerical results, and the 

combination of parts and material for minimizing the life cycle energy consumption and CO2 emission 

can also moderately vary, however, the main conclusions of this study remain unchanged. 

Next, cost analysis has been conducted in general terms considering that the aim of this study is 

centered on the analysis of the energy consumption and CO2 emission effects of the lightweight 

materials. 

Finally, secondary mass reductions from lightweighting, which include the additional effect in the 

power train reducing its components and the engine friction is going to be analyzed in future studies. 

 Analytical results 
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Fig. 4.5 a) and b) shows the material flows of each twenty proposed scenarios in Table 4.3. The last row 

of Fig. 4.5 b) shows the scenarios where the life cycle energy consumption and CO2 emission of the 

parts are prioritized by the sub-optimization of the material choice presented in the previous section. 

Here, it can be observed that, environmentally, the best combination of parts and materials depends on 

the recycling method they are going to be subjected. When the body in white is mainly subjected to 

material recycling (scenarios A-5 and C-5), its parts should be made mainly by aluminum. However, 

when the parts are frequently reused (scenarios B-5), the use of CFRP should be prioritized because of 

the high fuel consumption reduction in its use phase. Finally, if the parts are mainly subjected to energy 

recovery (scenarios D-5), AHSS is the best material choice considering the low energy consumption in 

its production phase.  

 

  Energy and CO2 reductions considering conventional recycling method 

In this section, the effect of lightweight materials is analyzed considering invariable the current 

recycling and reusing percentage of the body in white parts (i.e., scenarios A-2, A-3, A-4, A-5).  

Fig. 4.6 a) and b) show the life cycle energy and CO2 reduction of the analyzed vehicle when its body 

in white is lightweight. Here, it can be observed that the effects of the production and end of life phase 

are essential as the benefits generated in its use phase. For example, results indicate that the use of CFRP 

is highly beneficial from the use phase point of view; however, the total benefit is much lower if the 

production and ELV phases are considered. Moreover, average reduction values indicate that while the 

use phase represents 6.4 GJ and 477 kg-CO2 of the total life cycle energy and CO2 reduction per vehicle, 

the production represent -26.9 GJ and -1,508 kg-CO2, and the ELV phase 27.1 GJ and 1,383 kg-CO2 of 

it. In other words, the energy effect of the production and ELV phase is 4.2 times higher, and the CO2 

reduction effects approximately 3 times higher than the effect of the use phase. In this sense, the 

combination of parts and material to lightweight a vehicle must be selected considering the entire life 

cycle, reinforcing again the importance of considering the recycling system in a lightweighting analysis. 
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Fig. 4.6 c) shows the user’s life cycle cost reduction by case. It can be noted that the cost increments 

in the production phase through the introduction of alternative materials are higher than the cost 

reduction in the use phase by the improvement of the vehicle’s fuel consumptions. Moreover, 

lightweight the body in white using CFRP is not efficient from the standpoint of user’s cost, and the 

prioritized cost scenario consists mainly of parts made by conventional materials, where only the 

bumpers and fenders are modified to AHSS. This can be explained by the significant cost increment on 

the introduction of alternative materials in the production phase, which cannot be absorbed through the 

benefits generated in its use phase. 

Table 4.4 summaries the user’s cost increment per unit of energy and CO2 expected to be reduced 

in the vehicle life cycle through the introduction of lightweight materials. The point to observe is that 

the most expensive choice to meet the above objective is through the use of CFRP, where USD 733 is 

needed to reduce 1 MJ of energy and even USD 53 is paid the CO2 emission would increase 1 kg-CO2. 

On the contrary, the use of AHSS is the most favorable choice, where a combination of parts made with 

them and conventional material could guide us to a unit of energy and CO2 reduction in conjunction 

with a cost saving of USD 27 and USD 0.4. However, it is noteworthy that the total energy and CO2 

reductions expected in the lightweight of the body in white varies widely depending on the material, 

and effects of low-cost options are limited when considerable differentiation with conventional material 

is required. 

 

 Energy and CO2 reductions considering variations in the recycling methods 

Fig. 4.7 a) and b) summarize the life cycle energy and CO2 reduction potential of the twenty scenarios 

proposed in Table 4.3. Compared to section 4.1, where lightweighting is analyzed considering the 

percentage of material destined to recycling unchanged, here, scenarios wherein the body in white is 

entirely reused, recycled as material and subjected to energy recovery are also assessed. The point to 
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observe is that even considering the use of the same lightweight material, the total energy and CO2 

reduction in the life cycle can vary drastically depending on the recycling method the body in white is 

subjected. Results indicates that, if the body in white is mainly subjected to material recycling its parts 

should be made mainly by aluminum; However, when the parts are frequently reused, the use of CFRP 

should be prioritized, and if the parts are mainly subjected to energy recovery AHSS is the best material 

choice. 

  Representative energy and CO2 reduction values of the above figure divided by the weight of the 

analyzed parts produced with conventional material are summarized in Table 4.5 a) and b). The first 

rows indicate that when only material lightweighting is considered (subjected to conventional recycling) 

maximum energy and CO2 reduction of 23.8 MJ/kg of part and 1.82 kg-CO2/kg of part can be expected 

when the body in white is made mainly by aluminum. The second rows, where only variations of the 

recycling system are considered (made by conventional material), indicate that an increment of 10.8 

MJ/kg of part and 1.29 kg-CO2/kg of part can be expected if the parts are subjected to energy recovery. 

Finally, the last rows show that an adequate combination of both variables could almost double the 

energy and CO2 benefits to 51.4 MJ/kg and 3.34 kg-CO2/kg considering the use of CFRP and reusing 

the parts. On the other hand, the second columns of the tables indicate that if both variables are not 

jointly assessed the introduction of lightweight materials could be highly counterproductive reaching 

an energy and CO2 increment of 92.5 MJ/kg of part and 6.71 kg-CO2/kg of part when use of 

CFRP/Aluminum are combined with energy recovery.  

 

 Comparisons with previous studies and total impact on the entire life cycle 

Previous studies indicate that 100 kg of mass reduction in an automobile results in a fuel saving between 

3.2 GJ to 10.24 GJ per 100,000 km driven in its use phase (Cheah et al., 2007; Pagerit et al., 2006; 

Carlson et al., 2013; Kim et al., 2016). Table 4.6 summarizes comparable energy reduction values 

calculated in this study analyzing the lightweighting of the body in white. The third column of the table 
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shows that, when 100kg of mass is reduced, 0.4 GJ of energy reduction can be expected in the use phase. 

The material considered in the production of the part does not impact here, showing compatibility with 

previous studies mentioned above. Here, an important point to emphasize is that even though the impact 

per kg of mass reduction in the use phase remains unchanged, the energy reduction effect in the 

production and recycling vary widely on the selected lightweight material. 100 kg of mass reduction in 

an automobile can result in a total life cycle energy reduction between -23.0 (All aluminum and energy 

reduction) to 18.5 GJ (All AHSS and part reusing); reconfirming the importance of considering the 

production and ELV phase in the lightweight analysis of the vehicle. 

Next, our energy and CO2 reduction results presented in section 4.1 and 4.2 are reflected on the life 

cycle of the vehicle to clarify the effect in it. Here, only a conventional recycling scenario has been 

considered and the total energy consumption of the vehicle life cycle is calculated using (30).  

 

       𝐸𝐿𝐶𝑣𝑒ℎ𝑖𝑐𝑙𝑒
= 𝐸𝑃 + 𝐸𝑈 + 𝐸𝐸𝐿𝑉                                                                                                   (30) 

 

Here, the environmental effect of its production phase is calculated as follows (31). 

 

𝐸𝑃 = ∑ 𝐸𝐸𝑚 ∗ 𝐺𝑣𝑒ℎ,𝑚𝑚                                                                                          (31) 

 

𝐸𝑃     : Energy consumed in the production phase of the vehicle [kJ per vehicle]. 

𝐺𝑣𝑒ℎ,𝑚   : Weight of the material (m) of the studied vehicle [kg per vehicle]. 

 

Meanwhile, energy consumption in the use phase can be calculated using (32). 

 

𝐸𝑈 = 𝑑 ∗ 𝜌𝑔𝑎𝑠 ∗ 𝐻𝐻𝑉𝑔𝑎𝑠 / 𝐹𝐸                                                                            (32) 
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𝐸𝑈             : Energy consumed in the use phase [kJ per vehicle]. 

𝐹𝐸            : Fuel economy, Honda Accord 2011, 14.4 km/l (Honda Motor co., 2013)  

𝜌𝑔𝑎𝑠          : Density of gasoline, 0.75 kg/l (Demirel, 2012). 

 

Finally, results of Sato et al. (2019), which this study is based for the analysis of the recycling system 

and considers the same generic vehicle, are used to represent the total energy reduced/consumed in the 

ELV phase. 

In terms of CO2 emissions, the following equations are proposed, and the life cycle CO2 emission of 

the vehicle is calculated using (33). 

  

       𝐶𝑂2 𝐿𝐶𝑣𝑒ℎ𝑖𝑐𝑙𝑒
=  𝐶𝑂2𝑃

+ 𝐶𝑂2𝑈
+ 𝐶𝑂2𝐸𝐿𝑉

                                                                              (33)                                                   

 

First, the CO2 emission in the production phase is calculated as follows (34). 

 

𝐶𝑂2𝑃
= ∑ 𝐶𝑂2𝐸𝑚 ∗ 𝐺𝑣𝑒ℎ,𝑚𝑚                                                                                                (34) 

 

𝐶𝑂2𝑃
 : CO2 emitted in the production phase of the vehicle [kg-CO2 per vehicle] 

 

Moreover, the CO2 emission in the use phase is obtained as follows (35). 

 

𝐶𝑂2𝑈
= 𝐹𝐸 ∗ 𝑑 ∗ 𝜌𝑔𝑎𝑠 ∗ 𝐸𝐹𝑔𝑎𝑠                                          (35) 

 

𝐶𝑂2𝑈
 : CO2 emission in the vehicle use phase [kg-CO2 per vehicle]. 

 

Finally, as well as energy reduction, results of Sato et al. (2019) are used to represent the total CO2 
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emitted/reduced in the ELV phase. 

Fig. 4.8 shows the life cycle energy consumption and CO2 emission of the vehicle where different 

materials are considered for the lightweighting of the body in white. Here, it was calculated the total 

energy consumption and CO2 emission of a vehicle made by conventional materials and subjected to 

conventional recycling as 324 GJ and 22.8 t-CO2, showings also the possibility of decreasing those 

values 3.19% and 3.85% depending on the substitute lightweight material. Moreover, when results 

which consider different recycling scenarios shown in Fig. 4.7 are additionally contemplated, the total 

life cycle energy consumption and CO2 emission of the vehicle life cycle could decrease 6.90% and 

6.39%, but also increase 11.82% and 12.69% depending on the respective scenario.  

 

 Discussion  

Results presented in this study indicate that the recycling phase of the vehicle must always be considered 

when the introduction of alternative lightweight material is analyzed.  

