

र ࢞ ָ Ғ ࿨ ช

MasterbV�7KHVLV

࿨ชୌ໪

Thesis Title

Learning of Symbolic Weighted Finite Automata

(॑Ί෉͘εϱϚϨρέΨʖφϜφϱ͹

ָसͶؖͤΖڂݜ)

఑ ड़ ं

౨ ๼ ୉ ָ ୉ ָ Ӆ ৚ ๅ Ռ ָ ڂ ݜ Ռ εητϞ৚ๅՌָ ઒ߊ

Department of System Information Sciences

Graduate School of Information Sciences, Tohoku University

 ʤNameʥྵ໨ քోʤKaito Suzukiʥ໌ࢱ

ᣦ ᑟ ᩍ ဨ ⠛ཎ Ṍ ᩍᤵ

Ꮫ఩ㄽᩥᣦᑟᩍဨ ྜྷ௰ ு ෸ᩍᤵ

ᑂ ᰝ ጤ ဨ
䠄䕿༳䛿୺ᰝ䠅

 䕿⠛ཎ Ṍ ᩍᤵ

 1 ࿘ ᬡ ᩍᤵ 2 ஝ ೺ኴ㑻 ᩍᤵ

 3 ྜྷ௰ ு ෸ᩍᤵ 4 ᩍᤵ

5 ᩍᤵ 6 ᩍᤵ

Learning of Symbolic Weighted
Finite Automata

(Õ�ÿM∑Û‹Í√Ø™¸»fi»Ûn
f“k¢Yãv)

Kaito Suzuki
(4(w!)

Graduate School of Information Sciences
Tohoku University, Japan

January 28, 2022

Contents

1 Introduction 1

2 Preliminaries 4

2.1 Semiring and Field . 4

2.2 Notation . 5

3 Symbolic Weighted Finite Automata 7

3.1 Definition . 7

3.2 The Kleene–Schützenberger Theorem for SWFAs 8

3.3 Basic Properties . 19

3.4 Minimization and Equivalence Checking . 21

4 Query Learning of Symbolic Weighted Finite Automata 25

4.1 Problem Setup . 25

4.2 Query Learning Algorithm . 25

4.3 Correctness and Query Complexity . 28

4.4 Experiments . 33

4.4.1 Setting . 33

4.4.2 Results . 35

4.4.3 Discussion . 35

5 Spectral Learning of Symbolic Weighted Finite Automata 37

ii

CONTENTS

5.1 Problem Setup . 37

5.2 Spectral Learning Algorithm . 38

5.3 Missing Value Completion . 40

5.3.1 Learning Probability Distribution . 40

5.3.2 Learning General Power Series . 41

5.4 Experiments . 42

5.4.1 Common Setting . 43

5.4.2 Q1: Comparison to WFAs . 43

5.4.3 Q2: Smaller � . 44

5.4.4 Q3: Experiments with Missing Values 45

6 Conclusion and Future Work 47

References 52

iii

Chapter 1

Introduction

In this paper, we present learning algorithms for symbolic weighted finite automata

(SWFAs) with the investigation of some essential properties of SWFAs. SWFAs can

be seen as the unification of two notable extensions of classical finite automata (FAs),

weighted finite automata (WFAs) and symbolic finite automata (SFAs). WFAs are finite

automata to represent formal power series on a semiring, which are functions from a set

of strings over a finite alphabet to a semiring. SFAs are an extension of FAs, where each

transition edge is labeled with a predicate, which represents a possibly infinite subset of

the alphabet compactly. By combining them, SWFAs can represent power series as with

WFAs while dealing with a large or infinite alphabet e�ciently as well as SFAs. Transition

edges of an SWFA are labeled by functions from the alphabet to a semiring instead of

predicates.

Because of their generality, SWFAs have been considered in several recent studies.

Herrmann and Vogler [16] introduced SWFAs with data storage and investigated their

expressiveness for some types of data storage. Alur et al. [1] considered SWFAs with nest-

ing operations and parallel execution, and proposed an e�cient evaluation algorithm for

them. Jaksic et al. [18, 19] and Waga [26] used SWFAs to develop underlying algorithms

for runtime verification of cyber-physical systems. However, none of the prior works ex-

plore essential properties of SWFAs in detail. In addition, the learnability of SWFAs has

1

not been studied yet.

The problem of learning FAs has been studied for a long time. In this field, one of the

central research topics is exact learning. One of the most famous exact learning algorithm

of FAs is L∗ algorithm proposed by Angluin [2]. L∗ algorithm learns deterministic FAs with

an oracle, called a minimally adequate teacher (MAT), which answers membership queries

(MQs) and equivalence queries (EQs) from the learner. Bergadano and Varricchio [8]

extended L∗ for learning WFAs and Bisht et al. [9] improved the algorithm. The learning

of SFAs under the MAT model has also been studied. Drews and D’Antoni [13] showed

that deterministic SFAs can be learned if partitions of ⌃ are inferable from finite examples.

Argyros and D’Antoni [3] proposed a more powerful algorithm that learns deterministic

SFAs under the assumption that predicates on transition edges are also MAT learnable.

This work was extended for learning non-deterministic SFAs by Chubachi et al. [11].

We propose a query learning algorithm for SWFAs, which is a combination of the ones

for WFAs [9] and SFAs [3]. The query complexity of our algorithm is polynomial in the

minimal number of states to represent the target power series, the length of the longest

counterexample against EQs, and the number of queries required to learn functions on

transition edges. By proposing this algorithm, we prove that SWFAs are e�ciently MAT-

learnable if functions on transition edges are also e�ciently MAT-learnable. In addition,

our experiments show that the practical performance of our algorithm is much more

e�cient than the theoretical worst-case complexity.

Another central research topic of learning FAs is approximate learning. In particular,

there are many studies on approximate learning for WFAs, which output weights instead

of binary outputs like classical FAs. The most famous approximate learning algorithm

of WFAs is the spectral learning algorithm [4, 5]. This algorithm utilizes the singular

value decomposition (SVD) to e�ciently restore a WFA from a dataset. We extend this

algorithm to the case of SWFAs and evaluate the performance by experiments. Our

algorithm reveals that SWFAs can achieve almost the same performance compared to

2

WFAs, with much fewer parameters and data.

This paper also investigates some essential properties of SWFAs. We give a novel, clear

definition of SWFAs considering a class of functions G on transition edges of SWFAs. We

find that some theoretical properties and learnability hold under an essential assumption

— G is closed under linear combination. We call the representation class of SWFAs G -

recognizable. To clarify the representation range of G -recognizable, we define a set of

operations called G -rational and prove the Kleene–Schützenberger theorem for SWFAs,

the equality of G -recognizable and G -rational. This theorem corresponds to the equality

of the representation class of FAs and regular expression, which is a well-known result

shown by Kleene [20], and later extended for WFAs by Schützenberger [25]. We also show

that minimization and equivalence checking of SWFAs can be achieved e�ciently. Our

proposed algorithm for minimization and equivalence checking works in cubic time to the

number of states of given SWFAs.

3

Chapter 2

Preliminaries

2.1 Semiring and Field

Symbolic weighted finite automata carry weights defined over a semiring while reading an

input string. When we consider learning of SWFAs, we assume the weights are actually in

a field because this restriction allows helpful manipulations for learning. In this section,

we introduce the definitions of semiring and field.

For a set S, a binary operation ⋅ over S, and e ∈ S, the tuple (S, ⋅, e) is a monoid when

it satisfies the following conditions.

associative law ∶ (a ⋅ b) ⋅ c = a ⋅ (b ⋅ c), for all a, b, c ∈ S

identity element ∶ e ⋅ a = a ⋅ e = a, for all a ∈ S

When ⋅ is commutative, that is, a ⋅ b = b ⋅ a for all a, b ∈ S, such a monoid is called a

commutative monoid.

A tuple (S,+,∗,0,1) is a semiring if (S,+,0) is a commutative monoid, (S,∗,1) is a

4

2.2 Notation

monoid, and the tuple satisfies the following conditions.

distributive law ∶ a ∗ (b + c) = (a ∗ b) + (a ∗ c),

(a + b) ∗ c = (a ∗ c) + (b ∗ c), for all a, b, c ∈ S

annihilator ∶ 0 ∗ a = a ∗ 0 = 0, for all a ∈ S

Intuitively, a semiring is a set that allows multiplication and commutative addition. The

symbol ∗ is often omitted like ab = a ∗ b. The set of natural numbers N (including 0) is

a simple example of semiring. We sometimes use S to represent a semiring by omitting

other tuple elements if there is no risk of confusion.

A tuple (F,+,∗,0,1) is a field if (F,+,0) is a commutative monoid and any a ∈ F allows

an additive inverse −a which satisfies a+ (−a) = 0, (F,∗,1) is a commutative monoid and

any a ∈ F�{0} allows a multiplicative inverse a−1 which satisfies a∗a−1 = 1, and distributive

law as with semiring. Following the custom, we add the condition 1 ≠ 0 to exclude the

trivial field. Intuitively, a field is a set that allows four arithmetic operations. We can

interpret field as an extension of semiring introducing subtraction and division by adding

inverse elements. The set of rational numbers Q and real numbers R are typical examples

of field. We also use F to represent a field as shorthand.

2.2 Notation

The set of all strings over an alphabet ⌃ is denoted by ⌃∗. The empty string is de-

noted by ✏. The set of all functions from X to Y is denoted by Y X .

We consider possibly infinite matrices throughout this paper. A matrix over Y whose

rows and columns are indexed by sets P and S, respectively, is identified with a function

from P ×S to Y . The element of a matrix A ∈ Y P×S indexed by p ∈ P and s ∈ S is denoted

by A[p, s]. A vector may be seen as a special case of a matrix whose column index set

is a singleton S = {s}, where we often drop s and simply refer to the element A[p, s] by

5

2.2 Notation

A[p] regarding A ∈ Y P . A pair (P ′, S′) of subsets P ′ ⊆ P and S′ ⊆ S is called a mask and

the (P ′, S′)-sub-block of A ∈ Y P×S with a row index set P ′ and a column index set S′ is

denoted as A(P ′,S′) ∈ Y P ′×S′ . Particularly when P ′ = P and S′ is a singleton set {s}, the

matrix A(P,{s}) is often denoted by A[⋅, s] and is called the column vector of A indexed

by s ∈ S. The row vector of A indexed by p ∈ P is symmetrically defined and denoted by

A[p, ⋅]. We also use �a to clarify that a is a column vector. The transpose of A ∈ Y P×S,

denoted by A� ∈ Y S×P , exchanges the rows and columns of A. We often express a matrix

as a table ordering the row and column indices arbitrarily. We use I to represent an

identity matrix, O to represent a zero matrix, and �0 to represent a zero vector.

When Y is a semiring, the multiplication AB ∈ Y P×S of two matrices A ∈ Y P×Q and

B ∈ Y Q×S is defined by (AB)[p, s] = ∑q∈QA[p, q]B[q, s] for all p ∈ P and s ∈ S provided

that Q is finite. When Y is a field, the rank of A ∈ Y P×S is defined in the usual way

and denoted by rank(A). A mask (P ′, S′) is called a basis if rank(A(P ′,S′)) = rank(A).

The basis (P ′, S′) is minimal if �P ′� = �S′� = rank(A). A mask (P ′, S′) is non-singular

when A(P ′,S′) is non-singular. Then, there is a unique matrix called the inverse A−1
(P ′,S′)

of A(P ′,S′) such that A(P ′,S′)A−1(P ′,S′) = I. A minimal basis is always non-singular since

a matrix A(P ′,S′) is non-singular if and only if �P ′� = �S′� = rank(A(P ′,S′)). However, the

reverse is not always true. That is, there may be a mask that is non-singular but not a

basis.

