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Abbreviations 

AA, amino acid(s) 

bsr, blasticidin S-resistant gene 

EGFP, enhanced green fluorescent protein 

FLCN, Folliculin 

HRP, horseradish peroxidase 

hTERT-RPE1, human telomerase reverse transcriptase retinal pigment epithelium 1 

KC/AA, K115A/C116A 

KD, knockdown 

KO, knockout 

puro, puromycin-resistant gene 

MDCK, Madin-Darby canine kidney 

NS, not significant 

RILP, Rab interacting lysosomal protein 

RILP-L1/L2, RILP-like 1/2 

SR, siRNA-resistant 
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Abstract 

 Primary cilia are sensors of chemical and mechanical signals in the extracellular environment.  

The formation of primary cilia (i.e., ciliogenesis) requires dynamic membrane trafficking events, and 

several Rab small GTPases, key regulators of membrane trafficking, have recently been reported to 

participate in ciliogenesis.  However, the precise mechanisms of Rab-mediated membrane trafficking 

during ciliogenesis largely remain unknown.  In this thesis, I used a collection of siRNAs against 62 

human Rabs to perform a comprehensive knockdown screening for Rabs that regulate 

serum-starvation-induced ciliogenesis in human telomerase reverse transcriptase retinal pigment 

epithelium 1 (hTERT-RPE1) cells and succeeded in identifying Rab34 as an essential Rab.  Knockout 

(KO) of Rab34, but not of Rabs previously reported to regulate ciliogenesis (e.g., Rab8 and Rab10), in 

hTERT-RPE1 cells drastically impaired serum-starvation-induced ciliogenesis.  Rab34 was also 

required for serum-starvation-induced ciliogenesis in NIH/3T3 cells and MCF10A cells, but not for 

ciliogenesis in Madin-Darby canine kidney (MDCK)-II cysts.  I then attempted to identify a specific 

region(s) of Rab34 that is essential for serum-starvation-induced ciliogenesis in hTERT-RPE1 cells by 

performing deletion and mutation analyses of Rab34.  Instead of a specific sequence in the switch II 

region, which is generally important for recognizing effector proteins (e.g., Rab interacting lysosomal 

protein [RILP]), a unique long N-terminal region (amino acids 1–49) of Rab34 before the conserved 

GTPase domain was found to be essential.  Moreover, I performed an in-depth deletion analysis of the 

N-terminal region of Rab34 together with Ala-based site-directed mutagenesis to identify the essential 

amino acids required for ciliogenesis.  The results showed that a Rab34 mutant lacking an N-terminal 18 

amino acids and a Rab34 mutant carrying an LPQ-to-AAA mutation (amino acids 16–18) failed to rescue 

a Rab34-KO phenotype.  I also found that Rab36, the closest paralogue of Rab34, which lacks an LPQ 

sequence in its N-terminal region failed to restore ciliogenesis.  These findings suggest that Rab34 is an 

atypical Rab that regulates serum-starvation-induced ciliogenesis through the Leu-Pro-Gln sequence of 

Rab34, which is highly conserved in vertebrates. 
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Graphical abstract.  Schematic representation of a summary of this thesis 
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Introduction 

 Primary cilia are microtubule-based membrane projections from the cell surface and are 

thought to function as sensors of chemical and mechanical signals in the extracellular environment (Satir 

and Christensen, 2007).  Defects in the formation or function of primary cilia cause various human 

diseases called ciliopathies (Reiter and Leroux, 2017).  The assembly and disassembly of primary cilia 

are tightly coupled to cell cycle progression, and primary cilia form in cells in the resting stage (Izawa et 

al., 2015).  Primary cilium formation (so-called ciliogenesis) is known to occur in a series of membrane 

trafficking steps (Sánchez and Dynlacht, 2016; Sorokin, 1962; Sorokin, 1968).  First, small vesicles 

called preciliary vesicles accumulate on the mother centriole, and then the preciliary vesicles fuse with 

each other to form a large vesicle called a ciliary vesicle.  The resulting ciliary vesicle extends together 

with the axoneme, and finally fuses with the plasma membrane (see Graphical abstract).  It is generally 

thought that lipids and ciliary proteins must be transported from other organelles, such as the Golgi 

apparatus and recycling endosomes, to the mother centriole via membrane trafficking mechanisms during 

the ciliary vesicle formation and elongation (Follit et al., 2006; Knödler et al., 2010). 

 Rab small GTPases, which belong to the Ras superfamily, are key regulators of membrane 

trafficking (Fukuda, 2008; Stenmark, 2009; Hutagalung and Novick, 2011; Pfeffer, 2013).  Rabs 

function as switch proteins that cycle between an active state and an inactive state.  In their active state, 

Rabs localize to specific vesicles or organelles and recruit a specific binding partner (called a Rab 

effector) via which they regulate a specific membrane trafficking pathway.  Recent studies have reported 

that several Rabs, including Rab8, Rab10, Rab11, Rab23, Rab29, and Rab34, participate in ciliogenesis 

(Knödler et al., 2010; Yoshimura et al., 2007; Nachury et al., 2007; Sato et al., 2014; Onnis et al., 2015; 

Pusapati et al., 2018; Xu et al., 2018; Gerondopoulos et al., 2019).  However, not all of the membrane 

trafficking mechanisms in ciliogenesis are fully understood, and knockout mice in which each of several 

cilia-regulating Rabs had been knocked out did not exhibit any ciliopathy phenotypes (Sato et al., 2014; 

Sobajima et al., 2014).  Moreover, no attempts have been made to perform a comprehensive analysis of 

all mammalian Rabs (Rab1A–43) during ciliogenesis. 

 In this thesis, I performed a comprehensive knockdown screening for Rabs that regulate 

serum-starvation-induced ciliogenesis in human telomerase reverse transcriptase retinal pigment 

epithelium 1 (hTERT-RPE1) cells and succeeded in identifying Rab34 as an essential Rab in 
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serum-starvation-induced ciliogenesis. Intriguingly, however, the known cilia-regulating Rabs, including 

Rab8, Rab10, Rab11B, and Rab12, were found to be dispensable for ciliogenesis, because their knockout 

(KO) cells formed primary cilia.  Moreover, the requirement of Rab34 for serum-starvation-induced 

ciliogenesis was confirmed in NIH/3T3 cells and MCF10A cells.  On the other hand, however, Rab34 

was not essential for ciliogenesis in cysts of Madin-Darby canine kidney (MDCK)-II cells.  I then 

performed KO–rescue experiments on several Rab34 mutants, including a switch II swapping mutant 

(S1A) and an N-terminal 49 amino acids [AA] deletion mutant (∆N49), to identify the region of Rab34 

that is responsible for ciliogenesis.  The results suggest that an N-terminal region (AA1–49), but not a 

switch II region of Rab34 is required for ciliogenesis.  I further analyzed the N-terminal region of Rab34 

in greater detail by means of Ala-based site-directed mutagenesis and identifed key amino acids that are 

essential for ciliogenesis in hTERT-RPE1 cells.  These findings indicate that the unique long N-terminal 

region (especially AA16–18) of Rab34, and not a specific sequence in the switch II region, is necessary 

for serum-starvation-induced ciliogenesis. 
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Material and Methods 

Antibodies 

 Anti-acetylated tubulin mouse monoclonal antibody (#T7451), anti-γ tubulin mouse 

monoclonal antibody (#T5326), anti-FLAG tag (M2) mouse monoclonal antibody (#F1804), 

anti-GALNT2 rabbit polyclonal antibody (#HPA011222), horseradish-peroxidase (HRP)-conjugated 

anti-T7 tag antibody (#69522), and HRP-conjugated anti-FLAG tag (M2) antibody (#A8592) were 

obtained from Sigma-Aldrich.  Anti-Arl13B rabbit polyclonal antibody (#17711-1-AP), anti-CP110 

rabbit polyclonal antibody (#12780-1-AP), anti-IFT20 rabbit polyclonal antibody (#13615-1-AP), and 

anti-RILP rabbit polyclonal antibody (#13574-1-AP) were from Proteintech.  Anti-Rab10 rabbit 

polyclonal antibody (#8127) and anti-FLCN (Folliculin) rabbit polyclonal antibody (#13697) were 

obtained form Cell Signaling Technology.  Anti-Rab8 mouse monoclonal antibody (#610845, BD 

Biosciences), anti-β-actin mouse monoclonal antibody (#G043, Applied Biological Materials), and 

anti-Munc13-2 (UNC13B) rabbit polyclonal antibody (#ab97924, Abcam) were also obtained 

commercially.  HRP-conjugated anti-mouse IgG goat polyclonal antibody (#1031-05) and anti-rabbit 

IgG goat polyclonal antibody (#NA934) were from SouthernBiotech and GE Healthcare, respectively.  

Alexa Fluor 488/555/594/633-conjugated anti-mouse/rabbit IgG goat/donkey polyclonal antibodies were 

from Thermo Fisher Scientific.  Anti-Rab11B, anti-Rab12, and anti-Rab34 rabbit polyclonal antibodies 

were prepared as described previously (Homma et al., 2019; Matsui et al., 2011). 

