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Abstract

Despite the rising importance of enhancing community resilience to disasters, our understand-

ings on when, how, and why communities are able to recover from such extreme events are limited.

Here we study the macroscopic population recovery patterns in disaster affected regions, by ob-

serving human mobility trajectories of over 1.9 million mobile phone users across three countries

before, during and after five major disasters. We find that, despite the diversity in socio-economic

characteristics among the affected regions and the types of hazards, population recovery trends

after significant displacement resemble similar patterns after all five disasters. Moreover, the het-

erogeneity in initial and long-term displacement rates across communities in the three countries

were explained by a set of key common factors, including the community’s median income level,

population, housing damage rates, and the connectedness to other cities. Such insights discovered

from large scale empirical data could assist policy making in various disciplines for developing

community resilience to disasters.

Introduction

Following the series of natural hazards with unprecedented severity and magnitude including Tohoku

Tsunami and Hurricanes Harvey, Irma and Maria, the concept of urban resilience has gained signifi-

cant attention [19]. For many cities, it is of utmost importance to build institutional and infrastructural

capacities to minimize economic loss and maintain the well-being of their citizens in case of extreme

events [14, 27]. Recent disasters have shown the existence of large variance in recovery trajectories

across communities that have experienced similar damage levels [16, 2]. We have witnessed mani-

fold cases where cities experience significant drainage of population even with sufficient recovery of

infrastructure systems [34, 31]. Understanding the interplay between the recovery of infrastructure
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systems and population movement (displacement and return) after such large-scale disasters is es-

sential for developing policies that could enhance effective population recovery in communities, and

foster sustainable development in hazard prone areas [1].

Human displacement and migration due to climate change and disasters have long been studied

based on surveys and census data [31, 10, 21, 16, 18, 13, 39, 35, 26]. Studies have made future

projections of migration patterns due to climate change and their implications for income inequality

[22, 40]. These studies reveal important factors that are associated with post-disaster displacement [32,

8], however fails to capture the detailed temporal patterns of recovery and their spatial heterogeneity.

The increase in the availability of large mobility datasets including mobile phone call detail records

(CDRs), GPS logs, and social media posts, has made it easier to collect spatio-temporally detailed

observations of individual mobility from a large region [20, 6]. Large scale datasets are being utilized

for inferring population distributions and migration patterns population distributions and migration

patterns [12, 28, 42, 7, 48], which are applied in various domains to solve societal challenges including

alleviating traffic congestion [23] and preventing disease spread [5, 17, 49] . Several studies have

used mobile phone data to understand the human mobility patterns during and after disasters such as

earthquakes [29, 43, 51, 50], hurricanes [47, 46], and other anomalous events and shocks [4, 44]. Lu

et al. analyzed mobile phone data to understand both the short-term long-term migration patterns after

a cyclone in Bangladesh [30]. Despite such progress, the current body of literature lacks a general

understanding of population displacement and recovery patterns after disasters. More specifically, the

following research questions are yet to be answered: When do communities recover from population

displacement, and why? Can we characterize population recovery patterns across different disaster

events? How heterogeneous are recovery patterns across locations and disaster instances? Can we

explain such heterogeneity using a common set of factors?

In order to answer these questions and bridge the gaps in the current literature, we analyzed large

scale mobile phone GPS datasets collected before and after multiple disasters across different coun-

ties. We collaborated with 3 different companies across the US and Japan that collect GPS location

data from mobile phones, and studied the movements of more than 1.9 million mobile phones of af-

fected individuals over a six-month period. We studied the recovery patterns after Hurricane Maria

(Puerto Rico, USA, 2017), Hurricane Irma (Florida, USA, 2017), Tohoku Tsunami (Tohoku area,

Japan, 2011), Kumamoto Earthquake (Kyushu area, 2016), and Kinugawa Flood (Ibaraki area, Japan,

2015), shown in Figure 1a. These five disasters, in total, destroyed more than 1.5 million residen-

tial buildings, caused power outages in more than 8 million households, and caused more than $350

billion in economic loss (Supplementary Text). The five disasters were diverse in various aspects in-

cluding the type of disaster (tsunami, earthquake, hurricane, flood), location of occurrence (Puerto

