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Although the development of robot-based support systems for elderly people has become more popu-
lar, it is difficult for humans to understand the actions, plans, and behavior of autonomous robots and
the reasons behind them, particularly when the robots include learning algorithms. Learning-based au-
tonomous systems which are called AI are treated as an inherently untrustworthy ‘black box,’ because
machine learning or deep learning algorithms are difficult for humans to understand. Robot systems
such as assistive robots, which work closely with humans, however, should be trusted. Systems should
therefore achieve accountability for all stakeholders. However, most research in this field has focused
on particular systems and situations, and no general design architecture exists. In this study, we
propose a new design method, focused on accountability and transparency, for learning-based robot
systems. Describing the entire system is a necessary first step, and transcribing the described system
for each stakeholder based on several principles is effective for achieving accountability. The method
improves transparency for systems, including learning algorithms. A standing assistive robot is used
as an example of the entire system to clarify which system parts require greater transparency. This
study adopted the Systems Modeling Language (SysML) to describe the system and the described
system is used for the information representation. Information should be represented considering the
relationships between stakeholders, information, and the system interface. Because of their complexity,
it is difficult for humans to understand the complete set of information available in robot systems.
Systems should therefore present only the information required, depending on the situation. The
stakeholder-interface relationship is also important because it is more beneficial for professionals to
view information relevant to their specialized field, which would be difficult for others to understand.
By contrast, the interface should be intuitive for general users. Visualization and sound are very use-
ful means of transmitting information, with advantages and disadvantages for different circumstances.
These relationships are important for achieving accountability. Finally, we show an example of imple-
mentation with a developed support system. It is confirmed that accountable systems can be designed
based on the proposed design architecture.
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1. Introduction

An aging population increases the demand for support systems, and various robotic systems
have been developed to meet this demand. Robotic support systems are expected to not only
become alternatives to human caregivers, but also to provide better support, owing to features
including mechanical strength, estimation algorithms, and AI technology.
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It is possible to comfortably use home electronics or machines without knowing the internal
processes of the systems. These machines have limited operations and are controlled by humans.
The machines function by following simple conditional decision-making logic, which humans can
easily understand. Learning-based systems that include character recognition and recommenda-
tion systems also do not require transparency. AI systems, including autonomous robots that use
learning algorithms, however, are difficult for humans to use because they are difficult to under-
stand. Physical human-robot interaction comes with safety risks, and therefore humans become
anxious when they do not understand them. It is difficult for humans to cooperate with or rely
on such robots to support human actions. When a person is carrying out a task that involves
cooperation with other people, the task cannot be completed well if they cannot communicate
with each other. Communicating is much more difficult in human-robot interactions than in
human-human interaction. Humans become anxious if they cannot understand the actions of
robots. People feel uncomfortable consigning health care tasks to robots that are perceived as
unpredictable. Learning-based robots that interact with humans need to clearly present their
safety-critical actions, states, plans, and reasons for acting.
Adopting robots that use learning algorithms raises additional problems. It is difficult to in-

vestigate and fix system failures in systems with ‘black boxes.’ It is also difficult to decide who
is responsible in such cases. Knowledge representation is adopted to make systems transparent.
Visualization and auditory display of knowledge representation improves system interpretabil-
ity. Appropriate interfaces make systems transparent and interpretable to achieve accountability.
However, almost all research is carried out for specific stakeholders of specific systems and there
are generally several stakeholders for each system as shown in Figure 1. In the case of a walk-
ing assistive system with sit-to-stand functionality, a user uses the system, while caregivers or
family members support the user in using the system correctly and safely. Engineers should
maintain the system, and if problems arise, they need to investigate and repair it. If an accident
occurs, accident investigators are responsible for the investigation. Although there are different
stakeholders according to the specific system properties, these people generally represent the
stakeholders of support robot systems. However, there is no general design architecture for a
learning-based support robot system that is accountable to all stakeholders. Almost all research
in this area focuses on specific situations for specific robots, aiming to improve system efficiency.
Some researchers have discussed ethical design of robot systems; however, almost all research in-
dicates general design principles or provides several examples. We therefore propose a new design
architecture for accountable learning-based support robot systems. Considering accountability
in the design process will be important for realization of accountable systems.
This paper proposes a design architecture to achieve accountability for learning-based sup-

