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Chapter 1

Overview

The ordered states of magnetic materials, such as ferromagnets, ferrimagnets, and anti-ferromagnets, have

long been investigated. Spintronics aims to propose low-power-consumption magnetic devices by utilizing

magnons, accompanied by such ordered spin states as collective excitation. In this doctoral thesis, we describe

the results of theoretical studies on magnetically ordered states in amorphous and chiral magnetic materials,

where recent experimental and theoretical studies have pointed out their potential applications to the low-power

magnetic devices.

As for the amorphous magnets, with the renewed interest in heat and spin transport, we re-visit the

magnetic spectrum of amorphous ferromagnet using modern simulation methods. We find two parabolas in

the spectrum, the magnons at wavenumber 0Å−1 and another magnons at wavenumber 3Å−1, which is

similar to that observed in experiments. The physical interpretation of the second dip has long been unclear.

We suggest it is due to the amorphous Umklapp scattering. The methods can easily be extended to study the

spin transport properties in amorphous magnets and may pave the way to the spintronics applications.

In terms of spin transport via magnons, collective precession of magnetizations, crystalline magnetic

materials have been utilized in the field of spintronics [1]. Recently, experimental attempts to utilize amorphous

magnets as well have been made. However, their conclusions are controversial; The first observation has shown

that amorphous magnetic materials can transport spins further than the corresponding crystal [2, 3]. Whereas

following experiments cast doubt about the result [4, 5]. As a long-term goal, we aim to theoretically find

if the amorphous magnets are capable of transporting spins. In the master course study, as a first step, we

built a model to calculate magnon spectra in amorphous magnets. In the doctoral course study, we aim

to understand the magnon spectra of first target material, amorphous ferromagnet Co4P, by applying the

model. The amorphous ferromagnet Co4P has been extensively studied in the past [6, 7, 8], since its magnetic

excitation has unique feature; The inelastic neutron scattering experiment shows a ‘roton-like’ excitation at

wavenumber 3Å−1 [9]. Despite many efforts, the physical picture has been unclear. By utilizing numerical

techniques we have developed so far [10] and recently developed [11], we have simulated thermal equilibrium



2 Chapter 1 Overview

spin states and magnetic spectra. The application of this method to Co4P suggests the existence of magnons

at wavenumber 0Å−1, which follows the Bloch’s law, and at wavenumber 3Å−1. Our results, shown

in Figs. 1.1(a)-(b), suggest its physical interpretation as amorphous Umklapp scattering [12]. The method

used in the study can easily be extended to spin transport study for amorphous magnets, paving the way for

theoretical studies on spintronics applications of amorphous magnets.

As for the chiral magnets, with the controlling magnetic skyrmions in mind, we theoretically study the

mechanism and effects of the inter-skyrmion interactions in a two-dimensional model. We find that a

deformation of a skyrmion shape makes the interaction weakly attractive. When the magneto-crystalline

anisotropy is sufficiently large, the interaction becomes strongly attractive by forming a magnetic domain

between two skyrmions. The creation of the magnetic domain, and thus the strength of the attraction, can be

tuned in a wide range by changing the direction of an external field. The anisotropic inter-skyrmion attraction

also affects the lattice structure of the skyrmion crystal phase. This model can easily be extended to the 3D

systems and may pave the way for improving controlabilities of skyrmion magnetic memories.

Magnetic skyrmions, topologically stable nanometer-sized vortices, are potentially applicable as informa-

tion carriers of a magnetic memory [13]. To improve the controllability of such devices, it is essential to

control the trajectory of the skyrmions, i.e., by manipulating interactions between them. However, the control

has been limited by the fact that only repulsive force acts between the typical isotropic skyrmions [14]. On

the other hand, recent theoretical and experimental studies have revealed an attraction between skyrmions in

some specific systems [15, 16, 17, 18]. Understanding the mechanism of the attractive interaction is important

for academic and application purposes.

In this study, we find two mechanisms of attractive interaction, skyrmion distortion and magnetic domain

formation, using a two-dimensional model [21]. We derive the analytical expression for the interaction

between two skyrmions excited in the ferromagnetic (FM) phase. From the expression, we find that the

distortion of skyrmions can change the sign of the interaction; The distorted skyrmions favor to be connected

in the direction of elongation, to reduce the exchange interaction energy. When the easy-axes tilt from the

direction of external magnetic field, i.e., due to the large magneto-crystalline anisotropy, magnetic domains

are formed between two skyrmions. The energy profit from the exchange and anisotropic potential terms,

from the domain area give rise to the strong attractive interaction [see Figs. 1.2(a)-(d)].

In terms of controlling the skyrmion trajectory, manipulating the strength of the attraction may be crucial.

Since the skyrmion-skyrmion interactions are only visibly affect in the vicinity of the FM—skyrmion crystal

(SkX) phase boundary, the strength of external magnetic field is automatically fixed at that of the critical

field. Thus, it is hard to modify the attraction only via the strength of the magnetic field. We have found

that, by changing the direction of the external magnetic field, the strength of the attraction can be tuned as
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Fig.1.1 (a) Comparison of measured and calculated X-ray scattering intensity. Calculated scattering
function (solid line) and measured one (dashed line) [19]. Inset is re-created amorphous atomic structure.
(b) Magnetic excitation spectrum in Co4P [20]. The spectrum from an approximation (red solid line) [8]
and the experimental observation (orange dots) are overlaid for comparison [9].
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Fig.1.2 (a)-(b) Spatial spin distribution of a circular skyrmion and repulsive interaction (a) and an
elongated skyrmion and attractive interaction (b). (c) x component of spin with magnetic domain between
two skyrmions when magneto-crystalline anisotropy is sufficiently large. (d) Large attractive interaction,
comparable to the spin exchange J , induced by the domain formation.

much as two orders of magnitude. This is because the tilted magnetic field makes the domain unstable [see

Figs. 1.3(a)-(d)]. The 2D model can be easily extended to the three-dimensional systems. This work lays a

theoretical foundation for improving the controllability of skyrmion magnetic memory and qubits.

We have found that the interaction between two elongated skyrmions is anisotropic; In the direction of

domain formation, it is attractive. Given that the large anisotropic attraction appears, we expect that the

interaction may also affect the SkX structures. Indeed, distorted triangular lattice appears, in the vicinity
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Fig.1.3 (a) External magnetic field is tilted in the x direction. (b)-(c) x component of two skyrmions
without domain (b) and with domain (c) between them. (d) Controllable attractive interaction by means of
the angle of the external magnetic field. It changes as much as two orders of magnitude.

of the SkX-FM phase boundary where the attractive interaction and skyrmion excitation energy may be

comparable. In the resulting distorted triangular lattice, the interval of skyrmions along the direction of

attraction is smaller than that of along the repulsion. Interestingly, the magnetic domain formed between

the two skyrmions are expanded and connected to form domain wall skyrmion. This phase is qualitatively

the same as that recently found experimentally [22]. We succeeded to find the qualitative mechanism of the

domain wall skyrmions [see Figs. 1.4(a)-(c), and (e)]. In addition, we have found that the attraction expands

the SkX phase in the 1D phase diagram of external magnetic field [see Fig. 1.4(d)]. In other words, the

attraction expands the upper critical field of the elongated SkX phase. This new phase boundary corresponds

to the field at which the energy loss of the skyrmion excitation balances with the energy profit of the attraction.

This thesis consists of 6 Chapters: In Chap. 2, we introduce the background and of the study. In Chap. 3,

we explain numerical methods. Magnetically ordered states in amorphous ferromagnet Co4P is discussed in

Chap. 4, and that of the chiral magnet is shown in Chap. 5. Finally, we conclude in Chap. 6.
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Chapter 2

Basics of spintronics

In this chapter, we introduce spintronics in Sec. 2.1 and related fundamental physics, which are important in

this study. One of the key concept in spintronics is spin current, which is derived in ferromagnetic systems in

Sec. 2.2.1. In this study, we focus on the magnon-mediated spin current, spin wave spin current. Magnons

are introduced in Sec 2.2.2. The dynamics of magnons or magnetic moments are described in terms of the

Landau-Lifshitz (LL) equation, which is derived in Sec. 2.2.3. Using the phenomenological damping term,

Gilbert damping, the spin system can be relaxed to the energy-minimum states, as shown in Sec 2.2.4. The

DM Hamiltonian, which plays key role in chiral magnetic systems, is briefly introduced in Sec 2.2.5.

2.1 Spintronics

The giant magneto-resistive effect (GMR), discovered by P. A. Grünberg and A. Fert in the late 1980s and

awarded the Nobel Prize in Physics in 2007 [23, 24] was the catalyst for spintronics to gain significant

attention. GMR and tunneling magnetoresistance (TMR) [25], which had already been discovered, utilize

one of the ordered spin states, ferromagnets. In addition to using the ferromagnetic states, many phenomena

based on the ferrimagnetic or anti-ferromagnetic spin states, especially related to the spin current (flow of

the spin angular momentum), have been investigated in the past decades; A few of which include spin Hall

effect [26, 27, 28], inverse spin Hall effect [29, 30, 31, 32], spin Seebeck effect [33, 34, 35, 36, 37, 38, 39, 40],

spin Peltier effect [41, 42], spin pumping [43, 44, 45], magnetization oscillation induced by spin-transfer

torque [46, 47, 48, 49], and current driven motions of magnetic structures such as magnetic domains and

magnetic skyrmions (cf. Sec. 5.1) [50, 51, 52, 53, 54, 55]. In particular, the current driven motions of

skyrmions are called skyrmion Hall effect, whereas the transverse effect is called topological Hall effect. For

the spin current, see the next subsection. The main results in the field of spintronics, especially mentioned

above, are summarized in Fig. 2.1(a)–(f) and Fig. 2.2.

The above works have mainly studied crystalline magnets, but recently there has also been a growing interest



8 Chapter 2 Basics of spintronics

in spin ordered states in random arrangement of atoms; Attempts to utilize amorphous magnets in spintronics

have been made for long years. Usually, however, the random atomic configurations are not utilized in terms

of spin transport. This is the case in materials, i.e., CoFeB and GdFeCo. Recently, it has been pointed

out that amorphous Y3Fe5O12 (YIG) with random atomic configuration may transport spins further than the

corresponding crystal [2, 49, 56]. The schematic setup of the measurement is shown in Fig. 2.3. Their results

suggest that it may be possible to transport spins in the system without perfect ordering. We note that crystal

YIG is an insulator and spin are carried by spin waves, the precession of the magnetic moment, rather than

electric current with spin polarization. Besides, another topic of recent interest in the field of spintronics is

magnetic skyrmions, spin vortices with finite topological charge. They are nanometer-sized spin vortices with

the finite topological number N = 1
4π

∫
dr2n(r) · (∂xn(r)×∂yn(r)), where n(r) is a normalized spin vector

at a position r = (x, y). The main reason why they are attracting much attention is their potential applications

to magnetic memories (see Sec. 5.1 in detail) [13, 57]. They are observed for the first time in crystal chiral

magnets in thermal equilibrium in 2009 [58, 59]. The Dzyaloshinskii-Moriya (DM) interaction [60, 61]

is crucial to stabilize the skyrmion crystal (SkX) phase in the system. Experimental detection of the SkX

phase are i.e., ac-susceptibility measurements [62], Fourier-space imaging by neutron small-angle scattering

intensities [58], real-space imaging by Lorentz transmission electron microscopy [63], and detection of the

topological Hall effect [64, 65].

2.2 Fundamental aspects in spintronics

2.2.1 Spin currents

A pure spin current, which is unaccompanied with charge, emerges in ferromagnets. Starting from a Heisen-

berg model

H = −J
∑

〈i,j〉

Si · Sj , (2.1)

where J is exchange constant, i, j are site indices, and angle brackets denote the nearest neighbor pairs of i

and j. Each spin Si feels an effective magnetic field

Beff = −J

µ

∑

〈i,j〉

Sj , (2.2)
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Fig.2.1 (a)-(f) Schematic images of the spin Hall effect (a), inverse spin Hall effect (b), spin Seebeck
effect (c), spin Peltier effect (d), spin pumping (e), and magnetization dynamics induced by the spin transfer
torque, STT (f). J s, Jc, and PM in (a) respectively denote spin current, charge current and paramagnet.
In (b), ESHE represents inverse spin Hall electric field. ∇T in (c) shows the temperature gradient. MW in
(e) denotes microwave.

Fig.2.2 (a) Schematic image of the skyrmion Hall effect. (b) Schematic image of the topological Hall
effect. CM in both panels means chiral magnet.
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Fig.2.3 (a) Schematic experimental setup of the spin transport measurement conducted by Wesenberg
et al., in the case of the crystal YIG (a) and that of the amorphous YIG, a-YIG (b). J s, SHE, ISHE, and
a-Magnet denote the spin accumulation, spin Hall effect, inverse spin Hall effect, and amorphous magnet,
respectively.

where µ is the magnetic moment. Heisenberg equation of motion (for derivation, see Sec. 2.2.3) reads

dSi

dt
=

1

i! [Si,H],

dSi

dt
= −Si ×Beff ,

dSi

dt
= Si ×

J

γe

∑

〈i,j〉

Sj , (2.3)

where t is time and ! is Dirac’s constant, and γe is the gyromagnetic ratio. Let us convert above equation into

a continuum equation using Sj ∼ n(ri) +
1
2
∂2n(r)
∂2r |r=ri ·∆r2, where ri and rj are position vectors, n is the

continuum spin vector, and ∆r = rj − ri. Substituting the approximation into Eq. (2.3) reads

dn

dt
=

J(∆r)2

γe
n×∇2n, (2.4)

where we rescaled the spin as γen → n. The relation n×∇2n = div(n×∇n) allows us to rewrite Eq. (2.3)

in the form of

dn

dt
= J(∆r)2div(n×∇n), (2.5)

which is equivalent to spin current equation of continuity

∂n

∂t
= −γe

V
divJs, (2.6)

where V is the volume of the system and we defined the spin current as

Js = n×∇n. (2.7)



2.2 Fundamental aspects in spintronics 11

Js is proportional to ∇n, reflecting that it is derived from exchange Hamiltonian. This form of spin

current, called spin waves, can propagate in insulators and the interaction of spin waves lead to nonlinear

effects [66, 67, 68, 10].

2.2.2 Magnon Hamiltonian

The Heisenberg Hamiltonian, Eq. (2.1), can be expressed in terms of magnons, quanta of the spin waves. An

eigenfunction of spin operator, Θm
s , which has a magnitude S and z-component of m satisfies

S+Θm
s =

√
(S −m)(S +m+ 1)Θm+1

s

S−Θm
s =

√
(S +m)(S −m+ 1)Θm−1

s

SzΘm
s = mΘm

s (2.8)

For convenience, we will define a new operator m̂

m̂ = S − Sz, (2.9)

whose eigenvalue m = S−m means the deviation of Sz from S. It can take values of 0, 1, 2, ..., 2S. Focusing

on the spin deviation, not spin itself, can lead us to define magnons, which are quasiparticle excitations of the

spin waves. Here we use a new eigenfunction Fs(m), which explicitly shows the spin deviation, instead of

Θm
s . Eq. (2.8) can be rewritten as (by substituting m = S −m)

S+Fs(m) =
√
n(2S −m+ 1)Fs(m− 1) =

√
2S

√
1− m− 1

2S

√
nFs(m− 1),

S−Fs(m) =
√
(2S −m)(m+ 1)Fs(m+ 1) =

√
2S

√
m+ 1

√
1− m

2S
Fs(m+ 1),

SzFs(m) = (S −m)Fs(m). (2.10)

Here we replaced Θm+1
s as Fs(m−1) and Θm−1

s as Fs(m+1). These equations are similar to those for bosons’

creation and annihilation operators a, a†

aC(m) =
√
mC(m− 1),

a†C(m) =
√
m+ 1C(m+ 1),

a†aC(m) = mC(m), (2.11)
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where C(m) is the m particle sate with the same eigenenergy. We can show that

Fs(m) = C(m),

Sz = S − a†a = S − m̂,

S+ =
√
2Sf(S)a =

√
2S

√
1− m

2S
a (m → m+ 1),

S− =
√
2Sa†f(S) =

√
2Sa†

√
1− m

2S
. (2.12)

In general, bosons don’t have a limited capacity of number of particles which have the same eigenenergy.

However m do have the upper limit of 2S. This discrepancy can be ignored since

S−Fs(2S) = 0, (2.13)

a state which has m ≥ 2S + 1 don’t have any physical meaning. Therefore we can express the spin operators

in terms of the bosonic operators. These bosonic operators a, a† are called Holstein-Primakoff operators.

The new operators satisfy following commutation relations

[S+, S−] = 2S[f(S)a, a†f(S)],

= 2S

√
1− m

2S
(m+ 1)

√
1− m

2S
− a†(1− m

2S
)a,

= 2Sz, (2.14)

and

[S+, Sz] = −[
√
2Sf(S)a, a†a],

= −
√
2Sf(S)[a, a†]a,

= −S+. (2.15)

In the following, we will derive the spin wave energy using Holstein-Primakoff operators. Substituting

Eq. (2.12) into Eq. (2.1), expanding up to the lowest order of m/2S, Sz = S− m̂, S+ =
√
2Sa, S− =

√
2Sa†,

and keeping only second-order terms of a, a† leads to

H = 2JS
∑

〈i,j〉

(a†iai − a†iaj), (2.16)
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where we used the symmetry with respect to the indices (i (= j):

∑

〈i,j〉

a†iai =
∑

〈i,j〉

a†jaj ,
∑

〈i,j〉

a†iaj =
∑

〈i,j〉

aia
†
j . (2.17)

In order to diagonalize Eq. (2.16), we Fourier transform a and a†.

ai =
1√
N

∑

Q

eiQ·riaQ, a†i =
1√
N

∑

Q

e−iQ·ria†Q,

(2.18)

where N is the total number of spins. Substituting Eq. (2.18) into Eq. (2.16) obtains

H = 2JS
∑

Q

∑

ρ

(1− e−iQ·ρ)a†QaQ,

= 2zJS
∑

Q

(1− γQ)a†QaQ
(
γQ =

1

z

∑

ρ

e−iQ·ρ
)
,

=
∑

Q

εQmQ, (2.19)

where ρ is the relative position between ri and its neighbors, and z is the number of neighbors. Therefore a

magnon of wavenumber Q has an eigenenergy

εQ = 2zJS(1− γQ). (2.20)

In the case of one-dimensional lattice,

εQ = 2zJS(1− cosQa), (2.21)

where a is the lattice parameter.

2.2.3 Derivation of the Landau-Lifshitz equation in ferromagnets

We derive the Lagrangian Lex and the LL equation Eq. (2.3) in ferromagnets. The local magnetic moment per

electron spin is −gµBS = −gµB/2, where g is electron’s g-factor and µB is Bohr magneton. Magnetization

M , magnetic moment per unit volume, is M = −NgµBS/V , where V is the sample volume. We treat spins
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as classical vectors with |S| = S, and its direction, denoted two angles θ and φ, are the only variables,

n(r) = S





sin θ(r) cosφ(r)

sin θ(r) sinφ(r)

cos θ(r)




. (2.22)

Using |∆n(r)| = S(∆θ + sin θ∆φ), the Heisenberg Hamiltonian becomes

H =
J

2

∑

r

{∇n(r)}2 =
J

2

∫
d3r

a3
S(∆θ + sin θ∆φ). (2.23)

Due to the commutation relation of spin operators, [Ŝi, Ŝj ] = i!εijkŜk, we use path integral to get Lex. To

this end we use the relation between H and action S ,

〈nf | e−iH(tf−ti)/! |ni〉 =
∫

Dn(t) eiS[n(t)]/!, (2.24)

S =

∫
dtL[n(t)]. (2.25)

We get

Lex =

∫
d3r

a3
!Sφ̇(cos θ − 1)−H. (2.26)

The Euler-Lagrange equation of motion reads

δLex

δθ
=

d

dt

(
∂Lex

∂θ̇

)
− ∂Lex

∂θ
, (2.27)

δLex

δφ
=

d

dt

(
∂Lex

∂φ̇

)
− ∂Lex

∂φ
. (2.28)

So we obtain

!S sin θφ̇ = −δH
δθ

, (2.29)

!S sin θθ̇ =
δH
δφ

. (2.30)
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In terms of n,

dn

dt
= Sθ̇





sin θ(r) cosφ(r)

sin θ(r) sinφ(r)

cos θ(r)




+ Sφ̇





sin θ(r) cosφ(r)

sin θ(r) sinφ(r)

cos θ(r)




(2.31)

=
1

! sin θ
δH
δφ

− 1

!
δH
δθ

=
S

!

[
eθ

(
eφ · δH

δn

)
− eφ

(
eθ ·

δH
δn

)]

Here we used the relations regarding general function F (θ,φ),

δF

δθ
= S

(
eθ ·

δF

δn

)
, (2.32)

δF

δφ
= S sin θ

(
eφ · δF

δn

)
. (2.33)

In addition, using the vector formula, A×B ×C = (A ·C)B − (A ·B)C, we finally get

!dn
dt

= S

(
δH
δn

× (eθ × eφ)

)
= −n× δH

δn
. (2.34)

The right hand side acts as a torque and is called effective magnetic field, Heff ≡ δH
δn . This is the LL equation

of motion. We note that the expression Heff ≡ δH
δn also holds when H includes other terms such as anisotropy

and Zeeman interactions [69, 70].

2.2.4 Landau-Lifshitz-Gilbert equation in ferromagnets

The equation Eq. (2.34) for n (in this context n is magnetization rather than spin per electron) can be rewritten

as
dn

dt
= −γen×B. (2.35)

Let us solve the equation when the magnetic field B is along the z-direction. Each component (x, y, and z) of

the LL equation of motion for the magnetization n can be written as

dnx

dt
= −γeBzny (2.36)

dny

dt
= γeBznx (2.37)

dnz

dt
= 0 (2.38)
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Differentiating Eq.(2.36) and substituting Eq.(2.37), d2nx
dt2 is

d2nx

dt2
= −γeBz

ny

dt
= −γ2

eB
2
znx (2.39)

In a similar fashion, d2ny

dt2 is
d2ny

dt2
= γeBz

nx

dt
= −γ2

eB
2
zny (2.40)

Eq.(2.39) and eq(2.40) are equations of motion for simple harmonic motion. Thus one can obtain their general

solutions as follows

nx(t) = Axcos(ωt+ δx), (2.41)

ny(t) = Aycos(ωt+ δy), (2.42)

where Ax, Ay, δx, and δy are arbitrary constants (real numbers), and ω ≡ γeBz . From Eq.(2.38), mz is

constant. The LL equation of motion assumes that magnitude of magnetization |n| ≡ ns is constant. Using

the relation

n2
x + n2

y + n2
z = n2

s (2.43)

and assuming initial conditions : nx = Ax = Ay, ny = 0 at t = 0, one can obtain a particular solution as

nx(t) = Ax cosωt = nssinθcosωt (2.44)

ny(t) = Ay sinωt = nssinθsinωt (2.45)

nz(t) = nscosθ (2.46)

where θ is the angle between z-axis and magnetization. The result means magnetization rotates around the

direction of magnetic field B constantly. It has a frequency of ω = γeBz . This motion is illustrated in figure

2.4.
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n

z

Fig.2.4 Schematic image of the solution A

The damping effect of magnetization can be introduced phenomenologically by so-called Gilbert-term and

the equation of motion becomes the Landau-Lifshitz-Gilbert (LLG) equation,

dn

dt
= −γen×B+ αn× dn

dt
, (2.47)

where α is the Gilbert-damping constant. Each component (x, y, and z) of the Eq.(2.54) when B = Bzez is

dnx

dt
= −γenyBz + α

(
ny

dnz

dt
− nz

dny

dt

)
(2.48)

dny

dt
= γenxBz + α

(
nz

dnx

dt
− nx

dnz

dt

)
(2.49)

dnz

dt
= α

(
nx

dny

dt
− ny

dnx

dt

)
(2.50)

In order to solve these equations analytically, let’s keep the leading order terms in the deviation of n from the

z-direction (nx, ny). These are the first-order of nx and ny. Then Eq.(2.48) - Eq.(2.50) can be written as

dnx

dt
= −γenyBz + α

(
ny

dnz

dt
− nz

dny

dt

)
(2.51)

dny

dt
= γenxBz + α

(
nz

dnx

dt
− nx

dnz

dt

)
(2.52)

dnz

dt
= 0 (2.53)

Differentiating Eq.(2.51) and Eq.(2.52) under dnz
dt = 0,

d2nx

dt2
= −γe

dny

dt
Bz − αnz

d2ny

dt2
(2.54)

d2ny

dt2
= γe

dnx

dt
Bz + αnz

d2nx

dt2
(2.55)
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Eq.(2.54) and Eq.(2.55) have the same structures. Substituting Eq.(2.52) and Eq.(2.55) to Eq.(2.54) (Eq.(2.51)

and Eq.(2.54) to Eq.(2.55)),

(1 + α2n2
z)
d2nx

dt2
+ 2αγenzBz

dnx

dt
+ γ2

eB
2
znx = 0 (2.56)

(1 + α2n2
z)
d2ny

dt2
+ 2αγenzBz

dny

dt
+ γ2

eB
2
zny = 0 (2.57)

Using

γeff =
αγenzBz

1 + α2n2
z

, (2.58)

Ω2
eff =

γ2
eB

2
z

1 + α2n2
z

, (2.59)

Eq.(2.56) and Eq.(2.57) can be written as

d2nx

dt2
+ 2γeff

dnx

dt
+ Ω2

effnx = 0 (2.60)

d2ny

dt2
+ 2γeff

dny

dt
+ Ω2

effny = 0 (2.61)

Eq.(2.60) and Eq.(2.61) are the differential equation of forced oscillation, and in this case γ2
eff − Ω2

eff =

−γ2
eB

2
z

(1+α2n2
z)

2 < 0. Therefore the general solutions are

nx(t) = Axe
−γeff tcos(ωt+ δx) (2.62)

ny(t) = Aye
−γeff tcos(ωt+ δy) (2.63)

where ω =
√
Ω2

eff − γ2
eff , and Ax, Ay, δx, and δy are constants. Note that the relation

n2
x + n2

y + n2
z = n2

s (2.64)

is still valid. The result means magnetization rotates around the direction of magnetic field B//ez with a

frequency of ω = γ2
eB

2
z

(1+α2n2
z)

2 , but the precession angle decreases exponentially with time. It relaxes to align

the z-direction after a while. This motion is illustrated in figure 2.5. Figure 2.6 shows one of the possible

solutions of nx(t) in the case of Ax = 1.
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n

z

Fig.2.5 Schematic image of the solution B

nx

Fig.2.6 A plot of nx(γeff = 1,ω = 3.5, Ax = 1, δx = 0)

The equation of motion of spins can be obtained in a different way, using the concept of the effective

magnetic field. Let us find it by taking the functional derivative of the energy in the system (exchange,

anisotropy with coefficient K, and Zeeman terms),

F [n] =

∫
d3rµ0

(A
2
n2
s

∑

i=1,2,3

∂n

∂xi
· ∂n
∂xi

− K
2
n2
sn

2
z − nsn ·B

)
, (2.65)

by

Beff(r) = − 1

µ0ns

δF [n]

δn(r)
. (2.66)

Note that now n is a unit vector. When we increment n by δn to get n+ δn, F [n] also increases to get

F [n+ δn] as follows

F [n+ δn] =

∫
d3rµ0

(A
2
n2
s

∑

i=1,2,3

∂i(n+ δn) · ∂i(n+ δn)− K
2
n2
s(nz + δnz)

2 − ns(n+ δn) ·B
)
. (2.67)

The difference between F [n+ δn] and F [n] up to first-order of δn is

dF [n] = F [n+ δn]− F [n] =

∫
d3rµ0

(
An2

s

∑

i=1,2,3

∂in · ∂iδn−Kn2
snzδnz − nsδn ·B

)
(2.68)

=

∫
d3rµ0

(
An2

s

∑

i=1,2,3

∑

j=1,2,3

∂inj∂iδnj −Kn2
snzδnz − nsδn ·B

)
(2.69)

=

∫
d3rµ0

(
−An2

s

∑

i=1,2,3

∑

j=1,2,3

∂2
i njδnj −Kn2

snzδnz − nsδn ·B
)

(2.70)

=

∫
d3rµ0

(
−An2

s∇2n−Kn2
snzez − nsB

)
· δn. (2.71)
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From the definition of the functional derivative,

dF [y(r)] =

∫
d3r

δF [y(r)]

δy(r)
· δy(r), (2.72)

the effective field Beff is given by

Beff = − 1

µ0ns

δF [n]

δn(r)
= − 1

µ0ns

(
−An2

s∇2n−Kn2
snzez − nsB

)
= Ans∇2n+Knsnzez +B. (2.73)

Using above result, we can find the corresponding LL equation as

dn

dt
= −γen×Beff , (2.74)

where γe > 0 is assumed. Under the particular energy functional,

dn

dt
= −γen× (Ans∇2n+Knsnzez +B). (2.75)

2.2.5 Dzyaloshinskii-Moriya interaction

In chiral magnets, DM interaction [60, 61] appears due to the inversion symmetry breaking. In the continuum

limit, it looks like HDM = −Dan · (∇ × n), with coefficient D. Indeed HDM is anti-symmetric under the

transform r → −r. It is derived from the second-order perturbation of the spin-orbit coupling and exchange

interaction, with respect to the crystal field. The spin-orbit coupling, HSOI ∝ Z/re3l · s, is the interaction

between orbital angular momentum l and spin angular momentum s of electrons. HereZ is the atomic number

and re is the distance between electron and the nucleus. It becomes pronounced for heavy elements where Z

is large, such as platinum, gold, or lead.
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Chapter 3

Methods

In this chapter, we introduce numerical methods used in the study. The atomistic spin dynamics (ASD),

simulating spins per atom with the LLG equation, is the key concept used in the study of amorphous magnets.

