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Abstract. This paper presents an abstract theory on well-posedness for time-
fractional evolution equations governed by subdifferential operators in Hilbert
spaces. A proof relies on a regularization argument based on maximal monotonic-
ity of time-fractional differential operators as well as energy estimates based on
a nonlocal chain-rule formula for subdifferentials. Moreover, it will be extended
to a Lipschitz perturbation problem. These abstract results will be also applied
to time-fractional nonlinear PDEs such as time-fractional porous medium, fast
diffusion, p-Laplace parabolic, Allen-Cahn equations.

1. Introduction

1.1. Time-fractional derivatives and PDEs. A notion of fractional derivative
already appeared in a letter of Leibniz to l’Hôpital in 1695 and afterword several
notions of fractional derivative were proposed by Riemann, Liouville, Riesz, Ca-
puto and so on. In particular, notions of fractional derivative were also employed
during the last decade or two to improve physical models to cover various phenom-
ena beyond the scope of classical theories in Physics. Among those, time-fractional
derivatives are particularly attracting much attention in the study of anomalous
diffusion, in which the MSD (Mean-Squared Displacement) 〈(x(t)−x(0))2〉 of ran-
domly moving particles exhibits a nonlinear growth in time t, and hence, the dif-
fusion coefficient (= MSD/t) cannot be determined as a constant. In [25] (see
also [35]), Fokker-Planck equations including time-fractional derivatives are de-
rived from the so-called CTRW (Continuous-Time Random Walk, see [37]), which
is a stochastic process and in which each jump-length ∆x and waiting-time ∆t
of each particle are randomly determined by certain probability density functions
(e.g., Brownian motion is reproduced by determining ∆x and ∆t by means of nor-
mal and exponential distributions). For instance, if ∆x and ∆t are determined
by a normal distribution and a power distribution (of power α), respectively, then
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evolution of the (density) distribution u(x, t) of particles is described in terms of a
time-fractional partial differential equation (PDE for short),

∂αt [u(x, ·)− u0(x)] (t)−∆u(x, t) = 0,

where u0 is an initial distribution and ∂αt is the Riemann-Liouville fractional de-
rivative defined by

∂αt f(t) = 0D
α
t f(t) :=

1

Γ(1− α)

d

dt

∫ t

0

(t− s)−αf(s) ds, t > 0, 0 < α < 1.

Here we also remark that ∂αt [u(x, ·) − u0(x)] coincides with the Caputo deriva-
tive CDα

t u(x, ·) for smooth u(x, ·) (see Remark 3.1 below). Therefore such linear
PDEs involving time-fractional derivatives have been studied vigorously so far (see,
e.g., [43, 28], [20, 33, 34] and references therein).

1.2. Nonlinear PDEs involving time-fractional derivatives. Time-fractional
PDEs have been studied mostly based on linear technique such as Laplace and
Fourier transforms; indeed, they are two of the few effective methods to handle
fractional derivatives; however, they are not always effective for nonlinear problems
(e.g., degenerate and singular diffusion equations). On the other hand, studies on
time-fractional PDEs are recently extending to nonlinear problems. Here, let us
give a couple of typical examples.

The dynamics of fluids in unsaturated non-swelling soils is often described by
means of the Richards equation,

∂tu(x, t) = div (C(u)∇u(x, t)) ,
where u = u(x, t) denotes the local volume fraction of water and C(u) ≥ 0 is the
diffusivity depending on u. The Richards equation is derived from a conservation
law as well as Darcy’s law, and the nonlinearity residing in the soil-water diffusivity
C(u) arises from water retention curves, which characterize each medium (e.g., soil,
sand, clay, silt) and are determined by experiments. On the other hand, anomalous
diffusion is also observed in experiments of moisture dispersion in building materials
(see [48, 31, 18, 45]). However, a nonlinear scaling 〈x2〉 ∼ tα of moisture dispersion
into building materials is not reproduced by means of the Richards equation. In [19,
3], to bridge a gap, the following time-fractional Richards equation is introduced:

∂αt [u(x, ·)− u0(x)] (t) = div (C(u)∇u(x, t)) ,
where 0 < α < 1 and u0 := u|t=0.

Moreover, in [40, 41, 42], time-fractional porous medium equations, where C(u)
is a power of u, are also considered. In these papers, numerical schemes for non-
linear PDEs involving time-fractional derivatives are proposed and applied to the
equations. Furthermore, long-time behaviors of solutions for such time-fractional
nonlinear PDEs are investigated in [52, 50, 17, 1], where existence and regularity
of solutions are simply assumed. Theoretical analysis on nonlinear PDEs involving
time-fractional derivatives has just begun and has not yet been fully pursued, and
there still remain open questions on fundamental issues such as well-posedness for
fractional variants of degenerate or singular parabolic PDEs (e.g., time-fractional
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porous medium equation). The main purpose of this paper is to present a general
theory which is concerned with an abstract Cauchy problem for nonlocal gradient
flows and guarantees well-posedness for a wide class of time-fractional (possibly,
degenerate or singular) parabolic PDEs.

Finally, we also refer the reader to [38, 49] for an approach based on viscosity
solutions to time-fractional nonlinear PDEs.

1.3. Abstract setting. In this paper, we shall present an abstract theory on time-
fractional evolution equations, which include only most significant common features
of time-fractional PDEs mentioned above. To this end, let us first give an abstract
setting and formulate a problem. We refer the reader to Section 6 below, concerning
how to apply the following abstract theory to concrete time-fractional PDEs.

Let H be a real Hilbert space and let ϕ : H → [0,+∞] be a proper (i.e.,
ϕ 6≡ +∞) lower semicontinuous convex functional with effective domain D(ϕ) :=
{w ∈ H : ϕ(w) < +∞}. Here, ϕ is supposed to be non-negative. However, it is
not restrictive in view of affine boundedness from below for each lower semicon-
tinuous convex functionals (see, e.g., [4, Proposition]). We shall discuss existence,
uniqueness and continuous dependence (on prescribed data) of (strong) solutions
u : (0, T ) → H to the equation,

d

dt
[k ∗ (u− u0)] (t) + ∂ϕ(u(t)) 3 f(t) in H, 0 < t < T, (1.1)

where T > 0, u0 ∈ H and f : (0, T ) → H are given, the convolution k ∗ (u − u0)
with a kernel k ∈ L1

loc([0,∞)) is defined by

(k ∗ w)(t) :=
∫ t

0

k(t− s)w(s) ds for w ∈ L1
loc([0,∞);H), t > 0

and ∂ϕ : H → 2H is the subdifferential operator of ϕ, that is, for w ∈ D(ϕ),

∂ϕ(w) := {ξ ∈ H : ϕ(z)− ϕ(w) ≥ (ξ, z − w)H for all z ∈ H} , (1.2)

with domain D(∂ϕ) := {w ∈ D(ϕ) : ∂ϕ(w) 6= ∅}. It is well known that every
subdifferential operator is maximal monotone in H (see [8]). Throughout this
paper, keeping Riemann-Liouville derivative in our mind, we assume that

(K): The kernel k ∈ L1
loc([0,+∞)) is nonnegative and nonincreasing. More-

over, there exists a nonnegative and nonincreasing kernel ` ∈ L1
loc([0,+∞))

such that

k ∗ ` ≡ 1.

A typical example of (k, `) satisfying (K) is the Riemann-Liouville kernel,

kβ(t) =
t−β

Γ(1− β)
, `β(t) =

tβ−1

Γ(β)
, 0 < β < 1. (1.3)

Then the nonlocal derivative (d/dt)[kβ ∗ (u − u0)] coincides with the Riemann-

Liouville derivative ∂βt (u− u0) of u− u0 of the order β (see also Remark 3.2).
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1.4. Related results. By convolving (1.1) with ` and by using (K), equation (1.1)
is reduced into a nonlinear Volterra equation,

u(t) +
(
` ∗ ξ

)
(t) = (` ∗ f)(t) + u0, ξ(t) ∈ ∂ϕ(u(t)), 0 < t < T.

Nonlinear Volterra equations (in Hilbert and Banach spaces) were already studied
in 1960’s (see, e.g., [36]) in the following general form,

u(t) +
(
a ∗ ξ

)
(t) = g(t), ξ(t) ∈ A(u(t)), 0 < t < T, (1.4)

where A : X → X is a nonlinear operator in a Hilbert or Banach space X, g :
(0, T ) → X is given and a : [0,+∞) → [0,+∞] is a kernel function. In [7, 6, 5],
Barbu studied an abstract nonlinear Volterra equation (1.4), which arises in the
study of mechanical systems with memory effects, under assumptions that a is
of class W 1,1

loc ([0,+∞)) (in particular, a is differentiable and finite at t = 0) and
positive, g ∈ W 1,2(0, T ;X) and A = ∂ϕ in a Hilbert space X. Due to the regularity
of the kernel, by differentiating both sides of (1.4) in time, we have

u′(t) + a(0)ξ(t) +
(
a′ ∗ ξ

)
(t) = g′(t), ξ(t) ∈ A(u(t)), 0 < t < T,

which can be regarded as a nonlocal (in time) perturbation problem of a (local)
nonlinear evolution equation. We also refer the reader to [15, 22, 32, 27, 11, 2].

Concerning singular kernels, Clément and Nohel [12, Theorem 3.1] studied (1.4)
for completely positive kernels a ∈ L1

loc([0,+∞)) and proved existence of a general-
ized solution, that is, a weak limit of certain class of approximate solutions. More-
over, the abstract theory is also applied to a couple of nonlocal (in time) PDEs (see
also [13]). The literature [23] may be also related to the present paper (see also [26,
Theorems 2 and 3]). Indeed, Theorem 1 of [23] is concerned with existence and
uniqueness of strong solutions for (1.4) under (K) and some assumptions, which
particularly require g of (1.4) is sufficiently smooth, e.g., g ∈ W 1,1

loc ([0,+∞);X) and
g′ ∈ BVloc([0,+∞);X). Moreover, evolution equations including nonlocal deriva-
tives (e.g., Riemann-Liouville derivative) are also studied in [10, 24, 14] by finding
out that nonlocal differential operators are m-accretive in Bochner spaces under
(K). On the other hand, most of existence results are established for generalized
solutions and, to the best of author’s knowledge, there had been no result corre-
sponding to strong (in time) solutions for a long while.

In [56], under a Gelfand triplet setting,

V ↪→ H ≡ H∗ ↪→ V ∗,

where V and V ∗ are a Hilbert space and its dual space, respectively, and H is a
pivot Hilbert space, Zacher proved existence and uniqueness of strong (in time)
solutions to the abstract equation

d

dt

(
[k ∗ (u− u0)] (t), v

)
H
+ b(t, u(t), v) = 〈f(t), v〉V for all v ∈ V,

where (·, ·)H and 〈·, ·〉V stand for an inner product of H and a duality pairing
between V and V ∗, respectively, k is a completely positive kernel, f : (0, T ) → V ∗

and u0 ∈ H are given and b(t, ·, ·) is a (time-dependent) bounded coercive bilinear
form defined on V , by employing two important devices: m-accretivity of nonlocal
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differential operators and nonlocal energy identities (see, e.g., Lemma 3.3 below).
In [51], convergence of solutions of nonlocal (in time) gradient flows in Euclidean
spaces Rd to equilibria is studied under (K) and additional assumptions (which
may exclude Riemann-Liouville and Caputo derivatives). We also refer the reader
to [55], [30], [52, 50, 53] on various properties of solutions such as boundedness,
regularity, decaying property, blow-up phenomena and so on. In [47], a nonlinear
variant of the above equation is studied and further extended to stochastic PDEs.

1.5. Construction of the paper. Section 2 presents main results. We shall
first give a definition of strong solutions to (1.1) and then state a theorem on
existence and uniqueness of strong solutions to (1.1) and continuous dependence
on prescribed data along with regularity of strong solutions and energy inequalities
for u0 ∈ D(ϕ) (see Theorem 2.3). It can be regarded as a fractional variant of
the celebrated Brézis-Kōmura theory for gradient flows in Hilbert spaces (see [8]
and [29]). Moreover, we shall give a proposition on initial condition (see Proposition
2.5). Indeed, it is delicate in which sense initial condition is fulfilled by strong
solutions to (1.1); it still holds true in a classical sense under a certain additional
assumption on `, which corresponds to the case that the order β of the Riemann-
Liouville fractional derivative is greater than 1/2. Let us emphasize that, even for
β ≤ 1/2, a strong solution is uniquely determined by each initial datum according
to Theorem 2.3, and therefore, there is a one-to-one correspondence between initial
data and strong solutions. A further smoothing property of strong solutions for u0
belonging to the closure of D(ϕ) in H will be also discussed under some additional
assumptions of kernels in Theorem 2.8. Furthermore, we shall also give a corollary
on a contraction property of the solution operator for (1.1) under some additional
assumptions (see Corollary 2.7).

Section 3 contains materials related to nonlocal time-derivatives which will be
used later. In §3.1, we arrange some preliminary facts on nonlocal time-derivatives.
In particular, we shall recall maximal monotonicity of nonlocal derivatives (d/dt)[k∗
u] under the assumption (K) as well as some well-known and useful facts for en-
ergy methods. In §3.2, we present a chain-rule for convex functionals and nonlocal
derivatives, which will play a crucial role to prove the main result. Subsection 3.3
is concerned with maximality of the sum of two maximal monotone operators, that
is, a standard differential operator and a nonlocal one. Indeed, the maximality of
the sum of two maximal monotone operators is not always obvious and one needs in
particular to pay careful attention for it, when the domains of two operators have
no interior point. This part will be also used to construct approximate solutions
for (1.1) (see §4.1) and to derive a priori estimates for them (see §4.2).
Section 4 is concerned with a proof of the main result (i.e., Theorem 2.3). It

consists of several steps. We first assume f ∈ W 1,2(0, T ;H) to derive additional
regularity of strong solutions and energy inequalities. Then we introduce approxi-
mate problems,

λ
duλ
dt

(t) +
d

dt
[k ∗ (uλ − u0)] (t) + ∂ϕλ(uλ(t)) 3 f(t) in H, 0 < t < T,
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where λ ∈ (0, 1), ∂ϕλ denotes the Yosida approximation of ∂ϕ, along with the
initial condition uλ(0) = u0 in a classical sense. Existence of strong solutions
for the approximate problems will be proved based on maximal monotone operator
theory and some facts developed in §3.3. Moreover, in §4.2, some a priori estimates
will be established by applying materials developed in §3.1 and 3.3. In §4.3, a
limiting procedure is discussed by proving that (uλ) forms a Cauchy sequence and
by employing standard techniques such as demiclosedness of maximal monotone
operators. Thus existence of a strong solution for (1.1) will be proved for f ∈
W 1,2(0, T ;H). In §4.5, we shall prove continuous dependence of strong solutions
on prescribed data. In §4.6, we shall set about proving existence of solutions to
(1.1) for f ∈ L2(0, T ;H). Here the nonlocal chain-rule developed in §3.2 will play
a crucial role. Furthermore, §4.7 is devoted to a proof of Corollary 2.7. Finally, we
shall give a proof for Theorem 2.8 in §4.8.
In Section 5, we shall treat a Lipschitz perturbation problem,

d

dt
[k ∗ (u− u0)] (t) + ∂ϕ(u(t)) + F (t, u(t)) 3 f(t) in H, 0 < t < T,

where F = F (t, w) is a mapping from (0, T ) × H into H, measurable in t and
Lipschitz continuous in w. Indeed, the Lipschitz perturbation theory enhances
applicability of the abstract theory to (time-fractional) nonlinear PDEs and also
extends the main result to abstract fractional gradient flows for the so-called λ-
convex functionals, which may not be convex for λ < 0. The proof relies on a
classical contraction argument. However, the choice of a certain function space
and the proof of a contraction property of an associated mapping are somewhat
delicate due to the nonlocal nature of the equation.