Rico, Florida, Tohoku, Kumamoto), and the socio-economic characteristics of the affected regions.
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Figure 1: Similarity of macroscopic population recovery patterns across the five disasters. a.
Location, spatial scale, and severity of disasters that were studied. Red colors indicate the percentages

of houses that were severely damaged in each community. b-f. Macroscopic population recovery

patterns after each disaster. Raw observations of displacement rates were denoised using Gaussian

Process Regression and were then fitted with a negative exponential function. D0, D160 and τ denote

the displacement rates on day 0, day 160, and recovery time parameter of each fitted negative expo-

nential function. Black horizontal dashed line shows average displacement rates observed before the

disaster. g. Normalized population recovery patterns after Hurricane Maria (red), Tohoku Tsunami

Tsunami (blue), Hurricane Irma (green), Kumamoto Earthquake (cyan), Kinugawa Flood (orange).

Data and Methods

For each disaster, we analyzed the longitudinal population recovery patterns in the affected areas. The

affected areas were defined as the set of local government units (LGUs), which experienced damages

to residential buildings due to the hazard. LGUs correspond to counties in Florida and Puerto Rico,

and “shichoson (cities/wards)” in Japan in this study.

There are mainly 3 reasons to why we perform our analysis on the LGU scale. Firstly, due to the

limitation in the number of mobile phone user samples, analysis at a further finer scale would yield

statistically insignificant results especially in rural areas. Second, the LGU scale is the finest scale

in which we can obtain socio-economic data in Japan, unlike the US where data is available on the

census tract level through the American Community Survey. Third, government agencies often make

policy decisions on the LGU scale, thus insights on that spatial scale would provide decision makers

with relevant and useful insights.

Housing damage data collected from official sources are used to understand the spatial extent of
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damage inflicted to each of the communities. For disasters in the US, the “housing damage rate” of

a given LGU refers to the rate of houses approved for the Individuals and Households Program of

FEMA in each LGU [15]. For disasters in Japan, it refers to the rate of residential buildings classified

as “totally destroyed” or “half destroyed” by the Cabinet Office of Japan (COJ) in each LGU [9]. Both

datasets are publicly accessible. 78 LGUs in Puerto Rico, 49 LGUs in Florida, 30 LGUs in Tohoku,

33 LGUs in Kumamoto, and 10 LGUs in Kinugawa were classified as affected areas with housing

damages, and were included in the analysis (Table S1). Figure 1a shows the LGUs that were included

in the analysis along with the housing damage rates in red color.

Mobile phone location data for the five disasters were provided by 3 different companies in

Japan and the US. Location data were collected by Yahoo Japan Corporation (https://www.

yahoo.co.jp/) for Kumamoto Earthquake and Kinugawa Flood, by Zenrin Data Com (http:

//www.zenrin-datacom.net/toppage) for Tohoku Tsunami and Earthquake, and Safegraph

(https://www.safegraph.com/) for Hurricanes Irma and Maria. All companies obtained the

location information (time, longitude, latitude) of mobile phones from users who agreed to provide

their location data for research purposes, and all information were anonymized to protect the security

of users. Each mobile phone user’s home location was estimated by performing a weighted mean-shift

clustering on the GPS location points observed during nighttime prior to the disaster date [3, 25]. As

a result, a total of 1.9 million individual users were identified to be living in the affected areas before

the disaster (Table S3). We refer to these users as “affected users”. Correlations (both Pearson and

Spearman rank correlations) between the number of affected mobile phone users in each LGU and the

census population data were very high in all datasets (Figure S2). Thus, we assume that distribution

of mobile phone users have little spatial bias, and that they are representative of the entire population

in the macroscopic spatial scale, which is also shown in previous works using other mobile phone

datasets [29, 51, 12]. The mobility trajectories of each user were tracked during and after the disaster,

and were used to quantify the longitudinal population recovery patterns. The rate of displacement on

a given day was defined as the rate of affected users who stayed outside their home LGU out of all

affected users on that day. To capture the short term fluctuations in the population recovery patterns,

the raw observations of displacement rates were denoised using Gaussian Process Regression, which

is a non-parametric probabilistic model for denoising and regression [36]. To capture the general

trend of population recovery, the raw observations were fitted using a negative exponential function

