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Fermi-surface selective determination of the g-factor anisotropy in URu2Si2
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The g-factor anisotropy of the heavy quasiparticles in the hidden order state of URu2Si2 has been determined
from the superconducting upper critical field and microscopically from Shubnikov–de Haas (SdH) oscillations.
We present a detailed analysis of the g factor for the α, β, and γ Fermi-surface pockets. Our results suggest a
strong g-factor anisotropy between the c axis and the basal plane for all observed Fermi-surface pockets. The
observed anisotropy of the g factor from the quantum oscillations is in good agreement with the anisotropy of
the superconducting upper critical field at low temperatures, which is strongly limited by the paramagnetic pair
breaking along the easy magnetization axis c. However, the anisotropy of the initial slope of the upper critical
field near Tc cannot be explained by the anisotropy of the effective masses and Fermi velocities derived from
quantum oscillations.
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I. INTRODUCTION

The “hidden order” state in the heavy-fermion compound
URu2Si2 that develops below T0 = 17.5 K is still under debate
despite several decades of research [1]. Intense experimental
effort has been employed, but right now no spectroscopic
probe could unambiguously identify the order parameter. A
wide variety of order parameter scenarios have been proposed,
most of them based on higher multipolar ordering, various
kinds of density wave ordering, or hybridization of the 5 f
states with the conduction electrons as order parameter itself.
Recent reviews on the theoretical and experimental status are
given in Refs. [2–4]. Interesting proposals are a chirality-
density wave ground state of hexadecapoles [5] and odd-parity
electric dotriacontapolar order [6].

In addition to the hidden order state, an unconventional
superconducting state is formed below Tsc = 1.5 K, which
coexists with the hidden order. This superconducting state
is characterized by spin singlet pairing [7]. Recent thermal
conductivity and specific heat measurements support a chi-
ral d-wave superconducting gap structure characterized by
horizontal line nodes and point nodes at the poles [8,9].
The spontaneous breaking of time-reversal symmetry is in
accordance with the experimentally detected chiral d-wave
state [10–13].

Like in many heavy-fermion systems, the magnetic suscep-
tibility in URu2Si2 at high temperatures shows a Curie-Weiss
behavior, indicating a local moment behavior. Below 70 K,
hybridization between the 5 f states and the spd electrons
of the ligands sets in, and heavy quasiparticle bands are
formed [14,15]. At low temperatures, in the heavy-fermion
state, the static bulk susceptibility as well as the dynamical
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spin susceptibility show a large anisotropy between the c
axis and the a axis of the tetragonal crystal [1,16–18]. Mag-
netic excitations detected by neutron scattering are strictly
longitudinal, indicating Ising-type magnetic fluctuations in
URu2Si2 [19,20]. Measurements of the nonlinear magnetic
susceptibility confirm this Ising character of the magnetic
response [21].

The strong Ising character of the 5 f electrons in URu2Si2

has been also confirmed on the basis of density functional
theory (DFT) electronic structure calculations [22]. The Ising
anisotropy arises from a combination of the peculiar Fermi
surface nesting and strong spin-orbit interaction. While in
these electronic structure calculations the 5 f electrons are
treated as fully itinerant, other models supposing a localized
5 f 2 non-Kramers doublet ground state could explain the large
magnetic uniaxial anisotropy as well [23,24]. In the localized
picture, the Ising character of the localized f states of the
uranium ions is transferred by hybridization to the heavy
quasiparticles, forming a Fermi surface. However, the mag-
netic and crystal electric field ground-state wave function in
URu2Si2 is still under discussion [25] and even the localized
or itinerant character of the 5 f electrons.

In the present article, we study in detail the g-factor
anisotropy for three different Fermi surface pockets in this
tetragonal system. The orientation of the sample was tuned
to study field directions between [001] and [100] and between
[001] and [110], as well as within the basal plane for the quan-
tum oscillation and the upper critical field measurements, so
we could determine the g-factor anisotropy for different Fermi
surface pockets in this multiband system. We compare the
Fermi-surface selective g factor from the quantum oscillations
to the effective g factor determined from the anisotropy of the
upper critical field.

The g factors determined for each Fermi surface show an
anisotropy between the c axis and the basal plane. In addition,
we show that the observed g factor of branch β is field de-
pendent. The analysis of the spin-slitting zero of the α branch
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is more delicate, as we observe 17 spin-splitting zeros in the
(010) plane and only 12 zeros in the (110) plane. This implies
either a nonmonotonously varying g factor in the (010) plane
or the observation of spin-splitting zeros in the basal plane,
which could not be resolved in the present experiment. Our
results strongly suggest that the Fermi-surface pockets with
strongly anisotropic g factor determine the superconducting
upper critical field at low temperature. The superconducting
pairing is known (from the large specific heat jump or the
high orbital limitation) to be dominantly governed by the
heaviest quasiparticle pockets with strongly anisotropic Fermi
velocities. In the present state of band-structure calculations
in heavy-fermion compounds, there is no derivation of the
g factor right at the Fermi level or of its link with the bulk
Pauli susceptibility. The interest of this study is to give an
experimental framework for future theoretical developments.

A. Fermi surface of URu2Si2

The Fermi surface of URu2Si2 has been previously studied
in detail by magnetic quantum oscillations [26–32], cyclotron
resonance measurements [33,34], and angular resolved pho-
toemission spectroscopy (ARPES) [35–42]. According to
these experiments and to their comparison with band-structure
calculations [43–45], four different Fermi surface sheets have
been observed. At the center of the simple tetragonal Brillouin
zone, a rather isotropic large-hole Fermi surface α exists. The
electron Fermi surface β is four-folded and located between
the � and X points of the simple tetragonal Brillouin zone. A
small elliptical electron Fermi surface γ and a heavy Fermi
surface η are located either at the M point or at the � point.
As URu2Si2 is a compensated metal, we can conclude that the
quantum oscillation experiments failed up to now to detect
a heavy electron pocket which, following band-structure cal-
culations [43,45], is located at the M point of the Brillouin
zone. A four-armed cagelike Fermi surface around the α

pocket is expected in Ref. [45], while it disappears completely
in other calculations [43]. No orbit corresponding to this
cagelike structure has been detected in quantum oscillation
experiments. Thus, the Fermi surface of URu2Si2 has not been
completely determined and it is not fully understood.

B. Detection of the g factor

The Ising-type characteristics of the quasiparticles forming
the Fermi surface in URu2Si2 have been supported from the
analysis [46] of old quantum oscillation experiments [27].
This has been inferred from the observation of so-called spin-
splitting zeros in the amplitude of the quantum oscillations.
In general, the spin splitting of the Fermi surface under a
magnetic field gives rise to interference of quantum oscil-
lations from spin-up and spin-down electrons, leading to a
modulation of the amplitude of the quantum oscillations. The
angular dependence of the amplitude of the first harmonic is
given by the spin-damping factor

a(θ ) = a0(θ )|cos[πg(θ )m	(θ )/2m0]|, (1)

when the quantum oscillation frequencies and effective
masses m	 for the spin-up and spin-down electrons are
equal. The prefactor a0(θ ) contains the other factors of the

Lifshitz-Kosevich formula and is expected to vary slowly
with angle [47]. The amplitude of the quantum oscillations
vanishes when the product of the g factor and the enhancement
factor of the effective mass (m	/m0) is an odd integer. This
phenomenon is called a spin-splitting zero. It allows for
the determination of the product m	g. The effective mass
m	 can be determined independently from the temperature
dependence of the oscillation amplitude. Spin-splitting zeros
in quantum oscillations were observed in many systems such
as copper or gold and have been used to determine the
angular dependence of the g factor in simple metals (see,
e.g., Ref. [48]). It is also reported for quasi-two-dimensional
metals with strongly anisotropic effective masses [49,50] or in
high-Tc superconductors [51]. However, in the case of heavy-
fermion and related intermetallic compounds, the observation
of successive spin-splitting zeros is rather rare and has been
reported only in CeIn3 [52], where the effective mass of the
d branch is anisotropic in spite of a cubic system, and in
URu2Si2.