Even our analysis focus on the environmental analysis of lightweight material is worthy of mentioning 

that the aim of using that material in the vehicles are not always to improve its fuel efficiency, but also 

for improving the acceleration performance of the high-end cars and sports cars.  

Currently, one of the principal characteristics considered in the purchasing process of a vehicle is its 

fuel economy. Moreover, the users tend to associate directly “low fuel consumption vehicle” with the 

concept of “environmentally friendly vehicle”. This study refuses this misconception showing that 

lower fuel consumption in the use phase does not imply an environmentally friendly vehicle if the effect 

of the production and ELV phase is not taken into account in the assessment. The above concept will 

be crucial considering proposal of the European Commission (2017) which urge to make available to 

authorities, entities and operators the life cycle costing of the vehicles, including the cost of greenhouse 

gas emission and other pollutant emissions, in order to support their procurement process.  
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The vehicle life cycle is subjected to an open loop recycling where the steel obtained from the end of 

life vehicle is mainly reused for construction, and the recovered aluminum is cascaded into cast 

aluminum (Modaresi et al., 2014). Meanwhile, CFRP is not a mature technology, and the scraped 

material is mainly subjected to energy recovery. A drastic modification of the material composition of 

the vehicles, such as the case of the body in white, will obligate the vehicle recycling companies to 

review its installations and disassembly process. In that sense, the current ELV recycling benefits of 

52.8 MJ and 2.8 kg CO2 per kg of the vehicle (Sato et al., 2019) would probably drastically decrease 

considering that the current shredder factories are technologically focused on steel scrap recycling 

through magnetic separation. In the same way, the government could define policies to support those 

investments and develop essential recycling process for achieving sustainable lightweight materials. 

The representative case in this study is the CFRP which low-cost separation and recycling technologies 

are the keys to reducing its actual life cycle environmental impact. It also worthily to mention that 

approximately 28% of the ELV is currently exported (MOE, 2015), and leverages the recycling benefits 

inside Japan is not always possible. In this sense, recycling technologies should also be introduced into 

the countries where the vehicles expend its final years.  

On the other hand, the results of this study are essential for assessing the advantages and 

disadvantages of different material for vehicle production, considering the entire life cycle. This 

assessment methodology could guide Automakers to understand, design, and produce a more 

environmentally friendly vehicle, but also allow the government to identify material and technology 

that is worth to support for its development.  

The proposed methodology was applied to assess alternative materials for the body in white parts but 

also the rest of vehicle parts could be environmentally evaluated considering the same approach. 

Moreover, the same approach of analyzing the entire life cycle of parts is applicable to assess materials 

of other means of transport as motorcycles, train, ships, and airplanes but also to evaluate other products 
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where the lightweighting materials play an essential role in its use phase as agriculture machinery, 

elevators and mechanical stairs.  

 

 Conclusions 

A material based environmental assessment of vehicle parts considering the entire life cycle of the 

vehicles was proposed. As a case study, lightweighting and recycling of body in white parts have been 

analyzed. Here, studies of Singh (2012) and Wheatley et al. (2013) have been considered for the 

estimation of the weight and cost of the lightweight parts; embodied energy and CO2 for the calculation 

of the lightweighting effects in the production phase; the use phase analyzed base on studies of Koffler 

et al. (2010) and O ’reilly et al. (2016); and the recycling phase has been assessed considering previous 

studies of Sato et al. (2018, 2019). 

This study proposes a simple methodology in order to analyze the impact of lightweighting materials 

in the entire life cycle. Compare to previous studies, possible alterations in the ELV recycling system 

were also assessed.  

The main conclusions of the study are listed below. 

・The effect from the standpoint of energy consumption and CO2 emission of lightweighting materials 

on the production and end of life phase is essential as the benefits generated in its use phase. Energy 

effect of production and ELV phases by the introduction of lightweight material could be 4.2 times 

higher, and the CO2 reduction effects approximately 3 times higher than the effect of the use phase. 

・Cost increments in the production phase through the introduction of lightweight materials are higher 

than the cost reduction in the use phase by the improvement of the vehicle’s fuel consumptions. 

・Material lightweight must be analyzed jointly with its possible recycling system because when the 

first variable is considered individually maximum life cycle energy and CO2 reduction of 23.8 MJ and 

1.82 kg-CO2 per kg of part to be lightweight can be expected; however, an adequate combination of 

both variables could almost double those benefits to 51.4 MJ and 3.34 kg-CO2, but also incorrect 
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combination of them could be counter-productive guiding us to an energy and CO2 increment of 92.5 

MJ  and 6.71 kg-CO2.   

・If the body in white is mainly subjected to material recycling its parts should be made mainly by 

aluminum; however, when the parts are frequently reused, the use of CFRP should be prioritized; finally, 

if the parts are mainly subjected to energy recovery, AHSS is the best material choice. 

・Lower fuel consumption of the vehicles in the use phase does not imply a lower environmental effect 

in the life cycle of the vehicle. For example, our results indicated that CFRP is not an environmentally 

favorable material considering the entire life cycle if they continue to be subject to energy recovery. 

・100 kg of mass reduction in an automobile can results in a total life cycle energy reduction between 

-23.0 to 18.5 GJ depending on the material used for lightweighting and the recycling process it is 

subjected. 

  Finally, what needs to be emphasized is that the introduction of lightweight materials for vehicles must 

always consider the effect in its production phase and the possible recycling scenarios. The proposed 

assessment method could guide the governments and automakers to achieve a sustainable circular 

economy through a better understanding of the effects of lightweight materials and its recycling. 

  



104 
 

References 

 

Carlson Richard, Lohse-Busch Henning, Diez Jeremy, Gibbs Jerry, 2013. The measured impact of 

vehicle mass on road load forces and energy consumption for a BEV, HEV, and ICE vehicle. SAE 

Int. J. Alt. Power. 2 Issue 1(2013) 105-114.  https://doi.org/10.4271/2013-01-1457 

CEPA, 2011. California Environmental Protection Agency, California Air Resources Board, Planning 

and Technical Support Division. Method for estimating greenhouse gas emission reductions from 

recycling, November 14, 2014. 

https://www.arb.ca.gov/cc/protocols/localgov/pubs/recycling_method.pdf (accessed 30 September, 

2018) 

Cheah Lynette, Evans Christopher, Bandivadekar Anup, Heywood John, 2007. Factor of two: Halving 

the fuel consumption of new U.S. automobiles by 2035.Massachusetts Institute of Technology. 

Publication No. LFEE 2007-04 RP. http://web.mit.edu/sloan-

autolab/research/beforeh2/files/cheah_factorTwo.pdf (accessed 13 January, 2019). 

Das Sujit, 2000. Life-cycle impacts of aluminum body-in-white automotive material. JOM 52 (2000)  

41-44. doi:10.1007/s11837-000-0173-2.  

Das Sujit, 2005. Life cycle energy impacts of automotive liftgate inner. Resources, Conservation and 

Recycling 43 (2005) 375–390. doi: 10.1016/j.resconrec.2004.07.003 

Das Sujit, 2011. Life cycle assessment of carbon fiber-reinforced polymer composites. International 

Journal of Life Cycle Assessment 16 (2011) 268–282. doi:10.1007/s11367-011-0264-z 

Das Sujit, Curlee T. Randall, Rizy Colleen G., Schexnayder Susan M., 1995. Automobile recycling in 

the United States: Energy impacts and waste generation. Resources, Conservation and Recycling 

14 (1995) 265–284. doi:10.1016/0921-3449(95)00021-A. 

Das Sujit, Graziano Diane, Upadhyayula Venkata K.K., Masanet Eric, Riddle Matthew, Cresko Joe, 

2016. Vehicle lightweighting energy use impacts in U.S. light-duty vehicle fleet. Sustain Mater 

Technologies 8 (2016) 5–13. doi:10.1016/j.susmat.2016.04.001  

Demirel Yasar, 2012. Chapter 2 Energy and energy types, Green energy and technology. Springer-

Verlag. doi: 10.1007/978-1-4471-2372-9-2  

Dhingra Rajive, Das Sujit, 2014. Life cycle energy and environmental evaluation of downsized vs. 

lightweight material automotive engines. Journal of Cleaner Production 85 (2014) 347–358. 

https://doi.org/10.1016/j.jclepro.2014.08.107 

Ding Ning, Gao Feng, Wang Zhihong., Gong Xianzheng., Nie Zouren, 2012. Environment impact 

analysis of primary aluminum and recycled aluminum. Procedia Engineering, 27 (2012) 465–474. 



105 
 

https://doi.org/10.1016/j.proeng.2011.12.475 

Duflou J. R., De Moor J., Verpoest, I., Dewulf, W., 2009. Environmental impact analysis of composite 

use in car manufacturing. CIRP Annals - Manufacturing Technology 58 (2009) 9–12. 

doi:10.1016/j.cirp.2009.03.077 

González Palencia Juan C., Furubayashi Takaaki, Nakata Toshihiko, 2014. Techno-economic 

assessment of lightweight and zero emission vehicles deployment in the passenger car fleet of 

developing countries. Applied Energy 123 (2014) 129–142. doi: 10.1016/j.apenergy.2014.02.059. 

González Palencia Juan C., Sakamaki, Tsukasa, Araki, Mikiya, Shiga Seiichi, 2015. Impact of 

powertrain electrification, vehicle size reduction and lightweight materials substitution on energy 

use, CO2 emissions and cost of a passenger light-duty vehicle fleet.  Energy 93 (2015) 1489-1504 

https://doi.org/10.1016/j.energy.2015.10.017 

Honda Motor co., 2013. Accord, web catalog, environmental specification. 

https://www.honda.co.jp/auto-archive/accord/4door/2013/webcatalog/ecology/eco-spec/ (accessed 

13 February, 2019)  

Intergovernmental Panel on Climate Chang, 2014. Climate change 2014, Mitigation of climate 

change, Working group III contribution to the fifth assessment report of the intergovernmental 

panel on climate change. 

https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_chapter8.pdf (accessed 8 August, 

2019)  

Kim Hyung Chul, Wallington Timothy J., 2013. Life Cycle Assessment of vehicle lightweighting: A 

physics-based model of mass-induced fuel consumption. Environmental Science & Technology 47 

(2013) 14358–14366. dx.doi.org/10.1021/es402954w 

Kobayashi Osamu, 1997. Car life cycle inventory assessment. SAE Technical Paper 971199. 

doi:10.4271/971199. 

Koffler Christoph, Rohde-Brandenburger Klaus, 2009. On the calculation of fuel savings through 

lightweight design in automotive life cycle assessments. Int J Life Cycle Assess 15 (2010) 128–

135. doi:10.1007/s11367-009-0127-z  

Kim Hyung Chul, Wallington Timothy J., 2016. Life Cycle Assessment of Vehicle Lightweighting: A 

physics-based model to estimate use-phase fuel consumption of electrified vehicles. Environmental 

Science & Technology 50 Issue 20 (2016) 11226-11233. doi: 10.1021/acs.est.6b02059 

Lewis Anne Marie, Kelly Jarod C., Keoleian Gregory A., 2014. Vehicle lightweighting vs . 

electrification : Life cycle energy and GHG emissions results for diverse powertrain vehicles. 

