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Chapter 1

Introduction

1.1 Background

The DFT is a powerful tool to calculate the electronic structures of molecules and
solids. Originally, it was formulated to predict the energy of the systems. However,
it is now recognized that the band structures and wavefunctions contain a lot of in-
formation to predict the physical properties such as transport, optical and magnetic
properties. Accompanied by the development of computers, a lot of predictive studies
based on the DFT including the high-throughput calculations have been performed. For
example, there are several databases of DFT calculated band structures and physical
properties such as Materials Project [1], Automatic Flow (AFLOW) [2], and the Open
Quantum Materials Database (OQMD) [3, 4]. Some high throughput calculations lead
to the experimental findings of functional materials such as discoveries of new nitride
semiconductors [5] and iron-based transverse thermoelectric materials [6].

On the other hand, for the application point of view, substitutional alloys are im-
portant candidates for materials design. In fact, many substitutional alloys show a
fascinating richness in their physical properties depending on their composition. For
example, in spintronics, the spin Hall angle can be tuned by alloying [7]. Another
example is the possibility to induce magnetism in semiconductors by the addition of
impurities [8]. Thus, the development of methods to calculate the alloys is an important
problem.

The methods to calculate the electronic structure of substitutional alloy systems
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CHAPTER 1. INTRODUCTION

have been developed since the 1930s [9, 10, 11]. The simplest approach implemented first
for calculations on alloys is the virtual crystal approximation, in which the concentration
average of the potential is placed on each site of the lattice [12, 13]. Although the
VCA seems to be a good approximation for metals having a simple free-electron-like
electronic structure such as Na, K, and Al, it completely fails for the transition-metal
alloys. This shortcoming of the VCA has been removed by Korringa [14] and Beeby
[15] by introducing the so-called average t-matrix approximation (ATA). Within this
approach, the concentration average of the single-site scattering matrix, the t-matrix,
is used instead of the potential to consider component-projected properties. However,
the ATA still has formal problems sometimes leading to unphysical results [9]. For
homogeneous random alloys, the most sophisticated single-site method solving these
problems is provided by the coherent potential approximation (CPA). The CPA is a
mean-filed theory treating alloys by introducing an effective medium defined by its
average scattering properties first proposed by Soven [16] and Taylor [17]. Formulating
the CPA within the framework of multiple scattering or KKR formalism implies that
embedding one of the alloy components into the CPA should lead to no additional
scattering on average. Accordingly, unlike for the VCA and ATA methods, one has to
determine the effective medium self-consistently for the CPA calculations.

As the CPA can be easily applied on the basis of electronic structure methods work-
ing with the Green’s function for each atomic site, it is usually formulated by a combina-
tion with the tight-binding (TB) method or the KKR Green’s function method [18, 19],
which is a well-established first-principles electronic structure calculation method. Es-
pecially using the KKR-CPA method [20, 21], quite a number of physical properties
of alloy systems have been studied, such as their magnetic structure properties of di-
lute magnetic semiconductors [22], exchange coupling, and the corresponding magnetic
transition temperature [23, 24], as well as transport properties. In Ref. [25], Lowitzer
et al. performed the calculation of both intrinsic and extrinsic anomalous Hall con-
ductivity in fcc Fe-Pd and Ni-Pd alloys. Their results of the conductivity are in good
agreement with the experimental data for these alloys. Lowitzer et al. also performed
the extrinsic and intrinsic contributions of the spin Hall conductivity calculations in
Au-Pt and Ag-Pt alloys using the KKR-CPA methods [26]. They exploited Kubo-
Středa equation which is the Kubo formula with independent electron approximation
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1.1. BACKGROUND

Figure 1.1: (a) Calculated and (b) experimental saturation magnetization of Fe-, Ni-
and Co-based alloys vs. average electron number. Adapted from Ref. [39].

and the assumption of T = 0 for the calculation of these conductivities. There are
several other studies on transport properties using KKR-CPA methods [27, 28, 29]. For
example, Ref. [30] compare skew scattering terms of the anomalous Hall conductivity
calculated by three different implementations using Kubo-Středa or Boltzmann equa-
tion, and atomic sphere approximation or full-potential implementation. The calculated
results of the skew scattering agreed well even though the calculation methods are dif-
ferent. Another successful example of the KKR-CPA method is the calculation of the
magnetic moment in 3d transition-metal alloys. Figure 1.1(a) shows KKR-CPA results
of the magnetic moment calculated by Akai [39]. The magnetic moments obtained by
the KKR-CPA method reproduce the saturation magnetization given by experiments
[Fig. 1.1(b)] forming the well-known Slater-Pauling curve.

This situation is due to a characteristic feature of the KKR method. Unlike other
general first-principles calculation methods, such as the standard pseudopotential-based
methods or the linearized augmented plane wave (LAPW) method, the Green’s function
of the system is used already within the self-consistent field (SCF) calculation step when
performing KKR calculations. Furthermore, the KKR Green’s function is described
using the single-site t-matrix and scattering path operator as explained in Chapter 3.
Thus, it is easy to combine the KKR method with the CPA formalism, where the
effect of substitutional atoms should be treated as local potentials. So-called local force
method, which can calculate the exchange interactions in magnets by using the local
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CHAPTER 1. INTRODUCTION

spin rotations, also employ this advantage [31, 32, 33, 34, 35, 36, 37, 38].

The problem of the KKR calculations is that the physical quantities have been
studied only in a limited systems with particularly simple structures in the KKR-CPA
method. This is because the KKR calculations are computationally intensive and re-
quire some experience and knowledge to apply the method to complex crystal systems.
For example, atomic sphere approximation is a useful approximation in simple systems
while it sometimes fails for systems with low crystal symmetry, while full-potential cal-
culations require more computational costs and complicated implementations to obtain
physical quantities. To use the CPA calculations as a material design method for alloy
systems, there is a strong need for a simpler and easier way to calculate alloy systems.

In the field of first-principles calculations, the CPA is alternatively formulated on
the basis of the tight-binding linear muffin-tin orbital (TB-LMTO) method [40] as
well as the linear combination of atomic orbitals (LCAO) methods [41, 42]. The TB-
LMTO-CPA method is also applied for the calculation of the anomalous Hall [43, 44]
and spin Hall conductivities [45] using Kubo formula. In Ref. [45] the results they
obtained reproduce the calculations of the KKR-CPA methods quite well for Au-Pt
alloys. However, these are quite special calculation examples and there is no code
that can be used in general. A more versatile calculation method for applying CPA is
desired.

1.2 Purpose of the Thesis

In this thesis, we present an implementation of the CPA in Wannier representation to de-
velop an efficient and widely applicable calculation method for alloy systems while keep-
ing the accuracy for the prediction of physical properties that the KKR-CPA method
possesses. The reason for exploiting the Wannier representation is that we can con-
struct Wannier functions from any kind of first-principles calculation method if the
wave function is available, and set up a corresponding TB model from the obtained
Wannier functions. This means that we present a computational method for the elec-
tronic structure of random alloys that can be combined with any kind of first-principles
computational method. Moreover, we can substantially reduce the computational time
when using the Wannier formalism if it is successfully combined with the CPA as it

8



1.3. OUTLINE

can be performed independently from the SCF calculations done by first-principles cal-
culations. The Wannier functions are widely used to investigate physical properties
[46] such as the anomalous Hall effect [47], exchange coupling [48], transport properties
using the Boltzmann transport equation [49], electron-phonon couplings [50], and or-
bital magnetism [51]. Several open source codes have been developed to calculate the
topological properties of materials [52, 53].

However, only very few studies were done for alloy systems [54, 55]. One of the
reasons for this is that there is an ambiguity in the determination of the relative reference
values of the on-site potentials for the elements that form an alloy. Concerning this
problem, we propose a very simple method to set the reference values from the results
of some few supercell calculations. Despite the simplicity of this method, we show that
it works quite well for the construction of the CPA Green’s function within the Wannier
formalism.

In the following, we first describe the theoretical background of the calculation
methods such as the density functional theory and the methodology of the KKR Green’s
function methods. We also formulate the CPA in terms of the KKR method as well
as the Wannier representation. As examples for its application, we will show results
for the Bloch spectral function, the density of states (DOS), and the magnetic moment
in the Fe-based 3d transition-metal alloys, Fe-V, Fe-Co, Fe-Ni, and Fe-Cu in both the
Wannier-CPA and the KKR-CPA methods. Despite the rather simple formulation for
the Wannier-CPA method, these quantities obtained by this way reproduce quite well
the results obtained by the more demanding KKR-CPA method. For the Fe-Cr alloys
which have antiferromagnetism in Cr-rich region, we exploit the diatomic supercell and
discuss the magnetic transition using the KKR-CPA method.

1.3 Outline

This thesis consists of eight chapters. In Chapter 2 we present a brief summary of the
theoretical framework of the density functional theory (DFT), which provides the ab-
initio computational method for the electronic structure calculations of real materials.
This theory approximates the quantum many-body effects to the independent-particle
equations called the Kohn-Sham equations. We also describe the Kohn-Sham-Dirac
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CHAPTER 1. INTRODUCTION

equations, which are the relativistic extension of the Kohn-Sham equations. Chapter
3 is devoted to the KKR Green’s function method as one of the computational meth-
ods to numerically solve the Kohn-Sham or Kohn-Sham-Dirac equations. As the name
implies, we exploit the Green’s function to treat the multiple scattering in a crystal.
We overview this calculation methods without deriving individual formulas. The scat-
tering path operator and the structure constants we define in this chapter is used for
the discussion of the calculation of alloys. Chapter 4 presents the calculation methods
of the homogeneous random alloys. The only practical method for the calculation of
alloy systems is the coherent potential approximation (CPA), which is discussed later in
this chapter. However, we also mention other tools, virtual crystal approximation and
average t-matrix approximation, to describe the historical development of the methods
to treat alloys. At the end of this chapter, we focus on the application of the CPA
methods to the KKR Green’s function method and its numerical calculation methods
given by Mills. In Chapter 5, we describe how to implement the CPA in the Wannier
formalism. We present the definition of the Green’s function in the Wannier repre-
sentation as well as the algorithm for the CPA calculations. Chapter 6 provides the
application of the Wannier-CPA methods developed in the previous chapter to Fe-based
transition-metal alloys. To verify the performance of the CPA methods implemented
within the Wannier-CPA methods, we compared the Bloch spectral function, the den-
sity of states, and the magnetic moments calculated by the Wannier-CPA methods with
those of calculated by the KKR-CPA methods. In Chapter 7, we focus on the Fe-Cr
alloys to discuss the CPA calculations for antiferromagnets. Chapter 8 is the summary
of this thesis.
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Chapter 2

Density Functional Theory

In this chapter, we focus on the density functional theory (DFT). DFT is the ab-initio
or first-principles methods for the calculation of electronic structure. This means that
we would like to find a method to predict physical quantities for real materials without
experiments. When it is difficult to comprehensively verify the chemical and physical
properties by experiments, theoretical interpretation based on computational science
becomes an important issue. According to quantum mechanics, material properties can
be obtained by solving the quantum many-body Hamiltonian for the system of electrons
and nuclei

Ĥ = − ℏ2

2m

∑
i

∇2
ri
+

1

2

∑
i ̸=j

e2

|ri − rj|
−
∑
i,n

Zne
2

|ri −Rn|

−
∑
n

ℏ2

2Mn

∇2
Rn

+
1

2

∑
n̸=m

ZnZme
2

|Rn −Rm|
, (2.1)

where ri is the position of the i-th electron, Rn is the position of n-th nuclei, m is
the electron mass, e is the elementary charge, and Zn and Mn are charge and mass,
respectively, for n-th nuclei. To obtain the ground state properties of the real materials,
we have to solve the corresponding stationary Schrödinger equations

ĤΨp({r}, {R}) = EpΨp({r}, {R}) , (2.2)

where p is one of the quantum states having an energy eigenvalue Ep. However, it is
usually quite difficult to numerically solve this equation directly. Several computation
methods have been devised as an approach to this equation such as the configuration
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CHAPTER 2. DENSITY FUNCTIONAL THEORY

interaction (CI) method and the quantum Monte Carlo method. Here, as one of these
calculation methods, we describe the DFT, which requires relatively low computational
time. In this theory, the original many-body problem described by the Schrödinger
equation in Eq. (2.1) is replaced by an auxiliary independent-particle equation called
the Kohn-Sham equation. A number of methods are developed for numerically solving
the Kohn-Sham equation. As one of these calculation methods, we will focus on the
KKR Green’s function methods in next chapter.

2.1 Born-Oppenheimer Approximation

The first approximation to the Hamiltonian given by Eq. (2.1) was proposed in 1927
by Born and Oppenheimer [56] which is known as the Born-Oppenheimer or adiabatic
approximation. In the approximation the inverse of the nuclei mass 1/Mn is considered
small enough compared to the inverse of the electron mass 1/m. In other wards, elec-
trons are assumed to move much faster than nuclei. Therefore, we can treat nuclei as
stationary within the framework of the electron system. To confirm what is suggested
by the Born-Oppenheimer approximation we separate the contribution of nuclei from
the wavefunction

Ψp({r}, {R}) =
∑
q

χpq({R})Ψel
q ({r}, {R}) (2.3)

and substitute it into the the Schrödinger equation given by Eq. (2.2). According to
the Born-Oppenheimer approximation we can obtained the following two equations:[

− ℏ2

2m

∑
i

∇2
ri
− 1

2

∑
i ̸=j

e2

|ri − rj|
+
∑
i,n

Zne
2

|ri −Rn|

]
Ψel

q ({r}, {R}) = Eel
q Ψ

el
q ({r}, {R})

(2.4)[
−
∑
n

ℏ2

2Mn

∇2
Rn

+ Eel
q +

1

2

∑
n ̸=m

ZnZme
2

|Rn −Rm|

]
χpq({R}) = Epχpq({R}) (2.5)

Here, the first equation describes the Schrödinger equation only for the electron system.
In other wards, the Born-Oppenheimer approximation allows to handle the electrons
and nuclei motion separately. The Born-Oppenheimer approximation is applicable un-
less we deal with specific physical quantities such as the dispersion relation of phonons
with broken symmetry.
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2.2. HOHENBERG-KOHN THEOREM

2.2 Hohenberg-Kohn Theorem

According to the Born-Oppenheimer approximation, we can treat the electron system
separately as given in Eq. (2.4). The first attempt to solve the equation was given
by the Hartree mean-field method. The theory is then improved by Fock and Slater.
In the Hartree-Fock method, we approximate the wave function of the total electron
system based on the one-particle wave function ψi(r) as a Slater determinant

Ψel
q (r1, r2, · · · , rN) =

1√
N !

∣∣∣∣∣∣∣∣∣∣∣

ψ1(r1) ψ1(r2) · · · ψ1(rN)

ψ2(r1) ψ2(r2) · · · ψ2(rN)
...

... . . . ...
ψN(r1) ψN(r2) · · · ψN(rN)

∣∣∣∣∣∣∣∣∣∣∣
. (2.6)

Here, we omit the dependence of {R} for simplicity. Thereby, we can simplify the effect
of electron-electron interaction to that of mean-field[

− ℏ2

2m
∇2 + Vext(r) + e2

∫
dr′ n(r

′)

|r − r′|

]
ψi(r)

− e2
∑
j

∫
dr′ψ

∗
j (r

′)ψi(r
′)

|r − r′|
ψj(r) = εiψj(r) (2.7)

Hartree-Fock approximation is used in some research fields. However, it often gives
inaccurate physical quantities. For example, in a metal, the density of states of electrons
vanishes on the Fermi surface. Furthermore, it is also computationally expensive.

