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After the first lockdown in response to the COVID-19 outbreak, many countries faced difficulties in balancing
infection control with economics. Owing to limited prior knowledge, economists began researching this issue and found
that infection control processes significantly affect economic efficiency. A study using economic parameters in the
United Kingdom numerically demonstrated that keeping the infected population stationary is economically optimum.
However, a universally applicable solution, indispensable for the guiding principles of infection control, has not yet been
developed because of the methodological limitations of simulation studies. Here, I prove the universal result of
economic irreversibility by applying the idea of thermodynamics to pandemic control. This means that once the infected
population increases, society cannot return to its previous state without incurring extra expenditure. This universal result
is analytically obtained by focusing on the infection-spreading phase of pandemics and applies to COVID-19 and other
infectious diseases, regardless of herd immunity. The findings suggest that economic irreversibility is a guiding principle

for balancing infection control with economic effects.

1. Introduction

Governments in several countries fear adverse economic
effects. Consequently, they have hesitated to take measures
to control the COVID-19 infection because the economic
effects may result in illness and death in the non-infected
population.” Several economists, perceiving a severe lack of
knowledge about the relationship between infection control
and the economy,? started studying this issue commencing in
the spring of 2020.>® Rowthorn,” along with his colleague
Maciejowski,” utilized cost-benefit analysis (CBA)”® to
determine how infection control intervention costs could
efficiently be utilized for inhibiting infection. Using the
susceptible-infected-recovered (SIR) model to simulate the
epidemic,” they discussed several infection control processes
to determine the optimal process. The optimal process
includes the stationary state of the constant infected
population in its principal part. These results were obtained
using numerical simulation because Rowthorn! assumed that
an explicit solution was unavailable for this issue.

While the methodology and results of this study'*® are
pioneering and significant, they are not straightforward
enough to generalize. This is because the study investigated
specific situations with given parameter sets. Therefore,
explicit solutions independent of specific parameters are
needed to reveal their universal property. Explicit solutions
could be applicable in the United Kingdom and other
countries during different situations, including the COVID-
19 and other pandemics. From a physics perspective,
optimization in CBA is similar to finding the minimum state
of energy. Additionally, the finding!# that the most efficient
processes include the stationary state suggests a structure
analogous to thermodynamic irreversibility.

In this study, the basic property of economic cost in
infection control processes is shown by analyzing a simple
model. This model assumes 1) intensity-dependent infection
control cost and 2) exponential growth of the infected
population. It excludes more realistic effects that may modify
its results, such as the effects of spatial inhomogeneity of
infection distribution and the influx of infected persons from
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outside the targeted area. However, the simple model clearly
shows the fundamental property commonly underlying
diverse pandemic control processes. For this purpose, I focus
on the infection-spreading phase in the pandemic model,
in which the infected population grows exponentially in the
absence of infection control.

In several pandemics, including COVID-19, the society
may not arrive at a traditional immune state called “herd
immunity”, as indicated by some studies.'®!'" However, the
infection-spreading phase is universal and principal, irre-
spective of whether herd immunity exists. Thus, the
following results do not depend on the specific pandemic
model. By comparing the stationary state of a constant
infected population, I derive several explicit solutions and
inequalities of costs in infection control processes and show
economic irreversibility in infection control. With these
explicit results, I demonstrate that delaying infection control
measures is more expensive than properly implementing
early measures. The robustness of the result will be discussed
in the final section.

2. Methods

2.1 Formulation with CBA

Infection control comprises measures taken to decrease the
number of people infected by an individual. The average
number within society is called the “effective reproduction
number”, R;.'? When R, drops below 1, epidemics subside.
Several measures, including handwashing, wearing of masks,
enhancing ventilation, suspension of business activities, and
lockdowns can be taken to reduce R, from its uncontrolled
(natural) value, Ry (> 1). Ry equals the basic reproduction
number Ry,'? for the initial phase of infection. These measures
have a negative influence on the economy and society." The
social cost, C, is positively correlated to the strength of the
measures. Rowthorn? assumed that the infection control
measure is taken through the value of g as R, = Ry(1 — ¢),
where g represents the intensity of social intervention against
pandemics. Then, he defined the social cost per unit of time as
a function of ¢: C = €(¢)."" He assumed C(0) = 0 because
there is no infection control at g = 0.
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Fig. 1. (Color online) An example of intervention cost C. Here Ry = 2.