Applied Energy 126 (2014) 13–20. https://doi.org/10.1016/j.apenergy.2014.03.023 



106 
 

Luk Jason M., Kim Hyung Chul, De Kleine Robert, Wallington Timothy J., Maclean Heather L, 2017. 

Review of the fuel saving, life cycle GHG emission, and ownership cost impacts of lightweighting 

vehicles with different powertrains. Environmental Science & Technology 51 Issue 15 (2017) 8215–

8228. doi:10.1021/acs.est.7b00909 

Mayyas Ahmad T., Qattawi Ala, Mayyas Abdel Raouf, Omar Mohammed A., 2012. Life cycle 

assessment-based selection for a sustainable lightweight body-in-white design. Energy 39 (2012) 

412–25. doi:10.1016/j.energy.2011.12.033.  

McDougall Forbes, White Peter, Franke Marina, Hindle Peter, 2001. Integrated solid waste 

management: A life cycle inventory,2nd Edition. June 2001, Wiley-Blackwell. ISBN: 978-0-632-

05889-1. 

METI, 2014 (a). Ministry of Economy, Trade and Industry, Government of Japan. Study group on 

formulation of standards for recycled parts for automobile, interim report on formulation of 

standards for automobile repair, reuse parts and rebuilt parts, August 2014. 

http://www.meti.go.jp/committee/kenkyukai/seisan/recycle_car/pdf/report_001.pdf 

(accessed 19 February, 2019). 

METI, 2014 (b). Ministry of Economy, Trade and Industry, Government of Japan, 

Automobile Division, Nobu Kanazawa. Current status of Japanese automobile recycling 

system, December 2014. http://www.jc-web.or.jp/jcbase/publics/ 

download/?file=/files/content_type/type019/106/201506101904197645.pdf 

     (accessed 18 February, 2019). 

Modaresi Roja, Pauliuk Stefan, Løvik Amund N., Muller Daniel B., 2014. Global carbon benefits of 

material substitution in passenger cars until 2050 and the impact on the steel and aluminum 

industries. Environmental Science & Technology 48 Issue 18 (2014) 10776-10784. doi: 

10.1021/es502930w 

MOE, 2015. Ministry of Environment, Government of Japan. Industrial Structure Council, Industrial 

Technology Environmental Working Group, Waste / Recycling Subcommittee, Automobile 

Recycling Working Group. Central Environment Council, Recycling Social Committee, 

Automobile Recycling Technical Committee, Joint meeting. Report on evaluation and examination 

of the implementation status of the automobile recycling system, September 2015. 

https://www.env.go.jp/council/03recycle/y033-43/mat03_2.pdf (accessed 30 September, 2018). 

Nemry Francoise, Leduc Guillaume, Mongelli Ignazio, Uihlein Andreas, 2008. Environmental 

improvement of passenger cars (IMPRO-car). EUR - Scientific and Technical Research Reports, 

OPOCE. doi:10.2791/63451.  



107 
 

Nishimura Kazuhiko, Hondo Hiroki, Uchiyama Yohji, 1997. Estimating the embodied carbon 

emissions from the material content. Energy Convers. Mgmt. 38 (1997) 589–S594. 

https://doi.org/10.1016/S0196-8904(97)00001-0 

Nishimura Kazuhiko, Hondo Hiroki, Uchiyama Yohji, 2001. Comparative analysis of embodied 

liabilities using an inter-industrial process model: gasoline- vs. electro-powered vehicles. Applied 

Energy 69 (2001) 307–320. https://doi.org/10.1016/S0306-2619(01)00010-1 

O’reilly Ciaran J., Göransson Peter, Funazaki Atsushi, Suzuki Tetsuya, Edlund Stefan, Gunnarsson 

Cecilia, Lundow Jan-Olov, Cerin Pontus, Cameron Christopher J., Wennhage Per, Potting Jose, 

2016. Life cycle energy optimisation: A proposed methodology for integrating environmental 

considerations early in the vehicle engineering design process. Journal of Cleaner Production 135 

(2016) 750–759. doi:10.1016/j.jclepro.2016.06.163. 

Pagerit, S., Sharer, P., Rousseau, A., 2006. Fuel economy sensitivity to vehicle mass for advanced 

vehicle powertrains. SAE Technical Paper 2006-01-0665. https://doi.org/10.4271/2006-01-0665. 

Sato Fernando Enzo Kenta, Furubayashi Takaaki, Nakata Toshihiko, 2018. Energy and CO2 benefit 

assessment of reused vehicle parts through a material flow approach. International Journal of 

Automotive Engineering 9 No.2 (2018) 91-98. doi:10.20485/jsaeijae.9.2_91. 

Sato Fernando Enzo Kenta, Furubayashi, Takaaki, Nakata Toshihiko, 2019. Application of energy and 

CO2 reduction assessments for end-of-life vehicles recycling in Japan. Applied Energy 237 (2019) 

779–794. https://doi.org/10.1016/j.apenergy.2019.01.002 

Schweimer Georg W., Levin Marcel, 2000. Life cycle inventory for the Golf A4. Research, 

Environment and Transport, Volkswagen AG, Wolfsburg and Center of Environmental Systems 

Research, University of Kassel. http://www.wz.uw.edu.pl/pracownicyFiles/id10927-volkswagen-

life-cycle-inventory.pdf  (accessed 30 September 2018) 

Singh Harry, 2012. Mass reduction for light-duty vehicles for model 

years 2017-2025. U.S. Department of Transportation and the National Highway Traffic  

Safety Administration, Report No. DOT HS 811 666. 

Sullivan J.L., Burnham A., Wang M., 2010. Energy-consumption and carbon-emission analysis of 

vehicle and component manufacturing. Energy Systems Division, Argonne National Laboratory, 

USA. ANL/ESD/10-6  

Tchobanoglous George, Theisen Hilary, Vigil Samuel, 1993. Integrated solid waste management: 

Engineering principles and management Issues. McGraw-Hill. ISBN-10: 0070632375. 

Toyota Metal Corp., 2019. Automobile recycling. https://www.toyotametal.com/business/automobile-

recycling/ (accessed 17 February, 2019) 



108 
 

Trading economics, 2019. Japan gasoline Prices Jan 2019.  

https://tradingeconomics.com/japan/gasoline-prices (accessed 18 February, 2019) 

U.S. Energy Information Administration, 2016. International energy outlook 2016. DOE/EIA-

0484(2016). https://www.eia.gov/outlooks/ieo/pdf/0484(2016).pdf (accessed 30 September 2018) 

Weiss Malcom A., Heywood John B., Drake Elisabeth M., Schafer Andreas, AuYeung Felix F., 2000. 

On the road in 2020 - A life-cycle analysis of new automobile technologies. Energy Laboratory, 

Massachusetts Institute of Technology. Energy Laboratory report # MIT EL 00-003. 

http://web.mit.edu/energylab/www/pubs/el00-003.pdf (accessed 3 August, 2017).  

Wheatley Alan, Warren David, Das Sujit, 2013. Low-cost carbon fiber: Applications, performance and 

cost models. Advanced composite materials for automotive applications: Structural integrity and 

crashworthiness, Chapter 17, Willey. doi:10.1002/9781118535288.ch17. 

  



109 
 

5Table 4.1 Weights and production cost increment by each lightweighting material for the body in white parts  

 

 

 

 

Part 

Conventional 

  Lightweighted 

  Aluminum  AHSS  CFRP 

Materi

al 

Mass  

[kg] 
Ref.   

Mass 

[kg] 

Production 

 cost 

increment 

[USD] 

Ref.  
Mass  

[kg] 

Production 

 cost 

increment 

[USD] 

Ref.  
Mass  

[kg] 

Production 

 cost 

increment 

[USD] 

Ref. 

A Body structure HSS 328 a)   213.2 720.0 a)  255.2 147.0 a)  164.0 1,708.9 a),b),c) 

B Front bumpers Steel 7.96 a)   5.2 17.5 a)  4.4 -0.9 a)  3.6 97.8 a),b),c) 

C Rear bumpers Steel 7.84 a)   5.1 17.2 a)  4.3 2.1 a)  3.5 96.3 a),b),c) 

D Decklid (frame) Steel 9.95 a)   4.7 17.0 a)  8.5 3.1 a)  5.0 51.8 a),b),c) 

E Fenders Steel 7.3 a)   4.0 12.6 a)  6.2 1.4 a)  3.7 38.0 a),b),c) 

F 

Front doors 

(frame) Steel 32.8 a)   16.9 49.6 a)  27.9 10.2 a)  16.4 170.9 a),b),c) 

G Hood (frame) Steel 15.2 a)   7.5 21.3 a)  12.9 4.7 a)  7.6 79.2 a),b),c) 

H 

Rear doors 

(frame) Steel 26.8 a)   14.9 53.2 a)  22.8 8.4 a)  13.4 139.6 a),b),c) 

                                 

Total   435.9      271.5 908.4      342.1  176.1      217.1  2,382.5 

  a) Singh, 2012.                         

  b) Wheatley et al., 2013.                         

  c) Author estimation.                         
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6Table 4.2 Energy and CO2 coefficients for vehicle production and each recycling method of 

the body in white parts 

 

a) Energy consumption and reduction coefficients [MJ/kg] 

Material Embodied  

energy 

Ref. 

Diff. energy 

consumption 

virgin & 

recycled 

resources Ref. 

Heating value 

Ref. 

Steel/HSS 45.9 a),b),c),g) 10.0 c),g) n/a   

AHSS 46.2 a),b),c),g) 10.0 c),g) n/a   

CFRP 303.7 a),e),g) 200.1 e),g) 38.0 f),g) 

Aluminum 217.4 a),b),c),d),g) 176.0 d),e),g) n/a   

              

a) Mayyas et al., 2012 d) Das, 2000 g) Author estimation   

b) Sullivan et al., 2010 e) Das, 2011 

 

    

c) Weiss et al., 2000 f) Kim et al., 2004       

 

b) CO2 emission and reduction coefficients [kg-CO2/kg] 

Material Embodied  

CO2 

Ref. 

Diff. CO2 

emission 

virgin & 

recycled 

resources Ref. 

Emission factor 

Ref. 