 

siRNAs and plasmids 

 The sequences of the effective siRNAs against human Rabs are described in previous study 

(Aizawa and Fukuda, 2015) (Table 1).  The nomenclature of human Rabs is in accordance with the 

National Center for Biotechnology Information (NCBI) database rather than Itoh et al., 2006, and thus 

four Rabs, i.e., Rab7B(42), Rab41(6D), Rab42(43), and Rab43(41), are named in this study as shown 

before parenthesis, and in previous studies as shown in each parenthesis.  The siRNAs against human 

CEP164, RILP, FLCN (#1 and #2), and Munc13-2 were chemically synthesized by Nippon Gene 

(Toyama, Japan) (their target sequence is summarized in Table 1).  The siRNA-resistant (SR) form of 

human Rab34 (Aizawa and Fukuda, 2015), Rab34SR(K115A/C116A), Rab34(S1A), Rab34(∆N49) 

(deletion of the N-terminal 49 amino acids), Rab34(∆N18) (deletion of the N-terminal 18 amino acids), 
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Rab34(∆N6) (deletion of the N-terminal 6 amino acids), Rab34(A1) (VRR [Val-Arg-Arg]-to-AAA 

[Ala-Ala-Ala] mutation), Rab34(A2) (DRV [Asp-Arg-Val]-to-AAA mutation), Rab34(A3) (LAE 

[Leu-Ala-Glu]-to-AAA mutation), Rab34(A4) (LPQ [Leu-Pro-Gln]-to-AAA mutation), Rab34(LA) 

(Leu-to-Ala mutation), Rab34(PA) (Pro-to-Ala mutaion), and Rab34(QA) (Gln-to-Ala mutation) were 

prepared by conventional PCR techniques using the specific oligonucleotides shown in Table 1 as 

described previously (Fukuda et al., 1995) and subcloned into the pMRX-IRES-puro-EGFP, 

pMRX-IRES-bsr-EGFP-P2A, pEF-FLAG tag (Fukuda et al., 1999), and pGBD-C1 vectors (James et al., 

1996).  The cDNAs of mouse Rab34 (Fukuda et al., 2002), Rab34(T66N), and Rab34(Q111L) (Ishida et 

al., 2012) were subcloned into the pMRX-IRES-bsr-EGFP-P2A vector and pMRX-IRES-bsr vector, 

respectively.  The P2A self-cleavage site (ATNFSLLKQAGDVEENPGP; [Kim et al., 2011]) was 

inserted into the pMRX-IRES-bsr-EGFP vector by PCR using specific oligonucleotides (Table 1).  The 

pMRX-IRES-puro/bsr-EGFP vectors are variants of the pMRX-IRES-puro/bsr vectors, which were 

donated by Dr. Shoji Yamaoka (Tokyo Medical and Dental University, Tokyo, Japan).  

pEF-FLAG-Rab34 and pEF-T7-RILP were prepared as described previously (Matsui et al., 2012; Fukuda 

et al., 2002).  The cDNAs of mouse RILP-L1 and RILP-L2 (Matsui et al., 2012) were subcloned into the 

pAct2 vector (Clontech/Takara Bio, Shiga, Japan). 

 The target sequences for human Rab8A/B-KO, Rab10-KO, Rab11B-KO, Rab12-KO, and 

Rab34-KO were designed by using CRISPR direct (https://crispr.dbcls.jp/) (summarized in Table 1).  

The annealed oligonucleotides of the Rab8A/B-KO and Rab11B-KO sense and antisense oligonucleotides 

were inserted into the pSpCas9(BB)-2A-bsr vector, a variant of pSpCas9(BB)-2A-puro (ID# 48139) that 

was obtained by replacement of the puromycin S-resistant gene (puro) by a blasticidin-resistant gene (bsr).  

The annealed oligonucleotides for Rab10-KO, Rab12-KO, and Rab34-KO were also inserted into the 

pSpCas9(BB)-2A-puro vector and pDonor-tBFP-NLS-Neo vector (Addgene ID# 80766). 

 

Cell culture and transfections 

 hTERT-RPE1 cells were cultured at 37ºC under 5% CO2 in Dulbecco’s Modified Eagle 

Medium: Nutrient Mixture F-12 (DMEM/F12) medium (Thermo Fisher Scientific) supplemented with 

10% fetal bovine serum, 100 µg/mL streptomycin, and 100 unit/mL penicillin G.  One day after plating, 

siRNAs and plasmids were transfected into hTERT-RPE1 cells by using Lipofectamine RNAi MAX for 
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the siRNAs (concentrations are indicated in each figure legend) and Lipofectamine 2000 (Thermo Fisher 

Scientific) or Fugene6 (Promega) for the plasmids each according to the manufacturer’s instructions. 

 MCF10A cells were cultured at 37ºC under 5% CO2 in DMEM/F12 medium supplemented 

with 5% horse serum, 50 ng/mL cholera toxin (Fujifilm Wako Pure Chemical, Osaka, Japan), 20 ng/mL 

epidermal growth factor (Fujifilm Wako Pure Chemical), 10 µg/mL insulin (Fujifilm Wako Pure 

Chemical), 500 ng/mL hydrocortisone (Fujifilm Wako Pure Chemical), 100 µg/mL streptomycin, and 100 

unit/mL penicillin G.  One day after plating, siRNAs (0.5 nM) were transfected into MCF10A cells by 

using Lipofectamine RNAiMAX according to the manufacturer’s instructions.  The same culture 

medium without the addition of horse serum and cholera toxin was used for serum starvation. 

 MDCK-II cells and NIH/3T3 cells were cultured at 37ºC under 5% CO2 in DMEM medium 

supplemented with 10% fetal bovine serum, 100 µg/mL streptomycin, and 100 unit/mL penicillin G.  

Establishment of Rab-KO MDCK-II cells (listed in Fig. 7) was performed as described previously 

(Homma et al., 2019).  For culture of three-dimensional cysts, MDCK-II cells were suspended in culture 

medium containing 10mM HEPES and 2 mg/mL collagen.  This mixture was placed in a 24-well plate, 

added with 1.6 mL of the culture medium and cultured for 7-day.  Plat-E cells were donated by Dr. 

Toshio Kitamura (The University of Tokyo, Tokyo, Japan).  The plat-E cell culture and retrovirus 

infection were performed as described previously (Morita et al., 2000). 

 

Establishment of CRISPR/Cas9 KO cell lines 

 hTERT-RPE1 cells that had been transfected with pSpCas9-bsr-Rab8A/B or -Rab11B were 

selected by exposure to 15 µg/mL blasticidin S for ~48 h.  hTERT-RPE1 cells that had been transfected 

with pSpCas9-puro-Rab10, -Rab12, or -Rab34 and pDonor-tBFP-NLS-Neo-Rab10, -Rab12 or -Rab34 

were selected as described previously (Katoh et al., 2017).  Single clones were then selected by the 

limiting dilution method.  KO cells were first checked for loss of target proteins by immunoblotting, and 

then checked for genomic mutations by genomic PCR and sequencing of the PCR products as described 

previously (Homma et al., 2019).  Rab34-KO NIH/3T3 cells were established in a similar manner.   

 

Immunoblotting 

 hTERT-RPE1 cells were lysed in an SDS sample buffer (62.5 mM Tris-HCl, pH6.8, 2% 
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2-mercaptoehanol, 10% glycerol, and 0.02% Bromophenol blue) in a lysis buffer (50 mM HEPES-KOH, 

pH7.2, 150 mM NaCl, 1 mM MgCl2, and 1% Triton X-100).  Cell lysates were subjected to 5%, 10%, or 

12.5% SDS-PAGE, and proteins were transferred to PVDF membranes (Merck Millipore).  The 

membranes were blocked with 1% or 5% skim milk and 0.1% Tween-20 in PBS and then reacted with 

specific primary antibodies.  The reacted bands were visualized with appropriate HRP-conjugated 

secondary antibodies and detected by enhanced chemiluminescence. 

 

Immunofluorescence analysis 

 hTERT-RPE1 cells, NIH/3T3 cells, and MCF10A cells that had been transfected with siRNAs 

or in which a Rab had been knocked out were fixed with 4% paraformaldehyde for 15 min at room 

temperature after 24-h or 48-h serum starvation.  After fixation, the cells were permeabilized with 0.3% 

Triton X-100 in PBS for 1 min and then stained with specific primary antibodies and appropriate Alexa 

Fluor 488/555/633-conjugated secondary antibodies.  After 7-day culture in collagen gel MDCK-II cysts 

were fixed with 10% trichloroacetic acid (TCA) for 15 min at room temperature and then stained with 

specific primary antibodies and appropriate Alexa Fluor 555/633-conjugated secondary antibodies.  The 

immunostained cells were examined with a confocal fluorescence microscope (FV1000, FV1000-D; 

Olympus, Tokyo, Japan; and Dragonfly spinning disk scanning unit (Dragonfly200); Andor, Belfast, 

Northern Ireland). 

 

Binding experiments 

 Yeast two-hybrid assays were performed by using pGBD-C1-Rab34(WT), -Rab34(KC/AA), 

Rab34(S1A), or -Rab34(∆N49) and pAct2-RILP as described previously (Tamura et al., 2009).  The 

yeast strain, medium, culture conditions, and transformation protocol were as described previously 

(James et al., 1996).   

 FLAG-tagged Rab34(WT), Rab34(KC/AA), or Rab34(S1A) and T7-tagged GFP or RILP were 

co-expressed in COS7 cells, and their interaction was analyzed by co-immunoprecipitation.  COS7 cell 

lysates were incubated with anti-T7-tag-antibody-conjugated agarose beads.  Proteins bound to the 

beads and a 1 % volume of total cell lysates were analyzed by immunoblotting with HRP-conjugated 

anti-FLAG and anti-T7 tag antibodies as described previously (Fukuda et al., 1999; Kobayashi et al., 
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2015).   