6

Chapter 3

Symbolic Weighted Finite Automata

Symbolic weighted finite automata (SWFAs) combine symbolic finite automata (SFAs)

and weighted finite automata (WFAs) to represent formal power series over a possibly

infinite alphabet. SFAs are defined over a Boolean algebra, which has predicates (or

guards), finite descriptions to represent possibly infinite subsets of the alphabet. SFAs

use predicates as labels of transition edges. Likewise, SWFAs have edges labeled by finitely

describable functions, called guard functions, in a fixed class G from the alphabet ⌃ to a

semiring S.

3.1 Definition

Definition 3.1 (Symbolic Weighted Finite Automata, SWFAs). A symbolic weighted

finite automaton (SWFA) A over G is a tuple (G ,Q, �↵, ��,�), where G ⊆ S⌃ is a class of

guard functions from ⌃ to S, Q is a finite set of states, �↵ ∈ SQ is a vector of initial weights,

�� ∈ SQ is a vector of final weights, and � ∈ G Q×Q is a transition relation. For any x ∈ ⌃, the

transition relation for x is represented by a matrix �x ∈ S
Q×Q, i.e., �x[q, q

′] =�[q, q′](x)

for all (q, q′) ∈ Q2. �x can be extended for strings w ∈ ⌃∗ as �w = �x1�x2 . . .�xl
, where

w = x1x2 . . . xl with xi ∈ ⌃. The formal power series fA represented by A is defined by

fA(w) = �↵
��w
�� for all w ∈ ⌃∗ and called G -recognizable. The set of all G -recognizable

7

3.2 The Kleene–Schützenberger Theorem for SWFAs

power series is denoted by G -Rec. We allow a special SWFA with no states, which

represents the zero constant series, called the zero SWFA.

If S is the two-element Boolean algebra, SWFAs coincide with SFAs. For the class

G wfa of all guard functions from a finite alphabet ⌃ to a semiring S, SWFAs over G wfa

are exactly WFAs, except that usually the transition relations of WFAs are described by

enumeration. That is, the transition relation of a WFA is �⌃� matrices in SQ×Q.

Throughout this paper, we make the following assumption.

Assumption 1. Any guard function class G ⊆ S⌃∗ is closed under linear combination.

That is, for any a, b ∈ S and g1, g2 ∈ G , there is g ∈ G such that

g(w) = ag1(w) + bg2(w) for all w ∈ ⌃∗.

This assumption may be seen as the weighted counterpart of the Boolean closure

property of predicates in SFAs. We can prove many fruitful results under the assumption,

including the Kleene–Schützenberger theorem for SWFAs, decidability of equivalence, and

learnability.

Figure 3.1 shows toy examples of a WFA and an SWFA representing the same power

series f ∶{−1,0,1}∗ → R, where R is the set of real numbers. The SWFA is readily

applicable for extending the alphabet to the integer set with no change.

3.2 The Kleene–Schützenberger Theorem for SWFAs

Kleene [20] shows that regular expression and the class of languages recognized by a

classical finite automata are equivalent. Schützenberger [25] extended this result to the

case of WFAs. In this section, we derive the compatible result for SWFAs. That is, we

define G -rational power series, which is symbolic weighted version of regular expression,

and prove the equivalence to G -recognizable power series. We call this equivalence the

Kleene–Schützenberger theorem for SWFAs.

8

3.2 The Kleene–Schützenberger Theorem for SWFAs

1.0

0.0

3.0

1.0

x � � weight
�1 2.0

0 2.0
1 2.0

x � � weight
�1 1.0

0 0.0
1 �1.0

x � � weight
�1 1.0

0 0.0
1 1.0

x � � weight
�1 �1.0

0 1.0
1 3.0

1.0

0.0

3.0

1.0

x � � weight
x x

2
x � � weight

x 2.0x + 1.0

x � � weight
x �x

x � � weight
x 2.0

(a) WFA (b) SWFA

Figure 3.1: (a) An example WFA on ⌃ = {−1,0,1}. Numbers attached to the input arrow
shows the initial vector �↵. Numbers attached to the output arrow shows the final vector
��. The table labeling each edge from a state q to other state q′ shows �x[q, q

′] for each
x ∈ ⌃. (b) An example SWFA representing the same power series as (a). The label on
each edge is the assigned guard function from ⌃ to R.

As the counterpart of singleton language, first we introduce monomials. A monomial

rg for g ∈ G is defined by

rg(x) = g(x) for all x ∈ ⌃, rg(w) = 0 for all w ∈ ⌃∗ �⌃.

Note that rg(✏) = 0.

Next we introduce the following operations on S⌃∗ .

For r ∈ S⌃∗ and a ∈ S, the (left and right) scalar multiplication is defined by

(ar)(w) = ar(w) for all w ∈ ⌃∗,

(ra)(w) = r(w)a for all w ∈ ⌃∗.

9

3.2 The Kleene–Schützenberger Theorem for SWFAs

For r1, r2 ∈ S⌃∗ , the addition is defined by

(r1 + r2)(w) = r1(w) + r2(w) for all w ∈ ⌃
∗
.

For r1, r2 ∈ S⌃∗ , the Cauchy product is defined by

(r1 ⋅ r2)(w) = �
w=uv

r1(u)r2(v) for all w ∈ ⌃
∗
.

Since any finite word w has only finitely many factorizations into u and v, the right-

hand of this equation is the sum of finitely many elements. Therefore, this operation is

well-defined in the sense that it does not diverge.

For r ∈ S⌃∗ , let rn = rn−1 ⋅ r and r0 ∈ S⌃∗ where r0(w) = 1 if w = ✏ otherwise 0. the

Kleene star is defined only for r such that r(✏) = 0. We call such r proper.

r
∗
=�

i≥0

r
i

Since r is proper, for i > �w�, ri(w) = 0. Therefore, this operation is sum of finitely many

elements and well-defined.

Using these operations, we can define G -rational power series.

Definition 3.2. A power series from S⌃∗ is G -rational if it can be constructed from the

monomials rg for g ∈ G by (left and right) scalar multiplication, addition, Cauchy-product,

and Kleene star. The set of all G -rational power series is denoted by G -Rat.

Theorem 3.3 (The Kleene–Schützenberger theorem for SWFAs).

G -Rec = G -Rat.

To prove the theorem, we first show G -Rat ⊆ G -Rec by introducing the following

lemmas, which define an SWFA corresponding to each G -rational operation.

10

3.2 The Kleene–Schützenberger Theorem for SWFAs

Lemma 3.4 (monomials). For any g ∈ G , there is an SWFA A such that fA(x) =

g(x) for all x ∈ ⌃, fA(w) = 0 for all w ∈ ⌃∗ �⌃.

Proof: Let an SWFA A = (G ,Q, �↵, ��,�) where

Q = (q1, q2),

�↵ =

�

�
�

�

1

0

�

�
�

�

,

�� =

�

�
�

�

0

1

�

�
�

�

,

� =
�

�
�

�

0 g

0 0

�

�
�

�

.

Note that guard functions output constants are in G by Assumption 1.

This SWFA satisfies the definition of monomials since

fA(✏) = �↵
� �� = 0,

fA(x) = �↵
��x
�� = g(x), where x ∈ ⌃,

fA(w) = �↵
��x1��xl

�� = �↵
�
O �� = 0, where w = x1�xl ∈ ⌃

∗
, l ≥ 2.

Lemma 3.5 ((left and right) scalar multiplication). For any SWFA A and a ∈ S, there

is an SWFA A′ such that fA′ = afA and A′′ such that fA′′ = fAa.

Proof: For an SWFA A = (G ,Q, �↵, ��,�), let SWFAs A′ = (G ,Q, a�↵, ��,�) and A′′ =

(G ,Q, �↵, ��a,�). Here, a�↵ and ��a are pointwise scalar multiplications. Then,

fA′(w) = a�↵��w
�� = afA(w) for all w ∈ ⌃

∗
,

fA′′(w) = �↵��w
��a = fA(w)a for all w ∈ ⌃∗.

11

■

3.2 The Kleene–Schützenberger Theorem for SWFAs

Lemma 3.6 (addition). For any SWFAs A′ and A′′, there is an SWFA A such that

fA = fA′ + fA′′.

Proof: For SWFAs A′ = (G ,Q′, �↵′, ��′,�′) and A′′ = (G ,Q′′, �↵′′, ��′′,�′′), we can assume

Q′ ∩Q′′ = � without loss of generality. Let an SWFA A = (G ,Q, �↵, ��,�) where

Q = Q
′
∪Q

′′
,

�↵ =

�

�
�

�

�↵′

�↵′′

�

�
�

�

,

�� =

�

�
�

�

��′

��′′

�

�
�

�

,

� =
�

�
�

�

�′ O

O �′′

�

�
�

�

.

Then,

fA(w) = ��↵′��↵′′��

�

�
�

�

�′x1
O

O �′′x1

�

�
�

�

�

�
�

�

�′x2
O

O �′′x2

�

�
�

�

�

�

�
�

�

�′xl
O

O �′′xl

�

�
�

�

�

�
�

�

��′

��′′

�

�
�

�

= ��↵′��↵′′��

�

�
�

�

�′x1x2...xl
O

O �′′x1x2...xl

�

�
�

�

�

�
�

�

��′

��′′

�

�
�

�

= �↵
′��′w ��

′
+ �↵

′′��′′w ��
′′

= fA′(w) + fA′′(w)

for all w = x1x2 . . . xl ∈ ⌃∗.

Lemma 3.7 (Cauchy product). For any SWFAs A′ and A′′, there is an SWFA A such

that fA = fA′ ⋅ fA′′.

12

■

■

3.2 The Kleene–Schützenberger Theorem for SWFAs

Proof: For SWFAs A′ = (G ,Q′, �↵′, ��′,�′) and A′′ = (G ,Q′′, �↵′′, ��′′,�′′), we can assume

Q′ ∩Q′′ = � without loss of generality. Let an SWFA A = (G ,Q, �↵, ��,�) where

Q = Q
′
∪Q

′′
,

�↵ =

�

�
�

�

�↵′

�0

�

�
�

�

,

�� =

�

�
�

�

��′�↵′′� ��′′

��′′

�

�
�

�

,

� =
�

�
�

�

�′ ��′�↵′′��′′

O �′′

�

�
�

�

.

Note that guard functions of � is in G by Assumption 1.

Then,

fA(w) = ��↵′� �0��
����
�′x1

��′�↵′′��′′x1

O �′′x1

����
����
�′x2

��′�↵′′��′′x2

O �′′x2

�����
����
�′xl

��′�↵′′��′′xl

O �′′xl

����
����
��′�↵′′� ��′′
��′′

����
= ��↵′� �0��

����
�′x1x2...xl

��′�↵′′��′′x1x2...xl
+∑1≤j≤l−1 �′x1...xj

��′�↵′′��′′xj+1...xl

O �′′x1x2...xl

����
����
��′�↵′′� ��′′
��′′

����
= ��↵′��′w �↵′�∑w=uv,u≠w �′u ��′�↵′′��′′v�

����
��′�↵′′� ��′′
��′′

����
= �

w=uv

�↵′��′u ��′�↵′′��′′v ��′′
= �

w=uv

fA′(u)fA′′(v)

for all w = x1x2 . . . xl ∈ ⌃∗.

Lemma 3.8 (Kleene star). For any SWFA A, there is an SWFA A∗ such that fA∗ = f∗A.