port robot systems. The design architecture is explained using a standing assistive robot as
an example. First, the entire system should be described, then the described system should be
transcribed for each stakeholder based on several principles to effectively achieve accountability.
Because each stakeholder requires different information, the entire system should be described to
clarify the internal information of robot systems. In this study, we adopt the Systems Modeling
Language (SysML) to describe the entire system; the language was created to describe systems
and is popular in the systems engineering field.
Describing the system as a whole also contributes to AI transparency. It is difficult to achieve

transparency in machine learning or deep learning algorithms and models. However, general
systems consist of more than learning algorithms used for recognition or estimation in robot sys-
tems. Thus, the input-estimation relationship is opaque for humans. By contrast, the relationship
between the decided action of the robot and the output of the actuators can be transparent be-
cause learning is not used for this function. The relationship between the estimated information
and the action of the robot, which is the main interest of robot system stakeholders, can also
be described. AI robot systems can be made transparent by describing the systems, even if the
learning algorithms are opaque.
Relationships between stakeholders, information, and interfaces are important for providing re-
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quired information to each stakeholder in the most appropriate form. Systems should represent all
information, but because humans are unable to understand so much information at once, informa-
tion should be represented in an appropriate way depending on the stakeholder, case, time, and
other relevant factors. We considered system use cases as examples of stakeholder-information re-
lationships. The professional ability of stakeholders should be considered as stakeholder-interface
relationships, while information-interface relationships should be considered by examining the
features of the information. This paper summarizes these relationships.
Finally, a support robot system following the proposed design method was developed as an

example of the effectiveness of the proposed design architecture.

2. Related Works

2.1 User’s State Estimation

It is important for support systems to provide appropriate support depending on the situation.
Therefore, many researchers are focusing on real-time user state estimations.
Some researchers focus on the center of gravity (CoG) or center of mass (CoM) for human state

estimation. These parameters are particularly useful for support robot systems, as they can be
simply measured. Human activity such as gait can be analyzed by placing inertial measurement
units (IMUs) on the human body in locations related to CoG acceleration [1, 2]. CoG position
can also be calculated from human link models, using link parameters obtained with motion
capture systems, laser range finders (LRFs), position sensitive detector sensors (PSDs), IMUs,
and force sensors [3–6].
There has been interest in machine learning and deep learning algorithms for state estimation.

On-body sensors such as accelerometers are frequently used for human activity estimation [7, 8].
Vision-based estimation has received a lot of attention. Convolutional Neural Network is one of
the most famous methods for human pose estimation [9, 10]. Neural networks are also useful for
robot control [11, 12].
The user state is generally evaluated for anomaly detection or robot function changes [13, 14].

User state, action, and intent can be used for motion control [15–17]. State estimation is also
useful for improving safety. Anomaly detection can be used for accident prevention. Accumulation
of estimated data is also useful for care monitoring and deep learning.

2.2 Knowledge Representation

If robots detect an anomaly, they usually stop their operations and alert users. Such alerts are
useful to draw attention to the anomaly, and are effective for letting users know why robots
have stopped operating. Representation of a robot’s actions or plans is effective under both
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normal and abnormal operating conditions. If a robot has many functions, humans are unable
to understand the robot’s action and plan without representation, even if the system does not
include learning algorithms. Displaying the robot’s plan helps humans understand the robot’s
future actions [18]. Sound is one effective means of knowledge representation [19] and simple
LED lights can also represent the robot’s state [20]. These methods are considered useful for
learning-based robot systems.
The ability of robots to correctly recognize visual and auditory inputs is not always reliable.

Some studies in the computer vision field have addressed the reasoning behind learning-based
classifications [21, 22]. For robots, both the input-classification relationship as well as the rela-
tionship between the classification result and the robot’s action are important. Representation
of recognition or estimation results, as well as asking humans for confirmation, facilitate the
robot’s tasks [23]. Confirmation of tasks which are ordered by humans can reduce the number
of mistakes [24, 25].
When robots interact with humans, both the robot and the user actions are important. If

human and robot are cooperating on a task, the robot will work more effectively if there is
an understanding of what the human should do. Teaching robots also enables users to learn
which actions are required of them [26]. Some researchers also study representation of artificial
emotions in human-robot interaction [27].
These studies show that real-time knowledge representation is effective for using robot-based

systems, as humans can understand and predict robots’ actions via knowledge representations.
Describing the systems in this way has advantages for designing and investigating the systems.
Some researchers create original modeling languages to describe their specific systems [28, 29].
Some studies evaluated the construction of accountable robot systems by making their sys-

tems transparent; however, almost all studies have focused on the stakeholders for their specific
systems. Systems design should follow some sort of guideline.
Transparency of learning-based robot system is less frequently discussed, although AI trans-

parency has been discussed in the computer vision and machine learning fields.
For physical systems such as robots with AI, the surrounding AI transparency poses other

issues as well as those related to the learning algorithm. However, the general design architecture
for assistive AI robot systems has not been widely discussed.