Section 6 concerns applications of the preceding abstract results to simple but
typical examples of nonlinear PDEs including time-fractional derivatives. More pre-
cisely, we shall apply the main results in §2 to time-fractional p-Laplace parabolic
equations in §6.1 and time-fractional porous medium and fast diffusion equations
in §6.2. Furthermore, the Lipschitz perturbation theory developed in §5 will be
applied to a time-fractional Allen-Cahn equation in §6.3.

2. Main results

This section is devoted to presenting an abstract theory for (1.1). Throughout
this paper, we are concerned with strong solutions of (1.1) in the following sense:

Definition 2.1 (Strong solution of (1.1)). A function u ∈ L2(0, T ;H) is called a
strong solution of (1.1) on [0, T ] if the following conditions are all satisfied :

(i) It holds that

k ∗ (u− u0) ∈ W 1,2(0, T ;H), [k ∗ (u− u0)] (0) = 0,

u(t) ∈ D(∂ϕ) for a.e. t ∈ (0, T ).

(ii) There exists ξ ∈ L2(0, T ;H) such that

d

dt
[k ∗ (u− u0)] (t) + ξ(t) = f(t) and ξ(t) ∈ ∂ϕ(u(t)) in H (2.1)
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for a.e. t ∈ (0, T ).

Remark 2.2 (Further integrability of strong solutions). (i) The definition of
strong solution entails

k ∗ ‖u− u0‖2H ∈ L∞(0, T ), k(·)‖u(·)− u0‖2H ∈ L1(0, T ) (2.2)

(see §A in Appendix). Furthermore, it also follows immediately that

ϕ(u(·)) ∈ L1(0, T )

from the definition of subdifferential.
(ii) Let k be the Riemann-Liouville kernel (of the order β) defined by (1.3).

Then the following regularity is directly derived from the definition above:

u ∈

{
L

2
1−2β

,∞(0, T ;H) if β ∈ (0, 1/2),

∩p<+∞L
p,∞(0, T ;H) if β = 1/2,

(2.3)

where Lp,∞ stands for the weak Lp-space. As for the case β > 1/2, we shall
obtain u ∈ C([0, T ];H) in Proposition 2.5 below.

Our main result reads,

Theorem 2.3 (Well-posedness of (1.1)). Assume that (K) is satisfied. For any
T > 0, f ∈ L2(0, T ;H) and u0 ∈ D(ϕ), the Cauchy problem (1.1) admits a unique
strong solution u ∈ L2(0, T ;H) on [0, T ]. Moreover, there exists a non-increasing
function F : [0, T ] → (−∞, 0] satisfying F(0) = 0 such that∥∥∥∥ d

dt
[k ∗ (u− u0)] (t)

∥∥∥∥2
H

+
d

dt
F(t) ≤ 0 for a.e. t ∈ (0, T ) (2.4)

and

F(t) =
[
k ∗
(
ϕ(u(·))− ϕ(u0)

)]
(t)−

∫ t

0

(
f(τ),

d

dt
[k ∗ (u− u0)] (τ)

)
H

dτ (2.5)

for a.e. t ∈ (0, T ).

In addition, if f ∈ W 1,2(0, T ;H), it is then satisfied that

u ∈ L∞(0, T ;H), ` ∗
∥∥∥∥ d

dt
[k ∗ (u− u0)](·)

∥∥∥∥2
H

∈ L∞(0, T ), ϕ(u(·)) ∈ L∞(0, T ),

(2.6)
and the following energy inequality holds :

1

2

(
` ∗
∥∥∥∥ d

dt
[k ∗ (u− u0)](·)

∥∥∥∥2
H

)
(t) + ϕ(u(t))

≤ ϕ(u0) + (f(t), u(t))H − (f(0), u0)H −
∫ t

0

(f ′(τ), u(τ))H dτ (2.7)

for a.e. t ∈ (0, T ). Moreover, (2.5) holds for all t ∈ [0, T ].

The unique strong solution continuously depends on prescribed data in the follow-
ing sense: let u1 and u2 be strong solutions on [0, T ] to (1.1) with (u0, f) replaced
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by (u0,1, f1), (u0,2, f2) ∈ H × L2(0, T ;H), respectively. Then w := u1 − u2 and
w0 := u0,1 − u0,2 fulfill∫ T

0

‖w(t)− w0‖2H dt ≤ C
(
‖f1 − f2‖2L2(0,T ;H) + ‖w0‖2H

)
(2.8)

for some constant C depending only on ‖k‖L1(0,T ) and ‖`‖L1(0,T ).

Remark 2.4 (Energy inequality). (i) The regularity (2.6) and the energy in-
equality (2.7) do not follow from Definition 2.1. Indeed, it can be obtained
by formally testing (1.1) with u′; however, u is not supposed to be of class
W 1,2(0, T ;H) in the definition. Hence, (2.7) can be regarded as an extra
regularity of strong solutions under the assumption f ∈ W 1,2(0, T ;H).

(ii) If f ≡ 0, then the inequality (2.4) can be regarded as a fractional variant
of Lyapunov property (in particular, the non-increase of the energy t 7→
ϕ(u(t))) of classical gradient flows (i.e., the case α = 1). In particular, if
k is given by (1.3), then the inequality can be formally regarded as∥∥∥∂βt (u− u0)

∥∥∥2
H
+ ∂βt

[
ϕ(u(·))− ϕ(u0)

]
≤ 0 for t > 0.

However, it does not imply the non-increase of the energy t 7→ ϕ(u(t))
due to the nonlocal nature of the fractional derivative. Indeed, it is known
that functions are not always monotone on some interval, even though
their fractional derivatives of some order β ∈ (0, 1) are signed on the
interval (see [16, Example 2.1]). On the other hand, the function t 7→
[k ∗ (ϕ(u(·))− ϕ(u0))](t) is non-increasing, provided that f ≡ 0.

(iii) As for the classical case α = 1, the following simpler relation holds true:

‖u1(t)− u2(t)‖H ≤ ‖u0,1 − u0,2‖H +

∫ t

0

‖f1(τ)− f2(τ)‖H dτ for all t > 0,

which particularly assures that (1.1) (with α = 1) generates a contraction
semigroup (see [8, Lemma 3.1]). Corollary 2.7 below is a counterpart for
fractional gradient flows. Here we also remark in advance that log `β is
convex and `β ∈ L1/(1−β),∞(0,+∞), when (kβ, `β) is given as in (1.3).

Let us next remark that the initial condition, u(0) = u0, holds true in a classical
sense, when the conjugate kernel ` belongs to L2(0, T ).

Proposition 2.5 (Initial condition in a classical sense). In addition to (K), assume
that ` ∈ L2(0, T ). Then for any f ∈ L2(0, T ;H) and u0 ∈ D(ϕ) the unique strong
solution has a continuous representative, u ∈ C([0, T ];H). Moreover, u(t) → u0
strongly in H as t→ 0+.

Proof. Convolve (2.1) with `. Then(
` ∗ d

dt
[k ∗ (u− u0)]

)
(t) + [` ∗ (ξ − f)] (t) = 0, ξ(t) ∈ ∂ϕ(u(t))
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for a.e. t ∈ (0, T ). Note by [k ∗ (u− u0)](0) = 0 that

` ∗ d

dt
[k ∗ (u− u0)] =

d

dt
[` ∗ k ∗ (u− u0)] =

d

dt
[1 ∗ (u− u0)] = u− u0

for a.e. t ∈ (0, T ). By ` ∈ L2(0, T ) and (d/dt)[k ∗ (u− u0)] ∈ L2(0, T ;H), we find
that u − u0 has a continuous representative with values in H on [0, T ], and then,
we denote it by u− u0 again. Thus we find that

‖u(t)− u0‖H = ‖[` ∗ (ξ − f)](t)‖H

≤
∫ t

0

`(s)‖ξ(t− s)− f(t− s)‖H ds ≤ ‖`‖L2(0,t)‖ξ − f‖H

for any t ∈ [0, T ]. Therefore we conclude that u(t) → u0 strongly in H as t →
0+. □

Remark 2.6 (Classical initial condition for fractional derivatives). As for the
Riemann-Liouville kernel kβ(t) = t−β/Γ(1 − β), the conjugate kernel `β(t) =
tβ−1/Γ(β) is of class L2(0, T ) for any T > 0 if and only if β > 1/2.

As in [11], we have

Corollary 2.7 (Contraction property). In addition to (K), assume that

` > 0 and log `(t) is convex. (2.9)

For i = 1, 2, let u0,i and fi fulfill the same assumptions as in Theorem 2.3. Let ui
be the unique strong solution on [0, T ] of (1.1) with u0 and f replaced by u0,i and
fi, respectively. Then it holds that

‖u1(t)− u2(t)‖H ≤ ‖u0,1 − u0,2‖H +
(
` ∗ ‖f1 − f2‖H

)
(t) (2.10)

for a.e. t ∈ (0, T ). In particular, if ` ∈ L2(0, T ), then (1.1) generates a non-
expansive (in H) mapping S(t) : D(ϕ) → D(ϕ), u0 7→ u(t) for t ∈ [0, T ], where
u(·) stands for the unique solution to (1.1) with the initial datum u0.

Finally, let us consider the case u0 ∈ D(ϕ)
H
, where one can no longer expect

that every strong solution u of (1.1) lies on the domain of the nonlocal derivative
(more precisely, k ∗ (u− u0) does not belong to W 1,2(0, T ;H)). Therefore we need
to modify the notion of strong solutions defined by Definition 2.1. The following
theorem is concerned with a further smoothing effect.

Theorem 2.8 (Smoothing effect for u0 ∈ D(ϕ)
H
). In addition to (K), suppose that

the function t 7→ t

(∫ t

0

`(s) ds

)−2

belongs to L1(0, T ). (2.11)
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Then for any f ∈ L2(0, T ;H) and u0 ∈ D(ϕ)
H
, there exists a function u ∈

L2(0, T ;H) such that

k ∗ ‖u− u0‖2H ∈ L∞(0, T ), k(·)‖u(·)− u0‖2H ∈ L1(0, T ),

ϕ(u(·)) ∈ L1(0, T ), t1/2
d

dt
[k ∗ (u− u0)] ∈ L2(0, T ;H),

u(t) ∈ D(∂ϕ) for a.e. t ∈ (0, T ),

[k ∗ (u− u0)](t) → 0 strongly in H as t→ 0+,

and there exists ξ ∈ L2
loc((0, T ];H) such that t1/2ξ ∈ L2(0, T ;H) and (2.1) holds

true. Furthermore, any two solutions u1, u2 constructed in this theorem sat-
isfy (2.8). In addition, if ` ∈ L2(0, T ) and (2.9) is satisfied, then u belongs to
C([0, T ];H) and u(0) = u0. Moreover, (2.10) holds for all t ∈ [0, T ].

3. Nonlocal time-differential operators

In §3.1, we shall arrange preliminary facts from a functional analytic theory for
nonlocal time-differential operators. In §3.2, a chain-rule for convex functionals
and nonlocal derivatives will be provided. In §3.3, we shall give a proposition on
the maximal monotonicity of the sum of the standard differential operator and
nonlocal one, which will play a crucial role to prove main results.

3.1. Preliminaries. Let T > 0 and p ∈ [1,+∞] be fixed and let X be a Ba-
nach space. We first recall the (ordinary) time-differential operator A : D(A) ⊂
Lp(0, T ;X) → Lp(0, T ;X) defined by

D(A) =
{
w ∈ W 1,p(0, T ;X) : w(0) = 0

}
and A(w) :=

dw

dt
for w ∈ D(A).

Then it is well known that A is linear and m-accretive in Lp(0, T ;X).

Let us next define a nonlocal time-differential operator B : D(B) ⊂ Lp(0, T ;X) →
Lp(0, T ;X) by

D(B) = {w ∈ Lp(0, T ;X) : k ∗ w ∈ D(A)} (3.1)

and

B(w) := A (k ∗ w) = d

dt
(k ∗ w) for w ∈ D(B). (3.2)

Then we note that

D(A) ⊂ D(B).
Indeed, for any u ∈ D(A), we find that (k ∗ u)(0) = 0, since k ∈ L1(0, T ) and
u ∈ W 1,p(0, T ;X) ⊂ L∞(0, T ;X). Moreover, we infer that k ∗ u ∈ W 1,p(0, T ;X)
by u(0) = 0 and u ∈ W 1,p(0, T ;X). Hence u ∈ D(B).

Remark 3.1 (Riemann-Liouville and Caputo derivatives). Assume that (K) is
satisfied. For u ∈ W 1,2(0, T ;H) taking an initial datum u(0) = u0 ∈ H, we find
that

d

dt
[k ∗ (u− u0)] (t) =

(
k ∗ du

dt

)
(t), 0 < t < T. (3.3)
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Hence the restriction of B onto D(A) coincides with the operator C defined on
D(C) := D(A) by

C(u) := k ∗ du

dt
for u ∈ D(C).

In particular, if k is given by (1.3), then B and C correspond to the Riemann-
Liouville and Caputo differential operators, respectively.