Here, I consider the social cost induced by the infection
measures as a function of the effective reproduction number
R, instead of g. While Rowthorn! assumes the maximum
strength gmax, Which corresponds to the minimum effective
reproduction number R;, this inessential assumption is not
adopted. The functional form of C(R,) itself is different from
C’(q), while the basic assumptions in Eqs. (1)-(4) are
essentially the same as in Rowthorn."” Hereafter, the social
cost per unit time is referred to as “intervention cost” in the
form of C(R;). Therefore, the following are assumed in the
function C(R)).

The condition without intervention measures corresponds
to R; = Ry, in which C(Ry) = 0. The cost should increase
as the effective reproduction number decreases. The rate
of increase in C(R;) should also increase as the effective
reproduction number decreases. This is because society can
take cost-effective measures, such as handwashing, to
achieve a small decrease in R,. If society must further
decrease R,, it must take costlier measures." Thus, we can set
the following conditions on the intervention cost function
C(R)) (0 < R; £ Ry), where an example is shown in Fig. 1.

C(R,) is twice continuously differentiable, (1)
C(Ry) =0, (2)
dC(R;)

<0, 3

dR, ~ )
d’C(R;)

———>0. 4

aw @

The measure taken by spending the intervention cost C(R)
is to decrease the infected population / (number of infected
persons capable of transmitting infections). The more the
infected population decreases for fixed intervention costs, the
more society benefits from the measure. The “benefit of a
decrease in the infected population” is evaluated as the
“decrease in the cost of the infected population”. We first set
this “infection cost” M to be proportional to the infected
population /. It includes medical costs and losses incurred by
infected patients. This yields

M=, )

where c; is a constant. This assumption is also the same as in
Rowthorn.” We will take more general assumption for M,

in Sect. 3.2 to show the universality of the economic
irreversibility of delayed countermeasures. Before Sect. 3.2,
we adopt the assumption for M as in Eq. (5).

The total cost per unit of time is the sum of intervention
costs and infection costs, that is, C(f) + M(¢). The optimiza-
tion issue is to find R(7) that minimizes the total integrated
cost over a certain period,

/ [C(®) + M()] dt. 7

This is equivalent to finding R(¢) that minimizes the average
of the total cost (C(t) + M(t)) over a certain period. To find
the optimized intervention process specified by a protocol of
R(t) for a targeted period, we must consider the dynamics of
the infected population. Here, we begin with the SIR model
proposed by Kermack and McKendrick” because most
previous studies, including Routhorn et al.,'® assumed that
it is the simplest fundamental model that describes the basic
dynamics of epidemics. It models the exponential growth of
the infected population in the outbreak stage, the peak of
the infected population, and transition to the end-stage.'®
However, it should be noted that the following results are
not restricted to the SIR framework, but are expected to be
generic for pandemics, as described later.

2.2 Dynamics of pandemics

We start with the SIR model for pandemic dynamics
considering its simplicity and popularity. The model
comprises a set of differential equations that describes the
epidemic disease propagation, in which the population is
divided into three states: S(¢), the population ratio of
susceptible persons; I(f), the ratio of infected persons; and
Rrec(?), the ratio of those who have recovered (or died). This
formulation considers a closed population that is conserved.
Note that the notation I?rec is used for recovered persons,
instead of the conventional notation R, because R; is used for
effective reproduction number.

as@ _
ar BSI(1), (8)
dI
% = pSI) — yI(1), )
dReec(t)

7 71(1), (10)

where S and y are the infection and recovery rates,
respectively. The sum of the three population ratios remains
constant:

S(1) + I(1) + Reee(t) = 1. (11)

Because of this conservation law, the model includes two
independent variables.

In the following, we evaluate the infected population 1(z).
Equation (9) leads to

@ _ y[@ - 1}1(:).