It is introduced in Sec. 3.1. To solve the LLG equation, we use Runge-Kutta method introduced in Sec. 3.2.

When simulating the skyrmion configurations, we employ the Monte Carlo (MC) methods. The Metropolis

MC is explained in Sec. 3.3 and exchange MC is in Sec. 3.4.

3.1 Atomistic spin dynamics

Atomistic spin models treat spins as they are distributing at each atoms. In short, this model separates

electrons (fast variables) and atomistic spins (slow variables) like a spin system version of Born-Oppenheimer

approximation [71, 72]. This model can be applied even when the macro-spin model (assuming there is only

single domain in the system) is no longer valid. The dynamics of spins can be solved using the coupled LLG

equation [11];

∂Si

∂t
= −γeSi ×Beff − γe

α

S
[Si × [Si ×Beff ]], (3.1)

where Si is a unit vector and Beff = − ∂H
∂Si

. To include temperature to the system, random torque term

−γeSi × gi is added to above equation,

∂Si

∂t
= −γeSi × (Beff + gi)− γe

α

S
[Si × [Si × (Beff + gi)]], (3.2)

where gi represents a random torque. When we consider the system is classical, gi doesn’t affect the time

spin-spin correlation in the system, and all the possible states are occupied following the equipartition law

(see also Sec. 4.3). On the other hand, when we consider the system is quantum or semi-classical, we use the
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random force g(r, t) whose power spectrum follows quantum fluctuation-dissipation theorem [73, 11],

〈ga(ri, t)〉 = 0; 〈ga(ri)gb(rj)〉ω = δijδab
2α

γeµβ

!ω
eβ!ω − 1

, (3.3)

where a, b denote Cartesian coordinates, ω stands for the frequency, β = (kBT )−1 is the inverse temperature

with kB is Boltzmann constant and T is temperature, 〈· · · 〉 denotes a time average, and 〈· · · 〉ω shows a

statistical average in the fourier space.

3.2 Solving the Landau-Lifshitz-Gilbert equation

In this section, we show the way of numerical integration of the LLG equation, Eq. (3.1). LLG equation

is utilized in both studies of amorphous and chiral magnets. The specific definitions of the equations are

respectively in Sec. 4.7 and Sec. 5.4.2. In the following, we show two main ways of solving the differential

equation which can be applied to the LLG equations.

When we would like to numerically solve the the equation of motion only at 0 Kelvin (K), we can use both

Heun and Runge-Kutta method. If we are to integrate an ordinary differential equation ẏ = dy
dx = f(x, y)

up to the second-order, we can use Heun method, in other words, Second-order Runge-Kutta method. The

(n+ 1)-th variable yn+1 (where n = final value − initial value
h ) is estimated to be

k1 = hf(xn, yn), (3.4)

k2 = hf(xn + h, yn + k1), (3.5)

yn+1 = yn +
1

2
(k1 + k2) +O(h3), (3.6)

or

k1 = hf(xn, yn), (3.7)

k2 = hf(xn +
1

2
h, yn +

1

2
k1), (3.8)

yn+1 = yn + k2 +O(h3). (3.9)

The errors are of the order of O(h3). Heun method evaluates yn+1 by taking average of the derivatives

at (xn, yn) and (xn+1, yn+1). The derivative at (xn+1, yn+1) can be estimated using Euler method yn+1 =

yn+hf(xn, yn) at (xn+1, yn+1). It computes second-order derivatives fxx, fyy, included in k2 in Eq. (3.8) by

utilizing Taylor expansion. Considering the derivative at two different points enables to achieve the second
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order accuracy:

yn+1 = yn +
1

2
(k1 + k2)

= yn +
h

2
{f(xn, yn) + f(xn + h, yn + hf(xn, yn))}

= yn +
dy

dx
h+

1

2

d2y

d2x
h2 +O(h3). (3.10)

We note that we can further enhance the approximation precision using Fourth-order Runge-Kutta method.

The derivatives are evaluated four times as

k1 = hf(xn, yn), (3.11)

k2 = hf(xn +
1

2
h, yn +

1

2
k1), (3.12)

k3 = hf(xn +
1

2
h, yn +

1

2
k2), (3.13)

k4 = hf(xn + h, yn + k3), (3.14)

yn+1 = yn +
k1
6

+
k2
3

+
k3
3

+
k4
6

+O(h5). (3.15)

The errors are known to be of the order of O(h5). When we integrate equations of motion in the following

chapters, we use Heun method. Figure 3.1 shows the schematic image of the fourth-order Runge-Kutta

method.

3.3 Classical Monte Carlo

In this section, we briefly explain classical Monte Carlo (MC). This method is used in the study of chiral

magnets. In general, when the population of states that mainly contribute to an integral or mean value is very

small, compared to all other states, it is very inefficient if one uses a method where all the states appear with

the same probability. In order to avoid this, MC adopt a method where the states with larger contributions

are preferentially generated from the beginning. This is the concept of the importance sampling. It uses a

Markov process, a chain of states where each state is generate only from knowledge of the previous state.

Let’s say that the current state is Σ. The probability of generating a next one Σ′ is a function independent

of time,

P(t) =
∑

Σ′

T (Σ|Σ′)P(t−1)(Σ′) ≡ TP(t−1), (3.16)

where T is called transition probability. The criterion of T so that it convergence to the one proportional to
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Fig.3.1 Schematic image of the approximation of the fourth-order Runge-Kutta method.

the desired weight W . In a system of particles with low concentration at high T , W = e−E/kBT , where E is

energy.

T (Σ|Σ′)W (Σ′) = T (Σ′|Σ)W (Σ). (3.17)

The above equation is called detailed balance. In combination with the fact that the sum of the probabilities

is 1, W is an eigenvector of the matrix T with eigenvalue 1:

∑

Σ′

T (Σ|Σ′)W (Σ′) = W (Σ). (3.18)

Sufficient conditions for T to be converged to the one proportional to the desired weight W , in the limit of

limt→∞, are that above detail balance and ergodicity (any state can appear after sufficiently long time, no

matter which initial state you start from) are both satisfied.

One such algorithm, the Metropolis MC at arbitrary temperature T , is as follows.

step 1. Prepare an initial spin configuration (e.g. random state).
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step 2. Randomly select one spin S0 (Si|i=0).

step 3. Rotate S0 by an arbitrary angle while leaving all other spins as they are. Then find the energy difference

dE between the states before and after the rotation.

step 4. Generate a random number r between 0 and 1, and if r < exp(−dE/kBT ), accept the rotation.

step 5. Go back to step 2 and repeat.

We note that when T = 0, the acceptance probability of new state follows in this way; If the energy

difference between new and old state, dE, is positive, the new (higher energy) state is always rejected since

the acceptance probability P is

P = min
(
1, limT→0 exp

(
−|dE|/kBT

))
(3.19)

= min(1, 0)

= 0.

Otherwise, the new (lower energy) state will always be accepted since

P = min
(
1, lim

T→0
exp

(
|dE|/kBT

))
(3.20)

= min (1, ∞)

= 1.

3.4 Exchange Monte Carlo

In this section, we briefly explain exchange MC [74]. This method is used in the study of chiral magnets. The

exchange MC is an efficient way of running several Metropolis MCs in parallel. The algorithm is schematically

shown in Fig. 3.2. Each replica with different T runs the classical MC. At each MC step and each pair of the

replicas, the spin configuration is swapped in probability exp(−dE/kBdT ), where dT is the temperature

difference between the pair. To ensure the efficiency, there are three necessary conditions as follows;

1. Each replica should be exchanged at nonzero probability. This is confirmed by checking the acceptance

ratio of each replica pair.

2. Each replica should move around the whole temperature. This can be checked by tracking each replica.

3. The highest temperature should be high enough to avoid replica from being trapped at local minima.
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Fig.3.2 Schematic image of the algorithm of the exchange Monte Carlo.
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Chapter 4

Magnetically ordered states in

amorphous ferromagnet Co4P

In this chapter, we discuss the spin dynamics and thermodynamics in amorphous ferromagnets, especially

Co4P. Recent experiment revealed that amorphous magnets may transport spin further than the corresponding

crystal [49, 56, 2]. This suggests that amorphous magnets may be capable of transporting spin despite

the random spin configurations. However, following experiments suggest controversial results [4, 5], partly

because magnetic excitations in amorphous magnets have eluded accurate description since the 1970s, a time

in which the computational power severely limited the scale and realism of calculations.

We present a realistic model of amorphous magnets and calculate entire spectrum of Co4P. The model

includes a realistic atomic structure and to all orders in the magnon-magnon interactions, for the first time, by

combining reverse Monte Carlo and atomistic spin dynamics techniques [20].

First, we investigate the atomic structure of the material using reverse Monte Carlo. Distributing spins

on the positions of the Co atoms, we get a spin model. By solving the LLG equation of the spins, we can

calculate thermodynamic and magnon properties. To obtain the energy spectrum of the material, we derive

the neutron scattering cross-section for amorphous magnets. Using the formula, we calculate the spectra with

several different functional forms of the distance dependent exchange interaction. We compare the results

with experiments, the spectrum from FCC Co, and that from the Quasi-crystalline approximation (QCA) [8].

In Figs. 4.1(a)-(d), we summarize the main results. Atomic structure from RMC is shown in real space in

Fig. 4.1(a) and shown in reciprocal space in Fig. 4.1(b). One can see that the measured and calculated X-ray

scattering functions agree well. As for the thermodynamic properties, magnetization of amorphous Co4P and

FCC Co are shown in Fig. 4.1(c). The red line with circle denotes the results of Co4P and it decreases rapidly

at low temperature region than that of the blue line with diamond, the result of the FCC Co. In Fig. 4.1(d),

we show the magnetic excitations in amorphous Co4P obtained from the spin-spin correlation in reciprocal
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Fig.4.1 (a) Amorphous atomic structure from RMC in real space. (b) Comparison of measured and
calculated X-ray scattering intensity. The orange solid line is calculated scattering function from RMC in
reciprocal space and the dashed line is measured one [19]. (c) Magnetization of amorphous Co4P (red
line with circle) and FCC Co (blue line with diamond), obtained from ASD simulation. (d) Magnetic
excitation spectrum in Co4P. The red solid line shows the spectrum in QCA [8] , the orange dots show the
experimental observation [9].

space. The resulted spectra almost quantitatively reproduces the experiment [9] especially at Q ∼ 0Å−1,

shown in orange dots. The theoretical approximation [8] is also plotted in the red solid line. At Q ∼ 0 and

high energy regions, it agrees well with the numerically obtained spectrum. At Q ≈ 3Å−1, close to the first

Brillouin zone of the FCC Co and the first peak of the structure factor [see 4.1(b)], there is gapless parabolic

dispersion. We interpret the second dip in terms of amorphous Umklapp scattering [12].

In this study, we found:
• A model which reproduces realistic atomic structure and includes magnon interactions up to all orders.

It enables accurate calculation of the magnetic excitation spectra in amorphous magnets.

• Amorphous ferromagnet Co4P has magnons which follow the Bloch’s law, consistent with experiments
and similar to that in crystal ferromagnets.

• There are clearly two dips in the magnetic excitation spectrum of Co4P: first dip at wavenumber Q ∼ 0
and second dip at Q ∼ 3 Å−1.

• Magnons in energy spectrum placed at Q ∼ 0 is quantitatively agree with the experimental observation.

• The energy spectrum looks similar to that of FCC Co up to the first Brillouin Zone but it is not periodic.

• Energy spectrum in QCA correctly predicts the spectra at Q ∼ 0 and at high frequency region.
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• The second dip, conventionally called “roton-like feature”, may be amorphous Umklapp scattering.

• Regardless of the choice of the asymptotic form of the exchange interactions, we find similar features
in the spectra.

4.1 Amorphous ferromagnetism

Amorphous magnetism has attracted attention since the 1970s, in terms of both static and dynamic properties

[75, 76, 77, 78]. Kaneyoshi has proved theoretically that amorphous ferromagnets can be stable with a large

enough concentration of magnetic atoms (concentration of magnetic atoms should be larger than 0.329) [79].

At the Curie temperature TC, a second-order phase transition occurs and amorphous ferromagnetism appears.

In the mean field approximation, in the vicinity of TC, the temperature dependence of the spontaneous

magnetization follows the Curie-Weiss law M(T ) ∝
(

Tc−T
Tc

)ξ
, where ξ ∼ 0.4, a little larger than 0.36 in the

three-dimensional crystalline Heisenberg model [76].

In terms of the magnetically excited states, Mook et al. observed magnetic excitations by inelastic neutron

scattering [9]. They found not only magnons at Q ∼ 0Å−1 but also “roton-like feature”, named after rotons

in superfluid He4 since both have a dip at finite wavenumber. The roton-like feature has a sharp peak near

Q ∼ 3Å−1 with a finite gap.

In previous studies, the roton-like feature was believed to originate from short-range static correlation rather

than dynamic effect (as rotons in liquid He). This is because the dip position corresponds to the first peak

position of the dynamic structure factor B(Q, t),

B(Q) = B(Q, t)|t=0 = 1 +

∫ ∞

0
dr4πr2ρ0(g(r)− 1)

sinQr

Qr
, (4.1)

where ρ0 is the mean atomic density, g(r) is the radial distribution function, ρ(r) is atomic density as a function

of distance r. We note that we ignore scattering term from mean atomic distribution
∫∞
0 dr4πr2ρ sinQr

Qr here,

since this contribution is negligibly small in the limit of r → ∞. Having said that, the concrete physical

picture of the roton-like feature remains unknown.

As for magnons in amorphous magnets, Kaneyoshi showed theoretically that spin waves can be defined

there too due to longer lifetime of magnons than typical precession periodicity of spin waves (∼ ns) [80].

See section 4.4 for details. As magnons are the quasiparticle picture of spin waves (see Sec. 2.2.2), creation

of magnons corresponds to decreasing of magnetization, so-called demagnetization. Theoretically, the
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demagnetization ∆M(T ) can be expressed as [81, 82]

∆M(T ) = M(0)−M(T ) =
gµB

V

∑

Q

〈nQ〉

=
gµB

V

4πV

(2π)3

∫ ∞

0
dk

Q2

eε(Q)/kBT − 1

∼ gµB

V

4πV

(2π)3

∫ ∞

0
dk

Q2

eDQ2/kBT − 1

∝ Γ
(3
2

)
ζ
(3
2

)
T 3/2, (4.2)

where 〈nQ〉 is thermal expectation value of magnon number at mode Q, nQ is magnon occupation number,

Γ(x) is Gamma function, ζ(x) is Riemann zeta function, and we assumed spin wave dispersion relation

ε(Q) = DQ2. Eq. (4.2) means magnetization decreases as T 3/2 if there are magnons with the dispersion

relation of ε(Q) = DQ2. We note that there could still be magnons with a different dispersion law which

would have a different exponent. Experimentally, Cochrane et al. conducted magnetization measurement in

Co4P [83]. Demagnetization in amorphous ferromagnet Co4P was confirmed to follows Bloch’s law. We show

the normalized measured demagnetization, ∆M(T )
M(0) = 1− M(T )

M(0) where M(0) is the saturation magnetization,

in Fig.4.2.

Fig.4.2 (a) Temperature T 3/2 vs. demagnetization ∆M(T )
M(0) of amorphous ferromagnet Co4P measured

by [83]. (b) Normalized temperature t ≡ (T/TC)
3/2 dependence of ∆M(T )

M(0) , where TC is the Curie
temperature. The alphabet A, B, C, D, and G represents the five different samples of different concentration
of P atoms: A is 23.6±1.0 %, B is 22.0 %, C is 20.3 %, D is 19.0 %, and G is 21 %. Copyright 1974,
American Physical Society.

As for the magnetic excitation spectra, Kaneyoshi theoretically proposed quasi-crystalline approximation

(QCA), an approximation for energy spectrum in amorphous ferromagnets [8]. See details in Sec. 4.4.

Using this formalism he reproduced dips at finite wavenumbers, though energy gap of the dips is much

larger than observed experimentally. Alben calculated magnetic spectra numerically under linear spin-wave
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approximation [6]. He directly calculated dynamic spin-spin correlation functions by using the structure of

about 1000 amorphous magnetic atoms obtained from the dense random packing of hard spheres (DRPHS)

[84, 85]. He reproduced the dip at Q ∼ 3 Å−1 when he choose Q in such a way that it gives the biggest

contribution to B(Q, t). Roth and Singh obtained an effective medium approximation for magnetic excitations

and found a dip with a smaller energy gap than that of QCA [86]. They interpreted the effect as exciting a few

planes which are in phase, rather exciting many planes associated with the perfect ordering in crystals.

In the 1970s, numerical methods for modeling amorphous magnets was limited; Dense random packing of

hard spheres (DRPHS) has been regarded to be able to reproduce the atomic arrangements in noncrystalline

systems [84]. Previous studies have built DRPHS by hand, pouring about 4000 balls into a container and

shaking them down [87]. They determined the average number of nearest neighbors to be ∼ 9.3, which

is similar to that of liquid helium (8.5-9.7) [88], and the mean atomic density was ∼ 0.63. Later Gaskell

combined the hand-build model and computer simulation to relax the structure by minimizing the elastic

energy. However, these traditional methods are not capable of reproducing realistic 3D spin configuration

which agrees with experimentally observed scattering functions.

To model the amorphous magnetic properties, the classical Heisenberg model with exchange coupling has

been widely used;

H = −
∑

〈i,j〉

J(rij)Si · Sj , (4.3)

where J(rij) is a distance-dependent isotropic exchange interaction between two spins separated by distance

rij ≡ |rj − ri|.

4.2 Structural investigation using reverse Monte Carlo

Reverse Monte Carlo (RMC) provides a way of creating an amorphous structure from experimental data, such

as X-ray diffraction and neutron diffraction data. It obtains a possible atomic position that reproduces these

experimental data. RMC is originally developed by R. L. Mcgreevy and L. Pusztai [89] and improved by

Gereben O. et al. [90]. [For the user guide, visit https://www.szfki.hu/ nphys/rmc++/downloads.html]. We

use the latter to create an amorphous structure.

The algorithm is to minimize a cost function χ2
ij for an atom type of i and j, which analogues to normal

Monte Carlo which minimizes total energy of the system. This is schematically shown in Fig. 4.3. The

definition of χ2
ij is

χ2
ij =

∑
Q(S

C
ij (Q)− SE

ij (Q))2

σ2
ij

, (4.4)

where SC
ij (Q) and SE

ij (Q) denote simulated and measured data as a function of wavenumber Q, respectively.



32 Chapter 4 Magnetically ordered states in amorphous ferromagnet Co4P

σij represents a standard deviation for the cost function χ2
ij , the value of which is also a parameter in the

RMC simulation. Here SC
ij (Q) and SE

ij (Q) are the values in reciprocal space. To compare them, RMC first

Fourier transforms gij(r), which is either called radial distribution function or the pair correlation function.

It is defined as

gij(r) =
nij(r)

4πr2drρ0cj
, (4.5)

where nij(r) is the number of atoms of type j at distance r from another atom of type i, 4πr2dr is the volume of

a spherical shell and ρ0cj = ρj is the number density of atom at j. We note that, since the atomic configuration

from RMC is not unique, we take the configurational average when we study magnetic properties.

RMC avoids to be trapped in local minima, by accepting costly moves with probability exp[−(χ2
new−χ2

old)]

[90]. This probability is the equilibrium distribution W0, which appears in

∑

Σ′

T (Σ′|Σ)W0(Σ) =
∑

Σ′

T (Σ|Σ′)W0(Σ
′). (4.6)

The equation ensures that there is a state with minimum χ2 due to the principle of detailed balancing, same

as Eq (3.17),

T (Σ′|Σ)W0(Σ) = T (Σ|Σ′)W0(Σ
′), (4.7)

where Σ and Σ′ respectively denote current and next state and T is the transition matrix.

RMC is one of the sophisticated alternatives to the empirical random sphere packings in the early days.

When constructing the structures, we treat atoms as hard spheres and ignore chemical bondings. We can also

include some structural properties; In the case of Co4P, we impose that P should be well mixed with Co atoms

by requiring that two P atoms never touch [19]. This is included as a coordination number constraint in RMC,

imposing the extra cost for P-P pairs closer than 2.75Å.

As input experimental data, we use X-ray, neutron, and polarized neutron scattering data for Co4P taken by

Sadoc et al. [19]. We start from an FCC lattice, which has a similar coordination number of 12 to the average

coordination of Co4P (=11.54) [19]. The typical system size for the calculations is 62500 hard spheres (Co:

50000, P: 12500). The lattice parameter, the size of each side of the cubic box, is 97.71 Å and the number

density ρ is 0.067 Å−3 [91]. We also consider the finite temperature effect in the analysis by empirically

setting the mean square displacement of the atoms σ = 0.015 for both Co and P as this gives a good fit for the

data. This means we assume the distribution of the atomic displacements from the equilibrium positions xd

follow the normal distribution f(xd).

The RMC procedure is as follows. Firstly, we create a random mixture of Co and P atoms as a ratio of 4:1.

Secondly, we start to randomize the atomic positions so that it reproduces the experimental scattering data.
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Fig.4.3 Schematic description of the reverse Monte Carlo algorithm
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This move includes swaps of Co and P atoms. After some swaps, the probability of accepting the swap will

be very low, as this move changes the structure a lot. We thus allow swaps for a relatively short period (about

4 hours) for efficiency. This time scale is determined by watching the acceptance rate, how the tried swaps

were accepted. Thirdly, we stop swapping and keep fitting to the experimental data for a longer period (about

8 days). Lastly, we use a smaller (0.1Å, half the mesh as before) mesh of the space and run it for a long period

(about 2 days) to get more accurate configurations.

4.3 Finite temperature effect

We include random force term −γesi × gi in LLG equation to simulate finite temperature effect.

∂si
∂t

= −γsi × [Bi + gi]− γ
α

s
[si × [si × [Bi + gi]], (4.8)

where gi represents a random force. Eq. (4.8) is called stochastic LLG equation. The Gilbert term was

introduced phenomenologically [92]. This random force is Gaussian process

〈gi〉 = 0, 〈gαi (t)g
β
j (t

′)〉 = 2dδijδαβδ(t− t′), (4.9)

where d is the power spectrum of g(t) following d = kBT . Eq. (4.9) shows that the random force at different t

and different site, or different coordination has no correlation. gi does not affect the time spin spin correlation

in the system, and all the possible states are occupied following the equipartition law. When we consider

the system is purely classical, we use the white noise random force with d = const. In other words, the

system follows classical fluctuation-dissipation theorem which states that fluctuation in equilibrium state and

dissipation in non-equilibrium state both develop in the same way [93]

Im[χαβ(t)] =
ω

2kBT
〈δsαi (t)δs

β
j (0)〉, (4.10)

where δsαi represents fluctuation of α-component of magnetization at site i, and χαβ(t − t′) is a response

function corresponding to a external field hβ(t) defined as

δsαi (t) =

∫ t

−∞
dt′χαβ(t− t′)hβ(t

′) +O(h2
β). (4.11)
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When we consider the system is quantum or semi-classical, we use the random force g(t) whose power

spectrum follows quantum fluctuation-dissipation theorem,

〈ga(ri, t)〉 = 0; 〈ga(ri)gb(rj)〉ω = δijδab
2α

γeµβ

!ω
eβ!ω − 1

. (4.12)

4.4 Quasi-crystalline approximation for spin wave spectra

In quasi-crystalline approximation (QCA) [8], energy spectrum εQCA(Q) in amorphous ferromagnets is given

by

εQCA(Q) =

∫
J(rij)g(rij)(1− eiQ·rij )d3rij , (4.13)

where rij = ri − rj is the difference of position vectors, ri and rj . Above expression is a replacement of the

energy for crystal

ε(Q) =
∑

j

Jij(1− eiQrij ). (4.14)

Eq. (4.13) is derived under the Heisenberg Hamiltonian, Eq. (4.3).