We recall that B is alsom-accretive in Lp(0, T ;X) under the assumption (K) (see,
e.g., [10], [24], [14], [51], [56]). Then for n ∈ N the resolvent Jn : Lp(0, T ;X) →
D(B) and the Yosida approximation Bn : Lp(0, T ;X) → Lp(0, T ;X) of B are given
by

Jn(w) :=

(
I +

1

n
B
)−1

(w), Bn(w) := n(I − Jn)(w) = B(Jnw) =
d

dt
(kn ∗ w),

where I stands for the identity mapping (we shall use the same letter for identity
mappings defined on any spaces unless any confusion may arise). Moreover, kn ∈
W 1,1(0, T ) is a nonincreasing and nonnegative kernel given by kn = nsn, where sn
is a unique solution of the Volterra equation,

sn + n(` ∗ sn) = 1 in (0,+∞).

Hence kn depends only on ` and n; in particular, it is independent of the choices of
X and p. Then a general theory for (linear) m-accretive operators (see e.g. [39], [4])
ensures that

Bn(w) → B(w) strongly in Lp(0, T ;X) as n→ ∞, (3.4)

provided that w ∈ D(B). Indeed, B is densely defined in Lp(0, T ;X), and hence,
for w ∈ D(B), we deduce that Bn(w) = B(Jn(w)) = Jn(B(w)) → B(w) strongly in
Lp(0, T ;X) as n→ +∞. Moreover, (3.4) particularly implies that

kn → k strongly in L1(0, T ) as n→ ∞,

by setting w ≡ 1, p = 1 and X = R.

Remark 3.2 (Class K1(α, θ)). Let us further define a class of kernels (see [44]
and [51, §2] for more details): h ∈ L1

loc([0,+∞)) is said to be of class K1(α, θ) for
some α ≥ 0 and θ > 0 if the following conditions hold true:

• h is of subexponential growth, i.e.,
∫∞
0
e−εt|h(t)| dt < +∞ for any ε > 0;

• h is 1-regular, i.e., there exists a constant c > 0 such that |λĥ′(λ)| ≤ c|ĥ(λ)|
for all Reλ > 0;

• h is θ-sectorial, i.e., | arg(ĥ)(λ)| ≤ θ for all Reλ > 0;
• it holds that

lim sup
λ→+∞

|ĥ(λ)|λα < +∞, lim inf
λ→+∞

|ĥ(λ)|λα > 0, lim inf
λ→0

|ĥ(λ)| > 0.

Let us give a couple of remarks:

(i) Suppose that h ∈ K1(α, θ) for some α ∈ (0, 1) and θ ∈ (0, π). If w ∈
L2(0, T ;H), h ∗ w ∈ W 1,2(0, T ;H) and (h ∗ w)(0) = 0, then h ∗ ‖w‖2H ∈
W 1,1(0, T ) and (h ∗ ‖w‖2H)(0) = 0 (see §2 of [51]).



12 GORO AKAGI

(ii) Any Riemann-Liouville kernel k(s) = s−β/Γ(1− β), 0 < β < 1, is of class
K1(β, βπ/2) (see Example 2.1 of [51]).

(iii) Let X be a Banach space such that the Hilbert transform is bounded in
Lp(R;X) for some p ∈ (1,+∞) (in particular, any Hilbert space satisfy
the property). If k is of class K1(α, θ) for some α ∈ (0, 1) and θ ∈ (0, π),
then the domain D(B) of B coincides with the space Hα,p

0 (0, T ;X) =
{u|[0,+∞) : u ∈ Hα,p(R;X) and supp u ⊂ [0,+∞)}, where Hα,p(R;X) is
the so-called Bessel potential space, i.e., u ∈ Hα,p(R;X) if and only if
u ∈ Lp(R;X) and there exists g ∈ Lp(R;X) whose Fourier transform ĝ(ρ)
coincides with |ρ|αû(ρ) (here û denotes the Fourier transform of u). We
refer the reader to [54, Corollary 2.1] and [56, Corollary 3.1] for more de-
tails.

Let us recall the following lemma, which will be frequently used later.

Lemma 3.3 (See Lemma 2.1 of [56]). Let H be a Hilbert space. For any h ∈
W 1,1(0, T ) and u ∈ L2(0, T ;H), it holds that(

d

dt
(h ∗ u) (t), u(t)

)
H

=
1

2

d

dt

(
h ∗ ‖u‖2H

)
(t) +

1

2
h(t)‖u(t)‖2H

− 1

2

∫ t

0

h′(s)‖u(t)− u(t− s)‖2H ds (3.5)

for a.e. t ∈ (0, T ). Here each term of the right-hand side belongs to L1(0, T ). In
particular, if h′ ≤ 0, then(

d

dt
(h ∗ u) (t), u(t)

)
H

≥ 1

2

d

dt

(
h ∗ ‖u‖2H

)
(t) +

1

2
h(t)‖u(t)‖2H for a.e. t ∈ (0, T ).

Here we emphasize that the identity above in (3.5) holds only for absolutely
continuous kernels. Hence one cannot directly apply it to k, ` satisfying only (K).

3.2. Chain-rule for convex functionals and nonlocal derivatives. The fol-
lowing proposition provides a chain-rule for convex functionals and nonlocal deriva-
tives (cf. Lemma 2.2. of [50]). Here we denote by ψ∗ the convex conjugate (or
Legendre transform) of a convex functional ψ : H → [0,+∞], that is,

ψ∗(g) := sup
v∈H

[
(g, v)H − ψ(v)

]
for g ∈ H. (3.6)

Then ψ∗ is proper, lower semicontinuous and convex, provided that so is ψ.

Proposition 3.4 (Nonlocal chain-rule for convex functionals). Let h ∈ W 1,1(0, T )
and ψ : H → [0,+∞] be a proper (i.e., ψ 6≡ +∞) convex functional. Let u ∈
L1(0, T ;H) be such that ψ(u(·)) ∈ L1(0, T ). Then for each t ∈ (0, T ) satisfying
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u(t) ∈ D(∂ψ) and for any u0 ∈ H and g ∈ ∂ψ(u(t)), it holds that(
d

dt
[h ∗ (u− u0)](t), g

)
H

=
d

dt

[
h ∗ ψ(u(·))

]
(t) + h(t)

[
(u(t)− u0, g)H − ψ(u(t))

]
+

∫ t

0

h′(τ)
[
(u(t− τ)− u(t), g)H + ψ(u(t))− ψ(u(t− τ))

]
dτ.

Moreover, assume that h′ ≤ 0. Then one has(
d

dt
[h ∗ (u− u0)](t), g

)
H

≥ d

dt

[
h ∗ ψ(u(·))

]
(t) + h(t) [ψ∗(g)− (u0, g)H ] .

In addition, if u0 ∈ D(ψ) and h ≥ 0, then(
d

dt
[h ∗ (u− u0)](t), g

)
H

≥ d

dt

[
h ∗ (ψ(u(·))− ψ(u0))

]
(t).

Proof. Let u ∈ L1(0, T ;H) be such that ψ(u(·)) ∈ L1(0, T ) and let t ∈ (0, T ) be
such that u(t) ∈ D(∂ϕ). Then we note that the function t 7→ [h∗ψ(u(·))](t) belongs
to W 1,1(0, T ). By straightforward computation, one finds that, for any u0 ∈ H and
g ∈ ∂ϕ(u(t)),(

d

dt
[h ∗ (u− u0)](t), g

)
H

= h(0) (u(t)− u0, g)H +

∫ t

0

h′(t− s) (u(s)− u0, g)H ds

= h(0)ψ(u(t)) + h(0)
[
(u(t)− u0, g)H − ψ(u(t))

]
+

∫ t

0

h′(t− s)ψ(u(s)) ds+

∫ t

0

h′(t− s)
[
(u(s)− u0, g)H − ψ(u(s))

]
ds

=
d

dt

[
h ∗ ψ(u(·))

]
(t)−

∫ t

0

h′(τ) dτ
[
(u(t)− u0, g)H − ψ(u(t))

]
+ h(t)

[
(u(t)− u0, g)H − ψ(u(t))

]
+

∫ t

0

h′(τ)
[
(u(t− τ)− u0, g)H − ψ(u(t− τ))

]
dτ

=
d

dt

[
h ∗ ψ(u(·))

]
(t) + h(t)

[
(u(t)− u0, g)H − ψ(u(t))

]
+

∫ t

0

h′(τ)
[
(u(t− τ)− u(t), g)H + ψ(u(t))− ψ(u(t− τ))

]
dτ.

Here we note by definition of ∂ψ that

(u(t− τ)− u(t), g)H + ψ(u(t))− ψ(u(t− τ)) ≤ 0.

On the other hand, we note by the Fenchel-Moreau identity that

(u(t), g)H − ψ(u(t)) = ψ∗(g) if and only if g ∈ ∂ψ(u(t))
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In addition, assume that u0 ∈ D(ψ) and h ≥ 0. It then follows that

(u(t)− u0, g)H − ψ(u(t)) ≥ −ψ(u0),
whence follows(

d

dt
[h ∗ (u− u0)](t), g

)
H

≥ d

dt

[
h ∗ ψ(u(·))

]
− ψ(u0)h(t)

≥ d

dt

[
h ∗
(
ψ(u(·))− ψ(u0)

)]
(t).

This completes the proof. □

Lemma 3.3 also follows from Proposition 3.4 by setting ψ(w) = (1/2)‖w‖2H .

3.3. Maximality of A+B. Throughout this subsection, we set X to be a Hilbert
space H and p = 2 and simply write H = L2(0, T ;H). We prove the following:

Proposition 3.5. Under the assumption (K), the sum A+B is maximal monotone
in H×H.

The maximality of the sum A+B has already been proved in a more direct way
(see, e.g., [10]). Here, we shall give an alternative proof based on a sufficient condi-
tion for the maximality of the sum of two maximal monotone operators. Moreover,
some part of the following argument will be also used to derive energy estimates
later.

Proof of Proposition 3.5. We first show that

(A(u),B(u))H =

(
du

dt
,
d

dt
(k ∗ u)

)
H
≥ 0 (3.7)

for each u ∈ D(A), that is,

u, k ∗ u ∈ W 1,2(0, T ;H), u(0) = 0 and (k ∗ u)(0) = 0.

Here we note by (K) that

A(u) =
du

dt
=

d2

dt2
(` ∗ k ∗ u) = d

dt

[
` ∗ d

dt
(k ∗ u)

]
. (3.8)

Set v := B(u) = (d/dt)(k ∗ u) ∈ H. Then it is satisfied that

` ∗ v = u ∈ D(A).

Hence v belongs to the domain of the operator Bℓ which is defined by (3.1) and
(3.2) with the kernel k replaced by `. Then by (K) there exists `n ∈ W 1,1(0, T )
such that (Bℓ)n = (d/dt)(`n ∗ · ) and `n → ` strongly in L1(0, T ). By Lemma 3.3,
we observe that

(A(u)(t),B(u)(t))H =

(
d

dt
(` ∗ v)(t), v(t)

)
H

≥ 1

2

d

dt

(
`n ∗ ‖v‖2H

)
(t) +

1

2
`n(t)‖v(t)‖2H + hn(t), (3.9)
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where hn ∈ L1(0, T ) is given by

hn(t) :=

(
d

dt
(` ∗ v)(t)− d

dt
(`n ∗ v)(t), v(t)

)
H

.

Here we note that hn → 0 strongly in L1(0, T ). Indeed, since Bℓ is linear maximal
monotone in H, we find by v ∈ D(Bℓ) that

(Bℓ)n(v) =
d

dt
(`n ∗ v) → Bℓ(v) =

d

dt
(` ∗ v) strongly in H,

which implies that hn → 0 strongly in L1(0, T ). Integrating both sides of (3.9)
over (0, T ), one has∫ T

0

(A(u)(t),B(u)(t))H dt ≥ 1

2

(
`n ∗ ‖v‖2H

)
(T ) +

∫ T

0

hn(t) dt

≥
∫ T

0

hn(t) dt→ 0 as n→ ∞,

where we also used the nonnegativity of `n and the fact that

(`n ∗ ‖v‖2H)(0) = 0.

Indeed, we note that `n ∗ ‖v‖2H is continuous by `n ∈ W 1,1(0, T ) and v ∈ H. Then∣∣(`n ∗ ‖v‖2H)(t)∣∣ ≤ ∫ t

0

|`n(t− s)|‖v(s)‖2H ds

≤ sup
τ∈[0,t]

|`n(τ)|
∫ t

0

‖v(s)‖2H ds→ 0 as t→ 0+.

Let Jn denote the resolvent of B, that is, Jn := (I + B/n)−1 : H → D(B). We
next claim that

Jn(D(A)) ⊂ D(A) for any n ∈ N.
Let u ∈ D(A). Then un := Jnu satisfies

un = u− 1

n
Bn(u) ∈ W 1,2(0, T ;H).

Indeed, we find by u ∈ W 1,2(0, T ;H) and kn ∈ W 1,1(0, T ) that

Bn(u) =
d

dt
(kn ∗ u) = kn(0)u+ k′n ∗ u ∈ W 1,2(0, T ;H).

Furthermore, we observe that un(0) = u(0)− 1
n
Bn(u)(0) and that

‖Bn(u)(t)‖H ≤ kn(0)‖u(t)‖H +

∫ t

0

|k′n(t− s)|‖u(s)‖H ds

≤ kn(0)‖u(t)‖H + sup
τ∈[0,t]

‖u(τ)‖H
∫ t

0

|k′n(σ)| dσ → 0

as t → 0+ by k′n ∈ L1(0, T ) and u ∈ D(A). Therefore Jnu = un ∈ D(A) if
u ∈ D(A).
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The rest of the proof runs as in the classical literature (see [8, Chap.II, §9 and
Chap.IV, §4]). However, for the reader’s convenience, we give the details of the
proof. Let us claim that

(A(u),Bn(u))H ≥ 0 for all u ∈ D(A) and n ∈ N. (3.10)

Indeed, since Jnu ∈ D(A) by u ∈ D(A), we observe by the last claim that

(A(u),Bn(u))H = (A(Jnu),Bn(u))H + (A(u)−A(Jnu),Bn(u))H

= (A(Jnu),B(Jnu))H + n (A(u)−A(Jnu), u− Jnu)H
(3.7)

≥ 0.

Thus (3.10) follows. Now, we are in position to show the maximality of A + B,
which is equivalent to the surjectivity of I +A+B on H. Let f ∈ H be arbitrarily
given. Since Bn is monotone and Lipschitz continuous in H, the sum A+Bn turns
out to be maximal monotone in H (see, e.g., [8, Lemma 2.4]). Thus one can take
un ∈ D(A) such that

un +A(un) + Bn(un) = f in H. (3.11)

Test both sides by un and employ the monotonicity of A and B to get

‖un‖H ≤ ‖f‖H,

which yields, up to a (not relabeled) subsequence,

un → u weakly in H.