In URu2Si2, the observation of the spin-splitting zero has
been reported only for the α branch in the (010) plane [27].
For this branch, the effective mass varies from m	 ≈ 12m0 for
field along the c axis to m	 ≈ 10m0 along the a axis; thus,
it is rather isotropic [27,29,31]. The observation of the spin-
splitting zero for branch α in URu2Si2 has been interpreted
as signature of an Ising-type g factor with g[001] = 2.5 along
the c axis and a vanishing small value g[100] ≈ 0 along the a
axis [46].

The g factor determined from quantum oscillations is al-
ways an averaged g factor

g =
∮

g(k, B)v−1
k dk∮

v−1
k dk

(2)

over the orbit perpendicular to the applied magnetic field [48].
As it depends on k and the magnetic field direction, B is a
tensor quantity.1 It is Fermi-surface selective, and its relation
to macroscopic properties like the spin susceptibility is not at
all straightforward, especially when there is duality between
the localized and itinerant character of the 5 f electrons. To
calculate the spin susceptibility, one should determine the g
factor for every k point on all the Fermi surface pockets and
average over them. As quantum oscillations are only observed
on extreme orbits, it seems only possible for almost spherical
closed Fermi surfaces and when the complete Fermi surface
can be observed in the experiment. In heavy-fermion systems,
this is rare.

In a superconductor, the g-factor anisotropy can be de-
termined from the paramagnetic limitation of the supercon-
ducting upper critical field Hc2. In URu2Si2, Hc2 varies from
3 T along the c axis to 12 T in the basal plane [46,53].
Along the c axis at low temperatures, Hc2 is determined by
the paramagnetic limiting field μ0HP

c2 =
√

2

μBg , which is given

by the superconducting gap 
 and the effective g factor
for a single-band isotropic superconductor [54]. From the
angular dependence of Hc2 at 30 mK between the c axis

1We will use the notation g[100] or ga for the component of g parallel
to the field applied along the a axis, H ‖ [100].
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and the basal plane, taking only the paramagnetic limit into
account, a strongly anisotropic g factor has been determined
with g[001] = 2.65 along the c axis and g[100] ≈ 0.5 for H ‖ a
[46]. Lower g-factor values were obtained by fitting the tem-
perature dependence of the upper critical field along the c
and a axis taking into account the orbital limit: g[001] = 1.9
and g[100] = 0.2 [53]. Thus, Hc2 along the a axis is close
to the pure orbital limit. The g factor determined from the
superconducting critical field gives, in difference to that from
quantum oscillations, an average of all electrons participating
in the superconducting pairing. It is only for a single-band
isotropic superconductor that it is directly related to the spin
susceptibility χ/χ0 ∝ gm	/(2m0), where χ0 and m0 are the
spin susceptibility and band mass of a free electron gas [48].

Previously, spin-splitting zeros have been observed only
for the α Fermi surface pocket in URu2Si2 at many field
angles in the (010) plane [27]. An analysis of the effective
g factor from these data has been reported by Altarawneh
et al. in Ref. [46] and its anisotropy agrees remarkably well
with that found from the Pauli limit of the superconducting
upper critical field. However, in this previous work, only the
spin-splitting zeros of the α pocket in the (010) plane has
been taken into account. Here we report the observation of
the spin-splitting zero for all observed Fermi surface pockets
and extend previous work also to the (110) plane.

II. EXPERIMENTAL DETAILS

URu2Si2 crystallizes in the body-centered tetragonal
ThCr2Si2-type crystal structure with space group I4/mmm.
In the hidden order phase, the symmetry is lowered and the
simple tetragonal unit cell volume below 17.5 K is twice that
of the paramagnetic state. The space group of the hidden order
state is still under discussion as it depends on the symmetry of
the hidden order state [55,56]. Three different URu2Si2 single
crystals (S1, S2, and S3) were used in this study. Samples S1
and S2 have been grown and investigated at CEA Grenoble;
S3 has been grown and measured at IMR Oarai. The sample
S1 was cut by spark erosion from a large single crystal which
has been grown by the Czochralski pulling method in a tetra-
arc furnace under argon atmosphere [57]. The samples S2 and
S3 were grown by the indium flux method [58]. The residual
resistivity ratio RRR = R(300 K)/R(0 K) of S1, S2, and S3
are 275, 350, and 300, respectively. Resistance measurements
were performed with an electrical current along the [010]
direction in top-loading dilution refrigerators from Oxford
Instruments down to T = 22 mK with maximal magnetic field
of 15 T, at CEA Grenoble (S1 and S2) and at IMR Oarai
(S3). Because of their irregular geometry, we do not calculate
the resistivity and present only the measured resistance for
samples S1 and S2. The samples were rotated with respect
to the magnetic field using a commercial Swedish rotator
which is driven by a stepper motor. The magnetoresistance
was measured in S1 and S2 under magnetic fields applied
from [001] to [100] and the magnetoresistance of the sample
S1 was also measured between [001] and [110] in angular
steps of 0.9 deg. The sample S3 has been measured in the
angular range from [100] to [110]. In all cases, the electrical
current is applied along the [010] direction.

FIG. 1. (a) Temperature dependence of the electrical resistivity
of samples S1 and S2. (b) Magnetoresistance at 22 mK for field
applied along [001] of S1 and S2. (c) Magnetoresistance of S3 for
field along [100] and [110] at 25 mK. The arrow indicates Hc2 for
field along [100].

III. RESULTS

A. Sample characterization

The temperature dependence of the resistance of the two
crystals studied in Grenoble is shown in Fig. 1(a). Both
samples show zero resistance below Tc = 1.3 K. The super-
conducting onset of S1 is at T ≈ 1.4 K, while sample S2
shows another pronounced kink at T = 1.5 K. As indicated,
in both samples, a tiny kink in ρ(T ) appears at T = 1.7 K
indicating incipient superconducting fluctuations. In an ex-
tended temperature range from 1.7 to 4 K, the resistance can
be parameterized with a power law and we find exponents
n = 1.2 for S1 and n = 1.7 for S2. Such a large variability
of the temperature dependence of the resistivity above the
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superconducting transition has been reported previously [59],
and it indicates the very strong sample dependence of the
inelastic scattering in URu2Si2. The width of the supercon-
ducting transition of S1 defined as 
Tsc = T onset

sc − T R=0
sc ≈

0.1 K is comparable with previously studied high-quality
single crystals [59,60].

The magnetoresistance of the samples S1 and S2 is shown
in Fig. 1(b) for a field applied along the c axis. The flux-
grown sample S2 shows a stronger magnetoresistance and
the amplitude of the Shubnikov–de Haas (SdH) oscillations is
larger for this sample, indicating a higher average mean free
path. Sample S1 was chosen for the study of the upper critical
field Hc2 at different angles due to the sharper supercon-
ducting transition. S2 shows already strong superconducting
fluctuations above the transition, and the superconducting
transition itself is also broader. In Oarai, we measured the
angular dependence of the SdH oscillations in S3 in the
basal plane, fine turning the field from [100] to [110] in
the field range from 10 to 14.7 T. Figure 1(c) shows the
magnetoresistance of this sample for magnetic fields applied
along [100] and [110]. Special attention has been taken to
avoid a misorientation toward the c axis, which nevertheless
cannot be fully excluded. This sample shows extremely large
quantum oscillations for H ‖ [100]. The observed oscillations
amplitude decreases when the field is applied along [110],
mainly due to the fact that the current and field directions are
45 deg to each other and the magnetoresistance is between
the transverse and longitudinal configuration for H ‖ [110].
In both directions, we observe a distinct nonzero resistance
between 11 to 12 T. Zero resistance is observed below 11.05 T
for H ‖ [100] and 10.95 for H ‖ [110], indicating that Hc2 is
almost isotropic in the basal plane. These values of the upper
critical field Hc2 are lower than those previously reported
[27,53,61]. Because of the strong quantum oscillations, it is
impossible to determine the width of the superconducting
transition from field sweeps.