In order to derive the above equation Eq. (4.13), Kaneyoshi use a high-density expansion, assuming that

the structure of the amorphous magnets is well modeled by the DRPHS. In other words, he drops higher-order

correlation functions of a random function that represents the positions of atoms. He also takes an average

of the Green function over all possible configurations of magnetic atoms. The resulting general expression of

spin-wave energy is determined by

E − εQCA(Q)− ΓQ(E)− 1

E − εQCA(Q)
ΣQ(E) = 0, (4.15)

where ΓQ(E) and ΣQ(E) are obtained by the factorization approximation [76] as

{
E − εQCA(Q)− ΓQ(E)− 1

E − εQCA(Q)
ΣQ(E)

}
〈G(E)QQ′〉 = ∆Q(E)δ(Q−Q′),

ΓQ(E) = (2Sp)2
∫

dQ1M2(Q,Q1)
(JQ−Q1

− JQ1
)(JQ1−Q − JQ)

E − εQCA(Q1)
+ ...,

ΣQ(E) =
[
2Sp

∫
dQ1M2(Q,Q1)(JQ−Q1

− JQ1
)
]2

+ ...,

∆Q(E) = N + 2Sp

∫
dQ1M2(Q,Q1)

JQ−Q1
− JQ1

E − εQCA(Q1)

− 2Sp

E − εQCA(Q)

∫
dQ1M2(Q,Q1)(JQ−Q1

− JQ1
) + ...,

M2(Q,Q1) = 〈ρa(Q−Q1)ρa(Q1 −Q)〉. (4.16)
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E is an eigenvalue of the Hamiltonian, G(E)QQ′ is the corresponding Green function in reciprocal space,

JQ is the exchange interaction in reciprocal space, N is total number of magnetic atoms per unit volume,

p ≡ n
(2π)3 , and ρa(Q) = ρ′(Q)−〈ρ′(Q)〉r, where ρ′(Q) = 1

n

∑
i exp(−iQri) is a random function depending

on the position of magnetic atoms, M2(Q,Q1) = 〈ρa(Q−Q1)〉r, and 〈...〉r denotes the configuration average

over all possible ones. Here the factorization approximation is

〈ρa(Q−Q1,Q2)ρa(Q2 −Q3,Q4)〉 = 〈ρa(Q−Q1)ρa(Q1 −Q)〉δ(Q−Q3)δ(Q1 −Q2)δ(Q3 −Q4)

+ 〈ρa(Q−Q1)ρa(Q1 −Q)〉〈ρa(Q−Q2)ρa(Q2 −Q)〉δ(Q2 −Q).δ(Q4 −Q2) (4.17)

The stability of the spin waves in amorphous ferromagnets is estimated by comparing the inverse lifetime

of the states |Q〉 with that of the spin waves. The imaginary part of the states, which is proportional to the

inverse lifetime, can be estimated from Im[ΓQ(E)] due to the relation

〈G(E)QQ′〉 = ∆Q(E)δ(Q−Q′){
E − εQCA(Q)− ΓQ(E)− 1

E−εQCA(Q)ΣQ(E)
}

∝
{
E − εQCA(Q)−

[
ΓQ(E) +

ΣQ(E)

E − εQCA(Q)

]}−1

. (4.18)

Expanding the Im[ΓQ(E)] up to the first order of Q, it follows

Im[ΓQ(E)] ∼ (2Sp)2
∫

dQ1M2(Q,Q1)
(JQ−Q1

− JQ1
)(JQ1−Q − JQ)

E − εQCA(Q1)
= O(k7), (4.19)

M2(Q,Q1) = O((k − k1)
2). (4.20)

When the spin waves have long wavelengths, Im[ΓQ(E)] is much smaller than that of the typical frequency

of spin waves, which obeys ∼ Q2. Therefore we can define the spin waves even in amorphous ferromagnets,

as far as the wavelength is sufficiently large. Later, we show that QCA can produce some dips at finite

wavenumbers, but they are very shallow compared with the experiment.

In Appendix A, we note how our energy spectrum using JAMS (the name of our program), εJAMS(Q), is

quantitatively related to the QCA spectrum. We confirm that our spectra εJAMS(Q) obtains quantitatively

equivalent dispersion relation to QCA. This means we should get a very good agreement between QCA and

JAMS in the small Q region, which is indeed confirmed later.

4.5 Inelastic neutron scattering cross-section for amorphous magnets

Neutron scattering is widely used technique to investigate structures and energy spectrums also in amorphous

Co4P [19]. Following a book [94], we derive suitable expression of cross-section for magnetic inelastic
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scattering, which can also be used in amorphous magnetic systems. See Appendix B for detailed derivation.

We assume the amorphous magnetic systems, in particular Co4P, can be approximated by the Heisenberg

Hamiltonian; The dynamical fluctuations in length of the magnetic moment may be ignored.

Here we just summarize the results. The differences between crystal and amorphous systems may be:

1. "lattice parameter" is length of the unitcell (crystal) or that of whole system (repeating unit) (amorphous)

2. "lattice vector" is what span the unitcell (crystal) or that span whole system (repeating unit) (amorphous)

3. The statement "assuming all site is the center of symmetry" cannot be applied for amorphous systems. (cf.

Eq. (B.59) and Eq. (B.67))

The cross-section of unpolarized neutron for amorphous magnets may be

S(Q,ω) =
g2nr

2
0

2π! (C 2(Q))2
∑

ab

(
δab − Q̂aQ̂b

)∑

i,j

e−iQ·rij

×
∫ ∞

−∞
dte−iωt

[
〈Sa(ri, 0)Sb(rj , t)〉 − 〈Sa(ri)〉 〈Sb(rj)〉

] (4.21)

where Q is the neutron scattering vector, Q̂ = Q/|Q| is the unit vector of Q, γn = 1.931 is the neutron’s

g-factor, r0 = e2/mec2 = 0.28179× 10−12 cm is the classical electron radius, C (Q) = gs
g j̄0(Q) is the atomic

form factor where the values, j̄0(Q) for Co, are taken from the table [95].

4.6 Reproduction of scattering functions from experiment

In order to study the magnetic properties, we need to first equilibrate the system at a fixed temperature to find

thermal equilibrium spin states. After that, we also perform time averaging to collect the fluctuations from

the thermal equilibrium. In amorphous systems, one should also take a configurational average, averaging

over multiple solutions of the amorphous structures. This is to collect the fluctuations of atomic structures in

amorphous systems. We create10 independent amorphous configurations and all the magnetic calculations,

shown in the following, are averaged over the 10 replicas. The averaged results are found to be almost the

same as that of a single result, maybe due to the large system. Hamiltonian reads

H = −
∑

i '=j

J(rij)S(ri) · S(rj)− µB ·
∑

i

S(ri). (4.22)

As for the magnetic moment of Co atoms, we use the experimental value µ = 1.0µB [9]. The spin vectors

S(ri) mean the same ones as Si in Eq. (4.3) and the position vector of the spins are explicitly shown. The

exchange interaction J(rij) is assumed to be distance dependent though it is not necessarily up to the nearest

neighbors. The form of J(rij) in amorphous magnets is unclear, thus we tested several asymptotic forms.
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Fig.4.4 (a) Distance dependent spin-spin exchange interaction J(rij). The cutoff rcutoff is introduced at
rcutoff = 5.45Å. This means J(rij) = 0 if rij > rcutoff . (b) Pair correlation functions g(rij) of Co-Co,
Co-P, and P-P in amorphous Co4P and Co-Co in FCC Co. These are generated from RMC. (c) Real space
image of an amorphous atomic configuration generated from RMC with 62500 atoms. Blue spheres stand
for Co atoms and red spheres show P atoms.
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One such example is an exponentially decaying one, shown in Fig. 4.4(a),

Jexp(rij) = J0exp

(
−rij − r0

w

)
, (4.23)

where typical choice of the parameters in the following are J0 = 6.733 meV, r0 = 2.54 Å and w = 0.66 Å.

Another example is RKKY-like [76], where the sign of exchange coefficient oscillates with distance,

J(rij) = −J0
2kF (rij − r0)cos{2kF (rij − r0)}− sin{2kF (rij − r0)}

{2kF (rij − r0)}4
, (4.24)

where kF scales the length scale of the oscillation. As different exchange interaction forms did not give

significant differences (shown later), we use the exponential one in the following main results. We impose

Jexp(rij) = 0 when rij > 5.45 Å to reduce the calculation time.

One can see that the P atoms are almost homogeneously distributed and P atoms rarely touch each other,

from the pair correlation functions g(rij) in Fig. 4.4(b). There is no strong peak of the P-P pair correlation and

the largest peak is at∼ 4.0Å, much larger than the P diameter. The double-peaked structure of g(rij) of the Co-

Co distribution, i.e., around 4.4 Å and 5.0 Å, is one of the familiar features of amorphous metalloids [76]. This

feature is also found in our result. The average number of neighbors of each pair is as follows: Co-Co=7.53,

Co-P=1.96, P-P=0.30. In Fig 4.4(c), an example of real-space amorphous structure created from RMC is

shown. In Fig. 4.5 we show the comparison of the scattering functions from RMC and the experimental

data. The latter is used as an input of the RMC simulation. The calculated results all agree well with the

experimentally observed ones. As a whole, we can say that the RMC process reproduces a realistic structure

of amorphous Co4P. Since the magnetic moments are mainly on Co atoms [96], so P atoms are essentially

voids in the amorphous Co.

4.7 Magnon properties and Bloch’s law

To calculate magnetic properties, we extract magnetic atoms Co from the structure obtained from RMC and

ignore nonmagnetic P atoms. Putting spins on top of each Co atom gives rise to a spin model. In Fig. 4.6, we

display the model. We use LLG equation to simulate the time dependence of each spin. This is our original

idea, combining RMC and LLG equations together for calculating magnetic properties in amorphous systems.

The damping constant of LLG equation is α = 0.01 and we introduce finite temperature effect via a stochastic

field, a quantum thermostat [11]. This thermostat is capable of providing reliable results for thermodynamic

properties until the Curie temperature [97, 98].



40 Chapter 4 Magnetically ordered states in amorphous ferromagnet Co4P

-0.5

 0

 0.5

 1

 1.5

 2

In
te

ns
ity

 [a
rb

.]

Experiment
RMC Xray

RMC Neutron

 0  2  4  6  8  10  12
4>�ƿ -1]

RMC Polarized Neutron

Experiment

Experiment

In
te

ns
ity

 [a
rb

.]
In

te
ns

ity
 [a

rb
.]

-0.5

 0

 0.5

 1

 1.5

 2

-0.5

 0

 0.5

 1

 1.5

 2
(c)

(a)

(b)

Fig.4.5 (a) X-ray, (b) neutron and (c) polarized neutron scattering functions in Co4P, calculated from
RMC (the solid line) and measured in exeriment [19] (the dotted line).
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Fig.4.6 Schematic explanation of construction of the spin model. We extract Co atoms from the RMC
structure, put spins on the top, and simulate the spin dynamics by LLG.

In Fig. 4.7(a), we show reduced magnetization vs. temperature for amorphous Co4P and crystalline FCC

Co,

M(T ) =

〈
1

N

N∑

i=1

Si

〉

T

, (4.25)

where M(T ) is normalized magnetization and 〈...〉T means thermal average. We determine TC from the peak

position of the susceptibility χ(T ),

χ(T ) ∝ 〈M(T )〉2T − 〈M2(T )〉T
kBT

. (4.26)

In both cases, the magnetization decreases following the Bloch’s law, M(T ) = 1 − B3/2(T/TC)3/2 at low

temperature. The constant of Bloch’s law in the amorphous system is larger than that of the crystal system,

meaning that the magnetization of the former system decreases faster than in the latter case. This result is

consistent with the experimental observation in the same material [83]. We find B3/2 = 0.16 in the case

of FCC Co, almost the same as that observed, B3/2 = 0.17 [76]. In the Co4P case, we find the constant to

be B3/2 = 0.22. This larger value may be due to the randomness of the atomic positions in the amorphous

system [76]; In QCA, Kaneyoshi suggests that the random structure of the system modifies the spin wave

stiffness constant D as

D ∼
(
∂2ε/∂Q2

)
Q=0

− D̃, (4.27)

where D̃ is attributed to the atomic position randomness. The value B3/2 = 0.22 is about the half of the

measured one B3/2 ∼ 0.4 [83]. This means that the magnetization reduces more rapidly in reality than

that in our calculations. The difference between the calculated and measured value of B3/2 are also found

in previous studies; In experiments, B3/2 deduced from the spin wave stiffness D, measured by neutron

scattering, is often smaller than that from M(T ). One possibility for this discrepancy is that non-collinearities
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in the magnetic ground state, because of some antiferromagnetic interactions, i.e., superexchange via P atoms

or local anisotropies [99]. This remains one of the possibilities since they are not included in our model

Hamiltonian. Near TC , we can see that M(T ) in FCC Co drops faster than that of amorphous Co4P. This

may suggest that structural disorders broaden the critical behavior associated with the second-order phase

transition.

4.8 Energy spectra and magnetic excitations

Our main interest is the unusual roton-like excitation in the spectrum. To understand the magnetic excitations,

we calculate it using the spin-spin correlation functions in the Fourier space and plot the neutron scattering

cross section, Eq. (4.21). We note that amorphous systems don’t have a well-defined reciprocal lattice vector

momentum – due to the lack of translational symmetry. This means we cannot use Bloch’s theorem in the

system. However, we can still study magnetic excitations using a sample vector Q; It is the scattering vector

of a neutron beam in experiments. In our simulations, it evaluates the Fourier transformation of the spin-spin

correlations from all spins in the system. The evaluation of the spin-spin correlation function has been very

difficult to treat analytically in the previous studies; For amorphous systems it cannot be evaluated easily,

even in the framework of the linear spin wave theory. Our approach allows us to output the correlations after

solving the spin dynamics of the many-body non-linear LL equations, and the higher-order correlations are

implicitly included. Hence, we do not approximate the spin-spin correlations.

In the calculated spectrum, Figs. 4.8(a) and (b), we find a quadratic dispersion of magnons, which is

consistent with the experiment and the QCA. As Bloch’s law comes from the assumption of a quadratic

dispersion, the spectral result is in agreement with our thermodynamic calculations. In the crystalline case,

Fig. 4.8(a), the linewidth of magnons follows Γ ∼ αω. Whereas in the amorphous case, Fig. 4.8(b), one can

see a broadening which expresses a shorter lifetime of them. In Figs. 4.8(b), we have shown the approximate

spectrum in the QCA [8],

Our simulations suggest that the QCA fairly predicts the magnons at Q ∼ 0 and a diffusive high energy

region of the magnetic excitations. In addition, we find a sharply peaked parabola placed at Q ≈ 3 Å−1 where

the first peak of the static structure factor appears. The minimum of the second parabola is positioned at a

larger wave number and much lower energies than the second parabola from the QCA. Even though the second

dip is gapless, differently from the experiment, the linewidth is so narrow that indicates the comparable lifetime

with the magnons at Q ∼ 0. Interestingly, the QCA hasn’t predicted this dip and it does appear in addition

to the dips from QCA predictions. We attribute the second parabola to amorphous Umklapp scattering,

spin waves with smaller wavelength than that of Q ∼ 0. This was initially suggested in neutron scattering

measurements [12] but here our models do not include any experimental ambiguities.
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Fig.4.7 (a) Temperature dependence of the magnetization in crystal lattice and amorphous Co4P. TC ∼
500K in both cases. (b) Normalized temperature (T/TC)

3/2 dependence of the reduced magnetization
∆M = M(T/TC) − 1 in Co4P and FCC Co. Solid and dashed lines show fits to the Bloch’s law,
∆M = −B3/2(T/TC)

3/2.
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Fig.4.8 (a) Spin wave spectrum of crystalline FCC Co. We use the quantum thermostat at temperature
T = 300K. The color shows the neutron scattering cross section in Eq.(4.21). (b) Calculated and the QCA
spin wave spectrum. The red solid line shows the QCA prediction. The dashed orange line denotes the
magnons and the orange dots denote roton-like features, observed in Co4P by [9]. The same parameters
are used for both simulations.
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4.9 Additional aspects regarding spectra

4.9.1 Dependence on the different asymptotic form of J(rij)

To see how the different spatial dependence of J(rij) affect the spectra, we tested many different forms of

J(rij). However, just a few of them are shown as examples: exponentially decaying one with the longer decay

length and RKKY-like shapes. In Fig. 4.9, we show the relative relations of exchange interaction and the

pair-correlation function of Co-Co and the magnetic excitations in the case of exponential decay with longer

interaction range, w = 2.91 Å. Fig. 4.9(b) shows that the QCA prediction, shown in the red solid line, agrees

with the spectrum of higher energy region. In Figs. 4.10, and 4.11, we show the results when the exchange

function is RKKY-like. We choose parameters in such a way that it exhibits ferromagnetic state. In this case,

we don’t see much difference from the exponential function cases. Regardless of the qualitative differences

in J(rij), we always find the second dip. We note that the energy scale just reflects the amplitude of J0 and

does not affect the shape of the spectra. We also tested Gaussian form with different range (not shown) and

find all the spectra are qualitatively the same.

4.9.2 Dependence on the average coordination number

To see the average coordination number X dependence of the spectra, we use constant exchange, Jij =

J0O(T − rij), where O(r) is a step function. We note that this assumption also helps us to separate disorder

in exchange interaction and disorder in atomic configuration. Exchange interaction length T is the only

parameter in the system, changing averaged coordination number. X is the gCo−Co(r) of smaller system,

with 16384 atoms. We use a classical thermostat at T = 10K / TC so that the magnon distribution has

enough values at high energies.

In Fig. 4.12 and Fig. 4.13, we show the average coordination number dependence of the energy spectra,

ranging from X = 5 to X = 32. Regardless of the number of average neighbours, there is always the

magnons near Q ∼ 0 Å−1. When the average neighbours is larger than 8, the spectrum starts to obey the

QCA shown in red solid line in Fig. 4.12 and Fig. 4.13. This again suggests when the average number of the

nearest neighbor is large enough, QCA may be a good approximation and is consistent with the fact that QCA

is a high-density expansion.

4.9.3 Effect of P vacancy

In Fig.4.14, we compare magnetic spectra of Co4Co, where we put Co atoms where originally occupied by P

atoms. This is to see if the different P vacancy gap the second dip at Q ∼ 3Å−1. Co atoms are dense in the
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Fig.4.9 (a) Relative relation between J(rij), g(r), and J(rij)g(r). J(rij) is the exponential decay with
J0 = 13.466 meV, r0 = 2.54 Å, and w = 2.91Å. (b) Spin wave spectrum of amorphous Co4P with classical
thermostat at 10 K. The Red line shows the QCA theory.

Q

Q

(b)(a)

Fig.4.10 (a) Relative relation between J(rij), g(r), and J(rij)g(r). J(rij) is RKKY-like with J0 =
163.7439 meV, r0 = 0.0 Å, and kF = 0.47Å−1. (b) Spin wave spectrum of amorphous Co4P with classical
thermostat at 10 K. Red line shows the QCA theory.
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Fig.4.11 (a) Relative relation between J(rij), g(r), and J(rij)g(r). J(rij) is RKKY-like with J0 =
−4787.9 meV, r0 = 0.6 Å, and kF = 1.55Å−1. (b) Spin wave spectrum of amorphous Co4P with classical
thermostat at 10 K. The Red line shows the QCA theory.
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Fig.4.12 Spin wave spectrum of amorphous Co4P when (a) X = 5, (b) X = 6, (c) X = 8, and (d)
X = 13. J(rij) is the step function.
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Fig.4.14 Spin wave spectrum of amorphous Co4Co with classical thermostat at 10 K. J(rij) is the
exponential decay with J0 = 26.932 meV, r0 = 2.54 Å, and w = 0.66Å.

model and the P concentration is 0%. On the other hand, the results shown so far, i.e., Fig.4.8(b), are the case

of 20% concentration. We find that the overall feature does not sensitively depend on the P concentration.

4.10 Conclusion

In conclusion, we have succeeded to built a model for amorphous Co4P and calculated magnetic properties.

We reproduce experimental results, peak positions of static structure factors, Bloch’s law in demagnetization,

and spin wave stiffness constant of magnons at wavenumber∼ 0, without assuming complicated long-range

exchange interactions. Also, we find a bright sharp dip in the spin wave spectrum, which is centered at the

same wavenumber as the ‘roton-dip’ measured in Co4P. Though the dip is gapless, different from the original

experiment by Mook et al., it does have a narrow linewidth. This sharp second parabola suggests that there

exist low energy magnetic excitations in very short length scales. We attribute this to Umklapp scattering in

amorphous ferromagnets [12]. Shirane et al. have pointed out the original experiment only measures one

channel, S(Q,ω)−+, of S(Q,ω)+− − S(Q,ω)−+, which may lead to an experimental artifact to observe the

dip. S(Q,ω)+−−S(Q,ω)−+ should be plotted instead to remove any contributions from phonons and elastic

scattering. Our simulation supports gapless magnons and Shirane’s argument. The broad spectrum at higher

energies indicates a strong scattering or short lifetime of excitations. Our model can be used regardless of the

magnetism, which means that this can also be applied to antiferromagnetism or spin-glass systems. We expect

it is also a good start to studying spin transport properties in amorphous systems in the field of spintronics.

We hope this study encourages many researchers to explore exotic magnets and find many ways to utilize them
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in the field of spintronics.
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Chapter 5

Magnetically ordered states in

anisotropic 2D chiral magnets

In this chapter, we discuss the spin configurations in two-dimensional (2D) chiral magnets, especially magnetic

skyrmions with the topological number,

N =
1

4π

∫
d2rn(r) · (∂xn(r)× ∂yn(r)) = ±1. (5.1)

Recent theory and experiment revealed that the magnetic skyrmions in chiral magnets may be capable of an

information carrier of the magnetic memories and computer devices, utilizing their topological stability [13,

57]. To enhance the device controllability, it may be crucial to manipulate the inter-skyrmion interactions.

Typically, the skyrmion-skyrmion interaction between two circular symmetric skyrmions is known to be only

repulsive. Recently, however, attractive inter-skyrmion interactions are found to appear in some specific

chiral magnets; In a system with frustrated exchange coupling [100] and in the three-dimensional (3D) cone

phase [17, 18]. However, the general mechanism of the appearance of the attraction has been unclear and thus

the manipulation of the interaction has been impossible.

In this study, we theoretically investigate the 2D chiral magnet with in-plane anisotropy. We analytically

derive an approximated interaction potential at a distance and numerically study the interaction under an

in-plane magnetic field and/or a magneto-crystalline anisotropy [21]. In general, the magneto-crystalline

anisotropy depends on the crystal plane direction to the film [101, 102, 103, 22]. We consider a (011) film

to break the C4 symmetry in spin space to create distorted skyrmions. Furthermore, we study the SkX

configurations induced by attractive interactions. By changing the strength of the external magnetic field and

the magneto-crystalline anisotropy constant, we investigate the optimal lattice structures in detail.

In Figs. 5.1(a)-(d), we summarize the calculation setups in (a) isotropic system where the magnetic field
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Fig.5.1 (a)-(d) Calculation setups (a) in an isotropic geometry where the magnetic field B points to
the perpendicular direction z, (b) in an in-plane magnetic field with the tilting angle φ, (c) under a
magnetocrystalline anisotropy with three hard axes p̂1,2,3 and anisotropy constant A, and (d) in both in-
plane magnetic field and the magnetic anisotropy. The parameters (BJ/D2, φ, A/B) are (e) (0.75, 0, 0),
(f) (0.75, 30◦, 0), (g) (0.75, 0, 0.5), and (h) that of a bounded skyrmion pair with (0.75, 0, 2.0). (i)-(m)
Inter-skyrmion interaction potential in each case. The parameters are the same. Reproduced from [21].
Copyright 2021, American Physical Society.

B points to the perpendicular direction B ‖ ez , (b) under the in-plane magnetic field with tilting angle φ,

(c) under the magnetocrystalline anisotropy with the three hard axes p̂1,2,3 and anisotropy constant A, and

(d) under both the tilted magnetic field and the magnetic anisotropy. Figure 5.1(e)-(h) shows the typical

single-skyrmion shape in each case. We plot inter-skyrmion potentials in each setup in Fig. 5.1(i)-(m).

In this study, we found the following things:
• The analytic expression of approximated inter-skyrmion interaction, Vapp(R), at a distance R can be

obtained from a single skyrmion configuration.

• Vapp(R) correctly predicts the interaction V (R) at a large distance.

• There are two mechanisms of inducing the attractive interactions: a small deformation of skyrmion
shape and formation of magnetic domain between two skyrmions.

• A small distortion of skyrmions and the formation of the magnetic domain can induce small and large
attractions, respectively.

• The attractive interaction induces elongated triangular bimeron lattice with magnetic domains in the
background, as a ground state.

• 1D skyrmion chain appears as an excitation in the FM phase.

• There is a range of the magnetic field where the SkX is sustained by the attractive interaction.

• The attraction can be tuned in the range over double-digit by the in-plane magnetic field.
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5.1 Magnetic skyrmions

Magnetic skyrmions are nanometer-sized spin vortices with the finite topological number N . People are

interested in them due to the potential applications as an information carrier of magnetic memories and

computing devices, utilizing their topological stability [13, 57]. Skyrmions were originally suggested as an

elementary excitation by T. Skyrme in nuclear physics [104], whereas skyrmions found in chiral magnets form

a skyrmion crystal (SkX) which appears in thermal equilibrium [59] and stabilized due to the Dzyaloshinskii-

Moriya (DM) interaction [60, 61]. These skyrmions are found in chiral magnets, i.e., B20-type alloys MX

(M = Mn, Fe, Co; X = Si, Ge) [58, 63] and β-Mn type Co-Zn-Mn alloys [101]. Experimental identification

of the skyrmionic spin textures are conducted by the ac-susceptibility measurements [62], Fourier-space

imaging by neutron small-angle scattering intensities [58], real-space imaging by Lorentz transmission

electron microscopy [63], and detection of the topological Hall effect [64, 65].