Multiplying the both sides of (3.11) by A(un), we have

(un,A(un))H + ‖A(un)‖2H + (Bn(un),A(un))H = (f,A(un))H ,

which along with (3.10) implies

‖A(un)‖H ≤ ‖f‖H.

Multiply the both sides by Bn(un). It also follows by (3.10) that

‖Bn(un)‖H ≤ ‖f‖H.

Moreover, since the graphs of A and B are weakly closed in H (by the weak
closedness of linear maximal monotone operators), we assure that

A(un) → A(u) weakly in H,
Jnun → u weakly in H,

Bn(un) → B(u) weakly in H.

Indeed, we note that Jnun = un− (1/n)Bn(un), which derives the second assertion.
Moreover, the third assertion follows from Bn(un) = B(Jnun). Hence, the limit u
fulfills u+A(u) +B(u) = f . Consequently, A+B is maximal monotone in H. □

We also obtain the following corollary, which will be used later to derive a priori
estimates.
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Corollary 3.6. Under the assumption (K), it holds that∫ t

s

(A(u)(τ),B(u)(τ))H dτ

≥ 1

2

(
` ∗ ‖B(u)(·)‖2H

)
(t)− 1

2

(
` ∗ ‖B(u)(·)‖2H

)
(s)

+
1

2

∫ t

s

`(τ)‖B(u)(τ)‖2H dτ (3.12)

for a.e. s, t ∈ (0, T ) with s < t and u ∈ D(A). In particular, `(·)‖B(u)(·)‖2H is
integrable in (0, T ), and moreover,∫ t

0

(A(u)(τ),B(u)(τ))H dτ

≥ 1

2

(
` ∗ ‖B(u)(·)‖2H

)
(t) +

1

2

∫ t

0

`(τ)‖B(u)(τ)‖2H dτ (3.13)

for all t ∈ [0, T ] and u ∈ D(A). Furthermore, for all u ∈ D(A), the function
t 7→ (` ∗ ‖B(u)(·)‖2H)(t) is differentiable a.e. in (0, T ), and hence, it holds that

(A(u)(t),B(u)(t))H ≥ 1

2

d

dt

(
` ∗ ‖B(u)(·)‖2H

)
(t) +

1

2
`(t)‖B(u)(t)‖2H (3.14)

for a.e. t ∈ (0, T ). In addition, suppose that ` is of class K1(α, θ) for some α ∈ (0, 1)
and θ ∈ (0, π). Then the function t 7→ (` ∗ ‖B(u)(·)‖2H)(t) belongs to W 1,1(0, T )
(hence it is absolutely continuous on [0, T ]) and vanishes at t = 0.

Proof. Recall (3.9) in the proof of Proposition 3.5. Integrate both sides of (3.9)
over (s, t), 0 < s < t < T , to observe that∫ t

s

(A(u)(τ),B(u)(τ))H dτ

≥ 1

2

(
`n ∗ ‖B(u)(·)‖2H

)
(t)− 1

2

(
`n ∗ ‖B(u)(·)‖2H

)
(s) +

1

2

∫ t

s

`n(τ)‖B(u)(τ)‖2H dτ

−
∫ T

0

|hn(τ)| dτ.

Here we note that (`n ∗ ‖B(u)(·)‖2H) (s) = 0 if s = 0. Since `n → ` strongly in
L1(0, T ) and B(u) ∈ D(Bℓ) ⊂ L2(0, T ;H), by Fatou’s lemma, we have `(·)‖B(u)(·)‖2H ∈
L1(0, T ) and∫ t

s

(A(u)(τ),B(u)(τ))H dτ

≥ 1

2

(
` ∗ ‖B(u)(·)‖2H

)
(t)− 1

2

(
` ∗ ‖B(u)(·)‖2H

)
(s) +

1

2

∫ t

s

`(τ)‖B(u)(τ)‖2H dτ

for a.e. 0 < s < t < T (if s = 0, then the second term of the right-hand side can be
neglected). It also implies that the function t 7→ (`∗‖B(u)(·)‖2H)(t) is differentiable
a.e. in (0, T ). Therefore dividing both sides by t−s and taking a limit as s→ t−0,
we obtain (3.14) for a.e. t ∈ (0, T ).
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If ` ∈ K1(α, θ) and v := B(u) ∈ D(Bℓ), we deduce by [51, Proposition 2.1] (see
also Remark 3.2) that the function t 7→ (` ∗ ‖v‖2H)(t) belongs to W 1,1(0, T ) and
vanishes at t = 0. □

4. Proofs of main results

This section is devoted to proving main results stated in §2. We first assume
that

f ∈ W 1,2(0, T ;H) and u0 ∈ D(ϕ),

which will be always assumed until the end of §4.4. Furthermore, we also write
H = L2(0, T ;H) and use the same notation A and B as in §3.

4.1. Approximate problems. For λ ∈ (0, 1), we consider the following approxi-
mate problems:

(λA+ B) (uλ − u0) + ∂Φλ(uλ) 3 f in H, (4.1)

where Φλ : H → [0,+∞) is defined by

Φλ(w) :=

∫ T

0

ϕλ(w(t)) dt for w ∈ H

and ϕλ : H → [0,+∞) stands for the Moreau-Yosida regularization of ϕ defined
by

ϕλ(w) := min
z∈H

(
1

2λ
‖w − z‖2H + ϕ(z)

)
for w ∈ H.

Let us recall that the minimum of the above is attained by Jλw, where Jλ :=
(I + λ∂ϕ)−1, and moreover, ϕλ is Fréchet differentiable in H and its derivative
coincides with the Yosida approximation of ∂ϕ (see, e.g., [8, Proposition 2.11], for
more details). So we denote by ∂ϕλ the derivative of ϕλ as well as the Yosida
approximation of ∂ϕ.

As in Proposition 3.5, one can check that the sum λA+B is maximal monotone in
H. Moreover, the (translated) operator w 7→ ∂Φλ(w+u0) is maximal monotone and
D(∂Φλ) = H (see, e.g., [8, Proposition 2.16]). Then the sum λA+B+∂Φλ( · +u0)
turns out to be maximal monotone in H. Furthermore, it is also surjective in H,
since A is coercive in H (see, e.g., [8, Chap.II, §5], [4]); indeed, for any ε > 0, one
can take Cε > 0 such that, for all w ∈ D(A),

1

2
‖w(t)‖2H =

1

2

∫ t

0

d

dt
‖w(s)‖2H ds

=

∫ t

0

(w′(s), w(s))H ds ≤ εt sup
s∈[0,t]

‖w(s)‖2H + Cε

∫ t

0

‖w′(s)‖2H ds,

which implies

sup
t∈[0,T ]

‖w(t)‖2H ≤ C

∫ T

0

‖w′(s)‖2H ds for all w ∈ D(A)
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(in particular, A is coercive in H). Thus for each λ > 0 and f ∈ H, we obtain a
unique solution uλ ∈ W 1,2(0, T ;H) of (4.1) such that uλ − u0 ∈ D(A).

Here it is noteworthy that the regularization term λA is used not only for deriving
the coercivity (indeed, B is also coercive inH) but also for guaranteeing a regularity
of approximate solutions, i.e., uλ ∈ W 1,2(0, T ;H). Then B(uλ − u0) coincides with
C(uλ), and hence, one can employ fine properties of both nonlocal derivatives.

4.2. A priori estimates. We next establish a priori estimates. Fix v0 ∈ D(ϕ) 6=
∅.1 Let us first test (4.1) by uλ − v0 ∈ D(A). Then

λ

2

d

dt
‖uλ(t)− u0‖2H +

(
d

dt
[k ∗ (uλ − u0)](t), uλ(t)− u0

)
H

+ ϕλ(uλ(t))

≤ ϕλ(v0) + (f(t), uλ(t)− v0)H + (λA(uλ − u0) + B(uλ − u0), v0 − u0)H .

Here by Lemma 3.3, we note that(
d

dt
[k ∗ (uλ − u0)](t), uλ(t)− u0

)
H

=

(
d

dt
[kn ∗ (uλ − u0)](t), uλ(t)− u0

)
H

+ hn(t)

≥ 1

2

d

dt

(
kn ∗ ‖uλ − u0‖2H

)
(t) + hn(t),

where hn(t) is given by

hn(t) :=

(
d

dt
[(k − kn) ∗ (uλ − u0)] (t), uλ(t)− u0

)
H

.

Since kn → k strongly in L1(0, T ), t 7→ ‖uλ(t) − u0‖2H ∈ W 1,1(0, T ) and ‖uλ(0) −
u0‖2H = 0, one can deduce that

d

dt
(kn ∗ ‖uλ − u0‖2H) →

d

dt
(k ∗ ‖uλ − u0‖2H) strongly in L1(0, T ),

and moreover, as in the proof of Proposition 3.5,

hn → 0 strongly in L1(0, T ) as n→ +∞.

Thus, passing to the limit as n→ ∞, we obtain(
d

dt
[k ∗ (uλ − u0)] (t), uλ(t)− u0

)
H

≥ 1

2

d

dt

(
k ∗ ‖uλ − u0‖2H

)
(t)

for a.e. t ∈ (0, T ). Moreover, we see that

(λA(uλ − u0) + B(uλ − u0), v0 − u0)H

=
d

dt

(
λ(uλ(t)− u0) + [k ∗ (uλ − u0)](t), v0 − u0

)
H
.

1For simplicity, one may also take v0 = u0
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It follows that

λ

2

d

dt
‖uλ(t)− u0‖2H +

1

2

d

dt

(
k ∗ ‖uλ − u0‖2H

)
(t) + ϕλ(uλ(t))

≤ ϕλ(v0) + (f(t), uλ(t)− v0)H

+
d

dt

(
λ(uλ(t)− u0) + [k ∗ (uλ − u0)](t), v0 − u0

)
H

(4.2)

for a.e. t ∈ (0, T ). Integrating both sides of (4.2) over (0, t) and using ‖uλ(0) −
u0‖2H = (k ∗ ‖uλ − u0‖2H)(0) = 0 and uλ(0)− u0 = [k ∗ (uλ − u0)](0) = 0, we assure
that

λ

2
‖uλ(t)− u0‖2H +

1

2

(
k ∗ ‖uλ − u0‖2H

)
(t) +

∫ t

0

ϕλ(uλ(τ)) dτ

≤ Tϕ(v0) +

∫ t

0

‖f(τ)‖H‖uλ(τ)− v0‖H dτ

+
(
λ(uλ(t)− u0) + [k ∗ (uλ − u0)](t), v0 − u0

)
H

(4.3)

for all t ∈ [0, T ]. Here we further note that(
λ(uλ(t)− u0) + [k ∗ (uλ − u0)](t), v0 − u0

)
H

≤ λ

4
‖uλ(t)− u0‖2H +

1

4

(
k ∗ ‖uλ − u0‖2H

)
(t) +

(
1 + ‖k‖L1(0,T )

)
‖v0 − u0‖2H .

Hence it particularly follows that

1

4

(
k ∗ ‖uλ − u0‖2H

)
(t) ≤

∫ t

0

‖f(τ)‖H‖uλ(τ)− u0‖H dτ + C.

Convolving both sides with `, we infer that

1

4

∫ T

0

‖uλ(t)− u0‖2H dt ≤
(
` ∗
∫ t

0

‖f(τ)‖H‖uλ(τ)− u0‖H dτ

)
(t) + C

≤ ‖`‖L1(0,T )‖f‖L2(0,T ;H)‖uλ − u0‖L2(0,T ;H) + C,

which yields

1

8

∫ T

0

‖uλ(t)− u0‖2H dt ≤ 2‖`‖2L1(0,T )‖f‖2L2(0,T ;H) + C.

Therefore, recalling (4.3) again, we obtain

λ sup
t∈[0,T ]

‖uλ(t)− u0‖2H + sup
t∈[0,T ]

(
k ∗ ‖uλ − u0‖2H

)
(t)

+

∫ T

0

ϕλ(uλ(τ)) dτ +

∫ T

0

‖uλ(τ)− u0‖2H dτ ≤ C, (4.4)

where C depends on T , ‖f‖H, ‖k‖L1(0,T ), ‖`‖L1(0,T ), ‖u0‖H and ϕ(v0), ‖v0‖H , but
it is independent of λ.



FRACTIONAL GRADIENT FLOWS 21

We next test (4.1) by u′λ(t) = A(uλ − u0)(t) and integrate both sides over (0, t).
Then we see by (3.13) of Corollary 3.6 that

λ

∫ t

0

‖A(uλ − u0)(τ)‖2H dτ +
1

2

(
` ∗ ‖B(uλ − u0)(·)‖2H

)
(t) + ϕλ(uλ(t))

≤ ϕλ(u0) +

∫ t

0

(f(τ), u′λ(τ))H dτ

≤ ϕ(u0) +

∫ t

0

d

dτ
(f(τ), uλ(τ))H dτ −

∫ t

0

(f ′(τ), uλ(τ))H dτ (4.5)

for all t ∈ [0, T ]. Here we also used the chain-rule for subdifferentials (see [8,
Lemma 3.3]),

(∂Φλ(uλ)(t),A(uλ − u0)(t))H = (∂ϕλ(uλ(t)), u
′
λ(t))H =

d

dt
ϕλ(uλ(t)).

Moreover, note by uλ − u0 ∈ D(A) ⊂ D(B) that

‖uλ(t)− u0‖H =

∥∥∥∥ d

dt
[` ∗ k ∗ (uλ − u0)] (t)

∥∥∥∥
H

=

∥∥∥∥∫ t

0

`(t− s)

(
d

dt
[k ∗ (uλ − u0)]

)
(s) ds

∥∥∥∥
H

≤ ‖`‖1/2L1(0,t)

√(
` ∗ ‖B(uλ − u0)(·)‖2H

)
(t),

which implies

‖`‖−1
L1(0,T )‖uλ(t)− t‖2H ≤

(
` ∗ ‖B(uλ − u0)(·)‖2H

)
(t).

In particular, it follows that

λ

∫ t

0

‖A(uλ − u0)(τ)‖2H dτ +
1

4
‖`‖−1

L1(0,T )‖uλ(t)− t‖2H

+
1

4

(
` ∗ ‖B(uλ − u0)(·)‖2H

)
(t) + ϕλ(uλ(t))

≤ ϕ(u0) + (f(t), uλ(t))H − (f(0), u0)H −
∫ t

0

(f ′(τ), uλ(τ))H dτ.