 

Statistical analysis 

 The data were statistically analyzed by performing Student’s unpaired t-test, Dunnett’s test, or 

the Tukey-Kramer test.  The single asterisk (*), double asterisks (**), and triple asterisks (***) in the 

graphs indicate p values <0.05, <0.01, and <0.001, respectively.  NS indicates not significant (p value 

>0.05). 
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Results 

Comprehensive screening for Rabs whose knockdown inhibits ciliogenesis in hTERT-RPE1 

cells 

 To identify novel Rabs that participate in serum-starvation-induced primary ciliogenesis, by 

using effective and specific siRNAs against 62 human Rabs that have developed previously in our 

laboratory (Aizawa and Fukuda, 2015), I performed a comprehensive knockdown screening in 

hTERT-RPE1 cells.  I used acetylated tubulin as a cilium marker and then counted the percentage of 

non-ciliated cells.  When I knocked down CEP164 protein that is essential for ciliogenesis (Graser et al., 

2007), the percentage of non-ciliated cells increased to more than 80% (Fig. 1A, black bar), whereas 

control siRNA had almost no effect (~10% of the cells were non-ciliated), thereby validating this 

experimental setup.  The results of the screening showed that knockdown of ten Rabs, i.e., Rab6C, 

Rab9A, Rab10, Rab11B, Rab12, Rab34, Rab40A, Rab40B, Rab42(43), and Rab43(41), increased the 

percentage of non-ciliated cells to more than 50% (Fig. 1A blue bars, and 1B), and I considered these 

Rabs to be primary candidates. 

 To confirm the knockdown effects on ciliogenesis that had been observed in the first screening 

and to avoid possible off-target effects by single siRNAs, I proceeded to perform knockdown experiments 

by using other independent siRNAs against the primary Rab candidates.  The results showed that 

knockdown of only four Rabs, i.e., Rab6C, Rab11B, Rab12, and Rab34, by each of two independent 

siRNAs increased the percentage of non-ciliated cells to more than 50% (Fig. 2A).  I also checked the 

protein expression levels of several candidate Rabs by immunoblotting, and the results confirmed that the 

Rab11B, Rab12, and Rab34 bands almost completely disappeared when the two independent siRNAs 

were used (Fig. 2B).  siRab9A#2 and siRab10#2 seemed to decrease the protein expression level more 

efficiently than siRab9A#1 and siRab10#1, respectively, did (Fig. 2B and data not shown), but they had a 

lesser effect on ciliogenesis, suggesting that siRab9A#1 and siRab10#1 have certain off-target effects on 

ciliogenesis.  On the other hand, no protein expression of other candidate Rabs, including Rab6C, was 

detected by immunoblotting (data not shown), and I did not pursue Rab6C in the subsequent analysis.  

Based on the results of the two-step screenings, I selected Rab11B, Rab12, and Rab34 as secondary 

candidate Rabs. 

 A possible function of Rab11 in ciliogenesis had already been reported (Knödler et al., 2010), 
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but involvement of Rab12 and Rab34 in ciliogenesis had not been investigated by the time I completed 

the comprehensive screening.  During the course of investigating Rab12 and Rab34 in the subsequent 

analysis, their possible involvement in ciliogenesis was reported by other groups (Pusapati et al., 2018, 

Steger et al., 2017; Xu et al., 2018; Breslow et al., 2018), although the detailed molecular mechanisms 

remained unknown. 

 

Rab34 is required for ciliogenesis in hTERT-RPE1 cells 

 To determine whether the secondary candidates identified above, i.e., Rab11B, Rab12, and 

Rab34, are indeed essential for ciliogenesis in hTERT-RPE1 cells, I generated their respective KO cells 

by using the CRISPR/Cas9 system.  I also established Rab8A/B-double KO (Rab8A/B-KO) cells and 

Rab8A/B/10-triple KO (Rab8A/B/10-KO) cells as controls, because Rab8 and Rab10 are widely thought 

to be involved in cilium formation in mammalian cultured cells (Sato et al., 2014).  Loss of the target 

Rabs in each KO cell was verified by both immunoblotting (Fig. 3B) and sequencing of genomic PCR 

products (Fig. 4).  As shown in Fig. 3A, only Rab34-KO greatly increased the percentage of non-ciliated 

cells.  By contrast, Rab8A/B-KO, Rab10-KO, Rab8A/B/10-KO, Rab11B-KO, and Rab12-KO cells did 

not show any defects in ciliogenesis under my experimental conditions.  The KO phenotypes observed 

in this study are unlikely to be caused by clonal variations, because essentially the same results were 

obtained in other independent Rab-KO clones (i.e., impaired ciliogenesis in Rab34-KO cells versus 

normal ciliogenesis in other Rab-KO cells) (data not shown). 

 To further confirm that the impaired ciliogenesis was directly related to Rab34-KO, I 

performed rescue experiments by stably expressing EGFP (enhanced green fluorescent 

protein)-P2A-Rab34, which contains a P2A self-cleavage site (Kim et al., 2011) between EGFP and 

Rab34, in Rab34-KO cells (Fig. 5A).  The results showed that expression of EGFP-P2A-Rab34 

completely rescued the impaired ciliogenesis phenotype of Rab34-KO cells (Fig. 3C and 3D).  I used 

EGFP-P2A-Rab34 instead of EGFP-Rab34 for the KO–rescue experiment, because EGFP-P2A-Rab34 

was able to rescue the phenotype of Rab34-knockdown (KD) cells more efficiently than EGFP-Rab34 

was (Fig. 5B), suggesting that N-terminal EGFP-tagging partly distorts the function of Rab34.  A similar 

observation was previously reported with respect to Rab10: untagged Rab10, but not EGFP-Rab10, was 

found to promote neurite outgrowth of Rab10-depleted cells (Homma and Fukuda, 2016).  These 
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findings suggest that Rab34 is the most crucial Rab for serum-starvation-induced ciliogenesis in 

hTERT-RPE1 cells. 

 

Requirement of Rab34 for ciliogenesis depends on the cell type 

 To determine whether Rab34 is a general positive regulator of ciliogenesis, I investigated the 

effect of Rab34-KO or -KD on ciliogenesis in other cell types.  As shown in Fig. 6A and 6B, Rab34 

depletion in NIH/3T3 cells and MCF10A cells resulted in increase in the percentage of non-ciliated cells 

and decrease in the ciliated cells under serum-starved conditions, respectively, and the impaired 

ciliogenesis of Rab34-KO NIH/3T3 cells and Rab34-KD MCF10A cells was clearly rescued by 

expression of EGFP-P2A-Rab34.  On the other hand, checking the primary cilia in the cysts of Rab-KO 

MDCK-II cells that recently established in our laboratory (Homma et al., 2019) revealed that all of the 

Rab-KO cysts, including the Rab34-KO cysts, had formed primary cilia in their luminal domain (Fig. 6C 

and Fig. 7).  Although Rab6 and Rab11 have been shown to be required for normal epithelial 

morphogenesis (Homma et al., 2019), their KO cysts still had primary cilia in their luminal domain (Fig. 

6D).  Thus, Rab34 is unlikely to be a general regulator of ciliogenesis, and it is dispensable for 

ciliogenesis at least in MDCK-II cysts.  

 

Rab34 is required for early steps in serum-starvation-induced ciliogenesis in hTERT-RPE1 

cells 

 To investigate the defective ciliogenesis in the absence of Rab34 in greater detail, I then 

investigated the subcellular localization of ciliary membrane proteins and proteins that are required for 

ciliogenesis, i.e., Rabin8, CP110, IFT20, and Arl13B (Follit et al., 2006, Nachury et al., 2007, Spektor et 

al., 2007, Larkins et al., 2011), in Rab34-KO cells.  As shown in Fig. 8A, Rab34-KO had no effect on 

the localization of Rabin8 (1 h after serum starvation) or of CP110, IFT20, and Arl13B (24 h after serum 

starvation) in hTERT-RPE1 cells, when compared with the control parental cells; removal of CP110 from 

mother centrioles (Fig. 8A, arrows in the second panels) (Spektor et al., 2007), and the centriole 

localization of Rabin8, IFT20, and Arl13B (Fig. 8A, arrowheads in the top, third, and bottom panels, 

respectively).  Essentially the same results were reported for CP110, Rabin8, and IFT20 in Rab34-KO 

NIH/3T3 cells (Xu et al., 2018), indicating that Rab34 is not involved in the recruitment of Rabin8 and 
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IFT20 to centrioles or CP110 removal.  Since depletion of Rab34 inhibited the axoneme elongation and 

extension of ciliary vesicles, Rab34 is likely to be required for early steps in serum-starvation-induced 

ciliogenesis in hTERT-RPE1 cells. 

 Because anti-Rab34 antibody used in this thesis was unable to detect the subcellular 

localization of endogenous Rab34 in hTERT-RPE1 cells by the immunofluorescence analysis, I tried 

overexpressing FLAG-tagged Rab34, which can restore the Rab34-KO phenotype in Rab34-KO cells 

(Fig. 10D), and visualized it by using an anti-FLAG tag antibody.  The results showed that 

FLAG-Rab34 was mainly localized at the Golgi apparatus, consistent with the findings in a previous 

report (Wang and Hong, 2002), and that it rarely localized at primary cilia (approximately 20 %) (Fig. 

8B).  Taken together, these results imply that Rab34, an early-step regulator of ciliogenesis, is likely to 

be released from ciliary membranes before the maturation of primary cilia. 