In order to expand skyrmion-hosting materials, with the aim of utilizing a magnetic skyrmion for an

information carrier, many attempts have been conducted both theoretically and experimentally. The basic

materials to stabilize skyrmions are non-centrosymmetric magnets, such as chiral magnets and the polar

magnets, GaV4S8 and GaV4Se8 [105, 106]. The Bloch-type skyrmions are found in the former case and the

Néel-type skyrmions are observed in the latter case. Some of the skyrmion hosting materials are multiferroic,

such as the chiral magnet Cu2OSeO3 [107, 108, 109] and the polar magnets GaV4S8 and GaV4Se8, suggesting

the possibility of controlling skyrmion motions by means of the electric field [110, 111, 112]. Strong DM

interactions are also induced in multilayer systems of magnetic layer and heavy metal layers, such as iron mono-

, bi-, and tri- layers on an Ir substrate. The system hosts atomic-scale skyrmions [113, 114, 115, 116, 117]. At

room temperature, multilayer stacks of Pt/CoFeB/MgO, Pt/Co/Ta, and Pt/Co/MgO stabilize skyrmions [118,

119, 120]. In addition, recently the centrosymmetric magnets Gd2PdSi3 [121] and GdRu2Si2 [122] are

also found to host skyrmions: The former is because of a triangular lattice structure which is geometrically

frustrated [123] and the latter is due to the four-spin interactions via itinerant electrons. The very small

skyrmions (∼ 2 nm in diameter) are found in these materials, which is appealing not only for the possible

new mechanism of stabilizing skyrmions but also for the potential applicability to the high-density magnetic

storage. We note that spin configurations with different topological charge from the Bloch and the Néel

skyrmions with N = 1, such as anti-skyrmions with charge N = −1 [124, 125] and merons with charge

N = 1/2 [102, 22], have also been observed.

In this study, we focus on chiral magnets, FeGe and Co-Zn-Mn alloys, a few examples of them, stabilize

either stable or meta-stable skyrmions in the wide region in the temperature–magnetic field phase diagram.

The temperature range includes room temperature and the magnetic field range expands up to ∼ 0.5 T [101,
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126, 127, 102, 128, 103, 129]. In FeGe, even at zero-field, robust skyrmions are observed [130]. Though in

a bulk chiral magnet, the SkX phase is restricted to a small area in the vicinity of the Curie temperature [58],

the SkX phase expands until 0 K in thin films [63, 131, 132, 107, 133].

5.1.1 Analysis of a typical model of chiral magnets

Let us analyze the most fundamental Hamiltonian composed of three terms. This model is the minimum

model to exhibit SkX phase as a ground state,

Ftyp.[n] =

∫
d2r

a2
ftyp.[n(r),∇n(r)], (5.2)

ftyp.[n(r),∇n(r)] =
Ja2

2
[(∂xn)

2 + (∂yn)
2] +Dan · (∇× n)−B · n. (5.3)

The form of the DM interaction, the second term of ftyp.[n(r),∇n(r)], in chiral magnets is in general given

by aD · (∂xn× n+ ∂yn× n), where D ‖ [111] in i.e., MnSi and Co-Zn-Mn alloys. Theoretically, a Monte

Carlo simulation has found that D = ex(ey) along x(y) direction reproduces qualitatively the same phase

diagram of B = Bez as observed experimentally [134, 63]. The sign of D determines the helicity of the

skyrmions, the winding direction of the in-plane spin components, and the sign of the topological charge

N = ±1. The 1D phase diagram under B = Bez is schematically shown in Fig. 5.2. This is found by another

Monte Carlo analysis under the same Hamiltonian ftyp. at 0K [55]. When B = 0, Helix phase propagating in

the x direction with wavenumber Q (shown in the low field region in Fig. 5.2) is written as

n2DHL = (0, cosQx, sinQx). (5.4)

Its length scale is estimated as ∼ D/J by

∂ftyp.
∂Q

= Ja2Q−Da = 0 (5.5)

→ (preferred Q) =
D

Ja
. (5.6)

By inserting n2DHL into above energy functional, the energy of Helix is found to be E2DHL = −D2

2J . The

phase boundaries are of the same order of E2DHL; When the energy profit from Zeeman energy overcomes

E2DHL, the SkX phase appears. Indeed SkX phase emerges at intermediate field, B > Bcr1 ∼ 0.23D2/J and

ferromagnetic phase (FM) appears at high field, B > Bcr2 ∼ 0.78D2/J [55]. In the 3D model, on the other

hand, the SkX phase is no longer a ground state, since the 3D cone phase has lower energy. The cone phase,

twists along the z direction, can only appear in the 3D model and hence SkX remains the ground state in the
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Fig.5.2 1D phase diagram of external magnetic field B = Bez . Helix, SkX, and FM phase appears
respectively at low, intermediate, and high field. Helix–SkX phase boundary is denoted by Bcr1 and
SkX–FM phase boundary is Bcr2.

2D model.

5.2 Inter-skyrmion repulsions / attractions in isotropic / anisotropic

systems

It may be crucial to manipulate inter-skyrmion interactions to enhance the device controllability. Note that

we consider inter-skyrmion interactions between those embedded in a uniform background spins (FM state).

Typically, the skyrmion-skyrmion interaction is known to be repulsive and decays exponentially in a 2D

circular symmetric chiral magnet, under out-of-plane magnetic field [135, 14].

However, by taking the 3D magnetic structures into account, the attractive inter-skyrmion interactions

are explained both in a bulk and a thin film [16, 17, 18]. The attractive interaction accompanied with the

magnetization softening in the vicinity of the Curie temperature is also reported [136]. There are a few other

ways known to induce the attractions, besides chiral magnets: With the frustrated exchange interactions,
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oscillatory property of the inter-skyrmion interaction, between repulsion and attraction, are found [100, 137];

In the case of a polar magnet, anisotropic interactions are found between two skyrmions in a tilted background

FM state, and they are connected in a certain direction [138]; In centrosymmetric magnetic films, a tightly

bound pair of two skyrmions, called biskyrmions, are reported. They are stabilized due to the dipole-dipole

interaction combined with the easy-axis anisotropy [139, 140, 141, 142]. The interactions between two

skyrmions with higher topological charge, N > 1, are also studied in Refs. [143, 144].

5.3 Analytic expression of the interaction

We consider a thin film and use a continuum model, assuming that spin configuration varies slowly compared

to the lattice parameter a in space. The energy density is expressed as

F [n] =

∫
d2r

a2
f [n(r),∇n(r)] (5.7)

f [n(r),∇n(r)] =
Ja2

2
[(∂xn)

2 + (∂yn)
2] +Dan · (∇× n) + Uc(n,∇n). (5.8)

The coordinate axes are taken in such a way that the x-y plane is the in-plane. f stands for the energy per

one spin, n(r) is the direction of the magnetization and a 3D unit vector, J is the spin-exchange interaction

coefficient, D is the magnitude of the the DM interaction, a is the lattice parameter of the original lattice

model, and Uc(n,∇n) expresses the anisotropy potential in the spin space which is a function of n and

∇n = (∂xn, ∂yn). We assume there is a stationary solution of a ferromagnetic state n(r) = t̂, in the system.

This solution is stabilized by a magnetic field B ‖ t̂, and in this case, the anisotropy potential is

Uc(n,∇n) = −Bt̂ · n. (5.9)

The uniform solution t̂ emerges as either stable or metastable in the vicinity of the FM – SkX phase boundary

at least. We focus on the interaction between two such isolated skyrmions in the region.

Let’s evaluate the inter-skyrmion interaction at a distance. We assume that a single-skyrmion state n1sk(r)

is a stationary solution, where a skyrmion located at r = 0 is embedded in a FM configuration, i.e.,

n1sk(0) = −t̂,n1sk(∞) = t̂. (5.10)

Using above state n1sk, we obtain a spin state of two skyrmions located at points

P± : r = ±R/2 (5.11)
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by adding two vector fields,

n±(r) = n1sk(r ∓R/2), (5.12)

utilizing the stereographic projection [135]. We introduce

R : S2 2→ S2 (5.13)

as a rotation operator about ez × t̂ by angle arccos(ez · t̂), with eα (α = x, y, z) is the unit vector along the α

direction. Fig. 5.3 schematically shows that the rotation R maps ez to t̂, i.e.,

Rez = t̂, (5.14)

and the x-y plane the plane which is perpendicular to t̂. The stereographic projection

p : C ∪∞ 2→ S2 (5.15)

maps a complex number u = u1 + iu2 to a 3D unit vector in a following way;

p(u) =
2u1, 2u2, 1− |u|2

1 + |u|2 . (5.16)

The double-skyrmion state is thus given by

n2sk = Rp[p−1R−1(n+) + p−1R−1(n−)]. (5.17)

The detailed calculations can be found in Appendix C. The interaction potential is defined as the energy

difference of a double-skyrmion state and two single-skyrmion states concerning the FM state:

V (R) =

∫
d2r

a2
[
f(n2sk)− f(n+)− f(n−) + f(t̂)

]
. (5.18)

After extensive calculations (see Appendix D for details), we identify that V (R) at a large distance may be

given by

Vapp(R) =
1

a2

∫

Γ
εij(A−+ −A+−)idlj , (5.19)

(A+−)i =
∂2f(t̂)

∂nα∂(∂inβ)
δn+,αδn−,β +

∂2f(t̂)

∂(∂knα)∂(∂inβ)
(∂kδn+,α)δn−,β (5.20)
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Fig.5.3 Definition of the rotational operater R and its inverse operator R−1 which acts in the spin space.
The operator R−1 maps t̂ to ez and the plane orthogonal to t̂ to the x-y plane. The vector m = R−1(n)
stands for the magnetization whose z component is always parallel to the direction of the uniform stationary
solution t̂. The projection ofn to theRex,Rey , andRez corresponds tomx,my andmz = t̂, respectively.

R

*

dl
x

y

z

P�

P�

Fig.5.4 Schematic geometry considered for calculating the inter-skyrmion interaction. The two
skyrmions are placed at P+ and P−. The line integral along Γ approximates the interaction between
the skyrmions, as shown by Eq. (5.19). Reproduced from [21]. Copyright 2021, American Physical
Society.

where Γ shows the orthogonal bisector of the segment P+P−, d" is the line element of Γ along ez × R

(see Fig. 5.4), εij expresses the Levi-Civita symbol, and we imply to sum up repeated indices, where Roman

(Greek) indices stand for the components in the coordinate (spin) space and return the values x and y (x, y and

z). Here, we use δn to express the projection vector of n on the perpendicular plane to t̂, i.e., δn ≡ n−(n · t̂)t̂.

To derive Eq. (5.20), we assumed that δn± on the integral path Γ is sufficiently small so that approximated

n± are given by

n± =
√
1− |δn±|2t̂+ δn± 4 t̂+ δn±. (5.21)

We note that the approximated potential, Eqs. (5.19) and (5.20), can be used to other continuum spin models

as far as they have a FM state and a confined skyrmion in it as stable spin configurations.



5.3 Analytic expression of the interaction 59

5.3.1 Anisotrpic potential

As the anisotropy potentials, we consider the Zeeman field and the magneto-crystalline anisotropy. The

Zeeman field contributes to Uc as

U (Ze)
c (n,∇n) = −Bex · n(r), (5.22)

where Bex expresses a uniform magnetic field.

The lowest-order contribution of the magneto-crystalline anisotropy on a 3D cubic lattice is given by [145]

U (mc,3D)
c (n,∇n) =

∑

ν=1,2,3

{
A(n · p̂ν)

4 − Ka2

2
[∂ν(n · p̂ν)]

2

}
, (5.23)

where A and K show the anisotropy coefficients, p̂1,2,3 are the unit vectors along crystalline axes, and the

derivative along p̂ν is denoted by ∂ν . We consider a (011) thin film, not a (001) thin film which is typically

considered, since the crystal orientation would result in distorted skyrmions. This is due to the breaking of the

C4 symmetry in the spin space. The magneto-crystalline anisotropy in this case is expressed with p̂1 = ex,

p̂2 = (ey + ez)/
√
2, and p̂3 = (−ey + ez)/

√
2. In a 2D film, we can ignore ∂z since it is sufficiently thin

along the z axis. The resulting anisotropy potential is given by

U (mc,011)
c (n,∇n) = A

[
n4
x +

(ny + nz)4

4
+

(−ny + nz)4

4

]
− Ka2

4

[
2(∂xnx)

2 + (∂yny)
2 + (∂ynz)

2
]
.

(5.24)

5.3.2 Concrete expression for the interaction

Using Eq. (5.8) and the anisotropic potential Uc = UZe
c + U (mc,011)

c , Eq. (5.20) becomes

(A+−)i

= Ja2(∂iδn+) · δn−

−Da(δn+ × δn−)i

−Ka2(∂xδn+,x)δn−,xδi,x

− Ka2

2
[(∂yδn+,y)δn−,y + (∂yδn+,z)δn−,z] δi,y. (5.25)

We next discuss how each term contributes to the inter-skyrmion interaction.
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Circular symmetric case

In the circular symmetric case, where the perpendicular external magnetic field is applied Bex = Bez and

no magneto-crystalline anisotropy is assumed A = K = 0. Obviously the uniform solution for this setup is

t̂ = ez . In this case, the only contribution becomes finite is the J term; The contribution from the D term of

Eq. (5.25) vanishes due to δn+ × δn− ‖ t̂ = ez . The J term at a distance is given by

Vapp(R) = 2J

∫

Γ
εij (∂iδn−) · δn+dlj , (5.26)

with the partial integration using δn±(∞) = 0. The obtained expression is the same as the consequence of

the baby Skyrme model [135]. In addition, we can also evaluate Eq. (5.26) in the same manner. In fact we

indeed reproduce a repulsive inter-skyrmion interaction Vapp(R) ∝ Ja2K0(
√
B/J |R|), where (r,ϕ) is the

polar coordinates with respect to the center of the skyrmion, and Kn(z) is the modified Bessel function of n-th

order. The approximated behavior is known to be Kn(z) ∼
√
π/2ze−z when z → ∞. To obtain the above

interaction, we use the asymptotic solution of one skyrmion, δn1sk(r,ϕ) ∼ K1(
√
B/Ja2r)(− sinϕ, cosϕ, 0).

Effect of skyrmion deformation

We emphasize that it is a subtle energy balance between the x and y components of the inner product in the

integrand of Eq. (5.26) that decides the sign of the interaction. In the above case, it results in the repulsive

inter-skyrmion interaction. To see this point, let us rewrite Eq. (5.26), by choosing R = Rex, as

Vapp(Rex) = 2J

∫ ∞

−∞

∑

α=x,y

[∂xmα(R/2, y)]mα(−R/2, y)dy, (5.27)

where m ≡ R−1(n1sk), and mx and my are the in-plane components of n which are projected on the

perpendicular plane to t̂ [see Fig. 5.3]. Fig. 5.5 shows the plot of x and y components of the m and ∂xm

in the x-y plane. We numerically obtain m as a stationary solution of the LLG equation (see Methods). We

also plot m and ∂xm along x = ±Rref for various Uc(n,∇n) in Fig. 5.5, where we set Rref to be similar to

the skyrmion radius. Figure 5.5(a) is the result for Uc(n,∇n) = −Bnz , from which one may see that the

product of the x (y) components contributes negatively (positively) to Eq. (5.27). In case (a), the summation of

these terms results in small positive value, a repulsive interaction. This subtle balance can be easily changed

by the skyrmion deformations either by tilting the external magnetic field [Fig. 5.5(b)] or by offering the

magneto-crystalline anisotropy [Fig. 5.5(c)]. In Figs. 5.5(b) and 5.5(c), we can see that the contribution from

the x (y) components becomes larger (smaller) and the resulting interaction becomes attractive.
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Fig.5.5 Summary of the each term, x and y components, of the integral Eq. (5.27) in (a) circular
skyrmions and (b), (c) distorted skyrmions. Under the anisotropic potential Uc = U (Ze)

c + U (mc,011)
c , we

numerically obtain the single-skyrmion solutionn1sk. Panels are for (a)Bex ‖ ez andA = K = 0, (b)Bex ‖
(sin 30◦, 0, cos 30◦) and A = K = 0, and (c) Bex ‖ ez , A %= 0, and K = 0, respectively. (a-1)-(c-1) Color
plots shows the spatial distributions of ∂xmx,mx, ∂xmy , and my in the thin film plane. m ≡ R−1(n1sk).
(a-2)–(c-2) y dependences of ∂xmx(R/2, y),mx(−R/2, y), ∂xmy(R/2, y), and my(−R/2, y) from left to
right at R/2 = Rref = 10. The integrals of ∂xmx(R/2, y)mx(−R/2, y) and ∂xmy(R/2, y)my(−R/2, y)
for y give rise to negative and positive values, respectively. The sum of the two contributions are positive
in (a) and negative in (b) and (c), respectively. Reproduced from [21]. Copyright 2021, American Physical
Society.
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Effect of the D term

The D term in Eq. (5.25) also becomes finite to when the background magnetization is somehow tilted from

the z axis, t̂ (= ez . The contribution of the D term can be given in terms of m = R−1(n1sk). Suppose that

double-skyrmions are located in a background magnetization t̂ = (cosχ sinφ, sinχ sinφ, cosφ) with their

relative position being R = Rex. Using δn = R(mx,my, 0), the D term contributes to the interaction as

2D

a

∫ ∞

−∞
dy(δn+ × δn−)x

=
2D

a
sinφ cosχ

∫ ∞

−∞
dy

[
mx

(
−R

2
, y

)
my

(
R

2
, y

)
−mx

(
R

2
, y

)
my

(
−R

2
, y

)]
. (5.28)

We note that this term, Eq. (5.28), indeed vanishes when the skyrmion configuration is a simple spin rotation

of that under the potential Uc(n,∇n) = −Bnz , due to the symmetry: mx(−R/2, y) = mx(R/2, y) and

my(−R/2, y) = −my(R/2, y) [see Fig. 5.5(a)]. Therefore there should be an additional deformation of the

skyrmion shape for the nonzero contribution. Roughly speaking, we can say that the above contribution,

Eq. (5.28), is smaller than the contribution from the J term Eq. (5.27) by a factor of sinφ cosχ. The concrete

values depend on how much the skyrmion is deformed under the anisotropic potentials. In Secs. 5.5 and

5.6, we will numerically show that the contribution of the D term is negligible at large distance R but is

comparable to that from the J term for small R.

Effect of the K term

When K (= 0, the K term in Eq. (5.25) should also be taken into consideration. To evaluate the effect, we

consider the interaction of skyrmions aligned along the x axis. Let’s assume that the uniform background

magnetization is in the z direction, i.e., t̂ = ez , for simplicity. The approximate interaction at a large distance

is obtained as

Vapp(Rex) = 2(J −K)

∫ ∞

−∞
[∂xmx(R/2, y)]mx(−R/2, y)dy + 2J

∫ ∞

−∞
[∂xmy(R/2, y)]my(−R/2, y)dy.

(5.29)

From the equation above, the K term modifies the weight of the x component in Eq. (5.27).

According to the expression, if K is negative and K < −J(Ix + Iy)/|Ix| is satisfied, where

Iα =
∫∞
−∞ [∂xmα(R/2, y)]mα(−R/2, y)dy, the interaction becomes attractive even when the skyrmion is not

distorted at all. However, we find that K/J < −1.6 is required so that K/J < −(Ix + Iy)/|Ix| is satisfied

(see Table 5.1). For the evaluation, we use the spin configuration shown in Fig. 5.5(a). Such a strong

anisotropy accompanies the deformation of skyrmions anyway, and the shape of which is no more circular.

The deformation modifies the inter-skyrmion interaction via the J term, which is already discussed. Thus,
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!!!!!!!!!!R[site]

Iα/J Ix Iy

18 -0.007457 0.137210
16 -0.019489 0.061040
14 -0.050069 0.285613
12 -0.122373 0.501477

Table 5.1 Example of R dependence of the values of the integrand Iα, α = x, y, when A = 0 under the
perpendicular magnetic field.

in the following calculations, we discard the K term for simplicity and investigate two specific situations (i)

under a in-plane magnetic field and (ii) under the onsite magnetic anisotropy A.

5.4 Micromagnetic simulation

5.4.1 Model Hamiltonian

To numerically survey the interactions and stable spin structures, we use the classical spin and a 2D square

lattice model. The Hamiltonian reads

H =− J
∑

r

Sr · (Sr+ex + Sr+ey )

−D
∑

r

(Sr × Sr+ex · ex + Sr × Sr+ey · ey)

+
∑

r

U(Sr), (5.30)

where Sr is the unit spin vector at r ∈ {anxex + anyey |nx, ny ∈ Z}, J and D are the same ones as those

already defined in the continuum model, and U(Sr) is the general anisotropy potential, the continuum model

counterpart of which is Uc(n,∇n). The Hamiltonian (5.30) is the discretized version of the continuum model

Eq. (5.8). It is obtained by replacing n(r) with Sr, ∂in(r) with (Sr+ei − Sr)/a, and
∫
d2r/a2 with

∑
r,

respectively. Note that we evaluate n(r), the above replacement is implied in the following calculations.

As an anisotropy potential, we consider the Zeeman field and the magneto-crystalline anisotropy of a (011)

thin film. The breaking of the C4 symmetry is crucial for the skyrmion deformation that induces an attractive

inter-skyrmion interaction, and thus we choose the (011) film rather than (001). Although the 2D lattice grid

of a (011) plane is not square, we use a square lattice for simplicity; We use discretized U (mc,011)
c on the square

lattice. This approximation is justified when the size of the skyrmion is much larger than the lattice parameter.
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The resulting anisotropy potential, including the Zeeman field of Eq. (5.22), is given by

U(Sr) =−Bex · Sr

+A

[
(Sx

r )
4 +

(Sy
r + Sz

r)
4

4
+

(−Sy
r + Sz

r)
4

4

]

+K

[
Sx
rS

x
r+ex

+
1

2
(Sy

rS
y
r+ey

+ Sz
rS

z
r+ey

)

]
. (5.31)

In the rest of the paper, we independently discuss changes of the inter-skyrmion interaction due to (i) an

in-plane magnetic field and (ii) the onsite magneto-crystalline anisotropy (the A term). In both calculations,

we choose K = 0 as discussed in Sec. 5.3.2. In case (i), we apply the in-plane magnetic field along the x axis

and use the anisotropy potential given by

Ui(Sr) = −B(Sz
r cosφ+ Sx

r sinφ), (5.32)

where φ is the angle between the external magnetic field to the z axis. In case (ii), we apply an external

magnetic field perpendicular to the film and use the anisotropy potential

Uii(Sr) =−BSz
r +A

[
(Sx

r )
4 +

(Sy
r + Sz

r)
4

4
+

(−Sy
r + Sz

r)
4

4

]
. (5.33)

5.4.2 Skyrmion-skyrmion interactions

We calculate the inter-skyrmion interaction in the following way; Firstly, we find the energy of a metastable

single-skyrmion state, E1sk, and that of a metastable double-skyrmion state, E2sk(R) where the two skyrmions

are placed at relative position R. Also, we find the energy of the FM state of Sr = t̂, Eferro, since this gives

the standard of the energy. The above stationary states can be found by numerically integrating the Landau–

Lifshitz–Gilbert (LLG) equation,

dSr

dt
= −Sr ×Beff + αSr × dSr

dt
, (5.34)

where Beff = −δH/δSr is the effective magnetic field, H is Hamiltonian given in Eq. (5.30), and α is the

damping constant. Note that the temperature is kept at absolute zero in the study. We fixed the positions of

skyrmions by using a strong pinning field at the skyrmion cores. The pinning field is only on one site. The

inter-skyrmion interaction is generally expressed as

V (R) = E2sk(R)− 2E1sk + Eferro, (5.35)
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which is the discrete model version of the continuum model, given in Eq. (5.18).

5.4.3 Stable SkX structure

In order to seek the ground state lattice structures of the model Hamiltonian, we used two kinds of Monte

Carlo (MC) algorithms, the exchange MC [74] and the Metropolis MC. The typical system size used is 72 sites

×72 sites ×1 site with the periodic boundary conditions in x and y directions. We first run the exchange MC

to efficiently find the thermal-equilibrium configurations with the temperature range of 0.01J ≤ kBT ≤ J/2.

Here, 30 replicas are empirically used in the simulation. After the thermalization, we seek the state with the

lowest energy at kBT = 0.01J during the MC simulation of a few tens of thousands of steps. Finally, we use

the lowest-energy state of kBT = 0.01J as an initial state of the Metropolis MC, and run with T = 0 until it

converges to find the energy-minimum state.

5.4.4 Parameters

We fix J = 1, D = 0.5, and a = 1 in the study. We confirmed that, with the parameters, the SkX phase

appears in the same magnetic field range as the previous studies have reported, Bcr1 ≤ B ≤ Bcr2, where

the two critical fields are Bcr1 4 0.23D2/J and Bcr2 4 0.78D2/J , respectively [55, 146]. The triangular

skyrmion lattice constant 4πJa/(
√
3D) [13] corresponds to the diameter of an isolated skyrmion 2Rsk in

the vicinity of the FM–SkX phase boundary. Our choice of the parameters obtain the skyrmion diameter as

2Rsk = 14.6a(Rsk = 7.3a), which means that Rsk is satisfactorily larger than a, validiating the use of the

square grid for a (011) thin film (see Sec. 5.4.1).

5.5 Appearance of attractive interactions under tilted magnetic field

Using the anisotropy potential Ui(Sr) defined in Eq. (5.32), we show the φ, the angle from z axis, dependence

of the inter-skyrmion interaction. The previous work [15] has already investigated a similar system and found

that the interaction becomes anisotropic. We reproduce these results and additionally show that the attractive

interaction appears at a larger distance than that of the authors of Ref. [15] have studied.

Figures 5.6(a), (b), and (c) show the interaction potential V (R), numerically obtained one, for skyrmions

along the x direction at a distance R for φ = 17◦, 22◦, and 30◦, respectively. The approximated interaction

Vapp(R) defined in Eq. (5.19), as well as the first and second terms of Eq. (5.25), are also shown. They are

also evaluated with the numerically obtained single skyrmion shape as the stationary solution of the LLG

equation. In all cases, the attractive interaction appears for a large R. Interestingly, the attraction becomes

larger for larger φ, though the interaction energy remains as small as a few percent of J .
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Fig.5.6 (a)-(c) Inter-skyrmion interaction V (R) between two skyrmions aligned along x under a tilted
magnetic field of strength BJ/D2 = 0.73 and tilting angle (a) φ = 17◦, (b) φ = 22◦, and (c) φ = 30◦. The
numerically calculated interactionV (R), the approximate interactionVapp(R), and the J term (deformation)
and D term (tilting background) in Eq. (5.25) are shown. (d),(e) Spin configuration m = (Sr · (ey ×
t̂), Sy

r ,Sr · t̂) of a single skyrmion for (d) φ = 0◦ and (e) φ = 30◦, where the arrows stand for the vector
m projected on the thin film plane (x-y) and the color plot expresses mz ‖ t̂. Tilting of the external
magnetic field hardly causes the rotation of the skyrmion shape in spin space but deforms the shape to
induce attractive interaction.
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Vapp(R) agrees very well with V (R) when R is larger than the distance which minimizes V (R). By

comparing them we find the origin of the attraction mainly comes from the J term. At around the potential

minimum, the D term also contributes to the interaction as much as that from the J term.