By simple calculation along with (4.4) and the fact that f ∈ W 1,2(0, T ;H) ↪→
C([0, T ];H), we obtain

λ

∫ t

0

‖A(uλ − u0)(τ)‖2H dτ + ‖uλ(t)− u0‖2H

+
(
` ∗ ‖B(uλ − u0)(·)‖2H

)
(t) + ϕλ(uλ(t)) ≤ C (4.6)

for any t ∈ [0, T ]. Convolving both sides with k and recalling that ` ∗ k = 1, we
infer that ∫ T

0

‖B(uλ − u0)(τ)‖2H dτ ≤ C. (4.7)
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By comparison of terms in (4.1), it follows that

‖∂Φλ(uλ)‖2H =

∫ T

0

‖∂ϕλ(uλ(τ))‖2H dτ ≤ C. (4.8)

4.3. Convergence of approximate solutions. From the preceding a priori es-
timates (4.4), (4.6)–(4.8), we assure, up to a (not relabeled) subsequence, that

uλ → u weakly in H,
∂Φλ(uλ) → ξ weakly in H,

λA(uλ − u0) → 0 strongly in H,
B(uλ − u0) → B(u− u0) weakly in H, (4.9)

which yields B(u − u0) + ξ = f . Here we used the weak closedness of the linear
maximal monotone operator B in H to identify the limit of B(uλ − u0).

We next show that (uλ) forms a Cauchy sequence in H. Let uλ and uµ be
solutions to (4.1) with parameters λ and µ, respectively, and set w = uλ − uµ ∈
D(A). By subtracting equations,

d

dt
(k ∗ w) (t) + ∂ϕλ(uλ(t))− ∂ϕµ(uµ(t)) = µu′µ(t)− λu′λ(t).

Multiply both sides by w(t) and apply the so-called Kōmura’s trick (see, e.g., [8,
p.56]) to deal with the term (∂ϕλ(uλ(t)) − ∂ϕµ(uµ(t)), uλ(t) − uµ(t))H . Then it
follows that(

d

dt
(k ∗ w) (t), w(t)

)
H

≤
(
µ‖u′µ(t)‖H + λ‖u′λ(t)‖H

)
‖w(t)‖H

+
λ+ µ

4

(
‖∂ϕλ(uλ(t))‖2H + ‖∂ϕµ(uµ(t))‖2H

)
.

Moreover, note that(
d

dt
(k ∗ w) (t), w(t)

)
H

=

(
d

dt
(kn ∗ w) (t), w(t)

)
H

+ ĥn

≥ 1

2

d

dt

(
kn ∗ ‖w‖2H

)
(t) + ĥn,

where ĥn is given by

ĥn(·) :=
(

d

dt
[(k − kn) ∗ w](·), w(·)

)
H

→ 0 strongly in L1(0, T ).

Here we used the fact that w = uλ − uµ ∈ D(A). Moreover, note that

d

dt

(
kn ∗ ‖w‖2H

)
→ d

dt

(
k ∗ ‖w‖2H

)
strongly in L1(0, T )
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due to the fact that ‖w‖2H ∈ W 1,1(0, T ) and ‖w(0)‖2H = 0. Hence combining all
these facts and letting n→ ∞, one deduces that

1

2

d

dt

(
k ∗ ‖w‖2H

)
(t) ≤

(
µ‖u′µ(t)‖H + λ‖u′λ(t)‖H

)
‖w(t)‖H

+
λ+ µ

4

(
‖∂ϕλ(uλ(t))‖2H + ‖∂ϕµ(uµ(t))‖2H

)
for a.e. t ∈ (0, T ). Integrating both sides over (0, t) and employing (k ∗‖w‖2H)(0) =
0, we deduce that

1

2

(
k ∗ ‖w‖2H

)
(t) ≤

(
µ‖u′µ‖H + λ‖u′λ‖H

)
‖w‖H

+
λ+ µ

4

(
‖∂Φλ(uλ)‖2H + ‖∂Φµ(uµ)‖2H

)
for all t ∈ [0, T ],

which together with (K), (4.4), (4.6) and (4.8) implies

‖w‖2H ≤ C
(√

µ+
√
λ
)
+ C(λ+ µ) → 0

as λ, µ→ 0. Therefore (uλ) forms a Cauchy sequence in H. Thus we conclude that

uλ → u strongly in H, (4.10)

which along with (4.8) implies

Jλuλ → u strongly in H. (4.11)

Due to the demiclosedness of maximal monotone operators, we infer that

u ∈ D(∂Φ) and ξ ∈ ∂Φ(u),

where Φ : H → [0,+∞] is defined by

Φ(w) =

{∫ T

0
ϕ(w(t)) dt if ϕ(w(·)) ∈ L1(0, T ),

+∞ otherwise
for w ∈ H,

and hence, by [8, Proposition 2.16],

u(t) ∈ D(∂ϕ) and ξ(t) ∈ ∂ϕ(u(t)) for a.e. t ∈ (0, T ).

Consequently, the limit u satisfies the relation,

d

dt
[k ∗ (u− u0)] (t) + ∂ϕ(u(t)) 3 f(t) in H, 0 < t < T.

4.4. Energy inequality. We next prove (2.7) by recalling (4.5). By (4.10) and
(4.11), one can further take a (not relabeled) subsequence of (uλ) and a set I ⊂
(0, T ) satisfying |(0, T ) \ I| = 0 such that

uλ(t) → u(t) strongly in H,

Jλuλ(t) → u(t) strongly in H
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for all t ∈ I. Hence we have

1

2

(
` ∗ ‖B(uλ − u0)(·)‖2H

)
(t) + ϕλ(uλ(t))

≤ ϕ(u0) + (f(t), uλ(t))H − (f(0), u0)H −
∫ t

0

(f ′(τ), uλ(τ))H dτ

→ ϕ(u0) + (f(t), u(t))H − (f(0), u0)H −
∫ t

0

(f ′(τ), u(τ))H dτ (4.12)

for all t ∈ I. From the lower semicontinuity of ϕ, it follows that

lim inf
λ→0

ϕλ(uλ(t)) ≥ lim inf
λ→0

ϕ(Jλuλ(t)) ≥ ϕ(u(t)) for all t ∈ I.

Moreover, estimate the first term of the left-hand side from below as follows:

lim inf
λ→0

(
` ∗ ‖B(uλ − u0)(·)‖2H

)
(t) = lim inf

λ→0

∫ t

0

`(t− τ)‖B(uλ − u0)(τ)‖2H dτ

≥
∫ t

0

`(t− τ)‖B(u− u0)(τ)‖2H dτ (4.13)

=
(
` ∗ ‖B(uλ − u0)(·)‖2H

)
(t)

for all t ∈ I. Indeed, for each t ∈ I, we find by (4.12) that∫ t

0

∥∥∥√`(t− τ)B(uλ − u0)(τ)
∥∥∥2
H

dτ =
(
` ∗ ‖B(uλ − u0)(·)‖2H

)
(t) ≤ C,

whence follows, up to a subsequence (which may depend on t and will be not
relabeled), that √

`(t− ·)B(uλ − u0) → ζ weakly in L2(0, t;H)

for some ζ ∈ L2(0, t;H). We next identify the limit ζ. For any z ∈ C∞
c ((0, t);H),

let us take δ > 0 such that supp z ⊂ (δ, t− δ) and observe that∫ t

0

(√
`(t− τ)B(uλ − u0)(τ), z(τ)

)
H

dτ

=

∫ t−δ

δ

(√
`(t− τ)B(uλ − u0)(τ), z(τ)

)
H

dτ

=

∫ t−δ

δ

(
B(uλ − u0)(τ),

√
`(t− τ) z(τ)

)
H

dτ

(4.9)→
∫ t−δ

δ

(
B(u− u0)(τ),

√
`(t− τ) z(τ)

)
H

dτ

=

∫ t

0

(√
`(t− τ)B(u− u0)(τ), z(τ)

)
H

dτ.

Here we used the fact that 0 < `(t − τ) ≤ `(δ) < +∞ for τ ∈ (δ, t − δ). Thus

we deduce that ζ =
√
`(t− ·)B(u− u0). Therefore, the weak lower-semicontinuity

of norm yields the inequality in (4.13). Combining all these facts, we derive (2.7).
Furthermore, repeating a similar argument to (4.6), one can also verify (2.6).
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4.5. Uniqueness and continuous dependence on initial data. In this sub-
section, we shall prove the uniqueness of solutions for (1.1). The uniqueness of
strong solutions has more of a significance for fractional gradient flows. Indeed,
in Definition 2.1, it is still not clear whether each solution satisfies the initial con-
dition u(0) = u0 (or u(0+) = u0) in a classical sense (on the other hand, under
some additional integrability of `, one can check it. See Proposition 2.5). However,
the uniqueness ensures that each solution is uniquely determined by specifying an
initial datum as in (1.1).

Assume that f1, f2 ∈ L2(0, T ;H) and u0,1, u0,2 ∈ H, and moreover, u1 and
u2 are strong solutions of (1.1) with (u0, f) replaced by (u0,1, f1) and (u0,2, f2),
respectively, in the sense of Definition 2.1. Set w := u1 − u2 and w0 := u0,1 − u0,2.
Then we observe that w − w0 ∈ D(B). Subtracting equations, we see that

d

dt
[k ∗ (w − w0)] (t) + ∂ϕ(u1(t))− ∂ϕ(u2(t)) 3 f1(t)− f2(t) in H

for a.e. t ∈ (0, T ). Multiplying both sides by w and using the monotonicity of ∂ϕ,
one can derive

1

2

d

dt

(
kn ∗ ‖w − w0‖2H

)
(t)

≤ (f1(t)− f2(t), w(t))H −
(

d

dt
[(k − kn) ∗ (w − w0)] (t), w(t)− w0

)
H

−
(

d

dt
[k ∗ (w − w0)] (t), w0

)
H

for a.e. t ∈ (0, T ). The integration of both sides over (0, t) implies

1

2

(
kn ∗ ‖w − w0‖2H

)
(t)

≤
∫ t

0

‖f1(τ)− f2(τ)‖H‖w(τ)− w0‖H dτ +

∥∥∥∥ d

dt
[(k − kn) ∗ (w − w0)]

∥∥∥∥
H
‖w − w0‖H

− ([k ∗ (w − w0)](t), w0)H + ‖f1 − f2‖L1(0,t;H)‖w0‖H

for t ∈ [0, T ]. Here we used the facts that [k ∗ (w − w0)](0) = 0 by definition and
(kn ∗ ‖w(·)− w0‖2H) (0) = 0 by kn ∈ W 1,1(0, T ) ⊂ L∞(0, T ) and ‖w(·) − w0‖2H ∈
L1(0, T ). Recalling that kn → k strongly in L1(0, T ) and Bn(w−w0) → B(w−w0)
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strongly in H by w − w0 ∈ D(B) and using Fatou’s lemma, one obtains

1

2

(
k ∗ ‖w − w0‖2H

)
(t)

≤
∫ t

0

‖f1(τ)− f2(τ)‖H‖w(τ)− w0‖H dτ + ‖[k ∗ (w − w0)](t)‖H ‖w0‖H

+ ‖f1 − f2‖L1(0,t;H)‖w0‖H

≤
(∫ t

0

‖f1(τ)− f2(τ)‖2H dτ

)1/2(∫ t

0

‖w(τ)− w0‖2H dτ

)1/2

+
1

4

(
k ∗ ‖w − w0‖2H

)
(t) + ‖k‖L1(0,t)‖w0‖2H + ‖f1 − f2‖L1(0,t;H)‖w0‖H

for a.e. t ∈ (0, T ). Hence the convolution of both sides with ` further yields that

1

8

∫ T

0

‖w(t)− w0‖2H dt ≤ 2‖`‖2L1(0,T )‖f1 − f2‖2H

+ ‖`‖L1(0,T )

(
‖k‖L1(0,T )‖w0‖2H + ‖f1 − f2‖L1(0,T ;H)‖w0‖H

)
,

whence follows (2.8). In particular, if u0,1 = u0,2 and f1 = f2, it then follows that∫ T

0

‖w(t)‖2H dt = 0,

which implies w ≡ 0, i.e., u1 ≡ u2. This completes the proof of uniqueness.

4.6. Existence of a strong solution for f ∈ L2(0, T ;H). In this subsection,
we shall discuss existence of strong solutions to (1.1) for f ∈ L2(0, T ;H) and
u0 ∈ D(ϕ). Then one can take a sequence (fn) in W

1,2(0, T ;H) such that

fn → f strongly in H. (4.14)

Let un be the unique strong solution to (1.1) with f replaced by fn. Repeating a
similar argument as before, one can derive

sup
t∈[0,T ]

(
k ∗ ‖un − u0‖2H

)
(t) +

∫ T

0

ϕ(un(τ)) dτ +

∫ T

0

‖un(τ)− u0‖2H dτ ≤ C. (4.15)

Now, let us test (1.1) by Bm(un−u0) = (d/dt)[km ∗ (u−u0)]. Then by Proposition
3.4, since u0 ∈ D(ϕ), k′m ≤ 0 and km ≥ 0, it follows that(

d

dt
[k ∗ (un − u0)] (t),

d

dt
[km ∗ (un − u0)] (t)

)
H

+
d

dt

[
km ∗ (ϕ(un(·))− ϕ(u0))

]
(t)

≤
(
fn(t),

d

dt
[km ∗ (un − u0)] (t)

)
H

.

(4.16)
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Here we note that (d/dt)[km ∗ ϕ(u0)](t) = km(t)ϕ(u0). Integrating both sides of
(4.16) over (0, t), we find that∫ t

0

(
d

dt
[k ∗ (un − u0)] (τ),

d

dt
[km ∗ (un − u0)] (τ)

)
H

dτ +
[
km ∗ ϕ(un(·))

]
(t)

≤
∫ t

0

(
fn(τ),

d

dt
[km ∗ (un − u0)] (τ)

)
H

dτ + ϕ(u0)

∫ t

0

km(τ) dτ.

