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Group-theoretic Bifurcation Mechanisms for Economic Agglomerations on a Square Lattice

ABSTRACT : The present thesis aims to elucidate the mechanism of economic agglomerations in two-dimensional eco-
nomic spaces equipped with square road networks, which prosper worldwide (e.g., Chicago and Kyoto). A series of
theoretical approaches provided in the present thesis makes it possible to investigate the spatial patterns of economic ag-
glomerations on such spatial platforms systematically. Theoretical results in the present thesis would contribute greatly to
theoretical and numerical investigation of economic agglomerations.

Studies of the spatial patterns of economic activities date back to the classical central place theory in economic geog-
raphy (Christaller, 1933; Lösch, 1940). This theory suggested that central places, where economic activities are concen-
trated, would form geometrical patterns under the assumption of completely flat land surface and uniformly distributed
consumers. The crude geometric prediction of this theory has come to be supplemented with full-fledged microeconomic
foundations. The hexagonal distributions of economic agglomerations on the hexagonal lattice economy have come to
be simulated by theoretical and numerical analysis of economic geography models (Ikeda et al., 2012, 2017, 2018). That
said, the present thesis focuses on square distributions on the square lattice economy, which has not somewhat been given
much attention.

Economic geography models, which encompass a wide range of spatial models in various fields, such as new economic
geography, urban economics, and international trade theory, contribute to the understanding of the spatial patterns of
economic activities. These models provide a comprehensive knowledge on how the level of transportation costs affects
the spatial patterns of agglomerations, such as mono-centric and poly-centric distributions. Possible spatial patterns,
however, depend on both economic modeling and spatial platforms. The present thesis mainly focuses on the latter, that
is, mathematical mechanisms due to the symmetry of spatial platforms. We introduce appropriate spatial platforms to
investigate agglomeration behaviour from the uniform distribution (Chapters 3 and 4), dispersion behaviour from the
mono-centric distribution (Chapter 5), and economic interactions between local and global scales (Chapter 6).

Each spatial platform introduced in the present thesis has the symmetry described by a group, such as the dihedral
group. Classification of bifurcation behaviour in such symmetric systems is the main subject of group-theoretic bifurcation
theory (Golubitsky et al., 1988). We apply group-theoretic predictions to the investigation of bifurcation behavior of
economic geography models. Our analysis places a special emphasis on model-independent bifurcation mechanisms
behind agglomeration and dispersion behaviour, while the model dependency of such behaviour has come to be elucidated
by Akamatsu et al. (2021).

As a whole, the present thesis provides a systematic analysis procedure that is applicable to a wide range of economic
geography models. Note, however, that Chapters 4–6 assume the use of the replicator dynamics and, accordingly, are not
applicable to the models that prohibit corner solutions, such as Helpman (1998) and Allen and Arkolakis (2014) models.

The present thesis is organized as follows:
Chapter 1 is the introduction that summarizes theoretical background, the contributions of the present thesis, and related

studies.
Chapter 2 introduces a general setup of economic geography models. Various kinds of models have been developed

in the previous studies. We accordingly discuss the applicability of theoretical results in each chapter to specific models.
We employ Forslid and Ottaviano (2003), Helpman (1998), and Pflüger and Südekum (2008) models as representatives
of economic geography models for the numerical analyses throughout the present thesis.

Chapter 3 offers a group-theoretic bifurcation theory to explain the mechanism of the self-organization of square pat-
terns in economic agglomerations. As a spatial platform, we introduce an n × n square lattice that has the symmetry
described by the group D4 ⋉ (Zn × Zn). We investigate steady-state bifurcation of the spatially uniform equilibrium on the
square lattice. We show the existence of bifurcating solutions expressing square and stripe patterns by using two different
mathematical methods: (i) the equivariant branching lemma and (ii) the bifurcation equations.

Chapter 4 focuses on the existence of invariant patterns that is a special feature of the replicator dynamics. Invariant
patterns are stationary points that retain their spatial distribution even when the value of the bifurcation parameter changes.



We propose a methodology to find invariant patterns exhaustively. In view of invariant patterns, we develop an innovative
bifurcation analysis procedure and apply this procedure to economic geography models. We numerically demonstrate the
connectivity between the uniform distribution and invariant patterns via bifurcations.

Chapter 5 investigates the bifurcation mechanism of the full agglomeration at the geographical center of a square lattice.
We theoretically show the existence of bifurcating solutions that represent a place at the center with large population
surrounded by several places with small population. Some of these solutions can be interpreted as the formation of satellite
cities around the central city. We numerically demonstrate transition that population emerges from, or is absorbed into,
the center as the level of transport costs changes.

Chapter 6 proposes a local-global system, a spatial platform that can represent a hierarchical structure but can retain the
insightfulness of bifurcation mechanisms. It consists of the two-level hierarchy comprising local and global systems. Each
local system has a particular population size and a geographical configuration such as a square lattice. The global system
expresses the geographical distribution of the local systems. We would like to develop the framework of conventional
economic geography models to a direction of the qualitative spatial economics.

Chapter 7 summarizes the main results of the present thesis and suggests the directions of future research.
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Figure 1.1: Distribution of large cities in southern Germany.

1. Introduction

Hierarchical urbanization of megalopolises, cities, towns, villages, and so on displays char-
acteristic spatial patterns. Figure 1.1 depicts a distribution of large cities in southern Germany
with cities of various sizes. In particular, Frankfurt, Stuttgart, Nuremberg, and Munich display
a distinctive geometrical pattern. This is hinting at the existence of the underlying geometrical
mechanism. Christaller (1933) conducted the first attempt to elucidate such a mechanism for pop-
ulation distribution of Southern Germany to develop central place theory of economic geography.
Self-organization of hexagonal market areas of various kinds was proposed. Hexagonal market
areas with different sizes were expected to form hierarchical hexagonal distributions of population
(cities, towns, villages, etc.). For reviews of central place theory, see Lösch (1940), Lloyd and
Dicken (1972), Dicken and Lloyd (1990), Isard (1975), and Beavon (1977), for example.

In economics, central place theory has been exposed to a criticism that it is not based on market
equilibrium conditions (Fujita et al., 1999b). To overcome this, Eaton and Lipsey (1975, 1982)
made the earliest attempt to provide central place theory with a microeconomic foundation. Clarke
and Wilson (1985) and Munz and Weidlich (1990) demonstrated the emergence of spatial patterns
in economic agglomerations. Krugman (1996) envisioned that hexagonal distributions envisaged
in central place theory are to be self-organized in core-periphery models with a two-dimensional
spatial platform.

Core-periphery models, which are based on the Dixit-Stiglitz competition, can express the
migration of population among cities with a microeconomic foundation (e.g., Krugman, 1991;
Combes et al., 2008). Most studies for these models, however, employed an too much simplified
setup of the two-place economy to exploit analytical solvability.

In search of the mechanism of various spatial patterns in economic agglomerations, a proper
choice of a spatial platform is vital. To transcend the two-place economy, studies on several spatial
platforms have been conducted as reviewed in the Related Studies below. These spatial platforms,
for example, include a star economy, a line segment economy, a racetrack economy, an equidistant
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economy, and a lattice economy. The line segment and racetrack economies are one-dimensional,
whereas the equidistant and the lattice economies are two-dimensional.

In search of realistic spatial patterns, which are essentially two-dimensional, it is pertinent
to employ the square and the hexagonal lattices that are capable of expressing diverse spatial
agglomeration patterns:

• The square lattice can engender square, rectangular, and deformed triangular patterns.

• The hexagonal lattice can engender triangular, rectangular, and hexagonal patterns.

The suitability of these two kinds of lattices varies with cases as explained below:
In the simulation of hexagonal distributions, the use of hexagonal lattices is adequate. In

nonlinear mathematics, hexagonal distributions have been shown to exist on planar systems en-
dowed with hexagonal symmetry for several physical problems (Golubitsky and Stewart, 2002).
In central place theory, the regular-triangular lattice was suggested for use based on geometrical
discussion (Lösch, 1940). In economics, Eaton and Lipsey (1975) displayed the mechanism of the
formation of a hexagonal distribution of mobile production factors (e.g., firms and workers) in two
dimensions as an economic equilibrium for spatial competition. The bifurcation mechanism of the
self-organization of hexagonal distributions on the hexagonal lattice was elucidated (Ikeda et al.,
2014; Ikeda and Murota, 2014), as an extension of group-theoretic bifurcation analysis, which is
applied mainly to a continuous space (Golubitsky and Schaeffer, 1985; Golubitsky et al., 1988), to
a discreteized space.

On the other hand, it is quite noteworthy that square road networks exist worldwide. Chicago
(USA) and Kyoto (Japan), for example, are well-known to accommodate such square networks
historically (see Fig. 1.2). In fact, several studies of spatial agglomeration have been conducted
on square lattices (Clarke and Wilson, 1983, 1985; Weidlich and Haag, 1987; Munz and Weidlich,
1990; Brakman et al., 1999). Yet, bifurcation analysis on a discretized space of a square lattice is
very rare, and the study of Ikeda et al. (2018b) is an only exception.

This motivates the study of agglomeration and dispersion mechanisms on a square lattice.
The present thesis aims to elucidate such mechanisms on a square lattice by direct and extended
group-theoretic bifurcation analyses. We pay attention to the role of boundary conditions: (i)
periodic boundary conditions and (ii) ordinary boundary conditions. In search of the square
lattice counterpart of hexagonal distributions in central place theory, which considers an infinite
and uniform plain, it is pertinent to employ the periodic boundary conditions. We would like to
elucidate the mechanism of economic agglomerations on a square lattice with periodic boundary
conditions in Chapters 3 and 4. On the other hand, the importance of ordinary (non-periodic)
boundary conditions should not be overlooked. The infinite and uniform plain considered in
central place theory is an idealization of a finite space with boundary in the real world. We would
like to elucidate the mechanism of economic agglomerations on a square lattice with an ordinary
boundary condition in Chapters 5 and 6.

Overall, the present thesis provides a systematic analysis procedure that can be applicable to
a wide range of economic geography models. While studies of spatial economics are centered
mainly on the economic modeling, the present thesis focuses on the spatial structure of economic
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(a) Chicago (USA)

(b) Kyoto (Japan)

Figure 1.2: Satellite photographs of cities provided by Google Maps displaying square road networks

3



agglomerations, which is somewhat overlooked in these studies, despite its vital importance in
economic agglomeration. The contributions of the present thesis are summarized as follows:

Chapter 2 introduces a general framework of economic geography models. There is a great
number of economic geography models proposed in the previous studies. Accordingly, we discuss
the applicability of theoretical analysis to be conducted in each chapter to specific models. We
focus on Forslid and Ottaviano (2003), Helpman (1998), and Pflüger and Südekum (2008) models
as typical models for numerical analyses in each chapter.

Chapter 3 reveals the mechanism of the self-organization of square agglomeration patterns from
a uniform state by relying on group-theoretic bifurcation analysis (Golubitsky et al., 1988). The
results of this chapter are applicable to any economic geography models with a single independent
variable (expressing mobile population) at each nodal point. As a spatial platform, we introduce an
n×n square lattice with periodic boundary conditions that has the symmetry described by the group
D4 ⋉ (Zn × Zn), where the group D4 expresses square symmetry and Zn represents translational
symmetry. We investigate steady-state bifurcation of the spatially uniform equilibrium and, in
turn, to show the existence of bifurcating solutions expressing square and stripe patterns by using
two different mathematical methods: (i) the equivariant branching lemma and (ii) the bifurcation
equations. The stability of bifurcating solutions is investigated. Square patterns are highlighted as
a square lattice counterpart of hexagonal patterns on a hexagonal lattice.

Chapter 4 shows the existence of invariant patterns, which is a special feature of the replicator
dynamics. The results of this chapter are applicable to any economic geography models with the
replicator dynamics with a single independent variable (expressing mobile population) at each
nodal point and the independent variable can possibly become zero at some nodal point (no mobile
population at the point). Invariant patterns are stationary points that retain their spatial distribution
when the value of the bifurcation parameter changes. In view of invariant patterns, we propose
an innovative bifurcation analysis procedure: (i) obtaining invariant patterns and (ii) searching for
bifurcating equilibrium curves connecting stable invariant patterns. We apply this procedure to
economic geography models. We numerically demonstrate the connectivity between the uniform
equilibrium and invariant patterns through the bifurcating solutions.

Chapter 5 elucidates the bifurcation mechanism of the full agglomeration at the geographical
center in a square lattice. The results of this chapter are applicable to any economic geography
models with invariant patterns, which includes the full agglomeration to a single nodal point.
We theoretically show the existence of bifurcating solutions that represent one large central place
surrounded several places with small population. Some of these bifurcating solutions can be
interpreted as the formation of satellite cities around the center. We numerically demonstrate a
transition that population emerges from, or is absorbed into, the center as the transport cost changes.

Chapter 6 proposes a spatial platform that can represent a hierarchical structure but can retain
the insightfulness of bifurcation mechanisms. It consists of two-level hierarchy of local and global
systems. Each local system has a particular population size and a geographical configuration such
as a square lattice. The global system expresses the geographical distribution of the local systems.
We would like to develop the framework of conventional economic geography models to a direction
of the qualitative spatial economics. As specific examples, we employ two identical square lattices
of which the centers are connected directly. The global transport costs between the square lattices
and local transport costs within each square lattice are considered.

4



Related Literature
The present thesis fundamentally relies on group-theoretic bifurcation theory, which has been

developed in nonlinear mathematics (e.g., Mitropolsky and Lopatin, 1988; Allgower et al., 1992;
Olver, 1995; Marsden and Ratiu, 1999; Hoyle, 2006). Group-theoretic bifurcation theory pro-
vides a powerful tool to analyze a system of equations with symmetry described by the group
equivariance. Pattern formations in many physical phenomena1 are often modeled by differential
equations with the group equivariance on an infinite plane and is investigated by group-theoretic
bifurcation analysis. Systems with the Euclidean group symmetry have been employed for reaction-
diffusion systems (Turing, 1952), the Rayleigh-Bénard convection (Busse, 1978), cellular patterns
in combustion (Sivashinsky, 1983), and solidification (Coriell and McFadden, 1993). Steady-state
bifurcation from the fully symmetric equilibrium (the uniform distribution) on these systems was
classified (Melbourne, 1999). The bifurcation behaviour of systems with dihedral group symmetry
has been studied in applied mathematics (Sattinger, 1983; Healey, 1988; Dellnitz and Werner,
1989), chemistry (Kim, 1999), and physics (Kettle, 2007). The mechanism of hexagonal patterns2

are related to the symmetry of the dihedral group D6, while we focus on the dihedral group D4
expressing square symmetry in Chapters 5 and 6. As an unified modeling for reaction-diffusion
systems, the Navier-Stokes flow, the Bénard problem, and so on, a system with the symmetry of the
infinite group D4⋉T2 (T2 express the two-torus of translation symmetry) has been studied (Dionne
et al., 1997; Golubitsky and Stewart, 2002), while we employ the finite group D4 ⋉ (Zn × Zn) in
Chapters 3 and 4.

The present thesis contributes to an understanding of how group-theoretic bifurcation theory
adapts to analysis of economic geography models. Economic geography models, which theoreti-
cally describe the spatial patterns of economic activities, include a wide range of spatial models.
While a fraction of these models is introduced and classified in Section 2 with reference to the
viewpoint of Akamatsu et al. (2021), the readers may refer to standard textbooks, such as Brakman
et al. (2001), Fujita and Thisse (2002), Baldwin et al. (2003), and Combes et al. (2008), to name a
few.

Various spatial platforms were employed to observe diverse spatial agglomeration patterns.
For a long narrow economy on a line segment or an infinite straight line, the literature reports
several characteristic agglomeration patterns: the simplest core–satellite pattern for three places
(Ago et al., 2006), a chain of spatially repeated core–periphery patterns a la Christaller and Lösch
(Fujita and Mori, 1997), and a megalopolis which consists of large core cities that are connected
by an industrial belt, i.e., a continuum of cities (Mori, 1997). These patterns were numerically
observed by changing agglomeration forces and transport costs (Ikeda et al., 2017a).

1 For example, in fluid dynamics, the Rayleigh-Bénard convection, which is observed for a horizontal layer of
fluid heated from below, displays hexagonal patterns (Bénard, 1900; Koschmieder, 1993). The Couette-Taylor flow,
which is a rotating annular fluid in a hollow cylinder, displays various symmetric patterns (Taylor, 1923). In material
mechanics, uniform materials, such as cylindrical soils, undergo symmetric deformation patterns (Ikeda and Murota,
2019; Tanaka et al., 2002). Flower patterns of a honeycomb structure, which are observed in uniaxial and biaxial
in-plane compression, have drawn keen interest (Saiki et al., 2005).

2 For example, the mechanism of hexagonal patterns in the Rayleigh-Bénard convection was elucidated by
(Kirchgässner, 1979). Competition between hexagonal and triangular patterns on surface waves was studied (Skeldon
and Silber, 1998; Silber and Proctor, 1998).
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A racetrack economy, which comprises a system of identical cities spread uniformly around
the circumference of a circle, was studied extensively as a semi-two-dimensional spatial plarform.
Krugman (1993, 1996) carried out local stability analysis of a core-periphery model on the racetrack
economy to identify the emergence of several spatial frequencies. For the racetrack economy with
2k cities, a spatially alternation of a core place with a large population and a peripheral place
with a small population was observed for economic geography models (Picard and Tabuchi, 2010;
Tabuchi and Thisse, 2011). Such a mechanism was explained in terms of the spatial period doubling
bifurcation cascade, which produces fewer larger agglomerations through repeated doubling of the
spatial period of agglomerated cities (Ikeda et al., 2012a; Akamatsu et al., 2012; Osawa et al.,
2017). Anas (2004) demonstrated the presence of other agglomeration patterns, such as balanced
agglomeration, concentrated agglomeration, and de-agglomeration.

The racetrack economy was studied comparatively with an economy on a line segment (a long
narrow economy) by Mossay and Picard (2011) in a continuous space to display the difference in
agglomeration patterns. Agglomerations in racetrack and star economies were studied compara-
tively (Barbero and Zofío, 2016). An analogy of the agglomerations in the racetrack economy to
a long narrow economy and a square lattice economy was studied in Ikeda et al. (2017a, 2018b),
respectively.
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2. Economic Geography Models

This chapter provides the general framework of economic geography models, which we em-
ployed throughout the present thesis. Section 2.1 explains basic assumptions of the modeling
on a symmetric spatial platform. Section 2.2 presents the classification of a series of economic
geography models with reference to Akamatsu et al. (2021). Section 2.3 introduces some particular
models, which we use for numerical simulations.

2.1. General Framework
We explain modeling of the economy to investigate the spatial patterns of economic agglomer-

ations.

2.1.1. Basic Assumptions
Let P = {1, . . . ,K} be the set of places. A spatial distribution of mobile workers is denoted by

λ = (λi) under the normalizing constraint
∑

i∈P λi = 1. The payoff for the mobile workers is given
by a payoff function v = (vi).

The economy of economic geography models involves spatial frictions. That is, the payoff
function v depends on a proximity matrix D = [di j] with di j = ϕ

m(i, j), where ϕ ∈ (0, 1) is the trade
freeness between two consecutive places, and m(i, j) is the shortest distance between places i and
j along the transport network of the economy.

Each mobile worker selects a place to locate in response to the payoff vi. A spatial equilibrium
is defined as a spatial distribution λ that satisfies the following condition:{

v∗ − vi(λ, ϕ) = 0 if λi > 0,
v∗ − vi(λ, ϕ) ≥ 0 if λi = 0,

(2.1)

where v∗ denotes the equilibrium utility level.
To investigate the stability of a spatial equilibrium, we consider an adjustment dynamics:

dλ
dt
= F(λ, ϕ) (2.2)

with F = (Fi). A stationary point of the adjustment dynamics is given as a spatial distribution λ
that satisfies the governing equation:

F(λ, ϕ) = 0. (2.3)

The stability of a stationary point is classified via eigenanalysis of the Jacobian matrix J = ∂F/∂λ
as follows: {

linearly stable: every eigenvalue has a negative real part,
linearly unstable: at least one eigenvalue has a positive real part.