We describe the appearance of the attractive force using the deformation of a single skyrmion. In Fig.

5.5(b), we plot m and ∂xm for φ = 30◦. The distribution of mx (my) along the x axis enlarges (shrinks)

compared with that for φ = 0 [Fig. 5.5(a)]. As φ increases, Vapp(R) for a fixed R (! 2Rsk) decreases and

eventually becomes minus, due to the negative (positive) contributions to Eq. (5.27) from the x (y) component

. Eq. (5.28) also contributes to the appearance of the attraction, which is seen from Fig. 5.5(b).

The magnetization profile m = (Sr · (ey × t̂), Sy
r ,Sr · t̂) of single-skyrmion at φ = 0◦ and 30◦ are also

plotted in Figs. 5.6(d) and (e), respectively. This profile convinces that the skyrmion configuration is indeed

different from the simple rotation of the shape at φ = 0 in spin space but with the additional deformation,

leading to the change in the sign of the interaction.

The interaction between two deformed skyrmions depends on the relative direction as well, which is also

discussed in Ref. [15]. Figure 5.7 shows the relative position R = (X,Y ) dependence of the interaction

potential. The potential has a minimum in the direction of the in-plane magnetic field, i.e., the x axis in this

study. On the other hand, the inter-skyrmion interaction along the y axis enlarges as φ increases. This feature

reproduces the result in Ref. [15]. However, Ref. [15] has not mentioned the attractive interaction since they

have investigated smaller distances, up to R = 14 site in our parameter.

5.6 Appearance of attractive interactions with the magneto-crystalline

anisotropy

Next, we consider skyrmion deformation from the magneto-crystalline anisotropyUii(Sr) shown in Eq. (5.33).

Interestingly, when the crystalline anisotropy (A term) dominates the Zeeman term, the resulting easy axes for

the magnetization tilt from the z axis. The three hard axes, p1, p2, and p3, prefers the z-x plane. In Sec. 5.6.1,

we calculate such preferred direction for the FM state t̂. The interaction between two skyrmions embedded

in the FM state t̂ = ez and t̂ (= ez are discussed in Sec. 5.6.2. In the following, we treat only the A > 0 case,

because the qualitative behavior of the interaction is the same regardless of the sign of A [see Sec. 5.6.1].

5.6.1 Preferred spin direction under the magnetic anisotropy

When the Zeeman term is neglected, the magneto-crystalline anisotropy Uii(Sr) with A > 0 has the eight

preferred orientations: Sr = (±1/
√
3, 0,±

√
2/3) and (±1/

√
3,±

√
2/3, 0). The external magnetic field along

the z axis resolves the degeneracy of eight directions, and the new easy axes are the ones having the biggest
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Fig.5.7 Inter-skyrmion interaction potential V (R) between two skyrmions with relative position R =
(X,Y ) in a tilted magnetic field. The strength is BJ/D2 = 0.73 and the tilting angle is φ = 30◦ in the x
axis. Reproduced from [21]. Copyright 2021, American Physical Society.

z component, i.e., (±1/
√
3, 0,

√
2/3). The spin orientation eventually changes from (±1/

√
3, 0,

√
2/3) to ez

as the Zeeman energy becomes large. The preferred spin direction is obtained by using a uniform FM state

Sr = t̂ = (sinθ, 0, cosθ), (5.36)

and minimizing the one spin energy

E(θ) = A

(
sin4 θ +

1

2
cos4 θ

)
−B cos θ (5.37)

with regard to θ. The energy minimum can be found at θ = 0 (i.e., t̂ = ez) when A/B ≤ 0.5, but it

disappears (changes to a local maximum) when A/B > 0.5 (i.e., t̂ deviates from ez). This is because

d2E/dθ2
∣∣
θ=0

= −2A + B. Fig. 5.8 shows the resulted preferred angle θ vs. A/B. Note that there are two

degenerate preferred directions t̂± = (± sin θ, 0, cos θ) since E(θ) is an even function of θ. The two magnetic
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Fig.5.8 Resulted favorable angle θ of a FM state as a function of |A|/B. In the case of A > 0 (A < 0),
the spins are angled in the x (y) direction. Once the magnetic anisotropy dominates the Zeeman energy,
when A/B > 0.5 or −A/B > 0.25, the preferred angle becomes finite and spins are tilted from the z axis.
Reproduced from [21]. Copyright 2021, American Physical Society.

domains of Sr = t̂± indeed appear when the anisotropy is sufficiently strong [see Sec. 5.7].

Let’s think about what happens when A < 0, the magneto-crystalline anisotropy prefers the spins to be

Sr = (±1, 0, 0) and (0,±1,±1)/
√
2. Combined with the Zeeman term, the easy axes result in lying in the

y-z plane in the spin space. The angle from the z axis can be calculated in a similar way as in the A > 0 case,

and the dashed curve in Fig. 5.8 shows the result. In the case of A < 0, θ becomes finite for |A|/B > 0.25.

The magneto-crystalline anisotropy leads to the skyrmion deformation even when t̂ = ez . In Fig. 5.9,

we show the single skyrmion shape with BJ/D2 = 0.70 for A = 0 (a), A = 0.5B (b), and A = −0.25B

(c), which indicates that the skyrmion shape for A > 0 (A < 0) is elongated in the x (y) direction. It is

sufficient to investigate the A > 0 case only, because our interest is the effect of the skyrmion deforms on

the inter-skyrmion interaction. Although the might be small quantitative changes in the interaction due to the

spin configuration near the skyrmion, the behavior is qualitatively the same for both cases, A > 0 and A < 0.

We thus discuss only the case of A > 0 in detail.

5.6.2 Inter-skyrmioin potential in single domain

Let’s discuss the inter-skyrmion interaction in the single domain, the spins are tilted from the z axis either

by +θ or −θ. We start from the simple case where t̂ = ez . When A/B " 0.5, the skyrmions are distorted

under the magneto-crystalline anisotropy and the background spins are along the z axis. Figure 5.10(a) shows
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Fig.5.9 Stable shape of the single-skyrmion (a) A = 0, (b) A = 0.5B, and A = −0.25B and at
BJ/D2 = 0.70. These are obtained as a stationary solution by numerically solving the LLG equation. The
arrows denote the spin vector Sr projected to the x-y plane, Sx

r and Sy
r , and the color plot indicates Sz

r .
The circular shape at A = 0 (a) is elongated laterally (in the x direction) and vertically (in the y direction)
for A > 0 (b) and A < 0 (c), respectively. Reproduced from [21]. Copyright 2021, American Physical
Society.

the numerically obtained interaction potential V (R) between the two skyrmions alinged along the x axis with

BJ/D2 = 0.75 at A/B = 0.0, 0.1, 0.25, 0.33, 0.4, and 0.5. The attractive interaction appears at R ! 2Rsk,

and it becomes stronger for larger anisotropy constant A/B. However, even in the case of A/B = 0.5, the

potential depth remains shallow (a few percent of J), which is the same order of magnitude as that under the

in-plane magnetic field. We also plot the interaction for analytic approximation Vapp(R) calculated from the

single-skyrmion shape. It well reproduces V (R) at a large distance and up to around the potential minimum.

For example, when A/B = 0.4 where the potential minimum is located at R = 18 site, the two curves almost

become identical at R ≥ 20.

Because the background magnetizations are not tilted, t̂ = ez , for A/B ≤ 0.5, there is only the J term

which gives a finite contribution to A+− [see Eq. (5.25)]. Therefore, we can see that the attractive interaction

purely originates from the deformation of the skyrmion shape as discussed in Sec. 5.3.2. Figs. 5.5(c) and

5.9(b) indicate that the skyrmion deforms in such a way that the profile of the x component, Sx
r , expands,

which enhance the negative component to Eq. (5.27), giving rise to the attractive interaction along the x

direction.

When A/B > 0.5, the situation changes drastically. We show the interaction V (R) of two skyrmions

lined up along the x axis with BJ/D2 = 1.0 and at A/B = 0.67, 1.0, and 2.0 in Fig. 5.11(a), (b), and

(c), respectively. The background spins are tilted from the z axis in these cases. The contributions to the

approximate interaction Vapp(R) are both from the J term and the D term. They are also shown in the same

plot. Interestingly, V (R) in Fig. 5.11 appears to be much stronger than Vapp(R) especially around the potential

minimum, which is very different from Fig. 5.10. The attractive interaction becomes as large as 0.1J to J for

A/B ! 0.5. One may see that the preferred distance for skyrmions, the distance which minimizes V (R), is

smaller than that of Fig. 5.10. This is due to the different skyrmion size because of the different value of B;
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Fig.5.10 (a) Inter-skyrmion interaction V (R) along the x direction with BJ/D2 = 0.75 under the
magneto-crystalline anisotropy for 0 ≤ A/B ≤ 0.5, where the background spins are t̂ = ez . Shown are
the numerically obtained one V (R) and the approximate one Vapp(R) for each case. (inset) Magnified view
of the potential up to R = 40 sites. (b)-(d) Stable single-skyrmion shape when (b) A/B = 0.5, (c) 0.4,
and (d) 0.0 and at BJ/D2 = 0.75, obtained numerically. The details of the figures are the same as that in
Fig. 5.9. Although the distortion of the skyrmion in (b)-(d) is smaller compared with that in Figs. 5.9(a)
and (b), it has a significant effect on V (R), as shown in (a).

Stronger B favors the smaller skyrmions, but the depth of the potential is almost the same regardless of the

exact value of B.

The strong attractive interaction is thanks to the formation of a magnetic domain between the two skyrmions.

Differently from the in-plane magnetic field case, which is discussed in Sec. 5.5, there are two energetically

degenerate uniform states t̂± in this case. Thus, a small magnetic domain of Sr = t̂− can be formed between

two skyrmions, when two skyrmions are placed in a FM state Sr = t̂+. In Figs. 5.11(d)–(f), we plot the spin
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configuration of two such skyrmions for BJ/D2 = 1.0 and A/B = 1.0. The region of Sx
r < 0 is circled by the

domain wall of Sz
r = 1, which tightly bounds the two skyrmions. Also, the two skyrmions are embedded on

the domain wall. The strong attraction suggests that the bound-state will be robust against external diffractions

such as thermal fluctuations.

In Fig. 5.12, we plot the relative angle dependence of the interaction, plotted as a function of R = (X,Y )

for A/B = 1.0 and BJ/D2 = 1.0. Attractive interaction is found when the angle between the two skyrmions

is less than ∼ 45◦ and otherwise repulsive. We note that qualitatively the same result of V (R), Fig. 5.12, is

obtained regardless of the exact value of A/B.

5.7 Elongated SkX and phase diagram in the presence of the

attraction

We have investigated the inter-skyrmion potential in anisotropic geometries. Next, we discuss the ground-

state lattice structures induced by the anisotropic attractive interaction, focusing on the case with the magnetic

anisotropy which stabilizes the magnetic domains between two skyrmions when A/B > 0.5.

In Table 5.2, we summarize the ground-state phase diagram depending on B and A/B. This is obtained

by the Monte Carlo (MC) simulations [see Sec. 5.4.3 in detail]. Regardless of the formation of the magnetic

domain, A/B ≤ 0.5 or A/B > 0.5, there are two critical magnetic fields Bcr1 and Bcr2. The uniform FM

phase, a single domain, appears at B ≥ Bcr2, a SkX structure is obtained at Bcr1 ≤ B < Bcr2, and a spin helix

state emerges at B < Bcr1. When A/B ≤ 0.5, the FM phase points to the z axis [see Region (i) in Table 5.2].

By decreasing the magnetic field B below Bcr2 with keeping A/B as the same value, an elongated triangular

SkX along the y direction appears [see Region (ii)]. This distortion along the y direction is attributed to the

anisotropic property of the interaction, as shown in Fig. 5.12: The interval of the skyrmions in the x direction

is smaller than that in the y direction since the attractive interaction favors the smaller distance along the x

axis. Further lowering B below Bcr1 stabilizes a helical spin configuration [see Region (iii)]. On the other

hand when A/B > 0.5, the FM state is composed of the tilted spins Sz (= 1 due to the combined effect of the

magneto-crystalline anisotropy and the Zeeman energy. When the magnetic field is high enough, the system

prefers the single domain structure of the preferred directions t̂± [Region (iv)], since making the domain wall

is energetically refused. The lower magnetic field than Bcr2 [see Region (v)] prefers an elongated triangular

lattice along the y axis, similar to the case of Region (ii). However, unlike Region (ii), the background of

the lattice is composed of the magnetic domains of S = t̂±. This results in that skyrmions line up along

the domain walls [see Fig. 5.14(c)]. In this Region, the domain walls are favored in terms of accompanying

skyrmions with them.
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Fig.5.11 (a)-(c) Interaction potential V (R) between two aligned skyrmions along the x axis in a magnetic
field of strength BJ/D2 = 1.0 and magneto-crystalline constant (a) A/B = 0.67, (b) 1.0, and (c) 2.0,
where the background spins are tilted from ez in the z-x plane. Numerically obtained interaction V (R),
the approximate potential Vapp(R), and the two contributions from the J and the D terms in Eq. (5.25)
are shown. (d)-(f) Magnetization configurations of a double-skyrmion state with BJ/D2 = 1.0 and
A/B = 1.0 at a fixed relative position R = Rex with R = 14, and the color plots indicate (d) Sx

r , (e) Sy
r ,

and (f) Sz
r . A magnetic domain with Sx

r < 0 is formed between two skyrmions. They are surrounded by
the domain wall, Sz

r = 1, and give rise to the strong attractive potential as shown in (a)-(c). Reproduced
from [21]. Copyright 2021, American Physical Society.
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Fig.5.12 Inter-skyrmion potentialV (R) for deformed skyrmions along x at relative positionR = (X,Y ).
The magnetic anisotropy constant is A/B = 1.0 and the external magnetic field is at BJ/D2 = 1.0. No
matter A/B is below or above 0.5, the angular dependence is almost the same. Reproduced from [21].
Copyright 2021, American Physical Society.

Specifically, the topological object which appears in Region (v) is a bimeron, not a skyrmion [22]. Here, a

bimeron is a pair of merons and has the same topological charge as a skyrmion. It is the boundary condition

surrounding the object that differs between a skyrmion and a meron: The magnetization around a skyrmion

is pointing to the same direction, whereas that around a meron has a finite winding number π1(S1) [147]. In

the system in consideration, a skyrmion lattice continuously changes to a bimeron lattice, as we increase A/B

and t̂ tilts from the z axis. For convenience, we express both of them as skyrmion in the thesis.

The critical magnetic fields Bcr1 and Bcr2, which appear in Table 5.2, depend on A/B. We find that Bcr1

is almost insensitive to A/B and is ∼ 0.3D2/J , while Bcr2 strongly depends on the values of A/B. The

behavior of Bcr2 can be seen from the A/B vs. the single skyrmion excitation energy. If there was only

repulsive interaction, Bcr2 is determined as the magnetic field at which the single skyrmion excitation energy

(the energy to create a single skyrmion) in the FM state becomes zero: This is because the inter-skyrmion

interaction plays an important role only when the two skyrmions are close enough; The skyrmion lattice

becomes exactly the ground state once the excitation energy becomes negative in this case. In Fig. 5.13, the
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A/B
0 < A/B ≤ 0.5 0.5 < A/B

Bcr2 ≤ B (i) Single Domain (Sz = 1) (iv) Tilted Single Domain (Sz (= 1 and Sx (= 0)

Bcr1 ≤ B < Bcr2 (ii) Elongated Triangular SkX (v) Elongated Triangular SkX with Magnetic Domains

B < Bcr1 (iii) Helix

Table 5.2 Ground-state spin configurations obtained by the MC in a magneto-crystalline anisotropy A
and an magnetic field B points to the z axis. The value of critical magnetic fields Bcr1 and Bcr2 depend on
A/B. The single domain phases at large magnetic field regions, (i) and (iv), mean the FM phase. For a
detailed explanation of the phases, see the text.

single-skyrmion excitation energy ∆E ≡ E1sk − Eferro is shown as a function of the external magnetic field

BJ/D2 for various A/B. The strong dependence on A/B of the zero point of ∆E is consistent with that of

Bcr2 dependence. We note that, in the present case, the attractive interaction shifts the phase boundary.

To study the phase boundary of the FM – SkX, we use the LLG equation to calculate the energy of

the SkX state in the following way. We prepare a unit cell of size 2dx × 2dy and place two skyrmions at

(dx/2, dy/2) and (3dx/2, 3dy/2) in such a way that a periodic arrangement of the system reproduces the

elongated triangular lattice found in the MC simulation. After relaxing the spin structure with the LLG

equation, we calculate the energy per spin of the stationary state. The optimal skyrmion interval, dx and dy,

are that minimize the one spin energy E1spin. In Fig. 5.14(a), we show E1spin as a function of (dx, dy) with

A/B = 1.0 and BJ/D2 = 0.625 (a-1), 0.65 (a-2), 0.66 (a-3), and 0.67 (a-4). Please note that the energy is

with respect to that of the FM state, S = t̂+. Given that the energy minimum exists and the energy is negative

in Figs. 5.14(a-1)-(a-3) clearly demonstrates that the SkX is the ground state at the corresponding magnetic

fields. The single-skyrmion excitation energy ∆E with A/B = 1.0 crosses zero when BJ/D2 = 0.625

(Fig. 5.13), meaning that the SkX phase at BJ/D2 > 0.625 is due to the skyrmion condensation induced by

the attraction. Increasing the magnetic field B enlarges the domain width in the y direction, and the domain

size eventually becomes comparable to the system size. This is nothing but the phase transition to the FM

phase. There is no energy minimum where 10 ≤ dy ≤ 40, as shown in Fig. 5.14(a-4). This indicates that the

phase boundary is at BJ/D2 ∼ 0.66.

The distribution of Sx of the optimal lattice are shown in Figs. 5.14(b-1)-(b-3), which are obtained from

Figs. 5.14(a-1)-(a-3), respectively. It is visible that the magnetic domains of Sx > 0 and Sx < 0 (which

corresponds to the domains of S = t̂+ and t̂−, respectively) alternately align in the y direction. Due to the

sign of the DM interaction (which favors counter crock-wise winding of spins in x-y plane in this model),

the spins above (below) the domain wall has Sx > 0 (Sx < 0). Therefore, skyrmions can only emerge on

the domain walls where Sx becomes the same sign as the skyrmion structure, and they cannot appear on the

other ones. The inter-skyrmion energy between the two skyrmions in the y direction, over the domain wall, is
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Fig.5.13 Single skyrmion excitation energy, ∆E ≡ E1sk − Eferro, vs. BJ/D2 for various A/B. Repro-
duced from [21]. Copyright 2021, American Physical Society.

negligible; This is because the resulted energies for the skyrmions in the optimized SkX are almost the same

as those shown in Fig. 5.14(a).

In Fig. 5.14(a-4), we can find an optimal dx when we fix dy. This means that if several skyrmions are

excited, they align along the x axis with the spacing dx. We indeed find 1D skyrmion chains as a metastable

state from the MC simulation, shown in Fig. 5.14(c).

Finally, in Fig. 5.15(a), we mention the detailed ground-state phase diagram withA/B = 1.0 nearB = Bcr2.

Figures 5.15 (b) and (c) show the interaction potential V (R) with BJ/D2 = 1.0, same as that in Fig. 5.11(b),

and a zoom up of the single-skyrmion energy ∆E, same as that shown in Fig. 5.13, respectively. The attractive

interaction is ∼ 0.6J at the optimal distance, as Fig. 5.15(b) shows. The SkX phase is thus stabilized when

∆E ∼ 0.6J , the magnetization of which corresponds toBJ/D2 " 0.66 as shown in Fig. 5.15(c). Interestingly,

this estimation coincides well with the numerically obtained result in Fig. 5.14. This indicates that the SkX

phase in the region is due to the energy gain from exciting the skyrmions, further confirmed from the fact

that ∆E < 0 for BJ/D2 < 0.625 [see Fig. 5.15(a)]. Whereas, the SkX phase with 0.625 ≤ BJ/D2 ≤ 0.66 is

attributed to the attractive interaction. The width along the magnetic field δB in the region is almost the same
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Fig.5.14 (a) One spin energy E1spin of SkX obtained from a unit cell of size 2dx× 2dy with the periodic
boundaries. There are two skyrmions in it with (a-1) BJ/D2 = 0.625, (a-2) 0.65, (a-3) 0.66, and (a-4)
0.67. The white letters indicate the optimal lattice spacing, dx and dy correspond to the energy minimum.
No minimum is found in (a-4). (b) Real space image of optimal SkX obtained in (a). The distributions of
Sx are shown. (c) Plot of Sx with BJ/D2 = 1.0 found in the MC simulations. This is an excited state.
Reproduced from [21]. Copyright 2021, American Physical Society.

as the depth of the potential. When the magnetic field exceeds BJ/D2 > 0.66, the ground state is replaced

by the FM phase, which can host a 1D skyrmion chain as an excited state [see Fig. 5.14(c)].

We note that when A/B ≤ 0.5, we find phase boundary qualitatively the same. However, because of the

small inter-skyrmion interaction for A/B < 0.5, δB is much narrower. We have confirmed that the in-plane

magnetic field also gives rise to the similar ground-state phase diagram as that of A/B ≤ 0.5; It includes the

SkX phase induced by the attractive interaction and meta stable 1D skyrmion chain.

5.8 Tunable attraction by means of the in-plane magnetic field

We consider what happens when both effects, the in-plane magnetic field and the magneto-crystalline

anisotropy in a (011) thin film, are combined. Please note that the magnetic anisotropy in the section is
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Fig.5.15 (a) Detailed phase diagram near the second critical magnetic field Bcr2 with A/B = 1.0. In
terms of the origin of the SkX, the phase can be separated into two regions: One region is attributed to the
negative skyrmion excitation energy (BJ/D2 < 0.625), and the other is attributed to the large attractive
interaction (0.625 ≤ BJ/D2 < 0.66). Above Bcr2J/D

2 = 0.66, skyrmions appear as excitations and line
up in a 1D chain due to the attractive interaction in the x direction. (b) Magnified view of the interaction
V (R) replotted the one in Fig. 5.11(b); The potential depth is |V (R)min| ∼ 0.6J . (c) Magnified view of
Fig. 5.13, the single-skyrmion excitation energy ∆E vs. BJ/D2 with A/B = 1.0. Solid arrow denotes
δE = |V (R)min| and dotted arrow indicates the corresponding δB, which determines the width of the SkX
phase induced by the attraction. Reproduced from [21]. Copyright 2021, American Physical Society.

the same as the A term. The anisotropy potential reads

Uiii(Sr) =−B(Sz
r cosφ+ Sx

r sinφ)

+A

[
(Sx

r )
4 +

(Sy
r + Sz

r)
4

4
+

(−Sy
r + Sz

r)
4

4

]
, (5.38)

where the stable FM state can be expressed by the same form as Eq. (5.36). However, in this case the in-plan

field lifts the degeneracy of the two easy-axes ±θ shown in Fig. 5.8. In Fig. 5.16(a) we show the preferred

angle θ in this case and metastable solutions −θ for various tilting angle for magnetic field φ. Notably, the

metastable solution (−θ) disappears when A/B becomes small. It is only if the metastable solution t̂− exists

that the two skyrmions strongly interact by forming a magnetic domain t̂−, when two skyrmions are embedded

in the uniform background Sr = t̂+.

We find the drastic change of the strength of the attraction V (R = Rex), induced by the disappearance

of the metastable magnetic domain, shown in Fig. 5.16(b). V (R = Rex) for different φ, φ = 17◦ and 30◦

with A/B = 2.0, are shown in Fig. 5.16(b). Answering the appearance of the metastable domain solution,
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the interaction has a deep (shallow) dip with φ = 17◦ (30◦). The inset in Fig. 5.16(b) displays that it is due to

the formation of the domain that the large attractive interaction is induced. This is seen from the fact that the

approximate interaction Vapp(R) doesn’t reproduce V (R).

Let’s compare the potential depth with that of Fig. 5.11(c). The shallower potential for φ = 17◦ is because

of larger anisotropy energy of t̂−, appearing between two skyrmions, than that of the background spins. That

is, Uiii(t̂−) > Uiii(t̂+), while they are the same for φ = 0. The shallower potential for φ = 30◦, on the other

hand, is due to the change of the skyrmion deformation; Under an in-plane field tilted to the x axis, the Sx < 0

(Sx > 0) component shrinks (expands) than the φ = 0 case, which causes smaller attraction [see Fig. 5.5(b)].

This deformation also affects theφ dependence of the interaction potential. Figure 5.17 shows the interaction

for various φ with keeping A/B = 0.5. This value, A/B = 0.5, means that no domain is formed between two

skyrmions. As we increase φ, the attractive potential first gets larger and then becomes smaller. This behavior

is very different from that of A = 0 case [see Fig. 5.6], where the potential well monotonically becomes

deeper as we increase φ. The inset convinces that the attraction comes mainly from the J term, the skyrmion

distortion. We note that the attraction is almost the same regardless of the value of B.

5.9 Attractive interactions with preserved C4 symmetry

So far, we have focused on the (011) thin film since it breaks the C4 symmetry in spin space. In this section,

we treat a (001) thin film instead to see how the above results, especially in the absence of the in-plane

magnetic field, are modified. In this case, the C4 symmetry is preserved and the anisotropy potential is given

by A
[
(Sx

r )
4 + (Sy

r)
4 + (Sz

r)
4
]
. It has eight easy-axes along 〈111〉 when A > 0 and six easy-axes along 〈100〉

when A < 0. For A < 0, since the external magnetic field in the z direction resolves the degeneracy of the

easy axes and obviously prefers [001]. Thus, no domain is formed in this case. Whereas in case A > 0, the

spins in the system prefer a direction between the z axis and 〈111〉 direction, in a Zeeman field along the

z axis. We denote the angle between the thin film plane and the z axis as θ and calculate the optimal θ by

minimizing the single domain energy, similarly to the (011) film case. In Fig. 5.18(a), we show θ vs. A/B.