 

The unique long N-terminal region of Rab34 is required for ciliogenesis in hTERT-RPE1 

cells 

 Next, I attempted to identify a specific region(s) of Rab34 that is essential for ciliogenesis by 

performing mutation and deletion analyses of Rab34-KO cells.  In general, Rabs are thought to 

recognize specific effectors through their switch II region, because mutations of specific amino acids in 

this region of some Rabs have been shown to abrogate their effector-binding ability (Kloer et al., 2010; 

Tamura et al., 2011; Etoh and Fukuda, 2015; Matsui et al., 2012; Homma et al., 2020).  Sequence 

comparisons of the switch II region of mammalian Rabs have revealed that Lys-115 and Cys-116 are 

specific to Rab34 (and its closest paralog Rab36) (Matsui et al., 2012; Fig. 10A, asterisks).  Actually, 

our group had previously shown that K120A/C121A mutations of Rab36 impaired RILP (Rab interacting 

lysosomal protein)-binding activity, and that the Rab36(K120A/C121A) mutant did not support 

retrograde melanosome transport in melanocytes (Matsui et al., 2012).  I therefore generated a 

Rab34(K115A/C116A) (simply referred to as Rab34(KC/AA) hereafter) mutant and evaluated its effect 

on ciliogenesis in Rab34-KO hTERT-RPE1 cells. 

 Consistent with the previous finding regarding Rab36 (Matsui et al., 2012), Rab34(KC/AA) 

failed to interact with RILP in yeast two-hybrid assays (Fig. 9A) and was shown to hardly interact with it 

by co-immunoprecipitation assays (Fig. 9B).  Unexpectedly, however, Rab34(KC/AA) completely 
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rescued the Rab34-KD phenotype (Fig. 9C).  Since a weak interaction between Rab34(KC/AA) and 

RILP was still observed in the co-immunoprecipitation assays (Fig. 9B), it was possible that such a weak 

interaction could rescue the KD phenotype.  To rule out this possibility, I generated an additional Rab34 

mutant that completely lacks RILP-binding ability by swapping the switch II region of Rab34 for that of 

Rab1A, a Rab isoform distantly related to Rab34 (named Rab34(S1A)) (Fig. 10A), and complete loss of 

RILP-binding activity by Rab34(S1A) was confirmed by both yeast two-hybrid assays and 

co-immunoprecipitation assays (Fig. 10B and 10C).  Nevertheless, Rab34(S1A) did rescue the 

Rab34-KO phenotype, the same as Rab34(WT) did (Fig. 10D).  Although specific sequence in the 

switch II region of Rab34 was not essential for ciliogenesis, GTP-binding activity of Rab34 itself was 

necessary, because a constitutively active Rab34 mutant, Rab34(Q111L), but not its constitutively 

inactive mutant, Rab34(T66N), completely rescued the Rab34-KD effect on ciliogenesis, the same as 

Rab34(WT) did (Fig. 11). 

 To further identify the crucial region of Rab34 for ciliogenesis, I compared the entire 

sequences of mammalian Rab family members in greater detail and discovered that Rab34 contains a long 

N-terminal region (gray box in Fig. 10A) that was not found in other Rab isoforms except Rab36.  

Rab36, the closest paralog of Rab34, also contains a long N-terminal sequence, but the N-terminal 

sequences are not well conserved between them.  I therefore produced an N-terminal deletion mutant of 

Rab34 (named Rab34(∆N49)), which lacks the N-terminal 49 amino acids of Rab34, and performed a 

rescue experiment.  The results showed that Rab34(∆N49) did not rescue the Rab34-KO phenotype at 

all (Fig. 10E).  Although the protein expression level of Rab34(∆N49) was lower than that of 

Rab34(WT) and Rab34(S1A), it was higher than that of endogenous Rab34 (Fig. 10F).  This results 

suggest that the lack of a rescue effect by Rab34(∆N49) is unlikely to be attributable to its protein 

expression level (Fig. 10F).  Moreover, FLAG-tagged Rab34(S1A) and Rab34(∆N49) mainly localized 

at the Golgi apparatus, the same as Rab34(WT) did (Figs. 8B and 10G ).  It should be noted that 

Rab34(S1A) localized at primary cilia to an extent similar to that of Rab34(WT) (approximately 20%), 

whereas I did not observe any ciliary localization of Rab34(∆N49) under this experimental conditions.  

Thus, the unique N-terminal region of Rab34 is not involved in its Golgi localization, but it may be 

required for its ciliary targeting or localization.  However, since the protein expression level of 

Rab34(∆N49) was often lower than that of Rab34(WT) and Rab34(S1A) (Figs. 10F), I could not 
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completely rule out the possibility that its low protein expression masked the ciliary localization of 

Rab34(∆N49). 

 

The N-terminal Leu-Pro-Gln sequence of Rab34 is involved in ciliogenesis in hTERT-RPE1 

cells 

 To narrow down the region of Rab34 (amino acids [AA]1–49) that is required for ciliogenesis, 

we first compared the N-terminal regions of the Rab34 of various vertebrate species (Fig. 12A) and 

performed a further deletion analysis.  I prepared two additional deletion mutants, named Rab34(ΔN18) 

(deletion of N-terminal 18AA) and Rab34(ΔN6) (deletion of N-terminal 6AA) (Fig. 12A).  The results 

showed that stable expression of Rab34(ΔN6) in Rab34-KO cells significantly restored primary cilium 

formation, the same as the wild-type Rab34 did, but that Rab34(ΔN18) failed to rescue the Rab34-KO 

phenotype (Fig. 12B and 12D).  Although the protein expression level of Rab34(ΔN18) was lower than 

that of Rab34(WT) and Rab34(ΔN6), it was much higher than that of endogenous Rab34 (Fig. 12C), 

thereby excluding the possibility that the lack of a rescue effect was attributable to an insufficient amount 

of Rab34(ΔN18).  Thus, the residues of Rab34 that are crucial for its function in ciliogenesis is likely to 

lie within AA7–18 of Rab34.  To identify the specific residues, we then performed a series of Ala-based 

site-directed mutagenesis and prepared four additional Rab34 mutants, named Rab34(A1) (triple Ala 

mutations in AA7–9 [VRR]), Rab34(A2) (triple Ala mutations in AA10–12 [DRV]), Rab34(A3) (triple 

Ala mutations in AA13–15 [LAE]), and Rab34(A4) (triple Ala mutations in AA16–18 [LPQ]) (Fig. 12A).  

The results of the rescue experiment showed that the Rab34(A1), Rab34(A2), and Rab34(A3) mutants 

completely rescued the Rab34-KO phenotype, the same as the Rab34(WT) did, whereas the Rab34(A4) 

mutant failed to completely restore ciligogenesis when compared with Rab34(WT) (Fig. 12E and 12G).  

Once again, however, the protein expression level of Rab34(A4) was lower than that of the other Rab34 

mutants but higher than that of endogenous Rab34 (Fig. 12F).  These results suggest that AA16–18 

(LPQ) of human (or mouse) Rab34 are important for ciliogenesis in hTERT-RPE1 cells.  Moreover, 

since the protein expression levels of Rab34(ΔN18) and Rab34(A4) were relatively low, Leu-16, Pro-17, 

and/or Gln-18 may also be required for Rab34 protein stability. 

 To further evaluate the importance of each AA of the LPQ sequence in ciliogenesis, we 

prepared three additional Rab34 point mutants carrying a Leu-to-Ala, Pro-to-Ala, and Gln-to-Ala 



 19 

mutation in the AA positions 16–18, named Rab34(LA), Rab34(PA), and Rab34(QA), respectively.  

The results of the rescue experiment showed that all three mutants completely rescued the Rab34-KO 

phenotype like Rab34(WT) did (Fig. 13A and 13C).  Moreover, the protein expression levels of 

Rab34(LA), Rab34(PA), and Rab34(QA) were almost the same as that of Rab34(WT) did (Fig. 13B).  

These results suggest that a single AA substitution within the LPQ sequence would not impair the ciliary 

function of Rab34 in cilium formation, and they also suggest that zebrafish Rab34, which contains an 

LPK sequence (Fig. 12A), is capable of mediating ciliogenesis. 

 

Rab36 cannot compensate for the Rab34 function in serum-starvation-induced ciliogenesis 

 Next, I turned my attention to Rab36, the closest paralog of Rab34 (Homma et al., 2020), that 

also has a unique long N-terminal sequence, which is less homologous to that of Rab34.  However, I 

noted that Pro-22, which is equivalent to the Pro-17 of Rab34, is also found in Rab36 (Fig. 12A), and at 

least one AA substitution in the LPQ sequence of Rab34 did not affect its function in ciliogenesis (Fig. 

13).  Thus, it was still possible that overexpression of Rab36 might compensate for the function of 

Rab34 in ciliogenesis of Rab34-KO cells, even though knockdown of Rab36 in hTERT-RPE1 cells was 

shown no effect on ciliogenesis (Fig. 1A).  To investigate this possibility, I next overexpressed Rab36 in 

parental and Rab34-KO hTERT-RPE1 cells, but the results showed that Rab36 did not rescue the 

Rab34-KO phenotype at all (Fig. 14A and 14C).  Although no endogenous Rab36 protein expression 

was detected under our experimental conditions, exogenous Rab36 protein was easily detected, 

suggesting that the lack of a rescue effect by Rab36 was not attributable to its low protein expression 

level (Fig. 14B).  These results showed that Rab36 cannot compensate for the function of Rab34 in 

ciliogenesis, and suggest that two AA substitutions in the LPQ sequence of Rab34 impair its function in 

ciliogenesis.  However, I also found that overexpression of Rab36 itself in parental hTERT-RPE1 cells 

inhibited ciliogenesis (Fig. 14A and 14C). 