We choose an adjustment dynamics such that a stable stationary point satisfies the equilibrium
condition in (2.1).
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Example 2.1. A most customary example of the adjustment dynamics in (2.2) is the replicator
dynamics:

Fi(λ, ϕ) = (vi(λ, ϕ) − v̄(λ, ϕ))λi, (2.4)
where v̄ represents the weighted average utility defined as

v̄ =
∑
i∈P

λivi . (2.5)

This dynamics is widely used in economics including Krugman’s original study (Krugman, 1991).
Another well-known example is the logit dynamics:

Fi(λ, ϕ) =
exp[θvi(λ, ϕ)]∑

j∈P exp[θv j(λ, ϕ)]
− λi, (2.6)

where θ ∈ (0,∞) is a parameter denoting the inverse of variance of idiosyncratic tastes. □

Remark 2.1. Chapter 3 provides general results that are independent of the functional form of
adjustment dynamics. Chapters 4–6, however, employ the replicator dynamics, and hence the
results are not applicable to other dynamics such as the logit dynamics. □

2.1.2. Group Equivariance
We are interested in the economy defined on a symmetric spatial platform, where places are

symmetrically emplaced according to a certain rule. We assume that the payoff function v and
thus the adjustment dynamics F introduce no additional asymmetries. Such a condition can be
formalized as the group equivariance:

T(g)F(λ, ϕ) = F(T(g)λ, ϕ), g ∈ G, (2.7)

where G is a group describing the symmetry of the underlying spatial platform, and T(g) is the
permutation matrix specified by

T(g)D = DT(g), g ∈ G. (2.8)

Example 2.2. Models with the replicator dynamics in (2.4) on a symmetric spatial platform that
are endowed with the equivariance of a group G satisfy the equivariance to G in the sense of (2.7)
as proved in Proposition 2.1. The proof for the logit dynamics can be treated in a similar manner.

□

2.2. Classification of the Models
In the classification of economic geography models with the general framework in Section 2.1,

we rely on the recent work of Akamatsu et al. (2021). This reference considers a many-region
racetrack economy, in which regions with the same characteristics are equidistantly located over
a circumference. Proposition 1 in this reference shows that the endogenous spatial patterns that
emerge upon the instability of the symmetric equilibrium (the uniform distribution of mobile
workers) substantially differ across model classes. That is, this classification depends on the spatial
scale of dispersion forces in a model. If a model is of Class I, a multimodal pattern emerges. If a
model is of Class II, only a unimodal pattern emerges. If a model is of Class III, both possibilities
arise, depending on the bifurcation parameter (trade freeness).
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Example 2.3. Each model class includes the following typical models:

• Class I includes models by Krugman (1991), Puga (1999), Forslid and Ottaviano (2003),
Pflüger (2004), and Harris and Wilson (1978).

• Class II includes models by Helpman (1998), Murata and Thisse (2005), Redding and Sturm
(2008), Allen and Arkolakis (2014), Redding and Rossi-Hansberg (2017), and Beckmann
(1976).

• Class III includes modelds by Tabuchi (1998), Pflüger and Südekum (2008), and Takayama
and Akamatsu (2011).

□

Remark 2.2. The present thesis basically provides general results that are applicable to any model
class. Chapters 4–6, however, are not applicable to some kind of models. We employ the replicator
dynamics and focus on a special kind of corner solutions, called invariant patterns, which admit λ
to have zero components. Hence, it cannot be applied to models that do not take corner solutions
due to the existence of the housing market such as Helpman (1998) and Allen and Arkolakis (2014)
models. □

2.3. Examples of Economic Geography Models and their Group Equivariance
We briefly introduce some particular models and explain their group equivariance for symmetric

spatial platforms.

2.3.1. Examples of Economic Geography Models
We briefly introduce the multi-regional version of Forslid and Ottaviano (2003), Helpman

(1998), and Pflüger and Südekum (2008) models as a representative of Class I, II, and III, respec-
tively. We employ these models for numerical bifurcation and stability analysis throughout the
present thesis. The fundamental logic of these models are investigated in the work of Akamatsu
et al. (2021).

Forslid and Ottaviano (2003) (FO) Model
There are two types of workers: skilled and unskilled workers. The total endowments of

skilled and unskilled workers are H and L, respectively. Skilled workers are mobile across K
places. The number of skilled workers in place i is denoted by λi under the normalizing constraint∑K

i=1 λi = 1. Unskilled workers are immobile and are distributed equally across all places with
L/K . For simplicity, we assume that H = 1 and L/K = 1.

There are two industrial sectors: manufacturing (M) and agriculture (A). The A-sector is
modeled by perfect competition and requires a unit input of unskilled workers to produce one unit
of goods. The M-sector is modeled by Dixit-Stiglitz monopolistic competition and requires both
skilled and unskilled workers as the input.

Preferences over the M-sector and A-sector goods are identical across individuals. The utility
function U of an individual in place i is defined by

Ui = µ ln CM
i + (1 − µ) ln CA

i , (2.9)
9



where µ ∈ (0, 1) is the constant expenditure share of manufacturing sector goods, CA
i stands for the

consumption of the A-sector product in place i, and CM
i represents the manufacturing aggregates

in place i, defined as

CM
i ≡

©«
K∑

j=1

∫ nj

0
q ji(ℓ)(σ−1)/σdℓª®¬

σ/(σ−1)

, (2.10)

where q ji(ℓ) represents the consumption in place i of a variety ℓ ∈ [0, n j] produced in place j ∈ P,
n j stands for the number of produced varieties at place j, and σ ∈ (1,∞) denotes the constant
elasticity of substitution between any two varieties.

The transportation cost for the M-sector goods are assumed to take the iceberg form. For each
unit of M-sector goods transported from place i to j (, i), only a fraction 1/τi j < 1 arrives (τii = 1
for all i), and τi j = τi j (τ) is a function in the transportation cost parameter τ > 0 defined as

τi j = exp[τm(i, j)], (2.11)

where m(i, j) is the shortest distance between places i and j. The trade freeness ϕ is defined as

ϕ = exp[−(σ − 1)τ], ϕ ∈ (0, 1). (2.12)

Note that ϕ is inversely proportional to τ. Then, the spatial discounting factor di j is represented as

di j = ϕ
m(i, j) = τi j

−(σ−1). (2.13)

The indirect utility vi in place i is given by

vi =
µ

σ − 1
ln∆i + lnwi, (2.14)

where ∆ j =
∑K

k=1 dk jλk . The market equilibrium wage wi is given by the equilibrium wage
equation:

wi =
µ

σ

K∑
j=1

di j

∆ j
(w jλ j + 1). (2.15)

With the notations

w = (wi), D = [di j], ∆ = diag(∆1, . . . ,∆K), Λ = diag(λ1, . . . , λK), (2.16)

the equation (2.15) is written as
w =

µ

σ
D∆−1(Λw + 1), (2.17)

which can be solved for wi as

w =
µ

σ

(
I − µ

σ
D∆−1

Λ

)−1
D∆−11. (2.18)
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Helpman (1998) (Hm) Model
The Hm model assumes that all workers are mobile across K places. The total endowment of

mobile workers is H. For simplicity, we set H = 1.
There are two industrial sectors: the housing (H) sector and the manufacturing (M) sector. The

amount of housing stock in place i is denoted by ai. The M-sector is based the same assumption
as those of the FO model. The utility function U of an individual in place i is defined by

ui = µ ln CM
i + (1 − µ) ln CH

i , (2.19)

where CH
i represents the consumption of H-sector goods.

The indirect utility function vi in place i is given by

vi =
µ

σ − 1
ln ∆̃i + µ ln

λi(wi + r)
ai

− ln
λi

ai
, (2.20)

where ∆̃i =
∑K

j=1 d jiw
1−σ
j λ j . The market equilibrium wage wi is given by the equilibrium wage

equation:

wiλi = µ

K∑
j=1

di jw
1−σ
i λi∑K

k=1 dk jw
1−σ
k λk

(wi + r)λ j, (2.21)

where r represents dividend of rental revenue. For simplicity, we set r = 1 and ai = 1.

Pflüger and Südekum (2008) (PS) Model
The PS model is based on the same assumptions as those of the FO model. This model

introduces the H-sector and employs a quasi-linear logarithmic function as the utility function
instead of (2.9):

Ui = µ ln CM
i + γ ln CH

i + CA
i , (2.22)

where γ ∈ (0, 1) denotes the constant expenditure share of H-sector goods.
The indirect utility vi in place i is given by

vi =
µ

σ − 1
ln∆i − γ ln

λi + 1
ai
+ wi, (2.23)

where the market equilibrium wage wi is given by

wi =
µ

σ

K∑
j=1

di j

∆ j
(λ j + 1). (2.24)

For simplicity, we set ai = 1.

2.3.2. Group Equivariance
We have the following proposition for the equivariance of the FO model, the Hm model, and

the PS model with the replicator dynamics for symmetric spatial platforms.
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Proposition 2.1. For a spatial platform that has the symmetry described by a group G, the FO
model, the Hm model, and the PS model with the replicator dynamics in (2.4) are equivariant to G
in the sense of (2.7), i.e.,

T(g)F(λ, ϕ) = F(T(g)λ, ϕ), g ∈ G (2.25)

for some permutation matrix T(g) of G.

Proof. We treat the case of an n × n square lattice with G = D4 ⋉ (Zn × Zn) to be introduced in
Section 3.2. Note that the concrete form of T(g) is to be given in Section 3.4.1. Each element g
of G acts as a permutation of place numbers (1, . . . ,K), and the action of g ∈ G is expressed as
g : i 7→ i∗. For the indirect utility function vi in (2.14) for the FO model, that in (2.20) for the
Hm model, and that in (2.23) for the PS model, we have νi(T(g)λ, ϕ) = νi∗(λ, ϕ) because of the
definition of the transport cost parameter in (2.11). We also have ν(T(g)λ, ϕ) = ν(λ, ϕ) by (2.5).
Therefore, we have

Fi(T(g)λ, ϕ) = (νi∗(λ, ϕ) − ν(λ, ϕ))λi∗ = Fi∗(λ, ϕ) (2.26)

for the function Fi in (2.2). This proves the equivariance in (2.25). □
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(a) Chicago (the U.S.) (b) Kyoto (Japan)

Figure 3.1: Satellite photographs of cities provided by Google Maps displaying square road networks.

3. Bifurcation Mechanism from the Uniform Distribution on a Square Lattice

3.1. Introduction
Square road networks prosper worldwide. Chicago (the U.S.) and Kyoto (Japan), for example,

are well-known to accommodate such square networks historically (see Fig. 3.1). We intend to
elucidate the mechanism of economic agglomerations on such square networks as an important
contribution of nonlinear mathematics to spatial economics.

In spatial economics, the mechanism of economic agglomerations is highlighted as the most
important topic. After a pioneering work by Krugman (1991), bifurcation is welcomed as a catalyst
to engender a core place and a peripheral place from two identical places. The study of spatial
agglomerations have come to be extended from the two-places economy to a racetrack economy
(one-dimension) and, in turn, to explain various poly-centric agglomerations (Tabuchi and Thisse,
2011; Ikeda et al., 2012a; Akamatsu et al., 2012). In economic geography, central place theory
(Christaller, 1933; Lösch, 1940) envisaged the emergence of hexagonal agglomerations based on the
distribution of cities and towns in Southern Germany. The existence of the hexagonal distribution
of mobile production factors (e.g., firms and workers) was shown based on a microeconomic
foundation (Eaton and Lipsey, 1975). To explain the mechanism of economic agglomerations
in the real world, spatial platforms for economic geography models need to be extended to two-
dimensional spaces as conducted in this chapter.

Lattice economies, including hexagonal and square lattices, can accommodate various two-
dimensional agglomeration patterns of economic interest. Motivated by hexagonal agglomerations
in central place theory, Ikeda and Murota (2014) elucidated the bifurcation mechanism of eco-
nomic geography models on a hexagonal lattice. The stability of bifurcating solutions from the
uniform distribution was investigated to demonstrate that theoretically predicted bifurcating solu-
tions, including hexagonal patterns, are all unstable just after the bifurcation (Ikeda et al., 2018a).
Geometrical distributions that are solutions to the governing equation of an economic geography
model with the replicator dynamics, irrespective of the value of the bifurcation (transport cost) pa-
rameter, are called invariant patterns and were demonstrated to represent economic agglomerations
of great economic interest (Ikeda et al., 2019a).

Yet the bifurcation mechanism of economic geography models on a square lattice is not
understood to the full extent. Some studies dealt with economic agglomerations on a square lattice
(Clarke and Wilson, 1983; Weidlich and Haag, 1987; Munz and Weidlich, 1990; Brakman et al.,
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1999) but are not based on economic geography models. As a pioneering study that combined
a square lattice with an economic geography model, Ikeda et al. (2018b) investigated a break
bifurcation point on the uniform distribution and indicated the occurrence of period-doubling
bifurcation. They, however, found just a fraction of bifurcating solutions on a square lattice by
relying on an ad hoc procedure.

That said, this chapter aims to develop group-theoretic bifurcation theory for economic geogra-
phy models on a square lattice that has the symmetry described by the finite group D4 ⋉ (Zn × Zn).
We focus on a bifurcation mechanism due to the geometrical symmetry. We present an exhaustive
list of bifurcating solutions from the uniform distribution on this lattice. The list of bifurcating
solutions advanced in this chapter would be of assistance in the study of economic agglomerations.
We futhermore pay a special attention to the symmetry of two half branches at a bifurcation point.
We obtain theoretical conditions for the symmetry and the asymmetry of such bifurcating half
branches. The present theory is applicable to any economic geography models with a single degree
of freedom at each node.

Many pattern-formation phenomena have been modeled by partial differential equations with
group equivariance on an infinite plane. As the mathematical model of reaction-diffusion models,
Navier-Stokes flow, and the Bénard problem, a system that is equivariant to the infinite group
D4 ⋉ T2 (T2 expresses the two-torus of translation symmetries) has been studied (Dionne et al.,
1997; Golubitsky and Stewart, 2002). As for economic agglomerations described by economic
geography models, it is essential to consider a discretized finite plane. For this reason, we employ
the finite group D4 ⋉ (Zn × Zn).

This chapter is organized as follows. Section 3.2 introduces an n×n square lattice with symmetry
labeled by the group D4 ⋉ (Zn × Zn) and classifies square patterns for economic agglomerations
on this lattice. Section 3.3 gives derivation of the irreducible representations of the group D4 ⋉
(Zn × Zn). Section 3.4 provides the matrix representations of this group. Section 3.5, as well
as Appendix A.4, presents group-theoretic bifurcation analysis by using equivariant branching
lemma and that by solving bifurcation equations. Section 3.6 summarizes results of the stability of
bifurcating solutions. Section 3.7 applies group-theoretic bifurcation analysis to typical economic
geography models on this lattice and conducts numerical simulations based on theoretical results
elucidated in the previous sections.

3.2. Square Lattice and its Symmetry
In this section, we introduce an n × n finite square lattice comprising a system of uniformly

distributed n × n places. We allocate discretized degrees-of-freedom to each node of this lattice.
We apply periodic boundary conditions to this lattice. It allows us to express infiniteness and
to avoid heterogeneity due to boundaries. Periodic repetition of this lattice covers an infinite
two-dimensional plane.

Using a group consisting of D4 and Zn × Zn, we express the symmetry of this lattice. We
consider the compatibility of n with square patterns of interest on this lattice. We present and
classify subgroups expressing the symmetry of square patterns. The study conducted in this
section is purely geometric and involves no bifurcation mechanism. It forms, however, an important
foundation of group-theoretic bifurcation analysis in Section 3.5 and Appendix A.4.
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Figure 3.2: An infinite square lattice.

This section is organized as follows. An infinite square lattice is introduced in Section 3.2.1.
Square patterns on this lattice are described in Section 3.2.2. The n× n square lattice is introduced
in Section 3.2.3. The group expressing the symmetry of this lattice is given in Section 3.2.4.

3.2.1. Infinite Square Lattice
We introduce an infinite square lattice as a set of integer combinations of oblique basis vectors

ℓ1 = d
[
1
0

]
, ℓ2 = d

[
0
1

]
, (3.1)

where d > 0 means the length of these vectors. We denote the infinite square lattice as

H = {n1ℓ1 + n2ℓ2 | n1, n2 ∈ Z}, (3.2)

where Z denotes the set of integers. Figure 3.2 depicts the infinite square lattice.
To represent square patterns on the infinite square lattice, we consider a sublattice spanned by

basis vectors
t1 = αℓ1 + βℓ2, t2 = −βℓ1 + αℓ2, (3.3)

where α and β are integer-valued parameters with (α, β) , (0, 0). We denote the sublattice by
H(α, β), that is,

H(α, β) = {n1 t1 + n2 t2 | n1, n2 ∈ Z}
= {(n1α − n2β)ℓ1 + (n1β + n2α)ℓ2 | n1, n2 ∈ Z}

=

{[
ℓ1 ℓ2

] [
α −β
β α

] [
n1
n2

] ���� n1, n2 ∈ Z
}
. (3.4)

We see that the angle between t1 and t2 is π/2. In addition, we have | t1 | = | t2 |. Thus, the sublattice
H(α, β) represents a square pattern (see Fig. 3.3).
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(a) (α, β) = (1, 0) (b) (α, β) = (1, 1)

Figure 3.3: Square patterns represented by sublattices.

We define the spatial period L as

L = d
√
α2 + β2, (3.5)

which represents the common length of the basis vectors t1 and t2. We refer to

L
d
=

√
α2 + β2 (3.6)

as the normalized spatial period, which is an important index for characterizing the size of a square
pattern. Although this definition refers to the basis vectors t1 and t2, the spatial period L, as well
as the normalized spatial period L/d, is in fact determined by the sublatticeH(α, β), as seen from
(3.8) with (3.7) below.

The normalized spatial period L/d in (3.6) takes specific values
√

1,
√

2,
√

4,
√

5, . . . as a
consequence of the fact that α and β are integers. The square pattern with L/d = 1 is called the
uniform distribution. The normalized spatial period is obtained from (3.6) as

L
d
=

√
α2 + β2

=
√

1,
√

2,
√

4,
√

5,
√

8,
√

9,
√

10,
√

13,
√

16,
√

17,
√

18,
√

20,
√

25, . . .

=

{
1, 2, 3, 4, 5, . . . ,√

2,
√

5,
√

8,
√

10,
√

13,
√

17,
√

18,
√

20, . . . .
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The parameter values are given as follows:

(α, β) =



(1, 0) (L/d = 1),
(1, 1) (L/d =

√
2),

(2, 0) (L/d = 2),
(2, 1) (L/d =

√
5),

(2, 2) (L/d =
√

8),
(3, 0) (L/d = 3),
(3, 1) (L/d =

√
10),

(3, 2) (L/d =
√

13),
(4, 0) (L/d = 4),
(4, 1) (L/d =

√
17),

(3, 3) (L/d =
√

18),
(4, 2) (L/d =

√
20),

(4, 3) (L/d = 5),
(5, 0) (L/d = 5), . . . .

3.2.2. Description of Square Patterns
Sublattices introduced in the previous subsection describe square patterns on an infinite square

lattice. Using the parameter values of the sublattices, we classify square patterns into several types.

Parameterization of Square Patterns
In the parameterization (α, β) of sublattices, let us note its non-uniqueness that different pa-

rameter values of (α, β) can sometimes result in the same sublatticeH(α, β). We define

D = D(α, β) = α2 + β2, (3.7)

which is a positive integer for (α, β) , (0, 0). It will be shown later in this subsection that D is an
invariant in this parameterization, that is, we have the following implication:

H(α, β) = H(α′, β′) =⇒ D(α, β) = D(α′, β′). (3.8)

Then, the parameter space for sublattices is given as follows:

Proposition 3.1. Square sublatticesH(α, β) are parameterized, one-to-one, by

{(α, β) ∈ Z2 | α > 0, β ≥ 0}. (3.9)

Two sublattices H(α, β) and H(β, α) are not identical in general, but are mirror images with
respect to the y-axis. They are regarded as the same essentially. We call two sublattices essentially
different if they are neither identical nor mirror images with respect to the y-axis. Essentially
different square sublattices are parameterized as follows:
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Table 3.1: The values of D(α, β) for (α, β) in (3.10).

α \ β 0 1 2 3 4 5 6 7
1 1 2
2 4 5 8
3 9 10 13 18
4 16 17 20 25 32
5 25 26 29 34 41 50
6 36 37 40 45 52 61 72
7 49 50 53 58 65 74 85 98

Proposition 3.2. Essentially different square sublattices H(α, β) are parameterized, one-to-one,
by

{(α, β) ∈ Z2 | α ≥ β ≥ 0, α , 0}. (3.10)

Table 3.1 shows the values of D = D(α, β) for (α, β) with 7 ≥ α ≥ β ≥ 0, α , 0. It is worth
noting that the values of D in this table are all distinct with the exceptions of D(5, 0) = D(4, 3) = 25
and D(5, 5) = D(7, 1) = 50. This means, in particular, that smaller square patterns (with D < 25)
are uniquely determined by their spatial period L, which is related to D as

L
d
=
√

D (3.11)

by (3.6) and (3.7).