In Hartree-Fock approximation, the energy of the system is given as a functional of
one-particle wave function. On the contrary, another calculation method was suggested
by Kohn and Hohenberg in 1964 [57]. In their theory, the electrons are treated not
by the wave function of N electron system but by the density distribution function.
The Hohenberg-Kohn’s first theorem states that the electron density n(r) can be a
basic variable instead of N and Vext(r). They found that the external potential Vext(r)
is determined uniquely, except for a constant shift for energy, from the ground state
electron density. Since all the properties of the ground states are determined by N and
Vext(r), the theorem indicates that all electronic properties are determined from the
electron density n(r)

E[n] = T [n] + Vee[n] +

∫
drVext(r)n(r) , (2.8)
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CHAPTER 2. DENSITY FUNCTIONAL THEORY

where T [n] is the kinetic term and Vee[n] indicates all contributions of the electron-
electron interaction. Hohenberg-Kohn’s second theorem formulates a variational prin-
ciple for electron density not for wavefunction. That means there exists a functional
for the energy E[n] in terms of the density n(r) which has a minimal values when n(r)
is the ground state density

E0 = E[n0] ≤ E[n] , (2.9)

where n0(r) represents the ground state density and E0 is the ground state energy. In
theses theorems, they assumes that there exists at least one external potential vext(r)
for a given electron density n(r) where n(r) gives the ground state density. This
assumption is called the V -representability. However, this is not always the case. In
fact, there exists many electron densities even in a single particle system that cannot be
derived from the ground state wavefunction of any external potential. This condition
can be reduced to N -representability: given the electron density n(r) of a certain N-
electron system, there always exists a wave function of the N-electron systems that
reproduce this density n(r).

2.3 Kohn-Sham Equation

From the Hohenberg-Kohn theorem, we can derive the Kohn-Sham equations [58]. They
made an assumption that the exact ground state density can be expressed as the ground
state density of an auxiliary non-interacting particle system. Therefore, energy func-
tional E[n] can be expressed in terms of several contributions

E[n] = Ts[n] + VH [n] +

∫
d3r n(r)Vext(r) + Exc[n] , (2.10)

where the density of the auxiliary system is given by the sum of squares of the single
electron wavefunctions

n(r) =
∑
i

|ψi(r)|2 . (2.11)

The first term on the right side is the kinetic energy term of non-interacting electrons

Ts[n] =
ℏ2

2m

∑
i

∫
d3r |∇ψi(r)|2 . (2.12)
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2.4. KOHN-SHAM-DIRAC EQUATION

The second term is the Hartree energy which describes the classical Coulomb interaction
between electrons

VH [n] =
e2

2

∫
d3r

∫
d3r′

n(r)n(r′)

|r − r′|
. (2.13)

The third term describes the interaction between the electrons and external potentials.
The last term is called the exchange-correlation energy in which all the difficult many-
body terms are incorporated. Varying the wavefunction and applying the Hohenberg-
Kohn theorem, Kohn-Sham Schrödinger-like equations can be obtained[

− ℏ2

2m
∇2 + e2

∫
d3r′

n(r)

|r − r′|
+ Vext(r) + Vxc(r)

]
ψi(r) = εiψi(r) , (2.14)

where Vxc(r) is given by

Vxc(r) =
δExc

δn(r)
. (2.15)

All we have to do is to solve this equation self-consistently.

2.4 Kohn-Sham-Dirac Equation

The relativistic extension of the density functional theory was formulated in 1970s
by Rajagopal and Callaway [59] and Ramana and Rajagopal [60]. In the relativistic
formulation, four-vector current takes over the role of the electron density. Therefore,
the relativistic Hohenberg-Kohn theorem is changed so that the ground state energy
is a unique functional of the ground state of four-vector current. The corresponding
Kohn-Sham-Dirac equation is given as follows:

[
cα · (p− eAeff(r)) + βmc2 + Veff(r)

]
ψi(r) = εiψi(r) (2.16)

with

Veff(r) = Vext(r) + e2
∫

d3r′
n(r′)

|r − r′|
+

δExc

δn(r)
, (2.17)

Aeff(r) = Aext(r) +
e

c2

∫
d3r′

J(r′)

|r − r′|
+

1

e

δExc

δJ(r)
. (2.18)
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Here, α and β is the standard 4×4 Dirac matrix [see Sec. 3.2 for the specific expression]
and J(r) is given by

J(r) = c
∑
i

ψ†
i (r)αψi(r) . (2.19)

For the practical application, the four-vector current is split by the Gordon decompo-
sition. The Kohn-Sham-Dirac equation can be simplified as[

cα · p+ βmc2 + Veff(r) + βΣzBeff(r)
]
ψi(r) = εiψi(r) , (2.20)

with

Veff(r) = Vext(r) + e2
∫

d3r′
n(r)

|r − r′|
+
δExc[n(r),m(r)]

δn(r)
, (2.21)

Beff(r) = Bext(r) +
δExc[n(r),m(r)]

δm(r)
, (2.22)

where Bext(r) is the external magnetic filed and m(r) is the spin magnetic density

m(r) = c
∑
i

ψ†
i (r)βΣzψi(r) . (2.23)
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Chapter 3

KKR Green’s Function Method

The Korringa-Kohn-Rostoker (KKR) Green’s function method is one of the calculation
methods for solving the Kohn-Sham or Kohn-Sham-Dirac equations. It was introduced
as an electronic structure calculation method before the development of the density
functional theory (DFT) in 1947 by Korringa [61] and in 1954 by Kohn and Rostoker
[62]. The most prominent feature of the KKR Green’s function method is that multiple
scattering problem is expressed using the Green’s function of the system. Unlike other
general first-principles calculation methods, such as the standard pseudopotential-based
methods or the linearized augmented plane wave (LAPW) method, the Green’s function
of the system is used already within the self-consistent field (SCF) calculation step when
performing the KKR calculations. Therefore, it is easy to directly calculate physical
quantities using the resulting Green’s function or construct the Green’s function for
alloy systems by means of coherent potential approximation which will be introduced
in Sec. 4.3. In this chapter we outlines the main idea of the KKR multiple scattering
Green’s function theory.

3.1 Non-relativistic Free Particle Green’s Function

Before discussing the multiple scattering formalism of the Green’s function, we will
start from the most simple case, that is, non-relativistic and free-electron system. The
wave function ψ(r) of this system is described by the Schödinger equation as follows:

−∇2
rψ(r) = Eψ(r) . (3.1)

19



CHAPTER 3. KKR GREEN’S FUNCTION METHOD

Here, we exploit the Rydberg atomic units of ℏ = 2m = e2/2 = 1 for simplicity 1. The
corresponding Green’s function is then defined by

(∇2
r + E)Gnr0(r, r

′, E) = δ3(r − r′) . (3.2)

This is a well-known Helmholtz equation whose solution is given by

G±
nr0(r, r

′, E) = − 1

4π

e±p|r−r′|

|r − r′|
, (3.3)

where we define the momentum p as p =
√
E. As is evident from these solutions, the

Green’s function for free particle only depends on the difference in position |r − r′|.
However, we explicitly write down the dependence of the positions of r and r′ in the
free-particle Green’s function to develop the theory to multiple scattering case in the
following sections. These two equations have a different behavior for |r − r′| → 0.
In a physical interpretation, G+

nr0(r, r
′, E) describes outgoing wave while G−

nr0(r, r
′, E)

stands for incoming wave. As we have an interest in outgoing wave in the scattering
theory, we focus only on G+

nr0(r, r
′, E) and expressed it as Gnr0(r, r

′, E) hereafter.

For convenience of the computation, we exploit the spherical Bessel function jl(
√
Er)

and the spherical Hankel function of the first kind h(+)
l (

√
Er) to describe the free particle

Green’s function

Gnr0(r, r
′, E) = −ip

∑
L

[
jL(r, E)h̄

(+)
L (r′, E)θ(r′ − r)

+ h
(+)
L (r, E)j̄L(r

′, E)θ(r − r′)
]
, (3.4)

where L = (l,ml) is the combined quantum number of azimuthal quantum number l
and magnetic quantum number ml. Here, we also define the following functions:

jL(r, E) ≡ jl(pr)YL(r̂) , (3.5)

j̄L(r, E) ≡ jl(pr)Y
∗
L (r̂) , (3.6)

h
(+)
L (r, E) ≡ h

(+)
l (pr)YL(r̂) , (3.7)

h̄
(+)
L (r, E) ≡ h

(+)
l (pr)Y ∗

L (r̂) . (3.8)

1In DFT Hartree atomic units ℏ = m = e = 1 are also used. However, we always use Rydberg
atomic unit in the following discussion.
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Although we expressed the free particle Green’s function using the complex spherical
harmonics YL(r̂), the KKR calculations in Schrödinger formalism are usually performed
by using real spherical harmonics. However, in the case of the relativistic formulation,
we have to exploit the complex one.

3.2 Dirac Equation

Now we develop the free particle Green’s function into a relativistic one. This is be-
cause that some terms such as Darwin and spin-orbit coupling terms are missing in the
Schrödinger formalism. To deal with relativistic scattering we have to exploit the Dirac
Hamiltonian. The Dirac Hamiltonian without a potential can be written as

Ĥ0(r) = −icα ·∇r +
1

2
c2β (3.9)

where each 4× 4 Dirac matrix is defined as

αi =

(
0 σi

σi 0

)
, β =

(
I2 0

0 I2

)
. (3.10)

Here, the matrices αi is composed by the Pauli matrices σi

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
. (3.11)

3.2.1 Central Field

We will rewrite the Dirac equation using the polar coordinates. We first represent ∇r

in polar coordinates

∇r = r̂
∂

∂r
− i

r̂

r
× l , (3.12)

where l is the orbital angular momentum

l = −ir ×∇ . (3.13)

By using this equation, the kinetic energy term of the Dirac equation is obtained in
polar coordinates as

−icα ·∇r = −icγ5σr
(
∂

∂r
+

1

r
− β

r
K

)
, (3.14)
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where the operator σr is the projection of σ

σr = σ · r̂ , (3.15)

and K is called the spin-orbit operator defined as

K = β(σ · l + 1) . (3.16)

The matrix γ5 is given by

γ5 =

(
0 I2

I2 0

)
. (3.17)

3.2.2 Spin-angular Part of the Dirac Equation

In non-relativistic quantum theory, the angular momentum is represented by the (l,ml)-
bases which is evident from Sec. 3.1. On the other hand, the relativistic quantum state
is represented by using the (l, s,ml,ms)-bases, since further angular momentum s is
included in the Dirac equation.

Schrödinger formalism : ⟨r̂|l,ml⟩ = Y ml
l (r̂)

Dirac formalism : ⟨r̂|l, s;ml,ms⟩ = ⟨r̂| (|l,ml⟩ ⊗ |s,ms⟩) = Y ml
l (r̂)χms

We can continue to develop the relativistic theory by using the (l, s,ml,ms)-bases in
Dirac equations. However, it is more natural to add the angular momentum and rep-
resent the relativistic states by means of the (l, s, j, µ)-bases.

⟨r̂|l, s; j, µ⟩ =
∑
ms

C(l, s, j;ml,ms, µ)Y
µ−ms

l (r̂)χms (3.18)

Here, C(l, s, j;ml,ms, µ) indicates the Clebsch-Gordan coefficients. Especially in the
theory of spin 1/2 of the Dirac equation, we use the quantum number called the rela-
tivistic spin-orbit quantum number κ(l, j) and express the bases as

χµ
κ(r̂) = ⟨r̂|κ, µ⟩

=
∑

ms=± 1
2

C(l 1
2
j;µ−ms,ms, µ)Y

µ−ms

l (r̂)χms (3.19)
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which is called the spin-angular function or the spin spherical function. Here, the
Clebsch-Gordan coefficients in case of the spin 1/2 are given by the following lists:

C(l 1
2
j;µ−ms,ms, µ) ms =

1
2

ms = −1
2

j = l + 1
2

√
l+µ+ 1

2

2l+1

√
l−µ+ 1

2

2l+1

j = l − 1
2

−
√

l−µ+ 1
2

2l+1

√
l+µ+ 1

2

2l+1

(3.20)

3.2.3 Properties of Spin-angular Function

The relativistic spin-orbit quantum number κ is defined so that the eigen value of

(σ · l + 1) = j2 − l2 −
(σ
2

)2
+ 1 (3.21)

becomes −κ. If we explicitly write down the value of κ using the quantum numbers l
and j, we obtain

κ =

{
−l − 1 (j = l + 1

2
) ,

l (j = l − 1
2
) .

(3.22)

Using the quantum number κ, we can express the properties of the spin-angular function
as follows:

j2χΛ(r̂) = j(j + 1)χΛ(r̂) , (3.23)

jzχΛ(r̂) = µχΛ(r̂) , (3.24)

l2χΛ(r̂) = l(l + 1)χΛ(r̂) , (3.25)

σ2χΛ(r̂) = 3χΛ(r̂) , (3.26)

σrχΛ(r̂) = −χΛ̄(r̂) , (3.27)

K

(
χΛ(r̂)

χΛ̄(r̂)

)
= −κ

(
χΛ(r̂)

χΛ̄(r̂)

)
. (3.28)

where we describe the combination of the quantum numbers κ and µ by the short form
Λ = (κ, µ).
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3.2.4 Quantum Numbers in spin 1/2 Dirac Equations

In the previous subsection, we define the relativistic spin-orbit quantum number κ in
terms of l and j and vice versa the relation

l =

{
−κ− 1 (κ < 0)

κ (κ > 0)
(3.29)

can be obtained for the quantum number l. We will use some more quantum numbers
which is defined in this subsection. First, we define the size and sign of κ as

k = |κ| , (3.30)

Sκ = κ/k . (3.31)

By using these quantities, the quantum number j can be expressed simply as

j = k − 1

2
= l − 1

2
Sκ . (3.32)

We also define l̄ which is the same as l but the sign of κ is different

l̄ = l−κ =

{
−κ (κ < 0) ,

κ− 1 (κ > 0) .
(3.33)

We listed the quantum numbers for selected orbitals in Table 3.1.

3.3 Solution of the Free Particle Dirac Equation

Since we obtained the free-particle Dirac equation in polar coordinates, we will focus
on the solution of the Dirac equation. Unlike the case of the Schrödinger formalism,
there are two solutions, namely right-hand side and left-hand side solutions in the case
of the Dirac equation.

3.3.1 Right-hand Side Solution

Since we have defined all of the basic properties of the Dirac equation, we will derive
the right-hand side solution of the Dirac equation for free-particle.