7 (12)

We restrict ourselves to the period of exponential increase
before the infection peak because this period is the most
important and universal characteristic of pandemics, as

dM
a >0 (6)  discussed below. In this period, S(¢) is replaced by S(0).
This approximation is accurate in major parts of the first
114007-2
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outbreak, and its recurrent phases,14) as shown in Fig. A-1 in
Appendix. Because of this approximation, the number of
independent variables in this model is reduced to one. Then,

Eq. (12) leads to
y[@ - l]l(t).

di(t)
dt

We restrict ourselves to a fixed y as in Rowthorn.? If the set

of parameters 25© > 1 the infections start spreading in

Eq. (13)." The change in the infection rate /3 in [@ changes

the dynamics of the pandemic. The set of parameters is the

effective reproduction number:

_ fS(0)
-

where R, corresponds to the basic reproduction number R,
if the following two assumptions are satisfied: 1) § has an
uncontrolled value and 2) S(0) = 1. The infected population
increases when R; > 1 and decreases for R, < 1.

With Az = R, — 1, Eq. (13) becomes

(0]
dt

At R, = 1, the infected population is stationary as Ag = 0.
The infection-spreading phase of pandemics generally obeys
exponential dynamics,'® characterized by the reproduction
number, except in the vicinity of the infection peak. Thus, the
following results are not restricted to a specific model but
apply to the entire system of exponential dynamics (see
Appendix). In this formulation, the infected population ()
is the only variable that describes the system’s state. In the
following sections, the universal properties of the system of
exponential dynamics will be shown by analyzing the cyclic
process of the state variable (7).

(13)

R, (14)

= yAR 1(2). (15)

3. Results

3.1 Irreversible cost in on/off-type intervention processes

Let us start with the analyses of pandemic control
processes. First, the costs of on-/off-type infection control
are evaluated (see Fig.2) and compared with the costs
of keeping the infected population stationary, where the
assumption is that both processes have the same average
effective reproduction number (R;) = 1. Similar to thermo-
dynamic irreversibility, comparing the stationary and non-
stationary processes will show how the pandemic control
processes affect economic irreversibility. The present on-/
off-type intervention forms a cycle of both R, and I(),
as shown below, where a set of lockdown and outbreak
recurrences is an extreme example.

The amplitude of the cycle is set in the effective
reproduction number at around R, = 1 as “A”, where A =
R, — 1]. The cyclic process (with time interval 7)) is as
follows:

Stage 1) 0<t<T: Iy > I} > Iyp) with R, =1+ A,
Stage 2) T <t < 2T: I} » Iy with R, =1 — A,

Stage 3) 2T <t < 3T: Iy - Iz (< Ip) with R, = 1 — A,
Stage 4) 3T <t <4T: Is - Iy with R, = 1 + A.

By integrating Eq. (15) from =0 to T with R, = 1 + A,
the infected population / is obtained at the end of Stage 1:

I(T) = Iye'™. (16)
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Fig. 2. (Color online) Tracing infected population during the cyclic
process of infection control. It is shown that the infected population is also
cyclic and returns to the initial state at the end of the cycle. The average
infected population (I(r)) over the cycle is larger than that for keeping the
infected population stationary. Here, we use yA = 1 in Eq. (16).

Similarly, replacing Ag in Eq. (15) by “—A” and using
Eq. (16), I(2T) is obtained at the end of Stage 2:

12T) = Iy. (17)
Stages 3 and 4 also yield
I(4T) = Io. (18)

We have confirmed that Stages 1 through 4 form a typical
cyclic process of the state variable /(f) around a stationary
state kept by R; = 1, where the infected population returns to
its original value.