Steel/HSS 3.8 a),b),c),h) 1.7 c),d),h) n/a   

AHSS 4.3 a),b),c),h) 1.7 c),d),h) n/a   

CFRP 16.7 a),e),h) 8.8 e),h) 2.65 g),h) 

Aluminum 16.1 a),d),h) 14.0 d),f),h) n/a   

              

a) Mayyas et al., 2012 d) Das, 2000 g) McDougall et al., 2001   

b) Sullivan et al., 2010 e) Das, 2011 h) Author estimation   

c) CEPA, 2011 f) Ding et al., 2012       
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7Table 4.3 Scenarios analyzed for the body in white parts 

 

  
                (II) Recycling system 

  

  
A- Conventional  

recycling 

B- Part reusing 

 

C- Material 

recycling 

D- Energy 

recovery 

(I) Material 

lightweighting 

1- Conventional 

material 
A-1 B-1 C-1 D-1 

2- All aluminum A-2 B-2 C-2 D-2 

3- All AHSS A-3 B-3 C-3 D-3 

4- All CFRP A-4 B-4 C-4 D-4 

5- Minimum 

energy and CO2 
A-5 B-5 C-5 D-5 
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8Table 4.4 Energy and CO2 reduction cost by material in conventional recycling scenarios 

   

  

All 

aluminum 

All AHSS All CFRP Minimum 

energy  

and CO2 

Minimum 

Cost 

Energy reduction cost  

[USD per MJ] 
62 3 733 67 -27 

CO2 reduction cost 

[USD per kg-CO2] 
0.81 0.08 -53.09 0.89 -0.40 
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9Table 4.5 Representative energy and CO2 reduction values by mass of analyzed part  

 

a) Energy reduction 

Analysis parameter 

Energy reduction 

[MJ/kg of part] 

Minimum Maximum 

(I) Material lightweighting 0.00 23.76 

  (Conventional material)  (Aluminum) 

(II) Recycling system -10.84 31.25 

  (Energy recovery) (Part reusing) 

(III) Material lightweighting 

       & recycling system 
-92.49 51.36 

  (CFRP and energy recovery) (CFRP and part reusing) 

 

 

b) CO2 reduction 

Analysis parameter 

CO2 reduction 

[kg-CO2/kg of part] 

Minimum Maximum 

(I) Material lightweighting 0.00 1.82 

  (Conventional material)  (Alum) 

(II) Recycling system -1.29 1.83 

  (Energy recovery) (Part reusing) 

(III) Material lightweighting 

       & recycling system 
-6.71 3.34 

  (Aluminum and energy recovery) (CFRP and part reusing) 
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10 Table 4.6 Life cycle energy reduction per 100kg of mass reduced 

 

  

Material 

Energy reduction per 100 kg of mass reduced 

[GJ per 100,000km traveled] 

Production Use   ELV 

      

A-Conventional 

recycling 

B-Part 

reusing 

C- Material  

recycling 

D-Energy 

recovery 

2- All aluminum -23.7 4.0   26.0 32.0 25.2 -3.3 

3- All AHSS 4.5 4.0   -1.5 10.0 -3.2 -5.4 

4- All CFRP -21.0 4.0   18.3 27.2 16.9 -2.3 

5-Minimum 

energy and CO2 

-22.8 4.0   25.0 - - - 

-20.4 4.0   - 26.6 - - 

-22.4 4.0   - - 23.9 - 

4.5 4.0   - - - -5.4 
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15Fig. 4.1 Concept of energy and CO2 reduction 
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16 Fig. 4.2 Analysis flow of the research  
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D Decklid H Rear doors 
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17 Fig. 4.3 Analyzed part for the body in white lightweighting 
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18Fig. 4.4 Conventional material flow of the body in white 

  



119 
 

                     

A
-1

) 
C

o
n
v
en

ti
o
n
al

  
B

-1
) 

A
ll

 p
ar

t 
re

u
si

n
g

 

  
  
  
 &

 c
o
n
v
. 
m

at
er

ia
l 

C
-1

) 
A

ll
 m

at
er

ia
l 

re
c
y
cl

in
g
  

  
  
  
 &

 c
o
n
v
. 
m

at
er

ia
l 

D
-1

) 
A

ll
 e

n
er

g
y
 r

ec
o
v
er

y
  

  
  
  
  
&

 c
o
n
v
. 
m

at
er

ia
l 

A
-2

) 
C

o
n
v
. 

re
c
y
cl

in
g
  

  

  
  
  
  
&

 a
ll

 a
lu

m
in

u
m

  

B
-2

) 
A

ll
 p

ar
t 

re
u
si

n
g
  

  
  
  
  
&

 a
ll

 a
lu

m
in

u
m

 

C
-2

) 
A

ll
 m

at
er

ia
l 

re
c
y
cl

in
g
  
  

  
  
  
  
&

 a
ll

 a
lu

m
in

u
m

 

D
-2

) 
A

ll
 e

n
er

g
y
 r

ec
o
v
er

y
  

  
  
  
  
&

 a
ll

 a
lu

m
in

u
m

 

A
-3

) 
C

o
n
v
. 

re
c
y
cl

in
g
  

  
  

  

  
  
  
  
 &

 a
ll

 A
H

S
S

  

B
-3

) 
A

ll
 p

ar
t 

re
u
si

n
g
  

  
  
  
  
&

 a
ll

 A
H

S
S

 

C
-3

) 
A

ll
 m

at
er

ia
l 

re
c
y
cl

in
g
  

  
  
  
  

&
 a

ll
 A

H
S

S
 

D
-3

) 
A

ll
 e

n
er

g
y
 r

ec
o
v
er

y
  

  
  
  
  
 &

 a
ll

 A
H

S
S

 
a)

P
ar

t 
1

 

 

F
ig

. 
4
.5

 M
at

er
ia

l 
fl

o
w

 o
f 

d
if

fe
re

n
t 

sc
en

ar
io

s 
o
f 

th
e 

b
o
d

y
 i

n
 w

h
it

e
 



120 
 

                             

 

A
-4

) 
C

o
n
v
. 

re
c
y
cl

in
g
  

  
  
  
  
&

 a
ll

 C
F

R
P

 

B
-4

) 
A

ll
 P

ar
t 

re
u
si

n
g
  

  
  
  
  
&

 a
ll

 C
F

R
P

 

C
-4

) 
A

ll
 m

at
er

ia
l 

re
c
y
cl

in
g
  

  
  
  
  
 &

 a
ll

 C
F

R
P

 

D
-4

) 
A

ll
 e

n
er

g
y
 r

ec
o
v
er

y
  

  
  
  
  
&

 a
ll

 C
F

R
P

 

A
-5

) 
C

o
n
v
. 
re

c
y
cl

in
g
  

  
  
  
  
&

 m
in

im
u
m

 e
n
er

g
y
-C

O
2
 

B
-5

) 
A

ll
 P

ar
t 

re
u
si

n
g
  

&
 m

in
im

u
m

 e
n
er

g
y
-C

O
2

  

C
-5

) 
A

ll
 m

at
er

ia
l 

re
c
y
cl

in
g
  

  
  
  
  
&

 m
in

im
u
m

 e
n
er

g
y
-C

O
2
 

D
-5

) 
A

ll
 e

n
er

g
y
 r

ec
o
v
er

y
 &

  

  
 m

in
im

u
m

 e
n
er

g
y
-C

O
2
 

b
) 

P
ar

t 
2

 

 

1
9
F

ig
. 
4
.5

 M
at

er
ia

l 
fl

o
w

 o
f 

d
if

fe
re

n
t 

sc
en

ar
io

s 
o
f 

th
e 

b
o
d

y
 i

n
 w

h
it

e
 

 



121 
 

 

a) Energy reduction 

 

b) CO2 reduction 

                

c) User cost reduction 

20Fig. 4.6 Life cycle energy, CO2 and user cost reductions by the body in white 

lightweighting in a conventional recycling system 
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a) Energy reduction potential by improvement in lightweighting and recycling system  

 

    
b) CO2 reduction potential by improvement in lightweighting and recycling system  

21Fig. 4.7 Energy and CO2 effects and scenarios considering the lightweighting and 

recycling system  
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a) Energy consumptions 

   

 

b) CO2 emissions 

22Fig. 4.8 Life cycle energy consumption and CO2 emissions of vehicles with 

lightweighted body in white 
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 Recoverability assessment of critical materials from electric vehicle 

lithium ion batteries 
 

 Introduction 

Japan is the third more representative vehicle market when worldwide production and sales 

volume of vehicle is considered (International Organization of Motor vehicle Manufacturers, 

2018a; International Organization of Motor vehicle Manufacturers, 2018b), but also are ones 

of the countries that lead the development of new electrical technologies in the transportation 

area, including the development of hybrid electric vehicles and fuel cell vehicles.    

Internal combustion engine vehicles depend to fossil fuels; however, the electric vehicles 

which include hybrid electric vehicles (HV), plug-in hybrid electric vehicles (PHEV), battery 

electric vehicles (BEV) and fuel cell vehicle (FCV) depends partially or totally on electricity. 

Currently, the EVs account for 32.9% of vehicle sales in Japan (Next Generation Vehicle 

Promotion Center, 2018), and it is expected a rapid increase in its share in the following years. 

Here, the size and weight of the electric vehicle batteries (EVB) vary depending on the 

electrification level, driving range of vehicle and its technology. Most of those vehicles use 

Lithium ion batteries (LiB) to store the energy needed for traction due to its higher energy 

density and more extended life compared with other available technologies. Additionally, 

considering the use of LiB in consumer electronics and grid energy storage, the increment of 

the dependency of the transportation sector but also of the society on those technologies in the 

middle and long term seems to be inevitable. 

Sustainable production of the LiB in the upstream of the supply chain is indispensable; 

however, an adequate collection, treatment, recycling and reusing of those batteries in the 

downstream stage is also necessary. Firstly, considering the electrical, fire-explosion, and 

chemical hazard potential of the LiB (Diekmann et. al. 2018). Secondly, the high carbon 
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intensity of the cell's production and the significant potential of its cascade use to minimize its 

life cycle environmental impact (Ager-Wick et al., 2013; Ahmadi et al., 2017). Third, 

considering that valuable and critical metals such as Co and Ni can be recovered with an 

adequate recycling process (Olivetti et al.,2017). Moreover, collected LiB can be reused in 

second life stationary applications as storage of wind power, peak shaving, EV charging, 

electrical trading, backup, and so on, significantly reducing the production cost of them. 

Finally, the high processing and transportation cost of scrapped LiB need to be reduced, which 

is approximately 10 to 15 thousand yens per unit of battery for HV in Japan (Honda Motor Co., 

2017); a critical factor when the total weight of future scrapped electric vehicles batteries 

(EVB) are considered. In this sense, directives by governments have been settled to promote 

the efficient collection and recycling of batteries. 

  Many studies have analyzed the importance of the recycling of the spent LiB (Zheng at. al, 

2018; Gaines, 2014; Winslow et. al, 2018); however, only few of them assessed its real 

potential when those concepts are put into practice, for this propose two variables are 

indispensable to be analyzed, the recovery volume and time of the batteries. Few studies have 

proposed dynamic approaches to forecast used traction battery flow, however one of the key 

factors for the modeling which is the returning timing of the EV and batteries are modeled 

considering the life span of the vehicle as a constant by a single point estimation (Pehlken et. 

al, Ziemann et. al, 2018) or a truncated lifespan distribution (Bobba et.al 2019, Richa at.al). 

Moreover, changed on the battery technologies through the time which impact directly in the 

material composition of them are also not considered. The proposed model forecast the volume 

of end of life vehicles base on the scrapping rate by year of use calculated considering past data 

of the Japanese vehicle market. Possible changes in the material composition of the recovered 

and supplied batteries are calculated based on open data of different LiB specifications. 

Additionally, for the author knowledge, previous studies are centered on European or North 
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American and there are no studies that analyze the japan market; on the other hand, cost 

comparative is also carried including in the consideration the upstream and downstream of the 

battery life cycle. 