 

The known Rab34-interacting proteins are not required for ciliogenesis in hTERT-RPE1 cells 

 In the final set of experiments, I investigated the possible involvement of the known 

Rab34-intearcting proteins, i.e., RILP, RILP-like 1 (RILP-L1), RILP-like 2 (RILP-L2) (Wang and Hong, 

2002; Wang et al., 2004, Fukuda et al., 2008), Folliculin (FLCN) (Starling et al., 2016), and Munc13-2 
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(Goldenberg and Silverman, 2009), in ciliogenesis in hTERT-RPE1 cells.  To narrow down the 

candidates, I first took advantage of the Rab34(S1A) mutant described above.  Because Rab34(S1A) 

was able to support ciliogenesis (Fig. 10D), a Rab34 effector(s) that functions in ciliogenesis was 

expected to bind to Rab34(S1A).  However, RILP and RILP-L1/L2 failed to interact with Rab34(S1A) 

(Fig. 10B and 10C; and data not shown), indicating that the RILP-binding activity of Rab34 is not 

essential for ciliogenesis.  Actually, knockdown of endogenous RILP in hTERT-RPE1 cells had no or 

little effect on ciliogenesis (Fig. 15A), and RILP-L1 and RILP-L2 have previously been shown to inhibit 

rather than promote ciliogenesis in hTERT-RPE1 cells (Schaub and Stearns, 2013).  I therefore focused 

on FLCN, which had previously been shown to be associated with ciliopathy (Luijten et al., 2013), and 

Munc13-2 in subsequent analyses.  An immunoblot analysis using specific antibodies showed that 

FLCN was endogenously expressed in hTERT-RPE1 cells (Fig. 15B), but no endogenous Munc13-2 

expression was detected under my experimental conditions (Fig. 15C).  Furthermore, transfection of a 

specific siRNA for Munc13-2 into hTERT-RPE1 cells had no effect on ciliogenesis (Fig. 15C), indicating 

that Munc13-2 is not a relevant effector in ciliogenesis.  Finally, I knocked down endogenous FLCN in 

hTERT-RPE1 cells, and the results showed that FLCN-KD had no effect on ciliogenesis, even though the 

FLCN immunoreactive bands almost completely disappeared after treatment with two independent 

siRNAs (Fig. 15B).  These findings taken together indicate that the known Rab34-interacting proteins, 

including RILP and FLCN, are not required for Rab34-regulated serum-starvation-induced ciliogenesis in 

hTERT-RPE1 cells. 
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Discussion 

 In this study, I performed a comprehensive knockdown screening for human Rabs that regulate 

ciliogenesis (Fig. 1), and based on the results together with the results of KO analyses I succeeded in 

identifying Rab34 as an essential Rab in serum-starvation-induced ciliogenesis in hTERT-RPE1 cells 

(Figs. 1–3).  Moreover, Rab34-KO had no effect on recruitment of IFT20, Rabin8, and Arl13B to 

centrioles or removal of CP110 from the mother centriole, but they inhibited axoneme elongation and 

extension of ciliary vesicles (Fig. 8A).  These results suggest that Rab34 regulates the ciliary vesicle 

fusion step and/or the subsequent expansion step of serum-starvation-induced ciliogenesis. 

 Although ~10 Rabs have been proposed to participate in ciliogenesis in previous studies 

(Knödler et al., 2010; Yoshimura et al., 2007; Nachury et al., 2007; Sato et al., 2014; Onnis et al., 2015; 

Pusapati et al., 2018; Dhekne et al., 2018; Gerondopoulos et al., 2019; Wang et al., 2019; Kuhns et al., 

2019), the results of knockdown or knockout of these Rabs in the present study demonstrated that none of 

the reported Rabs except Rab34 are essential for serum-starvation-induced ciliogenesis, at least in 

hTERT-RPE1 cells under my experimental conditions (Figs. 1–3).  Among the Rab-KO cells established 

in this study, only the Rab34-KO cells showed marked inhibition of ciliogenesis, and although 

Rab8/10-KO seemed to weakly inhibit ciliogenesis, the reduction was not statistically significant (Fig. 3).  

Nevertheless, I cannot rule out the possibility that Rabs other than Rab34 participate in ciliogenesis in 

other cell types or under different conditions (e.g., different upstream signals). 

 Intriguingly, when I checked the primary cilia in the cysts of recently established Rab-KO 

MDCK-II cells (Homma et al., 2019), I found that all of the Rab-KO cysts, including the Rab34-KO cysts, 

formed primary cilia in their luminal domain (Fig. 6C and 6D, and Fig. 7).  Thus, the mechanism of 

ciliogenesis in the two cell types is likely to be different.  Actually, it has been proposed that 

ciliogenesis in polarized cells and in non-polarized cells occurs in different pathways (Rohatgi and Snell, 

2010; Benmerah, 2013).  For example, the cilia in hTERT-RPE1 cells, NIH/3T3 cells, and MCF10A 

cells are induced by serum starvation, whereas the cilia in MDCK-II cells are induced during cyst growth 

in the absence of starvation.  Thus, the upstream signals of ciliogenesis in hTERT-RPE1 and MDCK-II 

cells must be different, and Rab34 is specifically required for ciliogenesis in only certain cell types, such 

as hTERT-RPE1 cells, NIH/3T3 cells, and MCF10A cells.  Consistent with this conclusion, Rab34-KO 

mice exhibited polydactyly, cleft lip, and cleft palate, but they did not have a polycystic kidney disease 
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phenotype (Dickinson et al., 2016; Xu et al., 2018), indicating that the primary cilia in their kidney cells 

are functionally normal. 

 Several questions regarding the function of Rab34 remain unanswered in this study.  First 

important question that must be answered in a future study concerns the function of the LPQ sequence in 

unique long N-terminal region of Rab34.  Since specific sequence in the switch II region of Rab34 is not 

essential for serum-starvation-induced ciliogenesis (Fig. 9 and Fig. 10), I hypothesized that the long 

N-terminal region contributes to recognition of an unidentified Rab34 effector that functions in 

ciliogenesis.  Actually, the N-terminal region of certain Rabs is known to contribute to the effector 

recognition; e.g., the Tyr-6 in the N-terminal region of Rab27A is required for its interaction with Slac2-a 

(Kukimoto-Niino et al., 2008) (see Graphical abstract 	
 ).  Alternatively, the three amino acids may be 

involved in an interaction with a certain chaperone (e.g., the Rab10 chaperone RABIF/MSS4 (Gulbranson 

et al., 2017)) and thereby stabilize Rab34 protein in cells.  Consistent with my hypothesis, N-terminal 

EGFP-tagging of Rab34 significantly reduced its rescue efficiency (Fig. 5), presumably because fusion of 

a relatively large molecule, e.g., EGFP, to the N-terminus of Rab34 partially impairs its interaction with 

an unidentified Rab34 effector.  In our laboratory N-terminally GST (glutathione S-transferase)-tagged 

or GBD (Gal4-binding domain)-tagged Rab34 were used as bait in previous comprehensive screening for 

Rab effectors (Matsui et al., 2012, Fukuda et al., 2008, Kanno et al., 2010), but this screening methods 

are presumably inappropriate for identifying a Rab34 effector that functions in ciliogenesis. C-terminally 

tagged or untagged Rab34(S1A), which lacks binding activity toward RILP family members, would be 

useful in future screening for a novel Rab34 effector(s) in ciliogenesis.  Second unanswered question 

concerns the cargo(s) Rab34 transports.  One possible cargo is a component of SNARE complexes, 

because recruitment of an EHD1-binding protein, SNAP-29, to preciliary membranes is important for 

ciliogenesis, and a similar early step-ciliogenesis-defect phenotype has been observed in EHD1-depleted 

cells (Lu et al., 2015).  It is also unknown which membrane trafficking steps(s), e.g., budding, transport, 

docking, and fusion, Rab34 regulates.  It had previously been shown that the main localization of Rab34 

is the Golgi apparatus (Wang and Hong, 2002), and I confirmed its Golgi localization in the present study 

(Fig. 8B).  The unique N-terminal region (AA1–49) of Rab34 is not required for its Golgi localization, 

but no ciliary localization of Rab34(∆N49) was observed at least under my experimental conditions.  I 

therefore assume that Rab34 regulates the budding/secretion step from the Golgi, the transport step of 
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preciliary vesicles, and/or the fusion step of preciliary vesicles to form ciliary vesicles (see Graphical 

abstract �).  Third question is why Rab36 has a dominant negative effect on ciliogenesis.  We think 

that there are several possible explanations.  Since both Rab34 and Rab36 localize at the perinuclear 

region (presumably at the Golgi) (Wang and Hong, 2002; Chen et al., 2010), one possible explanation is 

that exogenous Rab36 affects transport of Golgi-derived vesicles, which are normally transported to 

preciliary structures (or cilia) via Rab34.  Another possible explanation is that Rab36 traps Rab34 

effector(s) that is essential for ciliogenesis to indirectly inhibit the function of endogenous Rab34.  