Letting m→ +∞ and recalling that km → k strongly in L1(0, T ), we deduce that∫ t

0

∥∥∥∥ d

dt
[k ∗ (un − u0)] (τ)

∥∥∥∥2
H

dτ +
[
k ∗ ϕ(un(·))

]
(t)

≤
∫ t

0

(
fn(τ),

d

dt
[k ∗ (un − u0)] (τ)

)
H

dτ + ϕ(u0)

∫ t

0

k(τ) dτ (4.17)

for all t ∈ [0, T ]. Here we used the fact that Bm(un − u0) → B(un − u0) strongly
in H and km ∗ ϕ(un(·)) → k ∗ ϕ(un(·)) strongly in C([0, T ]) as m → +∞ by
un − u0 ∈ D(B) and ϕ(un(·)) ∈ L∞(0, T ), respectively. By comparison of each
term in (1.1), it also follows that∫ T

0

‖ξn(τ)‖2H dτ ≤ C,

where ξn(t) is a section of ∂ϕ(un(t)) as in (2.1). Thus we obtain

un → u weakly in H,
B(un − u0) → B(u− u0) weakly in H,

ξn → ξ weakly in H,

which along with (4.15) ensures ϕ(u(·)) ∈ L1(0, T ). Furthermore, by (2.8), we infer
that

‖un − um‖H ≤ C‖fn − fm‖H → 0

as n,m → +∞. Thus we observe that (un) forms a Cauchy sequence in H, and
therefore,

un → u strongly in H.
Hence by virtue of the demiclosedness of maximal monotone operators, we conclude
that u(t) ∈ D(∂ϕ) and ξ(t) ∈ ∂ϕ(u(t)) for a.e. t ∈ (0, T ), and therefore, u solves
(1.1).

Finally, let us prove (2.4) along with (2.5). Recalling (4.16) with un and fn
replaced by u and f and integrating both sides over (s, t), we infer that the function

Fm(t) :=
[
km ∗

(
ϕ(u(·))− ϕ(u0)

)]
(t)−

∫ t

0

(f(τ),Bm(u− u0)(τ))H dτ

is nonincreasing and Fm(0) = 0. Then by Helly’s lemma, one can take a nonin-
creasing function F : [0, T ] → [−∞, 0] such that

Fm(t) → F(t) for all t ∈ [0, T ].
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Then F is differentiable a.e. in (0, T ), and moreover,∫ t

s

‖B(u− u0)(τ)‖2H dτ + F(t) ≤ F(s) for all 0 ≤ s < t ≤ T,

which together with the arbitrariness of s, t implies

‖B(u− u0)(t)‖2H +
d

dt
F(t) ≤ 0 for a.e. t ∈ (0, T ).

On the other hand, by ϕ(u(·)) ∈ L1(0, T ) and u−u0 ∈ D(B), one can observe that

Fm(t) →
[
k ∗
(
ϕ(u(·))− ϕ(u0)

)]
(t)−

∫ t

0

(f(τ),B(u− u0)(τ))H dτ (4.18)

for a.e. t ∈ (0, T ). Thus F is finite on [0, T ] and (2.4) and (2.5) follow. As for
the case that f ∈ W 1,2(0, T ;H), since ϕ(u(·)) belongs to L∞(0, T ), it follows that
km ∗ ϕ(u(·))) → k ∗ ϕ(u(·)) strongly in C([0, T ]) by using (K), and hence, (4.18)
holds for each t ∈ [0, T ]. This completes the proof of Theorem 2.3. □

4.7. Proof of Corollary 2.7. Let (fn) be a sequence in C∞([0, T ];H) such that

fn → f strongly in H (4.19)

as n → +∞. Moreover, let uλ be strong solutions on [0, T ] of the approximate
problems (4.1) with f replaced by fn. As in [11], convolve (4.1) with ` and rewrite
it by (K) as a Volterra equation,

uλ + λ−1` ∗ uλ = u0 + λ−1` ∗ Jλuλ + λ(λ−1`) ∗ (fn − λu′λ) , Jλ := (I + λ∂ϕ)−1

whose solution uλ can be also represented in terms of the resolvent kernel r ∈
L1
loc([0,+∞)) of λ−1` and s ∈ W 1,1

loc ([0,+∞)) satisfying

r + (λ−1`) ∗ r = λ−1`, s+ (λ−1`) ∗ s = 1

as

uλ = su0 + r ∗ [Jλuλ + λ (fn − λu′λ)] . (4.20)

Here we recall by (2.9) that r ≥ 0 and s ≥ 0 a.e. in (0,+∞) for any λ > 0 (see [11]).
Let us denote by ui,λ the approximate solution corresponding to u0,i and fi,n for
i = 1, 2. The subtraction of equation (4.20) for u1,λ, u2,λ implies

‖u1,λ(t)− u2,λ(t)‖H
≤ s‖u0,1 − u0,2‖H + (r ∗ ‖u1,λ − u2,λ‖H) (t) + λ (r ∗ ‖f1,n − f2,n‖H) (t)
+ λ2

(
r ∗ ‖u′1,λ − u′2,λ‖H

)
(t)
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for all t ∈ [0, T ]. Here we used the non-expansivity of the resolvent Jλ in H.
Convolving the above with λ−1` and adding it to the original one, we deduce that

‖u1,λ(t)− u2,λ(t)‖H + λ−1 (` ∗ ‖u1,λ − u2,λ‖H) (t)
≤ (s+ λ−1` ∗ s)‖u0,1 − u0,2‖H +

[(
r + λ−1` ∗ r

)
∗ ‖u1,λ − u2,λ‖H

]
(t)

+ λ
[(
r + λ−1` ∗ r

)
∗ ‖f1,n − f2,n‖H

]
(t)

+ λ2
[(
r + λ−1` ∗ r

)
∗ ‖u′1,λ − u′2,λ‖H

]
(t)

≤ ‖u0,1 − u0,2‖H + λ−1 (` ∗ ‖u1,λ − u2,λ‖H) (t) + (` ∗ ‖f1,n − f2,n‖H) (t)
+ λ

(
` ∗ ‖u′1,λ − u′2,λ‖H

)
(t).

As we have seen so far, by letting λ→ +0, it holds that ui,λ → ui,n and λu′i,λ → 0
strongly in H where ui,n is the unique solution to (1.1) with u0 and f replaced by
u0,i and fi,n for i = 1, 2. Thus noting that `∗‖u′1,λ−u′2,λ‖H is bounded in L2(0, T ),
we obtain

‖u1,n(t)− u2,n(t)‖H ≤ ‖u0,1 − u0,2‖H + (` ∗ ‖f1,n − f2,n‖H) (t)

for a.e. t ∈ (0, T ) and all n ∈ N. Furthermore, by virtue of (4.19), one can check
that `∗‖f1,n−f2,n‖H → `∗‖f1−f2‖H strongly in L2(0, T ). As in §4.6, for i = 1, 2,
we can verify that

ui,n → ui strongly in H
where ui is the unique strong solution of (1.1) with u0 = u0,i and f = fi on [0, T ],
as n→ +∞. Thus we obtain (2.10) for a.e. t ∈ (0, T ). In particular, if ` ∈ L2(0, T ),
then we deduce by Proposition 2.5 that u ∈ C([0, T ];H). Thus (2.10) holds for all
t ∈ [0, T ], and the family of operators S(t) : u0 ∈ D(ϕ) 7→ u(t) ∈ D(ϕ), where u(·)
is the unique strong solution to (1.1) with the initial datum u0, for t ∈ [0, T ] forms
a non-expansive solution operator in H. □

4.8. Proof of Theorem 2.8. This subsection is devoted to a proof of Theorem
2.8. One can take sequences (fn) and (u0,n) inW

1,2(0, T ;H) andD(ϕ), respectively,
such that

fn → f strongly in L2(0, T ;H) and u0,n → u0 strongly in H (4.21)

as n → +∞. Let un be the unique solution to (1.1) with f and u0 replaced by fn
and u0,n, respectively. We also denote by ξn(t) the section of ∂ϕ(un(t)) as in (2.1).
Fix v0 ∈ D(ϕ). Testing (1.1) with fn and u0,n by un − v0, one can derive

1

2

(
k ∗ ‖un − u0,n‖2H

)
(t) +

1

2

∫ t

0

k(τ)‖un(τ)− u0,n‖2H dτ +

∫ t

0

ϕ(un(τ)) dτ

≤ tϕ(v0) +

∫ t

0

(fn(τ), un(τ)− v0)H dτ − ([k ∗ (un − u0,n)](t), u0,n − v0)H (4.22)

for all t ∈ [0, T ]. As in §4.2, one can verify

sup
t∈[0,T ]

(
k ∗ ‖un − u0,n‖2H

)
(t)+

∫ T

0

ϕ(un(τ)) dτ+

∫ T

0

‖un(τ)−u0,n‖2H dτ ≤ C. (4.23)
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Multiply (1.1) with fn and u0,n by Bm(un − u0,n) and employ Proposition 3.4 to
observe that(

B(un − u0,n)(t),Bm(un − u0,n)(t)
)
H
+

d

dt

[
km ∗ ϕ(un(·))

]
(t)

≤
(
fn(t),Bm(un − u0,n)(t)

)
H
− km(t)

[
(un(t)− u0,n, ξn(t))H − ϕ(un(t))

]
≤
(
fn(t),Bm(un − u0,n)(t)

)
H
− km(t)ϕ

∗(ξn(t)) + km(t)‖u0,n‖H‖ξn(t)‖H .

Here we employed the Fenchel-Moreau identity, ϕ∗(ξn(t)) = (un(t), ξn(t))H−ϕ(un(t)).
Moreover, we recall that ϕ∗ is affinely bounded from below (see, e.g., [4]), i.e., there
exists a constant c0 ≥ 0 such that ϕ∗(ξ) ≥ −c0(‖ξ‖H + 1) for any ξ ∈ H. Multi-
plying both sides by t and integrating both sides over (0, t), we deduce that∫ t

0

τ
(
B(un − u0,n)(τ),Bm(un − u0,n)(τ)

)
H
dτ + t

[
km ∗ ϕ(un(·))

]
(t)

≤
∫ t

0

[
km ∗ ϕ(un(·))

]
(τ) dτ +

∫ t

0

τ
(
fn(τ),Bm(un − u0,n)(τ)

)
H
dτ

+ c0T

∫ t

0

km(τ) dτ + (‖u0,n‖H + c0)

∫ t

0

τkm(τ)‖ξn(τ)‖H dτ. (4.24)

Here, recalling the definition of km, that is, km(t) +m(` ∗ km)(t) = m, one finds by
(K) that

km(t) ≤
(

1

m
+

∫ t

0

`(s) ds

)−1

,

whence follows

tkm(t)
2 ≤ t

(∫ t

0

`(s) ds

)−2

=: h(t) ∈ L1(0, T )

by assumption. Hence by passing to the limit in (4.24) as m→ +∞, we obtain∫ t

0

τ ‖B(un − u0,n)(τ)‖2H dτ + t
[
k ∗ ϕ(un(·))

]
(t)

≤
∫ t

0

[
k ∗ ϕ(un(·))

]
(τ) dτ +

∫ t

0

τ
(
fn(τ),B(un − u0,n)(τ)

)
H
dτ

+ c0T‖k‖L1(0,T ) + (‖u0,n‖H + c0) ‖h‖1/2L1(0,T )

(∫ t

0

τ‖ξn(τ)‖2H dτ

)1/2

for all t ∈ [0, T ]. Thus by (1.1), it follows that

1

2

∫ t

0

τ ‖B(un − u0,n)(τ)‖2H dτ + t
[
k ∗ ϕ(un(·))

]
(t)

≤ ‖k‖L1(0,T )

∫ T

0

ϕ(un(·)) dτ + c0T‖k‖L1(0,T )

+ C

[∫ t

0

τ‖fn(τ)‖2H dτ + (‖u0,n‖H + c0)
2 ‖h‖L1(0,T )

]
, (4.25)
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which along with (4.23) and boundedness of fn and u0,n in H and H, respectively,
yields ∫ T

0

τ ‖B(un − u0,n)(τ)‖2H dτ + sup
t∈[0,T ]

(
t
[
k ∗ ϕ(un(·))

]
(t)
)
≤ C. (4.26)

By (1.1) again, it further follows that∫ T

0

τ‖ξn(τ)‖2H dτ ≤ C.

Thus we obtain

t1/2B(un − u0,n) → η̄ weakly in H,
t1/2ξn → ξ̄ weakly in H (4.27)

for some η̄, ξ̄ ∈ H. On the other hand, by virtue of (2.8), (un) forms a Cauchy
sequence in H, and therefore,

un → u strongly in H. (4.28)

Hence by virtue of the demiclosedness of maximal monotone operators, as in §4.3,
we can conclude that u(t) ∈ D(∂ϕ) and t−1/2ξ̄(t) ∈ ∂ϕ(u(t)) for a.e. t ∈ (0, T ). To
be more precise, we may replace (0, T ) by (δ, T ) for each δ ∈ (0, T ) throughout the
argument of §4.3 and note by (4.27) that ξn → t−1/2ξ̄ weakly in L2(δ, T ;H). Then
one can identify the limit ξ(t) for a.e. t ∈ (δ, T ) and finally employ the arbitrariness
of δ.

Now, we observe that, for any w ∈ C∞
c (0, T ),∫ T

0

B(un − u0,n)(t)w(t) dt =

∫ T

0

t1/2B(un − u0,n)(t)t
−1/2w(t) dt

→
∫ T

0

η̄(t)t−1/2w(t) dt weakly in H.

On the other hand,∫ T

0

B(un − u0,n)(t)w(t) dt = −
∫ T

0

[k ∗ (un − u0,n)] (t)w
′(t) dt

→ −
∫ T

0

[k ∗ (u− u0)] (t)w
′(t) dt strongly in H.

Thus

t−1/2η̄ =
d

dt
[k ∗ (u− u0)]

in the distributional sense. In particular, it follows that η̄(t) = t1/2(d/dt)[k ∗ (u−
u0)](t) for a.e. t ∈ (0, T ).
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We next improve the regularity of the limit u. To this end, let us recall (4.22)
again and pass to the limit as n→ +∞. We here note that∥∥(k ∗ ‖un − u0,n‖2H

)
(t)−

(
k ∗ ‖u− u0‖2H

)
(t)
∥∥
L1(0,T )

≤ ‖k‖L1(0,T )

∫ t

0

∣∣‖un(τ)− u0,n‖2H − ‖u(τ)− u0‖2H
∣∣ dτ

≤ ‖k‖L1(0,T )‖un − u− u0,n + u0‖H‖un + u− u0,n − u0‖H → 0,

which implies, up to a subsequence, that(
k ∗ ‖un − u0,n‖2H

)
(t) →

(
k ∗ ‖u− u0‖2H

)
(t) for a.e. t ∈ (0, T ).