Proofs of (3.8) and Propositions 3.1 and 3.2
First, recall that H(α, β) is generated by (t1, t2) = (t1(α, β), t2(α, β)) in (3.3), which can be

expressed as [
t1 t2

]
=

[
ℓ1 ℓ2

] [
α −β
β α

]
.

The determinant of this coefficient matrix coincides with D(α, β) in (3.7), i.e.,

D(α, β) = α2 + β2 = det
[
α −β
β α

]
.

IfH(α′, β′) ⊆ H(α, β), then [
α′ −β′
β′ α′

]
=

[
α −β
β α

] [
x11 x12
x21 x22

]
for some integers x11, x12, x21, x22. Hence, D(α′, β′) is a multiple of D(α, β). Exchanging the roles
of (α, β) and (α′, β′), we have (3.8).

Next, we derive the parameter spaces (3.9) and (3.10) for H(α, β). We observe geometrically
(see Fig. 3.4(a)) that H(α′, β′) = H(α, β) if and only if t′1 = α′ℓ1 + β′ℓ2 is obtained from
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(a) A square for (3.12) (b) A square for (3.13)

Figure 3.4: Squares associated with (3.12) and (3.13).

t1 = αℓ1 + βℓ2 by a rotation at an angle that is a multiple of π/2, i.e., t′1 = R4
k t1 with

R4 =

[
cos(π/2) − sin(π/2)
sin(π/2) cos(π/2)

]
=

[
0 −1
1 0

]
for some k ∈ {0, 1, 2, 3}. Since

R4 t1 = R4(αℓ1 + βℓ2) = α(ℓ2) + β(−ℓ1) =
[
ℓ1 ℓ2

] [
0 −1
1 0

] [
α
β

]
,

we haveH(α′, β′) = H(α, β) if and only if[
α′

β′

]
=

[
0 −1
1 0

] k [
α
β

]
for some k ∈ {0, 1, 2, 3}. Therefore, we obtain the same lattice for the following four parameter
values:

(α, β), (−β, α), (−α,−β), (β,−α). (3.12)

This allows us to adopt (3.9) as the parameter space for H(α, β), by which we mean that, for
every (α′, β′) , (0, 0) in Z2, the sublatticeH(α′, β′) is the same as the sublatticeH(α, β) for some
(uniquely determined) (α, β) in (3.9). It should be mentioned, in particular, thatH(0, β) = H(β, 0)
by (3.12). Hence, we have α > 0 in (3.9).

Geometrically, the sublattices for (α, β) and (β, α) are mirror images with respect to the line
x = y. In this sense, we regardH(α, β) andH(β, α) as essentially the same. Thus, we regard the
following four parameter values as essentially equivalent to (α, β):

(β, α), (−α, β), (−β,−α), (α,−β). (3.13)

See Fig. 3.4(b) for the square of (3.13). If β = 0 or α = β, the set of four parameters in (3.13) is
identical to the set in (3.12). This is because the lattices for β = 0 or α = β are symmetric with
respect to the line x = y.
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Figure 3.5: Square patterns of three types that are centered at the origin.

Thus, essentially equivalent parameter values can be summarized as follows:

(α, β), (−β, α), (−α,−β), (β,−α), (β, α), (−α, β), (−β,−α), (α,−β). (3.14)

which reduces in a special case of β = 0 to

(α, 0), (0, α), (−α, 0), (0,−α) (3.15)

or in another special case of α = β to

(α, α), (−α, α), (−α,−α), (α,−α). (3.16)

On the basis of the observations above, (3.10) can be adopted as the parameter space for essentially
different sublattices. This means that every (α, β) , (0, 0) in Z2 is essentially equivalent to some
(uniquely determined) member in (3.10).

Types of Square Patterns
We define the tilt angle φ ofH(α, β) as

cos φ =
(ℓ1)⊤ t1
∥ℓ1∥ · ∥ t1∥

, (3.17)

where (α, β) belongs to the parameter space in (3.9) or (3.10). This definition is equivalent to

φ = arcsin

(
β√

α2 + β2

)
. (3.18)

With reference to the tilt angle φ, we classify square patterns into three types:
type V if φ = 0,
type M if φ = π/4,
type T otherwise.

(3.19)
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Figure 3.5 depicts square patterns of these types that are centered at the origin, where “V" indicates
that the x-axis contains a vertex of the square, “M" denotes that the x-axis contains the midpoint
of two neighboring vertices of that square, and “T” means “tilted." Using the parameter (α, β), we
also have 

type V if (α, β) = (α, 0) (α ≥ 1),
type M if (α, β) = (β, β) (β ≥ 1),
type T otherwise,

(3.20)

where the parameter space for type T depends on the choice of (3.9) or (3.10) as

For (3.9): {(α, β) | α > 0, β ≥ 0, α , β}, (3.21)
For (3.10): {(α, β) | α > β ≥ 0}. (3.22)

Accordingly, the parameter spaces in (3.9) and (3.10) are divided, respectively, into three parts:

{(α, 0) | α ≥ 1} ∪ {(β, β) | β ≥ 1} ∪ {(α, β) | α > 0, β ≥ 0, α , β}, (3.23)
{(α, 0) | α ≥ 1} ∪ {(β, β) | β ≥ 1} ∪ {(α, β) | α > β ≥ 0}. (3.24)

The types V, M, and T are correlated with the normalized spatial period as

L/d =

√

4,
√

9,
√

16,
√

25, . . . for type V,√
2,
√

8,
√

18,
√

32, . . . for type M,√
5,
√

10,
√

13,
√

17, . . . for type T.

It should be emphasized, however, that the type does not always determine, nor is determined by,
the spatial period. This is demonstrated by the two lattices H(5, 0) and H(4, 3). These lattices
share the same normalized spatial period L/d =

√
25 but are different types; the former is of type V

and the latter of type T.

3.2.3. Square Lattice with Periodic Boundaries
We introduce an n × n finite square lattice Hn as a subset of the infinite square lattice H

spreading over the entire plane. We defineHn as

Hn = {n1ℓ1 + n2ℓ2 | ni ∈ Z, 0 ≤ ni ≤ n − 1 (i = 1, 2)}, (3.25)

which consists of integer combinations with coefficients between 0 and n − 1. This is a finite set
comprising n2 elements, where n represents the size of the lattice. Figure 3.6(a) depicts the 4 × 4
square lattice.

The infinite square latticeH is regarded as a periodic extension of the n × n square latticeHn
with the two-dimensional period of (nℓ1, nℓ2). In other words, H is regarded as being covered by
translations of Hn by vectors of the form m1(nℓ1) + m2(nℓ2) with integers m1 and m2. A point
n1ℓ1 + n2ℓ2 inH corresponds to n′1ℓ1 + n′2ℓ2 inHn for (n′1, n′2) given by

n′1 ≡ n1 mod n, n′2 ≡ n2 mod n. (3.26)
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(a) The 4 × 4 square lattice (b) Periodic boundaries

Figure 3.6: A system of places on the 4 × 4 square lattice with periodic boundaries.

Figure 3.6(b) depicts the 4 × 4 square lattice with periodic boundaries.
For the sublattice H(α, β) of H , we may consider its portion H(α, β) ∩ Hn contained in Hn

and assume that the periodic extension of this portion coincides with H(α, β) itself. If this is the
case, we say that (α, β) is compatible with n, or n is compatible with (α, β). Using the Minkowski
sum3 ofH(α, β) ∩ Hn andH(n, 0), we have the condition for compatibility as

(H(α, β) ∩ Hn) +H(n, 0) = H(α, β), (3.27)

which is equivalent to
H(n, 0) ⊆ H(α, β). (3.28)

We can restate the compatibility condition as follows:

Proposition 3.3. The size n of Hn is compatible with (α, β) if and only if n is a multiple of
D(α, β)/gcd(α, β), that is,

n = m
D(α, β)

gcd(α, β), m = 1, 2, . . . . (3.29)

Proof. By (3.28), the size n is compatible with (α, β) if and only if[
t1 t2

] [
x11 x12
x21 x22

]
= n

[
ℓ1 ℓ2

]
for some integers x11, x12, x21, x22, where t1 and t2 are defined in (3.3). Substituting[

t1 t2
]
=

[
ℓ1 ℓ2

] [
α −β
β α

]
3 For two sets X,Y ⊆ Z2, their Minkowski sum X + Y is defined as X + Y = {x + y | x ∈ X, y ∈ Y }.
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into the above equation and multiplying the inverse of
[
ℓ1 ℓ2

]
from the left, we obtain[

α −β
β α

] [
x11 x12
x21 x22

]
= n

[
1 0
0 1

]
,

from which [
x11 x12
x21 x22

]
= n

[
α −β
β α

]−1
=

n
D(α, β)

[
α β
−β α

]
=

n gcd(α, β)
D(α, β)

[
α̂ β̂

−β̂ α̂

]
,

where α̂ = α/gcd(α, β) and β̂ = β/gcd(α, β). This shows that x11, x12, x21, x22 are integers if and
only if n is a multiple of D(α, β)/gcd(α, β). □

With the classification of three types in (3.20), the compatibility condition (3.29) in Proposi-
tion 3.3 shows the following statements:

• For a pattern H(α, β) of type V, parameterized by (α, β) = (α, 0) with α ≥ 1, a compatible
n is a multiple of α.

• For a patternH(α, β) of type M, parameterized by (α, β) = (β, β) with β ≥ 1, a compatible
n is a multiple of 2β.

• For a pattern H(α, β) of type T, with (α, β) in (3.21) or (3.22), a compatible n is a multiple
of D(α, β)/gcd(α, β).

To sum up, we have

n =


mα (α ≥ 1) for type V,
2mβ (β ≥ 1) for type M,
mD(α, β)/gcd(α, β) for type T,

(3.30)

where m = 1, 2, . . . .

3.2.4. Group Expressing Symmetry
We introduce the group expressing the symmetry of the n × n square lattice. As a first step of

bifurcation analysis of the square patterns on the n × n square lattice, we identify the subgroups
expressing the symmetry of these patterns.

Symmetry of the Finite Square Lattice
The symmetry ofHn in (3.25) is characterized by invariance with respect to

• r: counterclockwise rotation about the origin at an angle of π/2,

• s: reflection y 7→ −y,

• p1: periodic translation along the ℓ1-axis (i.e., the x-axis), and

• p2: periodic translation along the ℓ2-axis (i.e., the y-axis).
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Consequently, the symmetry of the square latticeHn is described by the group

G = ⟨r, s, p1, p2⟩, (3.31)

which is generated by r , s, p1, and p2 with the fundamental relations:

r4 = s2 = (rs)2 = p1
n = p2

n = e, p2p1 = p1p2,

rp1 = p2r, rp2 = p1
−1r, sp1 = p1s, sp2 = p2

−1s, (3.32)

where e is the identity element. Each element of G can be represented uniquely in the form of

slrmp1
i p2

j, l ∈ {0, 1}, m ∈ {0, 1, 2, 3}, i, j ∈ {0, 1, . . . , n − 1}. (3.33)

The group G contains the dihedral group

⟨r, s⟩ ≃ D4

and the cyclic groups
⟨p1⟩ ≃ Zn, ⟨p2⟩ ≃ Zn

as its subgroups, where Zn means the cyclic group of order n, which is denoted as Cn. The group
G has the structure of the semidirect product of D4 by Zn × Zn, that is, G = D4 ⋉ (Zn × Zn).

Remark 3.1. A group G is said to be the semidirect product of a subgroup H by another subgroup
A, denoted G = A ⋊ H, if

• A is a normal subgroup of G, and

• each element g ∈ G is represented uniquely as g = ah with a ∈ A and h ∈ H.

Each element g = ah ∈ G can also be represented uniquely in an alternative form of g = h′a with
h′ ∈ H and a ∈ A, since g = ah = h(h−1ah) and h′ = h−1ah ∈ A by the normality of A. Our group
G = ⟨r, s, p1, p2⟩ is a semidirect product of H = D4 by A = Zn×Zn, and we have G = D4⋉(Zn×Zn)
in accordance with g = slrmp1

i p2
j in (3.33) with slrm ∈ D4 and p1

i p2
j ∈ Zn×Zn. For more details

on the definition of semidirect product, see Curtis and Reiner (1962).
□

Subgroups for Square Patterns
The symmetry of H(α, β) ∩ Hn is described by a subgroup of G = ⟨r, s, p1, p2⟩, which is

denoted by G(α, β). With notations4 With notations

Σ(α, β) = ⟨r, s, p1
αp2

β, p1
−βp2

α⟩, (3.34)
Σ0(α, β) = ⟨r, p1

αp2
β, p1

−βp2
α⟩, (3.35)

4 The subscript “0” to Σ0(α, β) indicates the lack of s.
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the subgroup G(α, β) is given as follows:

G(α, β) =

⟨r, s, p1

α, p2
α⟩ = Σ(α, 0) if α ≥ 1, β = 0 (type V),

⟨r, s, p1
βp2

β, p1
−βp2

β⟩ = Σ(β, β) if α = β, β ≥ 1 (type M),
⟨r, p1

αp2
β, p1

−βp2
α⟩ = Σ0(α, β) otherwise (type T),

(3.36)

where the parameter (α, β) for type T runs over {(α, β) | α > 0, β ≥ 0, α , β} in (3.21) or
{(α, β) | α > β ≥ 0} in (3.22), depending on the adopted parameter space (3.9) or (3.10).

The parameter (α, β)must be compatible with the lattice size n via (3.30), which restricts (α, β)
to stay in a bounded range. Among the square patterns of type V on the n × n square lattice,
we exclude those with Σ(1, 0) from our consideration of subgroups since Σ(1, 0) = ⟨r, s, p1, p2⟩
represents the symmetry of the underlying n × n square lattice. That is, we consider Σ(α, 0)
for 2 ≤ α ≤ n since n is divisible by α by (3.30). A square pattern with the symmetry of
Σ(n, 0) = D4, which lacks translational symmetry, is included here as a square of type V for
theoretical consistency. As for type M, we must have 1 ≤ β ≤ n/2 in Σ(β, β) since n is divisible
by 2β (β ≥ 1) by (3.30). The parameter for type T, which is dependent on the choice of (3.9) or
(3.10), must stay in the range

for (3.9): {(α, β) | 1 ≤ α ≤ n − 1, 1 ≤ β ≤ n − 1, α , β}, (3.37)
for (3.10): {(α, β) | 1 ≤ β < α ≤ n − 1}. (3.38)

To sum up, the relevant subgroups of our interest are given by
Σ(α, 0) = ⟨r, s, p1

α, p2
α⟩ (2 ≤ α ≤ n) for type V,

Σ(β, β) = ⟨r, s, p1
βp2

β, p1
−βp2

β⟩ (1 ≤ β ≤ n/2) for type M,
Σ0(α, β) = ⟨r, p1

αp2
β, p1

−βp2
α⟩ ((α, β) ∈ (3.37) or (3.38)) for type T.

(3.39)

Recall that (α, β) must also satisfy the compatibility condition in (3.30).

3.3. Irreducible Representations of the Group for the Square Lattice
In the previous section, we introduced the n× n square lattice as a two-dimensional discretized

space. We identified the symmetry of this lattice by the group in (3.31):

G = ⟨r, s, p1, p2⟩, (3.40)

which is composed of the dihedral group ⟨r, s⟩ ≃ D4 expressing local square symmetry and the
group ⟨p1, p2⟩ ≃ Zn × Zn (direct product of two cyclic groups of order n) expressing transla-
tional symmetry in two directions. In group-theoretic bifurcation analysis in Section 3.5 and
Appendix A.4, we will find bifurcating solutions for each irreducible representation of this group,
as each irreducible representation is associated with possible bifurcating solutions with certain
symmetries. The first step of the analysis is to obtain all the irreducible representations of this
group.

It is not difficult to obtain all irreducible representations for groups with simple structures such
as the dihedral and cyclic groups. Since the group G in (3.40) has a far more complicated structure,
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it might be difficult to list all the irreducible representations in an ad hoc way. Fortunately, we
can use the method of little groups in group representation theory to obtain all the irreducible
representations in a systematic manner. In this section, we describe this method and construct a
complete list of the irreducible representations of G. It turns out that the irreducible representations
overR are one-, two-, four-, or eight-dimensional, and all of them are absolutely irreducible. We will
use the irreducible representations derived in this manner in group-theoretic bifurcation analysis
in Section 3.5 and Appendix A.4 to prove the existence of square patterns.

In this section, the matrix forms of the irreducible representations of the group G in (3.40) are
listed. A systematic method using little groups to construct the irreducible representations of G is
described in Appendix A.1.2. The method of little groups is applied to G in Appendix A.1.3. The
irreducible representations of G are derived in Appendix A.1.4.

List of Irreducible Representations
The irreducible representations of D4 ⋉ (Zn × Zn) over R are one-, two-, four-, or eight-

dimensional. The number Nd of the d-dimensional irreducible representations of D4 ⋉ (Zn × Zn)
depends on n, as shown below:

n \ d 1 2 4 8
N1 N2 N4 N8

2m 8 6 3(n − 2) (n2 − 6n + 8)/8
2m − 1 4 1 2(n − 1) (n2 − 4n + 3)/8

(3.41)

where m denotes a positive integer. For some values of n, the concrete numbers Nd of the d-
dimensional irreducible representations are listed in Table 3.2. This table for n = 1 shows that
D4 ⋉ (Z1 × Z1), being isomorphic to D4, has four one-dimensional irreducible representations
and one two-dimensional ones. Four-dimensional irreducible representations exist for n ≥ 3 and
eight-dimensional ones appear for n ≥ 5.

We have the relation ∑
d

d2Nd = 12N1 + 22N2 + 42N4 + 82N8 = 8n2, (3.42)

which is a special case of the well-known general identity for the number of irreducible representa-
tions over C. This formula applies since all the irreducible representations over R of D4 ⋉ (Zn×Zn)
are absolutely irreducible (see Appendix A.1.4).

In the following subsections, we present the matrix forms of the irreducible representations
of respective dimensions together with their characters. Table 3.3 summarizes the irreducible
representations. The labels such as (1;+,+,+) and (8; k, ℓ) represent the name of the irreducible
representations.

One-Dimensional Irreducible Representations
The group D4⋉ (Zn×Zn) = ⟨r, s, p1, p2⟩ has eight one-dimensional irreducible representations.

These are labeled by

(1;+,+,+), (1;+,−,+), (1;−,+,+), (1;−,−,+),
(1;+,+,−), (1;+,−,−), (1;−,+,−), (1;−,−,−) (3.43)
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Table 3.2: The number Nd of the d-dimensional irreducible representations of D4 ⋉ (Zn × Zn).

n \ d 1 2 4 8
N1 N2 N4 N8

∑
Nd

1 4 1 0 0 5
2 8 6 0 0 14
3 4 1 4 0 9
4 8 6 6 0 20
5 4 1 8 1 14
6 8 6 12 1 27
7 4 1 12 3 20
8 8 6 18 3 35
9 4 1 16 6 27

10 8 6 24 6 44
11 4 1 20 10 35
12 8 6 30 10 54

n \ d 1 2 4 8
N1 N2 N4 N8

∑
Nd

13 4 1 24 15 44
14 8 6 36 15 65
15 4 1 28 21 54
16 8 6 42 21 77
17 4 1 32 28 65
18 8 6 48 28 90
19 4 1 36 36 77
20 8 6 54 36 104
21 4 1 40 45 90
...

...
...

...
...

...