[E − Ĥ0(r)]ψ(r, E) =

[
E + icγ5σr

(
∂

∂r
+

1

r
− β

r
K

)
− 1

2
βc2
]
ψ(r, E) = 0 . (3.34)
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Table 3.1: Quantum Numbers for Selected Orbitals
Symbol of Orbital l l̄ j κ µ

s1/2 0 1 1/2 -1 -1/2
+1/2

p1/2 1 0 1/2 +1 -1/2
+1/2

p3/2 1 2 3/2 -2 -3/2
-1/2
+1/2
+3/2

d3/2 2 1 3/2 +2 -3/2
-1/2
+1/2
+3/2

d5/2 2 3 5/2 -3 -5/2
-3/2
-1/2
+1/2
+3/2
+5/2

f5/2 3 2 5/2 +3 -5/2
-3/2
-1/2
+1/2
+3/2
+5/2
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To obtain the radial equation, we separate the variables

ψ(r, E) =
1

r

∑
Λ

(
PΛ(r, E)χΛ(r̂)

iQΛ(r, E)χΛ̄(r̂)

)
, (3.35)

and substitute ψ(r, E) into the Dirac equation. It is straightforward to obtain the
following coupled radial equations

∂

∂r
PΛ(r, E) +

κ

r
PΛ(r, E)−

E + c2/2

c
QΛ(r, E) = 0 , (3.36)

∂

∂r
QΛ(r, E)−

κ

r
QΛ(r, E) +

E − c2/2

c
PΛ(r, E) = 0 . (3.37)

From these equations we can obtain relativistic spherical Bessel function

jΛ(r, E) =

√
E + c2/2

c2

(
jl(pr)χΛ(r̂)

iSκpc
E+c2/2

jl̄(pr)χΛ̄(r̂)

)
(3.38)

as a regular solution for r → 0 and relativistic spherical Hankel function

h
(+)
Λ (r, E) =

√
E + c2/2

c2

(
h
(+)
l (pr)χΛ(r̂)

iSκpc
E+c2/2

h
(1)

l̄
(pr)χΛ̄(r̂)

)
(3.39)

as an irregular solution.

3.3.2 Left-hand Side Solution

Similarly, we can obtain the left-hand side solution of the Dirac equation

ψ×(r, E)[E − Ĥ0(r)] = 0 (3.40)

using the same method as the right-hand side case. We can obtain the relativistic
spherical Bessel function for left-hand side solution

j×Λ (r, E) =

√
E + c2/2

c2

(
jl(pr)χ

†
Λ(r̂)

−iSκpc

E + c2/2
jl̄(pr)χ

†
Λ̄
(r̂)

)
, (3.41)

and relativistic spherical Hankel function

h
(+)×
Λ (r, E) =

√
E + c2/2

c2

(
h
(+)
l (pr)χ†

Λ(r̂)
−iSκpc

E + c2/2
h
(+)

l̄
(pr)χ†

Λ̄
(r̂)

)
. (3.42)
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3.4 Relativistic Free Particle Green’s Function

We are now in the position of deriving the Green’s function in Dirac formalism. For
the derivation we exploit the following relation

[E − Ĥ0(r)][E + Ĥ0(r)] = c2(∇2 + p2) , (3.43)

where the moment p is given by p2c2 = E2 − c2/4 for relativistic case. By using this
relation the relativistic Green’s function for free paticle is given by

G0(r, r
′, E) =

1

c2
[E +H0(r)]Gnr0(r, r

′, E) . (3.44)

Substituting the explicit expression for the non-relativistic Green’s functionGnr0(r, r
′, E)

in Eq. (3.4) we can obtain G0(r, r
′, E) as

G0(r, r
′, E) = −ip

∑
Λ

[
jΛ(r, E)h

(+)×
Λ (r′, E)θ(r′ − r)

+ h
(+)
Λ (r, E)j×Λ (r

′, E)θ(r − r′)
]
. (3.45)

3.5 Fourier Transform

The Green’s function of the system under the potential V (r) can be formally written
as

G(r, r′, E) =G0(r, r
′, E) +

∫
all

dr′′G0(r, r
′′, E)V (r′′)G(r′′, r, E) . (3.46)

Using this equation we have to integrate over the whole region in a crystal. In the
crystal the potential is periodic

V (rI +RI) = V (rI) , (3.47)

where RI is the Bravais lattice vector and subscript I indicates the I-th unit cell.
Therefore, we Fourier transfer the Green’s function

Gk(r, r
′
0, E) =

∑
I

G(r, r′
0 +RI , E)e

ik·RI , (3.48)

and rewrite the Eq. (3.46) as

Gk(r, r
′
0, E) = G0k(r, r

′
0, E) +

∫
Ω

dr′′
0Gk(r, r

′′
0 , E)V (r′′

0)G0k(r
′′
0 , r

′
0, E) . (3.49)

Here, the integral is changed to the one over a unit cell whose size is Ω.
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3.6 Structure Constants

In the previous section, we successfully incorporate the crystal periodicity into the
Green’s function by using the Fourier transform. Next, we will manage the atomic-sites
dependence in a unit cell. The strategy is to isolate the contribution of the atomic
sites from the free particle Green’s function. For simplicity, we will start in case of the
non-relativistic Green’s function Gnr0(r, r

′, E).

Suppose that the position vectors r0 and r′
0 are located in the atomic site i and site

j, respectively, of the reference unit cell

r0 = ri +Qi r′
0 = r′

j +Qj , (3.50)

where Qi indicates the position vector of atomic site i. We can rewrite the Green’s
function as

Gnr0k(ri +Qi, r
′
j +Qj, E) =

∑
L,L′

jL(ri, E)Gij
nr0LL′(k, E)j̄L′(r′

j, E)

+ δijGnr0(ri, r
′
j, E) . (3.51)

Here, all of the information about the configuration of atomic sites is included in
Gij
nr0LL′(k, E) which is called the structure constants

Gij
nr0LL′(k, E) =

− 4πipil−l′
∑
L′′

i−l′′

[∑
J

(1− δ0Jδij)h̄
(+)
L′′ (RJ +Qj −Qi, E)e

ik·RJ

]
CL′′

LL′ , (3.52)

where CL′′

LL′ is the Gaunt coefficients

CL′′

LL′ =

∫
dp̂ Y ∗

L (p̂)YL′(p̂)YL′′(p̂) . (3.53)

In the case of the Dirac formalism, we express the Green’s function as

G0k(ri +Qi, r
′
j +Qj, E) =

∑
Λ,Λ′

jΛ(ri, E)Gij
0ΛΛ′(k, E)j̄Λ′(r′

j, E)

+ δijG0(ri, r
′
j, E) . (3.54)
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where the relativistic structure constant Gij
0ΛΛ′(k, E) is expressed using the non-relativistic

one Gij
nr0LL′(k, E) as follows:

Gij
0ΛΛ′(k, E) =

∑
ms

C(l 1
2
j;µ−ms,ms, µ)Gij

nr0LL′(k, E)

×C(l′ 1
2
j′;µ′ −ms,ms, µ

′) . (3.55)

For the purpose of the numerical calculation, we usually do not use the formulation
given by Eq. (3.52). Since the Gaunt coefficients are calculated separately using the
formulation

CL′′

LL′ =

√
(2l′ + 1)(2l′′ + 1)

2l + 1
C(l′l′′l;m′m′′m)C(l′l′′l; 000) , (3.56)

we introduce a new function Dij
L (k, E)

Dij
L (k, E) = −ip

∑
J

′
eik·RJ h̄

(+)
L′′ (RJ +Qj −Qi, E) , (3.57)

which is the rest part of the non-relativistic structure constants. Here,
∑

J
′ indicates

the sum over the J-th unit cell, but exclude the unit cell J if RJ +Qj −Qi vanishes.
In integral form Dij

L (k, E) can be rewritten as

Dij
L (k, E) = −2l+1

√
π
p−l
∑
J

′
|RJ − (Qi −Qj)|leik·RJY ∗

L (
̂RJ − (Qi −Qj))

×
∫ ∞

0

dζ ζ2lexp

[
−|RJ − (Qi −Qj)|2ζ2 +

p2

4ζ2

]
. (3.58)

The problem for calculationg the equation above is that the integrand diverges when
ζ → 0. Therefore, we have to break up the integral into two parts [0,

√
η/2] and

[
√
η/2,∞] with positive η. For the integral in the interval [0,

√
η/2], we apply the

Ewald’s methods. For the final results, see the original work done by Ham and Segall
[63].

3.7 Multiple Scattering

Since we have obtained the structure constants for the free particle Green’s function,
our next task is to derive a similar formalism for the Green’s function in a periodic
potential.
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3.7.1 Dyson Equation

Suppose a Hamiltonian with an unperturbed reference system Ĥ0 and a potential V

Ĥ = Ĥ0 + V . (3.59)

The Green’s function for the unperturbed system is the inverse operator of (E − Ĥ0)

G0 = (E − Ĥ0)
−1 . (3.60)

The Green’s function corresponding to the Hamiltonian Ĥ is then obtained by using
G0 as

G = (E − Ĥ0 − V )−1

= (1−G0V )−1G0

= G0 +G0V G . (3.61)

This is the so-called Dyson equation which gives G in terms of self-consistent relation.
The Dyson equation can also be rewritten as

G = G0 +G0V G0 +G0V G0V + · · ·

= G0 +G0(V + V G0V + V G0V G0V + · · · )G0

= G0 +G0TG0 , (3.62)

where T is called the transition operator or T -operator

T = V + V G0V + V G0V G0V + · · ·

= V + V G0T

= V + V GV . (3.63)

3.7.2 Scattering Path Operator

So far, we only considered the general potential V . To develop the theory to multiple
scattering event, we split the potential V into a sum of non-overlapping potentials vi
centered at the atomic site i.

V =
∑
i

vi (3.64)
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There are several methods to divide the atomic sites in a crystal. The most sophis-
ticated way is to use the Voroni polyhedra which is implemented in the full-potential
calculations. In this case the potential is expanded by the spherical harmonics in the
polyhedra which requires high computational effort. A better approach to reduce the
computational time is to use the atomic sphere approximation (ASA). In the ASA
method, we exploit spherical symmetric potentials to fill a unit cell. The total volume
of the region where the potential is applied is taken to be the same as the volume of
the unit cell, so that we allows for the overlap of the potential in the crystal. We can
set the spread of the potential the same for all the atomic sites. However, it is often
fail to obtain accurate physical quantities if we use the atomic sites having the same
radius for all the components in the crystal. In the KKR methods, there are two pre-
scriptions to resolve the problem. The easiest way is to use the experimental values
of the muffin-tin radius and enlarge them to fit the size of the unit cell. We can also
exploit the Hartree potential and avoid to use the empirical values. In the case of using
the Hartree potential, we first calculate the Hartree potential in the crystal space and
divide between the atomic sites at the point where the potential takes minimum. The
problem of the ASA method is that we cannot get good results when the overlap of the
potential is large. To avoid the problem the vacancy is set in the empty space of the
crystal structure.

Now, the T -operator is written as

T =
∑
i

vi +
∑
i

viG0T . (3.65)

As an alternative expression of the scattering events, we express the T -operator in terms
of the so-called scattering path operator τ ij

T =
∑
i,j

τ ij , (3.66)

which was first introduced by Gyorffy and Stott [64]. Here, τ ij describes the scattering
events starting at site i and finishing at site j. Using the scattering path operator, we
can rewrite Eq. (3.65) as

τ ij = tiδij +
∑
k

tiG0(1− δik)τ
kj , (3.67)
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where t-matrix ti is given by

ti = vi + viG0t
i . (3.68)

3.7.3 Multiple Scattering in the KKR Methods

For a practical calculation we will describe the scattering path operator for a set of
specific basis functions. We explicitly write down Eq. (3.67) in terms of the position
vector

τ 0iJj(ri, r
′
j, E) = ti(ri, r

′
j, E)δ0Jδij

+
∑

Ss(̸=0i)

∫
all

dr′′
∫
all

dr′′′ti(ri, r
′′ −Qi, E)G0(r

′′, r′′′, E)

× τSsJj(r′′′ −RS −Qs, r
′
j, E) (3.69)

where we express the indices of the unit cell by uppercase and the indices of the atomic
site in lowercase. Expressed the above scattering path operator as the basis of the
Bessel functions, we obtain the following equation:

τ ijΛΛ′(k, E) =

∫
Ωi

dri

∫
Ωj

dr′
jj

i×
Λ (ri, E)

∑
J

τ 0iJj(ri, r
′
j, E)e

ik·RJ jjΛ′(r
′
j, E)

=tiΛΛ′(E)δij +
∑

Λ′′,Λ′′′

∑
s

tiΛ′′Λ′′′(E)Gis
0Λ′′Λ′′′(k, E)τ sj(k, E) (3.70)

In matrix form this equation can be written as

τ(k, E) =
[
t−1(E)− G0(k, E)

]−1

(3.71)

where [
τ(k, E)

]ij
ΛΛ′ = τ ijΛΛ′(k, E) , (3.72)[

t(E)
]ij
ΛΛ′ = δijt

i
ΛΛ′(E) , (3.73)[

G0(k, E)
]ij
ΛΛ′

= Gij
0ΛΛ′(k, E) . (3.74)

Using the scattering path operator τ(k, E) we can derive the following multiple scat-
tering Green’s function:

Gk(ri +Qi, r
′
j +Qj, E) =

∑
Λ,Λ′

Ri
Λ(ri, E)G

ij
ΛΛ′(k, E)R

j×
Λ′ (r

′
j, E)

+ δijG(ri, r
′
j, E) , (3.75)
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where Ri
Λ(ri, E) and Ri×

Λ (ri, E) are the angular momentum Lippmann-Schwinger equa-
tions for the regular solutions

Ri
Λ(ri, E) = jiΛ(ri, E)

+

∫
Ωi

dr′
i

∫
Ωi

dr′′
iG0(ri, r

′
i, E)t

i(r′
i, r

′′
i , E)j

i
Λ(r

′′
i , E) , (3.76)

Ri×
Λ (ri, E) = ji×Λ (ri, E)

+

∫
Ωi

dr′
i

∫
Ωi

dr′′
i j

i×
Λ (r′′

i , E)t
i(r′′

i , r
′
i, E)G0(r

′
i, ri, E) , (3.77)

and G(ri, r′
i, E) is the Green’s function for single-site scattering

G(ri, r
′
i, E) = G0(ri, r

′
i, E)

+

∫
Ωi

dr′′
i

∫
Ωi

dr′′′
i G0(ri, r

′′
i , E)t

i(r′′
i , r

′′′
i , E)G0(r

′′′
i , r

′
i, E)

= G0(ri, r
′
i, E) +

∫
Ωi

dr′′
iG0(ri, r

′′
i , E)V

i(r′′
i )G(r

′′
i , r

′
i, E) . (3.78)

The multiple scattering equivalent of the structure constant Gij
ΛΛ′(k, E) is given by the

structure constants Gij
0ΛΛ′(k, E) and the scattering path operator τ ijΛ′Λ′(k, E)

Gij
ΛΛ′(k, E) = Gij

0ΛΛ′(k, E)

+
∑

Λ′′,Λ′′′

∑
s,u

Gis
0ΛΛ′′(k, E)τ suΛ′′Λ′′′(k, E)Guj

0Λ′′′Λ′(k, E) . (3.79)

3.8 Green’s Function for a Particle in a Potential

In the previous section, we found that the multiple scattering Green’s function is pro-
vided using the Lippmann-Schwinger equations Ri

Λ(ri, E), multiple scattering equiva-
lent of the structure constants Gij

ΛΛ′(k, E), and the Green’s function for the single-site
scattering G(ri, r′

i, E). We have presented the formulation of Gij
ΛΛ′(k, E) in the previous

section. Concerning Ri
Λ(ri, E), we will discuss in the next section. The Green’s function

for the single-site scattering has a structure very similar to that of free particle in Eq.
(3.45)

G0(ri, r
′
i, E) = −ip

∑
Λ

[
Ri

Λ(ri, E)S
i×
Λ (r′

i, E)θ(r
′
i − ri)

+ Si
Λ(ri, E)R

i×
Λ (r′

i, E)θ(ri − r′i)
]
. (3.80)
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where Ri
Λ(ri, E) is the angular momentum Lippmann-Schwinger equation for the reg-

ular solutions defined by Eq. (3.76). On the contrary, Si
Λ(ri, E) and Si×

Λ (ri, E) are the
angular momentum Lippmann-Schwinger equations for the irregular solutions

Si
Λ(ri, E) =

∑
Λ′

hiΛ′(ri, E)βΛ′Λ +

∫
Ωi

dr′
i G0(ri, r

′
i, E)V

i(r′
i)S

i
Λ(r

′
i, E) , (3.81)

Si×
Λ (ri, E) =

∑
Λ′

β̄ΛΛ′hiΛ′(ri, E) +

∫
Ωi

dr′
i S

i×
Λ (r′

i, E)V
i(r′

i)G0(r
′
i, ri, E) . (3.82)

where βΛ′Λ and β̄ΛΛ′ are given by

βΛ′Λ = δΛΛ′ + ip

∫
Ωi

dr′
i j

i×
Λ (r′

i, E)V
i(r′

i)S
i
Λ(r

′
i, E) , (3.83)

β̄ΛΛ′ = δΛΛ′ + ip

∫
Ωi

dr′
i S

i×
Λ (r′

i, E)V
i(r′

i)j
i
Λ(r

′
i, E) , (3.84)

so that the wavefunction outside the potential is set to match the Hankel function of
the first kind.