Hence by virtue of (4.28) and Fatou’s lemma, we deduce that

1

2

(
k ∗ ‖u− u0‖2H

)
(t) +

1

2

∫ t

0

k(τ)‖u(τ)− u0‖2H dτ +

∫ t

0

ϕ(u(τ)) dτ

≤ tϕ(v0) +

∫ t

0

(f(τ), u(τ)− v0)H dτ − ([k ∗ (u− u0)](t), u0 − v0)H

for a.e. t ∈ (0, T ). In particular, it also holds that k ∗ ‖u − u0‖2H ∈ L∞(0, T ),
k(·)‖u(·)− u0‖2H ∈ L1(0, T ) and ϕ(u(·)) ∈ L1(Ω). Furthermore, we observe that

([k ∗ (u− u0)](t), u0 − v0)H ≤ ‖k‖1/2L1(0,t)(k ∗ ‖u− u0‖2H)(t)1/2‖u0 − v0‖H .

Thus one can take a set I ⊂ (0, T ) such that |(0, T ) \ I| = 0 and

1

4

(
k ∗ ‖u− u0‖2H

)
(t) +

1

2

∫ t

0

k(τ)‖u(τ)− u0‖2H dτ +

∫ t

0

ϕ(u(τ)) dτ

≤ tϕ(v0) +

∫ t

0

(f(τ), u(τ)− v0)H dτ + ‖k‖L1(0,t)‖u0 − v0‖2H

for all t ∈ I. Therefore for any sequence (sn) in I converging to 0+, it follows that
(k ∗ ‖u− u0‖2H)(sn) → 0, whence follows that [k ∗ (u− u0)](sn) → 0 strongly in H.
On the other hand, since h(t) := t1/2[k ∗ (u − u0)](t) belongs to W

1,r(0, T ;H) for
any r ∈ (1, 2), we observe that∥∥s1/2[k ∗ (u− u0)](s)− t1/2[k ∗ (u− u0)](t)

∥∥
H
≤
∫ s

t

∥∥∥∥dhdτ (τ)
∥∥∥∥
H

dτ

≤ ‖dh/dτ‖Lr(0,T ;H)|s− t|1/r′ ,

where r′ = r/(r − 1) > 2, for any 0 ≤ t < s ≤ T . Now, let (tn) be a sequence in
(0, T ) such that tn → 0+. Then one can take a sequence (sn) in I such that

0 ≤ sn − tn < tr
′

n ,

and hence,∥∥(sn/tn)1/2[k ∗ (u− u0)](sn)− [k ∗ (u− u0)](tn)
∥∥
H
≤ ‖dh/dt‖Lr(0,T ;H)t

1/2
n .

Accordingly, we deduce that k ∗ (u− u0)(tn) → 0 strongly in H.



FRACTIONAL GRADIENT FLOWS 33

Finally, if ` ∈ L2(0, T ) and (2.9) is fulfilled, then thanks to Corollary 2.7 we have

sup
t∈[0,T ]

‖un(t)− um(t)‖H ≤ ‖u0,n − u0,m‖H + ‖`‖L2(0,T )‖fn − fm‖H → 0

as n,m → +∞. Consequently, un converges to u strongly in C([0, T ];H) as n →
+∞, and moreover, u satisfies the initial condition u(0) = u0 in the classical
sense. □

5. Lipschitz perturbation problem

This section is devoted to discussing well-posedness of the following Lipschitz
perturbation problem for (1.1):

d

dt
[k ∗ (u− u0)] (t) + ∂ϕ(u(t)) + F (t, u(t)) 3 f(t) in H, 0 < t < T, (5.1)

where F : [0, T ]×H → H satisfies:

(L): The function t 7→ F (t, w) is strongly measurable on (0, T ) with values
in H for each w ∈ H, and moreover, there exists L ≥ 0 such that

‖F (t, u)− F (t, v)‖H ≤ L‖u− v‖H
for all u, v ∈ H and for a.e. t ∈ (0, T ). There exists u∗ ∈ L2(0, T ;H) such
that the function t 7→ F (t, u∗(t)) belongs to L

2(0, T ;H).

Then it follows that

‖F (t, u)‖H ≤ L‖u‖H + ρ(t) for all u ∈ H and a.e. t ∈ (0, T ),

where ρ(·) := L‖u∗(·)‖H + ‖F (·, u∗(·))‖H ∈ L2(0, T ), and hence, the mapping
u 7→ F (·, u(·)) turns out to be Lipschitz continuous in L2(0, T ;H). Our result
reads,

Theorem 5.1 (Lipschitz perturbation). Assume that (K) and (L) are satisfied.
Then for any f ∈ L2(0, T ;H) and u0 ∈ D(ϕ), the Cauchy problem (5.1) admits a
unique strong solution u ∈ L2(0, T ;H) on [0, T ].

Before proving the theorem above, we remark that a standard extension strategy
(i.e., a local (in time) solution is first constructed and then extended onto an
arbitrary interval) cannot be applied to construct a global (in time) solution for
(5.1). Indeed, the concatenation of two solutions may not solve the equation due
to the nonlocal nature of (5.1). Here we shall set up a weighted function space in
order to construct a global solution directly.

Proof. Let µ > 1 be a number which will be determined later. Set X := {w ∈
L2(0, T ;H) : ‖w‖X < +∞}, where ‖ · ‖X is given by

‖w‖2X := ess sup
t∈(0,T )

[
e−µt

(
k ∗ ‖w‖2H

)
(t)
]

for w ∈ X .

Then, we find that (X , ‖ · ‖X ) is a Banach space (see Appendix C). Now, define a
mapping S : X → X by

S(v) = u for v ∈ X ,
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where u stands for the unique solution of the Cauchy problem

d

dt
[k ∗ (u− u0)] (t) + ∂ϕ(u(t)) 3 f(t)− F (t, v(t)) in H, 0 < t < T. (5.2)

By (L), we infer that F (·, v(·)) ∈ L2(0, T ;H) for v ∈ L2(0, T ;H). By Theorem
2.3, (5.2) admits a unique solution u ∈ X on [0, T ] for each v ∈ X , and therefore,
S : X → X is well defined. We next prove that S is a contraction mapping in X
by choosing µ > 0 large enough. To this end, let v1, v2 ∈ X and set u1 = S(v1) and
u2 = S(v2). Subtracting equations and testing it by u1 − u2 ∈ D(B), we deduce
that

1

2

(
k ∗ ‖u1 − u2‖2H

)
(t) ≤ L

∫ t

0

‖v1(τ)− v2(τ)‖H‖u1(τ)− u2(τ)‖H dτ

for all t ∈ [0, T ]. Now, let us recall by (K) that∫ t

0

h(τ) dτ = (` ∗ k ∗ h) (t) for h ∈ L1(0, t).

Moreover, note that

(` ∗ k ∗ h) (t) = eµt
∫ t

0

`(t− τ)e−µ(t−τ)e−µτ (k ∗ h) (τ) dτ.

Then(
k ∗ ‖u1 − u2‖2H

)
(t)

≤ 2Leµt
∫ t

0

`(t− τ)e−µ(t−τ)e−µτ [k ∗ (‖v1 − v2‖H‖u1 − u2‖H)] (τ) dτ

≤ 2Leµt
∫ t

0

`(t− τ)e−µ(t−τ)e−µτ
(
k ∗ ‖v1 − v2‖2H

)1/2
(τ)
(
k ∗ ‖u1 − u2‖2H

)1/2
(τ) dτ

for all t ∈ [0, T ]. Here we used the fact by Hölder’s inequality that

h ∗ (FG) ≤ (h ∗ F 2)1/2(h ∗G2)1/2

for nonnegative functions h ∈ L1(0, t) and F,G ∈ L2(0, t). Therefore by Young’s
inequality, we deduce that

sup
t∈[0,T ]

[
e−µt

(
k ∗ ‖u1 − u2‖2H

)
(t)
]

≤ 2L

(∫ T

0

`(τ)e−µτ dτ

)
ess sup
τ∈(0,T )

[
e−µτ

(
k ∗ ‖v1 − v2‖2H

)1/2
(τ)
(
k ∗ ‖u1 − u2‖2H

)1/2
(τ)
]

≤ 2Laµ

(
ess sup
τ∈(0,T )

[
e−µτ

(
k ∗ ‖v1 − v2‖2H

)
(τ)
])1/2(

sup
τ∈[0,T ]

[
e−µτ

(
k ∗ ‖u1 − u2‖2H

)
(τ)
])1/2

,

where aµ is a positive constant given by

aµ :=

∫ T

0

`(τ)e−µτ dτ → 0+ as µ→ +∞.
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Thus

sup
τ∈[0,T ]

[
e−µτ

(
k ∗ ‖u1 − u2‖2H

)
(τ)
]
≤ 4L2a2µ ess sup

τ∈(0,T )

[
e−µτ

(
k ∗ ‖v1 − v2‖2H

)
(τ)
]
.

Now, choosing µ > 1 large enough, we find that

4L2a2µ < 1.

Therefore S : X → X turns out to be a contraction mapping. Thanks to Banach’s
contraction mapping principle, we conclude that S possesses a unique fixed point
u, that is, S(u) = u. Equivalently, u solves (5.1) on [0, T ]. The uniqueness also
follows from the contraction property. □

The argument of the proof above can be also applied to derive a continuous
dependence of strong solutions for (5.1) on prescribed data. Indeed, let u0,1, u0,2 ∈
D(ϕ) and let f1, f2 ∈ L2(0, T ;H). We denote by u1, u2 the unique strong solutions
of (5.1) with u0 = u0,1, u0,2 and f = f1, f2, respectively. As in the proof of Theorem
5.1, setting w := u1 − u2, w0 := u0,1 − u0,2 and g := f1 − f2, subtracting equations
for u1 and u2 and multiplying it by w, for any K > 0, one can verify that

1

2

(
k ∗ ‖w − w0‖2H

)
(t)

≤ 1

2K

∫ t

0

‖g(τ)‖2H dτ +

(
K

2
+ L

)∫ t

0

‖w(τ)‖2H dτ −
(
[k ∗ (w − w0)] (t), w0

)
H

for all t ∈ [0, T ]. Moreover, we have(
k ∗ ‖w − w0‖2H

)
(t)

≤ K−1

∫ t

0

‖g(τ)‖2H dτ + (K + 2L) eµt
∫ t

0

`(t− τ)e−µ(t−τ)e−µτ
(
k ∗ ‖w‖2H

)
(τ) dτ

+ 2‖k‖1/2L1(0,T )‖w0‖H(k ∗ ‖w‖2H)1/2(t) + 2‖k‖L1(0,T )‖w0‖2H

≤ K−1

∫ t

0

‖g(τ)‖2H dτ + (K + 2L) eµtaµ sup
τ∈[0,T ]

[
e−µτ

(
k ∗ ‖w‖2H

)
(τ)
]

+ 2‖k‖1/2L1(0,T )‖w0‖H(k ∗ ‖w‖2H)1/2(t) + 2‖k‖L1(0,T )‖w0‖2H ,

which implies

1

2

(
k ∗ ‖w‖2H

)
(t)

≤ K−1

∫ t

0

‖g(τ)‖2H dτ + (K + 2L) eµtaµ sup
τ∈[0,T ]

[
e−µτ

(
k ∗ ‖w‖2H

)
(τ)
]

+ 2‖k‖1/2L1(0,T )‖w0‖H(k ∗ ‖w‖2H)1/2(t) + 3‖k‖L1(0,T )‖w0‖2H .
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Therefore choosing µ so large that (K + 2L)aµ < 1/4, we deduce that

1

4
sup

τ∈[0,T ]

[
e−µτ

(
k ∗ ‖w‖2H

)
(τ)
]

≤ K−1

∫ T

0

‖g(τ)‖2H dτ + 2‖k‖1/2L1(0,T )‖w0‖H sup
τ∈[0,T ]

[
e−µτ

(
k ∗ ‖w‖2H

)
(τ)
]1/2

+ 3‖k‖L1(0,T )‖w0‖2H , (5.3)

which ensures the continuous dependence of strong solutions u for (5.1) on initial
data u0 and f .

Remark 5.2 (Smoothing effect). As in Therefore 2.8, under (2.11), one can verify

that, for any f ∈ L2(0, T ;H) and u0 ∈ D(ϕ)
H
, the Cauchy problem (5.1) possesses

a function u ∈ L2(0, T ;H) satisfying similar conditions to Theorem 2.8. In addi-
tion, if ` ∈ L2(0, T ) and (2.9) is fulfilled, then u ∈ C([0, T ];H) and u(0) = u0.
Indeed, let (u0,n) be a sequence in D(ϕ) such that u0,n → u0 strongly in H. For
n,m ∈ N, we denote by un, um the unique strong solutions of (5.1) with initial data
u0,n, u0,m, respectively. By (5.3), we obtain

sup
τ∈[0,T ]

[
e−µτ

(
k ∗ ‖un − um‖2H

)
(τ)
]
→ 0 as n,m→ +∞,

which also yields that (un) forms a Cauchy sequence in L2(0, T ;H). Therefore
un → u strongly in L2(0, T ;H). The rest of proof runs as in the proof of Theorem
2.8, since F (·, un(·)) → F (·, u(·)) strongly in L2(0, T ;H).

6. Applications to fractional PDEs

In this section, we shall apply the preceding abstract results to time-fractional
nonlinear parabolic equations. For simplicity, we shall treat only Dirichlet prob-
lems, however, one can also apply the results to other boundary conditions, e.g.,
Neumann, Robin and nonlinear boundary conditions such as

−∂νu ∈ β(u) on ∂Ω,

where ∂Ω is the boundary of a domain Ω ⊂ RN , ∂ν stands for the normal derivative
and β is a maximal monotone graph in R and which is derived from a Stefan-
Boltzmann radiation law. On the other hand, one need to pay careful attention
to consider other boundary conditions (e.g., Neumann problem) for time-fractional
porous medium / fast diffusion equations (see §6.2).