42 8 6 120 190 324

Table 3.3: The irreducible representations of D4 ⋉ (Zn × Zn).

n \ d 1 2 4 8
2m (1;+,+,+), (1;+,−,+) (2;+), (2;−) (4; k, 0,+), (4; k, 0,−) (8; k, ℓ)

(1;+,−,+), (1;−,−,+) (2;+,+), (2;+,−) (4; k, k,+), (4; k, k,−)
(1;+,+,−), (1;+,−,−) (2;−,+), (2;−,−) (4; n/2, ℓ,+), (4; n/2, ℓ,−)
(1;−,+,−), (1;−,−,−)

2m − 1 (1;+,+,+), (1;+,−,+) (2;+) (4; k, 0,+), (4; k, 0,−) (8; k, ℓ)
(1;+,−,+), (1;−,−,+) (4; k, k,+), (4; k, k,−)

(4; k, 0;+), (4; k, 0;−) with 1 ≤ k ≤ ⌊(n − 1)/2⌋ in (3.49);
(4; k, k;+), (4; k, k;−) with 1 ≤ k ≤ ⌊(n − 1)/2⌋ in (3.50);
(4; n/2, ℓ;+), (4; n/2, ℓ;−) with 1 ≤ ℓ ≤ ⌊(n − 1)/2⌋ in (3.51);
(8; k, ℓ) with 1 ≤ ℓ ≤ k − 1, 2 ≤ k ≤ ⌊(n − 1)/2⌋ in (3.60)
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and are given by

T (1;+,+,+)(r) = 1, T (1;+,+,+)(s) = 1, T (1;+,+,+)(p1) = 1, T (1;+,+,+)(p2) = 1,
T (1;+,−,+)(r) = 1, T (1;+,−,+)(s) = −1, T (1;+,−,+)(p1) = 1, T (1;+,−,+)(p2) = 1,
T (1;−,+,+)(r) = −1, T (1;−,+,+)(s) = 1, T (1;−,+,+)(p1) = 1, T (1;−,+,+)(p2) = 1,
T (1;−,−,+)(r) = −1, T (1;−,−,+)(s) = −1, T (1;−,−,+)(p1) = 1, T (1;−,−,+)(p2) = 1,
T (1;+,+,−)(r) = 1, T (1;+,+,−)(s) = 1, T (1;+,+,−)(p1) = −1, T (1;+,+,−)(p2) = −1,
T (1;+,−,−)(r) = 1, T (1;+,−,−)(s) = −1, T (1;+,−,−)(p1) = −1, T (1;+,−,−)(p2) = −1,
T (1;−,+,−)(r) = −1, T (1;−,+,−)(s) = 1, T (1;−,+,−)(p1) = −1, T (1;−,+,−)(p2) = −1,
T (1;−,−,−)(r) = −1, T (1;−,−,−)(s) = −1, T (1;−,−,−)(p1) = −1, T (1;−,−,−)(p2) = −1.

(3.44)

Two-Dimensional Irreducible Representations
The group D4 ⋉ (Zn × Zn) = ⟨r, s, p1, p2⟩ has six or one two-dimensional irreducible represen-

tations depending on whether n is even or odd. Two two-dimensional irreducible representations,
which are denoted as (2;σ) (σ ∈ {+,−}), exist for n even and are defined by

T (2;σ)(r) =
[
−1

1

]
, T (2;σ)(s) =

[
1
−1

]
, (3.45)

T (2,σ)(p1) = T (2;σ)(p2) = σ
[
1

1

]
, (3.46)

whereas (2;−) is absent for n odd. The other four two-dimensional irreducible representations,
denoted as (2;σr, σs) (σr, σs ∈ {+,−}), exist when n is even and are defined by

T (2;σr,σs)(r) =
[

σr
1

]
, T (2;σr,σs)(s) = σs

[
1

σr

]
, (3.47)

T (2;σr,σs)(p1) =
[
−1

1

]
, T (2;σr,σs)(p2) =

[
−1
−1

]
. (3.48)

Four-Dimensional Irreducible Representations
The group D4 ⋉ (Zn ×Zn) = ⟨r, s, p1, p2⟩ with n ≥ 3 has four-dimensional irreducible represen-

tations. We can designate them by

(4; k, 0, σ) with 1 ≤ k ≤
⌊
n − 1

2

⌋
, σ ∈ {+,−}; (3.49)

(4; k, k, σ) with 1 ≤ k ≤
⌊
n − 1

2

⌋
, σ ∈ {+,−}; (3.50)

(4; n/2, ℓ, σ) with 1 ≤ ℓ ≤ n
2
− 1, σ ∈ {+,−}. (3.51)

Therein, (4; n/2, ℓ, σ) exists only for n even, and ⌊x⌋ denotes the largest integer not larger than x
for a real number x. The number of four-dimensional irreducible representations is given by

N4 =

{
3n − 6 if n is even,
2n − 2 if n is odd.

(3.52)
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The irreducible representation (4; k, 0, σ) is given by

T (4;k,0,σ)(r) =
[

S
I

]
, T (4;k,0,σ)(s) = σ

[
I

S

]
, (3.53)

T (4;k,0,σ)(p1) =
[
Rk

I

]
, T (4;k,0,σ)(p2) =

[
I

Rk

]
, (3.54)

where
R =

[
cos(2π/n) − sin(2π/n)
sin(2π/n) cos(2π/n)

]
, S =

[
1
−1

]
, I =

[
1

1

]
. (3.55)

The irreducible representation (4; k, k, σ) is given by

T (4;k,k,σ)(r) =
[

S
I

]
, T (4;k,k,σ)(s) = σ

[
S

S

]
, (3.56)

T (4;k,k,σ)(p1) =
[
Rk

R−k

]
, T (4;k,k,σ)(p2) =

[
Rk

Rk

]
. (3.57)

The irreducible representation (4; n/2, ℓ, σ) is given by

T (4;n/2,ℓ,σ)(r) =
[

S
I

]
, T (4;n/2,ℓ,σ)(s) = σ

[
S

I

]
, (3.58)

T (4;n/2,ℓ,σ)(p1) =
[
−I

R−ℓ

]
, T (4;n/2,ℓ,σ)(p2) =

[
Rℓ

−I

]
. (3.59)

Eight-Dimensional Irreducible Representations
The group D4 ⋉ (Zn × Zn) = ⟨r, s, p1, p2⟩ with n ≥ 5 has eight-dimensional irreducible repre-

sentations. We can designate them by (8; k, ℓ) with

1 ≤ ℓ ≤ k − 1, 2 ≤ k ≤
⌊
n − 1

2

⌋
. (3.60)

The number of eight-dimensional irreducible representations is given by

N8 =

{
(n2 − 6n + 8)/8 if n is even,
(n2 − 4n + 3)/8 if n is odd.

(3.61)

The irreducible representation (8; k, ℓ) is defined as

T (8;k,ℓ)(r) =


S

I
I

S

 , T (8;k,ℓ)(s) =


I

I
I

I

 , (3.62)

T (8;k,ℓ)(p1) =


Rk

R−ℓ

Rk

R−ℓ

 , T (8;k,ℓ)(p2) =


Rℓ

Rk

R−ℓ

R−k

 (3.63)

with
R =

[
cos(2π/n) − sin(2π/n)
sin(2π/n) cos(2π/n)

]
, S =

[
1
−1

]
, I =

[
1

1

]
. (3.64)
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3.4. Representation Matrix for the Square Lattice
In the previous section, we found the irreducible representations of the group D4 ⋉ (Zn × Zn)

as preparation for group-theoretic analysis in Section 3.5 and Appendix A.4. Note that not all
the irreducible representations are involved in mathematical models on the square lattice. The
consideration of relevant irreducible representations is essential in group-theoretic analysis that
provides accurate information about bifurcating solutions.

In this section, we first identify the irreducible representations µ that are relevant to our analysis
on the square lattice. For this purpose, we derive the explicit form of the permutation representation
T(g) of the group D4 ⋉ (Zn ×Zn) and investigate the irreducible decomposition of this permutation
representation. We can exclude irreducible representations that are not contained in T(g) from
consideration in search of square bifurcating patterns in Section 3.5 and Appendix A.4. It turns
out that the only some of the one-, two-, and four-dimensional ones are relevant, and all of the
eight-dimensional ones are relevant.

We next present the transformation matrix Q for irreducible decomposition. Since the irre-
ducible representations of the group D4 ⋉ (Zn × Zn) have a special feature of multiplicity-free, the
orthogonal transformation of the Jacobian matrix J = ∂F/∂λ of the governing equation in (2.3)
takes a diagonal form

Q−1JQ = diag(e1, . . . , eK).
This diagonal form is useful in eigenanalysis of computational bifurcation analysis on the square
lattice.

This section is organized as follows. The permutation representation for the square lattice is
investigated in Section 3.4.1. The irreducible decomposition of the permutation representation
is presented in Section 3.4.2. Transformation matrices for block-diagonalization are derived in
Section 3.4.3.

3.4.1. Representation Matrix
In our study of a system of K = n2 places on the n × n square lattice, each element g of

D4 ⋉ (Zn × Zn) = ⟨r, s, p1, p2⟩ acts as a permutation of place numbers (1, . . . ,K). Consequently,
the representation matrix T(g) is a permutation matrix for each g. By definition, T(g) has “1” at
the (i, j) entry if place j is moved to place i by the action of g.

The representation matrix T(g) for general n can be determined as follows. The coordinate of
a place on the n × n square lattice is given by

x = n1ℓ1 + n2ℓ2, n1, n2 = 0, 1, . . . , n − 1

with ℓ1 = d(1, 0)⊤, ℓ2 = d(0, 1)⊤ in (3.1), where d means the length of these vectors. Thus, the n2

places are indexed by (n1, n2), and so are the rows and columns of the representation matrix T(g).
The action of r is expressed as

r · ℓ1 = ℓ2, r · ℓ2 = −ℓ1.

Hence, we have

r · x = n1(r · ℓ1) + n2(r · ℓ2) = n1(ℓ2) + n2(−ℓ1) = (−n2)ℓ1 + n1ℓ2,
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which means that the action of r on (n1, n2) is given by

r · (n1, n2) ≡ (−n2, n1) mod n. (3.65)

Then, the column of T(r) indexed by (n1, n2) has “1” in the row indexed by (−n2 mod n, n1).
Similarly, the actions of s, p1, and p2 are expressed as

s · (n1, n2) ≡ (n1,−n2) mod n, (3.66)
p1 · (n1, n2) ≡ (n1 + 1, n2) mod n, (3.67)
p2 · (n1, n2) ≡ (n1, n2 + 1) mod n. (3.68)

The permutation representation T(g) is specified by (3.65)–(3.68) above.

Example 3.1. The permutation representation for the 4× 4 square lattice is given by (3.65)–(3.68)
as follows:

T(r) =



1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1



, T(s) =



1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1



,

T(p1) =



1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1



, T(p2) =



1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1



.

□
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3.4.2. Irreducible Decomposition
The irreducible decomposition of the permutation representation T(g) for the n×n square lattice

is now investigated. The multiplicities of irreducible representations in this decomposition are
determined. It is to be emphasized that irreducible representations lacking in the decomposition of
T(g) can be excluded from consideration in the search for square bifurcating patterns in Section 3.5
and Appendix A.4.

Simple Examples
Prior to analysis for general n, we present the results for n = 3 and n = 4. We begin with the

case of n = 3. The group D4 ⋉ (Z3 × Z3) has nine irreducible representations (see Section 3.3):

R(D4 ⋉ (Z3 × Z3)) = {(1;+,+,+), (1;+,−,+), (1;−,+,+), (1;−,−,+),
(2;+), (4; 1, 0,+), (4; 1, 0,−), (4; 1, 1,+), (4; 1, 1,−)}.

Among these nine irreducible representations, only three of them, (1;+,+,+), (4; 1, 0,+), and
(4; 1, 1,+), are contained in T(g) with multiplicity 1, whereas the others are missing in T(g).
Indeed we will see in Section 3.4.3 in a general setting that

Q−1T(g)Q = T (1;+,+,+)(g) ⊕ T (4;1,0,+)(g) ⊕ T (4;1,1,+)(g), g ∈ D4 ⋉ (Z3 × Z3)

for some orthogonal matrix Q. Accordingly, the multiplicities aµ for µ ∈ R(D4 ⋉ (Z3 × Z3)) are
given as follows:

a(1;+,+,+) = 1, a(1;+,−,+) = 0, a(1;−,+,+) = 0, a(1;−,−,+) = 0;
a(2;+) = 0; a(4;1,0,+) = 1, a(4;1,0,−) = 0, a(4;1,1,+) = 1, a(4;1,1,−) = 0.

We next show the case of n = 4. Recall the permutation representation T(g) for n = 4 from
Example 3.1. The group D4 ⋉ (Z4 × Z4) has 20 irreducible representations (see Section 3.3):

R(D4 ⋉ (Z4 × Z4)) = {(1;+,+,+), (1;+,−,+), (1;−,+,+), (1;−,−,+),
(1;+,+,−), (1;+,−,−), (1;−,+,−), (1;−,−,−),
(2;+), (2;−), (2;+,+), (2;+,−), (2;−,+), (2;−,−),
(4; 1, 0,+), (4; 1, 0,−), (4; 1, 1,+), (4; 1, 1,−), (4; 2, 1,+), (4; 2, 1,−)}.

Among these 20 irreducible representations, only six of them, (1;+,+,+), (1;+,+,−), (2;+,+),
(4; 1, 0,+), (4; 1, 1,+), and (4; 2, 1,+), are contained in T(g) with multiplicity 1, whereas the others
are missing in T(g), as we will see in Section 3.4.3 in a general setting. This means that

Q−1T(g)Q = T (1;+,+,+)(g) ⊕ T (1;+,+,−)(g) ⊕ T (2;+,+)(g) ⊕ T (4;1,0,+)(g) ⊕ T (4;1,1,+)(g) ⊕ T (4;2,1,+)(g),
g ∈ D4 ⋉ (Z4 × Z4)
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Table 3.4: The values of character χ of the permutation representation T .

g χ(g)
e n2

p1
ip2

j ((i, j) , (0, 0)) 0
rp1

ip2
j (i + j = 2k) 2 1
(i + j , 2k) 0 1

(n = 2m) (n , 2m)
r2p1

ip2
j (i, j: even) 4 1
(other (i, j)) 0 1

(n = 2m) (n , 2m)
r3p1

ip2
j (i + j = 2k) 2 1
(i + j , 2k) 0 1

(n = 2m) (n , 2m)

g χ(g)
sp1

ip2
j (i = 0, j = 2k) 2n n
(i = 0, j , 2k) 0 n
(i , 0) 0 0

(n = 2m) (n , 2m)
srp1

ip2
j (i = j) n
(i , j) 0

sr2p1
ip2

j ( j = 0, i = 2k) 2n n
( j = 0, i , 2k) 0 n
( j , 0) 0 0

(n = 2m) (n , 2m)
sr3p1

ip2
j (i = n − j) n
(i , n − j) 0

0 ≤ i, j ≤ n − 1; k,m: integers

for some orthogonal matrix Q, the concrete form of which is given in Example 3.2 in Section 3.4.3.
Accordingly, the multiplicities aµ for µ ∈ R(D4 ⋉ (Z4 × Z4)) are given as follows:

a(1;+,+,+) = 1, a(1;+,−,+) = 0, a(1;−,+,+) = 0, a(1;−,−,+) = 0,
a(1;+,+,−) = 1, a(1;+,−,−) = 0, a(1;−,+,−) = 0, a(1;−,−,−) = 0,
a(2;+) = 0, a(2;−) = 0, a(2;+,+) = 1, a(2;+,−) = 0,
a(2;−,+) = 0, a(2;−,−) = 0,
a(4;1,0,+) = 1, a(4;1,0,−) = 0, a(4;1,1,+) = 1, a(4;1,1,−) = 0,
a(4;2,1,+) = 1, a(4;2,1,−) = 0.

Analysis for the Finite Square Lattice
For general n, the permutation representation T(g) is specified by (3.65)–(3.68). We determine

the irreducible decomposition of T(g)with the aid of characters. Let χ(g) be the character of T(g),
which is defined by

χ(g) = Tr T(g), g ∈ D4 ⋉ (Zn × Zn). (3.69)

Table 3.4 shows the values of χ(g) for all g ∈ D4 ⋉ (Zn × Zn), which are dependent on whether
n is even or odd. For example, the action of rp1

i p2
j reads

rp1
i p2

j · (n1, n2) = r · (n1 + i, n2 + j) = (−n2 − j, n1 + i).
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Table 3.5: The values of irreducible characters χµ appearing in (3.72).

g χ(1;+,+,+) χ(4;k,0,+) χ(4;k,k,+) χ(8;k,ℓ) χ(1;+,+,−) χ(2;+,+) χ(4;n/2,ℓ,+)

(n = 2m) (n = 2m) (n = 2m)
p1

ip2
j 1 2[cos(kiθ) 2[cos(k(i + j)θ) (A.6) (−1)i+j (−1)i + (−1)j 2[(−1)i cos(ℓ jθ)

+ cos(k jθ)] + cos(k(i − j)θ)] +(−1)j cos(ℓiθ)]
rp1

ip2
j 1 0 0 0 (−1)i+j 0 0

r2p1
ip2

j 1 0 0 0 (−1)i+j (−1)i + (−1)j 0
r3p1

ip2
j 1 0 0 0 (−1)i+j 0 (−1)i + (−1)j

sp1
ip2

j 1 2 cos(kiθ) 0 0 (−1)i+j (−1)i + (−1)j 2(−1)j cos(ℓiθ)
srp1

ip2
j 1 0 2 cos(k(i − j)θ) 0 (−1)i+j 0 0

sr2p1
ip2

j 1 2 cos(k jθ) 0 0 (−1)i+j (−1)i + (−1)j 2(−1)i cos(ℓ jθ)
sr3p1

ip2
j 1 0 2 cos(k(i + j)θ) 0 (−1)i+j 0 0

θ = 2π/n; (A.6) reads:
χ(8;k,ℓ)(p1

ip2
j) = 2[cos((ki + ℓ j)θ) + cos((−ℓi + k j)θ) + cos((ki − ℓ j)θ) + cos((−ℓi − k j)θ)]

Invariant points (n1, n2) are those which satisfying (n1, n2) ≡ (−n2− j, n1+ i) (mod n). The number
of these points, which depend on i + j and n, gives χ(rp1

i p2
j).

In terms of characters, the irreducible decomposition of T(g) can be expressed as

χ(g) =
∑
µ

aµχµ(g), g ∈ D4 ⋉ (Zn × Zn), (3.70)

where χµ is the character of µ ∈ R(D4 ⋉ (Zn ×Zn)), and the multiplicity aµ of µ can be determined
by the formula

aµ =
1

8n2

∑
g∈D4⋉(Zn×Zn)

χ(g)χµ(g). (3.71)

In the case of n = 2m, for example, we obtain

χ(g) = χ(1;+,+,+)(g) + χ(1;+,+,−)(g) + χ(2;+,+)(g) +
∑

k:(3.51)
χ(4;n/2,ℓ,+)(g)

+
∑

k:(3.49)
χ(4;k,0,+)(g) +

∑
k:(3.50)

χ(4;k,k,+)(g) +
∑

(k,ℓ):(3.60)
χ(8;k,ℓ)(g)

as the decomposition (3.70). The terms χ(1;+,+,−)(g), χ(2;+,+)(g), and χ(4;n/2,ℓ,+)(g) appear only
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when n is even. Hence, we may represent this succinctly as

χ(g) = χ(1;+,+,+)(g)
[
+ χ(1;+,+,−)(g) + χ(2;+,+)(g) +

∑
k:(3.51)

χ(4;n/2,ℓ,+)(g)
]

if n=2m

+
∑

k:(3.49)
χ(4;k,0,+)(g) +

∑
k:(3.50)

χ(4;k,k,+)(g) +
∑

(k,ℓ):(3.60)
χ(8;k,ℓ)(g),

g ∈ D4 ⋉ (Zn × Zn), (3.72)

where [ · ]if n=2m means that the term is included when n is even. Table 3.5 shows the values of the
irreducible characters χµ(g) appearing on the right-hand side of (3.72) (see Section 3.3 for details
about χµ(g)). The equality in (3.72) can be verified with the aid of Tables 3.4 and 3.5.

The decomposition (3.72) of the character χ(g) of T(g) means that some orthogonal matrix Q
exists such that

Q−1T(g)Q = T (1;+,+,+)(g)
[
⊕ T (1;+,+,−)(g) ⊕ T (2;+,+)(g) ⊕

⊕
k:(3.51)

T (4;n/2,ℓ,+)(g)
]

if n=2m

⊕
⊕

k:(3.49)
T (4;k,0,+)(g) ⊕

⊕
k:(3.50)

T (4;k,k,+)(g) ⊕
⊕

(k,ℓ):(3.60)
T (8;k,ℓ)(g),

g ∈ D4 ⋉ (Zn × Zn). (3.73)

This gives the irreducible decomposition of T(g). Accordingly, the multiplicities aµ in the irre-
ducible decomposition of T(g) are given as follows:

a(1;+,+,+) = 1, a(1;+,−,+) = 0, a(1;−,+,+) = 0, a(1;−,−,+) = 0,
a(1;+,+,−) = 1, a(1;+,−,−) = 0, a(1;−,+,−) = 0, a(1;−,−,−) = 0,
a(2;+) = 0, a(2;−) = 0,

a(2;+,+) =

{
1 if n is even,
0 if n is odd,

a(2;+,−) = 0, a(2;−,+) = 0, a(2;−,−) = 0,

a(4;k,0,+) = 1, a(4;k,0,−) = 0, 1 ≤ k ≤
⌊
n − 1

2

⌋
,

a(4;k,k,+) = 1, a(4;k,k,−) = 0, 1 ≤ k ≤
⌊
n − 1

2

⌋
,

a(4;n/2,ℓ,+) =

{
1 if n is even,
0 if n is odd,

a(4;n/2,ℓ,−) = 0, 1 ≤ ℓ ≤ n
2
− 1,

a(8;k,ℓ) = 1, 1 ≤ ℓ ≤ k − 1, 2 ≤ k ≤
⌊
n − 1

2

⌋
.