3.9 Radial Equations

In this section we mention the calculation method of the Lippmann-Schwinger equations
for the regular solutions Ri

Λ(ri, E) and irregular solutions Si
Λ(ri, E). Here, again, we

explicitly write down the solutions Ri
Λ(ri, E) and Si

Λ(ri, E) in the same way as in
Eq. (3.35). Substituting Eq. (3.35) for the Kohn-Sham-Dirac equations [Eq. (2.20)] we
can obtain the following equations:

∂

∂r
PΛ(r, E) = −κ

r
PΛ(r, E) +

[
E − Veff(r)

c
+
c

2

]
QΛ(r, E)

+
Beff(r)

c

∑
Λ′

⟨χΛ̄|σz|χΛ̄′⟩QΛ′(r, E) (3.85)

∂

∂r
QΛ(r, E) =

κ

r
QΛ(r, E)−

[
E − Veff(r)

c
− c

2

]
PΛ(r, E)

+
Beff(r)

c

∑
Λ′

⟨χΛ|σz|χΛ′⟩PΛ′(r, E) (3.86)
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where ⟨χΛ|σz|χΛ′⟩ is given by

⟨χΛ|σz|χΛ′⟩ =


− µ

κ+ 1
2

, (κ = κ′)

−
√
1− µ2

(κ+ 1
2
)2
, (κ = −κ′ − 1)

0 . (otherwise)

(3.87)

Here, we only use the expected values of the Pauli matrix in the z-direction. This is
because that the expected values of other matrices σx and σy have more complicated
forms. Since Ri

Λ(ri, E) is regular at the center of the atomic sites, we start the calcula-
tion from the center of the atomic sites and perform the outward integral to obtain the
wave function of the whole space. On the contrary, we perform the inward integral to
obtain irregular solutions Si

Λ(ri, E) since we know Si
Λ(ri, E) is the same as the Hankel

function of the first kind outside the potential as is evident from Eq. (3.81).
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Chapter 4

Calculation of the Disordered System

In this chapter we focus on the calculation method of electronic structure of substitu-
tional alloy systems. It has a long history from the 1930s [9, 10, 11]. The only practical
way for the calculation of the alloy systems is the coherent potential approximation.
However, we also mention the formulation of other methods such as virtual crystal ap-
proximation and average t-matrix approximation to compare with the methods we will
use later. We will also present the formulation of the coherent potential approximation
in terms of the scattering path operators to represents methods used in the KKR cal-
culations. In the last section of this chapter, we will introduce the specific algorithm
for the calculation of alloys.

4.1 Virtual Crystal Approximation (VCA)

The simplest approach for calculations on alloys is the virtual crystal approximation
first introdued by Nordheim [12] and Muto [13]. Let us consider the Hamiltonian
Ĥ = Ĥ0 + V , where Ĥ0 is the periodic part of the Hamiltonian and V is the potential
that reflects the randomness of the configuration of components in alloys. As the
Green’s function of the system G is given formally by G = G0 + G0V G using the
Green’s function G0 derived from Ĥ0, the configuration average of the Green’s function
⟨G⟩ can be written as

⟨G⟩ = G0 +G0 ⟨V G⟩ . (4.1)

37



CHAPTER 4. CALCULATION OF THE DISORDERED SYSTEM

If we make the approximation

⟨V G⟩ ≈ ⟨V ⟩ ⟨G⟩ , (4.2)

and take into account that the configuration average of the potential can be expressed
by the concentration average of the potential of the components that forms an alloy

⟨V ⟩ ≈
∑
α

cαvα , (4.3)

we obtain the VCA. Here, the subscript α is the index for the atom types in the alloy,
cα and and vα are the concentration and the on-site potential, respectively, of atom α.

The VCA seems to be a good approximation for metals having a simple free-electron
like electronic structure such as Na, K, and Al. However, it is known that the VCA
completely fails to yield correct physical properties for the transition-metal alloys [10].
In particular, the VCA fails to describe element specific properties of an alloy as it is
relevant for example in hyperfine interaction [9].

4.2 Average t-matrix Approximation (ATA)

The short coming of the VCA has been removed by Korringa [14] and Beeby [15]
by introducing the so-called average t-matrix approximation (ATA). Within this ap-
proach, the concentration average of the single-site scattering matrix, the t-matrix, is
used instead of the potential allowing to consider component-projected properties. We
summarize the concept of the ATA in the following.

We first express the Green’s function of the substitutional random alloys using the
total scattering operator T ,

G = G0 +G0TG0 . (4.4)

The total scattering operator T can be divided depending on its scattering path as
follows:

T =
∑
mn

τmn . (4.5)
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where the operator τmn is the scattering path operator that accounts for all scattering
events connecting site m and site n. By using the single-site scattering matrix, t-matrix,
we can apply the following Dyson equation:

τmn = tmδmn +
∑
k

tmG0(1− δmk)τ
kn

= tmδmn +
∑
k

tmG0(1− δmn)t
n +

∑
k

tmG0(1− δmk)t
kG0(1− δkn)t

n + · · · .

(4.6)

In the case of the ATA, we use the concentration average of the t-matrix

⟨tn⟩ =
∑
α

cαt
n
α , (4.7)

instead tn when we take the configuration average of the total scattering operator ⟨T ⟩.
The ATA became a big step to the calculation of alloys. However, the ATA still has

formal problems leading sometimes to unphysical results [9].

4.3 Coherent Potential Approximation (CPA)

The most sophisticated single-site method available for the calculation of homogeneous
random alloys that solves these problems is provided by the coherent potential approx-
imation (CPA). The CPA is a mean-filed theory that treats alloys by introducing an
effective medium that can be defined by its average scattering properties first proposed
by Soven [16] and Taylor [17]. In case of the CPA, we express the Green’s function as
follows:

G = GcTc→exaGc , (4.8)

where Gc is the Green’s function derived from the fictitious coherent potential and
Tc→exa(E) is the scattering operator that replace the coherent potential to the exact
potential of the substitutional random alloys. Although the Green’s function of the
exact system G does not have the crystal symmetry, Gc is determined so that it has the
full symmetry of the periodic crystals. The basic concept of the CPA is that we find
the Gc such that the configuration average of the scattering operator vanishes:

⟨Tc→exa⟩ = 0 . (4.9)
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In other words, embedding one of the alloy components into the CPA should in average
lead to no additional scattering within the framework of multiple scattering formalism.
Accordingly, unlike for the VCA and ATA methods, one has to determine the effective
medium self-consistently in the case of the CPA calculations.

In the following section, we first derive the CPA condition. There are several ap-
proaches to the CPA that use perturbation method, interpolation method, cumulant
expansion method, etc. summarized in the review [65]. However, all of these methods
give the same results.

4.3.1 Derivation of the CPA Condition

In this subsection, we derive the CPA condition that is common to all of the calculation
methods. For the specific case of the KKR-CPA method, we derive the condition in
the following subsection. Here, we follow the approach given by Veliký et al. [66] for
the derivation of the CPA condition.

We express the Hamiltonian of a certain substitutional random alloys as Hexa. The
Green’s function of the system is given by

G(E) = (E −Hext)
−1 . (4.10)

We then divide the Hamiltonian into the priodic part Hc having the crystal symmetry
and the remains Vexa−c = Hexa − Hc. By defining the Green’s function given by the
periodic Hamiltonian Hc as

Gc(E) = (E −Hc(E))
−1 , (4.11)

the Green’s function of the exact Hamiltonian G(E) is expressed by Gc(E) as follows:

G(E) = Gc(E) +Gc(E)T̃ (E)Gc(E) (4.12)

where T̃ (E) is given by

T̃ (E) = Vexa−c[1 +Gc(E)T̃ (E)] . (4.13)

Here, T̃ (E) is not the total scattering operator in the usual sense. The operator T̃ (E)
changes the Green’s function Gc(E) to the Green’s function of the exact system G(E).
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We represent the operator using tilde. By taking the random average of G(E), we
obtain

⟨G(E)⟩ = Gc(E) +Gc(E) ⟨T̃ (E)⟩Gc(E) . (4.14)

If ⟨T̃ (E)⟩ vanishes, the random average of the Green’s function ⟨G(E)⟩ becomes the
same as Gc(E). Concerning the Hamiltonian, we assume that ⟨G(E)⟩ is expressed by
the Hamiltonian HCPA as

⟨G(E)⟩ = (E −HCPA)
−1 . (4.15)

If we rewrite the Hamiltonian in terms of HCPA, we obtain

HCPA = Hc + ⟨T̃ (E)⟩ [1 +Gc(E) ⟨T̃ (E)⟩] . (4.16)

Here, again, we obtain HCPA = Hc in case of the condition ⟨T̃ (E)⟩ = 0.
The CPA condition ⟨T̃ (E)⟩ = 0 is not useful in actual calculations, the single-

site approximation (SSA) is usually applied. Next, we derive the CPA-SSA condition.
Suppose that we can divide the disordered potential Vexa−c by site

Vexa−c(E) =
∑
i

viexa−c(E) . (4.17)

Therefore, T̃ (E) can be divided as well

T̃ (E) =
∑
i

Qi(E) =
∑
i

viexa−c(E)[1 +Gc(E)T̃ (E)] , (4.18)

where Qi(E) is given by

Qi(E) = t̃i(E)

1 +Gc(E)
∑
j(̸=i)

Qj(E)

 . (4.19)

Here, we use the expression t̃i(E) = viexa−c(E)[1 − Gc(E)v
i
exa−c(E)]

−1. The t̃i(E) is
the single-site correspondence of the operator T̃ (E) in which the fictitious coherent
potential of site i is replaced by the potential of the exact atom of a substitutional
random alloy. If we take the random average of Qi(E) in the equation above, we obtain
the following equation:

⟨Qi(E)⟩ = ⟨t̃i(E)⟩

1 +Gc(E)
∑
j(̸=i)

⟨Qj(E)⟩

+

⟨
t̃i(E)Gc(E)

∑
j(̸=i)

[Qj(E)− ⟨Qj(E)⟩]

⟩
.

(4.20)
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Here, the first term is the average in site i, and the second term is the fluctuation. The
SSA condition refers to the approximation that ignores this second term.

⟨Qi(E)⟩ ≈ ⟨t̃i(E)⟩

1 +Gc(E)
∑
j(̸=i)

⟨Qj(E)⟩

 . (4.21)

Under the condition of the SSA, we can exploit

⟨t̃i(E)⟩ = 0 , (∀i) (4.22)

in stead of T̃ (E) = 0.

4.4 KKR-CPA Method

Since the CPA condition is obtained in the previous section, we then focus on how to
apply the CPA to the KKR method. This is a quite important step for the application
of the CPA method to actual calculations because the methodology of the CPA is well-
established from 1970s as well as the several effective algorithm for solving the CPA
condition is well-developed in the KKR formalism. In the following, we will rewrite
the CPA condition in terms of the scattering path operator, projection matrix, and the
excess scattering operator that can be applied to the KKR-CPA calculations. Then,
we mention the computational method used for the KKR-CPA method.

4.4.1 Representation by the Scattering Path Operator

In this subsection, we follow the discussion in Ref. [20] to derive the CPA condition in
terms of the scattering path operator for the application of the KKR formalism. We
consider the Hamiltonian with a potential viα of atom α on site i of the crystal

Hα = H0 + Vα , (4.23)

and the Hamiltonian having coherent potential vic on site i.

Hc = H0 + Vc(E) . (4.24)
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If each atoms is randomly mixed with the concentration of cα on site i, we can write
the CPA condition as

⟨t̃i(E)⟩ =
∑
α

cαt̃
i
α(E) = 0 , (4.25)

t̃iα(E) = (viα − vic(E)) + (viα − vic(E))Gc(E)t̃
i
α(E) . (4.26)

Using the operator t̃iα(E), we can express the Green’s function given by the Hamiltonian
Hα as follows:

Gα(E) = Gc(E) +Gc(E)t̃
i
α(E)Gc(E) . (4.27)

The equation above is also rewritten formally as

Gα(E) = G0(E) +G0(E)Tα(E)G0(E) . (4.28)

Using Eq. (4.25) the CPA condition can be expressed using the Green’s function as∑
α

cαGα(E) = Gc(E) +Gc(E)
∑
α

cαt̃
i
α(E)Gc(E) = Gc(E) , (4.29)

but this is the same as

Gc(E) = G0(E) +G0(E)Tc(E)G0(E) , (4.30)

Tc(E) =
∑
α

cαTα(E) . (4.31)

Since we can rewrite the CPA condition in terms of the total scattering operator, we
then represent it exploiting the scattering path operator. There is a relation between
the total scattering operator and the scattering path operator expressed as

T (ri, r
′
j +RJ +Qj, E) = τ 0iJj(ri, r

′
j, E) . (4.32)

Here, we use the real-space representation. In the KKR-CPA method, we can obtain
the expected value of the scattering path operator in the Bessel function

τ 0iJjΛΛ′ (E) =

∫
Ωi

dri

∫
Ωj

drj j̄
i
Λ(ri, E)τ

0iJj(ri, r
′
j, E)j̄

j
Λ′(ri, E)

=
1

ΩBZ

∫
BZ

dk τ ijΛΛ′(k, E)e
−ik·RJ . (4.33)
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For the actual computation of the CPA, it is sufficient to take into account for the
scattering in site i of the reference unit cell

τ 0i0ic ΛΛ′(E) =
∑
α

cατ
0i0i
α ΛΛ′(E) . (4.34)

This is the CPA condition represented by the scattering path operator. Here, τ 0i0ic ΛΛ′(E)

is the site-diagonal CPA scattering path operator

τ 0i0ic ΛΛ′(E) =
1

ΩBZ

∫
BZ

dk

[{
t−1
c (E)− G0(k, E)

}−1
]ii
ΛΛ′

. (4.35)

The information on the coherent potential in a random alloy is contained in tc(E) which
is the single-site scattering matrix for the coherent potential. For ordered systems,
the CPA scattering path operator is given by a Brillouin zone integral in terms of
the CPA single-site scattering matrix and so-called KKR structure constant G0(k, E).
Here, the single underline indicates matrices with respect to the combined spin-angular
momentum index Λ and the double underline indicates matrices with respect to the
combined spin-angular momentum index and the atomic site. The scattering path
operator τ 0i0iα ΛΛ′(E) is given by

τ 0i0iα (E) =
[
tiα

−1
(E)− tic

−1
(E) + τ 0i0ic (E)

]−1

, (4.36)

which gives the scattering path operator for an embedded α-atom on the site i into the
CPA medium.