2.3 Ethically Aligned Design

In situations where autonomous systems such as AI robots interact with humans, the systems
should deal with ethical issues, as well as with safety concerns related to physical human-robot
interactions. Machine and deep learning make systems unpredictable for humans, which makes
them anxious. Complicated autonomous systems should also clarify the boundaries of responsi-
bility. Learning-based robot systems should therefore be designed based on ethical principles.
Ethical design has been discussed in various fields such as telehealth [30] and the Internet of

Things (IoT) [31]. The IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems
has published Ethically Aligned Design, First Edition [32], which discusses general principles
for autonomous and intelligent systems, such as human rights, data agency, transparency, and
accountability Guidance implementation methodologies is provided; however, there is no specific
architecture for designing robot systems. Ethically aligned design for autonomous and intelli-
gent systems has been discussed elsewhere [33], and its importance for assistive robots is also
suggested [34]. However, concrete and technical methods for implementation and design have
not been discussed in detail. By contrast, engineers who are technical design specialists often
focus on safety and don’t consider ethics. The Japan Agency for Medical Research and Devel-
opment (AMED) encourages development and introduction of nursing-care robots and released
a guideline [35] that focuses on safety and ethical review, but did not discuss ethically-aligned
design.
Transparency is one of the most important robot ethics-related issues for AI systems. Trans-
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parency of learning-based reasoning and the actions of autonomous robots has been studied;
as explained in section 2.2, knowledge representation is a possible solution. However, learning-
based robot systems are different from learning algorithms alone or autonomous robots with no
learning. We therefore consider that a general design architecture is necessary for accountable
learning-based robot systems. In the following sections, we propose a design architecture focusing
on physical human support robot systems.

3. System Design Concept

This section explains the main concept of design architecture of support robot systems to achieve
accountability. We used a walking assistive robot with sit-to-stand function as an example. The
robot has an armrest with a linear actuator for sit-to-stand assist, and its wheels have attached
motors for walking assistance. The robot can estimate the user’s state by means of several sensors
based on Support Vector Machine (SVM), a machine learning algorithm. The design architecture
can be used for other autonomous robot systems that interact with humans, such as robot sports
instructors and communication AI robots.
Robot systems which include learning algorithms and interactions with humans should achieve

accountability. The actions and intentions of such systems tend to be opaque for humans, making
it difficult for humans to cooperate with such robots. When the systems carry out an action,
they should make stakeholders understand what they are doing and why. Humans relate to such
systems not only during use, but also for maintenance, repair, investigation, and other functions.
Therefore, describing an entire system and transcribing it for all stakeholders is important for
achieving accountability.
System description is required to determine necessary information depending on the stake-

holder and situation. Machine learning algorithms are difficult for humans to understand, thus
robot systems with learning algorithms are also opaque. Our method for describing the en-
tire system can contribute to the transparency of learning-based robot systems. The method is
explained in detail in section 3.1.
System stakeholders include different types of people, such as users, caregivers, and engineers.

The information required varies according to the situations. Interfaces should also be determined
according to the stakeholder. It is important to appropriately transmit the required information.
The concept of information ontology is explained in section 3.2.

3.1 AI Transparency

Systems that adopt types of learning algorithms, such as Random Forest, Support Vector Ma-
chine (SVM), Logistic Regression, and Neural Network, are increasing. Learning algorithms
include ‘black box’ components that are difficult for humans to understand, and the opacity
of learning algorithms makes the systems seem untrustworthy [36]. Some researchers focus on
transparency of learning algorithms [37–40]. Studies on making AI transparent by representing
the reasons for decisions [21, 22] can provide some understanding of learning algorithms, how-
ever, these methods cannot make all algorithms transparent for ordinary people. Even though
the AI included in the system is opaque, systems should be transparent.
Systems usually use learning algorithms for some types of estimation, the results of which are

used for system decision making. For example, user state estimation of a standing assistive robot
can be realized with data from learning sensors. Effective operation of the robot requires that
assistance motion begins when the user is ready to stand up. For state estimation, teaching data
is collected and models are learned before the robot is used. During use, the robot measures and
collects user data such as foot position and upper body angle using sensor input, as shown in
Figure 2. Sometimes the data is processed, and the learned model uses the raw or processed
data as input and classifies it as state estimation. The action determined by the system depends
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on the estimation result, then the actuators provide an output to the external environment. This
system can be fully described separately from the learned model itself.
Transparency of classification reasons is studied in the computer vision and AI fields [21, 22].