It is noteworthy that the multiplicity is either 0 or 1 for each irreducible representation, that is, the
permutation representation T(g) in (3.65)–(3.68) is multiplicity-free (see Remark 3.2). Table 3.6
shows a summary.
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Table 3.6: Irreducible representations contained in the permutation representation T .

n \ d 1 2 4 8
2m (1;+,+,+), (1;+,+,−) (2;+,+) (4; k, 0;+), (4; k, k;+), (4; n/2, ℓ,+) (8; k, ℓ)

2m − 1 (1;+,+,+) (4; k, 0;+), (4; k, k;+) (8; k, ℓ)
(4; k, 0;+) with 1 ≤ k ≤ ⌊(n − 1)/2⌋;
(4; k, k;+) with 1 ≤ k ≤ ⌊(n − 1)/2⌋;
(4; n/2, ℓ;+) with 1 ≤ ℓ ≤ n/2 − 1;
(8; k, ℓ) with 1 ≤ ℓ ≤ k − 1, 2 ≤ k ≤ ⌊(n − 1)/2⌋

Table 3.7: The number Ñd of the d-dimensional irreducible representations of D4 ⋉ (Zn × Zn) contained in the
permutation representation T for the square lattice.

n \ d 1 2 4 8
Ñ1 Ñ2 Ñ4 Ñ8

∑
Ñd

1 1 1
2 2 1 3
3 1 2 3
4 2 1 3 6
5 1 4 1 6
6 2 1 6 1 10
7 1 6 3 10
8 2 1 9 3 15
9 1 8 6 15
10 2 1 12 6 21
11 1 10 10 21
12 2 1 15 10 28

n \ d 1 2 4 8
Ñ1 Ñ2 Ñ4 Ñ8

∑
Ñd

13 1 12 15 28
14 2 1 18 15 36
15 1 14 21 36
16 2 1 21 21 45
17 1 16 28 45
18 2 1 24 28 55
19 1 18 36 55
20 2 1 27 36 66
21 1 20 45 66
...

...
...

...
...

...

42 2 1 30 190 223
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By Ñd , we denote the number of d-dimensional irreducible representations of D4 ⋉ (Zn × Zn)
that exist in the permutation representation T(g). We have the following expressions for Ñd:

n \ d 1 2 4 8
Ñ1 Ñ2 Ñ4 Ñ8

2m 2 1 3(n − 2)/2 (n2 − 6n + 8)/8
2m − 1 1 0 n − 1 (n2 − 4n + 3)/8

(3.74)

whereas Table 3.7 shows the values of Ñd for several n. Also note the relation∑
d

dÑd = n2. (3.75)

Remark 3.2. It is a basic fact that a permutation representation T(g) representing the action of
a group G on a finite set P is multiplicity-free if there exists some g ∈ G such that g · p = q
and g · q = p (e.g., see Proposition 1.4.8 of Ceccherini-Silberstein et al., 2010). The permutation
representation T(g) in (3.65)–(3.68) satisfies this condition as follows. By (3.65), (3.67), and
(3.68), we have

r2p1
i p2

j · (n1, n2) ≡ (−n1 − i, n2 − j) mod n.

Hence, any pair of (n1, n2) and (n′1, n′2) can be rewritten as

g · (n1, n2) ≡ (n′1, n′2) mod n, g · (n′1, n′2) ≡ (n1, n2) mod n

by g = r2p1
i p2

j with i = n1 − n′1 and j = n2 − n′2.
□

3.4.3. Transformation Matrix for Irreducible Decomposition
Transformation matrix Q for the irreducible decomposition is derived for the square lattice, and

examples of this matrix Q are presented.
For the n × n square lattice with the symmetry of D4 ⋉ (Zn × Zn), we derive the transformation

matrix
Q = (Qµ | µ ∈ D4 ⋉ (Zn × Zn)) (3.76)

for the irreducible decomposition. Note that the column set of Q is partitioned into blocks, each
associated with an irreducible representation µ contained in T(g) (see Table 3.6). Since such µ has
aµ = 1 (multiplicity-free), we have the relation

T(g)Qµ = QµT µ(g), g ∈ D4 ⋉ (Zn × Zn), (3.77)

where T(g) is the permutation representation given in Section 3.4.1.
The vector λ expressing population distribution is defined as

λ = (λ1, . . . , λK)⊤

= (λ00, . . . , λn−1,0; λ01, . . . , λn−1,1; . . . ; λ0,n−1, . . . , λn−1,n−1)⊤

= (λn1n2 | n1, n2 = 0, . . . , n − 1),

37



where K = n2 and (λn1n2 | n1, n2 = 0, . . . , n − 1) is an K-dimensional column vector. For a vector
on this lattice with the (n1, n2)-component g(n1, n2), we express its normalization as5

⟨g(n1, n2)⟩ = (g(n1, n2)/
( n−1∑

i=0

n−1∑
j=0

g(i, j)2
)1/2 | n1, n2 = 0, . . . , n − 1). (3.78)

Recall that the permutation representation T(g) is specified by (3.65)–(3.68) above. The action
of r on (n1, n2), for example, is expressed by

r · (n1, n2) ≡ (−n2, n1) mod n

in (3.65), which shows that the column of T(r) indexed by (n1, n2) has “1” in the row indexed by
(−n2, n1) mod n. For the present purpose, however, it is convenient to consider T(g) row-wise. It
is seen that the row of T(r) indexed by (n1, n2) has “1” at the column indexed by (n2,−n1) mod n,
since

(n′1, n′2) ≡ (−n2, n1) mod n

can be solved for (n1, n2) as
(n1, n2) ≡ (n′2,−n′1) mod n.

We denote this as
r ∗ (n1, n2) ≡ (n2,−n1) mod n. (3.79)

For s, p1, and p2, a similar argument based on (3.66)–(3.68) yields

s ∗ (n1, n2) ≡ (n1,−n2) mod n, (3.80)
p1 ∗ (n1, n2) ≡ (n1 − 1, n2) mod n, (3.81)
p2 ∗ (n1, n2) ≡ (n1, n2 − 1) mod n. (3.82)

The submatrices Qµ for µ are given by the following proposition, where the notation ⟨·⟩ for
normalization in (3.78) is used.

Proposition 3.4. The submatrices Qµ of the transformation matrix Q on the n × n square lattice

5 The notation ⟨·⟩ here should not be confused with that for the generators of a group.
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are given by

Q(1;+,+,+) =
1
n
(1, . . . , 1)⊤ = ⟨1⟩, (3.83)

Q(1;+,+,−) =

{
[⟨cos(π(n1 − n2))⟩] if n is even,
missing if n is odd,

(3.84)

Q(2;+,+) =

{
[⟨cos(πn1)⟩, ⟨cos(πn2)⟩] if n is even,
missing if n is odd,

(3.85)

Q(4;k,0,+) = [⟨cos(2πkn1/n)⟩, ⟨sin(2πkn1/n)⟩, ⟨cos(2πkn2/n)⟩, ⟨sin(2πkn2/n)⟩],

1 ≤ k ≤
⌊
n − 1

2

⌋
, (3.86)

Q(4;k,k,+) = [⟨cos(2πk(n1 + n2)/n)⟩, ⟨sin(2πk(n1 + n2)/n)⟩,
⟨cos(2πk(−n1 + n2)/n)⟩, ⟨sin(2πk(−n1 + n2)/n)⟩],

1 ≤ k ≤
⌊
n − 1

2

⌋
, (3.87)

Q(4;n/2,ℓ,+) =


[⟨cos(πn1 + 2πℓn2/n)⟩, ⟨sin(πn1 + 2πℓn2/n)⟩,
⟨cos(−2πℓn1/n + πn2)⟩, ⟨sin(−2πℓn1/n + πn2)⟩],

1 ≤ ℓ ≤ n
2 − 1 if n is even,

missing if n is odd,

(3.88)

Q(8;k,ℓ) = [⟨cos(2π(kn1 + ℓn2)/n)⟩, ⟨sin(2π(kn1 + ℓn2)/n)⟩,
⟨cos(2π(−ℓn1 + kn2)/n)⟩, ⟨sin(2π(−ℓn1 + kn2)/n)⟩,
⟨cos(2π(kn1 − ℓn2)/n)⟩, ⟨sin(2π(kn1 − ℓn2)/n)⟩,
⟨cos(2π(−ℓn1 − kn2)/n)⟩, ⟨sin(2π(−ℓn1 − kn2)/n)⟩],

1 ≤ ℓ ≤ k − 1, 2 ≤ k ≤
⌊
n − 1

2

⌋
. (3.89)

Proof. Proof is given in Section 3.4.4. □

An example of the transformation matrix Q for n = 4 is presented below by assembling
submatrices Qµ in Proposition 3.4.
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Example 3.2. The transformation matrix Q for the 4 × 4 square lattice reads

Q = [Q(1;+,+,+), Q(1;+,+,−), Q(2;+,+), Q(4;1,0,+), Q(4;1,1,+), Q(4;2,1,+)]
= [⟨1⟩ | ⟨cos(π(n1 − n2))⟩ | ⟨cos(πn1)⟩, ⟨cos(πn2)⟩ |
⟨cos(π n1/2)⟩, ⟨sin(π n1/2)⟩, ⟨cos(πn2/2)⟩, ⟨sin(πn2/2)⟩ |
⟨cos(π(n1 + n2)/2)⟩, ⟨sin(π(n1 + n2)/2)⟩, ⟨cos(π(−n1 + n2)/2)⟩, ⟨sin(π(−n1 + n2)/2)⟩ |
⟨cos(πn1 + πn2/2)⟩, ⟨sin(πn1 + πn2/2)⟩, ⟨cos(−πn1/2 + πn2)⟩, ⟨sin(−πn1/2 + πn2)⟩]

=
1
4
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.

□

3.4.4. Proof of Proposition 3.4
We will now show that the relation T(g)Qµ = QµT µ(g) in (3.77) is satisfied by Qµ in Propo-

sition 3.4 for r , s, p1, and p2 that generate the group D4 ⋉ (Zn × Zn). Recall the actions of r , s,
p1, and p2 given in (3.79)–(3.82). We demonstrate the proof for µ = (2;+,+) and (8; k, ℓ), and the
other cases can be treated similarly.

Two-Dimensional Irreducible Representation
We shall prove that

Q(2;+,+) = [⟨cos(πn1)⟩, ⟨cos(πn2)⟩] (3.90)

satisfies (3.77) for µ = (2;+,+). Recall that (2;+,+) exists when n is even and T (2;+,+)(g) is defined
by (3.47) and (3.48).

The action of r on the wave numbers (n1, n2) in (3.90) is given, by a formal calculation using
(3.79), as

r ∗ (n1, n2) = (r ∗ n1, r ∗ n2) ≡ (n2,−n1 mod n).
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In the matrix form, this gives

T(r)Q(2;+,+) = [⟨cos(πn2)⟩, ⟨cos(−πn1)⟩]
= [⟨cos(πn2)⟩, ⟨cos(πn1)⟩]

= [cos(πn1), cos(πn2)]
[

1
1

]
= Q(2;+,+)T (2;+,+)(r).

The action of p1 on the wave numbers (n1, n2) is given by (3.81) as

p1 ∗ (n1, n2) ≡ (n1 − 1 mod n, n2),

which, in the matrix form, yields

T(p1)Q(2;+,+) = [⟨cos(π(n1 − 1))⟩, ⟨cos(πn2)⟩]
= [⟨− cos(πn1)⟩, ⟨cos(πn2)⟩]

= [⟨cos(πn1)⟩, ⟨cos(πn2)⟩]
[
−1

1

]
= Q(2;+,+)T (2;+)(p1).

The cases of s and p2 can be treated similarly. Thus, we have

T(g)Q(2;+,+) = Q(2;+,+)T (2;+,+)(g), g = r, s, p1, p2.

This completes the proof for µ = (2;+,+).

Eight-Dimensional Irreducible Representations
We shall prove that

Q(8;k,ℓ) = [⟨cos(2π(kn1 + ℓn2)/n)⟩, ⟨sin(2π(kn1 + ℓn2)/n)⟩,
⟨cos(2π(−ℓn1 + kn2)/n)⟩, ⟨sin(2π(ℓn1 + kn2)/n)⟩,
⟨cos(2π(kn1 − ℓn2)/n)⟩, ⟨sin(2π(kn1 − ℓn2)/n)⟩,
⟨cos(2π(−ℓn1 − kn2)/n)⟩, ⟨sin(2π(−ℓn1 − kn2)/n)⟩],

1 ≤ ℓ ≤ k − 1, 2 ≤ k ≤
⌊
n − 1

2

⌋
(3.91)

satisfies (3.77) for (8; k, ℓ) where n ≥ 5. Recall the definition of T (8;k,ℓ)(g) for g = r, s, p1, p2 in
(3.62) and (3.63), as well as the notations

R =
[
cos(2π/n) − sin(2π/n)
sin(2π/n) cos(2π/n)

]
, S =

[
1
−1

]
. (3.92)
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The action of r on the four wave numbers in (3.91) is given by (3.79) as

r ∗


kn1 + ℓn2
−ℓn1 + kn2
kn1 − ℓn2
−ℓn1 − kn2

 ≡

−ℓn1 + kn2
−(kn1 + ℓn2)
−(−ℓn1 − kn2)

kn1 − ℓn2

 mod n,

which permutes and changes the sign of the column vectors of Q(8;k,ℓ) in (3.91) as

T(r)Q(8;k,ℓ) = Q(8;k,ℓ)


S

I
I

S

 = Q(8;k,ℓ)T (8;k,ℓ)(r).

The action of s on the four wave numbers in (3.91) is given by (3.80) as

s ∗


kn1 + ℓn2
−ℓn1 + kn2
kn1 − ℓn2
−ℓn1 − kn2

 ≡


kn1 − ℓn2
−ℓn1 − kn2
kn1 + ℓn2
−ℓn1 + kn2

 mod n,

which gives

T(s)Q(8;k,ℓ) = Q(8;k,ℓ)


I

I
I

I

 = Q(8;k,ℓ)T (8;k,ℓ)(s).

The action of p1 on the four wave numbers in (3.91) is given by (3.81) as

p1 ∗


kn1 + ℓn2
−ℓn1 + kn2
kn1 − ℓn2
−ℓn1 − kn2

 ≡


kn1 + ℓn2 − k
−ℓn1 + kn2 + ℓ
kn1 − ℓn2 − k
−ℓn1 − kn2 + ℓ

 mod n,

which gives

T(p1)Q(8;k,ℓ) = Q(8;k,ℓ)


Rk

R−ℓ

Rk

R−ℓ

 = Q(8;k,ℓ)T (8;k,ℓ)(p1).

The action of p2 on the four wave numbers in (3.91) is given by (3.82) as

p2 ∗


kn1 + ℓn2
−ℓn1 + kn2
kn1 − ℓn2
−ℓn1 − kn2

 ≡


kn1 + ℓn2 − ℓ
−ℓn1 + kn2 − k
kn1 − ℓn2 + ℓ
−ℓn1 − kn2 + k

 mod n,
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which gives

T(p2)Q(8;k,ℓ) = Q(8;k,ℓ)


Rℓ

Rk

R−ℓ

R−k

 = Q(8;k,ℓ)T (8k,ℓ)(p2).

Thus, we have the following relation to complete the proof for µ = (8; k, ℓ):

T(g)Q(8;k,ℓ) = Q(8;k,ℓ)T (8;k,ℓ)(g), g = r, s, p1, p2.

3.5. Existence of Bifurcating Solutions with Square Symmetry
We presented fundamental facts about the square lattice in Sections 3.2–3.4. We introduced

the n × n square lattice with periodic boundary conditions as a spatial platform for agglomeration
(Section 3.2). We labeled the symmetry of this lattice by the group D4 ⋉ (Zn × Zn), and obtained
the irreducible representations of this group (Section 3.3). We decomposed the representation
matrix for the square lattice into irreducible components to determine the multiplicity aµ of each
irreducible representation µ (Section 3.4).

We would like to investigate the existence of square patterns as bifurcating solutions on the
square lattice. For each irreducible representation µ with aµ ≥ 1, we study bifurcation from a
critical point associated with µ by using group-theoretic bifurcation analysis procedures under
group symmetry. The following two different methods are available:

(i) The equivariant branching lemma is applied to the bifurcation equation associated with µ
to show the existence of bifurcating solutions with a specified symmetry. This analysis is
algebraic or group-theoretic, which focuses on the symmetry of solutions. The concrete
form of the bifurcation equation need not be derived, and isotropy subgroups play a key role
in this analysis.

(ii) The bifurcation equation is obtained in the form of power series expansions and is solved
asymptotically. This method is more complicated, treating nonlinear terms directly, but is
more informative, giving asymptotic forms of the bifurcating solutions and their directions
in addition to their existence.

In this section, we apply the first method (i), using the equivariant branching lemma, to the
economy on the n × n square lattice with the symmetry of D4 ⋉ (Zn × Zn). We obtain possible
bifurcating square patterns and associated lattice sizes for all the irreducible representations, which
are related to group-theoretic critical points with multiplicity M = 1, 2, 4, 8.

The second method (ii), solving the bifurcation equation, is not based on the equivariant
branching lemma and capable of capturing all bifurcating solutions by dealing with the bifurcation
equation explicitly. The first method conducted in this section demands less analytical effort
than this method and fits to pinpoint the targeted square patterns among many other bifurcating
solutions.

This section is organized as follows. Theoretically predicted bifurcating square patterns are
previewed in Section 3.5.1. Fundamentals of bifurcation analysis are recapitulated in Section 3.5.2.
Bifurcation points of multiplicity M = 1, 2, 4, 8 are respectively studied in Sections 3.5.3–3.5.6.
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3.5.1. Summary of Theoretical Results
As a preview of group-theoretic bifurcation analysis to be conducted in Sections 3.5.4–3.5.6,

we present possible bifurcations that produce bifurcating square patterns. Note that all critical
points are assumed to be group-theoretic as explained in Section 3.5.2.

Symmetry of Bifurcating Square Patterns
Recall that the symmetry of the n × n square lattice is labeled by the group

G = ⟨r, s, p1, p2⟩ = D4 ⋉ (Zn × Zn). (3.93)

in (3.31). The fundamental relations are given as

r4 = s2 = (rs)2 = p1
n = p2

n = e, p2p1 = p1p2,

rp1 = p2r, rp2 = p1
−1r, sp1 = p1s, sp2 = p2

−1s (3.94)

in (3.32), where e is the identity element.
Let us consider the governing equation

F(λ, ϕ) = 0, (3.95)

in (2.3), where λ = (λ, . . . , λK)⊤ with K(= n2) is an K-dimensional independent variable vector,
and ϕ is the bifurcation parameter. Among many possible solutions λ to the governing equation in
(3.95), we are particularly interested in those bifurcating solutions that represent square patterns.