4.4.2 Representation by the Projection Matrix

We rewrite the scattering path operator as follows:

τ 0i0iα (E) =
[
τ 0i0ic (E)

(
tiα

−1
(E)− tic

−1
(E)
)
+ 1
]−1

τ 0i0ic (E)

= Dii
α(E)τ

0i0i
c (E) , (4.37)

τ 0i0iα (E) = τ 0i0ic (E)
[(
tiα

−1
(E)− tic

−1
(E)
)
τ 0i0ic (E) + 1

]−1

= τ 0i0ic (E)D̃
ii

α(E) . (4.38)

where operators

Dii
α(E) =

[
τ 0i0ic (E)

(
tiα

−1
(E)− tic

−1
(E)
)
+ 1
]−1

, (4.39)

D̃
ii

α(E) =
[(
tiα

−1
(E)− tic

−1
(E)
)
τ 0i0ic (E) + 1

]−1

, (4.40)
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are called projection matrices. Using these operators, the CPA condition is rewritten
as ∑

α

cαD̃
ii

α(E) =
∑
α

cαD
ii
α(E) = 1 . (4.41)

4.4.3 Representation by the Excess Scattering Matrix

We further rewrite the CPA condition using excess scattering matrix. This is a necessary
step to apply Mills’ algorithm that is a commonly used technique for solving the CPA
condition numerically in the KKR method. We rewrite the projection matrix Dii

α as
follows:

Dii
α(E) = 1 + τ 0i0ic (E)

[(
tic

−1
(E)− tiα

−1
(E)
)−1

− τ 0i0ic (E)

]−1

= 1 + τ 0i0ic (E)X ii
α(E) . (4.42)

where the operator

X ii
α(E) =

[(
tic

−1
(E)− tiα

−1
(E)
)−1

− τ 0i0ic (E)

]−1

, (4.43)

is called the excess scattering matrix. Using the excess scattering matrix, the CPA
condition is given by ∑

α

cαX
ii
α(E) = 0 . (4.44)

4.4.4 Mills’ Method

We finally discuss the computational method of the CPA in the KKR formalism. Unlike
the mentioned VCA and ATA methods, we have to determine the CPA medium self-
consistently for the given t-matrices tiα(E) of the components. Several algorithms have
been suggested to deal with the above CPA equations. The most commonly used
algorithm was worked out by Mills et al. [67], and allows to obtain the CPA scattering
path operator τ 0i0ic (E) by an iterative process [68].

When the CPA condition is not satisfied by the n-th temporary t-matrix tic
(n)

(E),
we can define the concentration average of the n-th excess scattering operator X ii

c

(n)
(E)
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as

X ii
c

(n)
(E) =

∑
α

cαX
ii
α

(n)
(E) ̸= 0 , (4.45)

where the operator X ii
α

(n)
(E) is given by

X ii
α

(n)
(E) =

[(
tic

(n)−1
(E)− tiα

−1
(E)

)−1

− τ 0i0ic

(n)−1
(E)

]−1

. (4.46)

Here, τ 0i0ic
(n)

(E) is the n-th temporary scattering path operator

τ 0i0ic

(n)
(E) =

1

ΩBZ

∫
BZ

dk

[{
tc

(n)−1
(E)− G0(k, E)

}−1
]ii

, (4.47)

which is given by the n-th temporary t-matrix and the structure constant G0(k, E).
The next update of the t-matrix is obtained as follows:

tic
(n+1)−1

(E) = tic
(n)−1

(E)−
[
X ii

c

(n)−1
(E) + τ 0i0ic

(n)
(E)

]−1

. (4.48)

We repeat the cycle until X ii
α

(n)
(E) becomes smaller than a threshold δ. For the initial

guess of the t-matrix, we exploit the ATA

tic
(1)
(E) =

∑
α

cαt
i
α(E) . (4.49)
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Chapter 5

Wannier-based Implementation of the

CPA Method

In this chapter, we derive a formulation of the CPA on the basis of the Wannier repre-
sentation for the treatment of homogeneous random alloys. This new method is com-
putationally efficient compared to the existing calculation method and independent on
the applied first-principles electronic structure code.

5.1 Wannier Functions

Wannier functions wn(r −R) are defined by the following equation:

wn(r −R) =
Ωcell

(2π)3

∫
BZ

dke−ik·Rψ̃nk(r) , (5.1)

Here, Ωcell is the volume of the unit cell and ψ̃nk(r) is the unitary rotation of the Bloch
functions

ψ̃nk(r) =
∑
q

U (k)
qn ψqk(r) , (5.2)

where the operator U (k)
qn is the unitary matrix. The unitary matrix U (k)

qn is determined
so that the spread of the Wannier functions

Ω =
∑
n

[
⟨r2⟩n − r̄2

n

]
, (5.3)
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has a minimal value [74, 75]. Here, ⟨r2⟩n and r̄n are given by

⟨r2⟩n = − Ωcell

(2π)3

∫
BZ

dk

∫
cell

drũ∗mk(r)∇2
kũnk(r) , (5.4)

r̄n =
Ωcell

(2π)3

∫
BZ

dk

∫
cell

drũ∗mk(r)(i∇k)ũnk(r) . (5.5)

Therefore, n is not the band index in the usual sense. Since the Bloch function is
normalized to one unit cell, it obeys the following orthogonalization condition by inte-
grating over the whole space∫

all

drψ∗
nk(r)ψmk′(r) =

(2π)3

Ωcell

δnmδ
3(k − k′) . (5.6)

On the other hand, Wannier functions are normalized to the whole space∫
all

drw∗
n(r −R)wm(r −R′) = δnmδ

3
RR′ . (5.7)

The expected values of the Hamiltonian in terms of the Wannier functions are obtained
from that of the Bloch functions∫

all

drw∗
n(r)Ĥ(r)wm(r −R) =

Ωcell

(2π)3

∫
BZ

dke−ik·R
∫
cell

drψ̃∗
nk(r)Ĥ(r)ψ̃mk(r) , (5.8)

and vice versa∫
cell

drψ̃∗
nk(r)Ĥ(r)ψ̃mk(r) =

∑
R

eik·R
∫
all

drw∗
n(r)Ĥ(r)wm(r −R) . (5.9)

5.2 Wannier TB Hamiltonian

While the Green’s function is directly supplied by the KKR-CPA method, we first
have to construct a TB Hamiltonian in case of the Wannier formalism according to the
expression:

Ĥ =
∑
I,J

∑
i,j

∑
n,n′

|RI +Qi, n⟩HIiJj
nn′ ⟨RJ +Qj, n

′| , (5.10)

where n is the index of the Wannier functions including spin. To make use of the CPA,
we divide the Hamiltonian into site diagonal and off-diagonal terms as in CPA, in which
a single-site theory is formulated only for diagonal terms:

HIiJj
nn′ = (1− δIJδij)t

IiJj
nn′ + δIJδijv

i
nn′ , (5.11)

where v and t are the on-site potential and the site off-diagonal terms of the Hamiltonian
of the Wannier basis, respectively.
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5.3 Green’s Function

To apply the CPA to the Wannier functions, we construct the Green’s function of the
system from the TB Hamiltonian. We represent the Green’s function in the same basis
as the Wannier TB Hamiltonian

G(E) =
∑
I,i

∑
J,j

∑
n,n′

|RI +Qi, n⟩GIiJj
nn′ (E) ⟨RJ +Qj, n

′| . (5.12)

Since the Green’s function is written formally as [E −H]G(E) = 1, we can obtain the
matrix components of the Green’s function as

GIiJj(E) = (E − vi)−1δIJδij + (E − vi)−1
∑
Ss

(1− δISδis)t
IiSsGSsJj(E) (5.13)

By defining the matrices

[
G(E)

]IiJj
nn′ = GIiJj

nn′ (E) , (5.14)[
G0(E)

]IiJj
nn′ = δIJ(δijE − vinn′)−1 , (5.15)[

t(E)
]IiJj
nn′ = (1− δIJδij)t

IiJj
nn′ , (5.16)

we can rewrite the equation above in matrix form

G(E) =
[
G−1

0 (E)− t(E)
]−1

, (5.17)

where matrices with both atomic site and the Wannier function indices are indicated
by a double-underline. The Green’s function of the system is given by this equation.
However, from the point of view of the numerical calculation, it is not preferable to
directly use the equation since we have to calculate the inverse of a large matrix. In
stead, we exploit the Fourier transform of the above Green’s function

Gij
nn′(k, E) =

∑
J

G0iJj
nn′ (E)e

ik·RJ . (5.18)

Using the Fourier transform Gij
nn′(k, E) we can reduce the number of components

G(k, E) =
[
G−1
0 (E)− T (k)

]−1

(5.19)
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where each elements of the matrices is given by[
G(k, E)

]ij
nn′

= Gij
nn′(k, E) , (5.20)[

G−1
0 (E)

]ij
nn′

= δij(δnn′E − vinn′) , (5.21)[
T (k)

]ij
nn′ =

∑
J

(1− δ0Jδij)t
0iJj
nn′ e

ik·RJ . (5.22)

5.4 CPA in Wannier Formalism

The KKR multiple scattering formulation for the CPA condition cannot be used within
the Wannier formalism. This is because of the complexity in defining the scattering path
operator in the TB model. Therefore, we used an equation mathematically equivalent
to the equation in the KKR-CPA condition [see Eq. (4.34)]. For this purpose, we exploit
the representation of the scattering operator tiα(E) in Eq. (4.25).

For the numerical calculation of the coherent potential, vic(E), we use an iterative
method that is similar to the Mills’ algorithm. We update the n-th temporary coherent
potential vic

(n)
(E) in the following way. When the CPA condition is not satisfied by the

n-th temporary coherent potential, we can define the concentration averaged scattering
operator as

⟨ti⟩(n) =
∑
α

cαt
i
α

(n) ̸= 0 . (5.23)

The next update for the coherent potential is obtained as follows:

vic
(n+1)

(E) = vic
(n)

(E) + ⟨ti⟩(n)
(
1 +G0i0i

c

(n)
(E) ⟨ti⟩(n)

)−1

, (5.24)

where the Green’s function is obtained from the n-th coherent potential vic
(n)

(E). We
repeat the cycle until ⟨ti⟩

(n) becomes smaller than a threshold δ. We exploit the VCA
for the initial guess of the coherent potential as follows:

vic
(1)
(E) =

∑
α

cαv
i
α . (5.25)

To apply this formalism to real alloys, we have to consider the following two points.
One is the on-site potentials of the two pure components, since the DFT-based Wannier
Hamiltonian does not give information on the reference value of these potentials. To
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determine the relative on-site potential energies, we use the supercell calculations as
follows. Let us consider an A-B binary alloy. First, we perform DFT calculations
for a supercell of eight-atoms, A1B7 and A7B1, and construct the TB Hamiltonian in
the Wannier basis. Then, we derive the difference of the on-site potential of the 3d

orbitals between component A and B in both A1B7 and A7B1, and set its average as
∆vsupercellA−B . Then, we perform DFT calculations for pure A and pure B, and construct
the Wannier TB Hamiltonian. We use this Hamiltonian for the calculation of the CPA
Green’s function, but before starting the CPA calculation, we subtract a constant from
the diagonal terms of the on-site potential so that the potential difference of 3d orbitals
in pure A and pure B becomes ∆vsupercellA−B .

The other point to consider is the determination of the site off-diagonal term in the
TB Hamiltonian since the site diagonal terms as well as the site off-diagonal terms are
different for the two components. This is in sharp contrast to the KKR-CPA formalism,
where only the scattering path operator depends on the component. In this paper,
since we consider the alloys consisting of two transition metal elements, we simply take
a concentration average [19, 41].

The accurate determination of the Fermi energy is important for examining the
magnetic properties of alloys. We set the Fermi energy so that the total number of
electrons

N = − 1

π
ImTr

∫ EF

dEGc(E) , (5.26)

is consistent with the number of electrons in the A-B alloy. A complex contour Gauss-
Legendre integral is used to calculate the above integral. The Fermi energy of the
system is determined iteratively using the DOS and the difference between the total
number of electrons of the alloy and the number of electrons obtained by integrating
the Green’s function up to the temporary Fermi energy. We present the schematic
illustration in Appendix A.
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Chapter 6

Application of the Wannier-CPA

Method to Fe-based Transition-metal

Alloys

In this chapter, we exploit the formulation of the CPA on the basis of the Wannier
representation we developed in the previous chapter. This new method is computa-
tionally efficient compared to the existing calculation method and independent on the
applied first-principles electric structure code. To verify the performance of this CPA
implementation within the Wannier representation we have examined the Bloch spectral
function, the density of states (DOS), and the magnetic moment in Fe-based transition-
metal alloys Fe-X (X = V, Co, Ni, and Cu) as well as the spin-resolved Bloch spectral
function and the element specific properties of the DOS, and compared the results with
those of the well-established CPA implementation based on the KKR Green’s function
method.

Here, we only discuss the Bloch spectral function, the DOS, and the magnetic
moment. However, this new approach can be a significant step toward the other physical
quantities such as the extrinsic contribution of the anomalous and spin Hall effect
that cannot be handled by the conventional Wannier representation. Furthermore, the
Wannier-CPA method has potential applicability to large compound systems because
of its low computational effort required.
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6.1 Computational Steps of a Wannier-CPA Calcula-

tion

The CPA calculations using the Wannier formalism have been organized as follows:
First, we performed DFT calculations using the QUANTUM ESPRESSO package [69,
70] based on plane waves and pseudopotentials. We use the ultrasoft pseudopotentials
[71] in the PSlibrary [72] with the functional type of GGA-PBE exchange-correlation
functional [73] and with relativistic effects included. Here, we set the lattice constant
as the experimental value of bcc Fe a = 2.86 Å assuming that bcc Fe is alloyed with
other transition-metal elements.

The wannierization process is conducted by using WANNIER90 package [74, 75, 76,
77, 78] to reproduce the DFT energy bands below EF + 3 eV, with EF being the Fermi
energy. We construct for each spin a nine-orbital model, which contains one 4s, five 3d,
and three 4p atomic orbitals.

The electric structure calculation of KKR-CPA method is performed self-consistently
by the fully relativistic spin-polarized Munich SPR-KKR package [79, 80]. For the
exchange-correlation functional, the parametrization given by Vosko et al. [81] has
been used. An angular momentum cutoff of lmax = 4 was used for the KKR multiple-
scattering calculations. Here, we used the same lattice parameter a = 2.86 Å as in the
Wannier-CPA calculation.

As the Green’s function of a random alloy is obtained by the process described above,
we can calculate the Bloch spectral function, the DOS, and the magnetic moment from
the obtained CPA Green’s function. In the following section, we describe results of
calculations of these quantities in transition-metal alloys and compare them with the
results obtained by the KKR-CPA method.