Actually, the switch II region of Rab34 and Rab36 are highly conserved and they share several effectors 

such as RILP family members (Chen et al., 2010; Matsui et al., 2012).  However, trapping of Rab34 

effectors by Rab36 may be unlikely because the RILP family members were showed not to be involved in 

ciliogenesis in hTERT-RPE1 cells (Fig. 15).  In any case, Rab36 could be used as a dominant negative 

tool to inhibit ciliogenesis in future studies, even though its inhibitory mechanism remains unknown. 

 In summary, I found that Rab34 regulates early steps of serum-starvation-induced ciliogenesis 

through its unique, previously uncharacterized N-terminal region (especially AA16–18 (LPQ)) and that 

its KO causes a loss of primary cilia even after serum starvation.  In the future, it will be necessary to 

identify all of the membrane trafficking mechanisms responsible for Rab34-dependent ciliogenesis and 

determine the functional relationships between Rab34 and the previously reported Rabs, including Rab8 

and Rab11, during ciliogenesis. 
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FIGURE 1.  Screening for Rabs whose knockdown inhibited ciliogenesis in hTERT-RPE1 cells.  A, the percentage 

of non-ciliated hTERT-RPE1 cells (%) that have been transfected with siRNA against each Rab isoform (0.2 nM) was 

counted after 24-h serum starvation (n >50 cells).  The broken red line indicates that 50% of the cells have no cilia.  The 

black bar represents Cep164 (positive control), and the blue bars represent candidate Rabs whose knockdown increased 

the number of non-ciliated cells to more than 50% compared with the control siRNA (negative control).  B, typical 

images of cells transfected with control siRNA (siControl), Cep164 siRNA (siCep164) (positive control), or siRNA 

against candidate Rabs (siRab).  The cells were fixed after 24-h serum starvation and then stained with anti-acetylated 

tubulin antibody (green; cilia) and DAPI (blue; nuclei).  The broken white lines indicate the boundaries of each cell.  *, 

non-ciliated cells.  Scale bars, 20 µm.
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GCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGA
GGGAGTGGCCAACTCCATCACTAGGGGTTCCTGC
GGCCGCTCCCCAGCATGCCTGCTATTCTCTTCCC
AATCCTCCCCCTTGCTGTCCTGCCCCACCCCACC
CCCCAGAATAGAATGACACCTACTCAGACAATGC
GATGCAATTTCCTCATTTTATTAGGAAAGGACAG
TGGGAGTGGCACCTTCCAGGGTCAAGGAAGGCAC
GGGGGAGGGGCAAACAACAGATGGCTGGCAACTA
GAAGGC          (281 nt insertion)

CCG CACGGGTGCCAGAATGT
*** *****************
CCG-CACGGGTGCCAGAATGT  

CCG CACGGGTGCCAGAATGT
*** *****************
CCG-CACGGGTGCCAGAATGT  

Rab34-KORab12-KO

Rab8A/B-KO(Rab8A)
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ATTAGGACCATAGAGCTTCGATGG
************************
ATTAGGACCATAGAGC-TCGATGG

CTCCTGCTGATCGGCGA--CGGG
*****************  ****
CTCCTGCTGATCGGCGACTCGGG
CTCCTGCTGATCGGCGA CTCGGG
***************** ******
CTCCTGCTGATCGGCGA-CTCGGG

GCGGCGGGCGGGAGTCGCTGCGCGC
TGCCTTCGCCCCGTGCCCCGCTCCG
CCGCCGCCTCGCGCCGCCCGCCCCG
GCTCTGACTGACCGCGTTACTCCCA
CAGGTGAGCGGGCGGG
(116 nt insertion)

Rab11B-KO

Rab10-KO
TGAATCGGGGATTCCGGAGTGG
** *******************
TG-ATCGGGGATTCCGGAGTGG

FIGURE 4.  Genomic information about the Rab-KO hTERT-RPE1 cells used in this study.  The target sequences 

for Rab8A/B-KO, Rab10-KO, Rab8A/B/10-KO, Rab11B-KO, Rab12-KO, and Rab34-KO are shown.  The green and 

magenta boxes indicate the PAM sequence and target sequence, respectively.  The genomic mutations were checked by 

genomic PCR and sequencing the PCR products as described previously (Homma et al., 2019), using the specific sets of 

oligonucleotides shown in Table 1.  The donor BFP DNA was inserted into one allele of the Rab gene in the 

Rab8A/B/10-KO, Rag12-KO, and Rab34-KO cells (arrows, direction of BFP DNA).

ATTCGGGGATTCCGGAGTGG
* ******************A-TCGGGGATTCCGGAGTGG
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*** *******************CTG-ATCGGGGATTCCGGAGTGG
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***************** ******
CTCCTGCTGATCGGCGA-CTCGGG

GCGGCGGGCGGGAGTCGCTGCGCGC
TGCCTTCGCCCCGTGCCCCGCTCCG
CCGCCGCCTCGCGCCGCCCGCCCCG
GCTCTGACTGACCGCGTTACTCCCA
CAGGTGAGCGGGCGGG
(116 nt insertion)

Donor vector(      )Donor vector(      )

ATCCGGGCGCCGCG CTGCAGAGG
************** *********ATCCGGGCGCCGCG-CTGCAGAGG
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*****************  ******ATCCGGGCGCCGCGCTG--CAGAGG
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FIGURE 6.  Rab34 is also required for ciliogenesis in NIH/3T3 cells and MCF10A cells, but not in MDCK-II cells.  

A, the percentage of non-ciliated cells (%) in the parental, Rab34-KO, and stable EGFP-P2A-Rab34-expressing 

Rab34-KO (Rab34-KO + Rab34) NIH/3T3 cells was counted after 48-h serum starvation (n >50 cells).  Error bars 

indicate the S.E. of data from three independent experiments.  *, p <0.05; **, p <0.01 (Tukey's test).  Typical images of 

parental, Rab34-KO, and Rab34-KO + Rab34 cells.  The cells were fixed after 48-h serum starvation and then stained 

with anti-acetylated tubulin antibody (ac-Tub in green; cilia), anti-Arl13B antibody (magenta; cilia), and DAPI (blue; 

nuclei).  *, non-ciliated cells.  Scale bars, 20 µm.  The loss of Rab34 in KO cells was confirmed by immunoblotting with 

the antibodies indicated on the right of each panel.  The positions of the molecular mass markers (in kDa) are shown on 

the left.  B, the percentage of ciliated cells (%) in the control (siControl), Rab34-KD (siRab34), and stable 

EGFP-P2A-Rab34-expressing Rab34-KD (siRab34 + Rab34) MCF10A cells was counted after 24-h serum starvation (n 

>500 cells).  Error bars indicate the S.E. of data from five independent experiments. **, p <0.01 (Tukey's test).  The cells 

were fixed after 24-h serum starvation and then stained with anti-acetylated tubulin antibody (ac-Tub in red; cilia), 

anti-Arl13B antibody (green; cilia), and DAPI (blue; nuclei).  *, non-ciliated cells.  Scale bars, 10 µm.  The knockdown 

efficiency of Rab34 was evaluated by immunoblotting with the antibodies indicated on the right of each panel.  Cells 

were harvested 72 h after transfection with control siRNA (siControl) or Rab34 siRNA (siRab34).  The positions of the 

molecular mass markers (in kDa) are shown on the left.  C, the percentage of non-ciliated cells per cyst (%) in parental 

and Rab-KO MDCK-II cells was counted after 7-day culture in collagen gel.  Note that the percentage of non-ciliated 

cells of all of the Rab-KO cysts was below 50% (indicated as a broken red line).  Error bars indicate the S.E. of data from 

at least ten cysts.  D, typical images of parental, Rab6A/B-KO, Rab8A/B-KO, Rab8A/B/10-KO, Rab11A/B-KO, and 

Rab34-KO MDCK-II cells.  The cells were fixed after 7-day culture in collagen gel and then stained with anti-acetylated 

tubulin antibody (ac-Tub in green; cilia), anti-Arl13B antibody (magenta; cilia), and DAPI (blue; nuclei).  *, non-ciliated 

cells.  Scale bars, 20 µm.
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FIGURE 7.  Effect of Rab-KO on ciliogenesis in MDCK-II cells.  Typical images of parental and Rab-KO cysts of 

MDCK-II cells (Homma et al., 2019).  Cysts grown in collagen gel for 7 days were fixed with TCA (trichloroacetic acid) 

and then stained with anti-acetylated tubulin antibody (green; cilia), anti-Arl13B antibody (magenta; cilia), and DAPI 

(blue; nuclei).  Scale bars, 20 µm.
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FIGURE 8.  Rab34 is required for early steps in serum-starvation-induced ciliogenesis in hTERT-RPE1 cells.  A, 

typical Rabin8, CP110, IFT20, and Arl13B images of parental and Rab34-KO cells.  For Rabin8 staining, cells stably 

expressing EGFP-Rabin8 (green) were fixed after 1-h serum starvation and then stained with anti-γ-tubulin antibody 

(γ-Tub in magenta; centrioles) (top panels).  For CP110, IFT20, and Arl13B staining, cells were fixed after 24-h serum 

starvation and then stained with antibodies against CP110 (green) and γ-tubulin (magenta) (second panels), IFT20 (green) 

and γ-tubulin (magenta) (third panels), or Arl13B (green) and γ-tubulin (magenta) (bottom panels).  The arrows and 

arrowheads indicate CP110-negative centrioles and centriole-localized Rabin8 (IFT20 or Arl13B), respectively.  Scale 

bars, 2 µm.  B, typical images of FLAG-Rab34 and GALNT2 or Arl13B in hTERT-RPE1 cells expressing FLAG-Rab34