  The criticality of the different materials could vary depending on the country, the time 

when the material is suppled and also has a strong dependence on the risk factors considered 

in its calculation. However, when criticality related to the production of the LiBs is analyzed 

Li, Ni, Co and Mn are usually highlighted as the representative ones (Helbig et al. 2018, Song 

et al. 2019, International energy agency, 2018).  

  The aim of this study is to propose a model to forecast the number of critical materials 

recovered from LiB through the recycling of end of life electric vehicles (EV) and analyze the 

potential of a closed-loop supply in Japan. System dynamics modeling has been utilized for 

this propose. 

 

 Methodology 

 Analysis of vehicle sales, fleet size, and scrapping 

Fig. 5.1 shows the concept of our forecasting model, where the entire vehicle market is 

analyzed dividing the vehicle market into three parts: sales, fleet/aging, and scrap. The different 

power trains (ICEV, HV, PHEV, BEV) sold by type of vehicle (mini passenger cars, mini 

trucks, standard passenger cars, small passenger cars, standard trucks, small trucks & large 

buses and small buses) are also considered. 

The total number of vehicles in a region (fleet size) is annually updated considering the 

number of vehicles sold and scrapped in a year (1). Here, the term vehicle scrapped includes 

the ELV that are dismantled but also the ones that spent its second life in foreign countries. 
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𝑉𝑆𝑎𝑡+1 = 𝑉𝑡+1 − 𝑉𝑡 + 𝑉𝑆𝑐𝑡+1                                                               (1) 

 

𝑉𝑡          : Number of vehicles at the end of the year t in the fleet[units]. 

𝑉𝑡+1      : Number of vehicles at the end of the year t+1 in the fleet [units]. 

𝑉𝑆𝑎𝑡+1  : Number of vehicles sold during the year t+1 [units]. 

𝑉𝑆𝑐𝑡+1  : Number of vehicles scrapped during the year t+1 [units]. 

 

  The above flow is separately analyzed considering the type and power train of the vehicles 

(2)-(5).   

   

𝑉𝑡 =  ∑ ∑ ∑ 𝑉𝑖,𝑝,𝑙,𝑡𝑙𝑝𝑖                                                                       (2) 

 

𝑉𝑡+1 =  ∑ ∑ ∑ 𝑉𝑖,𝑝,𝑙,𝑡+1𝑙𝑝𝑖                                                                 (3) 

 

𝑉𝑆𝑐𝑡+1 =  ∑ ∑ ∑ 𝑉𝑆𝑐𝑖,𝑝,𝑙,𝑡+1𝑙𝑝𝑖                                        (4) 

  

𝑉𝑆𝑎𝑡+1 =  ∑ ∑ 𝑉𝑆𝑎 𝑖,𝑝,𝑡+1𝑝𝑖                                                                           (5) 

 

𝑉𝑖,𝑝,𝑙,𝑡        :  Number of vehicles of type i, power train p and year of life l at the end of the 

year t in the fleet [units]. 
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𝑉𝑡+1,𝑖,𝑝,𝑙     : Number of vehicles of type i, power train p and year of life l at the end of the 

year t+1 in the fleet [units]. 

𝑉𝑆𝑐𝑖,𝑝,𝑙,𝑡+1 : Number of vehicles scrapped of type i, power train p and year of life l during the 

year t+1 [units]. 

𝑉𝑆𝑎𝑖,𝑝,𝑡+1  : Number of vehicles sold of type i, power train p during the year t+1 [units]. 

The number of vehicles (fleet size) is forecasted considering previous studies of Dargay 

et. al.(1999; 2007), who proposes an s-shape function to represent the relation between the 

vehicle ownership per capita and the GDP growth of a country (6).  

 

𝑉𝑂𝑡+1 = γ ∗ θ ∗ eα ∗ eβ GDP
+ (1 − θ) ∗ 𝑉𝑂𝑡                        (6) 

 

𝑉𝑂𝑡+1       : Vehicle ownership at the end of the year t+1 [units per 1000 people] 

𝑉𝑂𝑡           : Vehicle ownership at the end of the year t [units per 1000 people] 

γ                : Saturation level of the number of vehicles [units per 1000 people]. 

α                : Parameter alpha related to the shape of the function.  

β                : Parameter beta related to the shape of the function. 

θ                : Speed of effect between the variables (0 <θ <1). 

 

Moreover, the number of vehicles scrapped during a year depends on the number of 

vehicles available and the probabilities of the vehicles to be scrapped which vary depending 

on the type, power train, and year of life of them (7).  
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𝑉𝑆𝑐𝑖,𝑝,𝑙,𝑡+1 =  ∑ ∑ ∑ 𝑉𝑖,𝑝,𝑙,𝑡 ∗ 𝑃𝑠𝑐𝑖,𝑝,𝑙,𝑡+1𝑙𝑝𝑖                               (7) 

 

𝑃𝑠𝑐𝑖,𝑝,𝑙,𝑡+1 : Probability of a vehicle type i, powertrain p and year of life l to be scrapped 

during the year t+1. 

   Finally, the total sales of vehicles per year can be divided by type and powertrain, 

considering future share predictions (8).  

 

𝑉𝑆𝑎𝑖,𝑝,𝑡+1 =  𝑉𝑆𝑎𝑡+1 ∗ ∑ ∑ 𝑆𝑠𝑖,𝑡+1 ∗ 𝑆𝑠𝑝∈𝑖,𝑡+1𝑙𝑝                 (8) 

 

𝑆𝑠𝑖,𝑡+1       :  Sale share of vehicle type i during the year t+1. 

𝑆𝑠𝑝∈𝑖,𝑡+1   : Sale share of vehicles with powertrain p in the market of the vehicle type i during 

the year t+1. 

 

 Analysis of the possible critical material supply from LiB recovered from the end of 

life EV. 

Firstly, it is worthy of clarifying that this study considers two types of EVB 

technologies in the forecast, Nickel-metal hybrid batteries (NiMH) and LiB. However, the 

analysis of recovered and supplied critical materials focus only on the second one considering 

that NiMH are still used in some HV, but LiB are more attractive for PHEV and BEV due to 

their much higher energy density, longer cycle life, lightweight and ability to provide deep 

discharges (Olivetti et al., 2017). Supplied and recovered amounts of critical metals (Ni, Co, 
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Mn, Li) used in the production of the LiB and possible to recover from scrapped vehicles are 

forecasted.  

  The amount of the LiB supplied to the automotive industry is calculated through 

equation (9). 

 

𝑆𝐿𝑖𝑏𝑡 = ∑ ∑ 𝑉𝑆𝑎𝑖,𝑝,𝑡𝑝𝑖 ∗ 𝐿𝑖𝑏𝑉𝑖,𝑝,𝑡 ∗ 𝑉𝐿𝑖𝐵𝑖,𝑝,𝑙                   (9) 

 

𝑆𝐿𝑖𝑏𝑡,𝑙     : Amount of supplied LiB during the year t [kwh] 

𝐿𝑖𝑏𝑉𝑖,𝑝,𝑡   : Size of LiB of a vehicle type I and power train p in the year t [kwh/unit] 

𝑉𝐿𝑖𝑏𝑖,𝑝,𝑡   : Rate of vehicles of type i, power train p in the year t that use LiB for traction 

 

Moreover, the material supplied for the production of the LiB depends on the 

technology of the battery (10). 

 

𝑆𝑀𝑎𝑡𝑚,𝑡 = ∑ ∑ 𝑉𝑆𝑎𝑡,𝑖,𝑝𝑝𝑖 ∗ 𝐿𝑖𝐵𝑉𝑖,𝑝,𝑡 ∗ 𝑉𝐿𝑖𝐵𝑖,𝑝,𝑡 ∗ 𝑊𝑀𝑎𝑡𝑚,𝑖,𝑝,𝑡              (10) 

 

𝑆𝑀𝑎𝑡𝑚,𝑡     : Amount of supplied material m for the production of LiB during the year t [kg] 

𝑊𝑀𝑎𝑡𝑚,𝑖,𝑝,𝑡: Weigh of material m of a LiB from a vehicle of type i, power train p in the year 

[kg/kwh] 
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The size of the LiBs recovered from scrapped varies depending on the type, power 

train, and year of life of the vehicle (11). 

  

𝑅𝐿𝑖𝑏𝑡 = ∑ ∑ ∑ 𝑉𝑆𝑐𝑖,𝑝,𝑙,𝑡𝑝𝑖 ∗ 𝐿𝑖𝐵𝑉𝑖,𝑝,𝑙,𝑡 ∗ 𝑉𝐿𝑖𝐵𝑖,𝑝,𝑙,𝑡𝑙                  (11) 

 

𝑅𝐿𝑖𝑏𝑡         : Amount of recovered LiB during the year t [kwh]. 

𝐿𝑖𝐵𝑉𝑖,𝑝,𝑙,𝑡   : Size of LiB of a vehicle type i, power train p and year of life l in the year t 

[kwh/unit] 

𝑉𝐿𝑖𝐵𝑖,𝑝,𝑙,𝑡   : Rate of vehicles of type i, power train p and year of life l in the year t that use 

LiB for traction 

 

The material recovered from the scrapped LiBs depends on the technology and material 

composition of its cells which varies through the evolution of its technologies (12).  

 

𝑅𝑀𝑎𝑡𝑚,𝑡 = ∑ ∑ ∑ 𝑉𝑆𝑐𝑖,𝑝,𝑙,𝑡𝑝𝑖 ∗ 𝐿𝑖𝐵𝑉𝑖,𝑝,𝑙,𝑡 ∗ 𝑉𝐿𝑖𝐵𝑖,𝑝,𝑙,𝑡  ∗ 𝑊𝑀𝑎𝑡𝑚,𝑖,𝑝,𝑙,𝑡𝑙    (12) 

 

𝑅𝑀𝑎𝑡𝑡,𝑚       : Amount of recovered material m from the LiBs during the year t [kg] 

𝑊𝑀𝑎𝑡𝑚,𝑖,𝑝,𝑙,𝑡 :Weigh of material m of a LiB from a vehicle of type i, power train p and year 

of life l in the year t [kg/kwh] 

  

 Analysis of the Japanese vehicle market 
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As the third-largest economy of the world (World Bank, 2018), Japan has one of the biggest 

vehicle markets, and its technological contribution to the electrification of vehicles is 

indispensable. Word wide-scale automakers and battery makers lead the local automotive 

industry been them pioneers in the development of electric vehicles.  

 Fig. 5.2 shows the analysis flow of this approach. To assess the effect of the LiB 

recovering through the methodology proposed above, here main characteristics of the Japanese 

vehicle market and manufacturing were analyzed and listed below in order to use them as input 

data for our model. It is worth to mentioning that part of the input data is based on the Japanese 

fiscal year (April to March). 