6.2 Reference of the On-site Potential

Since the relative values of the reference for the on-site potential is not given by the
Wannier Hamiltonian, we have to somehow determine the difference of the on-site
potential between Fe and X (X = V, Co, Ni, and Cu) components before we perform
the CPA calculations. In Sec. 5.4 we devised a way to use supercell calculations. We
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Table 6.1: ∆vsupercellFe−V and its difference in Fe-V supercell
Orbitals ∆vsupercellFe−V (Fe1V7) [eV] ∆vsupercellFe−V (Fe7V1) [eV] Difference [eV]

all 3d (nonmag) -2.163 -1.339 -0.824

dz2 (nonmag) -2.141 -1.309 -0.832

all 3d (mag) -2.162 -1.363 -0.799

dz2 (mag) -2.140 -1.295 -0.845

Table 6.2: ∆vsupercellFe−Co and its difference in Fe-Co supercell
Orbitals ∆vsupercellFe−Co (Fe1Co7) [eV] ∆vsupercellFe−Co (Fe7Co1) [eV] Difference [eV]

all 3d (nonmag) -0.770 -0.836 0.065

dz2 (nonmag) 0.628 0.709 0.080

all 3d (mag) 1.557 1.379 0.179

dz2 (mag) 1.429 1.270 -0.159

Table 6.3: ∆vsupercellFe−Ni and its difference in Fe-Ni supercell
Orbitals ∆vsupercellFe−Ni (Fe1Ni7) [eV] ∆vsupercellFe−Ni (Fe7Ni1) [eV] Difference [eV]

all 3d (nonmag) 0.855 0.915 -0.060

dz2 (nonmag) 0.628 0.709 -0.080

all 3d (mag) 0.436 1.686 -1.250

dz2 (mag) 0.359 1.594 -1.235

Table 6.4: ∆vsupercellFe−Cu and its difference in Fe-Cu supercell
Orbitals ∆vsupercellFe−Cu (Fe1Cu7) [eV] ∆vsupercellFe−Cu (Fe7Cu1) [eV] Difference [eV]

all 3d (nonmag) 2.545 2.015 0.530

dz2 (nonmag) 2.451 1.919 0.532

all 3d (mag) 2.047 2.323 0.276

dz2 (mag) 2.011 2.243 -0.232
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performed the calculation of ∆vsupercellFe−X (X = V, Co, Ni, and Cu) using 3d orbitals and
dz2 orbitals in Fe1X7 and Fe7X1 supercell. The obtained results are summarized in
Tables 6.1-6.4. According to these tables, we found that the differences in ∆vsupercellFe−X

calculated by using Fe1X7 and Fe7X1 are relatively small when we exploit the average
of all 3d orbitals in nonmagnetic mode. Therefore, we exploit this method for the CPA
calculations. We will discuss the dependence of the results on the constants subtracted
from the on-site potential of X in magnetic moment in the last part of the discussion
of magnetic moments.

6.3 Bloch Spectral Function

First, we show results for the Bloch spectral function of bcc Fe-X (X = V, Co, Ni,
and Cu) alloys calculated by both the Wannier-CPA and the KKR-CPA methods to
compare the basic electric structure that determines all physical quantities. The Bloch
spectral function is the imaginary part of the trace of the Green’s function given as
follows:

A(k, E) = − 1

π
Im Tr Gc(k, E) . (6.1)

If we plot the wave vector and energy region where the Bloch spectral function takes
finite values, it shows a structure very similar to the band structure or dispersion
relation E(k) of the pure systems. Figures 6.1, 6.2, 6.3, and 6.4 shows the Bloch
spectral function for bcc FexV1−x, FexCo1−x, FexNi1−x, and FexCu1−x (x = 0.0, 0.2,
0.4, 0.6, 0.8, and 1.0) alloys, respectively, calculated by both the Wannier-CPA (left
side) and the KKR-CPA (right side) methods. The calculations were performed by
using the bcc structure for all the calculations on Fe-X alloys for simplicity, although
Co takes hexagonal structure, and Ni and Cu take fcc structure in the pure form. For
the calculation for pure Fe and X components, we added a small imaginary part of
0.1 mRy to the energy to obtain visible Bloch spectra because the spectral structure
consists of a delta function for pure Fe and X components. As shown in Figs. 6.1, 6.2,
6.3, and 6.4, we obtain very close spectral structures from the Wannier-CPA and the
KKR-CPA methods, but we can see some small differences in the detailed structure.
In the case of the Wannier-CPA method, spectra near −4 eV split for Fe0.20V0.80 as
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Figure 6.1: Bloch spectral functions along the high symmetry lines Γ-H-P-N-Γ for
FexV1−x with the concentrations (a) x = 0.00, (b) x = 0.20, (c) x = 0.40, (d) x = 0.60,
(e) x = 0.80, (f) x = 1.00 calculated by the Wannier-CPA method, and (g) x = 0.00,
(h) x = 0.20, (i) x = 0.40, (j) x = 0.60, (k) x = 0.80, (l) x = 1.00 calculated by the
KKR-CPA method.
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Figure 6.2: As for Fig. 6.1 but for Fe-Co alloys.
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Figure 6.3: As for Fig. 6.1 but for Fe-Ni alloys.
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Figure 6.4: As for Fig. 6.1 but for Fe-Cu alloys.
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shown in Fig. 6.1(b), which was not observed in the results of the KKR-CPA method
[Fig. 6.1(h)]. For Fe0.40V0.60, the gap of the spectra is rather smaller in the KKR-CPA
calculations compered with the Wannier-CPA method [see Figs. 6.1(c) and 6.1(i)]. In
the KKR method, the CPA is performed within the SCF cycle, but in the Wannier-
CPA method, the CPA is performed independently of the SCF process. Therefore, the
magnetic moment originated from Fe remains in the V-rich region for the Wannier-CPA
method. We expect that the gap of the spectral structures in the Wannier-CPA method
was caused due to this residual magnetic moment of Fe.

Since the Bloch spectral functions of the total state have a rather complex structure,
we resolved them with respect to the spin directions. The corresponding Bloch spectral
functions for the spin-down states in Fe-X (X = V, Co, Ni, Cu) are represented in
Figs. 6.5, 6.6, 6.7 and 6.8, respectively. We also show the Bloch spectral functions for
the spin-up states in Figs. 6.9-6.12.

Concerning the spin-down states, we observe relatively clear spectral structures
at all Fe concentrations in Fe-V, Fe-Co, Fe-Ni alloys [Figs. 6.5, 6.6, and 6.7]. The
spectra gradually shifts from the structure of X to that of Fe in these alloys as the
concentration of Fe is increased. On the other hand, as the concentration is changed
from Cu to Fe0.20Cu0.80, blurred spectral structure of Fe appears between −1 eV and 1
eV for Fe-Cu alloys in both the Wannier-CPA and KKR-CPA results [Figs. 6.8(b) and
6.8(h)], which is about 2 eV lower than that for the pure Fe. This spectral structure
becomes clear and shifts to higher energies as the concentration of Fe is increased to
0.40 and 0.60 in both the methods.

The only major difference of the Bloch spectral function for spin-down states be-
tween the Wannier-CPA and the KKR-CPA results appears in a spectral structure
of Fe0.80Cu0.20 near the H-point in the reciprocal lattice. We observed a pronounced
structure near −2 eV in the case of the Wannier-CPA method as shown in Fig. 6.8(e),
which is strongly affected by the spectral structure of Fe. On the other hand, in the
KKR-CPA method, this feature is mixed with the spectrum of Cu at around −5 eV
forming a single peak spectral structure [Fig. 6.8(k)].

For pure bcc Fe, we observed weak spectral features in the spin-down channel that
reflect the main spectra of the spin-up states between −2 eV and 2 eV in the results
obtained by the Wannier-CPA and the KKR-CPA methods [Figs. 6.5(f) and 6.5(l)].
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Figure 6.5: Bloch spectral functions for the spin-down states along the high symmetry
lines Γ-H-P-N-Γ for FexV1−x with the concentrations (a) x = 0.00, (b) x = 0.20, (c)
x = 0.40, (d) x = 0.60, (e) x = 0.80, (f) x = 1.00 calculated by the Wannier-CPA
method, and (g) x = 0.00, (h) x = 0.20, (i) x = 0.40, (j) x = 0.60, (k) x = 0.80, (l)
x = 1.00 calculated by the KKR-CPA method.
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Figure 6.6: As for Fig. 6.5 but for Fe-Co alloys.
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Figure 6.7: As for Fig. 6.5 but for Fe-Ni alloys.
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Figure 6.8: As for Fig. 6.5 but for Fe-Cu alloys.
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These weak features can be ascribed to the relativistic effect of the mixing of spin-up
and spin-down states by the spin-orbit coupling. This feature of the spin-orbit coupling
is also observed for pure Co [Figs. 6.6(a) and 6.6(g), pure Ni [Figs. 6.7(a) and 6.7(g)],
as well as some alloy systems having high Fe, Co, or Ni concentration.

Figures 6.9, 6.10, 6.11, and 6.12 shows the Bloch spectral functions for the spin-up
states in Fe-X (X = V, Co, Ni, and Cu), respectively, calculated by both the Wannier-
CPA and the KKR-CPA methods. Unlike the spectral structure of Fe0.20Cu0.80 in
the spin-down state, the blurred spectral structure near the Fermi energy does not
show up in the spin-up state as shown in Figs. 6.12(b) and 6.12(h), forming a sharper
structure over the entire region. This so called virtual crystal like behavior indicates
that the spin-up spectra of pure Fe and Cu are energetically closer to each other than
those of the spin-down states. For the same reason, the spectral structures between
−6 eV and −4 eV are less blurred compared with those between −3 eV and −1 eV
in FexCu1−x (x = 0.20 ∼ 0.80) alloys since the spectral structure of the pure Fe and
Cr are energetically closer to each other between −6 eV and −4 eV. This behavior
was observed for both the Wannier-CPA and the KKR-CPA methods [Figs. 6.12(b)-
(e) and 6.12(h)-(k)]. The spectral structures of spin-up states in Fe-Co and Fe-Ni are
also clearer than that of spin-down states [Figs. 6.10(b)-(e) and 6.10(h)-(k) for Fe-Co
alloys, and Figs. 6.11(b)-(e) and 6.11(h)-(k) for Fe-Ni alloys] which also represents the
structural similarity of the spectra of spin-up states of Co and Ni with that of Fe.
However, on the other hand, the spectra of spin-up states is blurry compared with that
of spin-down states for Fe-V alloys [Figs. 6.9(b)-(e) and 6.9(h)-(k)]. We again observed
weak spectral feature corresponding to the main spectral structure of the spin-down
states in the pure Fe between the energy of −2 eV and 1 eV [Figs. 6.9(f) and 6.9(l)] as
well as pure Co, and pure Ni [Figs. 6.10(a) and 6.10(g) for Co, and Figs. 6.11(a) and
6.11(g) for Ni].

6.4 Density of States

Figure 6.13 shows the computational results for the DOS near the Fermi energy (−2
eV to 2 eV) obtained by the Wannier-CPA and the KKR-CPA methods for bcc Fe-X
(X = V, Co, Ni, and Cu) alloys to monitor the occupation trend of the states in each
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Figure 6.9: Bloch spectral functions for the spin-up states along the high symmetry
lines Γ-H-P-N-Γ for FexV1−x with the concentrations (a) x = 0.00, (b) x = 0.20, (c)
x = 0.40, (d) x = 0.60, (e) x = 0.80, (f) x = 1.00 calculated by the Wannier-CPA
method, and (g) x = 0.00, (h) x = 0.20, (i) x = 0.40, (j) x = 0.60, (k) x = 0.80, (l)
x = 1.00 calculated by the KKR-CPA method.
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Figure 6.10: As for Fig. 6.9 but for Fe-Co alloys.
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Figure 6.11: As for Fig. 6.9 but for Fe-Ni alloys.
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Figure 6.12: As for Fig. 6.9 but for Fe-Cu alloys.
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alloy. Here, the DOS is given by integrating the Bloch spectral functions over the BZ:

D(E) =

∫
BZ

d3k A(k, E) . (6.2)

or alternatively, the DOS is written using the CPA Green’s function as follows:

D(E) = − 1

π
Im Tr Gc(E) . (6.3)

We plotted the DOS of pure Fe and the pure X component with red and blue lines,
respectively. For the alloy systems, we plotted the DOS with a neutral color between
red and blue depending on the concentration of Fe and X. Figure 6.13 shows that
the qualitative behavior of the DOS energy shift with increasing X concentration is
fully consistent for both the Wannier-CPA and the KKR-CPA methods. A represen-
tative example can be seen in the up-DOS of Fe-Ni alloys. For the KKR-CPA method
[Fig. 6.13(g)], the peak structure arising from Fe at around −1 eV is shifted to lower
energies as the concentration of Ni increases, taking a minimum at around Fe0.50Ni0.50,
and is then shifted to higher energies. This behavior is reproduced quite well by the
Wannier-CPA calculations as shown in Fig. 6.13(c).

To examine the element-specific properties of the DOS, we define the component
projection of the Green’s function. According to the discussion in Sec. 4.4, the CPA
condition can be rewritten using the Green’s function as follows:

G0i0i
c (E) =

∑
α

cαG
0i0i
α (E) , (6.4)

where G0i0i
α (E) is given by

G0i0i
α (E) = G0i0i

c (E) +G0i0i
c (E)tiα(E)G

0i0i
c (E) . (6.5)

Here, G0i0i
α (E) gives the Green’s function when for the site i of the 0-th unit cell

the t-matrix of the CPA medium is replaced by that for component α. Therefore,
G0i0i

α (E) corresponds to the α-component projection of the CPA Green’s function. As
the component projection of the Green’s function is determined in the CPA cycle, the
calculation of the element-specific properties of the DOS is straightforward. Figures
6.14 and 6.15 show the Fe and X-specific DOS of Fe-X (X = V, Co, Ni, and Cu)
alloys, respectively. Here, again, the DOS of the alloy with a high Fe concentration is
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Figure 6.13: DOS of FexX1−x where X atoms are (a) V, (b) Co, (c) Ni, and (d) Cu
alloys calculated by the Wannier-CPA method, and (e) V, (f) Co, (g) Ni, and (h) Cu
alloys calculated by the KKR-CPA method. The DOS of pure Fe is given by red lines,
and that of X is given by blue lines. For alloys, we give the DOS by intermediate colors
between red and blue depending on the concentration of Fe and X.
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plotted with reddish lines, and that with a high X concentration is given with bluish
lines. On the whole, structural similarities in the element specific DOS calculated by
both the Wannier-CPA and the KKR-CPA methods can be found in these figures,
but we can also see some small differences in the detailed structure. For example,
the Fe-component projection of the DOS of Fe-V alloys in the V-rich region obtained
by KKR-CPA method has a peak structure near −1.5 eV [Fig. 6.14(e)], which are
not observed in the up-DOS and quite small in the down-DOS of the Wannier-CPA
calculation [Fig. 6.14(a)].

6.5 Magnetic Moment

In the previous two subsections, we found that the Wannier-CPA method can reproduce
the Bloch spectral function and the DOS of Fe-based transition-metal alloys quite well.
Finally, we discuss the predicted physical quantities by the Wannier-CPA method. As
an example, we focused on the magnetic moment. Concerning the magnetic moment
in Fe-based transition-metal alloys, one of the best benchmarks is the Slater-Pauling
curve [84]. The Slater-Pauling curve is a convex curve that appears when the saturation
magnetization of these alloys is plotted against the number of electrons per atom. In
Fe-Co alloys, it is known that the maximum of the saturation magnetization occurs
near Fe0.7Co0.3. The left and right sides of the curve form a straight line with an angle
of 45 degrees with the horizontal axis of the Fe-based alloys when the scale of one
electron on the horizontal axis and one Bohr magneton on the vertical axis are equal.
Previous research shows that the experimental results of the Slater-Pauling curve are
excellently reproduced by the KKR-CPA calculations [85, 39]. Here, we compare our
results for the magnetic moment obtained by our Wannier-CPA method with those of
the KKR-CPA method.

