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ABSTRACT

Unique properties of graphene are combined to enable graphene plasmonic devices that could revolutionize the terahertz (THz) electronic
technology. A high value of the carrier mobility allows us to excite resonant plasma waves. The graphene bipolar nature allows for different
mechanisms of plasma wave excitation. Graphene bilayer and multilayer structures make possible improved THz device configurations. The
ability of graphene to form a high quality heterostructure with h-BN, black phosphorus, and other materials systems supports advanced
heterostructure devices comprised of the best properties of graphene and other emerging materials. In particular, using black phosphorus
compounds for cooling electron–hole plasma in graphene could dramatically improve the conditions for THz lasing. High optical phonon
energy allows for reaching higher plasma frequencies that are supported by high sheet carrier densities in graphene. Recent improvements in
graphene technology combined with a better understanding of the device physics of graphene THz plasmonics and graphene plasmonic
device designs hold promise to make graphene THz plasmonic technology one of the key graphene applications. Commercialization of plas-
monic graphene technology is facing the same challenges as other graphene applications, which have difficulties in producing uniform large
graphene layers, bilayers, and heterostructures of high quality and making good low resistance stable Ohmic contacts. The time projection
for large scale graphene electronic device applications now extends into the 2030s. However, emerging graphene mass production technolo-
gies might bring commercial applications of the graphene plasmonic terahertz technology closer.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5140712

Out of the many potential applications of graphene,1 THz and
infrared applications of graphene stand out because of their potential
to bridge the famous terahertz gap and enable beyond 5G technology.
A long (up to 400nm)mean free path of carriers in graphene,2,3 signif-
icant THz absorption just in one monoatomic layer (2.3%),4 graphene
ability to form bilayer5 and multilayer6 structures, graphene bipolar
conduction,7 high quality heterostructures that graphene forms with
h-BN,8,9 and black phosphorus compounds10–12 open up unique
opportunities for THz13 device and system engineering. A graphene
monolayer is all surface, making it extremely sensitive to all kinds of
chemical and biological agents.14–16 This sensitivity makes graphene
very promising for THz and sub-THz sensors, which demonstrated
much higher sensitivity than more conventional CHEMFET sensors.

Starting from the first analysis of plasma waves in graphene,17–19

plasmonic excitation at THz frequencies has been the focus of many
investigations aiming to use graphene for THz detection,20–24 modula-
tion,25 frequency mixing,26 emission,27,28 and lasing.29 In this paper,
we review emerging ideas for further development of graphene plas-
monic THz technology and comment on the prospects of graphene
commercialization.

The dispersion relation for the plasma waves—oscillations of the
carrier density—in graphene is given by22

x ¼ sk: (1)

Here, x is the plasma frequency, k is the wave vector,
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s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qjVg j=mc

q
; (2)

xp ¼
q3=4jVg j1=4vFk

p1=2C1=2
g

: (3)

(For comparison, the fundamental plasma velocity in the channels of
conventional FETs is proportional to V1=2

g for a somewhat larger tun-
ability.) As shown in Ref. 17, the plasma velocity in graphene should
be larger than the carrier (Dirac) velocity, vo � 106 m/s. However,
accounting for the electron–electron collisions30 shows that the plasma
velocity could be smaller than vo in the hydrodynamic regime, making
it possible to observe Cherenkov type emission33 and enabling
“plasmonic boom”31,32 instabilities.

For a bilayer graphene, Eq. (2) still applies, but the relevant effec-
tive mass mbl is a much weaker function of ns and could be even
assumed to be approximately independent of ns (mbl � 0:036me),

33

resulting in the fundamental plasma frequency,

xp ¼
q1=2jVg j1=2k

m1=2
bl

: (4)

Therefore, a bilayer graphene device has a better tunability by the gate
bias.

Figures 1 and 2 show the plasma velocity, momentum relaxation
time, and fundamental plasma frequencies, fp ¼ xp

2p ¼ s
4L for single and

bilayer graphene FETs (BLG FETs), respectively, for the gate lengths
ranging from 20nm to 80nm. (The fundamental plasma wave
depends on the boundary conditions at the ends of the channel. Here,
we assume a short circuit boundary condition at the source and the
open circuit boundary conditions at the drain corresponding to the
fundamental mode of the plasma wavelength k ¼ 4L, where L is
the channel length.34) Figure 3 shows the quality factor defined as
Q ¼ xps calculated for the bilayer graphene FET. As seen, the typical
plasma frequencies are in the THz range. In these calculations, we
assume the mobility values of 20 000 cm2/V s (much smaller than
the record values achieved for graphene, even at room temperature,35

but higher than typical measured values), 10 000 cm2/V s and
5000 cm2/V s. (At 77K, the plasmonic propagation length can exceed
10 lm.36)