・Vehicle fleet size: Fig. 5.3 a) shows the forecast of the Japanese GDP presented by the 

OECD (2018) which was used to in the equation (6) to calculate the growth of the vehicle 

ownership shown in Fig. 5.3 b).  Fig. 5.3 c) indicates the population growth forecast of the 

country estimated by The world bank (2019). Finally, Fig. 5.3 d) shows estimation of the size 

of future Japanese vehicle fleet. Moreover, the initial composition of the vehicle fleet by type 

and powertrain was broadly estimated based on reports from the Next Generation Vehicle 

Promotion Center (2019b) and Automobile Inspection & Registration Information Association 

(2019). 

・Sale share of vehicles: Fig. 5.4 shows the share of the future vehicle sales in Japan by type 

and power train estimated considering data from the Ministry of the Environment (2010) Japan 

Automotive Manufacturers Association (2019) and Next Generation Vehicle Promotion Center 

(2019 a). Moreover, it is worthy of mentioning that the share from 2009 to 2017 represents 

historical records of the market (Japan Automotive Manufacturers Association, 2019; Next 

Generation Vehicle Promotion Center, 2019 a; Next Generation Vehicle Promotion Center, 

2017). 
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・Probability of vehicle to be scrapped: Vehicle scrapping rates were calculated as the 

percentage of vehicles that are scrapped annually per year of use base on reports of the 

Automobile Inspection & Registration Information Association (2019). Here, average data of 

standard/small passenger cars and trucks been utilized, and scrapping rate from 2018 to 2050 

estimated by linear least squares regression. Fig. 5.5 shows the historical and forecasting of the 

vehicle scrapping rate considered in this model. It is worthy of clarifying that the scrapping 

rate of passenger cars varies shapely every two years due to the impact of the automobile 

inspection requirement of the Japanese government. 

・Size of LiBs: Size of the LiB vary widely depending on the type, power train, and 

specifications of the vehicle. In this study, the capacities of the batteries of Mini Passenger 

cars & Mini Trucks, Standard/small Passenger cars have been considered 2 kWh for HV, 

9kWh for PHEV, and 28 kWh for BEV (Dunn et/ al, 2012) ; Moreover, batteries for 

Standard/small Trucks & large/small buses have been considered 3.9 kwh for HV (Isuzu 

motor limited, 2017) and 304 kwh for BEV (Gao et al., 2017).   

・Battery technologies: Material compositions of the batteries are modified considering core 

LiB technology used in electric vehicles at the moment. Fig. 5.6 shows the evolution scenario 

adopted in this study. To forecast future changes, representative LiB technologies during the 

past years have been estimated base on Nissan motor corporation (2019) and Blue Energy 

Co. (2016), and possible new technologies for the following years forecasted considering 

reports from International energy agency (2018), Argus media Ltd. (2019) and Lebedeva et. 

al. (2016). Moreover, Table 5.1 shows the material composition of the mentioned LiB 

technologies.  
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・Cost of the materials and batteries: Table 5.2 shows the price of the material used for the 

production of the cathodes and production. Here, data of the report of the International 

energy agency (2018) have been considered. 

 

 Results and discussions 

The proposed forecasting model was simulated through System dynamics and the software 

Vensim PLP x32 (2019) used for this propose.  

 

 Forecast of vehicle fleet size, sales and scrapping 

 Fig. 5.7 a) shows the forecast for vehicle sales by power train in the market. Here, it can be 

observed that the total sales of vehicles will decrease moderately in the following years due to 

the changes in the Japanese vehicle fleet size. However, sales of electric vehicles will increase 

considerably, and it is expected to reach a peak in 2040 with 4.17 million units sold per year. 

This value represents 2.2 times the EV sales of 2018 considering that it is not expected drastic 

changes in the HV demand. However, if sales of BEV are analyzed separately, it can be 

observed that the related sales will reach 1.94 million units in the same period, increasing 11.6 

times the sales of 2018. 

Fig. 5.7 b) shows the forecast of the Japanese vehicle market size. Here, it is possible to 

observe that even an increase in the GDP per capita and vehicle ownership is expected, the 

Japanese vehicle fleet could reach a peak in 2029 with 84.1 million units of vehicles in the 

market due to the possible decrease of the population. Moreover, compared to sales, where it 

can be observed the domination of electric vehicles in the following years, the vehicle fleet 

itself will be still predominated by ICEV until 2032.   
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Fig. 5.7 c) shows the forecast for the number of vehicles scrapped in the market. Here, it 

can be observed that the number of ELV will vary slightly in the following years. Moreover, 

ICEV will dominate the ELV market until 2038 reaching 2.58 million units scrapped per year 

compared to the 2.45 million units of EV. Moreover, even a substantial quantity of HV are 

reaching its end on life in the coming years; the amount of BEV and PHEV expected to be 

collected until 2025 seems to be minimal, being less than 2% of the total ELV generated in a 

year.    

Finally, it worthily to mention that grey parts on the left side of each figure indicate 

historical records of vehicle sales [Japan Automotive Manufacturers Association, 2019; Next 

Generation Vehicle Promotion Center , 2019a; Next Generation Vehicle Promotion Center, 

2017], fleet [Japan Automotive Manufacturers Association, 2015], and scrapping [Ministry of 

Environment, Government of Japan, 2015], which are compatible with the values forecasted 

in this model.   

 

 Forecast of EVB supply and recovery 

 Fig. 5.8 a) shows the forecast of the EVB supply simulated by this model, here, it can be noted 

that even though, in term of vehicles sales, HV play an essential role, the demand of EVB for 

BEV is going to dominate the market considering its higher energy capacity. EVB demand is 

going to increase rapidly in the following years; however, it is expected to reach maturity near 

2030, considerably decreasing after that its growth rate. It is expected that the supply of EVB 

reaches 78 GWh per year in 2050, increasing 8.4 times from 2018 but 1.37 times from 2030. 

Moreover, electric buses and trucks will importantly affect the demand for future EVB. 

  Fig. 5.8 b) shows the forecast for the number of EVB that can be recovered from the 

ELV. The quantity of EVB for recycling and reusing is expected to be predominated by 

batteries from HV in the first years, but after this period, batteries recovered from BEV will 
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represent the majority of the returning volume drastically increasing the size of the entire 

market from that time on. The recovered number of recovered EBV reaches 61 GWh in 2050 

representing an increment of 55 times compared to 2018.  

Fig. 5.9 show the forecast of the relation in term of energy capacity between the total 

EVB supplied for new vehicles and expected to be recovered from ELV. It can be noted that 

in 2025, the recoverability will be still less than 10% of the supply, but also, the rapid growth 

of those values can be expected in the following years, reaching 31% in 2035. Moreover, a 

complete close-loop could be expected nearly 2050 if only the energy capacity of batteries is 

considered.  

 

 Forecast of critical material supply and recovery for LiB  

 This section includes in the analysis different LiB technologies from 2010 to 2035 considering 

the composition of its critical materials. 

Fig. 5.10 a) and b) show the forecasting of supplied and recovered LiB in terms of 

energy capacity by technologies. It can be observed that the LiB supplied until 2035 is going 

to be recovered gradually, and the mode of the returning flow is going to be nearly 2044. The 

grey section of the chart illustratively indicates the possible supplied and recovered volume of 

unknowable batteries technology.  

 Fig. 5.10 c) and d) show the weight of each critical material supplied for the LiB 

production and recovered from the market. Here, it is possible to observe that the demand of 

Ni is going to increase concisely in the following years, been the most representative critical 

material required for the LiB production. However, even the production of LiB increases, the 

demand for Mn, Co and Li seems not to change. Similarly, the most representative critical 

material, in terms of recovered mass, is also the Ni and 15,7 tons of is expected to return from 

ELV in 2035. Moreover, the supplied and recovered weigh of Mn, Co, and Li seem to be 
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similar. This can be explained by the expected increment of Ni concentration on LiB, which 

increases the energy content of the batteries in exchange for stability (Olivetti et al, 2017). 

   Fig. 5.11 indicates that 34% of the lithium, 50% of the cobalt, 28% of the nickel, and 

52% of manganese required in the production of new LiB could be supplied by batteries derives 

from end of life vehicles in 2035. Compared to Fig. 5.9, where the possible closed loop is 

analyzed in terms of energy capacity, and the recovered batteries represent 31% of the volume 

supplied, here, the recovered material is assessed, also considering the material weighs. It can 

be observed that, when changes in the battery technologies are taken into consideration, results 

are different, highlighting the importance of analyzing the potential of a close-loop including 

the material composition of them. 

 

 Economic analysis of the recovered materials 

 Fig. 10 e) and f) show the value of each critical material supplied for production and recovered 

from LiB. Compare to the analysis base on the material weights, here, it is possible to observe 

that the value of Co and Li supplied and recovered are as important as Ni. However, it is seen 

that the value of the Mn seen to be considerably lower. The total value of critical material 

required in japan for vehicle production of LiB reach 936 million US dollars in 2035, where 

325 million dollars of it could be recovered by materials from ELV. The secondary axis of Fig. 

11 shows the above relation, where 35% of the value of critical materials could be supplied 

locally by scrapped LiB in Japan, considerably reducing the dependency of those materials 

from foreign countries.        

 

 Limitations in the practice 

  In order to recover the forecasted quantity of critical materials from scrapped LiB, the 

following obstacle must be overcome.  



139 
 

  Firstly, battery recycling facilities in Japan are Pyrometallurgical (Elibama, 2014; Mayyas et 

al., 2018), recovering the Co and Ni as molten metal alloy and the Li and Mn as slag (Cusensa 

et al., 2019). Shift to hydrometallurgical technologies must be carried in order to obtain high-

grade materials possible to use in the production of new batteries. The recycling efficiencies of 

the analyzed materials in those facilities are close to 100% (Tytgat, 2013).  

   Secondly, the exportation of used vehicles in Japan represents approximately 28% of 

the total ELV (Ministry of Environment, Government of Japan, 2015).. Here, the demand for 

used HV are notorious, wherein 2017 approximately 84% of them were sent overseas to spent 

their second life (Japan Automobile Recycling Promotion Center, 2017). In the case of BEV 

this value exceeds 96% (Japan Automobile Recycling Promotion Center, 2017), having an 

important effect in the current LiB collection volumes. The exportation of end of life EV are 

centered in underdeveloped Asian countries; however, it can be expected in the middle and 

long term a natural decreasing of those values jointly with the saturation of electric vehicles in 

those market. 

   Thirdly, the results of recovered LiB proposed in this approach could be used for 

recycling as well as reusing proposes. However, reusing of LiB could delay the returning time 

of the spent batteries. In this sense, future studies could be carried to elevate the accuracy of 

the forecasting assuming alternative scenarios.      

   Fourthly, this study proposed a model to forecast the Japanese vehicles market based 

on open data. Different approximations in the inventory analysis for the Japanese vehicle 

market has been carried in order to conduct the simulation. Moreover, external analysis, such 

as the forecasting of the Japanese population, GDP, and vehicle sales share has been 

considered. Change on those values could guide us to different results; however, the proposed 

forecasting model and main conclusions are not going to change. 
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 Finally, the price of the critical metals varies constantly and unpredictably depending on 

changes in the global market. This study has considered constant prices for the calculation of 

the values of the supplied and recovered critical materials. In this sense, the analysis 

methodology proposed in this approach can be easily adjusted to updated values.recycling 

facilities:  

 

 Implications and utilization in the practice 

The results presented in this study give a whole picture of the ELV market but also perspectives 

of the scrapped EVB possible to recover from them. The proposed forecasting model can be 

applied by automakers and related companies to propose and verify the economic feasibility of 

different battery reusing and recycling business strategies clarifying the quantity and variety of 

“resources” available for its production process in the short, middle, and long term.  