Figure 6.16 shows the magnetic moment in the Fe-X (X = V, Co, Ni, and Cu) al-
loys calculated by the Wannier-CPA and the KKR-CPA methods. There is a structural
transition from bcc to fcc in the Fe-based alloys when the number of electrons exceeds
about 26.7. However, all the calculations were done in bcc structure for the one-to-one
comparison between the Wannier-CPA and the KKR-CPA methods. We can conclude
from Fig. 6.16 that the Wannier-CPA calculation gives reliable calculation results con-
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Figure 6.14: As for FIG. 6.13 but projected to Fe-component.
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Figure 6.15: As for FIG. 6.13 but projected to X-component (X = V, Co, Ni, and Cu).
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Figure 6.16: Magnetic moment of Fe-X (X = V, Co, Ni, and Cu) calculated by (a) the
Wannier-CPA and (b) the KKR-CPA methods.

cerning the calculation of magnetic moments for the following reasons. First of all,
the magnetic moments calculated by the Wannier-CPA method form a typical Slater-
Pauling curve, which takes a maximum moment in the case of Fe0.75Co0.25 and intersects
the horizontal axis at an angle of almost 45 degrees. Furthermore, the calculated mag-
netic moments in the bcc Fe-X (X = V, Co, Ni, and Cu) alloys by the Wannier-CPA
method are in good agreement with those by the KKR-CPA method, since the average
values of the deviation in magnetic moments are only 0.057, 0.064, 0.036, and 0.080 µB,
respectively. These results represent that the Wannier-CPA method can be a power-
ful tool for the prediction of physical quantities expressed by the integral up to Fermi
energy despite its simple formulation.

Since we set the reference values of the on-site potential by a simple method using
supercell calculations, we discuss the effect of the change in the magnetic moment
due to deviation from the actual reference values of the on-site potential. Since the
difference of ∆vsupercellFe−X (X = V, Co, Ni, and Cu) obtained from Fe1X7 and Fe7X1 is
within 1 eV 1, we calculated the magnetic moment of Fe0.5X0.5 by adding 0.5 eV to
the diagonal terms of the on-site potential of X in the Wannier-CPA method. Then,

1The average and the difference of ∆vsupercellFe−X obtained from Fe1X7 and Fe7X1 (X = V, Co, Ni,
and Cu) are −1.75 eV and 0.824 eV for V, 0.803 eV and 0.0656 eV for Co, 0.885 eV and 0.0599 eV for
Ni, and 2.28 eV and 0.530 eV for Cu. For the detailed values, see Sec. 6.1.
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we calculated the magnetic moment by subtracting 0.5 eV from the diagonal terms of
the on-site potential of X and derived the difference between the two moments. We
divided it by the magnetic moment calculated without changing the on-site potential
and derived the rates of change in magnetic moment. These rates of change in the
magnetic moment were only 6.55%, 2.07%, 0.23%, and 4.72% in Fe0.5V0.5, Fe0.5Co0.5,
Fe0.5Ni0.5, and Fe0.5Cu0.5, respectively, even with the large difference of 1 eV in the
on-site potential. Since the difference in the reference values of the on-site potentials
between Fe and X from the actual values has only little effect on the physical quantities,
this method using supercell can be a simple and valuable way for determining the
relative difference of the on-site potentials of Fe and X.

6.6 Conclusion

We have formulated the CPA in the Wannier representation to develop a calculation
method for homogeneous random alloys, which can be readily accessed from any first
principles calculation methods. This Wannier-CPA method significantly reduces the
computation time compared with those of the existing methods. Compared to the KKR-
CPA method, this Wannier-CPA method can be expected to reduce the computational
time by a factor of ten. To investigate the performance of this Wannier-CPA method,
we have examined the Bloch spectral function, the DOS, and the magnetic moment
for various Fe-based transition-metal alloys from the Green’s function obtained by the
Wannier-CPA method, and compared with the results of the calculation by the well-
developed KKR-CPA method. Regarding the Bloch spectral function, the spectral
structures of the Fe-Cu alloys were compared by both the Wannier-CPA and the KKR-
CPA methods. We observed a blurred spectral structure of Fe near the Fermi energy
in the spin-down state when the Fe content is low. On the other hand, we observed a
clear virtual crystal-like spectral structure in the spin-up state. This is because of the
similarity in the energy structure of Fe and Cu spin-up states. These behaviors are the
same in both the Wannier-CPA and the KKR-CPA methods. Furthermore, by changing
the concentration of Fe, we also found an energy shift in the peak structure of the DOS.
This is the same for the Wannier-CPA and the KKR-CPA calculations for all of the Fe-
X (X = V, Co, Ni, and Cu) alloys. Finally, we calculated the magnetic moment of the
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Fe-X alloys. We can reproduce the well-known Slater-Pauling curve by the Wannier-
CPA method that is quite similar to the KKR-CPA method, which confirms the good
predictive power for physical quantities for the Wannier-CPA method. In this paper,
we have discussed only the Bloch spectral function, the DOS, and the magnetic moment
in the Wannier-CPA method. Nevertheless, one may conclude that this Wannier-CPA
method have great applicability to other physical quantities and also large compound
systems, which have many restrictions concerning the calculation time as the main
bottleneck. The transport calculation should be one such example. Although there are
many works on the anomalous and spin Hall effect using the Wannier functions, only
the intrinsic contribution of the conductivity is considered in all these works. Using this
formulation we have given, it can be possible to calculate the conductivity including the
extrinsic contributions as well. To evaluate the potential of the developed Wannier-CPA
method, we expect further applications of the method to various materials in addition
to transition-metal alloys.
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Chapter 7

Magnetic Properties of Fe-Cr Alloys

In the previous section, we dealt with the Fe-based transition metal alloys as target
materials for the CPA calculations. However, we only focused on the Fe-V, Fe-Co,
Fe-Ni, and Fe-Cu alloys and omit Fe-Cr and Fe-Mn alloys. This is because that antifer-
romagnetic phase transitions are predicted in these alloy systems in Cr-rich or Mn-rich
regions [82, 83] which cannot be treated using one unit cell. Especially for pure bcc Cr,
the ordered states is the sinusoidal spin density wave (SDW) and furthermore its wave
vector is incommensurate with the bcc lattice. For the calculation of pure Cr having
SDW states, we have to deal with a large number of Cr atoms such as 40 Cr per unit
cell. It is a quite tough work to perform DFT calculations even for pure Cr as indicated
in Ref. [82]. However, as a more practical calculation method of Cr, we performed
the electronic structure calculations not for SDW state but for antiferromagnetic states
having commensurate wave vector. In this chapter, we investigate the magnetic phase
transition for Fe-Cr alloys by changing the relative concentration of Fe and Cr using
unit cell having two atomic sites.

7.1 Computational Steps

The electric structure calculation of the KKR Green’s function method is performed self-
consistently by the fully relativistic spin-polarized Munich SPR-KKR package [79, 80].
For the exchange-correlation functional, the parametrization given by Vosko et al. [81]
has been used. An angular momentum cutoff of lmax = 4 was used for the KKR multiple-
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scattering calculations. For the calculation of homogeneous random alloys, we exploited
coherent potential approximation (CPA) [For the methodology and algorithm for the
CPA calculation in the KKR method, see Sec. 4.4]. We set the lattice parameter a =
2.96 Å in KKR-CPA calculations that is about 3% larger than that of pure bcc Fe and
Cr obtained by experiments. This is because that the magnetic structure of pure bcc Cr
is not antiferromagnetic but nonmagnetic if we use the experimental lattice parameter.
This is the artifact of the calculation of Cr that the ground state is nonmagnetic with
equilibrium lattice constant about 1.6% below the experimental value [82]. To consider
the antiferromagnetic phase transition in high Cr concentration, we prepared diatomic
supercell having bcc structure. Each of the two sites in the supercell, we fill the same
amount of Fe and Cr, but the direction of magnetic moments are not always the same.
We refer to these two sites as site 1 and site 2, and Fe and Cr contained in each site as
Fe1 and Cr1, and Fe2 and Cr2, respectively.

7.2 Magnetic Structure

To determine the magnetic structure of Fe-Cr alloys, we first performed SCF calculation
in Fe-Cr diatonic supercell. There are six spin configurations in the diatomic supercell
that can be written as {Fe1, Cr1, Fe2, Cr2} = {up, up, up, up}, {up, up, up, down},
{up, up, down, up}, {up, up, down, down}, {up, down, up, down}, and {up, down,
down, up}. We performed SCF calculation using all of these configurations. However,
we cannot obtain {Fe1, Cr1, Fe2, Cr2} = {up, up, down, up} state in all concentration
of Fe and Cr because of its instability of the spin configuration. Figure 7.1 shows the
Fe-concentration dependence of the total energy in FexCr1−x (x = 0.0 ∼ 0.3). As the
rate of change in total energy due to the concentration of Fe and Cr is much larger
than the energy deference due to the difference in spin configurations, we subtracted
−886.73468×x−4195.5871 Ry, the regression curve in all configurations, from the total
energy. Here, we only show the results in Cr-rich region since only {Fe1, Cr1, Fe2, Cr2}
= {up, down, up, down} configuration is extremely stable in Fe-rich region. Therefore,
there is no need to discuss the stability of other configuration in Fe-rich region.

In Fig. 7.1, some curves of the total energy with respect to Fe concentrations are
ended in the middle. For {Fe1, Cr1, Fe2, Cr2} = {up, down, down, up} state which
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Figure 7.1: Fe-concentration dependence of the total energy in FexCr1−x alloys, where
the Fe concentration is changed from x = 0.0 to x = 0.3. Since the energy deference
due to the concentration of Fe is quite large, we subtracted −886.73468×x−4195.5871

Ry from the total energy. The blue curve refers to the spin configuration of {Fe1, Cr1,
Fe2, Cr2} = {up, up, up, up}, light-blue curve refers to {up, up, up, down}, green curve
refers to {up, up, down, down}, orange curve refers to {up, down, up, down}, and red
curve refers to {up, down, down, up} states.

is shown in red curve in Fig. 7.1, the configuration is not stable higher than Fe con-
centration of x = 0.01. The {Fe1, Cr1, Fe2, Cr2} = {up, up, up, up} state [blue curve
in Fig. 7.1] changes continuously to {up, down, up, down} state [orange curve in Fig.
7.1] as the Fe concentration gets higher than x = 0.22. The {Fe1, Cr1, Fe2, Cr2} =
{up, up, up, down} state [light-blue curve in Fig. 7.1] also changes continuously to {up,
down, up, down} states when the Fe concentration is higher than x = 0.26, and Fe2
spin suddenly flip from spin-up to spin-down state when the Fe concentration is lower
than x = 0.06. In Cr-rich region where the Fe concentration is lower than x = 0.13,
the most stable configuration is {Fe1, Cr1, Fe2, Cr2} = {up, up, down, down} state.
In this configuration, the magnetic moment of Cr becomes 1.0872 µB in pure Cr limit.
This is a reasonable result since the magnetic moments of Cr are quite small values of
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0.0000 µB and 0.0008 µB in the case of the {Fe1, Cr1, Fe2, Cr2} = {up, up, up, up}
and {up, down, down, up} states, respectively. In Fe0.13Cr0.87, the total energy of {Fe1,
Cr1, Fe2, Cr2} = {up, up, up, up}, {up, up, up, down}, and {up, up, down, down}
are almost the same. This is consistent with the experimental results that there is the
antiferromagnetic-to-ferromagnetic phase transition at about x = 0.14 and the spin-
glass phase between the two magnetic phases [87, 88, 89, 90, 91, 92]. The most stable
configuration is {Fe1, Cr1, Fe2, Cr2} = {up, up, up, down} when the Fe concentration
is between x = 0.13 and x = 0.24. The magnetic structure is then changed to {Fe1,
Cr1, Fe2, Cr2} = {up, down, up, down} state when the Fe concentration is larger than
x = 0.24.

7.3 Magnetic Moment

To further investigate the element-specific magnetic properties in Fe-Cr alloys, we focus
on the magnetic moment. Table 7.3 shows the total magnetic moment and the mag-
netic moment of each element in Fe-Cr alloys. The calculation was done for the spin
configuration having lowest energy, that is, we exploit {Fe1, Cr1, Fe2, Cr2} = {up, up,
down, down} state for the Fe-concentration of x = 0.00 ∼ 0.12, {up, up, up, down}
state for x = 0.14 ∼ 0.24, and {up, down, up, down} state for x = 0.26 ∼ 0.30. Here,
we do not list the magnetic moment of Fe-Cr alloys having Fe-concentration larger
than x = 0.30 since we only observed the gradual change in magnetic moments without
phase transition in Fe-rich region.

We found that the magnetic moments of Fe and Cr tend to be aligned in the same
direction in Cr-rich region. However, in Fe-rich side, the magnetic moments of Fe and
Cr are arranged in opposite directions. Concerning the trsansition of the magnetic
structure of Cr-Fe alloys, we observed a sudden flip of the magnetic moment of Fe2
between x = 0.12 and x = 0.14. On the contrary, the second transition of the magnetic
structure between x = 0.24 and x = 0.26 is an gradual change of the magnetic moment
of Cr1.
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Table 7.1: Magnetic Moment of Fe-Cr Alloys
Concentration Total Magnetic Magnetic Magnetic Magnetic
of Fe Magnetic Moment Moment Moment Moment

Moment [µB] of Fe1 [µB] of Cr1 [µB] of Fe2 [µB] of Cr2 [µB]

0.00 0.0000 1.4823 1.0872 -1.4823 -1.0872

0.02 0.0000 1.9704 1.0912 -1.9704 -1.0912

0.04 0.0000 2.2205 1.0664 -2.2205 -1.0664

0.06 0.0000 2.2973 1.0400 -2.2973 -1.0400

0.08 0.0000 2.3324 1.0131 -2.3324 -1.0131

0.10 0.0000 2.3495 0.9874 -2.3495 -0.9874

0.12 0.0000 2.3585 0.9618 -2.3585 -0.9618

0.14 0.5400 2.2947 0.8332 1.8439 -0.8791

0.16 0.6581 2.2967 0.7437 1.9805 -0.7750

0.18 0.7728 2.2967 0.6297 2.0732 -0.6465

0.20 0.8758 2.2919 0.5067 2.1323 -0.5179

0.22 0.9710 2.2834 0.3706 2.1760 -0.3835

0.24 1.0664 2.2476 0.0036 2.2446 -0.0191

0.26 1.1507 2.2528 -0.0141 2.2528 -0.0141

0.28 1.2349 2.2599 -0.0213 2.2599 -0.0213

0.30 1.3191 2.2670 -0.0294 2.2670 -0.0294

7.4 Anomalous Hall Conductivity

We performed the calculation of the anomalous Hall conductivity using the KKR-CPA
method. We exploited the Kubo-Bastin formula implemented in the SPR-KKR code
for the calculation of the conductivity. For the diatomic Fe-Cr supercell, we couldn’t
make the calculation converged even with the 10 million k-vector mesh. Therefore,
we performed the calculation only for the unit cell having single atomic site. This
calculation cannot describe the magnetic transition of Fe-Cr alloys in Cr-rich region
since it cannot present the antiferromagnetic configuration of the magnetic moments.
However, we can obtain reasonable results for the Fe-rich region where the Fe-Cr alloys
have ferromagnetic spin configurations.

85



CHAPTER 7. MAGNETIC PROPERTIES OF FE-CR ALLOYS

Figure 7.2: (a) Anomalous Hall conductivity calculated by the KKR-CPA method for
Fe-Cr alloys exploiting Kubo-Bastin formula. The blue dots indicate the calculation
results of the conductivity without vertex corrections, while light-blue dots indicate
the results with vertex corrections. (b) Intrinsic contribution of the anomalous Hall
conductivity calculated by using the Wannier function in Fe-Cr eight-atomic supercell.