To describe square patterns, we introduced a sublattice

H(α, β) = {n1(αℓ1 + βℓ2) + n2(−βℓ1 + αℓ2) | n1, n2 ∈ Z}

= {
[
ℓ1 ℓ2

] [
α −β
β α

] [
n1
n2

]
| n1, n2 ∈ Z}, (3.96)

in (3.4), where

ℓ1 = d
[
1
0

]
, ℓ2 = d

[
0
1

]
(3.97)

are basis vectors of length d of the underlying infinite square lattice

H = {n1ℓ1 + n2ℓ2 | n1, n2 ∈ Z} (3.98)

in (3.2). In this chapter, we adopt the parameter space

{(α, β) ∈ Z2 | α > 0, β ≥ 0} (3.99)

in (3.9) of Proposition 3.1, instead of {(α, β) ∈ Z2 | α ≥ β ≥ 0, α , 0} in (3.10), unless otherwise
stated. We characterized the size of a square patternH(α, β) by

D = D(α, β) = α2 + β2 (3.100)
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in (3.7).
The n × n square lattice is described by

Hn = {n1ℓ1 + n2ℓ2 | ni ∈ Z, 0 ≤ ni ≤ n − 1 (i = 1, 2)} (3.101)

in (3.25). The symmetry of a square pattern H(α, β) ∩ Hn on this lattice is represented by the
subgroup G(α, β) of G. This subgroup is classified into three types:

G(α, β) =

⟨r, s, p1

α, p2
α⟩ = Σ(α, 0) if α ≥ 1, β = 0 (type V),

⟨r, s, p1
βp2

β, p1
−βp2

β⟩ = Σ(β, β) if α = β, β ≥ 1 (type M),
⟨r, p1

αp2
β, p1

−βp2
α⟩ = Σ0(α, β) otherwise (type T),

(3.102)

in (3.36). It is convenient to introduce a convention

Σ0(0, 0) = ⟨r⟩, Σ(0, 0) = ⟨r, s⟩, Σ(1, 0) = ⟨r, s, p1, p2⟩. (3.103)

We have the compatibility condition in (3.30) between (α, β) and n given as

n =


mα (α ≥ 1) for type V,
2mβ (β ≥ 1) for type M,
mD(α, β)/gcd(α, β) for type T,

(3.104)

where m = 1, 2, . . . .
The objective of this section is to look for a solution λ to (3.95) such that the isotropy subgroup

Σ(λ) for the symmetry of λ coincides with one of the subgroups in (3.102).

Square Patterns Engendered by Direct Bifurcations
The main message of this section is that bifurcating solutions for square patterns do arise

from the mathematical model on the square lattice with pertinent lattice sizes, and therefore these
patterns can be understood within the framework of group-theoretic bifurcation theory. The major
results to be derived in Sections 3.5.4–3.5.6 are summarized as follows:

Proposition 3.5. A bifurcating solution with the square symmetry expressed by the subgroup in
(3.102) exists for pertinent lattice sizes n. To be specific, we have the following, where m denotes
a positive integer.

• For (α, β; n) = (α, 0;αm) (2 ≤ α ≤ n), a square pattern of type V with symmetry Σ(α, 0)
branches at a bifurcation point with multiplicity M = 2 (α = 2), M = 4 (α ≥ 3), or M = 8
(α ≥ 5).

• For (α, β; n) = (β, β; 2βm) (1 ≤ β ≤ n/2), a square pattern of type M with symmetry Σ(β, β)
branches at a bifurcation point with multiplicity M = 1 (β = 1), M = 4 (β ≥ 2), or M = 8
(β ≥ 4).

• For (α, β; n) = (α, β; mD(α, β)/gcd(α, β)), where 1 ≤ α ≤ n − 1, 1 ≤ β ≤ n − 1, and
α , β, a square pattern of type T with symmetry Σ0(α, β) branches at a bifurcation point
with multiplicity M = 8.
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Proof. This is proved in Sections 3.5.4–3.5.6. □

Possible square patterns for each value of (α, β; n) in Proposition 3.5 are summarized as follows:

(α, β; n) M Type
α = 2 2

(α, 0;αm) α ≥ 3 4 V
α ≥ 5 8
β = 1 1

(β, β; 2βm) β ≥ 2 4 M
β ≥ 4 8

(α, β;
mD(α, β)
gcd(α, β) ) 1 ≤ α ≤ n − 1, 1 ≤ β ≤ n − 1, α , β 8 T

where m = 1, 2, . . . .
The following proposition plays a pivotal role in the search for square patterns.

Proposition 3.6. The existence of square patterns depends on the divisors of the lattice size n as
follows:

(i) If n has a divisor α (2 ≤ α ≤ n), a square pattern of type V with symmetry Σ(α, 0) exists.
(ii) If n has a divisor 2β (1 ≤ β ≤ n/2), a square pattern of type M with symmetry Σ(β, β)

exists.
(iii) If n has a divisor D(α, β)/gcd(α, β), where 1 ≤ α ≤ n − 1, 1 ≤ β ≤ n − 1, and α , β, a

square pattern of type T with symmetry Σ0(α, β) exists.

Proof. This follows from Proposition 3.5. □

Possible square patterns emerging via direct bifurcations for several values of n, obtained from
Proposition 3.6, are listed in Tables 3.8 and 3.9.

3.5.2. Analysis Procedure Using Equivariant Branching Lemma
We summarize a bifurcation analysis procedure resorting to the equivariant branching lemma.

Bifurcation and Symmetry of Solutions
Let us consider the governing equation

F(λ, ϕ) = 0 (3.105)

in (2.3) endowed with the equivariance to G = D4 ⋉ (Zn × Zn) as

T(g)F(λ, ϕ) = F(T(g)λ, ϕ), g ∈ G (3.106)

in (2.7). Recall that ϕ, being the trade freeness, serves as the bifurcation parameter, λ ∈ RK is
an independent variable vector of dimension K = n2 expressing a pattern of mobile population,
F : RK×R→ RK is the nonlinear function, and T is the K-dimensional permutation representation
in Section 3.4.1 of the group G = D4 ⋉ (Zn × Zn).
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Table 3.8: Possible square patterns for several lattice sizes n (n = 2–17).

n (α, β) D Type G(α, β) M
2 (2, 0) 4 V Σ(2, 0) 2
(1, 1) 2 M Σ(1, 1) 1

3 (3, 0) 9 V Σ(3, 0) 4
4 (2, 0) 4 V Σ(2, 0) 2
(4, 0) 16 V Σ(4, 0) 4
(1, 1) 2 M Σ(1, 1) 1
(2, 2) 8 M Σ(2, 2) 4

5 (5, 0) 25 V Σ(5, 0) 4 or 8
(2, 1) 5 T Σ0(5, 0) 4

6 (2, 0) 4 V Σ(2, 0) 2
(3, 0) 9 V Σ(3, 0) 4
(6, 0) 36 V Σ(6, 0) 4 or 8
(1, 1) 2 M Σ(1, 1) 1
(3, 3) 18 M Σ(3, 3) 4

7 (7, 0) 49 V Σ(7, 0) 4 or 8
8 (2, 0) 4 V Σ(2, 0) 2
(4, 0) 16 V Σ(4, 0) 4
(8, 0) 64 V Σ(8, 0) 4 or 8
(1, 1) 2 M Σ(1, 1) 1
(2, 2) 8 M Σ(2, 2) 4
(4, 4) 32 M Σ(4, 4) 4 or 8

9 (3, 0) 9 V Σ(3, 0) 4
(9, 0) 81 V Σ(9, 0) 4 or 8

10 (2, 0) 4 V Σ(2, 0) 2
(5, 0) 25 V Σ(5, 0) 4 or 8
(10, 0) 100 V Σ(10, 0) 4 or 8
(1, 1) 2 M Σ(1, 1) 1
(5, 5) 50 M Σ(5, 5) 4 or 8
(2, 1) 5 T Σ0(2, 1) 8
(3, 1) 10 T Σ0(3, 1) 8
(4, 2) 20 T Σ0(4, 2) 8

n (α, β) D Type G(α, β) M
11 (11, 0) 121 V Σ(11, 0) 4 or 8
12 (2, 0) 4 V Σ(2, 0) 2

(3, 0) 9 V Σ(3, 0) 4
(4, 0) 16 V Σ(4, 0) 4
(6, 0) 36 V Σ(6, 0) 4 or 8
(12, 0) 144 V Σ(12, 0) 4 or 8
(1, 1) 2 M Σ(1, 1) 1
(2, 2) 8 M Σ(2, 2) 4
(3, 3) 18 M Σ(3, 3) 4
(6, 6) 72 M Σ(6, 6) 4 or 8

13 (13, 0) 169 V Σ(13, 0) 4 or 8
(3, 2) 13 T Σ0(3, 2) 8

14 (2, 0) 4 V Σ(2, 0) 2
(7, 0) 49 V Σ(7, 0) 4 or 8
(14, 0) 196 V Σ(14, 0) 4 or 8
(1, 1) 2 M Σ(1, 1) 1
(7, 7) 98 M Σ(7, 7) 8 or 8

15 (3, 0) 9 V Σ(3, 0) 4
(5, 0) 25 V Σ(5, 0) 4 or 8
(15, 0) 225 V Σ(15, 0) 4 or 8
(2, 1) 5 T Σ0(2, 1) 8
(6, 3) 45 T Σ0(6, 3) 8

16 (2, 0) 4 V Σ(2, 0) 2
(4, 0) 16 V Σ(4, 0) 4
(8, 0) 64 V Σ(8, 0) 4 or 8
(16, 0) 256 V Σ(16, 0) 4 or 8
(1, 1) 2 M Σ(1, 1) 1
(2, 2) 8 M Σ(2, 2) 4
(4, 4) 32 M Σ(4, 4) 4 or 8
(8, 8) 128 M Σ(8, 8) 4 or 8

17 (17, 0) 289 V Σ(17, 0) 4 or 8
(4, 1) 17 T Σ0(4, 1) 8
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Table 3.9: Possible square patterns for several lattice sizes n (n = 18–30).

n (α, β) D Type G(α, β) M
18 (2, 0) 4 V Σ(2, 0) 2

(3, 0) 9 V Σ(3, 0) 4
(6, 0) 36 V Σ(6, 0) 4 or 8
(9, 0) 81 V Σ(9, 0) 4 or 8
(18, 0) 324 V Σ(18, 0) 4 or 8
(1, 1) 2 M Σ(1, 1) 1
(3, 3) 18 M Σ(3, 3) 4
(9, 9) 162 M Σ(9, 9) 4 or 8

19 (19, 0) 361 V Σ(19, 0) 4 or 8
20 (2, 0) 4 V Σ(2, 0) 2

(4, 0) 16 V Σ(4, 0) 4
(5, 0) 25 V Σ(5, 0) 4 or 8
(10, 0) 100 V Σ(10, 0) 4 or 8
(20, 0) 400 V Σ(20, 0) 4 or 8
(1, 1) 2 M Σ(1, 1) 1
(2, 2) 8 M Σ(2, 2) 4
(5, 5) 50 M Σ(5, 5) 4 or 8
(10, 10) 200 M Σ(10, 10) 4 or 8
(2, 1) 5 T Σ0(2, 1) 8
(3, 1) 10 T Σ0(3, 1) 8
(4, 2) 20 T Σ0(4, 2) 8
(6, 2) 40 T Σ0(6, 2) 8
(8, 4) 80 T Σ0(8, 4) 8

21 (3, 0) 9 V Σ(3, 0) 4
(7, 0) 49 V Σ(7, 0) 4 or 8
(21, 0) 441 V Σ(21, 0) 4 or 8

22 (2, 0) 4 V Σ(2, 0) 2
(11, 0) 121 V Σ(11, 0) 4 or 8
(22, 0) 484 V Σ(22, 0) 4 or 8
(1, 1) 2 M Σ(1, 1) 1
(11, 11) 242 M Σ(11, 11) 4 or 8

23 (23, 0) 529 V Σ(23, 0) 4 or 8
24 (2, 0) 4 V Σ(2, 0) 2

(3, 0) 9 V Σ(3, 0) 4
(4, 0) 16 V Σ(4, 0) 4
(6, 0) 36 V Σ(6, 0) 4 or 8
(12, 0) 144 V Σ(12, 0) 4 or 8
(24, 0) 576 V Σ(24, 0) 4 or 8
(1, 1) 2 M Σ(1, 1) 1
(2, 2) 8 M Σ(2, 2) 4
(3, 3) 18 M Σ(3, 3) 4
(4, 4) 32 M Σ(4, 4) 4 or 8
(6, 6) 72 M Σ(6, 6) 4 or 8
(12, 12) 288 M Σ(12, 12) 4 or 8

n (α, β) D Type G(α, β) M
25 (5, 0) 25 V Σ(5, 0) 4 or 8

(25, 0) 625 V Σ(25, 0) 4 or 8
(2, 1) 5 T Σ(2, 1) 8
(4, 3) 25 T Σ(4, 3) 8
(10, 5) 125 T Σ(10, 5) 8

26 (2, 0) 4 V Σ(2, 0) 2
(13, 0) 169 V Σ(13, 0) 4 or 8
(26, 0) 676 V Σ(26, 0) 4 or 8
(1, 1) 2 M Σ(1, 1) 1
(13, 13) 338 M Σ(13, 13) 4 or 8
(3, 2) 13 T Σ0(3, 2) 8
(5, 1) 26 T Σ0(5, 1) 8
(6, 4) 52 T Σ0(6, 4) 8

27 (3, 0) 9 V Σ(3, 0) 4
(9, 0) 81 V Σ(9, 0) 4 or 8
(27, 0) 729 V Σ(27, 0) 4 or 8

28 (2, 0) 4 V Σ(2, 0) 2
(4, 0) 16 V Σ(4, 0) 4
(7, 0) 49 V Σ(7, 0) 4 or 8
(14, 0) 196 V Σ(14, 0) 4 or 8
(28, 0) 784 V Σ(28, 0) 4 or 8
(1, 1) 2 M Σ(1, 1) 1
(2, 2) 8 M Σ(2, 2) 4
(7, 7) 98 M Σ(7, 7) 4 or 8
(14, 14) 392 M Σ(14, 14) 4 or 8

29 (29, 0) 841 V Σ(29, 0) 4 or 8
(5, 2) 29 T Σ0(5, 2) 8

30 (2, 0) 4 V Σ(2, 0) 2
(3, 0) 9 V Σ(3, 0) 4
(5, 0) 25 V Σ(5, 0) 4 or 8
(6, 0) 36 V Σ(6, 0) 4 or 8
(10, 0) 100 V Σ(10, 0) 4 or 8
(15, 0) 225 V Σ(15, 0) 4 or 8
(30, 0) 900 V Σ(30, 0) 4 or 8
(1, 1) 2 M Σ(1, 1) 1
(3, 3) 18 M Σ(3, 3) 4
(5, 5) 50 M Σ(5, 5) 4 or 8
(15, 15) 450 M Σ(15, 15) 4 or 8
(2, 1) 5 T Σ0(2, 1) 8
(3, 1) 10 T Σ0(3, 1) 8
(4, 2) 20 T Σ0(4, 2) 8
(6, 3) 45 T Σ0(6, 3) 8
(9, 3) 90 T Σ0(9, 3) 8
(12, 6) 180 T Σ0(12, 6) 8
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Let (λc, ϕc) be a critical point of multiplicity M (≥ 1), at which the Jacobian matrix of F has a
rank deficiency M . The critical point (λc, ϕc) is assumed to be G-symmetric in the sense of

T(g)λc = λc, g ∈ G. (3.107)

Moreover, it is assumed to be group-theoretic, which means, by definition, that the M-dimensional
kernel space of the Jacobian matrix at (λc, ϕc) is irreducible with respect to the representation T .
Then the critical point (λc, ϕc) is associated with an irreducible representation µ of G, and the
multiplicity M corresponds to the dimension of the irreducible representation µ. We denote the
representation matrix for µ by T µ(g).

By the Liapunov–Schmidt reduction with symmetry,6 the full system in (3.105) is reduced, in
a neighborhood of the critical point (λc, ϕc), to a system of M equations

F̃(w, ϕ̃) = 0 (3.108)

in w ∈ RM , where F̃: RM × R → RM is a function and ϕ̃ = ϕ − ϕc denotes the increment of ϕ.
This reduced system is called the bifurcation equation.

In the reduction process, the equivariance in (3.106) of the full system is inherited by the
reduced system in (3.108). With the use of the representation matrix T µ(g) for the associated
irreducible representation µ, the equivariance of F̃ can be expressed as

T µ(g)F̃(w, ϕ̃) = F̃(T µ(g)w, ϕ̃), g ∈ G. (3.109)

This inherited symmetry plays a key role in determining the symmetry of bifurcating solutions.
The reduced system in (3.108) can possibly admit multiple solutions w = w(ϕ̃) with w(0) = 0

since (w, ϕ̃) = (0, 0) is a singular point of (3.108). This gives rise to bifurcation. Each w uniquely
determines a solution λ to the full system in (3.105), and moreover the symmetry of w is identical
with that of λ. Indeed, we have the following relation:

Gµ ⊆ Σµ(w) = Σ(λ), (3.110)

where Gµ is a subgroup of G as

Gµ = {g ∈ G | T µ(g) = I}, (3.111)

and Σ(λ) and Σµ(w) are isotropy subgroups defined respectively as

Σ(λ) = Σ(λ; G,T) = {g ∈ G | T(g)λ = λ}, (3.112)
Σ
µ(w) = Σ(w; G,T µ) = {g ∈ G | T µ(g)w = w}. (3.113)

The significance of the relation in (3.110) is twofold. First, unless a subgroup Σ is large enough
to contain Gµ, no bifurcating solution λ exists such that Σ = Σ(λ). Second, the symmetry of a
bifurcating solution λ is known as Σ(λ) = Σµ(w) through analysis of the bifurcation equation in w.

6 For details on the Liapunov–Schmidt reduction, see Sattinger (1979), Chow and Hale (1982), and Golubitsky
et al. (1988).
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Table 3.10: The irreducible representations of D4 ⋉ (Zn × Zn) to be considered in bifurcation analysis.

n \ d 1 2 4 8
2m (1;+,+,+), (1;+,+,−) (2;+,+) (4; k, 0;+), (4; k, k;+), (4; n/2, ℓ,+) (8; k, ℓ)

2m − 1 (1;+,+,+) (4; k, 0;+), (4; k, k;+) (8; k, ℓ)
(4; k, 0;+) with 1 ≤ k ≤ ⌊(n − 1)/2⌋;
(4; k, k;+) with 1 ≤ k ≤ ⌊(n − 1)/2⌋;
(4; n/2, ℓ;+) with 1 ≤ ℓ ≤ ⌊(n − 1)/2⌋;
(8; k, ℓ) with 1 ≤ ℓ ≤ k − 1, 2 ≤ k ≤ ⌊(n − 1)/2⌋

Remark 3.3. We define the variables w = (w1, . . . ,wM)⊤ in the bifurcation equation in (3.108)
with the matrix Q derived in Section 3.4.3. That is, the components of w = (w1, . . . ,wM)⊤ are
assumed to correspond to the column vectors of Qµ = [qµ1, . . . , q

µ
M]. Then, the equivariance

condition in (3.109) holds for the matrix representations T µ of the irreducible representations µ
derived in Appendix A.1.4.

□

Bifurcation Equation and the Associated Irreducible Representation
To investigate the existence of a bifurcating solution λ with a specified symmetry Σ to the

governing equation F(λ, ϕ) = 0 in (3.105), it suffices to apply the equivariant branching lemma to
the bifurcation equation F̃(w, ϕ̃) in (3.108). This is justified by the fact that the isotropy subgroup
Σ(λ) expressing the symmetry of a bifurcating solution λ is identical to the isotropy subgroup
Σµ(w) of the corresponding solution w for the bifurcation equation, i.e., Σ(λ) = Σµ(w) as shown
in (3.110).

The bifurcation equation is associated with an irreducible representation µ of G = D4⋉(Zn×Zn)
as in (3.109). The associated irreducible representation µ is restricted to

µ = (1;+,+,+), (1;+,+,−), (2;+,+), (4; k, 0;+), (4; k, k;+), (4; n/2, ℓ;+), (8; k, ℓ)

with k for (4; k, 0;+) in (3.49), k for (4; k, k;+) in (3.50), ℓ for (4; n/2, ℓ;+) in (3.51), and (k, ℓ)
for (8; k, ℓ) in (3.60), as a consequence of the irreducible decomposition (3.73) of the permutation
representation T for the economy on the n×n square lattice. The unit representation (1;+,+,+) has
been excluded since it does not correspond to a symmetry-breaking bifurcation point. Thus we have
to deal with critical points of multiplicity M = 1, 2, 4, 8. As a modified form of Table 3.6, therefore,
we obtain Table 3.10, where the multiplicity M of a critical point is equal to the dimension d of
the associated irreducible representation.

Isotropy Subgroup and Fixed-Point Subspace
In analysis by the equivariant branching lemma, the isotropy subgroup of w with respect to T µ:

Σ
µ(w) = {g ∈ G | T µ(g)w = w} (3.114)

in (3.113) and the fixed-point subspace of Σ for T µ:

Fixµ(Σ) = {w ∈ RM | T µ(g)w = w for all g ∈ Σ} (3.115)
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play the major roles. The following facts, though immediate from the definitions, are important
and useful.

• By definition, Σ is an isotropy subgroup if and only if Σ = Σµ(w) for some w , 0.

• If Σ = Σµ(w), then w ∈ Fixµ(Σ) and dim Fixµ(Σ) ≥ 1.

• Not every Σ with the property of dim Fixµ(Σ) ≥ 1 is an isotropy subgroup.

• Σ ⊆ Σµ(w) for every w ∈ Fixµ(Σ).