  Even the supplied of critical materials for LiB production will considerably increase 

due to the diffusion of EV in the immediate years, the quantity of returning batteries of BEV 

and PHEV seems to be minimal until 2025. In this sense, new business and development of 

LiB reusing and recycling technologies should be center, in the short term, in batteries of HV 

considering the total returning volume of them. 

Dismantlers and material recycling companies are going to be able to define optimal 

plans for the adaptation of its facilities, knowing the time and quantity of EV and LiB returning 

from the market. Moreover, the development of new recycling technologies should be centered 

on the recovering of Ni if the total available mass of material is prioritized but focused on Ni. 

Co, Li, when material value is put in front. On the other hand, an efficient reverse logistics 

network for spent batteries could be planned considering the forecasting values of this research. 
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  This study also demonstrated that more than 50% ELV would be ICEV until 2038, in 

this sense, development of new technologies and new reusing and recycling project of them 

should not play second fiddle considering its room for improvement. 

Due to the lifetime of the EV, the recovered LiB will no be significant source of material 

for the production of new ones in a short term; however, when longer time horizon is 

considered, and principal limitation clarified in this study overcame, the recovered batteries 

will play an essential role in the automotive industry and a total closed-loop feasible for EVB. 

   Finally, it worthy of mentioning that the proposed model can be easily adapted to other 

countries but also for different products such as electrical household appliance that needs to be 

recycled after its use as was proposed by the approach of Baldé et al. (2017). 

   Even a few entities and consultants forecasted supply or recover volume of critical 

material for EVB (Argus media Ltd, 2019; The Center for European Policy studies, 2018; 

Avicenne energy, 2017) details of the model implemented for the analysis is never open or 

available for utilization. In the same way, accuracy and premises considered in the forecasting 

are unknown. In this sense, the proposed model can be adopted and modified depending on the 

necessity allowing possible changes in premises be reflected. 

 

 Conclusions 

This study proposes a model to forecast the number of LiB and critical materials possible to be 

recovered from the recycling of ELV. System dynamic concepts and open data are used to 

simulate the Japanese vehicle market. Compare to previous studies, this approach forecasts the 

number of end of life vehicles bases on the scrapping rate by year of life, calculated considering 

past data of the Japanese vehicle market. The main conclusions of this approach, where vehicle 

fleet and sales were additionally analyzed, are listed below. 
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・The total sales of vehicles in Japan seem to decrease moderately in the following years due 

to the decreasing Japanese population. However, sales of electric vehicles will increase 

considerably, and it is expected to reach a peak in 2040 with 4.17 million units sold per year. 

In this sense, EVB demand is going to increase rapidly in the following years; however, it is 

expected to reach maturity near 2030, considerably decreasing after that its growth rate. 

・More than the 50% of the ELV will be ICEV until 2038, in this sense, development of new 

technologies and new reusing and recycling project of them should not play second fiddle. 

・The amount of scrapped EVB will increase 55 times from 2018 reaches 61 GWh recovered 

per year in 2050. Moreover, the number of recovered EVB is expected to be predominated by 

batteries from HV in the first 5 years, clarifying the need to center reusing and recycling 

projects in them in the short term. 

・Closed loop in EVB production could be expected in 2050 if only the energy capacity of 

batteries is considered. However, changes in batteries technologies play an essential role and 

the volume of critical material supplied for the production and possible to recover from ELV 

vary widely depending on the material composition of the LiB. Results indicate that 34% of 

the lithium, 50% of the cobalt, 28% of the nickel and 52% of manganese required in the 

production of new LiB could be supplied by batteries derives from end of life vehicles in 2035. 

・Development of new recycling technologies should be centered in the recovering of Ni if 

the total available mass of material is prioritized but focused in Ni. Co, Li, when material value 

is put in front. 

・The total value of critical material required in japan for EV’s LiB production reach 936 

million US dollars in 2035, where 325 million dollars of it could be recovered by the material 

recovered from ELVs considerably reducing the dependency of those materials from foreign 

countries 
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・Considering that the quantity of returning batteries of BEV and PHEV seems to be minimal 

until 2025, new business and development of LiB reusing and recycling technologies should 

be center, in the short term, in batteries of HV. 

・Exportation of used EV has a substantial impact on the current LiB processing/recycling 

market. Moreover, local LiB recycling facilities should shift to hydrometallurgical process if 

closed loop of batteries wants to be achieved.  

  Finally, the forecasting model proposed in this study could be adjusted to different situations 

and market premises considering that open data are used for the calculation, and the 

methodology used explained in detail.  
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9911Table 5.1 Cathode active material composition of lithium ion battery technology 

 

       [kg/kwh] 

  LMO  NMC 111  NMC 622  NMC 811  

Li 0.10 a),b),c),e) 

 

0.15 d) 

 

0.13 d) 

 

0.11 d) 

 
Co 0.00 a),b),c),e) 0.4 d) 0.19 d) 0.09 d) 

Ni 0.00 a),b),c),e) 0.4 d) 0.61 d) 0.75 d) 

Mn 1.56 a),b),c),e) 0.37 d) 0.2 d) 0.09 d) 

LMO, Lithium ion manganese oxide; NMC, Lithium nickel manganese cobalt oxide 

         

a) Macquarie research, 2017 [45] d) International Energy Agency, 2018 [18] 

b)Argonne National Laboratory, 2018 [46] e) Author estimation   

c) Dai et. al, 2018 [47]             
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12Table 5.2 Price of critical materials 

 

Price of raw materials     

    $ per kg Ref. 

  Lithium Carbonate 8.00 a) 

  Cobalt 30.00 a) 

  Nickel 9.00 a) 

  Manganese 2.00 a) 

 

  

a)  International Energy Agency, 2018 [18] 
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23 Fig. 5.1 Concept of the dynamic forecasting model 
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25Fig. 5.3 Forecast of the Japanese GDP, population, vehicle ownership and vehicle fleet 

  

a) GDP b) Vehicle ownership 

c) Vehicle ownership d) Vehicle fleet 
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26 Fig. 5.4 Share prediction of the vehicle sales for the Japanese market 
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a) Forecast of the passenger cars scrapping rate 

 

 

b) Forecast of trucks and buses scrapping rate 

 

27Fig. 5.5 Scrapping rate forecast of the Japanese vehicles 
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28Fig. 5.6 Changes in the EVB technologies by years 
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a) Forecast of vehicle sales by power train 

 

b) Forecast of the vehicle ownership by power train 

   

c) Forecast of the vehicle scrap by power train 

 

29Fig 5.7 Forecast of the Japanese vehicle market by vehicle type and power train 
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a) Forecast of EVB supply for the automotive industry 
 

 

b) Forecast of EVB scrapped and recovered from the ELV 

 

30Fig. 5.8 Forecast of EVB supply and recovery for the Japanese vehicle market 
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31Fig. 5.9 Precentral relation between the EVB supplied and recovered 
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32Fig. 5.10 Forecast of LiB and critical material supplied and recovered 

 

 

 

  

c) Weight of supplied material d) Weight of recovered material 

e) Cost of supplied material  f) Cost of recovered material  

a) Supplied lithium ion batteries  b) Recovered lithium ion batteries 
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a) Material value 

 

b) Material weight 

33Fig. 5.11 Percentual relation between the weight and value of supplied and recovered 

critical materials 
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 Discussion 
 

 Theorical and practical implementations of the study 

It is going to be able to apply the following point in theorical approaches.  

Evaluate quantitatively the impact of the ELV recycling considering the material 

composition of its parts and components, contributing towards a more comprehensive 

environmental and economic assessment of a vehicle life cycle. Moreover, materials and vehicle 

parts to be prioritized for recycling and recycling method to be developed can be identified 

through the assessment methods proposed in this study having in mind the whole picture of the 

current ELV material flow. 

 Environmentally assess the benefits and limitation of new or currently available 

lighweighted materials for the automotive industry depending on the development stage of its 

recycling process. Also, allow understanding the close relationship the ELV phase has with the 

rest of the phases.  

Even a few entities and consultants forecasted supply or recover volume of critical 

material for EVB, details of the model implemented for the analysis is never open or available 

for utilization. In this sense, the proposed model can be adopted and modified depending on the 

necessity of the researcher and be applied in their own researches. Results obtained in this study 

give also a whole picture of the upcoming EVB market and its critical material possible to be 

recovered from ELV, this allow researchers to identify future recycling technologies to be 

prioritized for development, but also to identify the critical material that should be improved in 

its production and utilization phase.  

Practical implementations are listed below.  

Though the comprehensive analysis of the vehicle life cycle including the ELV phase, 

automakers and parts producers are going to be able to develop more sustainable vehicles 
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assessing the environmental benefits of new technology or material correctly for the vehicle 

production. The above concept will be crucial considering proposal of the European 

Commisssion urge to make available to authorities, entities and operators the life cycle costing 

of the vehicles, including the cost of greenhouse gas emission and other pollutant emissions, in 

order to support their procurement process. Vehicle users could understand the total effect on 

the society of the acquired product. Moreover, dismantlers. material recycling and part reusing 

companies could plan the adaptation of its facilities or evaluate new business models having in 

mind the limitations and benefits of the upcoming parts and materials from new generation of 

vehicles. For example, a drastic modification of the material composition of the vehicles, such 

as the case of the body in white, will obligate the vehicle recycling companies to review its 

installations and disassembly process. Finally, public entities including the local government, 

are going to be able have a whole picture of the ELV market, allowing them to identifies 

materials and recycling technologies to be prioritized for development to achieve a sustainable 

society. In the same way, the government could define policies to support those initiatives, and 

financial incentives, not only for the development of technologies but also for the purchasing 

of sustainable product are going to be an important key for the society. 

 The proposed scrapped EVB forecasting model can be applied by automakers and 

related companies to propose and verify the economic feasibility of different battery reusing 

and recycling business strategies clarifying the quantity and variety of “resources” available for 

its production process in the short, middle, and long term. Dismantlers and material recycling 

companies are going to be able to define optimal plans for the adaptation of its facilities, 

knowing the time and quantity of EV and LiB returning from the market. Moreover, government 

will be able to define plans to ensure the supply of critical material for the production of batteries 

which currently have a high dependency on foreign country. 

 

 Secondary materials as source for vehicle production 
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As it has been explained throughout this document, the ELV recycling has an important 

role in the sustainability of the entire life cycle of the vehicle. Here, energy consumption, CO2 

emissions and economic point of view have been assessed. Three main recycling flow has been 

identified, ASR, which are mainly subjected to energy recovery, material recycling, and part 

reusing. As it is already known the material that is subjected to the last flow goes back to the 

vehicle as alternative spare parts. However, material destination of the first and second flow 

varies widely depending to the disassembly company or recycling factory where are destined.   