For the systems addressed in this research, input data and classification results are transparent
and classification reasoning is unclear. For example, clinical image recognition systems detect
diagnostic signs based on deep learning, and report to a doctor. Thus, humans can understand
classification results and decision making, while conducting the action remains the humans role.
This type of research focuses on algorithmic transparency, however there are various parts of
learning-based robots that are unclear, as shown in Figure 2. Learning-based systems are unclear
for estimation results, decision making, and robot action, which are the usual stakeholders’ usual
interests. Users generally need to know the robot’s current actions, action plans, and decision
making for efficient operations; the user’s required actions are also important information. Engi-
neers who investigate or maintain robot systems should understand the internal processes of the
systems for maintenance, investigation, or repair. Sensor data and actuator output torques are
also required. By contrast, the relationship between input data and classification results, which
is the role of a learning algorithm, is not relevant for these tasks. By using the representation
of classification reasons, the system will become more transparent, however, we consider that
representing the relationships between data, decisions, and actions is more important. Repre-
sentation can effectively improve systems interpretability; therefore, we propose a method for
describing robot systems that adopts machine or deep learning.

3.2 Information Ontology

Describing the entire system is essential not only for AI transparency but also for information
ontology. Defining the internal processes of the system allows us to know which parts of the sys-
tem are not transparent, which enables us to determine what information should be represented.
For example, if a problem occurs where an actuator moves without the user’s intent, engineers
and accident investigators will want to investigate it. If there are no representations of internal
process information, investigators can only estimate based on the system outputs. Investigators
would then have to extract the required information from a large quantity of stored data, much
of which is unnecessary. Meanwhile, if the whole system is described, internal processes and data
relationships can be understood. The system can represent related information such as decided
actions, estimation results, and inputs.
To determine the best representation of information, we should consider relationships between

stakeholders, information, and interfaces. If the relationships between stakeholders and informa-
tion, known as use cases, are known, the system can represent information easily according to
the situation.
Stakeholder-interface relationships are also important because specialized interfaces are useful

and efficient. However, it is generally difficult for ordinary people to use such specialized tools.
It is therefore important to change interfaces according to the stakeholder as shown in Figure
3. An intuitive interface should be provided for general users, while specialized interfaces should
be created according to professional standards.
Systems should provide a variety of different types of information. For example, the user state is

spatial information, and does not change rapidly. By contrast, the timing of the robot’s support is
temporal information, and is not continuous but event-driven. There are several media by which
to transmit information such as vision and sound. The medium should be selected according to
the features of transmitted information.
All information can be extracted by describing the entire system. Interfaces representing the

required information for specialists are created based on professional standards. By transcribing
the interfaces into intuitive formats, an interface for general users can be constructed.
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4. Describing Whole System

This section explains a method for describing the entire system. AI transparency can be achieved
by describing the entire system; we can then determine which information from the described
system should be represented.
There are various ways to describe algorithms, processes, and systems. Flowcharts are one

of the most famous diagrams used for representing algorithms. They can represent not only
processes but also conditional decisions. For describing state transitions, a Finite State Machine
is used and applied to several modeling languages. Each of these have different advantages, and
several modeling languages are composed by applying these models.
For this study, we adopted the modeling language SysML [41] to describe system states,

internal processes, and external interactions. SysML has several types of diagrams for describing
systems. Some diagrams are suitable for real-time representation, while others are useful for
investigation. They can be selected depending on the intended use.
SysML itself and the features of its diagrams are explained in section 4.1. The uses and advan-

tages of SysML diagrams are also explained, using an assistive robot as an example. We then
explain how to describe systems that include learning algorithms by using SysML in section 4.2.