Figures 2(a) and 2(b) show the fast Fourier transformations
(FFT) of the SdH oscillations at 22 mK for a field interval
from 9 to 15 T applied along the c axis for samples S1 and
S2. The spectra show four fundamental quantum oscillation
frequencies, in agreement with previous reports [27–29,31].
For the α branch of sample S2, one could detect up to the
third harmonic in this field range. The relative amplitude of
the different FFT frequencies changes between samples S1
and S2. While the β frequency has the highest amplitude for
S1, the α frequency dominates the spectrum of S2. Figure 2(c)
presents the FFT spectrum of oscillations observed in S3 for
field applied along [100] in the field range from 12 to 14.7 T.
Up to four harmonics of the α branch are observed in this
restricted field interval. The previously reported splitting of
the α branch in the basal plane [27,31] could not be resolved
in this small field interval but the asymmetry of the FFT peak
for the α frequency is an indication that the peak is a sum of
different frequencies.

B. Upper critical field

Figure 3(a) displays the magnetoresistance at 25 mK for
different angles measured on S1. To determine the upper
critical field Hc2, the criterion R = 0 has been chosen. The
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FIG. 2. [(a), (b)] FFT spectra of the SdH oscillations at 22 mK in
the field range from 9 to 15 T along the [001] direction for S1 and S2.
The quantum oscillation frequencies are indicated. β2 corresponds to
the spin-split Fermi surface of the β branch, which appears due to
the nonlinear Zeeman splitting (see text). (c) FFT spectra for S3 at
25 mK in the field range from 12 to 14.7 T applied along [100]. Up
to four harmonics of the α branch are observed. The splitting of the
α branch could not be resolved in this small field interval.

width of the transition is slightly increasing when the field
is turned toward the basal plane. Close to [100], the onset
of the superconducting state is no more clearly defined due
to the oscillations of the magnetoresistance. Similar to S3,
the anisotropy of Hc2 in the basal plane is very small. We
find Hc2 = 12.05 T for H ‖ [100] and 11.95 for H ‖ [110]
at 25 mK. Figure 3(b) shows Hc2(T ) as a function of tem-
perature for different magnetic field directions between [001]
and [100]. The temperature dependence of Hc2 for [001] and
[100] is in good agreement with previous studies [27,53]. A
thermal conductivity study in URu2Si2 showed that the bulk
upper critical field would be slightly higher than the resistive
one [61]. This small difference between the resistive and the
bulk upper critical field will be neglected in the discussion.
The angular dependence of the initial slope −dHc2/dT at
T = Tsc, as well as that of Hc2 at 25 mK, are represented in
Fig. 3(c). Both are very anisotropic. The initial slope varies
from 5.1 to 11.3 T/K and the upper critical field from Hc2 =
2.75 T to 12.05 T at 25 mK, for fields along [001] and [100]
respectively. The initial slope of Hc2 at Tsc allows an estimate
of the averaged anisotropy of the Fermi velocity (H ′

c2 ∝ Tsc

v2
F

),

which is given by (v[001]
F /v

[100]
F )2 = ( dH [001]

c2
dT /

dH [100]
c2

dT )−1 = 1.5.
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FIG. 3. (a) Magnetoresistance at T = 25 mK for sample S1 for
different field directions. (b) Temperature dependence of the upper
critical field Hc2 determined by the criterion R = 0. The solid lines
are fits from the WHH model [62]. (c) Angular dependence of the
initial slope −dHc2/dT (T = Tsc ) and the low temperature value
Hc2(T = 25 mK) of the Hc2. Solid lines are guides to the eye.
(d) Angular dependence of the g factor deduced from the fits of the
temperature dependence of Hc2. The solid line is a fit assuming an
uniaxial g-factor anisotropy g(θ ) = gc cos(θ ), with gc = 1.4.

Here, v
[001]
F and v

[100]
F are the average Fermi velocity of the

quasiparticles in the plane perpendicular to the direction of
the magnetic field along [001] and [100], respectively.

The temperature dependence of Hc2 has been calculated
numerically based on the Werthamer, Helfand, and Hohenberg
(WHH) model within the weak coupling and clean limit
[62] with even parity pairing.2 Both the paramagnetic and
orbital limits are taken into account and the resulting fits
are shown in Fig. 3(b). The orbital limitation is controlled
by the average Fermi velocity perpendicular to the applied
magnetic field and it determines the initial slope dHc2/dT
at Tsc, while the paramagnetic limiting field is controlled by
the electronic g factor [54]. The WHH calculation reproduces
the temperature dependence of Hc2 reasonably well, except
at lowest temperatures, where the values from the experiment
are slightly higher than the calculation.

The angular dependence of the g factor extracted from
these calculations of Hc2 is represented in Fig. 3(d). Under
a magnetic field along [100], the fit is best for a complete ab-
sence of a paramagnetic limitation (g[100] = 0). Along [001],

2For simplicity, the calculations are performed for an s-wave state.
The exact form of the pairing symmetry has only minor corrections
to the T dependence.

FIG. 4. Angular dependence of the SdH frequencies of URu2Si2.
Blue and red symbols stand for samples S1 and S2, respectively.
The η, γ , β, and α branchs are determined from the fast Fourier
transformations (FFT) on the interval 9–15 T. The heavy branch β ′,
which originates from the fourfold pockets of the β Fermi surface,
has been determined from an FFT in the field range 12–15 T. The
light branches λ1 and λ2 have been determined at 600 mK in the field
range 9–15 T.

the g factor obtained by the fit is g[001] = 1.4. These results
are in relatively good agreement with a previous similar
study, which yielded g[100] = 0.2 and g[001] = 1.9 [53]. The
angular dependence of the g factor in Fig. 3(c) can be well
fitted with g(θ ) = g[001] cos(θ ), which corresponds to an Ising
behavior of the quasiparticles. It is also consistent with the
expected angular dependence of the paramagnetic limitation,
when g[100] = 0 (see Appendix of Ref. [53]). Thus, from
the upper critical field measurement, we can conclude that
both the initial slope (and thus the Fermi velocity of the
quasiparticles) and the average g factor of the dominant band
for superconductivity are anisotropic.3 Essentially, the g factor
in the basal plane determined from the superconducting upper
critical field is close to zero and it is strongly increasing
for fields close to the c axis. The initial slope at Tc (and
thus the effective mass) is larger for field in the basal plane
than for field along the c axis. Importantly, the anisotropy of
the effective mass from the initial slope is opposite to that
determined from the quantum oscillation, where the cyclotron
masses for magnetic field applied along the c axis is, for
all orbits, larger than for field applied in the basal plane
[27,29,31]. Thus, the anisotropy of the initial slope cannot be
explained by the effective mass model with a single Fermi
surface sheet [64]. This point will be discussed in Sec. IV D.

C. Quantum oscillations

The angular dependence of the quantum oscillation
frequencies determined at 22 mK is plotted in Fig. 4. All

3Another interpretation of the anisotropy of the upper critical field
in URu2Si2 is based on the field dependence of the pairing interaction
[63]. However, it needs a very low value of the coupling constant
λ = 0.05. This value would imply a difference of several orders
of magnitude between the characteristic temperature of fluctuations
responsible for superconductivity and the superconducting tempera-
ture, which seems unrealistic.
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previously reported branches have been observed
[26–29,31,32], except the light pocket ε, which has been
only reported in Ref. [28] to appear above 17 T. The nearly
spherical Fermi surface pocket α and the β Fermi surface
are in good agreement with previous studies. Close to [100]
the α branch splits into at least three different branches in
the basal plane [27,31]. The origin of the splitting is not
fully understood; one proposal is that it is due to a magnetic
breakdown of a very tiny hourglass Fermi surface at the Z
point of the Brillouin zone [34]. As shown in Ref. [31], the
splitting is very sensitive to the perfect orientation in the basal
plane. Under a small angle of 3 deg from the basal plane,
it is fully suppressed. As already mentioned, this splitting
is not resolved in this experiment as the highest field in our
experiment here is only 15 T, but it is compatible with the
broad asymetric FFT of sample S3 [see Fig. 2(c)]. Thus, the
analysis of the oscillation in the basal plane may not allow for
a definitive conclusion.