D(t) = (D160 − D0) exp (− t
τ ) + D160, where D0, D160, and τ denote the displacement rates on

day 0, day 160, and recovery time parameter, respectively. Further, the fitted negative exponential

functions were normalized D̃(t) = D(t)−D160

D0−D160
= e

−t
τ to compare the speed of population recovery

across different disasters.
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Modeling Population Recovery patterns after Disasters

Despite the differences in the disaster types and the heterogeneity in socio-economic characteristics

among the affected regions, the recovery of displacement rates after the five disasters were all approx-

imated well by a negative exponential function D(t) = (D0 − D160) exp (− t
τ ) + D160, where D0

and D160 denote the displacement rates on day 0 and day 160, respectively, and τ are the recovery

time parameters. Figures 1b-1f show the observed daily displacement rates, smoothed trend estimated

using Gaussian Process Regression, and the fitted exponential functions for each disaster. Goodness

of fit measures were computed to show that the exponential functional form fits the data well, and that

the estimation of parameters are robust (Figure S3). The observations were cut off on day 160 due

to data limitation. Minor anomalies observed in the recovery patterns were due to national holidays

such as Christmas (around day 100 of Hurricane Maria and day 110 of Hurricane Irma), Thanksgiving

Holidays (around day 80 of Hurricane Irma), and “Obon Breaks”, which is a national holiday in Japan

(around day 120 of Kumamoto Earthquake). The baseline (pre-disaster) displacement rates are shown

in Figures 1b-1f in horizontal gray dotted lines (mean) and the gray shaded region (standard deviation)

to compare the post-disaster displacement rates with the “usual” displacement rates that are caused by

activities such as travelling. In extreme disasters such as Hurricane Maria and Tohoku Tsunami, we

observe a high long term displacement even after 150 days from the disaster. We can infer that this

population segment could have migrated out of the disaster affected areas to other locations. Figure 1g

shows the normalized displacement rate observations D̃(t) for each disaster in colors, along with the

negative exponential function (D̃(t) = e
−t
τ ) shown in black. The closeness between the standard neg-

ative exponential function and the normalized population recovery patterns show that for all disasters,

population recovery curves can be well approximated by a negative exponential function.

The negative exponential functional form of the population recovery patterns across the five dis-

asters imply that the majority of users returned quickly within a couple of weeks from the disaster, but

the rest of the users gradually returned over a longer time period. The exponential decay also indicates

that for each day, a constant rate 1
τ of the remaining displaced population decides to return to their

original home location. This variance in recovery timings can be explained by observing the relation-

ship between the temporal duration and spatial distance of individual displacement mobility patterns.

Figure 2a shows that the average evacuation duration increases with evacuation distance. Figure 2b

shows the probability density plots of the maximum distance traveled from his/her estimated home

location on a usual day before the disaster (gray), on the day of the disaster (brown), 10 days after the

disaster (red), and 1 month after the disaster (orange). More people stayed further away (> 103m)

from their home locations after disasters compared to before the disaster due to evacuation activities.

The distribution of evacuation distances is long tailed after all disasters at various time points, which

indicates the majority of people evacuate short distances (thus short duration) and a small fraction

5



Figure 2: Relationship between displacement distance and duration after disasters. a. The

longer the evacuation distance, the longer the average evacuation duration. b. Probability densities

of maximum distance from home on a usual day (gray) and at various timings after the disaster day

(brown: day of occurrence, red: 10 days after, orange: 1 month after) are all long-tailed. The long

tailed distribution of evacuation distances and the relationship between displacement distance and

duration were common across disasters. The majority of people evacuating short distances (thus short

duration) and a small fraction of the people evacuating extremely long distances (thus long duration)

explains why similar negative exponential functions were observed after the disasters.

evacuation extremely long distances (thus long duration). This explains why we observe the negative

exponential function in population recovery patterns after all disasters. The recovery times after dis-

asters that occurred in Japan and Florida were relatively short (3 < τ < 8), but very long τ = 26.8

after Hurricane Maria. The differences in recovery time parameter values τ across disasters can be

explained by the differences in the speed of infrastructure recovery in each of the affected regions. In