(WT).  For GALNT2 staining, cells were fixed without serum starvation and stained with antibodies against GALNT2 

(magenta) and FLAG (green in top panels).  For Arl13B staining, cells were fixed after 24-h serum starvation and then 

stained with antibodies against Arl13B (magenta) and FLAG (green in bottom panels).  The arrows indicate 

FLAG-Rab34-positive primary cilia.  Scale bars, 20µm.
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FIGURE 10.  The unique long N-terminal region of Rab34, not its specific sequence in the switch II region, is 

required for ciliogenesis in hTERT-RPE1 cells.  A, schematic representation of mouse Rab1A, Rab5A, Rab7, and 

Rab34 (WT and ΔN49), and sequence alignment of the switch II region (black boxes) of mouse Rab1A, Rab5A, Rab7, 

and Rab34.  Identical and similar residues in the switch II region are shown against a black background and a gray 

background, respectively.  The Lys-115 and Cys-116 of Rab34 (asterisks) are not conserved in other Rabs except Rab36 

(Matsui et al., 2012).  The unique long N-terminal region of Rab34 is indicated by a gray box.  B, interaction between 

Rab34(WT), Rab34(S1A), or Rab34(ΔN49) and RILP was analyzed by yeast two-hybrid assays.  Yeast cells expressing 

pGBD-C1-Rab34(WT), Rab34(S1A), or Rab34(ΔN49) and pAct2-RILP were streaked on an SC-LW plate (upper panel) 

and on an SC-AHLW plate (lower panel: selection medium) and incubated at 30ºC.  C, interaction between Rab34(WT) 

or Rab34(S1A) and RILP was analyzed by co-immunoprecipitation assays of COS7 cell lysates.  COS7 cell lysates 

expressing FLAG-tagged Rab34(WT) or Rab34(S1A) and T7-tagged EGFP or RILP were incubated with 

anti-T7-tag-antibody-conjugated agarose beads.  Proteins bound to the beads (IP) and a 1% volume of total cell lysates 

(input) were analyzed by immunoblotting with the HRP-conjugated anti-FLAG and anti-T7 tag antibodies indicated on 

the right of each panel.  The positions of the molecular mass markers (in kDa) are shown on the left.  D, the percentage of 

non-ciliated cells (%) in parental, Rab34-KO, and stable tagless Rab34(WT)-expressing or Rab34(S1A)-expressing 

Rab34-KO cells (Rab34-KO + Rab34(WT) or Rab34(S1A)) was counted after 24-h serum starvation (n >50 cells).  Error 

bars indicate the S.E. of data from three independent experiments.  ***, p <0.001 (Tukey's test).  E, the percentage of 

non-ciliated cells (%) in parental, Rab34-KO, and stable FLAG-Rab34(WT), -Rab34(ΔN49)-expressing Rab34-KO cells 

(Rab34-KO + Rab34(WT), or Rab34(∆N49)) was counted after 24-h serum starvation (n >50 cells).  Error bars indicate 

the S.E. of data from three independent experiments.  ***, p <0.001; NS, not significant (Tukey's test).  F, the protein 

expression levels of FLAG-tagged Rab34(WT) and Rab34(ΔN49) in E were analyzed by immunoblotting with the 

antibodies indicated on the right of each panel.  The positions of the molecular mass markers (in kDa) are shown on the 

left.  G, typical images of FLAG-Rab34 and GALNT2 or Arl13B in hTERT-RPE1 cells expressing FLAG-Rab34(S1A) 

or -Rab34(∆N49).  For GALNT2 staining, cells not subjected to serum starvation were fixed and stained with 

anti-GALNT2 antibody (magenta), anti-FLAG tag antibody (green), and DAPI (blue in top panels).  For Arl13B staining, 

cells were fixed after 24-h serum starvation and then stained with antibodies against Arl13B (magenta) and FLAG (green 

in bottom panels).  The arrows indicate FLAG-Rab34-positive primary cilia.  Scale bars, 20 µm.
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FIGURE 11.  Active Rab34 is required for ciliogenesis in hTERT-RPE1 cells.  A, the percentage of non-ciliated cells 

(%) in cells stably expressing Rab34(WT), Rab34(Q116L), or Rab34(T66N) was counted after 24-h serum starvation (n 

>50 cells) that had been transfected with control siRNA (siControl) or Rab34 siRNA (siRab34).  Error bars indicate the 

S.E. of data from three independent experiments.  **, p <0.01; NS, not significant (Tukey's test).  
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FIGURE 12.  Amino acid numbers 16–18 of Rab34 required for ciliogenesis in hTERT-RPE1 cells.  A, schematic 

representation of mouse Rab34(WT), Rab34(ΔN18), and Rab34(ΔN6), and sequence alignment of the N-terminal region 

(gray box) of zebrafish, african clawed frog, chick, human, and mouse Rab34 and mouse Rab36.  Identical residues in 

their N-terminal region are shown against a black background.  The Rab GTPase domain of Rab34 is indicated by a black 

box.  B, the percentage of non-ciliated cells (%) in parental, Rab34-KO, and Rab34-KO cells stably expressing 

FLAG-Rab34(WT), Rab34(ΔN18), or Rab34(ΔN6) was counted after 24-h serum starvation (n >50 cells).  Error bars 

indicate the S.E. of data from three independent experiments.  **, p <0.01; ***, p <0.001; NS, not significant (Tukey's 

test).  C, the protein expression levels of FLAG-tagged Rab34(WT), Rab34(ΔN18), and Rab34(ΔN6) in B were analyzed 

by immunoblotting with the antibodies indicated on the right of each panel.  The positions of the molecular mass markers 

(in kDa) are shown on the left.  D, typical images of parental, Rab34-KO, and Rab34-KO + Flag-Rab34(WT), Rab34(Δ

N18), or Rab34(ΔN6) cells.  The cells were fixed after 24-h serum starvation and then stained with anti-ac-Tub antibody 

(green; cilia), anti-Arl13B antibody (magenta; cilia), and DAPI (blue; nuclei).  *, non-ciliated cells.  Scale bars, 20 µm.  

E, the percentage of non-ciliated cells (%) in parental, Rab34-KO, and Rab34-KO cells stably expressing FLAG-Rab34

(WT), Rab34(A1), Rab34(A2), Rab34(A3), or Rab34(A4) was counted after 24-h serum starvation (n >50 cells).  Error 

bars indicate the S.E. of data from three independent experiments.  *, p <0.05; **, p < 0.01; ***, p <0.001; NS, not 

significant (Tukey's test).  F, the protein expression levels of FLAG-tagged Rab34(WT), Rab34(A1), Rab34(A2), Rab34

(A3), and Rab34(A4) in E were analyzed by immunoblotting with the antibodies indicated on the right of each panel.  

The positions of the molecular mass markers (in kDa) are shown on the left.  G, typical images of parental, Rab34-KO, 

and Rab34-KO + Flag-Rab34(WT), Rab34(A1), Rab34(A2), Rab34(A3), or Rab34(A4) cells.  The cells were fixed after 

24-h serum starvation and then stained with anti-ac-Tub antibody (green; cilia), anti-Arl13B antibody (magenta; cilia), 

and DAPI (blue; nuclei).  *, non-ciliated cells.  Scale bars, 20 µm.
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(WT), Rab34(LA), Rab34(PA), or Rab34(QA) was counted after 24-h serum starvation (n >50 cells).  Error bars indicate 
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the protein expression levels of FLAG-tagged Rab34(WT), Rab34(LA), Rab34(PA), and Rab34(QA) in A were analyzed 

by immunoblotting with the antibodies indicated on the right of each panel.  The positions of the molecular mass markers 

(in kDa) are shown on the left.  C, typical images of parental, Rab34-KO, Rab34-KO + Rab34(WT), Rab34-KO + Rab34

(LA), Rab34-KO + Rab34(PA), and Rab34-KO + Rab34(QA) cells.  The cells were fixed after 24-h serum starvation and 

then stained with anti-ac-Tub antibody (green; cilia), anti-Arl13B antibody (magenta; cilia), and DAPI (blue; nuclei).  *, 

non-ciliated cells.  Scale bars, 20 µm.
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Table 1. A list of the primers and siRNAs used in this study 
 

Primer Name Sequence 

P2A-5' 
GATCTGGAAGCGGAGCTACTAACTTCAGCCTGCTGAAGCAG
GCTGGAGACGTGGAGGAGAACCCTGGACCTGGATCCTGACC
GC 

P2A-3' GGTCAGGATCCAGGTCCAGGGTTCTCCTCCACGTCTCCAGCC
TGCTTCAGCAGGCTGAAGTTAGTAGCTCCGCTTCCA 

humanRab34-SR1-5' GGATCCATGAACATTCTGGCACCCGTG 

humanRab34-SR1-3' CCACTCCAATGGTGGCCTTGTAGTTTTTGTCGAAAGTATCCT
T 

Rab34-KC/AA-5' CAGGAAAGGTTCGCGGCCATTGCTTCCACCTA 
Rab34-KC/AA-3' TAGGTGGAAGCAATGGCCGCGAACCTTTCCTG 

Rab34-S1A-5' CGAACAATTACTTCCAGTTACTACCGTGGAGCTCATGCCATC
ATCATTG 

Rab34-S1A-3' GAACCTTTCCTGACCAGCCGTGTCC 
Rab34-∆N49-5' ATGGATCCATGTTTAAGATATCCAAGGTC 
Rab34-∆N18-5' ATGGATCCATGTGCCTGAAGAAAGAGGCCG 
Rab34-∆N6-5' ACGGATCCATGGTGCGGAGGGACCGCGTCC 