Proof: For SWFA A = (G ,Q, �↵, ��,�), using an additional state q∗ ∉ Q, let an SWFA

13

■

3.2 The Kleene–Schützenberger Theorem for SWFAs

A∗ = (G ,Q∗, �↵∗, ��∗,�∗) where

Q
∗
= {q

∗
} ∪Q,

�↵
∗
=

�

�
�

�

1

�0

�

�
�

�

,

��
∗
=

�

�
�

�

1

�0

�

�
�

�

,

�∗ =
�

�
�

�

�↵���� �↵��

��� �

�

�
�

�

.

Note that guard functions of � is in G by Assumption 1.

Then,

fA∗(w) = �1 �0��
����
�↵��x1

�� �↵��x1

�x1
�� �x1

����
����
�↵��x2

�� �↵��x2

�x2
�� �x2

�����
����
�↵��xl

�� �↵��xl

�xl
�� �xl

����
����
1

�0
����

= �1 �0��

����������������������

�↵��x1x2...xl
��

+ �↵��x1
�� �↵��x2...xl

�� + �↵��x1x2
�� �↵��x3...xl

�� +� + �↵��x1...xl−1 �� �↵��xl
��

⋮
+∑w=u1u2...ui,uj≠✏,1≤j≤i∏1≤k≤i �↵��uk

��
⋮

+ �↵��x1
�� �↵��x2

����↵��xl
��

-

- -

����������������������

����
1

�0
����

= �1 �0��

����������������������

fA(w)
+ f

2A(w)
⋮

+ f
iA(w)
⋮

+ f
lA(w)

-

- -

����������������������

����
1

�0
����

=�
i≥1

f
iA(w)

14

3.2 The Kleene–Schützenberger Theorem for SWFAs

for all w = x1x2 . . . xl ∈ ⌃∗ � {✏}. “−” in the matrix means omitted formulas since they are

irrelevant to the final result. Considering fA∗(✏) = �↵� �� = 1 = f 0
A
(✏) leads

fA∗ = f 0
A
+�

i≥1

f
i
A
=�

i≥0

f
i
A
= f

∗

A
.

Next we show G -Rec ⊆ G -Rat. First we define some useful notation. For a matrix

of power series R ∈ (S⌃∗)P×S and w ∈ ⌃∗, let R(w) be the matrix of the semiring such

that R(w)[p, s] = R[p, s](w) for all (p, s) ∈ P × S. The Cauchy product R ∈ (S⌃∗)P×S of

R1 ∈ (S
⌃∗)P×Q and R2 ∈ (S

⌃∗)Q×S is R(w) = ∑w=uv R1(u)R2(v) for all w ∈ ⌃∗ and written

by R = R1 ⋅R2. The Kleene star R∗ ∈ (S⌃∗)Q×Q of R ∈ (S⌃∗)Q×Q is defined only for proper

R, that is, R(✏) = O. Let Rn = R ⋅Rn−1 and R0(w) = I when w = ✏, otherwise O. Then

R∗ = ∑i≥0R
i.

The following lemmas and corollary are useful.

Lemma 3.9. Let R1 ∈ (S
⌃∗)P×Q and R2 ∈ (S

⌃∗)Q×S be matrices of G -rational power series.

Then, R = R1 ⋅R2 is also a matrix of G -rational power series.

Proof:

R(w) = (R1 ⋅R2)(w) (3.1)

= �
w=uv

R1(u)R2(v)

for all w ∈ ⌃∗.

That is,

R[p, s](w) = �
w=uv
�

q∈Q

R1[p, q](u)R2[q, s](v) (3.2)

= �

q∈Q

(R1[p, q] ⋅R2[q, s])(w)

15

■

3.2 The Kleene–Schützenberger Theorem for SWFAs

for all p ∈ P , s ∈ S and w ∈ ⌃∗.

Note that ⋅ in Equation (3.1) means the Cauchy product between matrices of power

series and ⋅ in Equation (3.2) means the Cauchy product between power series.

Since the Cauchy product between power series is in G -rational operations, Equation

(3.2) shows that each element of R can be represented by sum of G -rational power series.

Thus, R is a matrix of G -rational power series.

Lemma 3.10. Let R ∈ (S⌃∗)Q×Q be a matrix of power series and �u ∈ (S⌃∗)Q be a vector

of power series. Let us consider the equation about an unknown vector of power series �X,

�X = R ⋅ �X + �u.

If R is proper, the equation has a unique solution �X = R∗ ⋅ �u.

Proof: Substituting R∗ ⋅ �u into the equation shows R∗ ⋅ �u is a solution.

Conversely, if �v is a solution of the equation �X = R ⋅ �X + �u, we have

�v = �u +R ⋅ �v = �u +R ⋅ �u +R
2
⋅ �v = � = �

0≤i<n

R
i
⋅ �u +R

n
⋅ �v,

for all integers n. Since limn→∞Rn = O and limn→∞∑0≤i<nR
i = R∗, �v = R∗ ⋅ �u.

Corollary 3.11. Let r and u be a power series of S⌃∗. Let us consider the equation

about an unknown power series X,

X = r ⋅X + u.

If r is proper, the equation has a unique solution X = r∗ ⋅ u.

Using these lemmas and corollary, we can prove the following lemmas.

16

■

■

3.2 The Kleene–Schützenberger Theorem for SWFAs

Lemma 3.12. Let � be an n×n square matrix consisting of G -rational power series. Let

us extend a length n constant vector �� to a vector of G -rational power series such that

��(w) = �� when w = ✏ otherwise �0. Then, �v =�∗ ⋅ �� is a vector of G -rational power series.

Proof: By Lemma 3.10, �v satisfies

�v =� ⋅ �v + ��. (3.3)

That is,

�v[i] = �
1≤j≤n

�[i, j] ⋅ �v[j] + ��[i] (3.4)

for all 1 ≤ i ≤ n.

When i = n in Equation (3.4), by Corollary 3.11,

�v[n] = �
1≤j≤n

�[n, j] ⋅ �v[j] + ��[n] (3.5)

=�[n,n] ⋅ �v[n] + �
1≤j≤n−1

�[n, j] ⋅ �v[j] + ��[n]

=�[n,n]∗ ⋅ � �
1≤j≤n−1

�[n, j] ⋅ �v[j] + ��[n]� .

When 1 ≤ i ≤ n − 1 in Equation (3.4), substituting �v[n] into the equation (3.4) gives

�v[i] = �
1≤j≤n

�[i, j] ⋅ �v[j] + ��[i] (3.6)

=�[i, n] ⋅ �v[n] + �
1≤j≤n−1

�[i, j] ⋅ �v[j] + ��[i]
=�[i, n] ⋅�[n,n]∗ ⋅ �� �

1≤j≤n−1
�[n, j] ⋅ �v[j] + ��[n]�� + �

1≤j≤n−1
�[i, j] ⋅ �v[j] + ��[i]

= �
1≤j≤n−1

�(�[i, n] ⋅�[n,n]∗ ⋅�[n, j] +�[i, j]) ⋅ �v[j]� +�[i, n] ⋅�[n,n]∗ ⋅ ��[n] + ��[i].

Based on these equations, we can prove the lemma by induction about n.

When n = 1, �v satisfies

�v[1] =�[1,1] ⋅ �v[1] + ��[1].

17

3.2 The Kleene–Schützenberger Theorem for SWFAs

Corollary 3.11 shows this equation has a unique solution �v such that

�v[1](w) = (�[1,1]∗ ⋅ ��[1])(w)

= �
w=uv

�[1,1]∗(u)��[1](v)

=�[1,1]∗(w)��[1](✏)

=�[1,1]∗(w)�b[1]

since ��(w) = �0 for all w ∈ ⌃∗ � {✏}. We can construct this by G -rational operations.

When n > 1, we define a (n − 1) × (n − 1) matrix of G -rational power series �′ and a

length n − 1 vector of power series ��′ as below:

�′[i, j] = (�[i, n] ⋅�[n,n]∗ ⋅�[n, j] +�[i, j]),

��
′
[i] =�[i, n] ⋅�[n,n]∗ ⋅ ��[n] + ��[i]

for all 1 ≤ i, j ≤ n − 1.

Using this, we can transform the equation (3.6).

�v[i] = ⌃1≤j≤n−1�
′
[i, j] ⋅ �v[j] + ��

′
[i]

When we write the elements of �v from 1 to n − 1 by �v[1..n − 1], this equation means

�v[1..n − 1] =�′ ⋅ �v[1..n − 1] + ��′.

By Lemma 3.10,

�v[1..n − 1] =�′∗ ⋅ ��′.

From an induction by assuming that Lemma 3.12 holds for n− 1, we can confirm that

�v[1..n−1] is a vector of G -rational power series. The final element �v[n] of �v is G -rational

18

3.3 Basic Properties

power series since Equation (3.5) only requires the elements of �v[1..n − 1] and G -rational

operations.

Lemma 3.13. Let an SWFA A = (G ,Q, �↵, ��,�). fA can be represented by G -rational

operations.

Proof: Let us extend �↵ and �� to vectors of G -rational power series as with Lemma 3.12.

� can also be extended to a matrix of G -rational power series by defining �(x) =�x for

all x ∈ ⌃ and �(w) = O for all w ∈ ⌃∗ �⌃. Then,

fA = �↵ ⋅�
∗
⋅ ��.

By Lemma 3.12, �∗ ⋅ �� is a vector of G -rational power series. Combining with Lemma 3.9

shows that �↵ ⋅ �∗ ⋅ �� is G -rational power series. Therefore, fA can be represented by

G -rational operations.

This lemma proves G -Rec ⊆ G -Rat.

3.3 Basic Properties

In the following of this paper, we assume the codomain of the power series in concern is

a field F. This restriction has brought fruitful positive results on WFAs including their

e�cient learnability [8, 9]. Under the assumption, we observe that some basic properties

of WFAs over fields also hold for SWFAs.

Definition 3.14. The matrix Hf associated to a formal power series f ∶⌃∗ → F is an

infinite matrix with rows and columns indexed by strings in ⌃∗ such that Hf [p, s] = f(ps)

for all p, s ∈ ⌃∗.

Theorem introduced by Fliess [15] can be seen as a weighted counterpart of the Myhill-

Nerode theorem [22], which also holds for SWFAs.

19

■

■

3.3 Basic Properties

Theorem 3.15. The rank of the matrix Hf associated to f ∶⌃∗ → F is finite if and only

if f is G -recognizable for some G . In that case, there exists an SWFA A over G with

rank(Hf) states representing f and no SWFA with fewer states can represent f .

The proof in [6] works regardless of whether ⌃ is finite or infinite.

Hereafter, we fix the G -recognizable power series f in concern and we often drop the

subscript f from Hf if there is no risk of confusion.

When (P,S) is a minimal basis of H and the alphabet is finite, one can construct a

WFA representing f from H(P,S) and H(P,x,S) for all x ∈ ⌃, where H(P,x,S)[p, s] = f(pxs)

for all p ∈ P and s ∈ S [9]. We will establish the parallel result on SWFAs in Proposition

3.17.

Definition 3.16. For a non-singular mask (P,S), the SWFA based on (P,S) is defined

to be A(P,S) = (G ,Q, �↵, ��,�), where Q = P , �↵� = H({✏},S)H−1(P,S),
�� = H(P,{✏}) and �x =

H(P,x,S)H−1(P,S) for all x ∈ ⌃.

One may wonder whether functions in � defined above belong to G . We will show it

in the following propositions.

Proposition 3.17. Let (P,S) be a minimal basis. Then, A(P,S) = (G ,Q, �↵, ��,�) correctly

represents f . Moreover, all guard functions in � of A(P,S) are in G .