Japan and Florida, power was restored in over 90% of the households (that were not destroyed) within

10 days from the disaster, while it took more than 200 days for Puerto Rico (Figure S4).
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Figure 3: Explaining the spatial heterogeneity in population recovery using key common factors.
a. D0 and D160 of all LGUs. Each trajectory corresponds to an LGU, and colors represent the

disaster. D0 and D160 have a moderate correlation of R = 0.612. The inset shows the high spatial

heterogeneity of recovery trajectories. b. Density plots of the four features of the affected LGUs,

showing the heterogeneity in socio-economic characteristics. c. Observed and estimated D0 for all

LGUs in all disasters had high correlation R = 0.864. d. Observed and estimated D160 values had

high correlation R = 0.848.
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Figure 4: Initial displacement rates after disasters. a-d. D0 and housing damage rates for each

LGU in Tohoku Tsunami (a), Hurricane Irma (b), Kumamoto Earthquake (c), and Hurricane Maria

(d). Solid lines are regression results and the dotted black lines mark theoretical results if all people

whose houses were damaged fled their hometown. Pearson’s R values are shown in the corner of

each panel, and their significance levels are noted by stars (***: p < 0.01). For disasters in Japan

and mainland US, housing damage rates had significant and strong correlation. However, correlation

was insignificant and smaller in Puerto Rico after Hurricane Maria. e-g. Spatial distribution of D0

(e), median income (f) and number of households (g) for all LGUs in Puerto Rico after Hurricane

Maria. For Hurricane Maria, median income levels and number of households for each community

had significant and negative correlations with D0 than housing damage rates.
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Understanding the Spatial Heterogeneity in Population Recovery

We now downscale our analysis to LGUs (counties in the US, cities/wards in Japan) within each

affected area to understand the spatial heterogeneity in population recovery patterns. Since only one a

few number of LGUs (10) were affected by the Kinugawa Flood, with most of them (9) having little

housing damage (less than 1% housing damage rates), the Kinugawa Flood was not included in the

LGU-scale analysis. The LGU-scale analysis was performed on the four major disasters (Hurricanes

Maria and Irma, Tohoku Tsunami, and Kumamoto Earthquake). In total, there are 200 LGUs with

large diversity in socio-economic characteristics that were affected by the four disasters. The inset in

Figure 3a shows the large heterogeneity in recovery patterns across LGUs, even within each disaster.

Figure 3a shows moderate level of correlation (R = 0.612) between D0 and D160 for all LGUs.

To understand the effect of the independent variables on the displacement rates and the speed of

recovery, we apply a generalized linear regression modeling framework. Because the displacement

rates are probabilities, 0 < D(t) < 1 holds for any t. Therefore, we apply a logit link function to the

displacement rates in the regression model. Similarly, because the recovery times take only positive

values (0 < τ ), we apply a log link function to the speed parameter. Equations (3) and (4) show

the generalized linear regression model where β are the regression coefficients, x are the independent

variables explained in the next section, and ε ∼ N (0, σ2) is the error term. The model parameters are

estimated via maximum likelihood estimation.

log
( D(t)

1−D(t)

)
= βTx+ ε (1)

log (τ) = βTx+ ε (2)

In the regression models of population recovery, socio-economic data (population, median income,

housing damage rates, power outage recovery time, connectedness to surrounding cities) were used

as independent variables (Table S4). In addition to housing damage rates which directly quantify

the magnitude of the disaster effect on each LGU, socio-economic variables (population and income)

of LGUs were included in the model to seek any inequality between the urban and rural, and the

rich and poor on the disaster recovery performances. Infrastructure recovery (power outage dura-

tion) was included in the model to assess the importance of the local agency’s capacity to respond

to extreme events. Moreover, we test whether the geographical configurations and accessibility be-

tween LGUs are important for post disaster recovery, by including variables related to the proximity

to large and wealthy cities. For Florida and Puerto Rico, population data were obtained from the US

National Census (https://www.census.gov/), and median income data were obtained from

the American Community Survey (https://www.census.gov/programs-surveys/acs).
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Similarly, for Japanese LGUs, population and income data were obtained from the Statistics Bu-

reau (https://www.stat.go.jp/) of the Ministry of Internal Affairs and Communications of