As you see in the graph, A/B > 0.25 is the condition for the formation of domains. This suggests the strong

inter-skyrmion attraction may be found when A/B > 0.25.

We plot the inter-skyrmion interaction V (R = Rex) in Fig. 5.18(b) under an out-of-plane (A/B = 0.2) and

tilted (A/B = 2.0) background FM spins. The interaction when A/B = 0.2 is always positive. The reason

for this is that the shape of a single-skyrmion is almost circular due to the preservation of the C4 symmetry

in the spin space. On the other hand, when A/B = 2.0, the interaction is large attraction. This is attributed

to the domain formation between the two skyrmions, same as the case of A/B > 0.5 in a (011) film. The

smaller |V (r)min| compared with Fig. 5.11(c) is again because of the C4 symmetry, since the distortion of the



80 Chapter 5 Magnetically ordered states in anisotropic 2D chiral magnets

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 5  10  15  20  25  30  35

 

 

 

є  = 30°
є  = 17°

R [site]

-0.3

-0.2

-0.1

 0

 0.1

 5  15  25  35

V(R)/J є =17°

 

 

Vapp(R)/J J term
Vapp(R)/J D term
Vapp(R)/J Total

(a)

(b)

A/B

є  = 30°
є  = 17°
є  = 5°
є  = 0°

V
(R

) /
 J

Fig.5.16 (a) Preferred angle θ of a FM state under a tilted magnetic field to the x axis and the magneto-
crystalline anisotropy A > 0. A/B dependence of stable solution, θ > 0, and metastable one, θ < 0, are
shown. We note that θ and φ denote the directions of the background magnetizations and the tilted external
fields in the x-z plane. The metastable solution vanishes below a certain value of A/B. (b) Skyrmion-pair
potential V (R) aligned along the x axis when BJ/D2 = 0.5, A/B = 2.0, and φ = 17◦ and 30◦. In both
cases, when φ = 17◦ and 30◦, the background spins t̂ are tilted. Since the metastable solution exists only
when φ = 17◦, the large attractive potential is found in the parameter. Whereas, for φ = 30◦, the attractive
potential is found but quite small because of the absence of the domain of the θ < 0 . Inset replots the
potential with φ = 17◦ in the main panel, the approximate one Vapp(R), and the J term and D terms in
Eq. (5.25). Reproduced from [21]. Copyright 2021, American Physical Society.
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Fig.5.17 Pair potential V (R) between two skyrmions lined up in the x direction with A/B = 0.5,
BJ/D2 = 0.75 and φ = 17◦, 22◦, and 30◦. Inset shows the comparison of the data at φ = 17◦ with the
approximate potential Vapp(R), and the J and D terms in Eq. (5.25), which contributes to the interaction.

skyrmion is smaller. This is seen from the inset of Fig. 5.18(b), where we show the approximate expression

Vapp(Rex) and the contributions from both the J and D terms. Since the J term contribution doesn’t obtain

the attraction, we conclude that the deformation of the skyrmion does not enhance the attraction.

The relative position dependence of the interaction is plotted in Fig. 5.19, which clearly shows the C4

symmetry. Although the maximum attractive interaction is a bit smaller than that of a (011) film, the

interesting point is that the attraction can be found in all the relative directions, unlike the (011) film case.

There are 4 kinds of magnetic domains in the system (i.e., 4 different directions are found as solutions of the

stable uniform state), and the magnetic domain is formed between two skyrmions along the x or the y axis.

We mention the ground-state phase diagram. There are two main differences from that of a (011) film case.

Firstly, the SkX phase stabilized by the attraction appears only when A/B > 0.25. Secondly, due to the C4

symmetry, a square lattice of skyrmions becomes stable in the intermediate strength of the magnetic field, and

the four energetically degenerate magnetic domains align alternatively.
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Fig.5.18 (a) |A|/B dependence of favorable angle θ from the z direction of a FM spins in a (001) film.
We replot the ones for (011) film [see Fig. 5.8] as a guide for the eye. When A < 0, the spins are parallel
to the z direction regardless of the value of |A|/B, while the tilted spins, along the [110] direction from
ez , are preferred when the magnetic anisotropy dominates the Zeeman field at A/B > 0.25. (b) Pair
interaction potentials V (R) for the skyrmions along the x axis with a magnetic field BJ/D2 = 0.75 and
the magneto-crystalline anisotropy A/B = 2.0 and 0.2. Inset displays the V (R) with A/B = 2.0 in the
main panel, the approximate potential at a large distance Vapp(R), and the two contributions from the J
and the D terms. Reproduced from [21]. Copyright 2021, American Physical Society.
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Fig.5.19 Relative position R = (X,Y ) dependence of the inter-skyrmion interaction V (R) on a (001)
thin film. The magneto-crystalline anisotropy is A/B = 1.0 and the magnetic field is BJ/D2 = 0.75. The
potential V (R) reflects the fact that the C4 symmetry is preserved in the system. Reproduced from [21].
Copyright 2021, American Physical Society.

5.10 Complementary issues

5.10.1 Actual values of the magneto-crystalline anisotropy coefficient A in real mate-

rials

Our calculations requires |A|/Bcr2 ≥ 0.5 to realize the large attraction and the domain wall skyrmions. The

reported values of the ratio in real materials are |A|/Bcr2 ∼ 0.00364, |A|/Bcr2 ∼ 0.385, and |A|/Bcr2 ∼ 1.59

in a Cu2OSeO3 thin film at 5 K [107, 148, 149], in a Fe0.7Co0.3Si thin film at 5 K [150, 151], and in a

Co8.5Zn7.5Mn4 thin film at 330 K [103, 22], respectively. In the last case, Co8.5Zn7.5Mn4, the domain wall

skyrmions (or bimerons) certainly appears in a very thin film with ∼ 50 nm thick.
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5.10.2 Bound states at finite temperature

We comment on the relevance of the pair interaction obtained at 0 K to finite temperature. The large binding

energy, |V (R)min|, as large as J , is of the order of the energy of one skyrmion: Assuming a single-skyrmion

embedded in a uniform magnetizations, the amount of the J and D terms [see Eq. (5.8)] is evaluated to be

πJ/2 by using |∇n|2 ∼ 1/R2
sk and ∇ × n ∼ −1/Rsk where we consider only inside of the area πR2

sk at

Rsk ∼ Ja/D. Although the energy per spin is very small because of many spins involved in a skyrmion.

Given that skyrmions are in fact observed in large thermal fluctuations at room temperature, however, the

skyrmion-bound states which possess comparable binding energies might be also observable in a similar

temperature.

5.10.3 Attractive interactions in the 3D cone phase

We also comment on the inter-skyrmion interactions in the 3D configuration, by applying our model to a 2D

cross-section. Experimentally, the attractive inter-skyrmion interaction of skyrmions in the 3D cone phase is

reported [17, 18]. We think that this can also be explained in our framework; The skyrmion tube structure

has a tilted magnetization in the background. This is a similar situation to the tilted magnetic field case where

skyrmions are not circularly symmetric anymore. Applying our result, the relative angle dependence of the

sign of the interaction, we find that the stacking of the 2D planes results in an attractive interaction on average.

5.10.4 Effect of the dipole-dipole interaction

In the above calculations, we ignored the dipole-dipole interaction (DDI). Even when A = 0, DDI enlarges

the size of the skyrmions and shifts the phase boundary of the SkX and FM states. When A (= 0, it enhances

the deformation of the skyrmion shape and quantitatively modifies the skyrmion-pair potential. Leaving the

detailed study of this as future work, we have numerically found that the results of the thesis are the same

even with the DDI. In the following, we show numerical data.

The DDI Hamiltonian reads

HDDI = gdd
∑

r1,r2

Sr1 · Sr2 − 3(Sr1 · r̂12)(Sr1 · r̂12)
|r1 − r2|3

, (5.39)

where gdd = µ0M2/(4π), µ0 is the vacuum permeability, M denotes the magnitude of the magnetic moments,

and we define r̂12 ≡ (r1 − r2)/|r1 − r2|.

In Fig. 5.20(a), we show the comparison of the interaction V (R) with and without HDDI, when A = φ = 0.

The V (R) is isotropic repulsion for both cases. In the calculation, gdd/a3 = 0.00439J is used in such a way
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that the skyrmion size is visibly changed. One can see that the skyrmion size is indeed increased from the shift

of V (R) with DDI to the right in Fig. 5.20(a). The HDDI only enlarges the skyrmion. The inset of Fig. 5.20(a)

compares V (R) and Vapp(R) with HDDI, demonstrating that the dipole interaction commits to V (R) only via

the J term in Eq. (5.25).

On the other hand, when skyrmion is in the tilted background magnetization, the DDI non-trivially modifies

the inter-skyrmion potential. Figure 5.20(b) displays V (Rex) with A/B = 1.0 and φ = 0 in the presence and

absence of the DDI, where the same gdd as Fig. 5.20(a) is used. Notably, as for the A (= 0, HDDI enhances the

attraction. Furthermore, due to its long-range nature, the DDI may also modify the approximate interaction

potential, Eq. (5.19). We also plot the Vapp(R) in Fig. 5.20(b) with or without the DDI, from which one

can see that the Vapp(R), especially with the DDI case, does not reproduces the pair-potential even at a large

distance. In Fig. 5.20(c), we compare V (R) with the DDI at gdd/a3 = 0.00439J (replotted) and larger one

gdd/a3 = 0.0196J . It follows that the larger DDI not only deepens the attraction but also makes the potential

more long-ranged. Although the larger DDI hardly changes the qualitative spin profile in the real space, as

the Fig. 5.20(d) shows, HDDI modifies the configuration as if the A term is enlarged; It prefers the in-plane

magnetization.

5.11 Conclusion

In conclusion, we studied inter-skyrmion interactions and (meta)stable spin states in 2D chiral magnets on

a (011) thin film. The film is assumed to be under a (tilted) magnetic field and/or the magnetocrystalline

anisotropy. We find the approximate expression of the interaction Vapp(R) at a large distance, using a single

skyrmion configuration. Vapp(R) can predict that the deformation of a skyrmion shape may lead to the sign

change of the inter-skyrmion interaction. Numerical calculations back up the exhibition of the attractive

interaction in an anisotropic geometry; When A = 0 or φ = 0 and A/B ≤ 0.5, V (R) is a weak attraction

in a certain direction and consistent with Vapp(R). However, under the sufficiently large magnetocrystalline

anisotropy (φ = 0 and A/B > 0.5), the attractive interaction becomes much larger than that predicted by

Vapp(R). The giant attractive interaction, ∼ J , is due to the magnetic domain formation between the two

interacting skyrmions. Notably, the magnitude of the attraction can be controlled by the direction of the

in-plane magnetic field by two orders of magnitude. The possible high controllability of the interactions,

demonstrated here, may pave the way to utilize skyrmions as an information carrier.

In the vicinity of the SkX-FM phase boundary, the inter-skyrmion attraction stabilizes the distorted SkX

as a ground state. It accompanies the magnetic domain wall in the background of the skyrmions. The strong

attraction also enhances the upper critical magnetic field of the SkX in the phase diagram. We also find the

1D alignments of bound skyrmions as an excitation in the FM state.
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Fig.5.20 (a) Interaction potential V (R) with or without the HDDI at A/B = 0.0 and gdd/a
3 = 0.00439J .

The inset shows V (R) with HDDI in the main panel and the approximate potential Vapp(R). The relative
position of the two skyrmions is R = Rex with φ = 0 and BJ/D2 = 0.9. (b) V (R) with or without the
HDDI at A/B = 1.0 and gdd/a

3 = 0.00439J . Other parameters are the same as that in (a). Approximate
potentials Vapp(R) in the presence/ absence of the DDI are also shown in the same panel. (c) Interaction
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and the black arrows show the in-plane (x-y plane) spin vector components.
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Conclusion

In the doctoral study, we investigated magnetically ordered spin configurations using atomistic spin dynamics

simulations. Especially, we focused on spin states in amorphous and chiral magnets, which are capable of

spintronics applications.

In terms of the spin dynamics simulations in amorphous ferromagnets Co4P, we demonstrated a model

which combine RMC and ASD methods, to calculate the magnetic excitation spectra. It enables accurate

calculation by reproducing realistic atomic structure and including magnon interactions up to all orders. Using

the model, we have found that Co4P has magnons which follow the Bloch’s law, consistent with experiments

and similar to that in crystal ferromagnets. There are two parabolas in the magnetic excitation spectrum. First

dip is centered at Q ∼ 0 and second one is at Q ∼ 3 Å−1. The second dip, conventionally called “roton-like

feature”, may be interpreted in terms of the magnon Umklapp scattering. This may be caused by the residual

ordering in the re-created amorphous structure. The energy spectrum of Co4P looks very similar to that of

FCC Co up to the first Brillouin Zone. However, unlike crystals it is not periodic and second dip is not repeated

at higher wavenumbers. We found that energy spectrum in QCA correctly predicts the spectra at Q ∼ 0 and

at high frequency region. The method for investigating the magnetic properties of amorphous magnets can

be applied to other magnetism, such as antiferromagnets and spin glasses. It can also be extended to study

the spin transport properties, i.e. using the Kubo formula [152], and may pave the way to utilize amorphous

magnets as magnetic devices in the field of spintronics.

In terms of the anisotropic magnetic skyrmions in chiral magnets, we found the analytic expression of

approximated inter-skyrmion interaction at a large distance from a single skyrmion configuration. Two

mechanisms of inducing the attractive interactions are revealed: a small deformation of skyrmion shape or

formation of magnetic domain between two skyrmions. The latter induces small attractions and latter causes

large attractions. The large attraction in the latter case affects the ground state SkX and elongated triangular

bimeron lattice appears with magnetic domains in the background. Due to the large attraction, there is an

area in the phase diagram where the SkX is sustained by the attractive interaction. In addition, we found the
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attraction can be tuned in the range over double-digit by the in-plane magnetic field.

In this study, we have focused on 2D systems and ignored inter-layer interactions, i.e., in bilayer and

multilayer systems. This interaction does not contain the spacial derivatives and does not change Eq. (5.19);

We believe that the qualitative behavior of the skyrmion-skyrmion interaction is unchanged and leave the

quantitative investigation as future work. The extension of the model to the multilayer systems may find a

way of controlling the skyrmion qubits [153, 154, 155]. Similarly, time-dependent modulation of skyrmion

shape, caused by the thermal fluctuations, etc., is also expected to adjust the skyrmion-skyrmion interaction.

The result of the work would be a guiding principle for controlling the effective skyrmion pair potential.
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A Validation of the simulation at small wavenumber region

We note how our energy spectrum using JAMS (the name of our program), εJAMS(Q), is quantitatively related

to the QCA spectrum, εQCA(Q),

εQCA(Q) = 2SN/V

∫
drijJ(rij)g(rij)(1− eiQrij ), (A.1)

where we include the original coefficients introduced by Kaneyoshi; Since the integrand is isotropic (meaning

we can integrate over angular variables), Eq. (A.1) is rewritten as

εQCA(Q) = K
∫

drij r
2
ij

J(rij)

J0
g(rij)

(
1− sinQrij

Qrij

)
, (A.2)

where K ≡ 8SπρCoJ0. Note that Eq. (A.1) can be exact in the case of lattice if we rewrite J(rij) → J(rij)

and g(rij) → g(rij).

Let us confirm that our spectra εJAMS(Q) obtains quantitatively equivalent dispersion relation to Eq. (A.2),

by inserting specific values: J0 = 2.8× 10−21 [J] =17.478 [meV], ρCo = 0.8ρ = 0.0536, S = 1.

εQCA(Q)[meV] = 23.544

∫
drij r

2
ij

J(rij)

J0
× g(rij)

(
1− sinQrij

Qrij

)
. (A.3)

In the limit of Q → 0, Eq. (A.3) is approximated to

εQCA(Q)[meV] = 5.83

∫
drij

J(rij)

J0
n(rij)(Qrij)

2. (A.4)

where we used the relation n(r) = 4πρCor2g(r).
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To be specific, we consider FCC lattice: n(r) = z1stFCCδ(r − rn.n.) + ...) and J(rij) = J0Θ(rn.n. − r);

εQCA(Q)[meV] = 5.83

∫ rn.n.

0
drij z

1st
FCCδ(r − rn.n.)(Qrij)

2

= 5.83 × z1stFCC r2n.n. ×Q2. (A.5)

Inserting z1stFCC = 12 and rn.n. =
aFCC√

2
gives

εQCA(Q)[meV] = 49.5 × aFCC × Q2. (A.6)

In our program, ε(Q)JAMS is defined as

εJAMS[meV](Q) =
!γeJ0
µN

∑

ij

J(rij)

J0
zijJAMS

(1− eiQrij ), (A.7)

By inserting values γe = 1.76× 1011[s−1T−1], J0 = 2.8× 10−21[J], µ = 1.0µB = 9.27× 10−24[JT−1],

εJAMS[meV](Q) =
34.84

N

∑

ij

J(rij)

J0
zijJAMS

(1− eiQrij ). (A.8)

Note that the transformation coefficient from [J] to [meV] is 6.242×1021. Above equation can be rewritten as

εJAMS[meV](Q) =
34.84

N

∑

ij

J(rij)

J0
z′ijJAMS

(1− cosQr⊥ij), (A.9)

where r⊥ij is the vertical component to Q and z′ijJAMS
is the number of interacting spins under specific J(rij).

In the limit of Q → 0, Eq. (A.9) is approximated to

εJAMS[meV](Q) =
17.42

N




∑

ij

J(rij)

J0
z′ijJAMS

(r⊥ij)
2



 Q2. (A.10)

In the case of FCC lattice: J(rij) = J0Θ(rn.n. − r),

εJAMS[meV](Q) = 17.42× z′n.n.JAMS
(r⊥n.n.)

2 × Q2. (A.11)

Using the relations,

z′n.n.JAMS
=

2

3
z1stFCC, (A.12)

r⊥n.n.JAMS
=

1√
2
rn.n., (A.13)
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it follows that

εJAMS[meV](Q) = 5.81× z1stFCC(rn.n.)
2 × Q2. (A.14)

We can clearly see that Eq. (A.6) and Eq. (A.14) have almost the same coefficient before Q2.

B Derivation of the amorphous neutron scattering cross-section

Following a book [94], we derive suitable expression of cross-section for (polarized neutron beam’s) magnetic

inelastic scattering, which can also be used in amorphous magnetic systems.

B.1 Elastic scattering

There are several good reasons why thermal neutrons are widely used in the field of condensed matter physics;

Firstly, they have comparable wavelength to the space between nuclei in crystals.c Secondly, the energy is of

the same order as the excitations in solids, liquids, and gases. Thirdly, they are neutral particles and have

magnetic moments.

Let us derive the general expression for the neutron cross-section. Let ΨQ be the initial state of a neutron,

and ΨQ′ be the final (scattered) state of a neutron. If the incident flux (number of the neutrons per unit area

& per unit time) is Nin, then the scattered neutrons into the solid angle dΩ = sinθdθdφ per unit time is

Nin
dΘ

dΩ
dΩ, (B.1)

where dΘ
dΩ is the differential cross section. In order to calculate dΘ

dΩ in the case of elastic scattering, the

transition probability from ΨQ to ΨQ′ is necessary. This probably is given by Fermi’s Golden rule

WQ→Q′ =
2π

!

∣∣∣∣
∫

drΨ∗
Q′ V̂ΨQ

∣∣∣∣
2

ρQ′(E), (B.2)

where V̂ is the potential which causes the transition, and ρQ′(E) is the DOS of final states per unit range of

energy. We assume that the system is consist of free electrons, meaning

ΨQ =
1

L3/2
exp(iQ · r), (B.3)

ρQ′(E) =

(
L

2π

)3 dQ

dE
=

(
L

2π

)3 mQ

!2 dΩ. (B.4)

Here we used dQ = Q2dΩdk and E = !2Q2

2m , and assumed the volume of the system is L3. The incident flux
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is

(velocity of incident neutron flux)/L3 =
!Q
mL3

. (B.5)

From (B.2), (B.4), and (B.5),

dΘ = WQ→Q′/(incident flux) (B.6)

= L6
( m

2π!2
)2 ∣∣∣∣
∫

drΨ∗
Q′ V̂ΨQ

∣∣∣∣
2

dΩ (B.7)

≡
( m

2π!2
)2

| 〈Q′| V̂ |Q〉 |2dΩ (B.8)

The scattering amplitude F (Q,Q′) is defined as

dΘ

dΩ
= |F (Q,Q′)|2. (B.9)

From Eq. (B.8), we can take

F (Q,Q′) = − m

2π!2 〈Q′| V̂ |Q〉 . (B.10)

B.2 Inelastic scattering

In this case, the initial and final change by an energy difference. Let’s say they are |λ〉 and |λ′〉 respectively,

having energies Eλ and Eλ′ . The cross-section becomes

dΘ

dΩQ,λ→Q′,λ′
=

Q′

Q

( m

2π!2
)2

| 〈Q′λ′| V̂ |Qλ〉 |2. (B.11)

They should conserve the energy

!2Q2

2m
+ Eλ =

!2Q′2

2m
+ Eλ′ . (B.12)

Building the condition into the cross-section to define a "partial differential cross-section" as

d2Θ

dΩdE′Q,λ→Q′,λ′
=

Q′

Q

( m

2π!2
)2

| 〈Q′λ′| V̂ |Qλ〉 |2δ(!ω + Eλ − Eλ′), (B.13)



B Derivation of the amorphous neutron scattering cross-section 93

where E′ ≡ Eλ′ and

!ω =
!2
2m

(Q2 −Q′2) = Eλ − Eλ′ . (B.14)

We have to sum Eq. (B.13) over all possible final states of the targets |λ′〉, and average it over all the possible

initial states. Initial states occur with probabilities pλ, and we also take into account the spin states of neutrons

(denoted by Θ, Θ′). The master formula is

d2Θ

dΩdE′ =
Q′

Q

( m

2π!2
)2∑

λ,Θ

pλpΘ
∑

λ′,Θ′

| 〈Q′Θ′λ′| V̂ |QΘλ〉 |2δ(!ω + Eλ − Eλ′). (B.15)

Note that above equation is the first Born approximation to the cross-section (Eq. (B.2) is derived from

perturbation theory).

B.3 Coherent and incoherent scattering

From experimental results, nucleon-nucleon interaction is a very short range (∼ 10−4Å), which is much less

than the thermal neutrons’ wavelength (∼ 1Å). So the scattering is isotropic, containing only s-wave. The

scattering can be characterized by one parameter: scattering length ξ (complex). For now, we assume that the

target is single spinless isotope with having a scattering length ξ.

It is only V̂ (r) ∝ δ(r) which gives isotropic scattering when we use the Born approximation (cf. Fermi

1936). If the nucleus is at position R, the Fermi pseudo potential is

V̂ (r) =
2π!2
m

ξδ(r −R). (B.16)

Note that above equation is just a formal artifice. Substituting above Eq. into Eq. (B.10), the scattering

amplitude is given by (we take R = 0)

F = − m

2π!2
2π!2
m

ξ

∫
drexp(−iQ′ · r)δ(r)exp(iQ · r)

= −ξ. (B.17)

Giving rise to

dΘ

dΩ
= |ξ|2 and Θξ = 4π|ξ|2, (B.18)
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where Θξ is the total cross-section.

Next, let’s consider a scattering from an array of Nin nuclei, which are rigidly bound at site Rl. We

remove the restriction that a target is single spinless isotope. The each scattering length is denoted as ξl. The

interaction potential is

V̂ (r) =
2π!2
m

∑

l

ξlδ(r −Rl). (B.19)

The cross-section is

d2Θ

dΩdE′ =
Q′

Q

( m

2π!2
)2∑

λ,Θ

pλpΘ
∑

λ′,Θ′

| 〈Θ′λ′| exp(i(Q−Q′) ·Rl) |Θλ〉 |2δ(!ω + Eλ − Eλ′), (B.20)

since 〈Q′| V̂ |Q〉 is now

〈Q′| V̂ |Q〉 = 2π!2
m

∑

l

ξl

∫
drexp(−iQ′ · r)δ(r −Rl)exp(iQ · r)

=
2π!2
m

∑

l

ξlexp(i(Q−Q′) ·Rl). (B.21)

In the case of crystal, the energy can be approximated that it is independent both of isotope distribution and

the states of nuclear spins, which are the only states the quantum numbers λ, λ′ refer to. So the scattering is

elastic, and the cross-section is reduces to

dΘ

dΩ
=
∑

λ,Θ

pλpΘ
∑

l,l′

exp {i(Q−Q′) · (Rl −Rl′)} 〈Θλ| ξ∗l′ξl |Θλ〉 . (B.22)

Expressing

ξ∗l′ξl =
∑

λ

pλ 〈λ| ξ∗l′ξl |λ〉 (B.23)

is convenient. Using the expression and
∑

Θ pΘ = 1, Eq. (B.22) is now

dΘ

dΩ
=
∑

l,l′

exp {i(Q−Q′) · (Rl −Rl′)} ξ∗l′ξl. (B.24)
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Since ξl and ξ′l are not correlated,

ξ∗l′ξl = ξ∗l′ξl = |ξ|2 (if l (= l′), (B.25)

ξ∗l′ξl = |ξl|2 = |ξ|2 (if l = l′), (B.26)

(B.27)

so in general

ξ∗l′ξl = |ξ|2 + δl,l′(|ξ|2 − |ξ|2). (B.28)

We can substitute above equation into Eq. (B.24), to obtain

dΘ

dΩ
=
∑

l,l′

exp {i(Q−Q′) · (Rl −Rl′)} [|ξ|2 + δl,l′(|ξ|2 − |ξ|2)],

=

(
dΘ

dΩ

)

coh

+

(
dΘ

dΩ

)

incoh

,

= |ξ|2
∣∣∣∣∣
∑

l

exp(i(Q−Q′) ·Rl)

∣∣∣∣∣

2

+ [Nin|ξ − ξ|2]. (B.29)

Physical meaning of the coherent and incoherent scattering are follows; The "mean scattering potential" is

the only component which affects on the interference, thus coherent potential is proportional to ξ (average over

all different scattering lengths ξ). Whereas the deviations from the mean potential distribute randomly, and

they cannot interfere, thus the incoherent potential is proportional to |ξ − ξ|2 (mean-square of the deviation).

B.4 Scattering by magnetic interactions

We first review the cross-sections for scattering by unpaired electrons. We handle two cases (a) when the

unpaired electrons’ wave functions are localized and (b) when the itinerant behaviors are allowed. The

Hamiltonian in the case of single neutron with magnetic moment µ and mass M in magnetic field B and

electric field E is (up to the order of 1/m2)

H =
p̂2

2M
− µ̂ · B̂ − 1

mc
µ̂ · (Ê × p̂)− !µ

2mc
∇ · Ê, (B.30)

where the second term is the only magnetic interaction among the four (the first term is the kinetic energy, the

third term is the third and fourth terms is important when we consider polarized neutrons).