4.1 SysML

SysML is a modeling language, developed for systems engineering based on Unified Modeling
Language (UML). UML is useful in software engineering; however, systems with hardware cannot
be sufficiently described with UML. SysML was developed to enable experts from different fields,
such as programmers, designers, and electrical engineers, to collaborate on system development.
SysML consists of nine types of diagrams: Requirement Diagrams, Activity Diagrams, Sequence
Diagrams, State Machine Diagrams, Use Case Diagrams, Block Definition Diagrams, Internal
Block Diagrams, Parametric Diagrams, and Package Diagrams. It is unnecessary to adopt all
the diagram types, and it is possible to make more than one diagram for each diagram type.
State Machine Diagrams are for describing a system’s state based on a Finite State Machine

(FSM). By using the diagrams, the system’s state or behavior can be described as shown in
Figure 4. The example diagram is for a support robot which can assist with standing, sitting,
and walking. The robot has two basic states, in which wheels are fixed or free, and assists the
user’s standing and sitting by moving the armrests vertically. It is assumed unsafe if the wheels
are fixed or the armrest moves when the wheels are moving; thus, a state transition between
the wheels fixed state and the wheels free state can occur only when the wheels are stopped, as
shown in Figure 4. If the system estimates user states, surrounding people, or the environment,
they can also be described with State Machine Diagrams.
Activity, Sequence, and Internal Block Diagrams are useful for describing a system’s internal

processes, input-output relationships, and actions. Internal Block Diagrams can clearly describe
input-output relationships and are especially useful in cases where the system contains many
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parts. Activity Diagrams are good for describing internal processes included in some kinds of
algorithms, such as learning and estimation. They have advantages if there is some conditional
branching. Internal processes of an example robot system are shown in Figure 5. The system
has anomaly detection and state estimation as shown in Figure 5(a). First, the robot checks for
anomalies using the sensor data. If no anomaly is detected, the robot classifies the user’s state,
whether sitting, standing, or transitioning between them. The next processes for each state are
described in other diagrams; an example is shown in Figure 5(b). This diagram shows the process
when the user is in a transition state. The robot is meant to be conducting a support action
when the user’s state is transitioning between sitting and standing. If no support is conducted
when the user is in a transition state, the system determines that an error has occurred, as
shown in Figure 5(b). If support is provided and the user is still in a transition state, then the
support is not yet complete and the robot continues to provide support. Sequence Diagrams are
most useful for describing a time sequence for internal or external systems interaction, as shown
in Figure 6. If the user is sitting and leaning forward, the sensor data is sent to the computer
embedded in the robot and the computer estimates the user’s leaning from sensor data in the
same way as the state estimation described above. The robot’s computer then sends a command
to the linear actuator of the armrest and the robot’s wheels, and the armrest applies lifting force
to the user to assist with the sit-to-stand motion.
Defining stakeholders and their use cases is valuable for achieving accountability. Use Case

Diagrams make it possible to define the systems stakeholders and explain the purpose of their
relationship with the system as shown in Figure 7. The example shows that the robot sup-
ports three activities for a user: sit-to-stand, stand-to-sit, and walking. Engineers interact with
the robot for maintenance and repair. By using the Use Case Diagrams, the relationship be-
tween stakeholders and information, which is necessary for representation of information, can be
obtained, as explained in section 5 in detail.

4.2 Describing Systems That Include Learning Algorithms

The process for a system that includes a learning algorithm is described in SysML as shown in
Figure 5. Sensor data is first used as input for anomaly detection, as shown in Figure 5(a). Next,
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the raw sensor data are processed for state estimation based on a machine learning algorithm.
The next process is determined based on the result of the state estimation. The process that
occurs during user transition is shown in Figure 5(b). It can be determined that the output
action maintains support from Figure 5(b). Although the relationship between the input data
and estimated state cannot be fully understood, we can know the decision making reason.
By describing information required in various situations based on these figures, stakeholders

can more fully understand the robot’s actions and plans than they would without representation.
Stakeholders need to understand the robot’s actions and reasons to use, maintain, and repair
it. For example, users can understand the robot’s actions from Figure 5(b). It is also clear that
the robot decides the appropriate action based on the estimated user state from Figure 5(a). A
system that includes a learning algorithm can therefore be described transparently enough for
internal processes to be understood in this way. Stakeholders can also investigate accumulated
data based on these figures, however, the figures themselves are difficult to understand for
non-engineer stakeholders, as other stakeholders rarely have SysML knowledge. Appropriate
interfaces are required for each stakeholder, as explained in section 5.

5. Representation of Information

This section explains the importance of a system’s accountability of the relationships between
stakeholders, information, and interfaces.
To achieve accountability, systems should provide the required information to stakeholders. It is

necessary to determine which stakeholders need which information. This stakeholder-information
relationship can be treated as a use case of the system, which is explained in detail in section 5.1.
It is less than transparent if the provided information is difficult to understand. Any existing

standards for presentation of the information should be followed. People who have professional
knowledge can easily understand information written in specialized language, however, people
who have no specialized knowledge cannot. This stakeholder-interface relationship is discussed
in section 5.2.
It is also important to select a transfer method based on the features of the information.