Let Ω be a domain of RN and let T > 0. We denote by ∂βt the Riemann-Liouville
time-fractional derivative defined by

∂βt w(x, t) = ∂t [kβ ∗ w(x, ·)] (t) = ∂t

(∫ t

0

kβ(t− s)w(x, s) ds

)
,

where kβ is a kernel given by (1.3), 0 < β < 1 and kβ fulfills (K) with the conju-
gate kernel `β given by (1.3). Moreover, it is known that kβ is of class K1(β, π/2)
(see [51]). Furthermore, (2.11) also holds for any 0 < β < 1. Subsections 6.1 and
6.2 are devoted to time-fractional p-Laplace parabolic equations and time-fractional
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porous medium and fast diffusion equations, respectively. These time-fractional
nonlinear problems have already been treated in [50], where optimal decay esti-
mates are provided without ensuring existence of solutions (see also [52]). Fur-
thermore, in Subsection 6.3 we shall also handle a time-fractional variant of the
so-called Allen-Cahn equation, which is an L2-gradient flow of a (possibly) non-
convex free energy functional and describes various phase-separation phenomena.
We also emphasize that there are much more applications of the preceding ab-
stract results to nonlinear PDEs with time-fractional derivatives, as the classical
Brézis-Kōmura theory does to those with the standard time-derivative.

6.1. Time-fractional p-Laplace parabolic equation. This subsection is con-
cerned with time-fractional parabolic equations involving the so-called p-Laplacian
given by

∆pu := div
(
|∇u|p−2∇u

)
, 1 < p < +∞.

Let us consider the Cauchy-Dirichlet problem,

∂βt (u− u0)−∆pu = f in Ω× (0, T ), (6.1)

u = 0 in ∂Ω× (0, T ), (6.2)

where 1 < p < ∞, 0 < β < 1 and u0 = u0(x) and f = f(x, t) are given. In order
to apply Theorems 2.3 and 2.8, we set H = L2(Ω) and

ϕ(w) =

{
1
p

∫
Ω
|∇w(x)|p dx if w ∈ W 1,p

0 (Ω) ∩ L2(Ω),

+∞ otherwise.
(6.3)

Then ϕ is proper, lower semicontinuous and convex in H with D(ϕ) = W 1,p
0 (Ω) ∩

L2(Ω), and moreover, ∂ϕ(w) coincides with −∆pw equipped with the homogeneous

Dirichlet boundary condition for w ∈ D(∂ϕ) = {w ∈ W 1,p
0 (Ω) ∩ L2(Ω) : −∆pw ∈

L2(Ω)}. Hence the Cauchy-Dirichlet problem (6.1), (6.2) is reduced to the evolution
equation (1.1). Therefore Theorems 2.3 and 2.8 ensure

Theorem 6.1. For any f ∈ L2(0, T ;L2(Ω)) and u0 ∈ W 1,p
0 (Ω)∩L2(Ω), the Cauchy-

Dirichlet problem (6.1), (6.2) admits a unique L2(Ω) solution u = u(x, t) such that

u ∈


L2/(1−2β),∞(0, T ;L2(Ω)) if β ∈ (0, 1/2),

∩p<∞L
p,∞(0, T ;L2(Ω)) if β = 1/2,

C([0, T ];L2(Ω)) if β ∈ (1/2, 1),

(6.4)

u ∈ Lp(0, T ;W 1,p
0 (Ω)), u− u0 ∈ Hβ,2

0 (0, T ;L2(Ω)), (6.5)

∆pu ∈ L2(0, T ;L2(Ω)). (6.6)

For any u0 ∈ L2(Ω), there exists a function u ∈ L2(0, T ;L2(Ω)) solving (6.1), (6.2)
almost everywhere such that u ∈ Lp(0, T ;W 1,p

0 (Ω)), t1/2∆pu ∈ L2(0, T ;L2(Ω)),

t1/2∂βt (u − u0) ∈ L2(0, T ;L2(Ω)) and [kβ ∗ (u − u0)](t) → 0 strongly in L2(Ω) as
t → 0+. In addition, if β > 1/2, then u ∈ C([0, T ];L2(Ω)) and u(+0) = u0 in
L2(Ω).
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6.2. Time-fractional porous medium and fast diffusion equations. In this
subsection, we shall deal with time-fractional porous medium and fast diffusion
equations,

∂βt (u− u0)−∆
(
|u|m−2u

)
= f in Ω× (0, T ), (6.7)

u = 0 in ∂Ω× (0, T ), (6.8)

where 1 < m < ∞, 0 < β < 1 and u0 = u0(x) and f = f(x, t) are given.
Throughout this section, we assume that the Poincaré inequality holds (e.g., Ω is
bounded). Then the Laplace operator −∆ : H1

0 (Ω) → H−1(Ω) is invertible. We
set

H = H−1(Ω), ϕ(w) =

{
1
m

∫
Ω
|w(x)|m dx if w ∈ Lm(Ω) ∩H−1(Ω),

+∞ otherwise

equipped with the inner product (u, v)H := 〈u, (−∆)−1v〉H1
0 (Ω) for u, v ∈ H. Then

D(ϕ) = Lm(Ω) ∩ H−1(Ω), and moreover, for any w ∈ D(∂ϕ) = {w ∈ Lm(Ω) ∩
H−1(Ω) : |w|m−2w ∈ H1

0 (Ω)}, it holds that

f = ∂ϕ(w) if and only if (−∆)−1f = |w|m−2w.

Thus a weak form of (6.7), (6.8) is rewritten as (1.1) (see [9] for more details).
Hence by virtue of Theorems 2.3 and 2.8, one obtains

Theorem 6.2. For any f ∈ L2(0, T ;H−1(Ω)) and u0 ∈ Lm(Ω) ∩ H−1(Ω), the
Dirichlet problem (6.7), (6.8) admits a unique H−1(Ω) solution u = u(x, t) such
that

u ∈


L2/(1−2β),∞(0, T ;H−1(Ω)) if β ∈ (0, 1/2),

∩p<∞L
p,∞(0, T ;H−1(Ω)) if β = 1/2,

C([0, T ];H−1(Ω)) if β ∈ (1/2, 1),

(6.9)

u ∈ Lm(0, T ;Lm(Ω)), |u|m−2u ∈ L2(0, T ;H1
0 (Ω)), (6.10)

u− u0 ∈ Hβ,2
0 (0, T ;H−1(Ω)). (6.11)

For any u0 ∈ H−1(Ω), there exists a function u ∈ L2(0, T ;H−1(Ω)) solving (6.7),
(6.8) almost everywhere such that u ∈ Lm(0, T ;Lm(Ω)), t1/2|u|m−2u ∈ L2(0, T ;H1

0 (Ω)),

t1/2∂βt (u − u0) ∈ L2(0, T ;H−1(Ω)) and [kβ ∗ (u − u0)](t) → 0 strongly in H−1(Ω)
as t→ 0+. In addition, if β > 1/2, then u ∈ C([0, T ];H−1(Ω)) and u(+0) = u0 in
H−1(Ω).

Furthermore, we can also apply the abstract results to fractional variants of
Stefan problem as well as obstacle problem.

6.3. Time-fractional Allen-Cahn equation. In this subsection, we shall con-
sider a time-fractional variant of the Allen-Cahn equation,

∂βt (u− u0)−∆u+W ′(u) = f in Ω× (0, T ), (6.12)

u = 0 in ∂Ω× (0, T ), (6.13)
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where W : R → R is a double-well potential satisfying a λ-convexity,

W ∈ C2(R), W ′′(s) ≥ λ for all s ∈ R (6.14)

for some λ ∈ R. One can assume W (0) = 0 without any loss of generality. Here we
shall treat only the case λ < 0, where the double-well potential may not be convex.
Then one can rewrite W into the difference of two convex parts,

W (s) =

(
W (s)− λ

2
s2
)
−
(
−λ
2
s2
)
.

Here we note that the first-term of the right-hand side is convex. Hence we set
H = L2(Ω) and

ϕ(w) =

{
1
2

∫
Ω
|∇w(x)|2 dx+

∫
Ω

(
W (w(x))− λ

2
|w(x)|2

)
dx if w ∈ D(ϕ),

+∞ otherwise,
(6.15)

where D(ϕ) := {w ∈ H1
0 (Ω) : W (w(·)) ∈ L1(Ω)}. Then ∂ϕ(w) coincides with

−∆w +W ′(w) − λw for w ∈ D(∂ϕ) = {w ∈ D(ϕ) ∩ H2(Ω) : W ′(w(·)) ∈ L2(Ω)}.
Moreover, set

F (t, w) := λw for w ∈ H.

Then the Cauchy-Dirichlet problem (6.12), (6.13) are reduced to (5.1), and there-
fore, by Theorem 5.1 and Remark 5.2 we assure that

Theorem 6.3. For any f ∈ L2(0, T ;L2(Ω)) and u0 ∈ H1
0 (Ω) satisfying W (u0(·)) ∈

L1(Ω), the Dirichlet problem (6.12), (6.13) admits a unique L2(Ω) solution u =
u(x, t) such that

u ∈


L2/(1−2β),∞(0, T ;L2(Ω)) if β ∈ (0, 1/2),

∩p<∞L
p,∞(0, T ;L2(Ω)) if β = 1/2,

C([0, T ];L2(Ω)) if β ∈ (1/2, 1),

(6.16)

u ∈ L2(0, T ;H1
0 (Ω) ∩H2(Ω)), u− u0 ∈ Hβ,2

0 (0, T ;L2(Ω)). (6.17)

For any u0 ∈ L2(Ω), there exists a function u ∈ L2(0, T ;L2(Ω)) solving (6.12),
(6.13) almost everywhere such that u ∈ L2(0, T ;H1

0 (Ω)), W (u) ∈ L1(Ω × (0, T )),

t1/2∆u, t1/2W ′(u) ∈ L2(0, T ;L2(Ω)), t1/2∂βt (u − u0) ∈ L2(0, T ;L2(Ω)) and [kβ ∗
(u − u0)](t) → 0 strongly in L2(Ω) as t → 0+. In addition, if β > 1/2, then
u ∈ C([0, T ];L2(Ω)) and u(+0) = u0 in L2(Ω).

Appendix A. Proof of (2.2)

We shall verify (2.2). By Lemma 3.3, we derive that(
d

dt
[k ∗ (u− u0)] (t), u(t)− u0

)
H

=

(
d

dt
[kn ∗ (u− u0)] (t), u(t)− u0

)
H

+ hn(t)

≥ 1

2

d

dt

(
kn ∗ ‖u− u0‖2H

)
(t) +

1

2
kn(t)‖u(t)− u0‖2H + hn(t), (A.1)
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where hn ∈ L1(0, T ) is given by

hn(t) :=

(
d

dt
[(k − kn) ∗ (u− u0)] (t), u(t)− u0

)
H

.

As u−u0 lies onD(B), it follows that hn → 0 strongly in L1(0, T ). Hence integrating
both sides of (A.1) over (0, t) and passing to the limit as n → +∞, one deduces
by Fatou’s lemma that

1

2

(
k ∗ ‖u− u0‖2H

)
(t) +

1

2

∫ t

0

k(τ)‖u(τ)− u0‖2H dτ

≤
∫ t

0

(
d

dτ
[k ∗ (u− u0)] (τ), u(τ)− u0

)
H

dτ

for all t ∈ [0, T ]. Thus (2.2) follows.

Appendix B. Proof of (2.3)

Let k be given by (1.3). We start with the case β ∈ (0, 1/2). Convolve both
sides of (2.1) with `. Then it follows by (K) that

u− u0 = ` ∗ (f − ξ), ξ ∈ ∂ϕ(u(·)).
Note that F := f − ξ ∈ L2(0, T ;H) by Definition 2.1 and `(t) = tβ−1/Γ(β) be-

longs to L
1

1−β
,∞(0, T ) (hence, their zero extensions F̄ and ¯̀ outside [0, T ] belong to

L2(R;H) and L
1

1−β
,∞(R), respectively). By weak Young’s inequality (see, e.g., [46,

§IX.3] and [21, Theorem 1.2.13]), one obtains

‖u− u0‖
L

2
1−2β

,∞
(0,T ;H)

= ‖` ∗ F‖
L

2
1−2β

,∞
(0,T ;H)

= ‖¯̀∗ F̄‖
L

2
1−2β

,∞
(R;H)

≤ Cβ‖¯̀‖
L

1
1−β

,∞
(R)

‖F̄‖L2(R;H) = Cβ‖`‖
L

1
1−β

,∞
(0,T )

‖F‖L2(0,T ;H)

for some Cβ > 0. Thus it in particular yields u ∈ L
2

1−2β
,∞(0, T ;H). Concerning

the case β = 1/2, since ` ∈ L2,∞(0, T ), according to the argument above, we have
u ∈ Lp,∞(0, T ;H) for any p ∈ [1,∞).

Appendix C. Completeness of (X , ‖ · ‖X )

Let (wn) be a Cauchy sequence in (X , ‖ · ‖X ). Then we observe that

‖wn − wm‖2X ≥ e−µt
(
k ∗ ‖wn(·)− wm(·)‖2H

)
(t) for a.e. t ∈ (0, T ).

Convolving both sides with `, we have

(` ∗ eµt)(t)‖wn − wm‖2X ≥
∫ t

0

‖wn(s)− wm(s)‖2H ds for all t ∈ [0, T ].

Hence (wn) is a Cauchy sequence in L2(0, T ;H) as well, and therefore,

wn → w strongly in L2(0, T ;H). (C.1)
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On the other hand, note that

‖wn − wm‖2X = ess sup
t∈(0,T )

[
e−µt

∫ t

0

k(t− s)‖wn(s)− wm(s)‖2H ds

]
≥ e−µt

∫ t

0

∥∥∥√k(t− s)wn(s)−
√
k(t− s)wm(s)

∥∥∥2
H

ds,

which implies that
√
k(t− ·)wn(·) → f strongly in L2(0, t;H) for some f ∈

L2(0, t;H). By (C.1), we obtain f(s) =
√
k(t− s)w(s) for a.e. s ∈ (0, t). Thus we

deduce that√
k(t− ·)wn(·) →

√
k(t− ·)w(·) strongly in L2(0, t;H) (C.2)

for a.e. t ∈ (0, T ).

Since (wn) is a Cauchy sequence in X , for any ε > 0 there exists N0 ∈ N such
that, for all n,m ∈ N, if n,m ≥ N0, then

ess sup
t∈(0,T )

[
e−µt

∫ t

0

k(t− s)‖wn(s)− wm(s)‖2H ds

]
< ε/2.

Hence letting m→ +∞ and employing (C.2), we have, for all n ≥ N0,

e−µt

∫ t

0

k(t− s)‖wn(s)− w(s)‖2H ds ≤ ε/2 for a.e. t ∈ (0, T ),

which implies

ess sup
t∈(0,T )

[
e−µt

∫ t

0

k(t− s)‖wn(s)− w(s)‖2H ds

]
< ε.

Thus we have proved that (X , ‖ · ‖X ) is complete.
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