• Σ is an isotropy subgroup if and only if Σ = Σµ(w) for some w ∈ Fixµ(Σ) with w , 0.

• Unless Σ is an isotropy subgroup, there exists no bifurcating solution w with symmetry Σ.

Analysis Procedure Using Equivariant Branching Lemma
Equivariant branching lemma is a useful mathematical means to prove the existence of a

bifurcating solution with a specified symmetry without actually solving the bifurcation equation
in (3.108). By the equivariant branching lemma, we shall demonstrate the emergence of square
patterns.

Analysis for the n×n square lattice based on the equivariant branching lemma follows the steps
below.

1. Specify an irreducible representation µ of D4 ⋉ (Zn × Zn) in Table 3.10.
2. Specify a subgroup Σ as a candidate of an isotropy subgroup of a possible bifurcating

solution.
3. Obtain the fixed-point subspace Fixµ(Σ) in (3.115) for the subgroup Σ with respect to the

irreducible representation µ.
4. Search for some w ∈ Fixµ(Σ) such that Σµ(w) = Σ. If no such w exists, then Σ is not an

isotropy subgroup, and hence there exists no solution with the specified symmetry Σ for the
bifurcation equation associated with µ. If such w exists, then we can ensure that Σ is an
isotropy subgroup, and can proceed to the next step.

5. Calculate the dimension dim Fixµ(Σ) of the fixed-point subspace.
6. If dim Fixµ(Σ) = 1, a bifurcating solution with symmetry Σ is guaranteed to exist generically

by the equivariant branching lemma. If dim Fixµ(Σ) ≥ 2, no definite conclusion can be
reached by means of the equivariant branching lemma.

Remark 3.4. The equivariant branching lemma assumes two technical conditions: (i) absolute
irreducibility and (ii) genericity (see Section 2.4.5 of Ikeda and Murota, 2014). The former
condition is satisfied by the group G = D4 ⋉ (Zn ×Zn) since all the irreducible representations over
R of this group are absolutely irreducible (see Appendix A.1.4). The latter condition is a matter
of modeling, and we assume this condition throughout this chapter. For details on the equivariant
branching lemma, see Cicogna (1981), Vanderbauwhede (1982), and Golubitsky et al. (1988).

□
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Figure 3.7: A pattern on the 6 × 6 square lattice expressed by the column vector of Q(1;+,+,−). A black circle denotes a
positive component, and a white circle denotes a negative component.

3.5.3. Bifurcation Point of Multiplicity 1
As shown by Table 3.10 in Section 3.5.2, a critical point of multiplicity 1 is associated with the

two-dimensional irreducible representation (1;+,+,−), which exists only when n is even. Recall
from (3.44) that this irreducible representation is given by

T (1;+,+,−)(r) = 1, T (1;+,+,−)(s) = 1, T (1;+,+,−)(p1) = −1, T (1;+,+,−)(p2) = −1. (3.116)

In view of Remark 3.3 in Section 3.5.2, let us assume that the variable w = w for the bifurcation
equation (3.108) corresponds to the column vectors of

Q(1;+,+,−) = q = [⟨cos(π(n1 − n2))⟩] (3.117)

in (3.84). The spatial pattern for this vector is depicted in Fig. 3.7 for n = 6. This is the smallest
square pattern.

Proposition 3.7. When n is even, a bifurcating solution in the direction of q with the symmetry
of ⟨r, s, p1p2, p1

−1p2⟩ arises from a critical point of multiplicity 1 associated with the irreducible
representation (1;+,+,−).

Proof. The general procedure in Section 3.5.2 is applied to µ = (1;+,+,−) and Σ = ⟨r, s⟩ ⋉
⟨p1p2, p1

−1p2⟩. We have
Fix(1;+,+,−)(Σ) = {w ∈ R}

since

T (1;+,+,−)(r)w = w, T (1;+,+,−)(s)w = w, T (1;+,+,−)(p1p2)w = w, T (1;+,+,−)(p1
−1p2)w = w

by (3.116). Thus the targeted symmetry Σ is an isotropy subgroup with

dim Fix(1;+,+,−)(Σ) = 1.

The equivariant branching lemma then guarantees the existence of a bifurcating path with symmetry
Σ. □
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(a) q1 (⟨r2, s, p1
2, p2⟩) (b) q2 (⟨r2, s, p1, p2

2⟩) (c) q1 + q2 (⟨r, s, p1
2, p2

2⟩)

Figure 3.8: Patterns on the 6 × 6 square lattice expressed by the column vectors of Q(2;+,+). A black circle denotes a
positive component, and a white circle denotes a negative component.

3.5.4. Bifurcation Point of Multiplicity 2
As shown by Table 3.10 in Section 3.5.2, a critical point of multiplicity 2 is associated with

the two-dimensional irreducible representation (2;+,+), which exists only when n is even. Recall
from (3.47) and (3.48) that this irreducible representation is given by

T (2;+,+)(r) =
[

1
1

]
, T (2;+,+)(s) =

[
1

1

]
, (3.118)

T (2;+,+)(p1) =
[
−1

1

]
, T (2;+,+)(p2) =

[
1
−1

]
. (3.119)

In view of Remark 3.3 in Section 3.5.2, let us assume that the variable w = (w1,w2)⊤ for the
bifurcation equation (3.108) corresponds to the column vectors of

Q(2;+,+) = [q1, q2] = [⟨cos(πn1)⟩, ⟨cos(πn2)⟩] (3.120)

in (3.85). The spatial patterns for these vectors are depicted in Fig. 3.8 for n = 6. The vectors q1
and q2 represent stripe patterns but q1 + q2 expresses a square pattern.

Proposition 3.8. When n is even, bifurcating solutions from a critical point of multiplicity 2
associated with the irreducible representation (2;+,+) exist in the following directions:

(i) q1 + q2 with the symmetry of ⟨r, s, p1
2, p2

2⟩,
(ii) q1 with the symmetry of ⟨r2, s, p1

2, p2⟩, and
(iii) q2 with the symmetry of ⟨r2, s, p1, p2

2⟩.

Proof. (i) The general procedure in Section 3.5.2 is applied to µ = (2;+,+) and Σ = ⟨r, s⟩ ⋉
⟨p1

2, p2
2⟩. Note

Fix(2;+,+)(Σ) = Fix(2;+,+)(⟨r⟩) ∩ Fix(2;+,+)(⟨s, p1
2, p2

2⟩).
Here we have

Fix(2;+,+)(⟨r⟩) = {c(1, 1)⊤ | c ∈ R}
since T (2;+,+)(r)(w1,w2)⊤ = (w2,w1)⊤ by (3.118), whereas

Fix(2;+,+)(⟨s, p1
2, p2

2⟩) = R2

since T (2;+,+)(s) = T (2;+,+)(p1
2) = T (2;+,+)(p2

2) = I by (3.118) and (3.119). Therefore,

Fix(2;+,+)(Σ) = {c(1, 1)⊤ | c ∈ R},
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that is, Σ = Σ(2;+,+)(w0) for w0 = (1, 1)⊤. Thus the targeted symmetry Σ is an isotropy subgroup
with

dim Fix(2;+,+)(Σ) = 1.
The equivariant branching lemma then guarantees the existence of a bifurcating path with symmetry
Σ.

(ii) Next the general procedure is applied to µ = (2;+,+) and Σ = ⟨r2, s, p1
2, p2⟩. Note

Fix(2;+,+)(Σ) = Fix(2;+,+)(⟨p2⟩) ∩ Fix(2;+,+)(⟨r2, s, p1
2⟩).

Here we have
Fix(2;+,+)(⟨p2⟩) = {c(1, 0)⊤ | c ∈ R}

since T (2;+,+)(p2)(w1,w2)⊤ = (w1,−w2)⊤ by (3.118), whereas

Fix(2;+,+)(⟨r2, s, p1
2⟩) = R2

since T (2;+,+)(r2) = T (2;+,+)(s) = T (2;+,+)(p1
2) = I by (3.118) and (3.119). Therefore,

Fix(2;+,+)(Σ) = {c(1, 0)⊤ | c ∈ R},

that is, Σ = Σ(2;+,+)(w0) for w0 = (1, 0)⊤. Thus the targeted symmetry Σ is an isotropy subgroup
with

dim Fix(2;+,+)(Σ) = 1.
The equivariant branching lemma then guarantees the existence of a bifurcating path with symmetry
Σ. The case of (iii) can be treated similarly. □

3.5.5. Bifurcation Point of Multiplicity 4
We investigate square patterns branching from bifurcation points of multiplicity 4.

Representation in Complex Variables
As shown by Table 3.10 in Section 3.5.2, a critical point of multiplicity 4 is associated with

one of the four-dimensional irreducible representations

(4; k, 0,+) with 1 ≤ k ≤
⌊
n − 1

2

⌋
, (3.121)

(4; k, k,+) with 1 ≤ k ≤
⌊
n − 1

2

⌋
, (3.122)

(4; n/2, ℓ,+) with 1 ≤ ℓ ≤ n
2
− 1, (3.123)

where n ≥ 3 and (4; n/2, ℓ,+) exists only when n is even.
The irreducible representation (4; k, 0,+) is given by

T (4;k,0,+)(r) =
[

S
I

]
, T (4;k,0,+)(s) =

[
I

S

]
, (3.124)

T (4;k,0,+)(p1) =
[
Rk

I

]
, T (4;k,0,+)(p2) =

[
I

Rk

]
, (3.125)
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where
R =

[
cos(2π/n) − sin(2π/n)
sin(2π/n) cos(2π/n)

]
, S =

[
1
−1

]
, I =

[
1

1

]
. (3.126)

The irreducible representation (4; k, k,+) is given by

T (4;k,k,+)(r) =
[

S
I

]
, T (4;k,k,+)(s) =

[
S

S

]
, (3.127)

T (4;k,k,+)(p1) =
[
Rk

R−k

]
, T (4;k,k,+)(p2) =

[
Rk

Rk

]
. (3.128)

The irreducible representation (4; n/2, ℓ,+) is given by

T (4;n/2,ℓ,+)(r) =
[

S
I

]
, T (4;n/2,ℓ,+)(s) =

[
S

I

]
, (3.129)

T (4;n/2,ℓ,+)(p1) =
[
−I

R−ℓ

]
, T (4;n/2,ℓ,+)(p2) =

[
Rℓ

−I

]
. (3.130)

Let us assume that, for (4; k, 0,+), the variablew = (w1,w2,w3,w4)⊤ for the bifurcation equation
(3.108) corresponds to the column vectors of

Q(4;k,0,+) = [⟨cos(2πk n1/n)⟩, ⟨sin(2πk n1/n)⟩, ⟨cos(2πkn2/n)⟩, ⟨sin(2πkn2/n)⟩] (3.131)

in (3.86). The variables w for (4; k, k,+) and (4; n/2, ℓ,+) can be defined similarly. The spatial
patterns for these vectors are depicted in Fig. 3.9 for n = 6.

Using complex variables
(z1, z2) = (w1 + iw2,w3 + iw4),

we can express the actions in (4; k, 0,+), given in (3.124) and (3.125) for the 4-dimensional vectors
(w1, . . . ,w4), as

r :
[
z1
z2

]
7→

[
z2
z1

]
, s :

[
z1
z2

]
7→

[
z1
z2

]
,

p1 :
[
z1
z2

]
7→

[
ωk z1

z2

]
, p2 :

[
z1
z2

]
7→

[
z1
ωk z2

]
,

(3.132)

where ω = exp(i2π/n). The actions in (4; k, k,+), given in (3.127) and (3.128), are

r :
[
z1
z2

]
7→

[
z2
z1

]
, s :

[
z1
z2

]
7→

[
z2
z1

]
,

p1 :
[
z1
z2

]
7→

[
ωk z1
ω−k z2

]
, p2 :

[
z1
z2

]
7→

[
ωk z1
ωk z2

]
.

(3.133)

The actions in (4; n/2, ℓ,+), given in (3.129) and (3.130), are

r :
[
z1
z2

]
7→

[
z2
z1

]
, s :

[
z1
z2

]
7→

[
z1
z2

]
,

p1 :
[
z1
z2

]
7→

[
−z1
ω−ℓz2

]
, p2 :

[
z1
z2

]
7→

[
ωℓz1
−z2

]
.

(3.134)
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The actions of p1 and p2 in (4; k, ℓ,+) are expressed in a unified form as

p1 :
[
z1
z2

]
7→

[
ωk z1
ω−ℓz2

]
, p2 :

[
z1
z2

]
7→

[
ωℓz1
ωk z2

]
. (3.135)

Isotropy Subgroups
To apply the method of analysis in Section 3.5.2, we identify isotropy subgroups for (4; k, 0,+),

(4; k, k,+), and (4; n/2, ℓ,+) that are relevant to square patterns. We denote the isotropy subgroup
of z = (z1, z2) and the fixed-point subspace of Σ with respect to T (4;k,ℓ,+) with ℓ ∈ {0, k} as

Σ
(4;k,ℓ,+)(z) = {g ∈ G | T (4;k,ℓ,+)(g) · z = z}, (3.136)

Fix(4;k,ℓ,+)(Σ) = {z | T (4;k,ℓ,+)(g) · z = z for all g ∈ Σ}, (3.137)

where T (4;k,ℓ,+)(g) · z means the action of g ∈ G = D4 ⋉ (Zn ×Zn) on z given in (3.132) and (3.133).
We also define

ň =
n

gcd(n, k), ǩ =
k

gcd(n, k), ñ =
n

gcd(n, ℓ), ℓ̃ =
ℓ

gcd(n, ℓ), (3.138)

where gcd(·, ·) means the greatest common divisor of the integers therein.
The symmetries of ⟨r⟩ and ⟨r, s⟩ and the translational symmetry of p1

ap2
b are dealt with in

Propositions 3.9, 3.10, and 3.11 below. In this connection, the isotropy subgroups of z = (z1, z2) =
(1, 1) (i.e., w = (1, 0, 1, 0)⊤) play a crucial role. Remark 3.5 given later should be consulted with
regard to the geometrical interpretation of the propositions below.

Proposition 3.9. For (4; k, 0,+) in (3.49), we have the following statements:
(i) Fix(4;k,0,+)(⟨r⟩) = Fix(4;k,0,+)(⟨r, s⟩) = {c(1, 1) | c ∈ R} for each k.
(ii) p1

ap2
b ∈ Σ(4;k,0,+)((1, 1)) if and only if

ǩa ≡ 0, ǩb ≡ 0 mod ň. (3.139)

(iii) Σ(4;k,0,+)((1, 1)) = Σ(ň, 0) and Fix(4;k,0,+)(Σ(ň, 0)) = {c(1, 1) | c ∈ R}. That is, Σ(ň, 0) is the
isotropy subgroup of z = (1, 1) with dim Fix(4;k,0,+)(Σ(ň, 0)) = 1.

(iv) If Σ(α, β) is an isotropy subgroup (for some z), then (α, β) = (ň, 0) and it is the isotropy
subgroup of z = (1, 1).

(v) Σ0(α, β) is not an isotropy subgroup (for any z) for any value of (α, β).

Proof. (i) By (3.132), z = (z1, z2) is invariant to r if and only if (z2, z1) = (z1, z2), which is
equivalent to z1 = z2 ∈ R. Such z is also invariant to s.

(ii) By (3.135) for (4; k, ℓ,+), the invariance of z = (1, 1) to p1
ap2

b is expressed as

ka + ℓb ≡ 0, −ℓa + kb ≡ 0 mod n, (3.140)

For ℓ = 0, this condition reduces to

ka ≡ 0, kb ≡ 0 mod n,
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which is equivalent to (3.139).
(iii) (a, b) satisfies (3.139) if and only if both a and b are multiples of ň. The subgroup of G

generated by p1
ap2

b for such (a, b), together with r and s, coincides with Σ(ň, 0).
(iv) This follows from (i) and (iii).
(v) This follows from (v). □

Proposition 3.10. For (4; k, k,+) in (3.50), we have the following statements:
(i) Fix(4;k,k,+)(⟨r⟩) = Fix(4;k,k,+)(⟨r, s⟩) = {c(1, 1) | c ∈ R} for each k.
(ii) p1

ap2
b ∈ Σ(4;k,k,+)((1, 1)) if and only if

ǩ(a + b) ≡ 0, ǩ(−a + b) ≡ 0 mod ň. (3.141)

(iii) If ň is even, then we have

Σ
(4;k,k,+)((1, 1)) = Σ(ň/2, ň/2),

Fix(4;k,k,+)(Σ(ň/2, ň/2)) = {c(1, 1) | c ∈ R};

that is, Σ(ň/2, ň/2) is the isotropy subgroup of z = (1, 1) with dim Fix(4;k,k,+)(Σ(ň/2, ň/2)) = 1. If
ň is odd, then we have

Σ
(4;k,k,+)((1, 1)) = Σ(ň, 0),

Fix(4;k,k,+)(Σ(ň, 0)) = {c(1, 1) | c ∈ R};

that is, Σ(ň, 0) is the isotropy subgroup of z = (1, 1) with dim Fix(4;k,k,+)(Σ(ň, 0)) = 1.
(iv) If Σ(α, β) is an isotropy subgroup (for some z), then

(α, β) =
{
(ň/2, ň/2) if ň is even,
(ň, 0) if ň is odd.

(v) Σ0(α, β) is not an isotropy subgroup (for any z) for any value of (α, β).

Proof. (i) By (3.133), z = (z1, z2) is invariant to r if and only if (z2, z1) = (z1, z2), which is
equivalent to z1 = z2 ∈ R. Such z is also invariant to s.

(ii) The condition (3.140) for ℓ = k reduces to

k(a + b) ≡ 0, k(−a + b) ≡ 0 mod n,

which is equivalent to (3.141).
(iii) The condition (3.141) is equivalent to the existence of integers p and q such that[

1 1
−1 1

] [
a
b

]
= ň

[
p
q

]
.

Hence a and b satisfy (3.141) if and only if they are integers expressed as[
a
b

]
= ň

[
1 1
−1 1

]−1 [
p
q

]
=

ň
2

[
1 −1
1 1

] [
p
q

]
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for some integers p and q. When ň is odd, this is equivalent to (a, b) = ň(p′, q′) for integers p′ and
q′. Therefore, the subgroup of G generated by p1

ap2
b with such (a, b), together with r and s, is

given by Σ(ň, 0) with (p′, q′) = (1, 0) or Σ(ň/2, ň/2) with (p, q) = (1, 0) according to whether ň is
odd or even .

(iv) This follows from (i) and (iii).
(v) This follows from (i). □

Proposition 3.11. For (4; n/2, ℓ,+) in (3.51), we have the following statements.
(i) Fix(4;n/2,ℓ,+)(⟨r⟩) = Fix(4;n/2,ℓ,+)(⟨r, s⟩) = {c(1, 1) | c ∈ R} for each ℓ.
(ii) p1

ap2
b ∈ Σ(4;n/2,ℓ,+)((1, 1)) if and only if

1
2

ña + ℓ̃b ≡ 0, −ℓ̃a + 1
2

ñb ≡ 0 mod ñ. (3.142)

(iii) If ñ is odd, then we have

Σ
(4;n/2,ℓ,+)((1, 1)) = Σ(2ñ, 0),

Fix(4;n/2,ℓ,+)(Σ(2ñ, 0)) = {c(1, 1) | c ∈ R};

that is, Σ(2ñ, 0) is the isotropy subgroup of z = (1, 1) with dim Fix(4;n/2,ℓ,+)(Σ(2ñ, 0)) = 1. If ñ is
even and ñ/2 is odd, then we have

Σ
(4;n/2,ℓ,+)((1, 1)) = Σ(ñ/2, ñ/2),

Fix(4;n/2,ℓ,+)(Σ(ñ/2, ñ/2)) = {c(1, 1) | c ∈ R};

that is, Σ(ñ/2, ñ/2) is the isotropy subgroup of z = (1, 1) with dim Fix(4;n/2,ℓ,+)(Σ(ñ/2, ñ/2)) = 1.
If ñ is even and ñ/2 is even, then we have

Σ
(4;n/2,ℓ,+)((1, 1)) = Σ(ñ, 0),

Fix(4;n/2,ℓ,+)(Σ(ñ, 0)) = {c(1, 1) | c ∈ R};

that is, Σ(ñ, 0) is the isotropy subgroup of z = (1, 1) with dim Fix(4;n/2,ℓ,+)(Σ(ñ, 0)) = 1.
(iv) If Σ(α, β) is an isotropy subgroup (for some z), then

(α, β) =

(2ñ, 0) if ñ is odd,
(ñ, 0) if ñ is even, and ñ/2 is even,
(ñ/2, ñ/2) if ñ is even, and ñ/2 is odd.