Japan. Power outage data of LGUs in Puerto Rico were collected from the website StatusPR

(http://status.pr/), which is a government operated website that showed the recovery sta-

tus of Puerto Rico after the Hurricane. Power outage data of Hurricane Irma were collected from the

Florida Division of Disaster Management (https://www.floridadisaster.org/). Power

outage information in the Japanese disasters were collected from the utility companies. The con-

nectedness to surrounding cities were calculated by dp(i) =
∑
j∈S(i)Nj
Ni

, where Ni is the number of

households in city i, and S(i) is the set of cities that can be reached within 1 hour by vehicles from

city i. dp would be large for small cities that have large cities around it, and small for more isolated

cities. For cities with similar population levels, dp would be proportional to the total population of

surrounding cities. Similarly, we propose the proximity to wealthy cities by using the median income

value instead of the household number in the previous equation. This value would be large if the origin

city has a relatively low income and it is surrounded by wealthier cities nearby. Note that these two

complex variables capture not only the characteristics of the origin city, but that of the receptor cities.

Correlations among variables in all disasters were not significantly high, thus we included them in the

regression analysis (Table S5). Power outage recovery time was excluded in the models for estimat-

ing D0, since this information would not be available on day 0. The probability densities of the four

attributes in each disaster are shown in Figure 3b. Housing damage rates and median income levels

significantly differ across the four disasters, however the number of households and the connectedness

of cities have more similar distributions. The set of independent variables for the best model for each

disaster was chosen based on the lowest AIC value and statistical significance (p < 0.1). Regres-

sion results are shown in detail in Tables S6-S9. Figure 3c plots the observed values and estimated

D0. Although we use only key variables in our model, the estimated values had high correlation with

observed values (R = 0.864). For LGUs in Japan (Tohoku Tsunami and Kumamoto Earthquake)

and Florida (Hurricane Irma), housing damage rates were good estimators of D0 (Figures 4a-4d). On

the other hand, housing damage rates had low and insignificant correlation with log
(

D0
1−D0

)
in Puerto

Rico after Hurricane Maria. Rather, as shown in Figures 4e-4g, median income levels and number

of households for each community had significant and stronger correlations with initial displacement

rates. Median income and the proximity to wealthy cities had negative correlations with initial dis-

placement rates, indicating that communities with lower incomes in isolated areas had higher initial

displacement rates (Table S6). Figure 3d shows that D160 values were predicted by the five variables

with high accuracy (R = 0.848). Median income and housing damage rates had positive effects on

long term displacement, implying that people with more income were able to evacuate from the af-

fected regions (Table S7). In addition to such socio-economic variables, infrastructure recovery speed
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Figure 5: Connectedness to neighboring cities as a key factor to recovery. a. Map of Ciales and

Guanica, Puerto Rico. Light colored areas show the area that can be reached from each city within

one hour of driving time. b. Recovery patterns of both communities, showing the faster recovery of

Ciales. c. Comparison of factors for both cities. Factors other than connectedness to other large cities

(e.g. San Juan) were similar between the two communities. d-f. Similar phenomenon was seen after

Tohoku Tsunami in Japan. Minamisanriku city and Ohtsuchi city shared similar characteristics except

for the connectedness to large cities (e.g. Ishinomaki), resulting in differences in recovery patterns.

had a significant effect on long term displacement rates. Recovery speed log(τ) had the lowest pre-

dictability out of all objective variables. The significant variables varied across different disasters,

however, the connectedness to large cities and wealthy cities was a common variable with significant

impact on recovery speed across three disasters (Table S8). The negative coefficient implies that if a

city is surrounded by larger or wealthier cities, it has a shorter time needed for recovery. To check

the temporal robustness of these findings, We performed the regression analysis on various timepoints

(D10, D20, D30, D60, D90, D120), and summarized the results in Table S9. We found that the set of

important variables generally stay similar for all disasters across different timepoints. However, as

time progresses, infrastructure recovery variables become more significant while the significance of

housing damage rates gradually decrease.