Rab34-A1-5' ACGGATCCATGAACATTCTGGCGCCCGCGGCGGCGGACCGC
GTCCTGGCGGAGCTGCCCCAGTGCCTG 

Rab34-A2-5' ACGGATCCATGAACATTCTGGCGCCCGTGCGGAGGGCCGCC
GCCCTGGCGGAGCTGCCCCAGTGCCTG 

Rab34-A3-5' ACGGATCCATGAACATTCTGGCGCCCGTGCGGAGGGACCGC
GTCGCGGCGGCGCTGCCCCAGTGCCTG 

Rab34-A4-5' ACGGATCCATGAACATTCTGGCGCCCGTGCGGAGGGACCGC
GTCCTGGCGGAGGCGGCCGCGTGCCTG 

Rab34-LA-5' ACGGATCCATGAACATTCTGGCGCCCGTGCGGAGGGACCGC
GTCCTGGCGGAGGCGCCCCAGTGCCTG 

Rab34-PA-5' ACGGATCCATGAACATTCTGGCGCCCGTGCGGAGGGACCGA
GTCCTGGCGGAGCTGGCCCAGTGCCTG 

Rab34-QA-5' ACGGATCCATGAACATTCTGGCGCCCGTGCGGAGGGACCGC
GTCCTGGCGGAGCTGCCCGCGTGCCTG 

Rab8A-gRNA-5' CACCGATTAGGACCATAGAGCTCGA 
Rab8A-gRNA-3' AAACTCGAGCTCTATGGTCCTAATC 
Rab8B-gRNA-5' CACCGCTCCTGCTGATCGGCGACTC 
Rab8B-gRNA-3' AAACGAGTCGCCGATCAGCAGGAGC 
Rab10-gRNA-5' CACCGTTTCAAGCTGCTCCTGATCG 
Rab10-gRNA-3' AAACCGATCAGGAGCAGCTTGAAAC 
Rab10-gRNA-Donor-3' TCCACGATCAGGAGCAGCTTGAAAC 
Rab11B-gRNA-5' CACCGTCTCCAGGTTGAACTCGTTG 
Rab11B-gRNA-3' AAACCAACGAGTTCAACCTGGAGAC 
Rab12-gRNA-5' CACCGATCCGGGCGCCGCGCTGCAG 
Rab12-gRNA-3' AAACCTGCAGCGCGGCGCCCGGATC 
Rab12-gRNA-Donor-3' TCCAAGACCGCCGCCGCCCCCGGCC 
Rab34-gRNA-5' CACCGACATTCTGGCACCCGTGCGG 
Rab34-gRNA-3' AAACCCGCACGGGTGCCAGAATGTC 
Rab34-gRNA-Donor-3' TCCACCGCACGGGTGCCAGAATGTC 
Rab34-gRNA-mouse-5' CACCGATATCCAAGGTCATCGTTGT 
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Rab34-gRNA-mouse-3' AAACCTCCGATGGTAGCCTTGTAAC 
Rab8A-sequence-5' CTCTGCACTGCTCCCATCA 
Rab8A-sequence-3' TTCTGGAGAAAGCCCCATGT 
Rab8B-sequence-5' GCAGGTCTTTTATCCGCTGG 
Rab8B-sequence-3' CTTTCCCCGTCCCCTAGTAC 
Rab10-sequence-5' AAGAAGACGTACGACCTGCTTTTCA 
Rab10-sequence-3' CCTTAAAAATATCACACATCTACTAATTCC 
Rab11B-sequence-5' ACTTCTGCACCACTTAGCACAGTGCCTGCA 
Rab11B-sequence-3' CTCCCCTTCTCCTGCCCAACTCCTACACAT 
Rab12-sequence-5' CTACTGCGGAGTAGCTGCTTCCCTTCCTCC 
Rab12-sequence-3' GGAGGAAGGGAAGCAGCTACTCCGCAGTAG 
Rab34-sequence-5' TCCTCTCTTTGTTGTGGGTGTCCCTAACTC 
Rab34-sequence-3' GGCCCCGGGTGATTGTTTCATCTCCGTGGC 
Rab34-sequence-mouse-5' GGGGAGGAGTGACAGACAGA 
Rab34-sequence-mouse-3' GACTTCCTGCATTCCAGAGC 
DonorBFP-sequence GTTGTCCACGGTGCCCTCCATGTAC 

� �
siRNA Name Sequence 

siCEP164 TCAAGGCCCRGGAAGATAT 
siRab1A CCACAAAGAAAGTAGTAGA 
siRab1B TGACGTCACTGACCAGGAA 
siRab2A TGACCTTACTATTGGTGTA 
siRab2B GTTCCAACATGGTTATCAT 
siRab3A AGGACAACATTAACGTCAA 
siRab3B CCAATGAAGAGTCCTTCAA 
siRab3C CAGTTGGGATCGATTTCAA 
siRab3D GGACGAACGTGTTGTGCCT 
siRab4A GGACCTGGATGCAGATCGT 
siRab4B GCCCCAACATCGTGGTCAT 
siRab5A GTCCGCTGTTGGCAAATCA 
siRab5B AGACAGCTATGAACGTGAA 
siRab5C ACGAAATCTTCATGGCAAT 
siRab6A GGAGCTTGATTCCTAGCTA 
siRab6B CCATTGGGATTGACTTCTT 
siRab6C #2 CCTTTTCCCTTCATTAATA 
siRab6C #1 ATCATCACGCTAGTAGGAAA 
siRab41/6D GGAGCGCTTTCACAGCCTA 
siRab7 CCATTGGGATTGACTTCTT 
siRab7B/42 AGGCTGGTGTAGAGAGAAA 
siRab8A CCATAGGAATTGACTTTAA 
siRab8B TGACAAAACTCAACAGAAA 
siRab9A #1 GGAAGCGGTTCGAAGAGTT 
siRab9A #2 GCCCAAGCCTAGCTCATCT 
siRab9B GCAGGGTCTTCGTGCTGTT 
siRab10 #2 GGAATAGACTTCAAGATCA 
siRab10 #1 CTACCTTTATTTCCACCAT 
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siRab11A AGAGCGATATCGAGCTATA 
siRab11B #1 GCAACATCGTCATCATGCT 
siRab11B #2 AGAACAACTTGTCCTTCAT 
siRab12 #3 AGGAATGAGTTGTCCAATA 
siRab12 #2 CCGTGGGTGTTGACTTCAA 
siRab13 TGAGAAATCTTTCGAGAAT 
siRab14 ATGGCTTATTGTTCCTCGA 
siRab15 CCATCACAAAGCAGTACTA 
siRab17 GGAAGGATTCCTTCCTCAA 
siRab18 TCCAGAACTTGCAGCAACA 
siRab19 TCTGCCAAGGAGTCAAAGA 
siRab20 GTGGATATATCCAGTCATA 
siRab21 GGAACTCTTTCTTGACCTT 
siRab22A GAAGAGACATTTTCAACAT 
siRab22B AGTGCGACCTCTCAGATAT 
siRab23 GAACATCAGTGAAAGAAGA 
siRab24 GAGGAGGGCTGCCAAATCT 
siRab25 CCAATCTACTCTCCCGATT 
siRab26 GGCATTGACTTCCGGAACA 
siRab27A CCAGTGTACTTTACCAATA 
siRab27B GCAAATGCTTATTGTGAAA 
siRab28 AGGCAGATATTGTAAACTA 
siRab29 TGAGAGTCCTCATTGAAAA 
siRab30 GCAACAAGGTCATCACTGT 
siRab32 CCAAAGCTTTCCTAATGAA 
siRab33A AAAGCATGGTCGAGCATTA 
siRab33B AGAGCATGGTTCAGCACTA 
siRab34 #3 TGCATTGCATCAACCTACT 
siRab34 #1 AGACACCTTTGATAAGAAT 
siRab35 GCAGTTTACTGTTGCGTTT 
siRab36 GCCCCAGCTTTCACAGCCA 
siRab37 CATGTTTCCTGATCCAATT 
siRab38 AGCACATACTTGCAAATGA 
siRab39A CCGACGATCTTTTGAACAT 
siRab39B GAGAGGAGATGTTTGTGCT 
siRab40A #2 GCCTCTGCAAAGTGGAGAT 
siRab40A #1 GAGCCTGCAGGATGGTGCA 
siRab40B #1 CGGCATTGATCGATGGATT 
siRab40B#2 (simRab40B)# CAGCTGCAAAATTTCTTAGTT 
siRab40C AGAACTGCATGACCTTCTT 
siRab42/43 #1 CCAGGTCCTTTTACCGGAA 
siRab42/43 #2 GGAAGTCCTTTGAACACAT 
siRab43/41 #1 CCATGAAGACGCTGGAGAT 
siRab43/41 #3 AGCGGGTCAAGCTGCAGAT 
siRILP GGAGCGGAATGAACTCAAA 
siFLCN #1 GAAGCTCGCTGATTTAGAA 
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siFLCN #2 CCATCATGATGGACCGGAT 
siMunc13-2 TCACACTCATCGTGTCAAT 

#simRab40B (siRNA against mouse Rab40B) was originally reported in Matsui and Fukuda (2013).  It 

was effective for human Rab40B, because its target sequence is also conserved in human Rab40B 
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