Let’s focus on the interaction with magnetic field arising from the unpaired electrons in crystals. Rewriting
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the second term

−µ̂ · B̂ = −γnµNΘ̂ · B̂ (γn = −1.91), (B.31)

B due to a moving single electron (with spin s, mass me, and velocity Ve) is

B = rot

(
s×R

|R|3

)
− e

c

Ve ×R

|R|3 , (B.32)

due to Biot - Savart law. Here we assumed that ve << c, where the origin of R is where the electron is. The

second term is now

−µ̂ · B̂ = γeµN

{
2µBΘ̂ · rot

(
ŝ×R

|R|3

)
− e

2mec

(
p̂e ·

Θ̂×R

|R|3 +
Θ̂×R

|R|3 · p̂e

)}
, (B.33)

where the second term is due to the operator nature of p̂e ≡ mVe (This means that −µ̂ · B̂ was chosen to

satisfy H = H†). The first term is classically dipole-dipole interaction and the second term is due to the

electron’s motion. Substituting above equation into Eq. (B.13) gives the cross-section in this case as

d2Θ

dΩdE′ =
( m

2π!2
)2

(2γeµNµB)
2
∑

λλ′Θ

Q′

Q
pλpΘδ(!ω + Eλ − Eλ′)

×

∣∣∣∣∣〈Q
′λ′Θ′|

∑

i

Θ̂ · rot
(
ŝi ×R

|R|3

)
− 1

2!

(
p̂i ·

Θ̂×R

|R|3 +
Θ̂×R

|R|3 · p̂i

)
|QλΘ〉

∣∣∣∣∣

2

. (B.34)

The matrix elements 〈Q′|
∑

i Θ̂ · rot
(

ŝi×R
|R|3

)
− 1

2!

(
p̂i · Θ̂×R

|R|3 + Θ̂×R
|R|3 · p̂i

)
|Q〉 can be calculated by utilizing

the relations

rot

(
ŝi ×R

|R|3

)
= −rot

(
ŝi ×∇

(
1

|R|

))

= −∇× (ŝi ×∇)

(
1

|R|

)

= − 1

2π2

∫
dq

1

q2
{q × (ŝi × q)} eiq·R, (B.35)

as

〈Q′| Θ̂ · rot
(
ŝi ×R

|R|3

)
|Q〉 = 4πexp(iκ · ri)Θ̂ · {κ̃× (ŝi × κ̃)} , (B.36)

〈Q′| p̂i ·
Θ̂×R

|R|3 |Q〉 = −4πi

|κ| exp(iκ · ri)Θ̂ · (κ̃× p̂i), (B.37)

where κ ≡ (Q − Q′) and κ̃ ≡ κ/|κ|, and ri is the position of the i-th electron. Here we used the relation
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r ≡ ri +R.

Since exp(iκ · ri) commutes with κ̃× p̂i, we can rewrite the cross-section as

d2Θ

dΩdE′ =
( m

2π!2
)2

(8πγeµNµB)
2
∑

λλ′Θ

Q′

Q
pλpΘ| 〈λΘ| Θ̂ · Q̂⊥ |λ′Θ′〉 |2 × δ(!ω + Eλ − Eλ′), (B.38)

where we defined Q̂⊥ as

Q̂⊥ ≡
∑

i

exp(iκ · ri)
{
κ̃× ŝi × κ̂− i

!|κ| (κ̃× p̂i)

}
. (B.39)

If we focus on unpolarized neutron scatterings,

∑

Θ

pΘ 〈Θ| Θ̂aΘ̂b |Θ〉 = δa, b, (B.40)

where a, b are x, y, z components. Using m
2π!2 · 8πγeµNµB = γee

2

mec2
(µN = e!

2mpc
), we have finally

d2Θ

dΩdE′ =

(
γee2

mec2

)2∑

λλ′

Q′

Q
pλ| 〈λ| Q̂⊥ |λ′〉 |2 × δ(!ω + Eλ − Eλ′)

≡
(

γee2

mec2

)2
Q′

Q

∑

a,b

(δa,b − κ̃aκ̃b)
∑

λ,λ′

pλ 〈λ| Q̂†
a |λ′〉 〈λ′| Q̂b |λ〉 , (B.41)

where Q̂⊥ = κ̃× (Q̂× κ̃) and Q̂
†
⊥ · Q̂⊥ =

∑
a,b(δa,b − κ̃aκ̃b)Q̂†

aQ̂b were used.

In many cases, the orbital moment is quenched or zero. In this case, Q̂ is simplified to

Q̂ =
∑

i

exp(iκ · ri)ŝi. (B.42)

In the case of crystal, all sites are identical, so they can be specified by a vector Rld ≡ l+ d, where l is the

position of unit cell (lattice vector) and d is the position of atoms in the unitcell. This allows us to rewrite Eq.

(B.42) as

Q̂ =
∑

l,d

exp(iκ ·Rld)
∑

ν(d)

exp(iκ · rν)ŝi. (B.43)

In the ground state, the spins will be coupled together to obtain total spins Ŝld. This is the only vector in Q̂,
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so it must be proportional to Ŝld (Wigner-Eckart theorem). We can rewrite 〈λ′| Q̂ |λ〉 in Eq. (B.41) as

〈λ′| Q̂ |λ〉 =
∑

l,d

exp(iκ ·Rld)Fd(κ) 〈λ′| Ŝld |λ〉 , (B.44)

where Fd(κ) is the Fourier transformation of (normalized) spin density which is associated with the d-th site

ion, called form factor. Inserting above equation into Eq. (B.41) gives the partial differential cross-section

due to the scattering with only spin angular momentum as

d2Θ

dΩdE′ =

(
γee2

mec2

)2
Q′

Q

∑

a,b

(δa,b − κ̃aκ̃b)
∑

λ,λ′

pλ
∑

l,d

∑

l′,d′

F ∗
d (κ)Fd′(κ)exp {iκ · (Rl′d′ −Rld)}

× 〈λ| Ŝa
ld |λ′〉 〈λ′| Ŝb

l′d′ |λ〉 δ(!ω + Eλ − Eλ′). (B.45)

If we want to take the orbital momentum into account, the cross-section becomes

d2Θ

dΩdE′ =

(
γee2

mec2

)2{
1

2
gF (κ)

}2 Q′

Q

∑

a,b

(δa,b − κ̃aκ̃b)
∑

λ,λ′

pλ
∑

l,d

∑

l′,d′

exp {iκ · (Rl′d′ −Rld)}

× 〈λ| Ŝa
ld |λ′〉 〈λ′| Ŝb

l′d′ |λ〉 δ(!ω + Eλ − Eλ′). (B.46)

where F (κ) = j0
gS
g + (j0 + j2)(

g−gS
g ) (j0, j2 are spherical Bessel functions of order 0, 2, and gµBS is the

total magnetic moment of each ion). Note that here we assumed the wave functions of the unpaired electrons

have much smaller momentum than |κ| (dipole approximation).

B.5 Elastic magnetic scattering

The elastic scattering due to magnetic interactions are used in two ways. (a) Determinate magnetic structures

such as directions and positions of the spins, and (b) get the information on magnetic form factors which

reflects the properties of the unpaired spins.

In the case of scatterings due to purely magnetic interactions, the starting point is Eq. (B.46). Elastic

scattering requires Eλ = Eλ′ , so

dΘ

dΩ
=

(
γee2

mec2

)2{
1

2
gF (κ)

}2 Q′

Q

∑

a,b

(δa,b − κ̃aκ̃b)
∑

λ

pλ
∑

l

∑

l′

exp {iκ · (Rl′ −Rl)} 〈λ| Ŝa
l |λ〉 〈λ| Ŝb

l′ |λ〉 .

(B.47)

Note that we assume the system is Bravais lattice and choose the quantization axis to be parallel to the mean

direction of all the spins (such as z axis, so that the density matrix is diagonal).

We want to estimate
∑

λ pλ 〈λ| Ŝa
l |λ〉 〈λ| Ŝb

l′ |λ〉. This is different from 〈ŜaŜb〉. In the case of ferromagnet,
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we can choose the states |λ〉 to be independent of the positions of spins Rl. Under this condition,

〈λ| Ŝa
l |λ〉 =

1

Nin
〈λ| Ŝa

total |λ〉 =
1

Nin
δa,z 〈λ| Ŝz

total |λ〉 , (B.48)

obviously Ŝz
total ≡

∑
l Ŝ

z
l .

B.6 Correlation functions in magnetic scattering

In the localized model, we found Eq. (B.46) is the cross-section due to the magnetic scatterings in crystal.

The orbital motion of the spins are taken into account under dipole approximation. To rewrite Eq. (B.46)

using a correlation function, we use delta function of the integral representation as

∑

λ,λ′

pλ 〈λ| exp(−iκ ·Rld)Ŝ
a
ld |λ′〉 〈λ′| exp(−iκ ·Rl′d′)Ŝb

l′d′ |λ〉 δ(!ω + Eλ − Eλ′)

=
∑

λ,λ′

pλ
1

2π!

∫ ∞

−∞
dt exp(−iωt) 〈λ| exp(−iκ ·Rld)Ŝ

a
ld |λ′〉

× 〈λ′| exp(iĤt/!)exp(−iκ ·Rl′d′)exp(−iĤt/!+ iĤt/!)Ŝb
l′d′exp(−iĤt/!) |λ〉

=
1

2π!

∫ ∞

−∞
dt exp(−iωt)〈exp(−iκ · R̂ld(0))Ŝ

a
ld(0)exp(−iκ · R̂l′d′(t))Ŝb

l′d′(t)〉. (B.49)

Here we used exp(iκ · R̂(t)) = exp(iHt/!)exp(iκ ·R)exp(−iHt/!). The above equation can be rewritten

=
1

2π!

∫ ∞

−∞
dt exp(−iωt)

〈
exp(−iκ · R̂ld(0))Ŝ

a
ld(0)

∫
dr′exp(iκ · r′)δ(r′ − R̂l′d′(t))Ŝb

l′d′(t)

〉

=
1

2π!

∫ ∞

−∞
dt exp(−iωt)

〈∫
dr exp(iκ · r)δ(r − R̂ld(0))Ŝ

a
ld(0)

∫
dr′exp(iκ · r′)δ(r′ − R̂l′d′(t))Ŝb

l′d′(t)

〉

=
1

2π!

∫ ∞

−∞
dt exp(−iωt)

〈∫
dr exp(iκ · r)δ(r + R̂ld(0))Ŝ

a
ld(0)

∫
dr′exp(iκ · r′)δ(r′ − R̂l′d′(t))Ŝb

l′d′(t)

〉

=
1

2π!

∫ ∞

−∞
dt

∫
dr exp(iκ · r − iωt)

∫
dr′
〈
δ(r + R̂ld(0)− r′)Ŝa

ld(0)δ(r
′ − R̂l′d′(t))Ŝb

l′d′(t)
〉
. (B.50)

Hence the partial differential cross-section Eq. (B.46) can be rewritten as

d2Θ

dΩdE′ =

(
γee2

mec2

)2{
1

2
gF (κ)

}2 Q′

Q

∑

a,b

(δa,b − κ̃aκ̃b)

× Nin

2π!

∫ ∞

−∞
dt

∫
dr exp(iκ · r − iωt)Γab(r, t), (B.51)

where Nin is the total number of unit cells, and

Γab(r, t) ≡
1

Nin

∑

l,d

∑

l′,d′

∫
dr′
〈
δ(r + R̂ld(0)− r′)Ŝa

ld(0)δ(r
′ − R̂l′d′(t))Ŝb

l′d′(t)
〉
. (B.52)
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To a good approximation, it is known that the motion of ions are independent of the direction of spins (since

the spin dependent force is small). So Γab(r, t) becomes

Γab(r, t) ≡
1

Nin

∑

l,d

∑

l′,d′

〈Ŝa
ld(0)Ŝ

b
l′d′(t)〉

∫
dr′
〈
δ(r + R̂ld(0)− r′)δ(r′ − R̂l′d′(t))

〉
. (B.53)

In the case of the system is a Bravais lattice,

Γab(r, t) =
∑

l

γab(l, t)Gl(r, t) (B.54)

γab(l, t) =
1

Nin

∑

m

〈Ŝa
m(0)Ŝb

m+l(t)〉 = γab(l,∞) + γ′
ab(l, t) (B.55)

Gl(r, t) =

∫
dr′
〈
δ(r + R̂0(0)− r′)δ(r′ − R̂l(t))

〉

= Gl(r,∞) +G′
l(r, t). (B.56)

In the above equation, Gl(r,∞) and γab(r,∞) mean the limit of t → ∞. In this limit, the correlations between

the two terms of the right hand side of Eq. (B.55) and (B.56) disappear. This vanishes the time dependence of

both functions. Also, in the case of liquid, the density is uniform (let’s say ρ) in the system. So Gl(r,∞) = ρ

and Gs
l (r,∞) = 0 ("Gs" means the self correlation). So Γab(r, t) becomes

Γab(r, t) =
∑

l

γab(l,∞)Gl(r,∞) +
∑

l

γab(l,∞)Gl(r, t) +
∑

l

γab(l, t)Gl(r,∞) +
∑

l

γab(l, t)Gl(r, t).

(B.57)

The first term is the elastic magnetic scattering, the second term is elastic magnetic scattering and inelastic

vibrational (phonon) scattering (called "magnetovibrational scattering"), the third term is inelastic magnetic

scattering, and the last term is inelastic scatterings due to both spin and phonon systems.

B.7 scattering from phonons

To evaluate Gl(r,∞) in Eq. (B.57), let us treat scatterings from phonons. We consider calculating the

cross-sections when the configuration of nuclei can deviate from the equilibrium one. The system is assumed

to be periodic. Initially, we will focus on the case that the displacements are up to quadratic terms, which

is called harmonic approximation, giving rise to a non-interacting phonons. Let us say that u(Rl) is the

deviation from lattice, which is assumed to be a Bravais lattice. The potential energy U of the system is the

lowest when all the deviations u(Rl) are zero. Expanding U around the potential in equilibrium U0, in a series
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gives

U − U0 =
1

2

∑

a,l

∑

b,l′

ua(Rl)Aab(l, l
′)ub(Rl′) + (higher order), (B.58)

where Aab(l, l′) is the second-order differential coefficient. This satisfies

Aab(l, l
′) = Aba(l

′, l) = Aab(l − l′) = Aba(l, l
′), (B.59)

since all the atoms are symmetric if it’s a crystal. In this case the equation of motion reads

Müa(Rl) = −
∑

b,l′

Aab(l, l
′)ub(l

′). (B.60)

The right hand side of above equation should vanish when all the nuclei moves to the same direction at the

same time (by identical amount). So
∑

l′ Aab(l, l′) = 0. Assuming that the time dependence is exp(−iω0t),the

EOM becomes

Mω2
0ua(Rl) =

∑

b,l′

Aab(l, l
′)ub(l

′). (B.61)

Using the lattice’s translational symmetry, we can assume

ua(Rl) =
Θa√
M

exp(iq ·Rl). (B.62)

Now the EOM can be written as

Mω2
0Θa = exp(−iq ·Rl)

∑

b,l′

Aab(l, l
′)exp(iq ·Rl′)Θb

=
∑

b,l

Aab(l)exp(−iq ·Rl)Θb. (B.63)

Corresponding to three values of a, there are three corresponding solutions of ω2
0 . Let’s express this fact by

denoting ωj(q), where index j takes three values. The EOM is now

ω2
j (q)Θ

j
a(q) =

∑

b

Aab(q)Θ
j
b(q), (B.64)

Aab(q) =
1

M

∑

l

Aab(l)exp(−iq ·Rl). (B.65)
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The latter of above equation tells that

A∗
ab(q) = Aab(−q). (B.66)

If all the sites are the center of symmetry, such as a Bravais lattice case,

A∗
ab(q) = Aab(q). (B.67)

We assume Θ∗j
a (q) = Θj

a(−q) by ignoring the arbitrary phase factor. Also we can choose

∑

j

Θ∗j
a (q)Θj

b(q) = δa,b, (B.68)

∑

a

Θ∗j
a (q)Θj′

a (q) = δj,j′ . (B.69)

By analogy with position operator x̂ =
√

!
2Mω0

(a+ a†) and momentum operator p̂ = −i
√

!ω0M
2 (a− a†), we

define âa(l) and â†a(l) via the transformations

âa(l) =
1√
Nin

∑

j,q

Θj
a(q)exp(iq · l)âj(q), (B.70)

â†a(l) =
1√
Nin

∑

j,q

Θ∗j
a (q)exp(−iq · l)â†j(q). (B.71)

Thus we get

ûa(l) =
∑

j,q

√
!

2NinMωj(q)

{
Θj

a(q)exp(iq · l)âj(q) +Θ∗j
a (q)exp(−iq · l)â†j(q)

}
. (B.72)

Let’s calculate the cross sections for coherent and incoherent scatterings from phonons. The scatterings are

due to vibrations under harmonic potentials. In the case of Bravais lattice, from Eq. (B.29),

(
dΘ

dΩ

)el

coh

=
Θc

4π

∣∣∣∣
∫

dr exp(iκ · r)〈p̂(r)〉
∣∣∣∣
2

. (B.73)

Here Θc = 4π|ξ̄|2. In this case,

〈p̂(r)〉 =
∑

l

〈δ(r −Rl(0)− û(Rl))〉

=

(
1

2π

)3 ∫
dQ

∑

l

exp(iQ · (r −Rl))〈exp(−iQ · û(Rl))〉. (B.74)
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Using the relation 〈expQ̂〉 = exp
{

1
2 〈Q̂

2〉
}
, Q = (linear combination of operators a and a†),

〈exp(−iQ · û(Rl))〉 = exp(−1

2
〈{Q · û(Rl)}2〉) (B.75)

and the expansion with âj(q) (Eq. (B.72)),

〈{Q · û(Rl)}2〉 =
!

2NinM

∑

j,q

|Q ·Θj(q)|2

ωj(q)
{2nj(q) + 1} , (B.76)

where nj(q) = 〈â†j(q)âj(q)〉. Thus the Debye-Waller factor e−W(Q) is

e−W(Q) ≡ 〈e−iQû(Rl))〉 = exp



− !
4NinM

∑

j,q

|Q ·Θj(q)|2

ωj(q)
{2nj(q) + 1}



 (B.77)

Substituting above equation into Eq. (B.73), it follows that

∫
dr exp(iκ · r)〈p̂(r)〉 =

∑

l

exp(iκ ·Rl)exp {−W(κ)} , (B.78)

(
dΘ

dΩ

)el

coh

=
NinΘc

4π

(2π)3

V

∑

τ

δ(κ− τ )exp(−2W(κ)). (B.79)

From Eq. (B.29), the cross-section due to incoherent elastic scattering is

(
dΘ

dΩ

)el

incoh

=
NinΘi

4π

∑

l

〈exp(−iκ · R̂l(0))〉〈exp(iκ · R̂l(0))〉

=
NinΘi

4π
exp(−2W(κ)). (B.80)

In the case of inelastic coherent scattering,

(
dΘ

dΩ

)inel

coh

=
NinΘc

4π

Q′

Q

1

2π!

∫
dt exp(iωt)

∫
drexp(iκ · r)G′(r, t) (B.81)

G′(r, t) = G(r, t)−G(r,∞) (B.82)

G(r, t) =
1

Nin(2π)3

∑

l,l′

∫
dQexp(−iQ · r)〈exp(−iQ · R̂l(0))exp(iQ · R̂l′(t))〉 (B.83)

G(r,∞) =
1

Nin(2π)3

∑

l,l′

∫
dQexp(−iQ · r)〈exp(−iQ · R̂l(0))〉〈exp(iQ · R̂l′(0))〉

=
1

Nin(2π)3

∑

l,l′

∫
dQexp(−iQ · r)〈exp(−iQ · (Rl −Rl′))exp(−2W(Q)) (B.84)
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In the case of Bravais lattice, we can rewrite 〈exp(−iQ · R̂l(0))exp(iQ · R̂l′(t))〉 as

〈exp(−iQ · R̂l(0))exp(iQ · R̂l′(t))〉 = exp(−iQ · (Rl −Rl′))〈exp(−iQ · û(l, 0))exp(iQ · û(l′, t))〉

= exp(−2W(Q))exp(〈Q · û(l, 0)Q · û(l′, t)〉), (B.85)

since

〈expÂexpB̂〉 = exp

{
1

2
[Â, B̂]

}
〈exp(Â+ B̂)〉, (B.86)

where Â = −iQ · û(l, 0), B̂ = iQ · û(l′, t)), and

〈exp(Â+ B̂)〉 = exp

{
1

2
〈(Â+ B̂)2〉

}
. (B.87)

So the cross-section is

(
dΘ

dΩ

)inel

coh

=
Θc

4π

Q′

Q

1

2π!

∫
dt exp(−iωt)exp(−2W(κ))

∑

l,l′

exp {−iκ · (Rl −Rl′)} [exp(〈κ · û(l, 0)κ · û(l′, t)〉)− 1].

(B.88)

For inelastic incoherent scattering, l = l′,

(
dΘ

dΩ

)inel

coh

=
Θc

4π

Q′

Q

1

2π!

∫
dt exp(−iωt)exp(−2W(κ))

∑

l

[exp(〈κ · û(l, 0)κ · û(l, t)〉)− 1]. (B.89)

B.8 Correlation functions in magnetic scattering -again-

Let us return to evaluate Gl(r,∞) in Eq. (B.57). Using Eq. (B.77),

Gl(r,∞) =

(
1

2π

)3 ∫
dq exp {iq · (r −Rl)} exp(−2W(q)). (B.90)
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Using the result into Eq. (B.57), the cross-sections corresponding each term are given by

(
dΘ

dΩ

)

m:el,ph:el

=

(
γee2

mec2

)2{
1

2
gF (κ)

}2∑

a,b

(δab − κ̃aκ̃b)Nin

∑

l

exp(−iκ ·Rl)exp(−2W(κ))γab(l,∞)

(B.91)
(
dΘ

dΩ

)

m:el,ph:inel

=

(
γee2

mec2

)2{
1

2
gF (κ)

}2 Q′

Q

∑

a,b

(δab − κ̃aκ̃b)Nin

∑

l,l′

exp(−iκ · (Rl −Rl′)exp(−2W(κ))

× 1

2π!

∫
dt exp(−iωt) {exp〈κ · û(l, 0)κ · û(l′, t)〉 − 1} γab(l′ − l,∞) (B.92)

(
dΘ

dΩ

)

m:inel,ph:el

=

(
γee2

mec2

)2{
1

2
gF (κ)

}2 Q′

Q

∑

a,b

(δab − κ̃aκ̃b)Nin

∑

l

exp(−iκ ·Rl)exp(−2W(κ))

× 1

2π!

∫
dt exp(−iωt)γ′

ab(l, t) (B.93)
(
dΘ

dΩ

)

m:inel,ph:inel

=

(
γee2

mec2

)2{
1

2
gF (κ)

}2 Q′

Q

∑

a,b

(δab − κ̃aκ̃b)Nin

∑

l,l′

exp(−iκ · (Rl −Rl′))exp(−2W(κ))

× 1

2π!

∫
dt exp(−iωt) {exp〈κ · û(l, 0)κ · û(l′, t)〉 − 1} γ′

ab(l
′ − l, t) (B.94)

B.9 Relaxation functions and generalized susceptibilities in the localized model

Relaxation function is a response function when the external force forms a step function. This time we treat

localized model and Bravais lattice. Let’s express γab using spin operators Ŝa
q ,

Ŝa
q =

∑

l

exp(−iq ·Rl)Ŝ
a
l , (B.95)

Ŝa
l =

1

Nin

∑

q

exp(iq ·Rl)Ŝ
a
q . (B.96)

Thus

∑

l

exp(iκ ·Rl)γab(l, t) =
1

Nin

∑

l,m

exp(iκ ·Rl)〈Ŝa
m(0)Ŝb

m+l(t)〉

=
1

Nin

∑

l,m

exp(iκ ·Rl)

〈
1

Nin

∑

q1

exp(iq1 ·Rm)Ŝa
q1
(0)

1

Nin

∑

q2

exp(iq2 ·Rm+l)Ŝ
b
q2
(t)

〉

=
1

Nin

∑

q1,q2

〈
1

Nin

∑

m

exp(i(q1 + q2) ·Rm)Ŝa
q1
(0)

1

Nin

∑

l

exp(i(κ+ q2) ·Rl)Ŝ
b
q2
(t)

〉

=
1

Nin

∑

q1,q2

〈
δq1,−q2

Ŝa
q1
(0)δκ,−q2

Ŝb
q2
(t)
〉

=
1

Nin

〈
Ŝa
κ(0)Ŝ

b
−κ(t)

〉
, (B.97)
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where we used the relation Rm+l = Rl +Rm. Summing up Eq. (B.91) and Eq. (B.93) (total cross-section

in terms of magnetic scattering) reads

(
d2Θ

dΩdE′

)
=

(
γee2

mec2

)2{
1

2
gF (κ)

}2 Q′

Q

∑

a,b

(δab − κ̃aκ̃b)Nin

∑

l

exp(−iκ ·Rl)exp(−2W(κ))

× 1

2π!

∫
dt exp(−iωt)[γ′

ab(l, t) + γab(l,∞)]

=

(
γee2

mec2

)2{
1

2
gF (κ)

}2 Q′

Q

∑

a,b

(δab − κ̃aκ̃b)exp(−2W(κ))
1

2π!

∫
dt exp(−iωt)

〈
Ŝa
κ(0)Ŝ

b
−κ(t)

〉

(B.98)

The above equation satisfies the detailed balance condition,

(
d2Θ

dΩdE′

)

κ,ω

= exp(!ωξ)
(

d2Θ

dΩdE′

)

−κ,−ω

. (B.99)

The above equation shows that

e−ξEλ

(
d2Θ

dΩdE′

)

κ,ω

= e−ξEλ′

(
d2Θ

dΩdE′

)

−κ,−ω

. (B.100)

We assumed the neutrons’ population of energy E obeys Boltzmann distribution.

If we assume that the external magnetic field is weak enough to use the linear response theory, we can

express the cross-section Eq. (B.98) using Green function of spins, Gab
κ (t)− iθ(t)〈[Ŝa

κ(t), Ŝ
b
−κ(0)]〉 as

(
d2Θ

dΩdE′

)
=

−!
2

(
γee2

mec2

)2{
1

2
gF (κ)

}2 Q′

Q
exp(−2W(κ))

exp(!ωξ)
exp(!ωξ)− 1

∑

a,b

(δab − κ̃aκ̃b)Im
{
Gab

κ (ω)
}

(B.101)

The above equation is quite general.