Proof: By Theorem 3.15, there is an SWFA A′ = (G ,Q′, �↵′, ��′,�′) with �P � (= �S�) states

representing f , i.e., f(w) = �↵′��′w ��
′ for all w ∈ ⌃∗. Define matrices UP ∈ F

P×Q′ and VS ∈

FQ′×S by UP [p, ⋅] = �↵
′T�′p for all p ∈ P and VS[⋅, s] =�′s ��

′ for all s ∈ S, respectively. Then

we have H(P,S) = UPVS and H(P,x,S) = UP�′xVS for x ∈ ⌃. Since H(P,S) is non-singular, UP

and VS are also non-singular. From the definition ofA(P,S),H(P,x,S) =�xH(P,S) =�xUPVS.

Thus, �′x = U
−1
P �xUP . This fact can be extended to strings w ∈ ⌃∗ as �′w = U

−1
P �wUP .

Since H({✏},S) = �↵′�VS and H(P,{✏}) = UP
��′, we have �↵′� = �↵�UP and ��′ = U−1P

��. Therefore,

f(w) = �↵′��′w ��
′ = �↵�UPU

−1
P �wUPU

−1
P
�� = �↵��w

��. Additionally, �′x = U−1P �xUP shows

20

3.4 Minimization and Equivalence Checking

that every guard function in � can be represented by a linear transformation of those in

�′. Thus, all guard functions in � are in G by Assumption 1.

Proposition 3.18 guarantees that the guard functions in the transition relation con-

structed in Definition 3.16 indeed belong to G , by extending the property shown in Propo-

sition 3.17 to the case that (P,S) is a non-singular mask.

Proposition 3.18. If (P,S) is non-singular, all guard functions of A(P,S) = (G ,Q, �↵, ��,�)

are in G .

Proof: Let (P ′, S′) be a minimal basis that expands (P,S), i.e., P ′ ⊇ P and S′ ⊇ S. For

the SWFA A(P ′,S′) = (G ,Q′, �↵′, ��′,�′), we have for all x ∈ ⌃,

�′xH(P ′,S′) =H(P ′,x,S′) ,

which can be rewritten as

�

�
�

�

�′
(P,P)x

�′
(P,P̃)x

�′
(P̃ ,P)x

�′
(P̃ ,P̃)x

�

�
�

�

�

�
�

�

H(P,S) H
(P,S̃)

H
(P̃ ,S) H

(P̃ ,S̃)

�

�
�

�

=

�

�
�

�

H(P,x,S) H
(P,x,S̃)

H
(P̃ ,x,S) H

(P̃ ,x,S̃)

�

�
�

�

where P̃ = P ′ � P and S̃ = S′ � S. Thus �′
(P,P)x

H(P,S) +�′
(P,P̃)x

H
(P̃ ,S) =H(P,x,S) and

�x =H(P,x,S)H
−1
(P,S) = (�

′

(P,P)x
H(P,S) +�

′

(P,P̃)x
H
(P̃ ,S))H

−1
(P,S)

for all x ∈ ⌃. Therefore, all guard functions in � can be represented by a linear transfor-

mation of those of �′. That is, they belong to G by Assumption 1.

3.4 Minimization and Equivalence Checking

In this section, we consider minimization and equivalence checking for SWFAs. Mini-

mization (also called standardization) is the problem to minimize the number of states of

21

■

■

3.4 Minimization and Equivalence Checking

�

�
1 2 2 1
0 1 3 0
g1 g2 g3 g4

�

�

�

�
1 2 2 1
0 1 3 0
0 g2 � 2g1 g3 � 2g1 g4 � g1

�

�

�

�
1 2 2 1
0 1 3 0
0 0 g3 � 2g1 � 3(g2 � 2g1) g4 � g1

�

�� �
UP

UP [p, ·]�

triangular matrix

Figure 3.2: Gaussian elimination dealing with guard functions

a given SWFA. Equivalence checking is the problem to check whether given two SWFAs

are equivalent or not. Our algorithms assume that G admits a zero-checking procedure.

Assumption 2. For a given g ∈ G , there is a procedure that decides whether g(x) = 0 for

all x ∈ ⌃. If not, it finds a witness x ∈ ⌃ such that g(x) ≠ 0.

This requirement corresponds to the emptiness checking in the context of SFAs [3,

11]. Under the assumption, we present a minimization procedure for SWFAs inspired

by Schutzenberger’s algorithm for WFAs [25]. The minimization procedure for SWFAs

consists of two phases: First we obtain a minimal basis (P,S) for a given SWFA; Second,

we construct a minimized SWFA based on (P,S) and H(P,S).

Suppose an SWFA A = (G ,Q, �↵, ��,�) representing fA is given as an input. The

first phase is shown in Algorithm 1. For two sets P and S of strings, define matrices

UP ∈ F
P×Q and VS ∈ F

Q×S by UP [p, ⋅] = �↵
T�p for all p ∈ P and VS[⋅, s] = �s

�� for all

s ∈ S, respectively. When UP and VS are bases of U⌃∗ and V⌃∗ , respectively, (P,S) will

be a basis of HfA , since U⌃∗V⌃∗ = HfA . Starting from P = {✏}, our procedure constructs

such P by expanding P and increasing the rank of UP in the loop of Line 2. Of course

when �P � = �Q�, we cannot expand P any further. Otherwise, to execute Line 4, we first

consider the matrix [U�P (UP [p, ⋅]�)�]�, which concatenates UP and UP [p, ⋅]�, for each

p ∈ P . As shown in the example in Figure 3.2, Gaussian elimination process dealing with

guard functions makes the first �P � + 1 columns of the concatenated matrix a triangular

matrix, which includes a guard function only at the lower-right corner. Then, we check

whether the guard function g at the lower-right corner of the triangular matrix always

outputs 0 or not. If g(x) = 0 for all x ∈ ⌃, the finding in Line 4 fails. If not, we can

22

3.4 Minimization and Equivalence Checking

get x ∈ ⌃ such that g(x) ≠ 0 by Assumption 2. It means we have succeeded in finding

p ∈ P and x ∈ ⌃ such that UP [p, ⋅]�x is linearly independent of UP . Then, we extend P

by px. We construct S and VS with the desired property by the symmetric procedure.

The obtained mask (P,S) is a basis, but not necessarily minimal. By removing elements

of P and S as much as possible while keeping the rank of the matrix H(P,S), we obtain a

minimal basis.

The second phase constructs a minimized SWFA from the minimal basis. By Propo-

sition 3.17, it is enough to show that the SWFA A(P,S) in Definition 3.16 is computable.

The only possible di�culty is in the construction of the transition relation, named �min

here, for which �min
x =H(P,x,S)H−1(P,S) must hold for all x ∈ ⌃. One can compute the matrix

H(P,�,S) ∈ G P×S defined by H(P,�,S)[p, s] = �↵
��p��s

��. We then have H(P,�,S)[p, s](x) =

H(P,x,S) for all x ∈ ⌃, p ∈ P and s ∈ S. Thus, �min = H(P,�,S)H−1(P,S) has the desired

property1.

Algorithm 1: Computing a minimal basis from an SWFA

Input: an SWFA A = (G ,Q, �↵, ��,�)
Output: a minimal basis (P,S)

1 initialize P ← {✏}, S ← {✏};
2 repeat
3 UP [p, ⋅]← �↵

��p for all p ∈ P ;
4 find p ∈ P and x ∈ ⌃ such that UP [p, ⋅]�x is linearly independent of UP ;
5 P ← P ∪ {px};
6 until finding in Line 4 fails ;
7 repeat
8 VS[⋅, s]←�s

�� for all s ∈ S;
9 find s ∈ S and x ∈ ⌃ such that �xVS[⋅, s] is linearly independent of VS;

10 S ← S ∪ {xs};
11 until finding in Line 9 fails ;
12 H(P,S) ← UPVS;
13 P ← P � P ′ for a maximal P ′ ⊆ P such that rank(H(P,S)) = rank(H(P�P ′,S));
14 S ← S � S′ for a maximal S′ ⊆ S such that rank(H(P,S)) = rank(H(P,S�S′));
15 return (P,S);

1The matrices � and H(P,�,S) are over G , which is not necessarily a semiring, whereas the others are
over F. We can naturally apply the definition of multiplication of two matrices over a semiring to these
cases, since G is closed under linear combination.

23

3.4 Minimization and Equivalence Checking

Theorem 3.19. Let L and E be the time complexities of computing a linear combination

and zero-checking of a guard function, respectively. One can minimize an arbitrary SWFA

in O(�Q�(L�Q�2 +E)) time, where �Q� is the number of states of the SWFA.

Proof: The finding at Lines 4 and 9 of Algorithm 1 involves Gaussian elimination dealing

with guard functions and a zero-checking on G . The former requires O(L�Q�2) and the

latter requires E time. Thus, the entire procedure requires O(�Q�(L�Q�2 +E)) time since

these lines are executed at most �Q� times.

When G is G wfa, we have L,E ∈ O(�⌃�) and the time complexity O(�⌃��Q�3) coincides

with that of Schutzenberger’s algorithm for minimizing WFAs [25].

The equivalence checking between SWFAs is immediately derived.

Corollary 3.20. One can decide whether two SWFAs A1 and A2 represent the same

power series in O((�QA1 � + �QA2 �)(L(�QA1 � + �QA2 �)
2 +E)) time.

Proof: One can construct in linear time the “di↵erence SWFA” A with �QA1 � + �QA2 �

states that represents fA = fA1 − fA2 . Two SWFAs A1 and A2 are equivalent if and only

if the basis of HfA obtained by Algorithm 1 is empty.

Again, when G is G wfa, the time complexity becomes O(�⌃�(�QA1 � + �QA2 �)
3), which

coincides with the time complexity of Cortes et al.’s algorithm for equivalence checking

of WFAs [12]. Note that if A1 and A2 are not equivalent, there must be strings p ∈ P and

s ∈ S of the obtained minimal basis (P,S) such thatH(P,S)[p, s] ≠ 0, for which ps witnesses

the di↵erence of fA1 and fA2 . This gives a counterexample to an EQ on SWFAs.

24

■

■

Chapter 4

Query Learning of Symbolic

Weighted Finite Automata

4.1 Problem Setup

Query learning is an active learning model, where an algorithm actively asks queries to

the teacher and constructs a representation of the target function from a domain X to

a codomain Y using the teacher’s answers. The most famous setting of query learning

is learning under a minimally adequate teacher (MAT), proposed by Angluin [2]. In this

model, the MAT can answer two types of queries concerning an unknown function f∗:

membership queries (MQs) and equivalence queries (EQs). For an MQ, the MAT receives

w ∈X and returns f∗(w). For an EQ, the MAT receives a hypothesis H that represents a

function fH ∈ Y
X . The MAT returns “yes” if f∗ = fH. Otherwise, the MAT returns c ∈X

such that f∗(c) ≠ fH(c) as a counterexample.

4.2 Query Learning Algorithm

This section presents a learning algorithm under the MAT model for G -recognizable power

series using SWFAs when G satisfies Assumption 1. We extend the existing learning

25

4.2 Query Learning Algorithm

algorithm for WFAs [9] by embedding the key idea of the SFA learning algorithm of

Argyros and D’Antoni [3].

Argyros and D’Antoni’s algorithm takes as input a MAT learning algorithm ⇤ for

predicates and uses instances ⇤(q,q
′
) to infer a predicate on the edge between two states q

and q′. The learning algorithm plays the role of a MAT for those instances and answers

queries from them. Through communication with predicate learners, the learning algo-

rithm constructs its hypothesis. Following this idea, our algorithm also assumes that the

class of guard functions G admits a MAT learner ⇤ and uses its instances to construct

the transition relation of a hypothesis SWFA.