The β Fermi surface consists of four pockets. As function
of angle from [001] to [100], it splits into two branches:
the β branch and the heavy branch β ′ [29]. The appearance
of two frequencies β and β ′ for H ‖ [100] proves that the
pockets are located between the � and X points of the simple
tetragonal Brillouin zone. Furthermore, the β Fermi surface
depends strongly on magnetic field [31]. In agreement with
the previous report, we can resolve clearly a splitting for
the β branch in two frequencies β↑ and β↓ in the angular
range from [001] to 40◦ toward [110], and from [001] to 15◦
toward [100], for H > 8 T. (The assignments of the spin-up
and spin-down branches will be justified below.) In this angle
interval, the amplitude of the lower frequency β↑ is much
stronger than that of β↓ and the amplitude of the FFT spectrum
is only weakly modulated with angle. However, interferences
between the signals from β↑ and β↓ can be observed on
approaching [110] or [100]. It proves, in agreement with the
field dependence, that the splitting of the β branch near [001]
is a spin splitting. The strong field dependence confirms a
nonlinear Zeeman splitting.

The angular dependence of the γ and η branches is similar
to the previous report [29]. We want to stress that the cross
section of the γ orbit appears larger for a field along the
c axis and decreases in size to the basal plane. In contrast,
all band-structure calculations [43–45] suggest an elliptical
Fermi surface elongated along the c axis.

In addition, we have been able to determine the angular
dependence of two light branches λ1 and λ2 at temperatures
above 600 mK (see Fig. 4), when the amplitude of the heavy
branches is strongly suppressed. These branches have been
observed in previous experiments in pulsed magnetic fields
[32]. From the temperature dependence of the amplitude,
which has been measured up to 1 K, we determine the
effective masses of these light branches to m	

λ1
= 1.4m0 and

m	
λ2

= 2.1m0. Band-structure calculations do not predict such
light frequencies. They may correspond to the light bands F
and G observed in cyclotron resonance experiments [33,34].

The spin degeneracy of the conducting electrons is lifted
in an applied magnetic field, leading to an energy difference
between the spin-up and spin-down electrons, which is given
by the Zeeman term 
E = 1

2 g eh̄
m	 H . The Fermi surface splits

in spin-up and spin-down sheets.

The effect of this spin splitting is equivalent to a phase dif-
ference of φ = 2
E = πgm	

m0
between the oscillations coming

from the spin-up and spin-down electrons and can give rise to
interferences, leading to modulations of the amplitude of the
quantum oscillations. This simple approach for free electrons
neglects all field dependences of the cyclotron orbits, the
effective mass, and also the effective spin splitting g factor.

The quantum oscillation frequencies F are related to the
extremal cross section A of the Fermi surface by the Onsager
relation F = (h̄/2πe)A. However, the frequency Fobs, which
is measured in the experiment at a finite field, is related to
the true quantum oscillation frequency by Fobs(H ) = Ftrue −
dFtrue
dH [65]. What is measured is the so-called back-projected

frequency to zero field. Thus, if the observed frequency is
field independent, the true frequency increases linearly with
field and thus the Zeeman splitting of the Fermi surface is
also linear in field. In the case that the back projection to zero
field of the frequencies of the spin-up and spin-down quantum
oscillations and the effective masses and mean free path of
the quasiparticles do not depend on the spin direction, the
angular dependence of the amplitude of the first harmonics
of the quantum oscillations can be described by Eq. (1). The
amplitude of the quantum oscillations vanishes when the spin-
splitting damping factor cos(πgm	/2m0) is zero, i.e., when
g(m	/m0) = 2n − 1 is an odd integer.

However, if the observed frequency Fobs is field dependent,
Ftrue has a nonlinear field response. In this case, the observed
frequencies F↑ and F↓ of spin-up and spin-down Fermi sur-
faces are not identical and the damping factor does not vanish.
Because of the nonlinear response, the back-projected fre-
quencies for spin-up and spin-down surfaces are not identical
and two frequencies are observed. Generally, in heavy fermion
systems, the effective mass of the quasiparticles is expected
to be spin dependent [66,67] and such a spin dependence
has been experimentally observed [68,69].4 In addition, also
the effective g factor can be field dependent. However, the
experimental observation of a field-dependent g factor is
rare [70].

The magnetoresistance at 22 mK measured in S2 is repre-
sented for different field angles from 12.1◦ to 22.9◦ from [001]
to [100] in Fig. 5. The SdH oscillations from the α branch are
clearly resolved. The quantum oscillation amplitude decreases
from 12◦ to nearly 16◦ and increases for larger angles. A
phase shift of 180◦ can be observed between oscillations
observed for angles slightly below and above 16◦. This is a
clear indication for the appearance of a spin-splitting zero.

Figure 6 shows a contour plot of the amplitude of the FFT
spectra calculated in the field interval 12–15 T of the quantum
oscillations at T = 22 mK as a function of angle for sample
S1. The horizontal and vertical axes correspond to the field
angle and the oscillation frequency respectively. The solid
lines in Fig. 6 gives the angular dependence of the SdH fre-
quencies in this field range. In this color plot, the appearance
of splin-splitting zero is clearly observed for the α and β

4The detection of spin-splitting zeros excludes the presence of any
spontaneous magnetization, as in that case the orbits of spin-up and
spin-down electrons have different sizes.
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FIG. 5. Resistance measured on S2 for different angles from
[001] to [100]. The curves are vertically shifted of 0.5 m� for clarity.
The amplitude of the SdH oscillations change with increasing angle
and is minimal for φ = 15.7◦. A phase shift of 180◦ occurs indicating
a spin-splitting zero.

branches. Next we will discuss the oscillation of the amplitude
for the different branches in detail.

Figure 7(a) displays the angular dependence of the oscilla-
tions amplitude for the α Fermi-surface pocket from [001] to
[110] and from [001] to [100] in the field interval 12–15 T
measured on S1 (blue circles) and S2 (red crosses). The
amplitude is normalized to the value at H ‖ [001]. The ampli-
tude oscillates very strongly with the field angle. In the field
interval 6–9 T, similar oscillations of the amplitude have been
observed which indicates that they are not field dependent.
Comparable oscillations of the de Haas–van Alphen (dHvA)
amplitude from the α pocket have already been reported in
Ref. [27]. While Ohkuni et al. observed 16 spin-splitting zeros
between [001] and [100], both samples in our measurements
show 17 zeros. This difference can be explained by a slight
misalignment in the previous experiment [27] around an axis
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FIG. 6. FFT spectra of quantum oscillations at T = 22 mK in the
field range from 12 to 15 T as a function of angle for S1. The color
code corresponds to the amplitude of the FFT spectra. The solid lines
show the angular dependence of α and β frequencies. In the vicinity
of [001], the signal of the β branch splits into β↑ and β↓.
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FIG. 7. (a) Renormalized amplitude of quantum oscillations
from the α orbit at 22 mK on the field interval 12–15 T as a function
of the field direction for S1 and S2. (b) Angular dependence of the
amplitudes of the α and β orbits in the basal plane observed in S3.

transverse to the rotation axis. In difference, when turning the
field from [001] to [110], we observe only 12 spin-splitting
zeros. Note that the amplitude does not vanish completely at
the spin-splitting zeros. Already the previous data of Ohkuni
et al. [27] showed a similar behavior of washed-out spin-
splitting zeros. This can be explained by small differences
in the frequencies or in the effective masses of spin-up and
spin-down bands, which are too small to be resolved in
our experiment. Generally, a strong spin dependence of the
effective mass is expected in heavy fermion systems [66,71].
In other systems, where spin-splitting zeros have already
been reported, such finite values of the amplitude had been
reported. In Sr2RuO4, it has been argued that the washed-out
splin-splitting zeros are due to a different warping for the
spin-up and spin-down parts of the cylindrical Fermi surfaces
[49]. The variations between different samples may be due to a
different amount of impurities. Note that we already observed
differences in the relative size of the FFT amplitudes of S1 and
S2, which also indicates differences in the Dingle temperature
of the various orbits.