For Q > 1, the FET channel behaves as a resonant cavity for the
plasma waves and could support resonant tunable THz detection,22

mixing,28 and amplification37 of the THz radiation, and electrical or
optical excitations could trigger the plasma wave instabilities. The
Dyakonov–Shur instability37 and transit delay plasma instability38

could be achieved both in single channel graphene FET and potentially
in graphene plasmonic crystals.39 Since the resonant excitation of the
plasma waves is possible using the high mobility graphene layer, one
possible application of a graphene plasmonic Terahertz FET (TeraFET)
is for tunable absorbers or tunable modulators.40 For longer samples
and/or samples with lower mobility values (when Q ¼ xps < 1), the
device nonlinearities still lead to the plasma wave rectification, enabling
the broadband THz detection similar to that discussed in Refs. 41 and
42. Another mechanism is the “plasmonic boom” instability.34,35 This
type of instability might be harder to reach in graphene because the
plasma wave velocity is quite high (see Figs. 1 and 3).

Double-graphene-layered FETs (DGL-FETs) could better per-
form as THz detectors than single layer graphene FETs due to their
photon/plasmon-assisted inter-layer tunneling mechanisms.2,43,44

Figure 4 (from Ref. 22) shows possibly the best demonstration of
the sub-THz and THz detection using BLG.

As seen, the responsivity changes its sign at the Dirac point (Vg

¼ 0) and follows the factor

F ¼ 1
r
dr
dVg

: (5)

As shown in Ref. 45, this factor is more accurately given by

F ¼ 1
ns

dns
dVg

: (6)

However, Eq. (5) still yields the same qualitative dependence. Figure 4
clearly show the difference between the broadband and resonant
detection regimes. The measured quality factor varied between 4 and
11 for the resonant detection and between 0.2 and 0.7 for the

FIG. 1. Plasma velocity and momentum relaxation time for graphene vs gate volt-
age swing (a) and fundamental plasma frequency (b) for single layer graphene.
The regions where Eqs. (1)–(3) are applicable are above the dashed line in Fig.
1(a) and to the right of the dashed line in Fig. 1(b).

FIG. 2. Plasma velocity and momentum relaxation time for graphene vs gate volt-
age swing (a) and fundamental plasma frequency (b) for bilayer graphene.

FIG. 3. Quality factor vs gate voltage swing
for BLG FET: (a) mobility 20 000 cm2/V s,
(b) 10 000 cm2/V s, and (c) 5000 cm2/V s.
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broadband detection.22 The resonant quality factor was consistent
with the measured momentum relaxation (transport) time sm because
the samples were very long (6lm) and the viscosity related decay fre-
quency was much smaller than 1/ sm. It would be very interesting to
perform similar measurements for much shorter channels to extract
the viscosity values from the measured quality factors since viscosity is
expected to play an important role in graphene.46,47

BLG FETs also have advantages in photomixing applications48

and terahertz generation.49 An experimental demonstration of the
emission and detection of THz radiation in a DGL-FET was reported
in Ref. 48. Figure 5 shows one possible implementation of such a bipo-
lar tunneling graphene device.49,54 In this device, the electron–hole
injection provides energy for growing the plasma wave instability. It
could also be used as a unit cell of a plasmonic crystal, provided that a

proper match in boundary conditions between the cells is met by using
variable width geometry39,50

In addition to the plasmonic instabilities previously considered
for standard heterostructures, the proposed plasma wave instability
mechanisms in graphene also include the self-excitation of the plasma
waves in the G-TUNNET device51,52 and super radiant lasing in gra-
phene nanocavities.27

The proposed resonant THz graphene FETs also include devices
with split gates, electrically induced lateral p–n junctions, and perfo-
rated graphene layer (PGL) channels.53 The perforated depletion
regions form an array of nanoribbons creating the barriers for the holes
and electrons, leading to the rectification of the AC across the lateral
p–n junction enhanced by the excitation of plasmonic oscillations in
the p- and n-sections of the channel. Such detectors are predicted to
have a very high responsivity at the THz radiation frequencies close to
the frequencies of the plasmonic resonances tunable by the gate bias.53

The plasma waves support a THz response of the graphene lat-
eral Schottky diodes. The possibility of the negative dynamic conduc-
tivity in fairly large graphene areas could promote an efficient THz
lasing27,51 (see Fig. 6). Vertical hot-electron graphene-base transistors
could also operate as resonant plasmonic terahertz detectors.54

Gate voltage tunability is an important property of graphene
plasmonic devices that enabled graphene plasmonic applications for
tunable THz transparent absorbers55,56 and electro-optic modula-
tors.57 Low loss graphene plasmonic waveguides have promise for real-
izing ultra-compact optoelectronic systems.58 Another suggested
application is in photovoltaics.59

GL-based heterostructures can include the black arsenic injecting
layers and other injecting layer materials with a proper band alignment
to the GLs.60 Such graphene-black phosphorus heterostructures have
been shown to cool the electron–hole plasma in graphene helping to
meet conditions for stimulated emission of THz radiation.