For example, spatial information is easily expressed visually, while temporal information can be
expressed through sound. This information-interface relationship is explained in section 5.3.

5.1 Use Case: Stakeholder-Information Relationship

Use cases mainly depend on the types and functions of the system. Developers of systems in-
variably consider use cases of the systems, and SysML Use Case Diagrams can inform their
consideration and discussions. Developers tend to focus only on use cases of users; however,
there are other stakeholders for the systems. Almost all systems have users, engineers, and ac-
cident investigators as stakeholders. For assistive robots, stakeholders may include people such
as caregivers, family, and certification authorities.
Who interacts with the system and how they interact is integral to the question of who needs

which information; thus, use cases are important for information representation. For example,
users often want to know about a system’s behavior, state, or action and people become anxious
if there is an autonomous robot doing something incomprehensible. Users require understanding
of current behaviors and actions, as well as future plans, and they may want to know the reason
for the system’s actions. If there is a difference between the intended action of the user and
that of the system, people want to know the reason and a solution. Therefore, ‘what should I
do’ is one of the most important pieces of information for systems that include interaction with
humans.
Engineers relate to systems for development as well as for maintenance and repair. They can

conduct their work more efficiently if they understand the system. To check whether a system is
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behaving normally, information about a system’s internal and external behaviors are required.
This knowledge is also useful for accident investigators.

5.2 Professional Standard: Stakeholder-Interface Relationship

As described in section 4, SysML has been popular among engineers who are involved in devel-
opment. Engineers can easily understand systems by using SysML, however, it is not easy for
others; therefore electing the interface according to stakeholders is therefore important.
If there are standards for required information, these should be followed. Accident investigation

is governed by laws and there are standards for home electronics. Laws for robots and AI systems
are now being discussed, therefore we consider other professional standards, such as engineering
standards, in this paper. If standards for accident investigation for robots is determined, we
intend to adapt our interface to the standard.
Generally, it should be assumed that users have no professional knowledge, and a user interface

should be intuitive and usable.

5.3 Media: Information-Interface Relationship

Humans receive information mainly through eyes and ears. Vision and sound are therefore good
options for information transfer media.
Each of these media has advantages and disadvantages. For example, visualization is useful for

representing multiple or spatial information, however it is impossible to transmit information by
sight if the user’s focus is not where the information is being presented. In this case, sound is a
more effective means of information transfer.
These features have been discussed in the interface design and feedback in motor learning fields

[42–44]. Following these studies and considering the information that needs to be represented,
we summarize the features of vision and sound as follows:

• Vision
◦ Spatial Information
◦ Multi-Information
◦ Steady Information

• Sound
◦ Temporal Information
◦ Event-Driven Information
◦ Information Which Should Be Transmitted Even If Human Is Unnoticed

Selecting media based on the features of transmitted information is especially effective for
general users because it makes the interface more instinctive.

6. Implementation

In this section, the assistive robot system developed based on the proposed design method is
explained. The robot has been developed to assist the user’s walking, sit-to-stand, and stand-
to-sit motions. It estimates the user’s state by using a machine learning algorithm and decides
on its action based on the result of the estimation.
Two types of interfaces are explained in section 6.3 and section 6.4. The investigation interface

should be effective for accident investigation, especially for an autonomous robot, as it makes
it easier to determine responsibility for accidents as well as to detect and fix failures. The user
interface makes the system transparent for users and helps them use the system. The system
uses the user’s estimated state to decide the robot’s action. Misunderstanding the user’s state is
a safety critical issue, so the user interface representing the estimation result is important.
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Figure 7. Example of Use Case Diagram. Figure 8. Developed Robot: (Left) Lowest Armrest;
(Right) Highest Armrest [47].
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Figure 9. Activity Diagrams.

6.1 Developed Robot System

The developed support robot is shown in Figure 8. Its 2 center wheels can be controlled with
motors and 4 casters to allow the robot to assist a user’s walking. The armrest can be moved
vertically by a linear actuator, and it can support lifting the user’s body upward during a sit-
to-stand motion. Such armrest rising can assist user’s standing up motion [45, 46]. The armrest
can also be used for a stand-to-sit motion. When the linear actuator is moving, the wheels are
braked for safety reasons. Hardware specifications are detailed in [46].
Pressure sensors are installed on the robot’s gripper and armrest to recognize whether the

user is touching them. A Position Sensitive Detector (PSD) on the armrest can measure the
distance between the robot and its user. The system can use these sensors to estimate the user’s
state based on the method proposed in [47]. The detail of sit-to-stand support is explained in
section 6.2.