Figure 5 shows pairwise comparisons after Hurricane Maria and Tohoku Tsunami where a pair

of similar LGUs with different levels of connectedness to neighboring cities have distinct recovery

outcomes, even though other socio-economic characteristics such as population, housing damage rates

and income levels are similar.
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Discussion and Conclusion

In this study, we used large scale mobile phone datasets from five disasters across the US, Puerto Rico

and Japan to uncover the macroscopic population recovery patterns after disasters. We found that

population recovery patterns across the five disasters can be approximated with a common negative

exponential function, where the majority of the displaced users return to their residential areas quickly

after the disaster, while some decide to stay away for longer periods. Previous studies of post-disaster

human migration using household surveys [16, 18, 13, 39] had failed to obtain a continuous and lon-

gitudinal understanding of the recovery dynamics due to limitations in data. Revealing the negative

exponential function common across different disasters and locations could significantly contribute to

the efforts in modeling and simulating human mobility patterns after disasters [45]. Further analysis

using the individual evacuation mobility patterns showed that these patterns emerge because of the

combined effect of long-tailed distributions in evacuation distances and positive correlation between

evacuation distance and duration. The long tailed distributions of evacuation distance had been ob-

served in previous studies using other datasets from Haiti [29] and Japan [51], however, the latter

relationship had not been shown in previous studies. A more detailed analysis on the population re-

covery patterns of 200 communities (LGUs) across different disasters and locations showed that the

heterogeneity in short-term (day 0) to long-term (day 160) displacement rates can be well explained by

key common factors including population, median income, housing damage rates and infrastructure

recovery time. Previous studies on individual case studies have noted the relationship between such

variables and population recovery (reentry) decisions. For example, studies on Hurricanes Katrina and

Rita show that the rate of disadvantaged populations (characterized by variables including household

income), density of the built environment, and housing damage contribute to migration and displace-

ment [34]. This work contributes to the literature in disaster resilience and population migration by

testing the insights obtained from individual case studies with multiple disasters in different locations.

Moreover, the importance of connectivity to surrounding cities has been understudied in the current

literature, despite its significant implications on policy making for disaster resilience. This contradicts

previous findings on non-disaster human mobility patterns (e.g. commuting), where out-migration

increases with amount of opportunities available in surrounding cities [42]. This finding shows that

after disasters, the existence of neighboring cities act as catalysts that enhance recovery rather than

attractors that drain population from damaged cities. This extends the theories on the importance of

social capital and social support [2, 39] to an intercity-scale. One example of such effect is how Tono

City, an inland city close to the Tohoku area towns that were affected by the tsunami, acted as a re-

covery support hub after the Tohoku Tsunami [41]. The coastal cities were provided humanitarian,

informational, and material support from surrounding nearby cities such as Tono City which experi-

enced less damage due to the tsunami/earthquake. The effect of inter-city connectivity on community
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recovery is understudied in the urban resilience literature, and could have significant implications on

the planning of inter-city networks to enhance the resilience of communities.

The presented empirical results should be considered in the light of some limitations. First, the

mobile phone data did not contain various attributes of households that are known to affect evacuation

and return decisions such as age, gender, race [11], risk perception [37], and social network ties

[39, 2]. Although we were able to explain some of the variability in population recovery patterns

using several key factors, including these variables by integrating mobile phone data with household

survey data would be a valuable next step in future research. Second, although this study used mobile

phone data from a diverse set of countries, the number of disaster cases need to be increased to be able

to make robust conclusions. Increasing the number of study locations especially in the developing

world would allow us to better compare and understand the recovery after Hurricane Maria in Puerto

Rico. Moreover, although our study analyzed the longitudinal population recovery until 160 days after

the disaster, a longer study could provide more insights in the recovery of communities. Especially

for Puerto Rico after Hurricane Maria, observing more longitudinal data to determine whether the

displacement rate permanently stays high after 160 days would provide valuable insights. With data

for longer time periods from more instances of large-scale disasters in different countries, we will be

able to obtain more generalizable findings on population recovery patterns after disasters. Third, in

this study, regression analysis on the recovery parameters were conducted on the local government unit