The pseudo-code of our algorithm is shown in Algorithms 2–5. Now, our learning target

G -recognizable power series is f∗∶⌃∗ → F. Our goal is to find a minimal basis (P,S) of

Hf∗ and to construct the SWFA A(P,S), for which fA(P,S) = f∗ holds by Proposition 3.17.

We call a triple T = (P,S,H(P,S)) an observation table.

Algorithm 2 shows the overall picture of our algorithm. First, our algorithm asks an

EQ to the MAT on the zero SWFA. If the MAT answers with a counterexample c ∈ ⌃∗, our

algorithm initializes the observation table T with P = {c} and S = {✏}. We will expand

the mask to obtain a minimal basis, while keeping it non-singular.

To build a hypothesis, we follow the construction shown in Definition 3.16. Among

components ofA(P,S) = (G ,Q, �↵, ��,�), one can easily constructQ = P , �↵� =H({✏},S)H−1(P,S),

and �� =H(P,{✏}), since any finite sub-block of Hf∗ can be obtained by an appropriate num-

ber of MQs. The remaining issue is how to compute �. We can get �x = H(P,x,S)H−1(P,S)

for concrete x ∈ ⌃ using MQs, but computing guard functions in � is not trivial. For this

sake, we need the help of the guard function learner ⇤. Algorithm 3 initializes all entries

of the transition relation �H of our hypothesis H by null and creates �Q�2 instances ⇤(q,q
′
)

of ⇤ for all state pairs (q, q′) ∈ Q2, and then calls Algorithm 4.

To bring �H closer to �, Algorithm 4 lets ⇤(q,q
′
) learn �[q, q′] by pretending to be a

MAT for them, though we do not know the exact goal� itself. Proposition 3.18 guarantees

26

4.2 Query Learning Algorithm

that ⇤ is capable of learning �[q, q′] ∈ G . To avoid confusion between queries by ⇤(q,q
′
)

to our algorithm and those by our algorithm to the MAT, we use G -EQs and G -MQs for

equivalence queries and membership queries from the instances of ⇤, respectively. The

answer to a G -MQ on x ∈ ⌃ from ⇤(q,q
′
) is just �x[q, q

′]. Since �x[q, ⋅] =H({q},x,S)H−1(P,S),

we require only �S� extra MQs given the observation table.

When ⇤(q,q
′
) asks a G -EQ on a hypothesis guard function g, our algorithm takes g as

the (q, q′)-element of �H. To answer the G -EQ from ⇤(q,q
′
), we need to find a counterex-

ample. This will be done by processing the MAT’s answer to our EQ by Algorithm 5.

Until then, answering the G -EQ of ⇤(q,q
′
) is suspended.

After building a hypothesis SWFA, our algorithm asks an EQ to the MAT on the

hypothesis. When the MAT replies with a counterexample c, Algorithm 5 starts a

procedure to fix the hypothesis. Following prior works [24, 9], our algorithm finds a

prefix ux of c, with u ∈ ⌃∗ and x ∈ ⌃, that satisfies the following equations, where

S = {s1, s2, . . . , sk} (Line 1 of Algorithm 5):

(MQ(us1),MQ(us2), . . . ,MQ(usk)) = �↵
��Hu H(P,S) , (4.1)

(MQ(uxs1),MQ(uxs2), . . . ,MQ(uxsk)) ≠ �↵
��HuxH(P,S) , (4.2)

where MQ(w) is just f∗(w), but we emphasize the learner obtains the values by MQs.

Such a prefix ux always exists and can be found by binary search about the length �c� of

c, which requires O(�S� log �c�) MQs. This suggests that the transition relation �H of our

current hypothesis has something wrong with the transition by x.

So, our algorithm computes �x =H(P,x,S)H−1(P,S) and compares it with �Hx . If �x and

�Hx disagree on the (q, q′)-element, we give x to ⇤(q,q
′
) as a counterexample to the G -

EQ from ⇤(q,q
′
). With the counterexample, our algorithm calls Algorithm 4 and restarts

learning the guard function of �[q, q′] using ⇤(q,q
′
). If �Hx = �x, this means that the

target power series f∗ requires an SWFA with more states (Lemma 4.1). By processing

27

4.3 Correctness and Query Complexity

the counterexample properly, our algorithm expands the observation table T (Lines 9-11

of Algorithm 5). Now, our algorithm decides to reconstruct the hypothesis from scratch

because the goal hypothesis A(P,S) has changed. Along with this, all ⇤ instances are

discarded.

Algorithm 2: SWFA Learning Algorithm
Input: a MAT learning algorithm ⇤
Output: an SWFA representing the target power series

1 P ← {c} and S ← {✏} for the counterexample c to the EQ on the zero SWFA;
2 initialize the observation table T = (P,S,H(P,S)) using the MQ on c;
3 H ← null;
4 loop
5 if H is null then H ← build hypothesis(T); // Algorithm 3

6 ask an EQ on H;
7 if the MAT replies with a counterexample c then
8 H,T ← process counterexample(H, T , c); // Algorithm 5

9 else return H and terminate;

Algorithm 3: build hypothesis

Input: T = (P,S,H(P,S))
Output: a hypothesis SWFA

1 Q← P ; �↵� ←H({✏},S)H−1(P,S);
�� ←H(P,{✏});

2 H ← (G ,Q, �↵, ��,�H), where �H[q, q′] = null for all (q, q′) ∈ Q2;
3 for (q, q′) ∈ Q2 do
4 initialize the algorithm ⇤(q,q

′
);

5 H ← update transition(q, q′,⇤(q,q
′
),H,T); // Algorithm 4

6 return H;

4.3 Correctness and Query Complexity

The following lemma ensures that our mask (P,S) is always kept non-singular and

rank(H(P,S)) is strictly increasing at Line 11 of Algorithm 5.

Lemma 4.1 (Bisht et al. [9]). Suppose ux with u ∈ ⌃∗ and x ∈ ⌃ satisfies Eqs. (4.1)

and (4.2). If �Hx = �x, then rank(H(P ′,S′)) = rank(H(P,S)) + 1 for P ′ = P ∪ {u} and

S′ = S ∪ {xsi}, where MQ(uxsi) ≠ �↵T�HuxH(P,S)[si].

28

4.3 Correctness and Query Complexity

Algorithm 4: update transition

Input: q, q′,⇤(q,q
′
),H = (G ,Q, �↵, ��,�H),T = (P,S,H(P,S))

Output: the updated hypothesis
1 repeat
2 ⇤(q,q

′
) asks a G -MQ on x ∈ ⌃;

3 get H({q},x,S)[q, ⋅] by MQs on qxs for all s ∈ S;
4 �x[q, ⋅]←H({q},x,S)H−1(P,S);

5 answer the G -MQ by �x[q, q
′];

6 until ⇤(q,q
′
) asks a G -EQ on a hypothesis guard function g;

7 �H[q, q′]← g;

8 return (G ,Q, �↵, ��,�H);

Algorithm 5: process counterexample

Input: H = (G ,Q, �↵, ��,�H),T = (P,S,H(P,S)), a counterexample c

Output: a hypothesis SWFA (or null if T is updated), the observation table
1 find a prefix ux of c, where u ∈ ⌃∗, x ∈ ⌃, that satisfies Eqs. (4.1) and (4.2);
2 get H(P,x,S) by MQs on pxs for all p ∈ P and s ∈ S;
3 �x ←H(P,x,S)H−1(P,S);

4 for (q, q′) ∈ Q2 do
5 if �x[q, q

′] ≠�Hx [q, q
′] then

6 give x to ⇤(q,q
′
) as a counterexample to the G -EQ;

7 H ←update transition(q, q′,⇤(q,q
′
),H,T); // Algorithm 4

8 if H is updated then return H, T ;
9 P ′ ← P ∪ {u};

10 S′ ← S ∪ {xsi} where si ∈ S satisfies MQ(uxsi) ≠ �↵T�HuxH(P,S)[si];
11 expand H(P,S) to H(P ′,S′);
12 return null, (P ′, S′,H(P ′,S′));

The proof by [9] requires no change for the case of SWFAs, since the lemma involves

only finitely many elements of ⌃.

By Lemma 4.1, our mask will finally converge to a minimal basis (P,S), for which we

have fA(P,S) = f∗. Then each ⇤(q,q
′
) will finally output the correct guard function.

In order to evaluate the query complexity of our algorithm, we first discuss how many

G -MQs and G -EQs each MAT learner ⇤(q,q
′
) may make. We write the class of all lin-

ear combinations of guard functions in the transition relation � of a minimal SWFA

representing f∗ by

29

4.3 Correctness and Query Complexity

Gf∗ =
�
��
�
��
�

�

(q,q′)∈Q2

aqq′�[q, q′]
�����������

aqq′ ∈ F for each (q, q′) ∈ Q2
�
��
�
��
�

⊆ G .

Note that the class Gf∗ does not depend on the choice of the minimal SWFA, since any

minimal SWFAs representing the same power series can be converted into each other by

linear transformation as shown in the proof of Proposition 3.17. Let M and E be the

number of G -MQs and G -EQs that ⇤ makes to learn guard functions in Gf∗ , respectively.

Theorem 4.2. Let n = rank(Hf∗) and m be the length of the longest counterexample to

EQs returned by the MAT. Then, the proposed algorithm returns an SWFA representing

f∗ using ⇤ after raising at most O(n3E) EQs and O(n4M+ n4E(n + logm)) MQs.

Proof: At first, we claim that the observation table T = (P,S,H(P,S)) cannot be extended

beyond n times. The table is extended on Line 11 of Algorithm 5 only when the condition

of Lemma 4.1 is satisfied, and hence the rank of the sub-blockH(P,S) is definitely increased.

By H(P,S) ≤ rank(Hf∗) = n, the claim holds.

Whenever a counterexample to an EQ is given, we call Algorithm 5, except the first EQ

for initializing T . To count the number of EQs, we count how many times Algorithm 5

is performed. Each call of Algorithm 5 ends in either Line 8 or Line 12. The former

happens only when a counterexample to an instance of ⇤ is found, which can happen at

most �Q�2E ≤ n2E times without extending T . The latter extends T and it is performed at

most n times as shown before. Therefore, the algorithm builds a correct hypothesis after

making at most O(n3E) EQs.

After the first MQ for initializing T , our algorithm makes MQs for (a) constructing

�↵ at Line 1 of Algorithm 3, (b) answering G -MQs from instances of ⇤ at Line 3 of

Algorithm 4, (c) finding a critical prefix of a counterexample at Line 1 of Algorithm 5,

(d) answering G -EQs by instances of ⇤ at Line 2 of Algorithm 5. Note that computing

�� =H(P,{✏}) at Line 1 of Algorithm 3 requires no extra MQs, since H(P,{✏}) is a sub-block

of H(P,S). We can construct H(P ′,S′) at Line 11 of Algorithm 5 using results of MQs in

30

4.3 Correctness and Query Complexity

Table 4.1: Query complexities of representative learning algorithms for relevant automata
Deterministic Weighted

FA EQ O(n) O(n)

MQ O(n2�⌃� + n logm) O(n2�⌃� + n2 logm)
Rivest and Schapire [24] Bisht et al. [9]

SFA EQ O(n3Ê) O(n3E)

MQ O(n4M̂ + n4Ê logm) O(n4M+ n4E(n + logm))
Argyros and D’Antoni [3] (Ours)

(c) and (d).