6.2 Describing in SysML

Data from the robot’s sensors is used for anomaly detection as shown in Figure 9(a). If the
user’s hands and elbows are not touching the gripper and armrest, the robot does not move for
security reasons. CoG candidates are calculated by using sensor data if no anomaly is detected.
The CoG candidates calculation method is explained in detail in [47, 48]. The features of CoG
candidates are used for SVM and the system estimates the user’s state from three possibilities:
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sitting, standing, or the transition between them. The state estimation method is explained in
[47]. The system then carries out functions depending on the estimated user’s state. Functions
for each state are described in other diagrams, and an example is shown in Figure 9(b).
The process for the case where the user is sitting is shown in Figure 9(b). If the user is estimated

to be sitting, the system checks whether the robot is carrying out the sit-to-stand support action.
If no support action is being conducted, the system estimates whether the user is only sitting
or sitting with a leaning upper body using the same method as the state estimation described
above. The system begins supporting the user’s sit-to-stand motion if the user is leaning on
the armrest of the robot. The output of the system for sit-to-stand support is extending the
linear actuator and moving the armrest upwards as shown in Figure 9(c). Extension of the
linear actuator continues at constant speed until the armrest reaches its maximum height. These
processes can be described in SysML as shown in Figure 9. Sequence diagrams can also describe
the processes as shown in Figure 10.
Use cases are shown in Figure 11. Users and caregivers of the system primarily interact with

the system before and during its use. The most important pre- and during-use information are
the instructions on how to use the system.
The system is autonomous and includes learning algorithms, hence users need to know what

the system does and why. Engineers usually interact with the system before and after its use.
Before use, engineers adjust the system for the user in cases where the user’s personal parameters
are required for adjustment. After using, engineers interact with the system for maintenance and
trouble or accident handling, and accident investigators relate to it for investigating accidents.
It is confirmed by Figure 9, Figure 10, and Figure 11 that the internal processes of the robot

system can be described by SysML. Effectiveness of modeling languages for describing systems
is also presented in [28, 29]. SysML was created to describe systems and is becoming popular
in the system engineering field; thus, it is thought to be effective. We can detect the required
information from the system as described. Examples of transcription of the information to the
appropriate interface for each stakeholder are explained in section 6.3 and section 6.4.

6.3 Interface for Investigation

When a failure or accident happens, engineers and accident investigators need to investigate
or repair it. They want to know the system architecture, reasons for the accident, solutions to
faults, and other information. In this section, an example of representation for investigation is
explained.
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As explained in section 6.2, when a user leans forward while sitting, the armrest moves up. If
the linear actuator does not move, the user believes that it is defective and wants an engineer
to solve the problem. During investigation, the engineer enters their professional title, required
time, and known information, and the system extracts and presents related information. Internal
processes are also presented based on described system architecture.
An example of the interface is shown in Figure 12. In this case, the engineer knows only

the robot’s action (failure to move the armrest) and the time. The engineer first wants to
compare the robot’s actual action with its decided action. Related information is required for
investigation, namely: raw input data (PSD, pressure), processed input data (CoG candidates
and their features), estimation (user’s basic state: sitting, standing, or transition; user’s state for
sitting: normal sitting or leaning forward), decided action (none or moving the armrest up), and
actuator output (linear actuator torque). The system shows the internal process for that time
as SysML diagrams, as shown in the right part of Figure 12. The related information is marked
using different colors according to the type of information.
A list of all information is represented in the left part of the interface. Related pieces of

information are marked with the same color as the SysML diagrams. By selecting the information,
a graph of the data is displayed as shown in Figure 12. From the graph on the right, the system
estimation appears to be correct, and from the graph on the left, we can see that the defect was
caused by abnormal gripper sensor data. In this way, the interface make it possible to investigate
defects and detect the causes of them.

6.4 Interface for Users in Use

An intuitive interface is required for system users. Required information and features are shown
in TABLE1. The user’s state of contact with the gripper and armrest is used for anomaly
detection, while the user’s estimated state is used for deciding on the robot’s action. The user
can check whether there is a difference between the user’s actual state and that recognized by
the robot. The user’s intended action, such as the sit-to-stand motion, is also useful. The user’s
required action such as leaning forward, the robot’s intended action such as moving the armrest
up, and the support timing are required information, as they are useful for assisting the user’s
action.
Contact information is for both the gripper and the armrest; thus, it contains two data streams.