We calculate the average infected population to evaluate
the infection cost in the cycle. Using Egs. (15) and (16), we
have, for Stages 1 and 2,

T 2T
/ ]Stagel (ndr+ / IStageZ(t) dt
0 T

T 27
=1 [/ A dt + / AT e rAU=T) dt]
0 T

T
=1 / [e"2 4 e"AT=D] gy, (19)
0

Similarly, for Stages 3 and 4, we have

3T AT
/ IS[ageS(t) dt + / IStage4(t) dt
2

T 3T

T
= Iy / [e7%" + "D dt. (20)
0

Thus, we obtain the average infected population

4T

1 Iy .
— I(t) dt = —— sinh(yAT
a7 J, ® yATsm (yAT)

2
- Io(ySA! T)

The stationary infected population at R, = 1 during the
same period 4T is Iy. This proves that the average infected
population in this cycle is always higher than that of the
stationary state. Through Eq. (5), this result directly yields:

(M)cycle > <M>R,:l ’ (22)

+ O((yA T)*). (21)
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Fig. 3. (Color online) Large oscillation of intervention results in large
infection costs. The average infection cost, (M(I(¢))), increases
monotonically and exponentially as the amplitude of R, in the cycle A
increases. The vertical axis is normalized by the average infection cost for the
stationary state with R, = 1, having an average effective reproduction
number equal to that of the cycle. As the state variable /(¢) returns to its initial
state in the cycle, the increase in average infection cost is irreversible.

where (M) denotes the time-average of the infection cost M.
Thus, the average infection cost for this cycle is higher than
that of the stationary state. Figure 3 shows how the average
infection cost depends on the amplitude of the cycle A.

Next, we calculate the average intervention cost during
the cycle. The average intervention cost, weighing the two
effective reproduction numbers R, =1+ A and R, =1- A
equally (A > 0) for the same period is

_C1+A)+C(1 - A)

<C(Rt)>cycle - 2 (23)
The cost C(1 + A) is evaluated as follows:
14A
dC(R
C(l1+A)= C(1)+/ (R:) dR,. (24)
1 dR,
From Eq. (4), we find
dC(R;) dC(R))
for 1 < R; < Ry). 25
R, > dR, |, (for + < Rwy) (25)
Then, we have
dC(R
C(1+A)>C()+ (R.) (26)
dR, g
As 600 < ACED | for 0 < R, < 1,
dC(R
C(l-A)>C() - CR,) A. 27)
dR; |g=
We obtain through Egs. (26) and (27) that
C(l+A)+C(1-A)
(CR))cycle = > C(), (28)

2

in which C(1) equals the intervention cost in a stationary
state with R, = 1. Thus, we find that the average intervention
cost (C(R)) is also higher in this cycle than in a stationary
state with R, = 1. Figure 4 illustrates how the intervention
cost depends on the amplitude of the cycle A, where we use
the model in Fig. 1.

The results show that the cycle of infection control around
the stationary state provokes a higher average infected
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Fig. 4. (Color online) Large oscillation of intervention also results in a
large intervention cost. The average intervention cost (C(R,)) increases
exponentially as the amplitude of R, in the cycle A increases. The vertical
axis is normalized by the average intervention cost for the stationary state
with R, = 1, having an average effective reproduction number equal to that
of the cycle. We use Ry = 2 and C(R,) of Fig. 1. The increase in average
intervention cost in the cycle does not contribute to the benefit (decrease in
average infection cost) at all, as Fig. 3 shows.

population (I(7)), and a higher intervention cost compared
with the stationary state. Because the variable of the state /()
finally returns to the initial state in the cycle, the cycle above
results in a higher waste of social resources (intervention
cost) than in a stationary state. The economic irreversibility in
which society cannot retrieve the dissipated social resource is
similar to entropy production (or free energy decreases) in
thermodynamics.'®

The total cost C(R,) + M(t) for the cycle thus satisfies the
inequality

Average of the total cost of the cyclic process

> That of the stationary process, (29)

even if the two processes have the same average effective
reproduction number (R,) = 1. This analysis shows how
economic irreversibility arises in the cyclic pandemic control
process. Society cannot produce extra benefits (decrease in
infected population) in the cyclic process than it does in
keeping the infected population constant. Simultaneously, it
pays extra intervention costs in the cycle. In addition, society
also incurs the disadvantage (increase in infected population)
in the cycle. Note that this inequality, Eq. (29), holds
irrespective of specific parameters, which conflicts with
previous studies on the economic efficiency of infection
control. This inequality illustrates how on-/off-type infection
control against pandemics costs society.