As discussed above, in the basal plane the α branch splits
in different frequencies [27,31]. Close to [110], three frequen-
cies have been observed with effective masses of 9.7m0, 12m0,
and 17m0, which change little as function of angle in the basal
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FIG. 8. (a) Normalized amplitude of quantum oscillations from
the β branch as function of field angle. In the field range close to
[001], spin-zero splitting of the β branch appears and the interference
of spin-up and spin-down electrons is no more perfect. In the angular
range between [001] to 40◦ to [110] and to 15◦ to [100], we clearly
observe two frequencies, β↑ and β↓. The inset shows the angular
dependence from 30◦ to 65◦ of amplitude of the β↑ oscillation in
different field ranges for S2. Panels (b) and (c) show the normalized
amplitudes of the β ′ and γ branches measured in S1, respectively.
For the γ branch, the field interval has been 6–9 T.

plane. In a limited angular range, Ohkuni et al. reported that
branch α is even fourfold split [31]. Here, we do not see any
splitting of the frequencies in the basal plane, contrary to the
angular dependence of the cyclotron resonance frequencies
reported in Ref. [33]. In Fig. 7(b), we show the angular
dependence of the oscillation frequency observed in the field
range from 12 to 14.7 T. As already shown in Fig. 2(c), this
splitting is not resolved in the present experiment due to the
small field interval from 12 to 14.7 T. Thus, it is not surprising
that no spin-splitting zero is observed in the basal plane when
turning the magnetic field from [100] to [110]. The decrease of
the amplitude from [100] to [110] for both orbits is due to the
change of the current direction with respect to the magnetic
field from a transverse configuration (current perpendicular
to the field) to 45 deg with respect to the field axis. In any
case, also in our previous experiment [31] we did not see any
indications for any spin-splitting zero.

The angular dependence of the oscillation amplitude from
the β branch is represented in Fig. 8(a). It is determined from

the FFT spectra in the field range from 12 to 15 T. Near to
[001], only very weak oscillations of the amplitude have been
observed. This is due to the spin splitting of the β frequency
under magnetic field (see Fig. 4 and also Fig. 6 of Ref. [31]).
The field dependence of the observed quantum oscillations
of branch β can be interpreted as nonlinear field dependence
of the minority spin-down Fermi surface, which shrinks with
increasing magnetic field and gives rise to a strong increase
of the effective mass, as m	 = h̄2

2π

∂A(kH )
∂E |EF , where A(kH )

is the cross-sectional area of the Fermi surface which is
perpendicular to the field and kH is the wave number along the
field direction [72]. The effective mass of the spin-minority
band increases up to 40m0. This nonlinear field dependence
of the quantum oscillation frequencies is the consequence
of the polarization of the small and heavy electronlike β

Fermi-surface pocket under magnetic field along the easy
magnetization axis [30–32]. Thermopower measurements in
URu2Si2 under magnetic field along the c axis show a min-
imum at Hm = 11 T at low temperature [73,74], which also
indicates an evolution of the Fermi surface with the magnetic
field. Further field-induced Fermi surface changes inside the
hidden order state have been detected at higher magnetic
field by the Hall effect [28], thermoelectric power [73,74],
and quantum oscillations [30–32]. However, all these Fermi
surface changes inside the hidden order state have almost no
feedback on the measured macroscopic magnetization, which
increases almost linearly with field up to Hc ≈ 35 T, where
the hidden order is suppressed, and the magnetization shows
a first-order metamagnetic jump [75–77]. Only the NMR
Knight shift shows a tiny increase at 23 T [78], where a new
quantum oscillation frequency appears [28,31].

In the angular range further away from [001], the spin
splitting is no more resolved (see Fig. 4) and the frequencies
of spin-up and spin-down Fermi surfaces coincide. While the
amplitude of β↑ oscillations is maximum at [001], the am-
plitude of β↓ oscillations is much smaller and nearly constant
with angle. The amplitude of the β oscillations shows 11 spin-
splitting zeros between [110] and 40◦ from [001] and 13 spin-
splitting zeros between [100] and 15◦ from [001]. Between
[001] and [100], both samples show the same number of spin
zeros. However, spin-splitting zeros are more clearly resolved
in sample S1. In this sample, the amplitude of the β frequency
for H ‖ [001] is larger than that of the α branch but, compared
to S2, the oscillation amplitude is lower. The oscillation
amplitude (in both samples) does not vanish completely at the
spin-splitting zeros. Again, it must come from the incomplete
cancellation of spin-up and spin-down oscillations due to their
amplitude difference and their small frequency and effective
mass difference. No spin-splitting zero is observed in the basal
plane, when turning the magnetic field from [100] to [110],
see Fig. 7(b), but the amplitude decreases smoothly due to the
change in the magnetoresistance. The inset in Fig. 8 shows
the angular dependence of the oscillations in the field range
from 6 to 9 T from 30◦–65◦ from [001] in the (010) plane.
Below 9 T, no spin splitting of the β branch is observed.
Remarkably, for 6 T < H < 9 T, the spin-splitting zeros are
closer to each other with eight splin-splitting zeros between
30◦ and 65◦ against seven for the field interval 12–15 T. The
nonlinear expansion of the spin majority Fermi surface leads
to a nonlinear Zeeman effect and to a reduction of the number
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of splin-splitting zeros under field. This is different than for
branch α, where the same number of spin-splitting zeros had
been observed, independent of the magnetic field range.

The amplitude of the β ′ orbit quantum oscillations is
represented as a function of angle between [001] and [100]
in Fig. 8(b). It could be determined only in sample S2 in the
interval 12–15 T and β ′ could not be resolved below 40◦ due
to the proximity of its oscillation frequency with β↑ and also
not between 50◦ and 60◦ due to the proximity to the frequency
of the second harmonic from β orbit. It shows three spin zeros
between 40◦ and 50◦ and seven from 60◦ to 90◦.

The γ Fermi-surface pocket is a small ellipsoid with Fγ =
200 T along [001] and Fγ = 70 T in plane [31]. Its frequency
is too small to be resolved in the interval 12 T–15 T, so this
pocket was studied only in the interval 6 T–9 T. The oscillation
amplitude in S2 is represented as a function of the angle from
[001] toward [100] in Fig. 7(c). Twelve spin-splitting zeros
are observed up to 65◦. For higher angles, the signal of the
γ branch cannot be followed in this field range due to the
superconducting transition.

IV. DISCUSSION

A. Analysis of the g factor

According to Eq. (1), the amplitude of the quantum oscil-
lations vanishes if m	g/m0 = 2n − 1 with n being the number
of the spin-splitting zero. The argument of the cos-term of the
spin factor m	g/2m0 is an integer number at each maximum
of the amplitude in the angular dependence. Thus, we can
determine the value of m	g/2m0 only up to an integer number
k. Generally, we can expect the appearance of spin-splitting
zeros with field angle, if the g factor or the effective mass are
highly anisotropic and g or (m	/m0) are large enough. From
the spin-splitting zeros, only the product g(m	/m0) can be
determined and the effective mass m	 has to be determined
from the temperature dependence of the oscillations.