The contact situation, user’s state, and robot’s armrest height change infrequently and are
all comprised of spatial information. The actions of the user and the robot are also spatial
information, and are event-driven, while the timing of support is temporal information. When
the robot carries out an action, it should make the user aware of the action.
From TABLE1, the best means of communication, whether vision or sound, can be determined.

Vision is selected for the user’s state, armrest height, and user’s required action, while sound is
adopted for transmitting support timing. The robot’s intended action is transmitted using both
vision and sound.
An example of the displayed user interface is shown in Figure 13. The user’s body is represented

with black lines and a black circle. On the upper part of the interface, the user’s state and robot’s
armrest height are displayed. Current status is shown in black, while other statuses are in grey
as shown in Figure 14. The armrest movement is described by a red arrow, drawn according to
the armrest height as shown in Figure 14(d) and (e). The robot’s intended action, in this case
moving the armrest up, is displayed with a flashing red arrow as shown in Figure 14(b) and (c),
and is also denoted by sound from a speaker. Timing of the support is represented by sound as
a countdown.
The lower half of the display represents the user’s required action. Black lines and circles

represent the user’s body in the same manner as on the upper part of the display. This represents
the user’s leaning action by animation as shown in Figure 15. The four figures are displayed in
sequence to represent a leaning motion.
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Table 1. Selecting Media for Each Information

Vision Sound
Spatial Multi Steady Temporal Event-Driven Make Aware

Contact Situation ◦ ◦ ◦
User’s State ◦ ◦

Armrest Height ◦ ◦
User’s Intended Action ◦ ◦
User’s Required Action ◦ ◦
Robot’s Intended Action ◦ ◦ ◦

Support Timing ◦ ◦

Figure 12. Investigation Interface.
Figure 13. Overall View of User Interface.

(a) Sitting (b) Leaning

(c) Leaning (with Arrow
Sign)

(d) Rising (Beginning)

(e) Rising (Ending) (f) Standing

Figure 14. Upper Part of User Interface.

(a) (b)

(c) (d)

Figure 15. Lower Part of User Interface. The animation
consist of four figures which appear in order of (a) to (d).

Several participants tested the user interface during robot use to confirm the usability of the
interface and system. The participants were all males in their 20s with no physical disabilities.
Informed consent was obtained from all participants prior to the experiments. The participants
conducted sit-to-stand motions several times, using the robot user interface. From the completed
questionnaires, the effectiveness of the interface is confirmed.
From the experimental results and the developed interfaces, we confirmed that systems can

be accountable for various stakeholders and their situations by designing based on the proposed
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design architecture. We intend to conduct experiments that simulate daily activity with elderly
people as validation of the proposed method. The final interface should be designed using inter-
face design principles, although appropriate information can be confirmed by using the interface
prototype.

7. Conclusion

In this study, we proposed general design architecture for accountable learning-based support
robot systems. Robot systems, especially support robots that include AI and p-HRI, should be
able to account for their actions. Describing systems and representing the required information
for all stakeholders can make the system transparent.
It is difficult to make a learning algorithm transparent, although a system that includes a

learning algorithm can be explained. Robot systems usually adopt learning algorithms for recog-
nition or estimation of some parameter. Input sensor data, estimation results, decided action,
and actuator output can all be explained, and thus humans can understand the systems. SysML
is adopted in this paper for describing the robot system.
Information should be transmitted to each stakeholder in an appropriate way, hence rela-

tionships between stakeholders, information, and interfaces are important. Use cases show the
required information, which varies according to stakeholders and situations. SysML use case dia-
grams have particular advantages for this application. Specific factors influence the stakeholder-
interface relationship. An intuitive user interface should be adopted for ordinary users, and
appropriate interfaces will vary based on the different features and uses of each type of informa-
tion. An implementation example is shown in section 6. The effectiveness of the proposed design
architecture is validated to make accountable learning-based support robot systems.
A completely implemented system should be developed for validation in future work. An

interface for accident investigators can be designed by expanding the interface for engineers.
Legal standards for robot accidents are still under discussion because robots using AI are not
yet common. The accident investigation interface should be designed following the relevant
standards. Tests with elderly people can validate the proposed design method and improve
interfaces.
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