(LGU) scale (i.e. counties in Puerto Rico and Florida, and city/ward/towns in Japan). This was mainly

due to the limitation in the number of mobile phone user samples; analysis at a further finer scale would

yield statistically insignificant results especially in rural areas. The LGU scale was the finest scale in

which we can obtain socio-economic data in Japan, unlike the US where data is available on the census

tract level through the American Community Survey. Despite such limitations in the data, the intra-

LGU variability in the socio-economic characteristics is of great importance in understanding spatial

heterogeneity in population displacement and recovery patterns. We show a case study of Miami-Dade

county after Hurricane Irma, which does not suffer from either of the data limitations; a large city with

enough mobile phone user samples, located in the US with census-tract level socio-economic data

(Figures S7 and S8, Table S10). The predictability of displacement rates were low compared to the

county (LGU) level analysis (Figure 3). The small sample size in each census tract (Figure S9) could

be the reason for the noisy estimate. A more robust estimation using sparse mobile phone user samples

would be needed to give better estimations on the census tract granularity. Finally, our primary focus

of this paper was on the returning mobility of the displaced populations after disasters. Extending this

study to not only returning behavior but also incoming migration would be of interest to understand

the recovery and further development of each community.

First, the understanding of the underlying recovery process using parsimonious models provides
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a way to characterize the recovery process using a small number of parameters (initial displacement

and speed of recovery). Even when mobile phone data could not be obtained by policy makers in

real-time, the negative exponential model can be combined with other (often spatio-temporally low

resolution) data sources to make predictions of population recovery. For example, studies have shown

that social media data (e.g. Twitter) can be used as a proxy to estimate human mobility [24]. Night

light data collected from satellite images may also be used as a proxy for population recovery as well,

after power has been restored in the area [38]. Second, the revealed common function of population

recovery dynamics can be applied in developing agent-based simulations of evacuation and return

mobility, which are commonly used in practice to predict post-disaster mobility and population recov-

ery [45, 33]. Predicted post-disaster mobility patterns can be used as reference for policy makers to

make decisions on the spatio-temporal allocation of resources and services such as evacuation shelters,

emergency supplies, public utilities (e.g. water, electricity, gas). Third, the LGU-level analysis results

can be used to estimate the impact of policies on population recovery. For example, it was shown that

physical connectivity between LGUs was important for effective recovery, in addition to character-

istics of individual LGUs. In the case of Puerto Rico after Hurricane Maria (Figure 5a), the arterial

road that runs through the central part of the island connecting communities in the southern part to

the northern cities (e.g. San Juan) was not well designed, with inefficient road structures and paths.

Similarly, communities in the northern part of Tohoku region (Figure 5d) were severely isolated due

to the mountainous terrains. This finding suggests that policy makers need to evaluate the collective

capacity of the network of LGUs, rather than evaluating the resilience of each LGU independently.
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Manga, Andrea Rinaldo, and Enrico Bertuzzo. Mobile phone data highlights the role of mass

gatherings in the spreading of cholera outbreaks. Proceedings of the National Academy of Sci-

ences, 113(23):6421–6426, 2016.

16



[18] Elizabeth Fussell, Katherine J Curtis, and Jack DeWaard. Recovery migration to the city of

new orleans after hurricane katrina: a migration systems approach. Population and environment,

35(3):305–322, 2014.

[19] Habiba Gitay, Sofia Bettencourt, Daniel Kull, Robert Reid, Kevin McCall, Alanna Simpson, Jarl

Krausing, Philippe Ambrosi, Margaret Arnold, Todor Arsovski, et al. Building resilience: In-

tegrating climate and disaster risk into development-lessons from world bank group experience.

World Bank Reports, 2013.

[20] Marta C Gonzalez, Cesar A Hidalgo, and Albert-Laszlo Barabasi. Understanding individual

human mobility patterns. nature, 453(7196):779, 2008.

[21] Clark L Gray and Valerie Mueller. Natural disasters and population mobility in bangladesh.

Proceedings of the National Academy of Sciences, page 201115944, 2012.

[22] Mathew E Hauer. Migration induced by sea-level rise could reshape the us population landscape.

Nature Climate Change, 7(5):321, 2017.

[23] Md Shahadat Iqbal, Charisma F Choudhury, Pu Wang, and Marta C González. Development
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