3.2 Irreversible cost of delaying measures
Now, the implications of economic irreversibility based on
the effect of delaying measures against pandemics will be
shown. The two processes are compared with the same initial
and final states (infected population) [y, in which only the
swiftness of the pandemic control is different.
Process 1) Do not perform infection control initially or
perform small intervention at t =0 with R, = R,, in
which 1 < R, < Ry, until some critical time (t = 7,) just
before serious problems such as the crash of medical
capacity arise. Then, infection control is performed at
t = t, to achieve a constant R, < 1 to decrease I(7) back to

©2021 The Author(s)
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(Color online) Delayed measures increase the infected population and intervention costs. The vertical axis is normalized by the (a) average infected
1. We assume the basic reproduction number Ry = 2 and use the model in Fig. 1

for the intervention cost C(R,), where the parameters y = A, = 1 and #, + #, = 5. The costs rapidly increase as the delay time for infection control increases.
After the critical delay time, ¢, = 5/2 in this model (corresponding to 0.5 in the horizontal axis of the figures), the system cannot return to the original infected-

population state /(r = 0) within the period, 7, + 7, = 5.

Ip. This process is similar to the combined process of
Stages 1 and 2 in Fig. 2. However, the choice of R(r)
before and after r = 7, is arbitrary.
Process 2) Perform infection control to achieve R, =1
immediately at r = 0.

Here, Ry > 1 is assumed for both processes.

The advantage of Process 1 is the zero or small
intervention cost C(R,) < C(1) between t = 0 and 7,. When
compared with taking immediate measures, R, =1
(Process 2), this process saves on intervention costs between
t=0and t,:

14

| e - cwona (30)
Thus, what matters is whether the saving on intervention
costs [Eq. (30) at t = t,] remains positive even at the final
stage, t = t, + 1, when the society returns to its initial state,
Iy. Thus, we calculate the average intervention cost of
Process 1, (C(R/))qelay» during the period from t=0 to
t, + tp,. From Eq. (15), the state of I(¢) at t =1¢, is I(t,) =
Tpe"*®«, where A, =R,—1 (> 0). We assume that I(r)
returns to Iy at t=1t,+1, and R,=R,=1-4A, (0<
A, < 1) for t,<t<t,+1, Then, we have I(t,+ 1) =

I(t)e "% As I(t, + t,) = Iy, we obtained the equality
t.A, =t A, (31)

Then, the average intervention cost between t = 0 and 7, + ¢,
is written as

1p
to+1tp

1y
—C(1+ A, +
t,+1p

From Egs. (26) and (27), Eq. (32) satisfies the following

condition:
t, dc
C(R > — | C() + — A,
< ( l))delay tu+ 1y |: ( )+ ket :|

(CRY)) delay = C(1 = Ay). (32)

dR,

114007-5

I dC
+ cl)—- —
t,+ 1t |: D dR,

Ab:|. (33)
R=1

Using Eq. (31), the right-hand side of Eq. (33) equals C(1).
Thus, we obtain

(C(R1)) detay > C(1). (34)

The right-hand side is the average intervention cost of
Process 2. The average intervention cost (C(R))qelay is found
to be higher for delayed measures (Process 1) than in a
stationary state (Process 2). The inequality is universal
because Eq. (34) holds for any step function A(¢) instead
of fixed parameters A, and A,. Furthermore, because any
integrable function can be decomposed into a step function
with arbitrary precision, Eq. (34) holds for any process of
integrable R(7) on the condition that the variable of state /()
returns to its initial state.

Apparently, the infection cost satisfies the similar inequal-
ity condition as above:

(MI(R)))getay > MU(1)),

as the average infected population is higher when control
measures are delayed (Process 1) than when the infected
population is held stationary with R, = 1. The results show
that a society delaying measures must incur more inter-
vention and infection costs during the process until 1(f)
returns to its original state, even if it temporarily saves
on intervention costs. In other words, once the infected
population increases, the society cannot return to the previous
lower-infection state without paying extra costs compared
with a stationary state (see Fig. 5). An increase in the infected
population always results in economic irreversibility in
pandemics, except in the vicinity of the infection peak.