The total number of MQs for (a) is at most n. Concerning (b), we make �S� MQs for

each G -MQ from an instance of ⇤. Thus, the number of MQs per an instance of ⇤ is

at most O(nM) by �S� ≤ n. Each time T is extended, we make �Q�2 ≤ n2 new instances

of ⇤, which happens n times. Thus, O(n4M) MQs are asked for (b) till the algorithm

outputs a correct SWFA. For (c), we use O(n logm) MQs to find a critical prefix of each

counterexample with binary search in Algorithm 5, which is called at most O(n3E) times,

as we have argued for counting EQs. Thus, in total O(n4E logm) MQs are asked for (c).

The total number of MQs for (d) is at most O(n5E), since we need �P � × �S� ≤ n2 MQs for

constructing H(P,x,S) each time Algorithm 5 is called. All in all, the total number of MQs

that our algorithm makes is at most O(n4M+ n4E(n + logm)).

We compare the query complexities of representative algorithms to learn relevant

classes of automata under the MAT model in Table 4.11. The query complexity of the

proposed algorithm is higher than that of the one for learning WFAs with respect to n,

which is also true when extending FA to SFA. The important point is that the ifM and

E do not depend on alphabet size �⌃�, the number of MQs of our algorithm also does not

depend �⌃� unlike that of WFAs. Therefore, our algorithm is suitable for learning power

series over an extremely large or infinite alphabet.

We show some examples of G and guard function learners.

1M̂ and Ê denote the numbers of G -MQs and G -EQs that predicate learners make in [3]’s algorithm,
respectively.

31

■

4.3 Correctness and Query Complexity

Example 1. Guard functions in G wfa can be learned by �⌃� G -MQs and a G -EQ, i.e.,

M= �⌃� and E = 1. When learning SWFAs over G wfa with such a guard function learner,

Algorithm 5 never calls Algorithm 4, because guard learners always raise the correct

hypotheses. Then the number of required EQs goes down to O(n). Still our algorithm

makes more MQs than the WFA learner, where the same MQs are repeatedly made many

times. We can remove such redundant MQs using memorization and then the number of

MQs of our algorithm becomes as few as the WFA learner’s.

Example 2. Let G poly be the class of all polynomials. Then a trivial learning strategy for

G poly requires k+1 G -MQs and k+1 G -EQs for a target polynomial of degree k. Suppose

that an SWFA representing f∗ has guard functions of polynomials of degree at most k.

Since the maximum degree of polynomials does not increase by linear transformation, we

haveM= E = k + 1.

Example 3. Let G div be the class of all guard functions g∶Z → F which partition the

integer set Z into finitely many intervals and assign an entity of F to each interval. That

is, g ∈ G div has a partition number l ∈ N, l borders a1, a2, . . . , al ∈ Z and l + 1 values

b0, b1, b2, . . . , bl ∈ F such that a1 < a2 < ⋅ ⋅ ⋅ < al and g(x) = bi if ai ≤ x < ai+1, assuming

that a0 = −∞ and al+1 =∞. Since identifying each border ai requires O(log �ai�) G -MQs,

to learn g requires in total O(∑l
i=1 log �ai�) G -MQs and O(l) G -EQs. Let L be the set of

all borders ai used in any of guard functions of an SWFA representing the target power

series. Then a linear combination of those guard functions produces the function h ∈ G div

with at most �L� borders. Such h requiresM= O(�L� log l̂) G -MQs and E = O(�L�) G -EQs

to learn, where l̂ =max{ �l� � l ∈ L}.

Example 4. We have shown that if G ⊆ F⌃ is learnable, the class G ′ of G -recognizable

series is also learnable. Here, we can consider SWFAs over G ′ ⊆ F⌃∗ , whose edges have

SWFAs over G as representations of guard functions. In this way, one can recursively

obtain learnable classes of more complex formal power series.

32

4.4 Experiments

x
2 � 5.01.0 0.0

2.0 4.0

2.0
x � 1.0

3.0x
2

1.0 0.0

2.0 4.0

if x � 0 : �1.0

else : 1.0

if x � �5 : 5.0

else : 4.0

if x � 1 : 1.0

else : �1.0

if x � 3 : �2.0

else : 3.0

(a) G poly (b) G div

Figure 4.1: Examples of target SWFAs for experiments (a) An SWFA of G poly with k = 2
and n = 2. (b) An SWFA of G div with the partition number p = 1 and n = 2.

4.4 Experiments

Theoretical worst-case query complexity and empirical performance are often di↵erent.

In this section, we conduct some experiments to evaluate the empirical performance of

our proposed algorithm.

4.4.1 Setting

We chose G poly shown in Example 2 and G div in Example 3.

We generated learning target G -recognizable power series using SWFAs with G . Figure

4.1 shows examples of such target SWFAs. We randomly chose initial vector, final vector,

polynomial coe�cients and weight in each partition of the target SWFA from integers in

[−100,100].

The answer to a membership query is the output value of the target SWFA. The answer

to an equivalence query is computed as in Section 3.4. To find counterexample, we input

randomly generated strings up to length 20 to both the target SWFA and the hypothesis.

The counterexample is the first string that the target SWFA and the hypothesis output

di↵erent values.

We used memorization to suppress to ask same membership queries. We used linear

search to find a prefix that satisfies equations (4.1) and (4.2). This makes worse the worst

query complexity but practically works better than binary search.

For G poly, we conducted experiments for degrees of polynomials k ∈ {1,2}. We used

33

4.4 Experiments

(a) EQ (b) MQ

Figure 4.2: The practical performance of the proposed algorithm for G poly. The number
of (a) EQs and (b) MQs.

integers in [−32768,32767] as ⌃. We measured the number of queries asked by our

algorithm for the number of states n in [1,20]. To learn guard functions, we used a

simple polynomial curve fitting algorithm as ⇤. The query complexity is k + 1 for both of

G -MQs and G -EQs.

For G div, we fixed the partition number l = 1. That is, the input space is split by a

boundary and has two divisions with di↵erent weights. We used integers in [−32,31] as

⌃. We used n in [1,10] since n > 10 requires too long computation time. To learn guard

functions, we used a dicision-tree based algorithm. The query complexity is O(�L� log l̂)

for both of G -MQs and G -EQs. Because of implementation reasons, this is worse than

the one shown in Example 3 by log l̂ for G -EQs.

We used rational numbers as the weight space. This allows us to avoid the error

accumulation problem that frequently appears in the context of learning sequential data.

To maintain this feature while learning, we used fractions for weights and polynomial

coe�cients in the hypothesis. We implemented our algorithm in Python, and such a

rational computation is realized by the python library SymPy [21].

34

10000
k=l
k=2

8000

8
:,:

6000 'o

1l

~
4000 .

F

2000

1 2 3 4 5 6 7 8 9 W 11 U UM 15 16 17 18 ~ 20 1 2 3 4 5 6 7 8 9 W 11 U 13 14 BM 17 18 ~ 20

4.4 Experiments

(a) EQ (b) MQ

Figure 4.3: The practical performance of the proposed algorithm for G div. The number
of (a) EQs and (b) MQs.

4.4.2 Results

We conducted each experiment 10 times. Figures 4.2 and Figure 4.3 show the average

numbers of EQs and MQs raised by our algorithm for each n with standard deviation for

G poly and G div, respectively. We observed that the number of queries of our algorithm is

quite stable for G poly, thus standard deviation is too small to be apparent. Both results

shows that when compared to the theoretical query complexity in Table 4.1, the practical

performances are much better. Especially, the number of EQs looks almost linear in n,

despite that the worst-case complexity is cubic in n. The result of G poly in Figure 4.2

shows that our algorithm works well for large alphabet size.

4.4.3 Discussion

In this section, we discuss the reason of good empirical performance of our algorithm.

We monitored the behavior of the proposed algorithm during experiments and observed a

kind of “counterexample sharing” phenomenon. Our algorithm finds some input symbol

x in Line 1 of Algorithm 5 as a candidate of a counterexample for instances of ⇤. In the

worst case, this x is a counterexample for only one instance of ⇤. However, in practice,

we observed that picked symbol x worked as counterexamples for many instances of ⇤.

In such a case, our algorithm returns this x to all instances of ⇤ as in Line 7 of Algorithm

35

7000
200

6000

~ 150 0 5000
:,:

0 0

I iii 4000

~ 100 i . V 3000
F F

2000
so

1000

10 10

4.4 Experiments

5. We call this phenomenon “counterexample sharing”.

“Counterexample sharing” can explain the reason for linear dependence in n of EQ

complexity. In the worst case complexity, EQ complexity depends on cubic in n. n2 in

this EQ complexity is raised from the number of instances of ⇤. That is, our algorithm

requires n2 EQs to answer a G -EQ from each instance of ⇤ since the number of instances

is n2. When “counterexample sharing” occurs, our algorithm can answer G -EQs from

many instances of ⇤ by only one EQ. This may suppress the EQ complexity by at most

n2 scale and bring the linear dependency in experiments.

36

Chapter 5

Spectral Learning of Symbolic

Weighted Finite Automata

5.1 Problem Setup

In the previous chapter, we focused on query learning of SWFAs, which can be regarded

as a kind of exact learning. On the other hand, approximate learning of SWFAs is also

an interesting research direction. Actually, in the field of WFAs, approximate learning

is one of the central research areas [4, 5], and there is a well-known algorithm called

spectral learning algorithm. In the typical setting of spectral learning, we have a dataset

Z = {(w1, y1), (w2, y2), . . . , (wm, ym)}, where wi ∈ ⌃∗ and yi ∈ R, for all i ∈ [1,m]. Note

that we only consider the set of real numbers R as output spaces for the singular value

decomposition (SVD), which will be required later. Our goal is to learn a power series

f ∈ R⌃∗ that explains relationship between wi and yi. That is, we aim to learn f which

minimizes the error ∑1≤i≤m(f(wi) − yi)
2. As before, we assume this relationship can be

represented by a G -recognizable power series for some known G . We assume that a mask

(P,S) where P,S ⊆ ⌃∗ and a set of symbols � ⊆ ⌃ are given as hyperparameters. In

addition, we assume ✏ ∈ P and ✏ ∈ S. Let �✏ = � ∪ {✏}. Let Px = {px � p ∈ P} for some

37

5.2 Spectral Learning Algorithm

x ∈ �✏ and P�✏ = �x∈�✏ Px. Given the dataset, we can set the values of a matrix H(P�✏,S)

by H(P�✏,S)[p, s] = yi if ps = wi. Obviously, this matrix may contain missing values if

ps ≠ wi for any i ∈ [1,m]. How to deal with this missing value problem will be discussed

later. After properly processing missing value, we can construct an SWFA representing

f from this matrix by the spectral learning algorithm as in the next section.

5.2 Spectral Learning Algorithm

In this section, we describe an algorithm to construct an SWFA from H(P�✏,S). At this

time, we assume that this matrix does not contain any missing value. Although we can use

the construction in Definition 3.16, this construction have some problems in the setting

of spectral learning. First, Definition 3.16 is well-defined only if (P,S) is a non-singular

mask. In the query learning algorithm, it is not a problem since our proposed algorithm

can extend (P,S) while keeping it non-singular. However, for spectral learning, this

assumption introduces an additional limitation for given hyperparameters. The second

problem of Definition 3.16 is that this construction may produce an SWFA with too many

states. Definition 3.16 constructs an SWFA with �P � = rank(H(P,S)) states. However, in

the setting of approximate learning, noise in the dataset may often make a matrix full-

rank regardless of the actual rank of the matrix. Therefore, the rank information of a

matrix may be unhelpful. Because of these problems, we need a new way to construct

an SWFA from H(P�✏,S). We specify the number of states n and define the constructed

SWFA as the following definition.