B.10 Polarization Analysis

We haven’t taken into account the spin states of the neutrons, though it is important to specify the state of

them. In order to understand how the polarization affects the cross-section, we have to know:

1. the relation between polarization of incident neutrons and the cross-section, and

2. the relation between polarization of scattered neutrons and the target system’s properties.

In short, we will see that the cross-section of polarized neutrons are independent of polarization when

there is no preferred axis in the scattering process (target system) itself. However, when the target system has
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preferred orientation such as ferromagnets, the new term appears due to the interplay of nuclear and magnetic

scatterings in the case of elastic cross-sections. The polarization will be created due to inelastic magnetic

scattering, the direction of which depends on whether the elementary excitation is created of annihilated in

the scattering process.

Let’s define the polarization of a beam of neutrons as

P ≡ 2 〈ŝ〉 =
〈
Υ̂
〉
, (B.102)

where Υ̂a are Pauli matrices. When we focus on single neutron which is fully polarized, the density matrix 3̂

can be expressed via Pauli matrices as

3̂ =
1

2

(
I +P · Υ̂

)
, (B.103)

where

Px = 2Re(3∗↑↓), Py = 2Im(3∗↑↓), Pz = 3↑↑ − 3↓↓. (B.104)

When it comes to a beam of neutrons, the polarization of the beam should be defined by averaging over all

the polarization of single neutron as

P =
1

Nin

∑

j

Pj . (B.105)

From Eq. (B.15), the partial differential cross-section is given by

d2Θ

dΩdE′ =
Q′

Q

( m

2π!2
)2∑

λ,Θ

pλpΘ
∑

λ′,Θ′

| 〈Θ′λ′| V̂ (κ) |Θλ〉 |2δ(!ω + Eλ − Eλ′), (B.106)

where V̂ (κ) is the Fourier transformation of the potential V̂ between the injected neutron and the targets.

In the case of nuclear scattering from nuclei,

V̂N (κ) =
2π!2
m

∑

l,d

exp(iκ ·Rld)ξ̂ld, (B.107)

ξ̂ld = Ald +
1

2
BldΘ̂ · l̂ld, (B.108)

where ξ̂ld is a scattering amplitude operator (this operator reproduces the same properties of the scattering
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length ξl in Eq. (B.16)) and l̂ld is the angular momentum of the nucleus at site Rld.

In the case of magnetic scattering from unpaired electrons (cf. Eq. (B.38)),

V̂M (κ) =

(
2π!2
m

)(
γee2

mec2

)
Θ̂ ·

∑

i

exp(iκ · ri)
{
κ̃× ŝi × κ̂− i

!|κ| (κ̃× p̂i)

}
. (B.109)

Above two potentials both have the same form

V̂ = ξ̂ + â · Θ̂, (B.110)

where ξ̂ and â reflect the properties of target system. So all we have to do is to study the modification of the

general form of potential Eq. (B.110) due to the polarization.

Let’s consider a part of cross-section Eq. (B.106) which depends on the neutron spins Θ̂

∑

Θ,Θ′

pΘ 〈Θ| V̂† |Θ′〉 〈Θ′| V̂ |Θ〉 . (B.111)

If there is no correlation in phase between the states |Θ〉 (meaning that the density matrix with respect to Θ is

diagonal), the above equation can be reduced to

∑

Θ

pΘ 〈Θ| V̂†V̂ |Θ〉 . (B.112)

Using pΘ = 〈Θ| ρ̂ |Θ〉 and 〈Θ′| ρ̂ |Θ〉 = δΘ,Θ′ 〈Θ| ρ̂ |Θ〉, Eq. (B.111) can be rewritten as

∑

Θ,Θ′

pΘ 〈Θ| V̂† |Θ′〉 〈Θ′| V̂ |Θ〉 =
∑

Θ

〈Θ| V̂†V̂ ρ̂ |Θ〉 = Tr ρ̂V̂†V̂. (B.113)

The cross-section Eq. (B.106) is now

d2Θ

dΩdE′ =
Q′

Q

( m

2π!2
)2∑

λ,λ′

pλTrρ̂| 〈λ′| V̂ (κ) |λ〉 |2δ(!ω + Eλ − Eλ′). (B.114)

Next, let us consider the polarization of the scattered neutrons P′. This represents the transfer of spins in

the incident neutron beam (defined by P), associated with the interaction potential V . Thus

P′ =
Tr ρ̂V̂†Θ̂V̂
Tr ρ̂V̂†V̂

(B.115)
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Note that the normalization Tr ρ̂V̂†V̂ was chosen so that |P′| = 1.

So P′
(

d2Θ
dΩdE′

)
(full scattered polarization) becomes

P′
(

d2Θ

dΩdE′

)
=

Q′

Q

( m

2π!2
)2∑

λ,λ′

pλTrρ̂ 〈λ| V̂ (κ) |λ′〉 Θ̂ 〈λ′| V̂ (κ) |λ〉 δ(!ω + Eλ − Eλ′). (B.116)

Using the general form of the potential V̂ , Eq. (B.110),

Tr ρ̂V̂†V̂ =
1

2
Tr (I +P · Θ̂)(ξ̂† + â† · Θ̂)(ξ̂ + â · Θ̂)

= â†â+ ξ̂†ξ̂ + ξ̂†â ·P+ (â† ·P)ξ̂ + iP · (â† × â), (B.117)

where we used Eq. (B.103). For Tr ρ̂V̂†Θ̂V̂ , we have

Tr ρ̂V̂†Θ̂V̂ = ξ̂†â+ â†ξ̂ + ξ̂†ξ̂P+ â†(â ·P) + (â† ·P)â

−P · (â† · â)− iâ† × â+ iξ̂†(â×P) + i(P× â†)ξ̂, (B.118)

where we used the identities:

Θ̂aΘ̂b = δa,bI + iεabγeΘ̂
γ
e (B.119)

Tr Θ̂aΘ̂b = 2δabI (B.120)

Tr Θ̂aΘ̂bΘ̂γ
e = iεabγ′

e
Tr Θ̂γ′

eΘ̂γ
e = 2iεabγe (B.121)

Tr Θ̂aΘ̂bΘ̂γ
e Θ̂

δ = 2(δabδγeδ − δaγeδbδ + δaδδbγe) (B.122)

Note that if we assume that the nuclei have randomly oriented spins, the term (â† × â) should be purely

magnetic scattering (since nuclear scattering vanishes if we use [Θ̂a, Θ̂b] = 2iεabγeΘ
γ
e ).

B.11 Inelastic magnetic scattering

Let’s focus on inelastic magnetic scattering, since this is the case we want to treat. We can utilize the general

form Eq. (B.117) and Eq. (B.118) to calculate cross-section and the polarization of scattered neutrons. In

this case, ξ̂ = 0 and â is

â =

(
2π!2
m

)(
γee2

mec2

){
1

2
gF (κ)

}∑

l,d

exp (iκ ·Rld) {κ̃× (Ŝld × κ̃)}. (B.123)
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We used Eq. (B.46), and included the orbital momentum contribution under the dipole approximation. Using

ξ̂ = 0 in Eq. (B.117), the cross-section becomes

d2Θ

dΩdE′ =
( m

2π!2
)2 Q′

Q

∑

λ,λ′

pλ
{
〈λ| â† |λ′〉 〈λ′| â |λ〉+ iP · 〈λ| â† |λ′〉 × 〈λ′| â |λ〉

}
δ(!ω + Eλ − Eλ′).

(B.124)

For the polarization of Q′, scattering beam, is

P′
(

d2Θ

dΩdE′

)
=
( m

2π!2
)2 Q′

Q

∑

λ,λ′

pλ
{
〈λ| â† |λ′〉 〈λ′| â ·P |λ〉+ 〈λ| â† ·P |λ′〉 〈λ′| â |λ〉

− P 〈λ| â† |λ′〉 〈λ′| â |λ〉 − i 〈λ| â† |λ′〉 × 〈λ′| â |λ〉
}
δ(!ω + Eλ − Eλ′). (B.125)

Finally, let’s express above equations in terms of correlation functions. We choose the simplest term to

examine how it changes due to the incident beam’s polarization. We focus on the term

( m

2π!2
)2 Q′

Q

∑

λ,λ′

pλ
{
〈λ| â† |λ′〉 〈λ′| â |λ〉

}
δ(!ω + Eλ − Eλ′). (B.126)

Inserting Eq. (B.123) into above equation and assuming pλ = exp(−bEλ)/Tr exp(−bH) (Boltzmann distri-

bution),

Eq. (B.126) =

(
γee2

mec2

)2{
1

2
gF (κ)

}2( 1

Tr exp(−bH)

)
Q′

Q

∑

λ,λ′

exp(−bEλ)
∑

l,d

∑

l′,d′

exp {iκ · (Rl′d′ −Rld)}

× 〈λ| κ̃× (Ŝld × κ̃) |λ′〉 〈λ′| κ̃× (Ŝl′d′ × κ̃) |λ〉 δ(!ω + Eλ − Eλ′)

=

(
γee2

mec2

)2{
1

2
gF (κ)

}2( 1

Tr exp(−bH)

)
Q′

Q

∑

λ,λ′

exp(−bEλ)
∑

l,d

∑

l′,d′

exp {iκ · (Rl′d′ −Rld)}

× 〈λ| κ̃× (Ŝld × κ̃) |λ′〉 〈λ′| κ̃× (Ŝl′d′ × κ̃) |λ〉 1

2π

∫ ∞

−∞
dtexp(−i!ωt− iEλt+ iEλ′t).

(B.127)

Using Ŝl′d′(t) = exp(iĤt/!)Ŝl′d′ exp(−iĤt/!) and Ŝ
⊥
l′d′(t) ≡ κ̃× (Ŝl′d′(t)× κ̃),

Eq. (B.127) =

(
γee2

mec2

)2{
1

2
gF (κ)

}2 Q′

Q

∑

l,d

∑

l′,d′

exp {iκ · (Rl′d′ −Rld)}
1

2π!

∫ ∞

−∞
dtexp(−iωt)〈Ŝ

⊥
ld(0)Ŝ

⊥
l′d′(t)〉.

(B.128)



B Derivation of the amorphous neutron scattering cross-section 111

Similarly, other terms can also be evaluated to get

d2Θ

dΩdE′ =

(
γee2

mec2

)2{
1

2
gF (κ)

}2 Q′

Q

∑

l,d

∑

l′,d′

exp {iκ · (Rl′d′ −Rld)}

× 1

2π!

∫ ∞

−∞
dt exp(−iωt)

{
〈Ŝ

⊥
ld(0) · Ŝ

⊥
l′d′(t)〉+ iP · 〈Ŝ

⊥
ld(0)× Ŝ

⊥
l′d′(t)〉

}
, (B.129)

P′
(

d2Θ

dΩdE′

)
=

(
γee2

mec2

)2{
1

2
gF (κ)

}2 Q′

Q

∑

l,d

∑

l′,d′

exp {iκ · (Rl′d′ −Rld)}

× 1

2π!

∫ ∞

−∞
dt exp(−iωt)

{
〈Ŝ

⊥
ld(0){P · Ŝ

⊥
l′d′(t)}〉+ 〈{P · Ŝ

⊥
ld(0)}Ŝ

⊥
l′d′(t)〉

−P〈Ŝ
⊥
ld(0)Ŝ

⊥
l′d′(t)〉 − i〈Ŝ

⊥
ld(0)× Ŝ

⊥
l′d′(t)〉

}
. (B.130)

Note that Eq. (B.130) is a vector, not a scalar.

Finally, in the case of the unpolarized neutron, the cross-section for amorphous magnets may be (from Eq.

(B.98))

d2Θ

dΩdE′ =

(
γee2

mec2

)2{
1

2
gF (κ)

}2 Q′

Q

∑

a,b

(δab − κ̃aκ̃b)
1

2π!

∫
dt exp(−iωt)

×
∑

l,d

∑

l′,d′

exp(iκ(Rld −Rl′d′))
〈
Ŝa
ld(0)Ŝ

b
l′d′(t)

〉∫
dr′
〈
δ{r + R̂ld(0)− r′}δ{r′ − R̂l′d′(t)}

〉
,

(B.131)

where we assumed the motion of ions are independent of the direction of spins. If we don’t assume this, then

the Eq. (B.131) becomes (from Eq. (B.52))

d2Θ

dΩdE′ =

(
γee2

mec2

)2{
1

2
gF (κ)

}2 Q′

Q

∑

a,b

(δab − κ̃aκ̃b)

× 1

2π!

∫
dt exp(−iωt)

∑

l,d

∑

l′,d′

〈
exp(−iκ · R̂ld(0))Ŝ

a
ld(0)exp(iκ · R̂l′d′(t))Ŝb

l′d′(t)
〉
. (B.132)

Since we are assuming that the positions of atoms don’t change while the simulation, û(Rld) in Eq. (B.77)

is 0. In other words, we may be able to ignore Debye-Waller factor, since the thermal fluctuation is already

included in the LLG equation, and the positions of atoms are fixed. This simplifies Eq. (B.131) as

d2Θ

dΩdE′ =

(
γee2

mec2

)2{
1

2
gF (κ)

}2 Q′

Q

∑

a,b

(δab − κ̃aκ̃b)

× 1

2π!

∫
dt exp(−iωt)

∑

l,d

∑

l′,d′

exp(iκ(Rld −Rl′d′))
〈
Ŝa
ld(0)Ŝ

b
l′d′(t)

〉
. (B.133)
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This means we don’t consider nuclear scattering. In the above equation, contribution of elastic magnetic

scattering is the limit t → ∞. Otherwise, Eq. (B.133) is the cross-section for inelastic magnetic scattering of

unpolarized neutron beam. In the case of the polarized neutron, Eq. (B.129) is the alternative result.

C Analytic expression of double-skyrmion state

We show how to combine two single-skyrmion states to obtain a two-skyrmion state. The stereo-graphic

projection is defined as

p : C ∪∞ 2→ S2, (C.1)

where a complex number u = u1 + iu2 (u1, u2 ∈ R) is mapped to a normalized three-dimensional vector:

p(u) =

(
2u1

1 + |u|2 ,
2u2

1 + |u|2 ,
1− |u|2

1 + |u|2

)
. (C.2)

p denotes the projection which maps u = 0 to |u| = ∞ and p(0) = (0, 0, 1) to p(∞) = (0, 0,−1). In addition,

we introduce an orthogonal transformation R which is a rotation about ez× t̂ by cos−1(ez · t̂). Here R satisfies

R(ez) = t̂. Thus, the coupled operator pt̂(u) ≡ R[p(u)] maps u = 0 to pt̂(0) = t̂. The boundary condition

regarding u(r) = p−1
t̂

[n(r)] is given by u(∞) = 0, for a skymion configurations n(r) that satisfies n(∞) = t̂.

Using the two single-skyrmion solutions nu(r) = pt̂(u) and nv(r) = pt̂(v) which have skyrmion charge

densities ρch(r) = n · (∂xn× ∂yn)/(4π) near r = ru and rv, we can obtain a composite skyrmion states as

nw(r) = pt̂(w), w = u+ v. (C.3)

Note that the total skyrmion chargeth is preserved in the procedure, with keeping the boundary condition: If

nu(∞) = nv(∞) = t̂, i.e., u(∞) = v(∞) = 0, nw(∞) is given by nw(∞) = pt̂(0 + 0) = t̂. Eq. (C.3) stands

for the composite skyrmion state, at sufficiently large distance |ru − rv|.

Next, we approximate nw(r) in terms of nu,v(r). In the following discussion, we assume t̂ = ez for

simplicity. In the case of the general t̂, the result is given by applying the operation R to all nu,nv, and nw.

When a unit vector n is almost the same as n0, we can expand n as

n 4 n0 + ε× n0 +
1

2
ε× (ε× n0) , (C.4)

as a property of unit vector fields, where ε is defined to be satisfy ε · n0 = 0. Under the approximation of
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Eq. (C.4), n satisfies the normalization condition up to the second order of ε:

|n|2 = 1 + o(ε2). (C.5)

Using the relation δn = ε× n0, ε can be expressed as

ε = t̂× δn. (C.6)

Also, if na=u,v(r) is far from the skyrmion core, r = ra is close to t̂. Thus it is expanded as

na 4 t̂+ ε0a × t̂+
1

2
ε0a ×

(
ε0a × t̂

)
, a = u, v (C.7)

When t̂ = ez , the expansion of Eq. (C.2) near u = 0 obtains

δnu = (2u1, 2u2, 0), (C.8)

ε0u = t̂× δnu = (−2u2, 2u1, 0). (C.9)

Similarly, we find δnv = (2v1, 2v2, 0) and ε0v = t̂× δnv = (−2v2, 2v1, 0).

The combined configuration nw is now found to be approximated as follows, due to the above equations.

When |ru − rv| is sufficiently large, v = p−1(nv) follows |v| / 1 near r = ru. We can thus expand nw in

terms of the linear terms of v as

nw =p(u+ v)

=

(
2(u1 + v1)

1 + |u+ v|2 ,
2(u2 + v2)

1 + |u+ v|2 ,
1− |u+ v|2

1 + |u+ v|2

)

=nu +

(
2v1

1 + |u|2 ,
2v2

1 + |u|2 ,−
2(u1v1 + u2v2)

1 + |u|2

)
− 2(u1v1 + u2v2)

1 + |u|2 nu +O(v2)

=nu +
1

2
[(1 + nuz)δnv − (nu · δnv)(ez + nu)] +O(v2). (C.10)

Applying Eq. (C.4), nw up to the second order of v is obtained as

nw = nu + εv × nu +
1

2
εv × (εv × nu) +O(v3), (C.11)

εv =
1

2
nu × [(1 + nu · ez)δnv − (nu · δnv)ez] . (C.12)
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When t̂ (= ez , we use R for all vector fields and obtain Eq. (C.11) and

εv =
1

2
nu ×

[
(1 + nu · t̂)δnv − (nu · δnv)t̂

]
. (C.13)

We can also expand nw around r = rv in the similar way as

nw = nv + εu × nv +
1

2
εu × (εu × nv) +O(u3), (C.14)

εu =
1

2
nv ×

[
(1 + nv · t̂)δnu − (nv · δnu)t̂

]
. (C.15)

D Derivation of analytic approximation of the inter-skyrmion interaction

Firstly, given the energy functional (5.7), we derive the equation which is satisfied by a stationary solution.

Suppose that we have n0(r), a stationary solution and satisfies the boundary condition, n0(∞) = t̂. Using

Eq. (C.4), a spin state with a small fluctuation close to n0(r) can be expressed as

n(r) 4 n0(r) + ε(r)× n0(r), (D.1)

up to the linear terms of ε(r). The energy difference between the sates of n(r) and that of n0(r) is

F [n(r)]− F [n0(r)]

4
∫

d2r

a2

[
∂f(n0)

∂n
· (ε× n0) +

∂f(n0)

∂∂in
· ∂i(ε× n0)

]

=

∫
d2r

a2

[
∂f(n0)

∂n
− ∂i

∂f(n0)

∂∂in

]
· (ε× n0)

=

∫
d2r

a2
ε ·
{
n0 ×

[
∂f(n0)

∂n
− ∂i

∂f(n0)

∂∂in

]}
. (D.2)

Using above equation, the stationary solution n0(r) satisfies

n0 ×
[
∂f(n0)

∂n
− ∂i

∂f(n0)

∂∂in

]
= 0, (D.3)

which is equivalent to the LLG equation for stationary solutions, dn/dt = −n ×Beff + αn × dn/dt. Here,

the effective magnetic field is

Beff = −∂f(n)

∂n
+ ∂i

∂f(n)

∂∂in
. (D.4)

Finally, we consider the inter-skyrmion interaction of which is located at r = ±R/2. We assume that a



D Derivation of analytic approximation of the inter-skyrmion interaction 115

single-skyrmion solution placed at r = 0 is expressed as n1sk(r) and satisfies Eq. (D.3). The single-skyrmion

state placed at ru = R/2 is given by nu(r) = n1sk(r −R/2) and that placed at rv = −R/2 is obtained as

nv(r) = n1sk(r + R/2). Whereas the double-skyrmion state is approximately expressed as the composite

skyrmion state derived in Sec. C: n2sk 4 nw = pt̂(p
−1
t̂

(nu) + p−1
t̂

(nv)).

Here we derive an approximate expression of Eq. (5.18) at large |R|. The region of the integral can be

divided into D+ and D−, which corresponds to the right and left sides of the integral path Γ in Fig. 5.4,

respectively, and Eq. (5.18) is rewritten as

Vint(R) = V+(R) + V−(R), (D.5)

V±(R) ≡
∫

D±

d2r

a2
[f(n2sk)− f(nu)− f(nv) + f(t̂)]. (D.6)

If |R| is much larger than the skyrmion size, we can respectively replace n2sk and nv by the right-hand side

of Eq. (C.11) and Eq. (C.7) in D+. Further expanding the integrand up to the linear terms of εv and ε0v gives

V+(R) 4
∫

D+

d2r

a2

[
f

(
nu + εv × nu +

1

2
εv × (εv × nu)

)
− f(nu)− f

(
t̂+ ε0v × t̂+

1

2
ε0v × (ε0v × t̂)

)
+ f(t̂)

]

4
∫

D+

d2r

a2

[
∂f(nu)

∂n
· (εv × nu) +

∂f(nu)

∂∂in
· ∂i(εv × nu)−

∂f(t̂)

∂n
· (ε0v × t̂)− ∂f(t̂)

∂∂in
· ∂i(ε0v × t̂)

]

=

∫

D+

d2r

a2
∂i

[
∂f(nu)

∂∂in
· (εv × nu)−

∂f(t̂)

∂∂in
· (ε0v × t̂)

]

=

∮

∂D+

d4j
a2

εij

[
∂f(nu)

∂∂in
· (εv × nu)−

∂f(t̂)

∂∂in
· (ε0v × t̂)

]
, (D.7)

where εij denotes the Levi-Civita symbol in 2D, ∂D+ stands for the boundary of the region D+, and d"

represents the vector integral element. From the second to the third lines, the relation that nu(r) and t̂ satisfy

Eq. (D.3) is used. From the third to the fourth lines, Green’s theorem is used.

If the system is large enough, the integral along ∂D+ becomes zero, except for the boundary between D+

and D−, due to the relations nu → t̂ and εv, ε0v → 0 as r → ∞. We thus obtain

V+(R) 4
∫

−Γ

d4j
a2

εji

[
∂f(nu)

∂∂in
· (εv × nu)−

∂f(t̂)

∂∂in
· (ε0v × t̂)

]
. (D.8)

Because |R| is so large, we can also expand nu as nu 4 t̂+ δnu on the boundary Γ to obtain

∂f(nu)

∂∂inα
4 ∂f(t̂)

∂∂inα
+

∂2f(t̂)

∂(∂inα)∂nβ
δnu,β +

∂2f(t̂)

∂(∂inα)∂(∂jnβ)
∂jδnu,β , (D.9)

(εv × nu)α 4δnv,α − (δnu · δnv)t̂α, (D.10)
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where Eq. (C.12) is used. By substituting the above equations into Eq. (D.8), we find

V+(R) 4
∫

Γ

d4j
a2

εji

[
∂f(t̂)

∂∂inα
(δnu · δnv)tα − ∂2f(t̂)

∂(∂inα)∂nβ
δnu,βδnv,α − ∂2f(t̂)

∂(∂inα)∂(∂knβ)
(∂kδnu,β)δnv,α

]
.

(D.11)

We note that the bi-linear terms of εv and ε0v ignored in Eq. (D.7) obtain the higher-order contributions of

δnu,v to V+(R), when n1sk rapidly converges to t̂. This is, for instance, the isotropic case under out-of-plane

magnetic field, where δn1sk(r) ∝ e−r̃/
√
r̃ with r̃ = |r|/

√
B/Ja2. To be more specific, the second-order

terms’ contributions to the second line of Eq. (D.7) are shown as

F2 =

∫

D+

d2r

a2

{
∂f(nu)

∂n
·
[
1

2
εv × (εv × nu)

]
+

∂f(nu)

∂∂in
· ∂i
[
1

2
εv × (εv × nu)

]

− ∂f(t̂)

∂n
·
[
1

2
ε0v × (ε0v × t̂)

]
− ∂f(t̂)

∂∂in
· ∂i
[
1

2
ε0v × (ε0v × t̂)

]

+
∂2f(nu)

∂nα∂nβ
(εv × nu)α(εv × nu)β − ∂2f(t̂)

∂nα∂nβ
(ε0v × t̂)α(ε

0
v × t̂)β

+ 2
∂2f(nu)

∂∂inα∂nβ
[∂i(εv × nu)α] (εv × nu)β − 2

∂2f(t̂)

∂∂inα∂nβ

[
∂i(ε

0
v × t̂)α

]
(ε0v × t̂)β

+
∂2f(nu)

∂∂inα∂∂jnβ
[∂i(εv × nu)α] [∂j(εv × nu)β ]−

∂2f(t̂)

∂∂inα∂∂jnβ

[
∂i(ε

0
v × t̂)α

] [
∂j(ε

0
v × t̂)β

]}
.

(D.12)

Using Eq. (D.3) and the Green’s theorem, as the previous case, the first and the second lines becone line

integrals along Γ, resulting in the third-order terms of δn. On the other hand, the other lines cannot be

rewritten as simple line integrals. When εv and ε0v rapidly vanish, however, the area integral of D+ mostly

comes from the boundary Γ, where nu can be approximated as nu 4 t̂ + δnu. In this case, we can expand

the derivatives of f in the vicinity of nu 4 t̂ as in the case of Eq. (D.9), subtract each of the last three lines,

obtain an additional component δnu. In this way, the contribution of F2 to V+(R) is in the third-order of

δnu,v and hence can be ignored compared with the leading terms, Eq. (D.11).

Similarly, we obtain the approximation for V−(R), given by the right-hand side of Eq. (D.11) with Γ → −Γ

and δnu ↔ δnv. To summarize, Vint(R) in Eq. (D.5) can be approximated by

Vapp(R) =

∫

Γ

d4j
a2

εji (Avu −Auv)i , (D.13)

(Auv)i =
∂2f(t̂)

∂nα∂(∂inβ)
δnu,αδnv,β +

∂2f(t̂)

∂(∂knα)∂(∂inβ)
(∂kδnu,α)δnv,β , (D.14)

which are the same as Eqs. (5.26) and (5.20) with u → + and v → −.
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