FIG. 4. THz detection by BLG FET: (a) frequency f ¼ 130 GHz. The rectangle highlights an offset due to the rectification by the p–n junction between the p-doped graphene
channel and the n-doped area near the contact. Upper inset: FET-factor F as a function of the gate bias Vg. (b) f¼ 2 THz radiation. The upper inset shows a zoomed-in region
of the photovoltage for positive gate voltage. Lower left inset: responsivity at 77 K. Lower right inset: The shape of the current voltage characteristics at 10 K, 77 K, and 300 K
(Dirac point Vg ¼ 0). Reproduced with permission from Bandurin et al., Nat. Commun. 9, 5392 (2018). Copyright (2018) Authors, licensed under a Creative Commons
Attribution 4.0 License.22

FIG. 5. Spatial distributions of THz electric field components: (a) jEz(x, z, x)j and
(b) jEy(x, z, x)j in a DGL waveguide structure. Reproduced with permission from
Dubinov et al., “Surface-plasmons lasing in double-graphene-layer structures,” J.
Appl. Phys. 115, 044511 (2014). Copyright 2014 AIP Publishing.4 (c) The schematic
of the device.
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Of special interest is the graphene plasmonic detectors integrated
with silicon61 and silicon-on-insulator technology62 that demonstrated
a high responsivity of 85mA/W at 1.55mm (about an order of magni-
tude higher than that of the standard silicon Schottky photodetectors).
High responsivity and compact size are the key features of graphene-
based plasmonic detectors.63,64

The recently predicted Giant Inverse Faraday Effect65 (still to be
observed) is for controlling magnetization by light. It needs a high
mobility sample, and graphene, and, therefore, might be a superb
material for its observation using plasma waves in graphene nanorings.
Another direction in the graphene plasmonic TeraFET research is
exciting plasma waves and controlling the phase shift at the ends of
the channel. This could yield superior “ratchet effect”66 THz detectors
and implement vector detection, allowing us to determine not only the
intensity but also the phase and propagation direction of the imping-
ing radiation.

The key challenges in plasmonic graphene technology are bridg-
ing the gap between the predicted and demonstrated performance and
bringing this technology to a market. The roadblocks in addressing
these challenges are common to all graphene electronic devices and
are related to the difficulty of producing graphene of high quality,67

making good low resistance stable Ohmic contacts and large-scale
processing. Graphene edges, vacancies, variation in the number of
layers, and local disorder all affect the graphene quality, reproducibil-
ity, and, as a consequence, the device performance and scale-up.68 The
time projections for large scale graphene electronic device applications
extend into the 2030s.69 However, recent developments70–72 in gra-
phene mass production technology might shrink this time frame and
bring commercial applications of the graphene plasmonic terahertz
technology closer.73 In addition to beyond 5G communications,74 the
graphene plasmonic technology could impact many other system
applications relying on sensing and communications including bio-
technology,75,76 gas,77,78 chemical sensing,79 and photovoltaics.80

In our opinion, the graphene science and technology develop-
ment has been evolutionary, not revolutionary. But of the greatest
attributes of science and technology is that nothing could be unlearnt,
and recent developments, such as the reported discovery of how to
cheaply produce graphene from biological waste,81 might be but pre-
cursors of more dramatic developments still to come. Graphene plas-
monics is expected to play a special role because it takes full advantage
of the unique properties of graphene ranging from its two-

dimensional structure to high optical phonon energy and a long
momentum relaxation time. It has demonstrated potential for enhanc-
ing the response by several orders of magnitude using tunable reso-
nance modes and allows for the direct coupling of THz, infrared, and
optical signals, avoiding the detrimental contributions from intercon-
nects and contacts. Some important developments such as integration
with silicon and 2D heterostructures, grating gate graphene structures,
and graphene plasmonic antennas and waveguides, will undoubtedly
be explored further. Other issues, such as plasmonics of rippled 82 and
3D 83 graphene and viscous 84 graphene plasmonics, need to be inves-
tigated further. Another important system is carbon nanotubes
(CNTs), which are simply graphene rolled into nanotubes and have
promise for plasmonic applications, both as individual nanotubes85

and as CNT mats,86 especially near the percolation point. Plasmonics
will be explored in other 2D monolayer materials87 that try to emulate,
reproduce, or even improve the unique properties of graphene.

The work at the Research Institute of Electrical
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of Science KAKENHI (Grant Nos. 16H06361, 16K14243, and
18H05331). The work at RPI was supported by the U.S. Army
Research Laboratory Cooperative Research Agreement (Project
Monitor Dr. Meredith Reed) and by the Office of Naval Research
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