Definition 5.1. For a mask (P,S) and an integer n, let U ∈ RP×n and V ∈ RS×n be

orthogonal matrices, respectively. Let D ∈ Rn×n be a diagonal matrix containing positive

values for diagonal elements. The SWFA based on these matrices is defined to be A(P,S) =

(G ,Q, �↵, ��,�), where Q = {1,2, . . . , n}, �↵� = H({✏},S)V , �� = D−1U�H(P,{✏}) and �x =

D−1U�H(P,x,S)V for all x ∈ ⌃.

38

5.2 Spectral Learning Algorithm

The famous spectral learning algorithm utilizes the Singular Value Decomposition

(SVD) such as H(P,S) ≈ UDV � as matrices used in Definition 5.1 [4, 5]. When the

given mask (P,S) is a basis and this decomposition reconstructs H(P,S) perfectly, the

constructed SWFA A(P,S) correctly represents G -recognizable power series f . In addition,

all guard functions in � of A(P,S) are in G .

Proposition 5.2. Let (P,S) be a basis. Let the SVD perfectly reconstruct H(P,S) as

H(P,S) = UDV �. Then, A(P,S) = (G ,Q, �↵, ��,�) correctly represents f . Moreover, all

guard functions in � of A(P,S) are in G .

Proof: By Theorem 3.15, there is an SWFA A′ = (G ,Q′, �↵′, ��′,�′) with n states repre-

senting f , i.e., f(w) = �↵′��′w ��
′ for all w ∈ ⌃∗. Define matrices UP ∈ F

P×Q′ and VS ∈ F
Q′×S

by UP [p, ⋅] = �↵
′T�′p for all p ∈ P and VS[⋅, s] = �′s ��

′ for all s ∈ S, respectively. Then

we have H(P,S) = UPVS and H(P,x,S) = UP�′xVS for x ∈ ⌃. From the definition of A(P,S),

�x = D
−1U�H(P,x,S)V = D−1U�UP�′xVSV . Note that H(P,S) is non-singular since we as-

sume H(P,S) = UDV �. Using this fact, we find VSV D−1U�UP = VSH−1(P,S)UP = I. Thus,

we can extend �x = D
−1U�UP�′xVSV to strings w ∈ ⌃∗ as �w = D

−1U�UP�′wVSV . Since

H({✏},S) = �↵′�VS and H(P,{✏}) = UP
��′, we have �↵� = �↵′�VSV and �� = D−1U�UP

��′. There-

fore, �↵��w
�� = (�↵′�VSV)(D

−1U�UP�′wVSV)(D
−1U�UP

��′) = �↵′�I�′wI ��
′ = �↵′��′w ��

′ = f(w).

Additionally, �x = D
−1U�UP�′xVSV shows that every guard function in � can be repre-

sented by a linear transformation of those in �′. Thus, all guard functions in � are in G

by Assumption 1.

Definition 5.1 requires the transition relation � satisfies �x = D
−1U�H(P,x,S)V for all

x ∈ ⌃. In the spectral learning of WFAs, all we need is to compute matrices �x for

all x ∈ ⌃ following the definition. On the other hand, for SWFAs, we need to prepare

guard functions in �. That is, the additional procedure is required to learn such guard

functions. Let�t
x =D

−1U�H(P,x,S)V for x ∈ �. We assume a supervised learning algorithm

� to learn guard functions in G from a dataset. The set of pairs {(x,�t
x[i, j]) � x ∈ �} can

be regarded as the dataset for a guard function at i, j ∈ [1, n]. Then, for all i, j ∈ [1, n], we

39

■

5.3 Missing Value Completion

utilize � and learn a guard function which minimizes ∑x∈�(�[i, j](x)−�t
x[i, j])

2 . By this

modification, the computation cost of this algorithm no longer depends on the alphabet

size. However, su�cient generalization of learned guard functions is required to work well

for all x ∈ ⌃, beyond x ∈ �.

The overall procedure of spectral learning of SWFAs is shown below. Missing value

completion at Lines 2-5 will be explained in the next section.

Algorithm 6: spectral learning of SWFAs

Input: a dataset Z, a mask (P,S), a set of symbols �, an integer n, a supervised
learning algorithm �

Output: an SWFA A
1 initialize H(P�✏,S) ← O ;
2 if the target power series is a probability distribution then
3 H(P�✏,S)[w] =

1
�Z � ∑w∈Z I[wi = w]

4 else
5 H(P�✏,S) = argmin

H(P�✏,S)∈H(P�✏,S)
Ll,⇢,⌧(H(P�✏,S));

6 compute the best rank n approximation of H(P,S) ≈ UDV � by the SVD ;

7 �↵� =H({✏},S)V ; �� =D−1U�H(P,{✏}); �t
x =D

−1U�H(P,x,S)V for all x ∈ � ;
8 determine functions in � by � with a dataset {(x,�t

x[i, j]) � x ∈ �}, ∀i, j ∈ [1, n];

9 return A = (G ,Q = {1,2, . . . , n}, �↵, ��,�);

5.3 Missing Value Completion

When a matrix H(P�✏,S) contains missing values, we need to complement them before

applying the construction in Definition 5.1.

5.3.1 Learning Probability Distribution

There is a trivial completion strategy for the problem learning probability distribu-

tion over strings. Let p(w) be a probability distribution over strings and a dataset

Z = (w1, w2, . . . , wm), where wi ∼ p(w) for all i ∈ [1,m]. Here, we aim to learn an

SWFA representing p(w). For this, the natural estimate of output value yi for the input

40

5.3 Missing Value Completion

string wi is the sample mean yi =
1
�Z � ∑w∈Z I[wi = w], where I is the identity function. For a

given mask (P,S) and a set of symbols �, we substitute values inH(P�✏,S) by this esimated

probability (Line 3 of Algorithm 6). Most importantly, the sample mean 1
�Z � ∑w∈Z I[ŵ = w]

is 0 for ŵ ∉ Z, and this is a natural estimate for strings that never appeared in the dataset.

Thus, we do not need an explicit algorithm to complement missing values.

5.3.2 Learning General Power Series

In general, we need to use a matrix completion algorithm to deal with the missing value

problem. Then, we consider to apply a matrix completion algorithm to H(P�✏,S). Now,

we introduce a simple algorithm adopted in [5]. Note that H(P�✏,S)[p, s] =H(P�✏,S)[p
′, s′]

if ps = p′s′ because of its definition. Therefore, this is a constrained matrix completion

problem. Let

H(P�✏,S) = {H(P�✏,S) ∈ RP�✏×S � ∀p, p
′ ∈ P�✏,∀s, s′ ∈ S, ps = p

′
s
′ ⇒H(P�✏,S)[p, s] =H(P�✏,S)[p′, s′]}.

H(P�✏,S) represents the set of matrices which satisfies the constraint explained above.

This set is convex because it is a subset of a convex space defined by equality constraints.

One typical method for such a problem is to define a convex loss function and optimize

it by the gradient descent method.

Let Z̃ be the subsample of Z by examples (w, y) where w = ps for some p ∈ P�✏ and

s ∈ S. Let H(P�✏,S)[w] be H(P�✏,S)[p, s] such that w = ps. Balle and Mohri [5] adopts loss

function with a norm regularization as below,

Ll,⇢,⌧(H(P�✏,S)) =
1

Z̃
�

(w,y)∈Z̃

l(H(P�✏,S)[w] − y) + ⌧⇢(H(P�✏,S)) (5.1)

where l is some distance function (e.g. mean squared error), ⇢ is some matrix norm, and

⌧ is the weight for the term of the matrix norm. The first term of Equation (5.1) brings

the values of the matrix in which the data exists closer to the target values in the dataset.

41

5.4 Experiments

When combined with the second term regularizing the matrix norm, optimization over

this loss function is expected to complement missing values by plausible values. One

typical choice of ⇢ is the Frobenius norm, defined as the square root of the sum of square

values in the matrix.

�A�F =

�

�
i,j

A[i, j]2.

This norm suppresses large values in the matrix, which is typical regularization in the

machine learning context. In addition, this norm brings missing values closer to 0.

Another choice of ⇢ is the nuclear norm, defined as the sum of singular values of the

matrix.

�A�∗ =�
i

di(A)

where di(A) is the i-th singular value of the matrix A. The minimization of this norm

is known to reduce the rank of the matrix [14]. This is conceptually plausible since a

smaller rank means an SWFA with fewer states because of Theorem 3.15. That is, this

regularization finally leads a simpler hypothesis.

We specifiy l, ⇢, and ⌧ as hyperparameters and complement missing values by finding

H(P�✏,S) which minimizes Ll,⇢,⌧ in H(P�✏,S) (Line 5 of Algorithm 6).

5.4 Experiments

We conducted experiments to evaluate the performance of our spectral learning algorithm

for SWFAs. The purpose of the experiments is to answer the following questions.

• Q1: Do SWFAs trained by our algorithm perform well compared to WFAs? Espe-

cially, does the guard function class G of SWFAs limit performance?

• Q2: Does our algorithm work well with small � ⊆ ⌃, that is, fewer data?

• Q3: Does our algorithm work well when there are missing values?

42

5.4 Experiments

We designed toy problems to answer these questions. We prepared randomly initialized

recurrent neural networks (RNN) as teachers and approximated them using the spectral

learning algorithm. This is an idealized problem setup since we can get a response to

any input by asking the teacher, but the algorithm we experimented here can be used for

more di�cult setting, such as only given information is limited amount of data.

5.4.1 Common Setting

We adopted long short-term memory (LSTM) [17] and gated recurrent unit (GRU) [10]

as the teacher RNNs. We fixed the number of hidden states to 100 and the number of

layers to 1. All parameters in the teacher RNNs are randomly initialized by the normal

distribution N(0,1).

Throughout the experiments, we used G poly as the guard function class. We used

the simple least squares method as the supervised learning algorithm �. We created

alphabet ⌃ such as �⌃� = 1024 by dividing [−10,10] at regular intervals. We fixed the sizes

of hyperparameters P and S to 10, and determined them by randomly sampling from

strings up to length 2. For n that specifies the number of states of the finally generated

automata, we tried n ∈ {1,2, . . . ,8} and chose the best parameter for each experiment.

We randomly generated 1000 strings up to length 10 and computed the output of the

teacher RNN for them. We used this set of pairs as the test set to evaluate and compare

the performance of the proposed algorithm. We adopted root mean squared error (RMSE)
�

1
Ẑ
∑(w,y)∈Ẑ(fA(w) − y)

2 as the evaluation metric, where Ẑ is the test set and fA is the

power series represented by the learned automaton A. We conducted each experiment 10

times with di↵erent teacher RNNs and (P,S), and compute the mean of the results.

5.4.2 Q1: Comparison to WFAs

This experiment examines the performance of our spectral learning algorithm for SWFAs

compared to the one for WFAs. Here, we consider the setting with no missing values. For

43

5.4 Experiments

Table 5.1: RMSE of the learned WFA and SWFA.
LSTM GRU #Params

WFA 0.0655 0.1187 36876
SWFA (k = 1) 0.1600 0.2380 84
SWFA (k = 2) 0.0791 0.1380 120
SWFA (k = 3) 0.0669 0.1196 156
SWFA (k = 4) 0.0657 0.1188 192
SWFA (k = 5) 0.0655 0.1187 228

a fair comparison to WFAs, we set � = ⌃. We filled the values in the matrix H(P⌃,S) by

asking to the teacher RNNs and constructed WFAs and SWFAs by the spectral learning

algorithm. Note that the spectral learning algorithm for WFAs is almost the same as

for SWFAs except for skipping on Line 8 of Algorithm 6. To examine the e↵ect of the

limitation by the guard function class, we conducted experiments with the di↵erent degree

of polynomial k of G poly.