For the α Fermi surface, the effective mass m	 is
rather isotropic. We have determined the effective mass m	

for different directions and find m	
[001] = 13.3m0, m	

[100] =
9.7m0, and m	

[110] = 11.3m0 for fields applied along [001],
[100], and [110], respectively. As discussed above, in the
basal plane the α branch is split in at least three branches.
The effective mass evolves smoothly between these principal
axes [see Fig. 9(a)]. Different solutions exist for g and the
determination is not unique. Figure 9(b) shows possibilities
for the angular dependence of the g factor for the α branch
of URu2Si2 from the spin-damping factor depending on the
choice of k (blue symbols). We assume that the g factor
should be largest along [001] and the value g(m	/m0) changes
monotonously as a function of field angle, and we choose k as
the value of m	g/2m0 at the closest amplitude maximum from
[100].

For k = 0, the data suggest a strong anisotropy of g from
[001] to the basal plane varying from g[001]

α ≈ 2.5 to g[100]
α ≈ 0

along the a direction. However, as we have only observed 12
spin-splitting zeros when turning the angle from [001] to [110]
and the effective mass does not change significantly between
[100] and [110], we find g[110]

α ≈ 1.1 along [110]; i.e., it is
not vanishing but would indicate a large anisotropy of g in the
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FIG. 9. (a) Angular dependence of the effective mass of the α

branch in the field range from 12 T to 15 T. (b) Angular dependence
of the g factor for the α branch of URu2Si2 for different values from
k = 0, 2, and 4. Crosses are from the spin-splitting zeros, and circles
are from the maxima of the amplitude of the SdH amplitude. The red
and green curves give possible scenarios.

basal plane. The main difference between the curves for the
different values of k is a vertical shift, so the variation of the
effective mass with angle gives only a small correction.

Nevertheless, as we observed 17 spin-splitting zeros from
[001] to [100], but only 12 from [001] to [110], 5 spin-
splitting zeros have to be observed in the basal plane. This
is at odds with the variation of the SdH amplitude in the
basal plane shown in Fig. 7(b), and also with our previous
high field experiment [31] and that of Ohkuni et al. [27].
As discussed above, the splitting of branch α could not be
observed in our present experiment with maximal field of
15 T. Assuming the three orbits of the α branch (α1, α2, and
α3) are spin degenerated, the observed oscillation amplitude
would originate from the interference between oscillations of
the six orbits. It explains why it is nearly constant with the
magnetic field angle between [100] and [110]. In the previous
experiment in the field range 12 to 30 T [31], where the
splitting of the α branch has been resolved, only for the branch
α2 may a spin-splitting zero occur between [100] and [110].
On the contrary, we have observed 17 in the (010) plane
and 12 in the (110) plane, which means that the phases of
the oscillations change by 17π and 12π respectively. This
suggests the occurrence of five spin-splitting zeros in plane,
and the phases of the oscillations change by 5π , under the
assumption that gm	 has a monotonous evolution from the c
axis to the basal plane. If we allow a nonmonotonous variation
of the g factor, possible solutions could be a maximum (red
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curve in Fig. 9) or a minimum of the g factor (green curve).5

Only if we take into account a nonmonotonous variation of g
can a self-consistent solution for the α branch be found from
our data.6

The cyclotron resonance experiment reported in Ref. [33]
showed an unusual splitting of the sharpest observed reso-
nance line which is assigned to the α Fermi surface sheet
under in-plane magnetic field rotation from [100] to [110]
in the basal plane. The observed splitting is explained by a
domain formation which breaks the tetragonal symmetry and
accounts for the in-plane mass anisotropy which has heavy
(hot) spots only near the orbit for H ‖ [110] and H ‖ [110].
This domain formation suggests explaining the observed
breaking of the tetragonal symmetry in the basal plane [79].
However, the recent high-resolution x-ray experiment [80–82]
and also NMR results [6,83] do not confirm the previously
reported tetragonal symmetry breaking [33,34,79,84,85].

The heavy β pocket shows a very strong field dependence
above 8 T for H ‖ [001]. The observed SdH frequency splits
under magnetic field as a consequence of the nonlinear Zee-
man effect [31,32]. Therefore, the g factor was calculated in
the field interval 6–9 T with reduced effect of the nonlinear
field splitting, and for comparison, in a higher field range from
12 to 15 T. In Fig. 10(a), we plot the angular dependence
of the mass of the β branch determined for samples S1 and
S2. We observe an almost constant effective mass for the β

branch within the error bars. Therefore, we use m	 ≈ 21m0,
independent of angle. In difference, our previous data showed
that the effective mass of the β branch shows a rather strong
angular dependence changing from m	

β ≈ 23m0 for field along
[001] to m	

β ≈ 13.5m0 [29,31]. This is probably due to the
strong field dependence of the effective mass, in particular
above 15 T.

The g-factor analysis is performed for the field values and
directions, where the splitting of branch β is not resolved. The
effective mass used for the analysis was measured and the
same field interval and is thus an average mass of spin-up and
spin-down electrons. The obtained effective g factor is defined
as geff = 1

μ0μB
(dEF↑/dH − dEF↓/dH ) and is thus an average

effective g factor of both spins. The effective g factor may
depend of the spin in the vicinity of the c axis as both spin
shows different field dependences of the quantum oscillations
frequencies.

Figure 10(b) shows the angular dependence of the g factor
gβ, in the field interval from 12 to 15 T for angles from [110]
to [001] and from [001] to [100]. It depends little on the angu-
lar dependence of m	: An almost similar angular dependence
is obtained by taking the angular dependence of the effective
mass as obtained in Refs. [29,31] (open circles). Near to
[001], we could not determine the g factor from the spin-
splitting zeros due to the nonlinear splitting of the β branch
with field, and the observation of two different frequencies

5Of course, other solutions may be possible too.
6These are only valid under the assumption that there is no spin-

splitting zero in the basal plane. Nevertheless, there is no other
experiment that supports a nonmonotonous variation of a physical
property in the (010) plane and thus it is difficult to imagine that g
has a maximum near 30 deg from the c axis.
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FIG. 10. (a) Angular dependence of the effective mass of the β

branch in the field range 12–15 T. Closed (open) circles are for S1
(S2), respectively. Gray symbols mark the effective mass for the spin-
split spin-up branch β↑. (b) Angular dependence of the gβ factor for
the β branch of URu2Si2 for the most anisotropic scenario with k =
0. Other solutions can be found by shifting the curves upward. Black
circles give the g factor in the field range 12–15 T with a constant
mass as in determined in the field range from 12 to 15 T [see upper
panel (a)]. Open circles give g, assuming the angular dependence of
the effective mass in Ref. [31]. Blue squares show the result for the g
factor in a lower field range from 6 to 9 T. Red triangles indicate the
angular dependence of g for the heavy orbit β ′ from [001] to [100].

(β↑ and β↓) for H ‖ [001]. As discussed above, the number
of spin-splitting zeros for the β branch is reduced under
magnetic field. This field dependence is a consequence of the
polarization of the small and heavy electron Fermi-surface
pockets β under magnetic field along the easy magnetization
c axis [31,32]. Thus, we plot in Fig. 10 the analysis of the g
factor for the β branch also in the field interval 6 T < H < 9 T
in the angular range from [001] to [100]. Its extrapolation up
to [100] gives a very strong g-factor variation g[001]

β − g[100]
β ≈

2.4. Between [001] and [110], the oscillation could not be
detected in the field interval 6–9 T. The variation of the g
factor for the β ′ branch in the field interval 12–15 T with
angle from [001] to [100] is also represented in Fig. 10. The
effective mass for β ′ could be measured only under magnetic
field along [100], and we found m	

β ′ = 20.6 m0. This mass is
considered as angle independent, too. The angular variation of
the g factor for the β ′ branch appears identical to that of the β

branch, within the error bars.
To analyze the g-factor anisotropy of the γ branch, the

strong anisotropy of its effective mass has to be taken into
account, as shown in Fig. 11(a). The effective mass decreases
strongly with angle from m	

γ = 11.5m0 at [001] to m	
γ =

4.5m0 at 40◦ to [100]. If the value of m	g/2m0 at the first
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branch in the field range 6–9 T. (b) Different possibilities for the
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detected amplitude maximum from [001] is kγ = 0, then the
g factor decreases with angle and would reach zero around
[100]. The g factor of the γ pocket for this scenario is
represented in Fig. 11(b) (red circles). In this case, its angular
dependence could be fitted by gγ (θ ) = gγ ([001]) cos(θ ) with
gγ ([001]) = 2.2 corresponding to an Ising behavior of the
quasiparticles. However, if we choose kγ = 2, the occur-
rence of the spin-splitting zeros can be explained from the
anisotropy of the effective mass, and the data can be fitted
with a constant g factor gγ = 2.6. This shows that the g-factor
determination from the quantum oscillations is generally am-
biguous.