Figure 7.2(a) shows the anomalous Hall conductivity calculated by the KKR-CPA
methods. In the figure, blue dots shows the intrinsic contribution of the anomalous
Hall conductivity, whereas the light-blue dots shows the conductivity including external
contributions. Here, we performed the calculation using the lattice constant a = 2.86

Å which is the experimental value of bcc Fe. We observed a peak structure in the
conductivity near the flipping point of the magnetic moment of Cr.

We have an interest whether the peak structure of the anomalous Hall conductiv-
ity can be reproduced by the supercell calculation using Wannier formalism. For the
calculation of the conductivity, we prepared the eight-atomic supercell. We filled the
eight-atomic sites by Fe or Cr and performed the SCF calculations with all possible
atomic configurations. Since we have to exploited as much as 27 million k-vector mesh
to make the calculation converged, we reduced the calculation time by using the crys-
tal symmetry. The calculation method of the anomalous Hall conductivity and its
symmetry operations are summarized in Appendix B.

Figure 7.2(b) shows the anomalous Hall conductivity calculated by Wannier formal-
ism. Here, we excluded the results of some atomic configurations in which the SCF
calculations were not converged because of the energy instability. We only focused on
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the intrinsic contribution of the anomalous Hall conductivity. Concerning the extrinsic
contributions, the calculation method has not been developed in Wannier representa-
tion. As shown in Fig. 7.2(b) the anomalous Hall conductivity is gradually increased
and changes its sign as the Cr concentration is increased. However, the values of the
anomalous Hall conductivity differ significantly depending on the arrangement of Fe
and Cr atoms even though the concentration of Fe and Cr is the same. In real alloys
the ensemble average with randomly arranged Fe and Cr should be measured depend-
ing on the energy stability of the Fe and Cr configurations in the crystal. The results
present the limits of the application of the supercell for the calculation of the physical
quantities in random alloys. For a more sophisticated way for the calculation of super-
cell, a method using the special quasirandom structure (SQS) developed by Zunger et
al. [86] is known. In this methods the minimally-sized supercell that mimics physically
most relevant radial correlation functions of a perfectly random structure is used.

7.5 Conclusion

In this chapter, we performed the CPA calculation in bcc Fe-Cr alloys. To investigate
the transition of the magnetic structure in these alloys, we performed the SCF calcu-
lations using a diatomic supercell. Form the relative size difference in the total energy
of the diatomic supercell, we concluded that there are two transition of the magnetic
structure in Fe-Cr alloys as the concentration of Fe is increased. In Cr-rich region,
the Fe-Cr alloys have the antiferromagnetic configuration as suggested by the antifer-
romagnetism of pure bcc Cr and the magnetic moments of Fe and Cr are in the same
directions. On the other hand, the Fe-Cr alloys have the ferromagnetic configuration in
Fe-rich region where the magnetic moments of Fe and Cr are in opposite directions. We
examined the magnetic moment of Fe and Cr at each site of the supercell and found
that the magnetic moment of one of the Fe sites sharply flips at the first transition
in the Cr-rich region. On the contrary, the second transition is a gradual change in
the magnetization of Cr. Finally, we performed the calculation of the anomalous Hall
conductivity. In the results of the KKR-CPA methods, we observed a peak structure in
conductivity. However, we could not reproduce the peak structure when we calculated
the intrinsic contribution of the anomalous Hall conductivity in eight-atomic supercell
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using Wannier representation. One of the reason is that the conductivity changes a lot
depending on the configuration of Fe and Cr in the supercell. Further investigations
are necessary for the calculation of Fe-Cr alloys.
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Chapter 8

Summary

In this study, we aimed to develop an efficient method for the calculation of alloy sys-
tems. To achieve this purpose, we focused on the Wannier formulation. This is because
that Wannier functions can be constructed from any kind of first-principles calculation
method if the wave function is available. Therefore, we can obtain the computation
method that is independent on the applied first-principles electric structure code. We
exploited the CPA method which is the most sophisticated method for treating ho-
mogeneous random alloys. To incorporate the CPA into Wannier representation, we
investigated the KKR Green’s function method in which the implementation of CPA is
well-established and developed the algorithm that has the same structure as the Mills’
algorithm used in the KKR method. This Wannier-CPA method required quite low
computational effort compared to the KKR method.

Chapter 6: Application of the Wannier-CPA Method to Fe-based

transition-metal alloys

In this chapter we applied the Wannier-CPA method we have developed in Chapter 5
to Fe-based 3d transition-metal alloys Fe-X (X = V, Co, Ni, and Cu). To verify the
performance of the Wannier-CPA methods we compared the Bloch spectral function,
the DOS, and the magnetic moment calculated by the Wannier-CPA method in Fe-X
alloys with those calculated by the KKR-CPA method. Concerning the ambiguity of
the reference values of the on-site potential, we proposed a simple method to exploit
the supercell calculations and took concentration average for the site off-diagonal terms
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which was suggested by the previous studies on the TB-CPA and the LCAO-CPA
methods. Even though the calculation time in the Wannier-CPA method was reduced
to about 1/10 compared to that in the KKR-CPA method, these physical quantities
obtained by the Wannier-CPA method well reproduced the results by the KKR-CPA
method.

Chapter 7: Magnetic Properties of Fe-Cr Alloys

In this chapter we focused on the Fe-Cr alloys which have antiferromagnetism in Cr-rich
region. To investigate the magnetic structure of these alloys, we exploited the diatomic
supercell with a bcc structure. As we expected we observed an antiferromagnetic phase
in Cr-rich region while we obtained ferromagnetic phase in Fe-rich region. We also
observed an intermediate phase in which the magnetic moments in the two atomic
sites are asymmetric. We performed the calculation of the anomalous Hall conductiv-
ity for Fe-Cr alloys. In the results of the conductivity calculated by the KKR-CPA
method, a peak structure appeared when we changed the concentration of Fe and Cr.
However, we could not reproduce the peak structure by the supercell calculations in
Wannier representation. Further investigations such as the SQS and the Wannier-CPA
implementation of the conductivity calculations might be necessary to treat these alloy
systems.

Concerning the Wannier-CPA methods, we only presented the computation results
of the physical quantities expressed by single Green’s function in this thesis. However,
we are confident that this new approach can be a significant step towards an efficient
calculation of other physical quantities such as the anomalous and spin Hall effect
in homogeneous random alloys that cannot be handled by the conventional Wannier
representation. Furthermore, the Wannier-CPA method has potential applicability to
large compound systems because of its low computational cost needed. This new CPA
method will open a new avenues for developing future material researches in alloy
systems.
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Appendix A

Determination of the Fermi Energy

In this section we schematically illustrate the calculation method of the Fermi energy
in the Wannier-CPA method [Fig. A.1]. Since the coherent potential depends on the
energy, we have to perform complex integration on the Green’s function to determine
the number of states. For the obtained number of states, we determine the Fermi energy
as follows.

The number of states N(E) for a certain energy E is given by

N(E) =

∫ E

0

dE ′ρ(E ′) . (A.1)

Here, ρ(E) is the density of states for the energy E. Considering the shaded area in
Fig. A.1, we can approximate the difference of the number of states ∆N in the case we
exploit the temporary Fermi energy ẼF as

∆N ≈ ρ(ẼF)×∆E . (A.2)

Therefore, we can estimate the actual Fermi energy for the system as

EF = ẼF +∆E = ẼF +
N −N(ẼF)

ρ(ẼF)
. (A.3)

For the computation, we repeat this scheme until the difference ∆N becomes smaller
than the threshold.
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Figure A.1: The schematic illustration of the method to determine the Fermi energy
where ẼF is the temporary Fermi energy while EF used in the calculation is the actual
Fermi energy.
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Appendix B

Anomalous Hall Conductivity

Calculation in Wannier Representation

In Sec. 7.4 we performed the calculation of the intrinsic contribution of the anomalous
Hall conductivity in Wannier representation. We exploited the method given by Wang
et. al. [47]. In this appendix, we briefly summarize the calculation methods using
Wannier functions and its symmetry operations.

B.1 Formulation

The intrinsic contribution of the anomalous Hall conductivity is given by the following
BZ integral

σαβ(µ, T ) = −e
2

ℏ
∑
n

∫
BZ

dk

(2π)3
Ωn,αβ(k)f(εnk − µ, T ) , (B.1)

where f(εnk − µ, T ) is the Fermi distribution function

f(εnk − µ, T ) =
1

eβ(εnk−µ) + 1
, (B.2)

with β = 1/kBT and Ωn,αβ(k) is called the Berry curvature that is the rotation of the
Berry connection Anm,α(k)

Ωn,αβ(k) =
∂Ann,β(k)

∂kα
− ∂Ann,α(k)

∂kβ
. (B.3)
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Here, the Berry connection is represented as follows:

Anm,α(k) =i

∫
Ωcell

dru∗nk(r)
∂umk(k)

∂kα
, (B.4)

where unk(k) are the cell-periodic Bloch functions and the following relation holds for
the Bloch function ψnk(r)

ψnk(r) = eik·runk(r) . (B.5)

B.2 Gauge Transformation

We perform a gauge transform to the Berry connection

Ãnm(k) = i

∫
cell

drũ∗nk(r)∇kũmk(r) , (B.6)

where ũnk(r) is given by

ũnk(r) =
∑
q

U (k)
qn uqk(r) . (B.7)

The operator U (k)
qn is the unitary matrix which is defined in Sec. 5.1. We will represent

the Berry connection Anm(k) in terms of the gauge transformed one Ãnm(k) since the
expected values expressed by Wannier functions such as Eq. (5.8) are the quantities
after the transformation. Here, we show the final results

Anm(k) = Ã(U†)
nm (k) +D(U†)

nm (k) , (B.8)

where Ã
(U†)
nm (k) and D

(U†)
nm (k) are given by

Ã(U†)
nm (k) =

∑
q,q′

U (k)
nq Ãqq′(k)U

(k)†
q′m , (B.9)

D(U†)
nm (k) = i

∑
q

U (k)
nq ∇kU

(k)†
qm . (B.10)

For the computation of the values D
(U†)
nm (k) we exploit the following relation

−iD(U†)
nm (k) =

∑
q,q′ U

(k)
nq [∇kH̃

(k)
qq′ ]U

(k)†
q′m

εmk − εnk .
(B.11)
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Figure B.1: The schematic illustration of the adaption of the k-mesh. The left-side
figure shows the original k-mesh used for the calculation of conductivity. If the con-
ductivity at the upper right point is larger than the threshold, the k-mesh is retaken as
shown in the right-side figure.

in the case of n ̸= m where εnk is the energy eigenfunction of the Bloch function

Ĥ(r)ψnk(r) = εnkψnk(r) , (B.12)

and H̃(k)
qq′ is given by

H̃(k)
nm =

∑
R

eik·R
∫
all

drw∗
n(r)Ĥ(r)wm(r −R) . (B.13)

According to Ref. [47], the Berry curvature can be approximated as follows:∑
n

Ωn,αβ(k)f(εnk − µ) ≈ i
∑
n ̸=m

D(U†)
nm,α(k)D

(U†)
mn,β(k) . (B.14)

The important point here is that we can perform the calculation of the Berry curvature
independently for each k-points. Therefore, it is easy to reduce the number of k-
points used for the calculation of the conductivity by symmetry operation which will
be discussed in the following sections.

B.3 Symmetry Operation

For the calculation of the intrinsic contribution of the anomalous Hall conductivity,
we have to exploit millions to tens of millions of k-vector mesh. Since the intrinsic
conductivity is originated in the geometrical structures of the energy band, especially
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Figure B.2: One of the eight-atomic supercell of Fe-Cr we exploited for the calculation
of the anomalous Hall conductivity. The blue and red dots represent the atomic site of
Fe and Cr we used for the calculation. The gray dots are the other atomic site for bcc
lattice. Here, we also show the unit cell we used and its conventional cell.

the singular structures such as the Weyl points, we have to pick up all the effects of
these structures by using fairly large number of k-points. In Sec. 7.4 we exploited eight-
atomic supercell for the calculation of the conductivity. However, it is not realistic to
apply the formulation of the Berry curvature we present for such a large system. We
exploit two methods to reduce the calculation time.

The first method is quite simple: we increase the number of k-points only for the
region in k-space where the Berry curvature takes a value larger than the threshold.
We present a schematic illustration in Fig. B.1. In this case the upper right k-point
is retaken to double the number in each direction. For the actual computation we
quadruple the number of k-mesh where the Berry curvature takes a large value.

The other method is to use the crystal symmetry. In the cubic crystal system we
used there are up to 48 symmetry operations. Since we are targeting magnetic crystals,
the number of symmetry operations is less than 48. Nevertheless, it is still possible
to save a considerable amount of computation time by reducing the k-points used for
the calculation. As an example, we show one of the eight-atomic supercell of Fe-Cr
in Fig. B.2. The atomic site we exploited is represented by red and blue dots. If we
perform a symmetric operation around the atom at the corner of the conventional cell,
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we obtain

{E|0}, {C2z|0}, {C+
4z|12c}, {C

−
4z|12c}, {I|0}, {σz|0}, {S

−
4z|12c}, {S

+
4z|12c}

for unitary operations. For the anti-unitary operations we have

{C2x|0}, {C2y|0}, {C2a|12c}, {C2b|12c}, {σx|0}, {σy|0}, {σda|
1
2
c}, {σdb|12c} .

Here, we supposed that all of the magnetic moments point in the z-direction. There are
as much as 16 symmetry operations and if we use one million k-mesh for the calculation
of the conductivity, we can reduce the number of k-points to 65,701. We created a
calculation code to determine the crystal symmetry based on the symmetric operation
program implemented in the SPR-KKR and QUANTUM ESPRESSO packages.

B.4 Symmetry of Berry Curvature

Finally, we mention the Berry curvature under the symmetry operations. Suppose that
the Hamiltonian of a crystal is invariant under the unitary operation U

UHU−1 = H . (B.15)

Since we only focus on the symmetry operation in a crystal, the unitary operation U

can be written as

U = S = {R|t} , (B.16)

where R is the rotation or inversion of the lattice vectors and t represents a translation.
Under the operation U , we obtain the following relation for the Bloch functions

ψnk(S
−1r) = ψnRk(r) . (B.17)

Here, the phase is set to one since the phase is arbitrary when calculating the Berry
curvature. By directly substituting Eq. (B.17) into the definition of the Berry curvature
[Eq. (B.3)], we obtain

Ωn(Rk) =

{
R−1Ωn(k) (rotation) ,
−R−1Ωn(k) (inversion) .

(B.18)
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It is evident from Eq. (B.18) that we only need to consider the rotation or inversion in
the k-space.

Next, we consider the case that the Hamiltonian of a crystal is invariant under the
anti-unitary operation A

AHA−1 = H . (B.19)

For the anti-unitary operator, we refer to the operation that the rotation or inversion
itself is not the symmetry operation but it can be a symmetry operation when including
time reversal

A = ΘS . (B.20)

Under the operation A, the following relation holds for the Bloch function:[
ψnk(S

−1r)
]∗

= ψn−Rk(r) . (B.21)

Therefore, we obtain

Ωn(−Rk) =

{
−R−1Ωn(k) (rotation) ,
R−1Ωn(k) (inversion) ,

(B.22)

for the anti-unitary operations.
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