We show results of WFAs and SWFAs with k ∈ {1,2,3,4,5} for LSTM and GRU in

Table 5.1. In this experiment, the best number of states is n = 6 for all cases. The results

of SWFAs are steadily improving as k increases and expressiveness improves. When k = 5,

SWFAs achieve almost the same results as WFAs for both teacher RNNs. We also show

the number of total parameters in Table 5.1. It can be seen that SWFAs achieve almost

the same RMSE with a much smaller number of parameters. This di↵erence comes from

the fact that the general form of the number of parameters of SWFAs is 2n + (k + 1)n2

and that of WFAs is 2n + �⌃�n2.

5.4.3 Q2: Smaller �

This experiment examines the performance of our spectral learning algorithm for SWFAs

with smaller �, that is, fewer data. As before, we consider the setting with no missing

values. We conducted experiments with ��� = 4,8, . . . ,1024. We determined � by ran-

domly sampling a specified number of symbols from ⌃. From the findings of the previous

experiment, we used SWFAs with G poly with k = 3, which showed enough results with

44

5.4 Experiments

(a) LSTM (b) GRU

Figure 5.1: RMSE with di↵erent size of �

fewer parameters.

We show results for (a) LSTM and (b) GRU in Figure 5.1. In this experiment, the

best number of states is n = 6 for all cases. The results show that our algorithm works

well until ��� = 25 = 32 or ��� = 26 = 64. This is much data e�cient compared to WFAs

which always requires � = ⌃, that is, ��� = 1024 to avoid additional matrix completion

procedure. Note that actual required amount of data is �P � × �S� = 100 times to fill the

matrix H(P�✏,S).

5.4.4 Q3: Experiments with Missing Values

This experiment examines the performance of our algorithm under the problem setup

containing missing values. We consider the setting that we lost information from the

teacher RNN with some “missing probability”. We changed the missing probability from

0 to 0.1 in 0.01 increments. In this experiment, we fixed ��� = 32. We used the matrix

completion procedure explained in Section 5.4. For optimization, we adopted the gradient

descent algorithm with learning rate 0.1 and ⌧ = 0.0001. We determined these values from

the results of some preliminary experiments. We tried both of the Frobenius norm and

the nuclear norm to compare results.

We show results for (a) LSTM and (b) GRU in Figure 5.2. In this experiment, the

45

0.105

0.100 0.228

0.095 0.226

~ 0.090 UJ

~ ~ 0.224

"' "'
0.085 ~ +

0.222

0.080 ~ ~

0.220

0.075

l2 2' 2' 2' 2" 2' 2" 2• 21•

IOI

5.4 Experiments

(b) GRU(a) LSTM

Figure 5.2: RMSE with the di↵erent missing probability

best number of states is n = 5 for all cases. It can be seen that RMSE is considerably

larger than when there are no missing values, but the completion procedure works at some

extent. Both norms show similar results for LSTM, but the nuclear norm works better

for GRU. Combining the results in the previous section, we can see that our algorithm

can learn SWFAs with a considerably limited amount of data. However, we guess that

some additional devices will be required to work well for the problem that only a static

dataset is available.

46

0.6 -- Nuclear norm
0.25 Frobenius norm

0.5

0.20

LU LU 0.4

"' "' ::[
0.15 ::[a: a:

0.3

0.10

0.2

0.05
0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10

Missing Probability Missing Probability

Chapter 6

Conclusion and Future Work

We considered symbolic weighted finite automata (SWFAs), which unify SFAs and WFAs.

SWFAs can deal with a possibly infinite alphabet e�ciently taking advantage of the

structure of the alphabet. To clarify the representation range of SWFAs, we defined G -

rational power series and prove the Kleene–Schützenberger theorem for SWFAs. We also

confirmed that the minimization and equivalence checking for SWFAs can be achieved

e�ciently. We proposed a new query learning algorithm for SWFAs by combining the

ones for SFAs and WFAs with a correctness proof and an upper bound for the number

of queries. We conducted some experiments to evaluate the practical performance of our

algorithm and observed much better performance than the worst-case complexity. As

another learning manner, we also proposed a spectral learning algorithm for SWFAs by

extending an existing one for WFAs. We conducted some experiments and observed that

our algorithm learns well-worked SWFAs with much fewer parameters from fewer data

compared to WFAs.

There are many potential applications of our algorithms as extensions of applications

using WFAs. As we covered in the experiments in Section 5.4, an interesting application is

extracting an SWFA from a recurrent neural network (RNN) to obtain a faster surrogate.

A prior work [23] uses WFAs for this purpose, but the range of applicable RNNs is limited

by the size of the alphabet. SWFAs and our algorithms are suitable to extract automata

47

from RNNs over a large or infinite alphabet. It is useful since RNNs with real-valued

inputs are very common for time series analysis.

Since our experiments are currently limited to the range of toy problems, one of the

important future works is to conduct more realistic experiments with a view of applica-

tions. As another point of view, some paper investigates theoretical nature of WFAs and

research about the upper bound of generalization error from a point of stability analy-

sis [5] or Rademacher complexity [7]. Extending such theoretical results to the case of

SWFAs is a hopeful research direction.

48

References

[1] Rajeev Alur, Konstantinos Mamouras, and Caleb Stanford. Automata-based stream

processing. In 44th International Colloquium on Automata, Languages, and Pro-

gramming, ICALP 2017, volume 80 of LIPIcs, pages 112:1–112:15, 2017.

[2] Dana Angluin. Learning regular sets from queries and counterexamples. Information

and Computation, 75(2):87–106, 1987.

[3] George Argyros and Loris D’Antoni. The learnability of symbolic automata. In 30th

International Conference on Computer Aided Verification, CAV 2018, pages 427–445,

2018.

[4] Borja Balle, Xavier Carreras, Franco M. Luque, and Ariadna Quattoni. Spectral

learning of weighted automata - A forward-backward perspective. Machine Learning,

96(1-2):33–63, 2014.

[5] Borja Balle and Mehryar Mohri. Spectral learning of general weighted automata via

constrained matrix completion. In 26th Annual Conference on Neural Information

Processing Systems, NeurIPS 2012, pages 2168–2176, 2012.

[6] Borja Balle and Mehryar Mohri. Learning weighted automata. In 6th International

Conference on Algebraic Informatics, CAI 2015, pages 1–21, 2015.

49

REFERENCES

[7] Borja Balle and Mehryar Mohri. On the rademacher complexity of weighted au-

tomata. In 26th International Conference of Algorithmic Learning Theory, ALT

2015, pages 179–193, 2015.

[8] Francesco Bergadano and Stefano Varricchio. Learning behaviors of automata from

multiplicity and equivalence queries. SIAM Journal on Computing, 25(6):1268–1280,

1996.

[9] Laurence Bisht, Nader H. Bshouty, and Hanna Mazzawi. On optimal learning algo-

rithms for multiplicity automata. In 19th Annual Conference on Learning Theory,

COLT 2006, pages 184–198, 2006.

[10] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations

using RNN encoder-decoder for statistical machine translation. In Proceedings of the

2014 Conference on Empirical Methods in Natural Language Processing, EMNLP

2014, pages 1724–1734, 2014.

[11] Kaizaburo Chubachi, Diptarama Hendrian, Ryo Yoshinaka, and Ayumi Shinohara.

Query learning algorithm for residual symbolic finite automata. In Proceedings Tenth

International Symposium on Games, Automata, Logics, and Formal Verification,

GandALF 2019, pages 140–153, 2019.

[12] Corinna Cortes, Mehryar Mohri, and Ashish Rastogi. Lp distance and equivalence of

probabilistic automata. International Journal of Foundations of Computer Science,

18(4):761–779, 2007.

[13] Samuel Drews and Loris D’Antoni. Learning symbolic automata. In 23rd Inter-

national Conference on Tools and Algorithms for the Construction and Analysis of

Systems, TACAS 2017, pages 173–189, 2017.

50

REFERENCES

[14] Maryam Fazel. Matrix rank minimization with applications. PhD thesis, Stanford

University, 2002.

[15] Michel Fliess. Matrices de Hankel. Journal de Mathématiques Pures et Appliquées,

53, 1974.

[16] Luisa Herrmann and Heiko Vogler. Weighted symbolic automata with data storage.

In 20th International Conference on Developments in Language Theory , DLT 2016,

volume 9840 of Lecture Notes in Computer Science, pages 203–215, 2016.

[17] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Com-

putation, 9(8):1735–1780, 1997.

[18] Stefan Jaksic, Ezio Bartocci, Radu Grosu, Thang Nguyen, and Dejan Nickovic. Quan-

titative monitoring of STL with edit distance. Formal Methods in System Design,

53(1):83–112, 2018.

[19] Stefan Jaksic, Ezio Bartocci, Radu Grosu, and Dejan Nickovic. An algebraic frame-

work for runtime verification. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 37(11):2233–2243, 2018.

[20] Stephen Cole Kleene. Representation of events in nerve nets and finite automata.

Automata Studies, Annals of Mathematics Studies, 34:3–42, 1956.

[21] Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Čert́ık, Sergey B.

Kirpichev, Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K. Moore, Sar-

taj Singh, Thilina Rathnayake, Sean Vig, Brian E. Granger, Richard P. Muller,

Francesco Bonazzi, Harsh Gupta, Shivam Vats, Fredrik Johansson, Fabian Pedregosa,

Matthew J. Curry, Andy R. Terrel, Štěpán Roučka, Ashutosh Saboo, Isuru Fernando,

Sumith Kulal, Robert Cimrman, and Anthony Scopatz. Sympy: symbolic computing

in python. PeerJ Computer Science, 3:e103, January 2017.

51

REFERENCES

[22] Anil Nerode. Linear automaton transformations. Proceedings of the American Math-

ematical Society, 9:541–544, 1958.

[23] Takamasa Okudono, Masaki Waga, Taro Sekiyama, and Ichiro Hasuo. Weighted

automata extraction from recurrent neural networks via regression on state spaces.

In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, pages

5306–5314, 2020.

[24] Ronald L. Rivest and Robert E. Schapire. Inference of finite automata using homing

sequences. Information and Computation, 103(2):299–347, 1993.

[25] Marcel Paul Schützenberger. On the definition of a family of automata. Information

and Control, 4(2-3):245–270, 1961.

[26] Masaki Waga. Online quantitative timed pattern matching with semiring-valued

weighted automata. In 17th International Conference on Formal Modeling and Anal-

ysis of Timed Systems, FORMATS 2019, volume 11750 of Lecture Notes in Computer

Science, pages 3–22, 2019.

52

Acknowledgements

I would like to express my sincere gratitude to Prof. Ayumi Shinohara, Prof. Ryo Yoshi-

naka, and Prof. Diptarama Hendrian for their strong support throughout my research.

I wish to thank the members of my thesis committee Prof. Kentaro Inui and Prof.

Xiao Zhou for their valuable advice.

I am also grateful to my fellow students and family for supporting me throughout

writing this thesis and my life in general.

53

Publications

1. Kaito Suzuki, Diptarama Hendrian, Ryo Yoshinaka, and Ayumi Shinohara. Query

Learning Algorithm for Symbolic Weighted Finite Automata. In the 15th Interna-

tional Conference on Grammatical Inference, ICGI 2020/21, Volume 153 of Pro-

ceedings of Machine Learning Research, pp.202-216, 2021.

2. Kaito Suzuki, Diptarama Hendrian, Ryo Yoshinaka, and Ayumi Shinohara. Query

Learning of Symbolic Weighted Finite Automata. In the 14th Annual Meeting of

the Asian Association for Algorithms and Computation, AAAC 2021, 2021.

54