B. Anisotropy of the g factor

By quantum oscillation experiments, we have been able to
investigate the conduction electron g factor of URu2Si2 se-
lectively for different Fermi-surface pockets. For the α Fermi
pocket, our results are compatible with a rather large g-factor
ansisotropy. We could show that the angular dependence is
not universal between [001] and the basal plane, resulting for
the α branch in an unexplained anisotropy in the basal plane.
From the present experimental situation, it is not possible to
make definite conclusions on the values of the g factor of
the α Fermi surface pocket. The set of values g[001]

α ≈ 2.5,
g[100]

α ≈ 0, g[110]
α ≈ 1 is only a possible solution, under the

assumption of a monotonously varying g factor from the c
axis to the basal plane (see Fig. 9). However, this would imply
a strong anisotropy in the basal plane, which is not observed
here. Furthermore, we also did not observe any anisotropy of
the upper critical field in the plane which supports a constant
g factor in the basal plane. New high-field experiments in the
basal plane in a larger field range than studied here, with
perfect orientation with respect to the c axis, may resolve
directly the observed anisotropy.

The g factor for the β Fermi-surface pocket is also highly
anisotropic. The analysis in the field range from 6 to 9 T
suggests that gβ is varying from gβ = 0 in the plane to
gβ = 2.4 for H ‖ [001]. Interestingly, the determination of
the g factor seems dependent on the magnetic field. From the

analysis of the spin-splitting zeros in the field range from 12
to 15 T, a possible solution is a vanishing g factor in the basal
plane and gβ = 1.5 along the c axis. This field dependence
of the measured g factor may be an experimental artifact
coming from the field and spin dependence of the effective
mass of the β branch, which could not be precisely determined
in this study and was neglected in the extraction of the g
factor. Under these conditions, the most reliable value for the g
factor of the β branch would be the one extracted on the field
interval 6–9 T. In this field range, the g-factor variation for
the β branch is similar to the variation of gα and one possible
solution for gγ in the same plane. We point out that even the
angular dependence of g for the heavy branch β′ show the
same anisotropy. Thus, we can conclude that the g factor of all
Fermi surfaces show a strong angular dependence. However,
this variation of g is slightly bigger than that determined
from the weak coupling analysis of the upper critical field
g[001] − g[100] = 1.5.

A relativistic DFT calculation predicted an Ising behavior
for the bandlike 5 f electrons in URu2Si2 with magnetic
moments along the c axis and no anisotropy in the basal plane
[22,86]. Here, the 5 f electrons are treated as fully itinerant
and the calculation is performed for the antiferromagnetic
phase, which has practically the same Fermi surface than the
hidden order state [29,43–45]. This is justified as the Fermi
surfaces for the localized 5 f 2 or for the localized 5 f 3 uranium
configuration are not in correspondence to the experimentally
observed ones [44]. Furthermore, the Fermi surface pockets
obtained in the itinerant 5 f picture are in agreement with
all quantum oscillation and ARPES experiments. The Ising
anisotropy of the quasiparticles in the DFT calculation is a
result of the peculiar Fermi surface nesting at the hidden
order transition and of the strong spin-orbit coupling. All
uranium 5 f states have mainly a total angular momentum
j = 5/2, and in the paramagnetic state each of the Fermi
surface pockets important for the nesting at the hidden order
transition has a specific jz = ±5/2 or jz = ±3/2 character
with almost no mixing [45,86]. As a result of the doubling
of the unit cell [29,36,87] and concomitant gap opening at
the hidden order transition [88–90], electronic band-structure
calculations show that most of the Fermi surface with j =
±5/2 character is lost and the α and β pockets have mainly
jz = ±3/2 components. Only the pockets at the M point have
a jz = ±1/2 character [45]. If the jz = ±1/2 component is
dominant, then g[100] or g[110] will be larger than g[001].

A different theoretical approach claims that the Ising quasi-
particles in URu2Si2 result from the hybridization of the con-
duction electrons with Ising non-Kramers 5 f 2 doublet states
of the uranium atoms [23,91] starting from a localized picture
of the 5 f electrons. However, recent nonresonant inelastic x-
ray scattering experiments show that the ground state consists
mainly of singlet states in the U4+ 5 f 2 configuration [25].

The g tensor has never been determined for any heavy
fermion system from electronic band-structure calculations.
A main difficulty is knowing the real crystalline electric
ground state of the magnetic ions. Furthermore, in URu2Si2,
heavy bands are formed due to the strong hybridization of
the s, p, d states with the 5 f states. Therefore, the crys-
talline field levels are broadened and not clearly observed
in spectroscopic experiments. In the localized approach for
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a U4+ (5 f 2) configuration, the Landé’s gJ factor in an inter-
mediate coupling regime is gJ = 0.824 and for a U3+ (5 f 3)
configuration is gJ = 0.744 [92]. First-principles dynamical
mean-field calculations concluded that for URu2Si2, the 5 f 2

configuration has the dominant weight [14]. The multiplet
of the 5 f 2 has a total angular momentum J = 4 and splits
into five singlets and two doublets. The doublets are lin-
ear combinations of the |Jz = ±3〉 and |Jz = ±1〉 [93]. The
lowest doublet is |↑〉 = cos θ |Jz = 3〉 + sin θ |Jz = −1〉 and
|↓〉 = cos θ |Jz = −3〉 + sin θ |Jz = 1〉, with θ being the angle
between the c axis and the basal plane. In this case, the g
factors are anisotropic and gz = gJ (3 cos2 θ − sin2 θ ) and in
the basal plane gx = gy = 0. However, this g factor in the fully
localized picture has never been observed.

This localized approach has been discussed in Ref. [46]
and the authors fit the g-factor anisotropy of the α pocket in
the angular range from [001] to [100] and got cos θ = 0.8.
As mentioned above, the g factor determined by quantum
oscillations is Fermi surface selective, and results from an
average of the g factor of electrons on the orbit perpendicular
to the applied magnetic field. We have shown that the g factor
for all detected Fermi surfaces are consistent with a strong
g-factor anisotropy.

C. Comparison to other heavy-fermion system

The determination of the g factor in heavy-fermion systems
is rare. A standard method to determine the g factor in mag-
netic insulators is electron spin resonance (ESR). However,
a narrow ESR line in Kondo lattices have been reported
only in some Yb- or Ce-based compounds which show very
strong ferromagnetic fluctuations such as, e.g., YbRh2Si2 or
CeRuPO [94,95]. Several theories are devoted to explain the
linewidth narrowing in these systems starting from a localized
or an itinerant model approach [96–98]. In these systems, the
large anisotropy of the g factor reflects the local anisotropy
in the intersite correlations. In YbRh2Si2, the anisotropy of
the local g f factor of the Yb ion is about a factor 20, g f ⊥ =
3.6 and g f ‖ = 0.17, and reflects the large anisotropy of the
susceptibility.