The vehicle is elaborated with high spec materials and even the same steel, plastic or 

aluminum; those materials have a different grade in order to fulfill the functional or visual 

specification the parts are requested. An easy to identify example is the case of the aluminum 

used in the engine block and the ones used in the production of wheels. Even the first one needs 

to fulfill thermal requirement, the second one needs additional visual and mechanical resistance. 

In that sense, considering that the main part of the ELV enters to the shredding machine and the 

materials are separated after been grinded, mixed grade materials are obtained as output. This 

means that the material obtained from the ELV is not separated by grade, and currently, it is 

difficult to return them to the production of the same part. Specifically speaking, in the case of 

steel, which is the main material component of the vehicle, the recovered material finish in an 

electric furnace. Here, metals from different origins are mixed, obtaining lower-grade steel 

mainly used in the construction sector. In the case of aluminum and iron, recycled materials 

that lose their initial grade can be smelted and destined to casting vehicle parts. The mentioned 

kind of recycling, where the initial product finishes in to lower grade products is known as 

cascade recycling. A few examples of horizontal recycling in the automotive industry can be 

mentioned, one example is the recycling of bumpers that are recycled and used in the production 

of the same part. This can be carried because the bumper is easy to be dismantled manually 

before enter the entire vehicle to the shredding and that they use same grade of plastic 

(polypropylene). However, many issues in order to apply this recycling flow on a larger scale 
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are pending to be solved. The main one is the transportation cost of scrapped bumpers, which 

its volume is not negligible.  

Considering the above-mentioned limitations, it is correct to say that in order to reach a 

closed-loop recycling or horizontal recycling, not only improvement in technologies to separate 

different material by grade should be developed, but also decreasing the requirements in the 

material used in new part production should be also considered. Moreover, propose an efficient 

reverse logistics network for recyclable materials could help to achieve cost objectives in order 

to boost the cyclical economy. 

Finally, it is worth discussing the concept of car to car recycling, which is appointed 

several times in the automotive industry. This concept is of interest in order to assure critical 

materials inside the industry to not depend on external factors. However, for generally used 

materials, the mentioned goal has low effect in the society considering that range of possible 

horizontal recycling is wider, including the use of recycled material from other industries in 

the automotive one. In this sense, future works should be analyzing the optimization of the 

use of recycled materials in order to boost even more the environmental and economic 

potential of the ELV phase. 

 

 Applicability of this approach to other durable goods 

The waste electric and electronic equipment (WEEE) recycling has been in the eye of 

different governments considering the material consumed for the production and the volume of 

recycled waste generated in its end of life. As well as the ELV recycling, the WEEE are 

subjected to recycling objective settled by the Japanese government and its recycling process 

consist of an initial dismantling, following by the shredding process.  

As it was explained in Chapter 3, understand the current effect of the end of life phase 

of the vehicle is of interest to understand the total environmental effect of the product. In the 
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same way, benefits and material flow of WEEE recycling should be clarified in order to clarify 

the current strengths and weaknesses of the system to define the dismantling technologies to be 

prioritized for improving. Compare to our study, where separation of plastic has been pointed 

out for the ELV, this objective could vary in the case of WEEE considering that even the 

recycling process is similar, the material composition of the home appliances are totally 

different to the vehicles.  

In Chapter 4, our study analyzed the use of lightweight material and the relation with 

the ELV phase. In the case of WEEE, this concept can not be applied directly considering that 

the benefits of lightweight materials are directly involved with the use of fuel consumption in 

the use of the vehicles. Here, rolling resistance, acceleration resistance, and aerodynamic 

resistance have an important role. has an important role; however, in the case of home appliance 

which is mostly immobile, the necessity of this technology is limited. One possible part where 

this analysis could be carried, in the case of internal mobile part, as the compressor of the 

refrigerators, however, the effect seems to be low. 

Finally, in chapter 5, this study proposes a model to forecast the upcoming scrapped 

flow of batteries from EV. The dynamic model developed here can be adjusted to any type of 

product if input data as the relation between the GDP and the ownership and, the life expectancy 

of the product are previously calculated. For the case of WEEE, in addition to critical materials 

from LiB, returning flow of materials of importance as gold from electronic parts can be also 

forecasted. 

 

 Possible scenarios of the ELV market due to the implementation of CASE 

An important concern for the automakers is the correct adaptation of its technologies and 

business to the changes in the mobility industry known as CASE (connected autonomous shared 

electric). The circular economy of the vehicles is going to be also affected, and the following 

tendency can be expected. 
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Due to the diffusion of connected vehicles. Automaker are going to be able to share and 

receive information from the users constantly. In this sense, new businesses could be stablished 

between them including a buying-selling system of reused parts. Moreover, recyclers and 

automakers will have the opportunity to implement a real time monitoring of different vehicle 

parts, including the status of the EVB, allowing them predict the time and place where those 

parts are coming back for reusing or recycling propose. 

 Autonomous vehicles will decrease the human errors in the vehicle driving. In this sense, 

accidents and vehicle crushes could be avoided on a large scale, eliminating the necessity of 

high resistant vehicle bodies. This possible scenario, will allow automakers to chose more 

environmentally friendly materials for the vehicle production considering also the recyclability 

of them. 

Shearing means that the vehicles will be constantly operating. In that sense, even the life 

of a vehicle would not change in term of traveled distance, the time necessary for achieving its 

end of life will be much shorter. ELV, including its batteries, will return from the market faster 

and a dynamic close loop of them can be expected. New business such as the reusing of body 

parts for the production of new vehicles could be proposed considering the high durability of 

them. 

Through the electrification of vehicles, the batteries and its critical materials are going 

to play an important role in the industry, as it was analyzed in chapter 5. Moreover, other parts 

as motors, inverters and wires are going also to gain ground. Quite the opposite, parts such as 

the engines, which are currently highly reuses, will lose importance. Achieve the current 

recycling level of the ICEV in the EV is going to be vital. On the other hand, EV are composed 

by lower quantity of parts, and the unification of common parts between vehicle models could 

be a fact in a future. In this sense, electrification of vehicle could boost the interchange of its 

parts (reusing).  

Considering the points mentioned above CASE could be highly favorable for improving the 
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circularity of the automotive industry. 
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 Conclusions 
 

The objective of this research is to clarify the importance of ELV recycling and reusing, and 

propose evaluation methods to assess its contribution to achieving sustainability in the 

automotive sector. For this propose, this document analyzes comprehensively the ELV phase 

considering economic and environmental benefits taking into consideration the entire life cycle 

of the vehicles.  

The Japanese vehicle market has been analyzed as a case study considering that it is the 

third-largest economy of the world but also it has one of the biggest vehicle markets and its 

technological contribution to the development of the vehicle industry is indispensable. However, 

the analysis methods proposed in this research can be applied universally for any country. 

Firstly, Chapter 1 describes the relevance of the automotive industry and the transportation 

sector, highlighting the necessity of selecting adequately the material used in its development. 

The research objectives are presented, as well as the relevance of the approach and its 

contribution. 

Secondly, considering that this study analyzes the ELV considering the entire life cycle of 

the vehicles, fundamental concepts of life cycle assessment of vehicles and cyclical economy, 

including recycling and reusing, are presented in Chapter 2. Moreover, in order to understand 

the differences between the current and upcoming technologies in the automotive market, basic 

explanation of the functionality of the different electric vehicles has been presented. Moreover, 

introduction to system dynamics was carried to acquire basic knowledge to understand the 

forecasting modeling proposed in last part of this study.  

Thirdly, the recycling process of ELVs was clarified and their material flow elaborated in 

Chapter 3. The scrapped vehicles were dismantled in three flows (ASR, recyclable materials, 

and spare parts), and recycled through three different methods (energy recovery, material 

recycling, and part reusing).  Here, the flow with the highest level of contribution in terms of 
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energy and CO2 was that of the spare parts, followed by those of the recyclable materials and 

ASRs. The total energy reduction by ELV recycling was estimated as 52 MJ per kilogram of a 

vehicle (16% of energy reduction in the life cycle), and the benefits for the entire Japanese 

market as 247 PJ/ year. Moreover, the CO2 reduction by ELV recycling was estimated as 2.80 

kg-CO2 per kilogram of vehicle (13% of the CO2 reduction in the life cycle), and the benefits 

for the entire Japanese market as 13.1 Mt-CO2/ year. In this sense, the ELVs were recycled 

efficiently, however, it still presented an important reduction potential improving the current 

reusing and recycling percentage of parts. 

Fourthly, a simple methodology in order to analyze the impact of the ELV recycling 

system in the selection of lightweighting materials is proposed in Chapter 4. The lightweight 

of the body in white with AHSS, aluminum, and CFRP has been analyzed as case study. The 

effect from the standpoint of energy consumption and CO2 emission of lightweighting 

materials on the production and end of life phase is essential as the benefits generated in its 

use phase. In that sense, material lightweight must be analyzed jointly with its possible 

recycling system because when the first variable is considered individually maximum life 

cycle energy and CO2 reduction of 23.8 MJ and 1.82 kg-CO2 per kg of part to be lightweight 

can be expected; however, an adequate combination of both variables could almost double 

those benefits to 51.4 MJ and 3.34 kg-CO2, but also incorrect combination of them could be 

counter-productive guiding us to an energy and CO2 increment of 92.5 MJ  and 6.71 kg-CO2. 

If the body in white is mainly subjected to material recycling its parts should be made mainly 

by aluminum; however, when the parts are frequently reused, the use of CFRP should be 

prioritized; finally, if the parts are mainly subjected to energy recovery, AHSS is the best 

material choice.  

Next, a dynamic fleet model for assessing the upcoming flow of used EVB has been 

proposed in chapter 5. Results indicate that 34% of the lithium, 50% of the cobalt, 28% of the  

nickel and 52% of manganese  required in the production of new LiB could be supplied by 



175 
 

batteries derives from end of life vehicles in 2035 Our study has clarified the important potential 

of the material recovering from scrapped EVB in order to decrease the dependence of exported 

critical material for the production of new batteries.  

Chapter 6 discussed integrally the aspects treated in chapters 3, 4 and 5. Finally, general 

conclusions are presented in Chapter 7.       

This study, demonstrate the importance of clarifying the total benefits of the ELV in term of 

CO2, energy and material supply. The total benefits of the phase are quantified numerically, 

allowing also the reader to understand the close relationship it has with the restart of the phases 

and the material composition of its parts. Results presented, allow automakers and parts 

producers to develop more sustainable vehicles assessing the environmental benefits of new 

technology or material correctly for the vehicle production. Vehicle users could understand the 

total effect on the society of the acquired product. Moreover, dismantlers. material recycling 

and part reusing companies could plan the adaptation of its facilities or evaluate new business 

models having in mind the limitations and benefits of the upcoming parts and materials from 

new generation of vehicles. Finally, public entities including the local government, are going to 

be able have a whole picture of the ELV market, allowing them to identifies technologies to be 

supported for development to achieve sustainable a sustainable society.  
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