It should be noted that the result in Eq. (35) holds not only
for the linear assumption in Eq. (5) but also for the more
general assumption of the infection cost, M, that can be even
nonlinear as to the infection population, I:

(35)

©2021 The Author(s)
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M
7>
dl 20,

because Eq. (36) also yields
<M(I(Rt))>delay

I(R;) /
([ = e [ 0 )
delay

(36)

I*(R,=1) dI/

>MUI*(R, = 1)), (37)

where [*(R; = 1) is the infected population at 7=0.
With Eq. (34), we obtain the general inequality of the total
cost:

(CRR) + M(R))deay > CR; = 1)+ MR, =1),  (38)

under all natural assumptions. Therefore, the economic
irreversibility found in this study holds as long as the natural
assumptions for the intervention cost [Egs. (1)—-(4)] and the
infection cost [Eq. (36)] hold: An increase in the infected
population always results in economic irreversibility in
pandemics.

Before closing this section, it must be noted that Eq. (34)
in the outbreak phase can be generalized to any cycle,

<C(Rt)>cycle > C( 1 )

In evaluating the intervention cost, (C(R,)), the order of
cycle segments can be transposed. In the paragraphs above,
the cycle beginning with an increase of the infected
population, I(7), has been analyzed. The analysis and the
result of the intervention cost can also apply to the cycle
beginning with a decrease.

(39)

4. Discussion and Conclusion

This study theoretically analyzed the fundamental structure
of economic irreversibility in infection control processes
during the infection-spreading phase. Delaying measures
against the spread of infection results in cost increases, in
which sets of lockdowns and recurrences are extreme
examples. Once the state variable /(f) increases, the system
is irreversible. It cannot return to the previous low-infection
state without incurring extra expenditure compared with the
stationary state of low infection. These general results
contradict the naive idea that infection control always results
in economic damage.

The merit of keeping the infected population constant has
been previously discussed by Rowthorn,? who stated, “The
most robust conclusion is that, if a relatively inexpensive way
can be found to reduce the net reproduction ratio to r = 1,
that is, the policy to aim for in the medium term”. The
analytical result explains his numerical finding. Furthermore,
this result goes beyond the framework by Rowthorn et al.,#
which assumes that the infection cost is proportional to the
number of infected persons. The present result of economic
irreversibility is applicable to any functional form of the
infection cost as long as it is not the decreasing function of
the number of infected persons, Eq. (36). Therefore, the
result can also be applicable to the discussion over “Hammer
and Dance” strategy proposed by Pueyo.!”

It should be noted that the results are derived from a simple
model and so do not account for other effects such as
vaccination and seasonal modulation. Additionally, the
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analysis is restricted to a principal part of the pandemic,

namely, the infection-spreading phase. These are the

limitations of this study.

The validity of the present study is subject to assumptions
of the methodology. In addition to the conventional
methodological assumptions of homogeneous mixing of the
infected and susceptible populations,'® and constant rates,”
two principal assumptions were made:

1. The intervention cost depends on the effective reproduc-
tion number R;, and its cost function C(R,) is concave, as
in Eq. (4).

2. The epidemic is in the infection-spreading phase and thus
the infected population increases and decreases while
obeying exponential dynamics, as in Eq. (15).

The first assumption is the same as that in previous
research’¥ through the relation R, = Ry(1 — g(¢)), which is
intuitive, as shown in Sect. 2. The exponential dynamics in
the second assumption is a common feature of pandemics, as
clearly illustrated in Appendix. This feature is intuitively
understandable, as infectability in pandemics is generally
characterized by the reproduction number. The results are not
restricted to a specific model, but are common features in
most pandemics, as long as the infection-spreading phase is
expected to last longer than the time scale of variation of the
infected population.

This study does not offer concrete cost values such as the
conventional CBA. However, the results reveal the common
structure of the underlying costs in more complex/realistic
models because the simple model shares their fundamental
assumptions. The universal character found in this study is
similar to thermodynamics.'” The theory of thermodynamics
alone does not reveal the physical quantity of a system.
However, it provides a quantitative relationship among
physical variables and shows physical irreversibility. Phys-
ical irreversibility is similar to the present result that an
increase in the infected population is economically irrever-
sible.