Spin-splitting zeros have been used to determine the an-
gular dependence of the g factor in simple metals such as
gold or copper (see, e.g., Refs. [48,99]).7 Whereas quantum
oscillations are studied for almost every heavy-fermion sys-
tem which could be grown in sufficiently high quality, the
observation of spin-splitting zeros and so the determination
of the g factor is very rare. Especially in systems showing
strong Ising-type anisotropy, it has never been observed. In
CeRu2Si2, the best studied example, it has not been observed,
although the Fermi surface has been determined in great
detail by quantum oscillation experiments (for a review, see
Ref. [100]). This may be due to topology difference of the
spin-up and spin-down Fermi surfaces. In URu2Si2, only
small closed Fermi surface pockets exist in the hidden order

7While in Cu the g factor is isotrope, a spin-splitting zero appears
near 13 deg from [111] due to the anisotropy of the effective mass.
In the noble metals like Au, the g factor is anisotropic [48,99].

state, whereas in CeRu2Si2 large pockets are detected and also
open Fermi surfaces exist.

Spin-splitting zeros have been observed in the cubic CeIn3,
which orders antiferromagnetically below 10 K. One of its
dHvA branches, named d , which corresponds to a closed
spherical Fermi surface centered at the � point in the Brillouin
zone, has a highly anisotropic cyclotron effective mass. While
the effective mass is about 2–3m0 for H ‖ [100], it reaches
12–16m0 for H ‖ [110]. In CeIn3 the determination of the g
factor from the spin-splitting zeros of the dHvA oscillations
has not been unambiguous, because of the integer k for
g(m	/m0) = 2(n + k) − 1 [52]. The effective mass is usually
isotropic, if the topology of the Fermi surface is spherical in a
highly symmetric crystal structure such as a cubic system. In
CeIn3, this anisotropic effective mass on the spherical Fermi
surface is probably due to the consequence of strong electron
correlations with anisotropic 4 f contribution on the Fermi
surface, leading to hot spots at the antiferromagnetic wave
vector.

D. Relation between g-factor anisotropy and hidden
order and superconductivity

As pointed out in Ref. [101], the strong uniaxial g-
factor anisotropy is also compatible with an unconventional
commensurate charge density wave. Recently, a chirality-
density wave has been proposed as order parameter of the
hidden-order state from Raman-scattering experiments, where
a particular inelastic excitation with A2g symmetry has been
observed [5,87]. The proposed density wave is in agree-
ment with the previously determined folding of the Bril-
louin zone along the c axis at the hidden order transition
and confirms the change from a body-centered-tetragonal to
a simple-tetragonal electronic structure. For commensurate
antiferromagnetically ordered systems, it appears that due to
the anisotropic spin-orbit character of the Zeeman coupling,
the transverse component of the g tensor shows a significant
momentum dependence: It vanishes in the plane perpendicular
to the direction of the staggered magnetization due to a
conspiracy of the crystal symmetry with that of the antifer-
romagnetic order [102–104]. If such a scenario is valid for
the hidden order state with a characteristic ordering vector
QHO = (001), the appearance of the spin-splitting zeros would
not be due to a local property of the U ion but to a collective
ordering in the hidden order state.

This would also explain why almost the same anisotropy
of the electronic g factor is observed on the different Fermi-
surface pockets. The remaining differences are due to differ-
ences in the effective mass and to details in the band structure,
which results in a momentum-dependent spin-orbit coupling.

Finally, we want to compare the g-factor anisotropy deter-
mined from quantum oscillations with that deduced from the
anisotropy of the upper critical field. The g factor determined
from the paramagnetic limitation of the upper critical field
Hc2 gives an average over all the Fermi-surface pockets con-
tributing to the superconducting state. Near Tc, the observed
initial slope of the upper critical field near Tsc for a clean
superconductor, H ′

c2 ∝ Tsc

v2
F

, where vF is an average Fermi ve-
locity perpendicular to the applied field. The Fermi velocities
can be determined from the quantum oscillation experiments
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TABLE I. Fermi velocities vF = h̄
m	

√
2πF
�0

for different Fermi

surface pockets in URu2Si2. F and m	 are the oscillation frequency
and the effective mass of the corresponding Fermi surface pocket.
v

[001]
F , v

[100]
F (m/s), and v

[110]
F (m/s) give the Fermi velocities for field

applied H along [001], [100], and [110], respectively.

v
[001]
F (m/s) v

[100]
F (m/s) v

[110]
F (m/s)

α 16 340 24 062 20 860 (this work)
β 6625 5157 6070 (this work)
γ 10 760 8000 9450 (Ref. [31])
η 4000 (Ref. [29])

and are given in Table I for different Fermi-surface pockets.
It is obvious that the strong anisotropic initial slope of the
upper critical field cannot be explained by the anisotropy of
the observed Fermi velocities. Indeed, to explain the factor
2.2 of anisotropy between Hc2 for H ‖ c or H⊥, a factor 1.5
is required on the corresponding Fermi velocities. For the
β branch, which has the smallest Fermi velocity observed,
the values of vF ⊥ H are of the right order to explain the
measured value of Hc2 ≈ (−11 T/K), applying formulas for a
spherical Fermi surface and s-wave superconductivity (vF =
6050 m/s). But then, a value of 8900 m/s would be required
for H ‖ c, much larger than the actual value. This points
out the difficulty of precise quantitative comparisons between
measured normal-state properties and Hc2 measurements: Al-
ready for s-wave superconductors, it is known that the average
vF determining Hc2 involves an average over all Fermi sheets
weighted by the pairing potential [105,106]. In the case of
the proposed d-wave pairing [8,9], the strong gap anisotropy
may play a dominant role in the determination of the orbital
anisotropy of Hc2. However, numerical calculations are re-
quired, as well as a complete determination of the Fermi sur-
face of URu2Si2: The heaviest mass—the anisotropic electron
Fermi surface centered at the M point of the simple tetragonal
Brillouin zone [45]—and so possibly the dominant FS sheets
for the control of Hc2 are still not detected in the quantum
oscillations.8

A next important step in understanding the Fermi sur-
face and its feedback on the hidden order would be to de-
termine completely the Fermi surface in the high-pressure

8This heavy orbit may be observed by cyclotron resonance experi-
ments [33,34].

antiferromagnetic state. It is known from SdH experiments
that the quantum oscillation frequencies and the effective
masses of the main Fermi-surface branches evolve smoothly
from the hidden-order phase at low pressure to the antifer-
romagnetic state above 1 GPa [29,107]. A detailed study
of the angular dependence under high pressure will show
whether the observed anisotropy of the g factor is a particular
characteristic of the hidden order.

V. CONCLUSION

We have determined selectively the electronic g factor and
its anisotropy for the α, β, and γ Fermi surface pockets
of URu2Si2 between [001] and the basal plane. For all de-
tected Fermi surface pockets, our results are consistent with
a strongly anisotropic g factor. For the β and γ branches,
possible solutions exist with vanishing in plane g factor. For
the α branch, we observed different numbers of spin-splitting
zeros in the (010) and (110) planes, which indicate either
a nonmonotonous variation of the g factor in one of these
planes or an additional anisotropy in the basal plane. Future
experiments in high magnetic fields have to be performed to
clarify the g-factor anisotropy of the α branch. The determined
anisotropy of the g factor by quantum oscillations is in good
agreement with that from the superconducting upper critical
field. However, the anisotropy of the initial slope of the upper
critical field cannot be explained simply by the observed
Fermi surface pockets. An anisotropic heavy Fermi surface
pocket still has not been detected in quantum oscillations.
The reported determination of the anisotropy of the g factor
by quantum oscillations is an important reference for other
heavy-fermion systems, showing that itinerant quasiparticles
in a metal can have a very strongly anisotropic g factor
(Ising-like). Moreover, we hope that our results will stim-
ulate calculations of the g factor from the electronic band
structure.
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