Irreversibility of thermodynamics is caused by the
deviation from thermal equilibrium. Carnot’s cycle is known
as a reversible thermodynamics process, which converts
thermal energy into mechanical energy at maximum
efficiency.'” This is analogous to the CBA in the sense that
the CBA evaluates the efficiency of the conversion from
social intervention cost to a benefit (decrease in the infected
population in the present case). Optimal energy conversion is
available in Carnot’s cycle because the cycle is at equi-
librium; thus, there is no entropy production. In a non-
equilibrium stationary state, it requires a finite cost to keep
the system stationary,?>?" in which the efficiency of energy
conversion is different from that at equilibrium. However,
even if the system is out of equilibrium, the efficiency of
energy conversion,’” and equality on irreversible work and
free energy difference®® can be analytically discussed using
the concepts and methodology of thermodynamics and
statistical mechanics. The present system corresponds to a
non-equilibrium, even in the stationary state of a constant
infected population, because stationarity is maintained by
incurring infection control costs, with C(R, =1) > 0, to
inhibit an increase in the infected population. Therefore,
application of the concepts and methodology of non-
equilibrium thermodynamics to the CBA would be challeng-
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ing™ because of economic irreversibility and its
universality, as shown here.

My analysis of the infection-spreading phase explicitly
shows that the increased state is economically irreversible
once the infected population increases. This result applies
not just to COVID-19 and regardless of whether “herd
immunity” exists.!®!") To the best of my knowledge, this is
the first analytical study of economic efficiency during
pandemic control. These results may guide infection control
during pandemics, just as the prediction of natural phenom-
ena and several industrial applications benefit from the
principles of thermodynamics. However, this study does not
provide a solution to the question of to what level the infected
population should be limited. This question concerns whether
we should aim to eradicate the infection completely. Thus,
analytical studies to identify the determinants of the most
effective pandemic control processes are an important
challenge for the future.
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Appendix: Robustness of Exponential Growth in an

Infection-Spreading (Outbreak) Phase

A.1 SIS model

This model assumes that the infected persons do not have
acquired immunity. Thus, they will again become suscep-
tible.

dS

d(;) = —BS(OI) + 7I(1), (AD)
dl

d(:) = BS(I() — 71(1), (A2)

where f and y are infection and recovery (in this case, to the
susceptive state) rates, respectively. The sum of the two
population ratios remains constant:

S@) + I(t) = 1. (A-3)

A.2  SIRS model
In this model, the infected persons obtain acquired
immunity temporarily, but become susceptible later.

% = —BS(OI) + hRyec(0), (A-4)
dI

d(;) = BS(OI(t) — yI(2), (A-5)

d_RZtc(t) = yI(t) — hRec (1), (A-6)

where h is the rate of losing the temporarily acquired
immunity. The sum of the three population ratios remains
constant:

S(t) + I(f) + Ryec(t) = 1. (A7)

A.3  Confirmation

In Fig. A-1, it is confirmed that exponential dynamics in
outbreak phases are common even for different pandemic
systems. This means that the results of this study, which
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Equation (14)
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Fig. A-1. (Color online) The dynamics of three pandemic models [SIR,
susceptible-infected-susceptible (SIS), and susceptible-infected-recovered-
susceptible (SIRS) models] with those of my theoretical assumptions are
shown. All four models with the same basic reproduction number are
precisely the same in their outbreak phases. This is because the effective
reproduction number is the only index that characterizes the pandemic’s
outbreak phase dynamics. Therefore, the methodology and results are not
restricted to the specific model, but apply to any pandemic in which the
effective reproduction number characterizes the dynamics of outbreak
phases. Here, f = 0.51, y = 0.204, and 4 = 0.1, which correspond to the
basic reproduction number Ry = 2.5, were used. Numerical calculations are
performed using the Euler method, in which the initial values are as follows:
Total population N=1.2x10%+1, S©O)=12x10%/N, 1(0) = 1/N,
ﬁrec(O) =0/N (ﬁm is for the SIR and SIRS models only).

assume that the dynamics are governed by the reproduction
number, can generally be applied to pandemic systems that
obey exponential dynamics in outbreak phases. The present
results are universal because they are independent of the
details of the specific pandemic.
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