(v) Σ0(α, β) is not an isotropy subgroup (for any z) for any value of (α, β).

Proof. (i) By (3.134), z = (z1, z2) is invariant to r if and only if (z2, z1) = (z1, z2), which is
equivalent to z1 = z2 ∈ R. Such z is also invariant to s.

(ii) The condition (3.140) for k = n/2 reduces to
n
2

a + ℓb ≡ 0, −ℓa + n
2

b ≡ 0 mod n,
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which is equivalent to (3.142).
(iii) When ñ is odd, (3.143) gives p and q are even, that is, (p, q) = (2p′, 2q′) for integers p′

and q′. Then, we have (a, b) = ñ(2p′, 2q′) = 2ñ(p′, q′). When ñ is even, from (3.142), we have
(a, b) = (ñ/2)(p, q) for integers p and q and this equation is rewritten as

ñ
2

p + ℓ̃q ≡ 0, −ℓ̃p +
ñ
2

q ≡ 0 mod 2. (3.143)

When ñ is even and ñ/2 is even, we have ℓ̃ odd and (p, q) = (2p′′, 2q′′). Hence, we have
(a, b) = (ñ/2)(2p′′, 2q′′) = ñ(p′′, q′′) for integers p′′ and q′′. When ñ is even and ñ/2 is odd (ℓ̃
odd), we have (a, b) = (ñ/2)(p, q) for p + q even. Therefore, the subgroup of G generated by
p1

ap2
b with such (a, b), together with r and s, is given by Σ(2ñ, 0)with (p′, q′) = (1, 0), Σ(ñ, 0)with

(p′′, q′′) = (1, 0), or Σ(ñ/2, ñ/2) with (p, q) = (1, 1), according to whether ñ is odd, ñ/2 is even, or
ñ/2 is odd.

(iv) This follows from (i) and (iii).
(v) This follows from (i). □

The above propositions show that, in either case of (4; k, 0,+), (4; k, k,+), and (4; n/2, ℓ,+), any
isotropy subgroup Σ containing ⟨r⟩, which is of our interest, can be represented as Σ = Σ(4;k,ℓ,+)(z)
for z = (1, 1) and that dim Fix(4;k,ℓ,+)(Σ) = 1. On the basis of this fact, we will investigate possible
occurrences of square patterns for each of the three types V, M, and T in the remaining of this
section.

Remark 3.5. The four-dimensional space of w = (w1,w2,w3,w4)⊤ for the bifurcation equation
(3.108) is spanned by the column vectors of

Q(4;k,ℓ,+) = [q1, q2, q3, q4], (3.144)

the concrete form of which is given in (3.86)–(3.88). For example, the spatial patterns for these
vectors with n = 6 are depicted in Fig. 3.9. The two vectors q1 and q3 represent stripe patterns
in different directions. The sum qsum = q1 + q3 of these two vectors, which is associated with
z = (1, 1), represents square patterns.

□

Square Patterns of Type V
Square patterns of type V are here shown to branch from critical points of multiplicity 4.

Recall that a square pattern of type V is characterized by the symmetry of Σ(α, 0) with 2 ≤ α ≤ n
compatible with n (see 3.102 and 3.104) and that D(α, 0) = α2.

The following proposition is concerned with the square patterns of type V.

Proposition 3.12. Square patterns of type V with the symmetry of Σ(α, 0) (α ≥ 3) arise as
bifurcating solutions from critical points of multiplicity 4 for specific values of n and associated
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q1 q2 q3 q4 q1 + q3 (⟨r, s⟩)
(a) Q(4;1,0,+)

q1 q2 q3 q4 q1 + q3 (⟨r, s⟩)
(b) Q(4;2,0,+)

q1 q2 q3 q4 q1 + q3 (⟨r, s⟩)
(c) Q(4;1,1,+)

q1 q2 q3 q4 q1 + q3 (⟨r, s⟩)
(d) Q(4;2,2,+)

q1 q2 q3 q4 q1 + q3 (⟨r, s⟩)
(e) Q(4;3,1,+)

q1 q2 q3 q4 q1 + q3 (⟨r, s⟩)
(f) Q(4;3,2,+)

Figure 3.9: Patterns on the 6× 6 square lattice expressed by the column vectors of Qµ for four-dimensional irreducible
representations. A black circle denotes a positive component, and a white circle denotes a negative component.
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irreducible representations given by

(α, β) D n (k, ℓ) in (4; k, ℓ,+)
(α, 0) α2 αm (pm, 0)
(α, 0) α2 αm (pm, pm) (α is odd)
(α, 0) α2 αm (αm/2, pm) (α is even, and α/2 is even)
(α, 0) α2 αm (αm/2, 2p′m) (α is even, and α/2 is odd)

(3.145)

where m ≥ 1 and

gcd(p, α) = 1, 1 ≤ p < α/2, (3.146)
gcd(p′, α/2) = 1, 1 ≤ p′ < α/4. (3.147)

Proof. By Propositions 3.9, 3.10, and 3.11, we have three possibilities: (4; k, 0,+), (4; k, k,+),
and (4; n/2, ℓ,+). For (4; k, 0,+), we fix α and look for (k, n) that satisfies (3.121) and ň = α.
For such (k, n), Σ(α, 0) = Σ(ň, 0) is an isotropy subgroup with dim Fix(4;k,0,+) (Σ(α, 0)) = 1 by
Proposition 3.9. Then, the equivariant branching lemma (Section 3.5.2) guarantees the existence
of a bifurcating solution with symmetry Σ(α, 0).

For (4; k, k,+), we fix α that is odd and look for (k, n) that satisfies (3.122) and ñ = α, and
proceed in a similar manner using Proposition 3.10.

For (4; n/2, ℓ,+), we fix α that is even and look for (ℓ, n) that satisfies (3.123) and ñ = α/2 for
α/2 odd and ñ = α for α/2 even, and proceed in a similar manner using Proposition 3.11.

Suppose that (k, n) for (k, ℓ) = (pm, 0) and (pm, pm) is given by (3.145) with (3.146). Then,
m = gcd(k, n) by gcd(p, α) = 1 and ň = n/gcd(k, n) = n/m = α. We have k = pm ≥ 1 and
k/n = p/α < 1/2, thereby showing 1 ≤ k ≤

⌊ n−1
2

⌋
in (3.121) for (4; pm, 0,+) and (3.122) for

(4; pm, pm,+).
Suppose that (ℓ, n) for (k, ℓ) = (αm/2, pm) is given by (3.145) with (3.146). Then m = gcd(n, ℓ)

by gcd(p, α) = 1 and ñ = n/gcd(ℓ, n) = n/m = α. We have ℓ = pm ≥ 1 and ℓ/n = p/α < 1/2,
thereby showing (3.123).

Suppose that (ℓ, n) for (k, ℓ) = (αm/2, 2p′m) is given by (3.145) with (3.147). Then 2m =
gcd(n, ℓ) by gcd(p′, α/2) = 1 and ñ = n/gcd(ℓ, n) = n/(2m) = α/2. We have ℓ = 2p′m ≥ 1 and
ℓ/n = 2p′/α < 1/2, thereby showing (3.123).

Conversely, suppose that (k, n) satisfies ň = α, and (3.121) or (3.122). Then we have α = ň =
n/gcd(k, n), which shows gcd(k, n) = n/α is an integer, say m. We also have k = ǩ gcd(k, n) = mp
for p = ǩ. Then gcd(p, α) = gcd(ǩ, ň) = 1, p = ǩ ≥ 1, and p/α = k/n < 1/2 by (3.121) or (3.122),
thereby showing (3.146).

Suppose that α/2 is even and (ℓ, n) satisfies ñ = α, and (3.123). Then we have α = ñ =
n/gcd(ℓ, n), which shows gcd(ℓ, n) = n/α is an integer, say m. We also have ℓ = ℓ̃ gcd(ℓ, n) = mp
for p = ℓ̃. Then gcd(p, α) = gcd(ℓ̃, ñ) = 1, p = ℓ̃ ≥ 1, and p/α = ℓ/n < 1/2 by (3.123), thereby
showing (3.146).

Suppose that α/2 is odd and (ℓ, n) satisfies 2ñ = α and (3.123). Then we have α = 2ñ =
2n/gcd(ℓ, n), which shows gcd(ℓ, n) = 2n/α is an even integer, say 2m. We also have ℓ =
ℓ̃ gcd(ℓ, n) = 2mp′ for p′ = ℓ̃. Then gcd(p′, α/2) = gcd(ℓ̃, ñ) = 1, p′ = ℓ̃ ≥ 1, and p′/α = ℓ/(2n) <
1/4 by (3.123), thereby showing (3.147).
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The above argument is in fact valid for α ≥ 2. For α = 2, however, the condition 1 ≤ p < α/2
or 1 ≤ p′ < α/4 is already a contradiction, which proves the nonexistence of the square pattern
with D = 4 (α = 2). □

Example 3.3. The parameter values of (3.145) in Proposition 3.12 give

(α, β) D n (k, ℓ) in (4; k, ℓ,+)
(3, 0) 9 3m (m, 0); (m,m)
(4, 0) 16 4m (m, 0); (2m,m)
(5, 0) 25 5m (m, 0), (2m, 0); (m,m), (2m, 2m)
(6, 0) 36 6m (m, 0); (3m, 2m)
(7, 0) 49 7m (m, 0), (2m, 0), (3m, 0); (m,m), (2m, 2m), (3m, 3m)
(8, 0) 64 8m (m, 0), (3m, 0); (4m,m), (4m, 3m)

where m ≥ 1. For each α ≥ 3, there exists at least one eligible (k, n) for (4; k, 0,+) in (3.145); for
instance, (k, n) = (m, αm), which corresponds to p = 1.

□

Square Patterns of Type M
Square patterns of type M are shown here to branch from critical points of multiplicity 4. Recall

that a square pattern of type M is characterized by the symmetry of Σ(β, β) with 1 ≤ β ≤ n/2
compatible with n (see (3.102) and (3.104)) and D(β, β) = 2β2.

The following proposition is concerned with the square patterns of type M.

Proposition 3.13. Square patterns of type M with the symmetry of Σ(β, β) (β ≥ 2) arise as
bifurcating solutions from critical points of multiplicity 4 for specific values of n and associated
irreducible representations given by

(α, β) D n (k, ℓ) in (4; k, ℓ,+)
(β, β) 2β2 2βm (pm, pm)
(β, β) 2β2 2βm (βm, pm) (β is odd)

(3.148)

where m ≥ 1 and
gcd(p, 2β) = 1, 1 ≤ p < β. (3.149)

Proof. By Propositions 3.9, 3.10, and 3.11, we have two possibilities: (4; k, k,+) and (4; n/2, ℓ,+)
and look for (k, n) that satisfies (3.122) or (3.123) and the condition that

for (4; k, k,+): ň is even, and β = ň/2, (3.150)
for (4; n/2, ℓ,+): ň is even, ñ/2 is odd, and β = ñ/2. (3.151)

For such parameter value (k, n) in (3.150), Σ(β, β) = Σ(ň/2, ň/2) is an isotropy subgroup with

dim Fix(4;k,k,+)(Σ(β, β)) = 1 (3.152)
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by Proposition 3.10. For such parameter value (ℓ, n) in (3.151), Σ(β, β) = Σ(ñ/2, ñ/2) is an isotropy
subgroup with

dim Fix(4;n/2,ℓ,+)(Σ(β, β)) = 1 (3.153)
by Proposition 3.11. Then, the equivariant branching lemma (Section 3.5.2) guarantees the exis-
tence of a bifurcating solution with symmetry Σ(β, β) for both (4; k, k,+) and (4; n/2, ℓ,+).

For (4; k, k,+), suppose that (k, n) is given by (3.148). Then m = gcd(k, n) by gcd(p, 2β) = 1,
and ň = n/gcd(k, n) = 2β, which shows (3.150). As for the condition (3.122), we first observe that
k/n = p/(2β) < 1/2, which shows k < n/2. The case of (4; n/2, ℓ,+) can be treated similarly.

Conversely, for (4; k, k,+), suppose that (k, n) satisfies (3.122) and (3.150). Put m′ = gcd(k, n)
to obtain n = m′ň = 2m′β and k = m′ǩ = m′p for p = ǩ. Hence we have (k, n) = (pm′, 2βm′),
where gcd(p, 2β) = gcd(ǩ, ň) = 1 and p/(2β) = k/n < 1/2, thereby showing (3.149). The case of
(4; n/2, ℓ,+) can be treated similarly.

The above argument is valid also for β = 1. For β = 1, however, no p satisfies 1 ≤ p < β. This
proves the nonexistence of the square pattern with D = 2. □

Example 3.4. The parameter values of (3.148) in Proposition 3.13 give

(α, β) D n (k, ℓ) in (4; k, ℓ,+)
(2, 2) 8 4m (m,m)
(3, 3) 18 6m (m,m); (3m,m)
(4, 4) 32 8m (m,m), (3m, 3m),
(5, 5) 50 10m (m,m), (3m, 3m); (5m,m), (5m, 3m)
(6, 6) 72 12m (m,m), (5m, 5m)

where m ≥ 1. For each β ≥ 2, there exists at least one eligible (k, n) in (3.148); for instance,
(k, n) = (m, 2βm), which corresponds to p = 1.

□

Square Patterns of Type T
It is shown that square patterns of type T do not appear from critical points of multiplicity

4. Recall that a square pattern of type T is characterized by the symmetry of Σ0(α, β) with
1 ≤ α ≤ n − 1, 1 ≤ β ≤ n − 1, α , β (see (3.39)). The following proposition denies the existence
of square patterns of type T.

Proposition 3.14. Square patterns of type T with the symmetry of Σ0(α, β) 1 ≤ α ≤ n−1, 1 ≤ β ≤
n − 1, α , β do not arise as bifurcating solutions from critical points of multiplicity 4 for any n.

Proof. By Propositions 3.9, 3.10, and 3.11, Σ0(α, β) is not an isotropy subgroup with respect to
neither (4; k, 0,+), nor (4; k, k,+), nor (4; , n/2, ℓ). □

Possible Square Patterns for Several Lattice Sizes
We have investigated possible occurrences of square patterns for each of the three types V, M,

and T, and enumerated all possible parameter values of n for the lattice size and k for the associated
irreducible representations (4; k, 0,+), (4; k, k,+), and/or (4; n/2, ℓ,+). By compiling the obtained
facts, we can capture, for each n, all square patterns that can potentially arise from critical points
of multiplicity 4. The result is given in Tables 3.11–3.14 for several lattice sizes n.
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Table 3.11: Square patterns arising from critical points of multiplicity 4 for several lattice sizes n (ň is given for
(4; k, 0,+) and (4; k, k,+), and ñ is given for (4; n/2, ℓ,+)).

n (k, ℓ) in (4; k, ℓ, +) ň ñ (α, β) D Type
3 (1, 0) 3 (3, 0) 9 V
(1, 1)

4 (1, 0) 4 (4, 0) 16 V
(2, 1) 4
(1, 1) 4 (2, 2) 8 M

5 (1, 0), (2, 0) 5 (5, 0) 25 V
(1, 1), (2, 2)

6 (2, 0) 3 (3, 0) 9 V
(2, 2)
(1, 0) 6 (6, 0) 36 V
(3, 2) 3
(1, 1) 6 (3, 3) 18 M
(3, 1) 6

7 (1, 0), (2, 0), (3, 0) 7 (7, 0) 49 V
(1, 1), (2, 2), (3, 3)

8 (2, 0) 4 (4, 0) 16 V
(4, 2) 4
(1, 0), (3, 0) 8 (8, 0) 64 V
(4, 1), (4, 3) 8
(2, 2) 4 (2, 2) 8 M
(1, 1), (3, 3) 8 (4, 4) 32 M

9 (3, 0) 3 (3, 0) 9 V
(3, 3)
(1, 0), (2, 0), (4, 0) 9 (9, 0) 81 V
(1, 1), (2, 2), (4, 4)

10 (2, 0), (4, 0) 5 (5, 0) 25 V
(2, 2), (4, 4)
(1, 0), (3, 0) 10 (10, 0) 100 V
(5, 2), (5, 4) 5
(1, 1), (3, 3) 10 (5, 5) 50 M
(5, 1), (5, 3) 10

11 (1, 0), (2, 0), (3, 0), (4, 0), (5, 0) 11 (11, 0) 121 V
(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)

12 (4, 0) 3 (3, 0) 9 V
(4, 4)
(3, 0) 4 (4, 0) 16 V
(6, 3) 4
(2, 0) 6 (6, 0) 36 V
(6, 4) 3
(1, 0), (5, 0) 12 (12, 0) 144 V
(6, 1), (6, 5) 12
(3, 3) 4 (2, 2) 8 M
(2, 2) 6 (3, 3) 18 M
(6, 2) 6
(1, 1), (5, 5) 12 (6, 6) 72 M

13 (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0) 13 (13, 0) 169 V
(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)
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Table 3.12: Square patterns arising from critical points of multiplicity 4 for several lattice sizes n (ň is given for
(4; k, 0,+) and (4; k, k,+), and ñ is given for (4; n/2, ℓ,+)).

n (k, ℓ) in (4; k, ℓ, +) ň ñ (α, β) D Type
14 (2, 0), (4, 0), (6, 0) 7 (7, 0) 49 V

(2, 2), (4, 4), (6, 6)
(1, 0), (3, 0), (5, 0) 14 (14, 0) 196 V
(7, 2), (7, 4), (7, 6) 7
(1, 1), (3, 3), (5, 5) 14 (7, 7) 98 M
(7, 1), (7, 3), (7, 5) 14

15 (5, 0) 3 (3, 0) 9 V
(5, 5)
(3, 0), (6, 0) 5 (5, 0) 25 V
(3, 3), (6, 6)
(1, 0), (2, 0), (4, 0), (7, 0) 15 (15, 0) 225 V
(1, 1), (2, 2), (4, 4), (7, 7)

16 (4, 0) 4 (4, 0) 16 V
(8, 4) 4
(2, 0), (6, 0) 8 (8, 0) 64 V
(8, 2), (8, 6) 8
(1, 0), (3, 0), (5, 0), (7, 0) 16 (16, 0) 256 V
(8, 1), (8, 3), (8, 5), (8, 7) 16
(4, 4) 4 (2, 2) 8 M
(2, 2), (6, 6) 8 (4, 4) 32 M
(1, 1), (3, 3), (5, 5), (7, 7) 16 (8, 8) 72 M

17 (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0), (8, 0) 17 (17, 0) 289 V
(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (8, 8)

18 (6, 0) 3 (3, 0) 9 V
(6, 6)
(3, 0) 6 (6, 0) 36 V
(9, 6) 3
(2, 0), (4, 0), (8, 0) 9 (9, 0) 81 V
(2, 2), (4, 4), (8, 8)
(1, 0), (5, 0), (7, 0) 18 (18, 0) 324 V
(9, 2), (9, 4), (9, 8) 9
(3, 3) 6 (3, 3) 18 M
(9, 3) 6
(1, 1), (5, 5), (7, 7) 18 (9, 9) 162 M
(9, 1), (9, 5), (9, 7) 18

19 (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0), (8, 0), (9, 0) 19 (19, 0) 361 V
(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (8, 8), (9, 9)

20 (5, 0) 4 (4, 0) 16 V
(10, 5) 4
(4, 0), (8, 0) 5 (5, 0) 25 V
(4, 4), (8, 8)
(2, 0), (6, 0) 10 (10, 0) 100 V
(10, 4), (10, 8) 5
(1, 0), (3, 0), (7, 0), (9, 0) 20 (20, 0) 400 V
(10, 1), (10, 3), (10, 7), (10, 9) 20
(5, 5) 4 (2, 2) 8 M
(2, 2), (6, 6) 10 (5, 5) 50 M
(10, 2), (10, 6) 10
(1, 1), (3, 3), (7, 7), (9, 9) 20 (10, 10) 200 M
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Table 3.13: Square patterns arising from critical points of multiplicity 4 for several lattice sizes n (ň is given for
(4; k, 0,+) and (4; k, k,+), and ñ is given for (4; n/2, ℓ,+)).

n (k, ℓ) in (4; k, ℓ, +) ň ñ (α, β) D Type
21 (7, 0) 3 (3, 0) 9 V

(7, 7)
(3, 0), (6, 0), (9, 0) 7 (7, 0) 49 V
(3, 3), (6, 6), (9, 9)
(1, 0), (2, 0), (4, 0), (5, 0), (8, 0), (10, 0) 21 (21, 0) 441 V
(1, 1), (2, 2), (4, 4), (5, 5), (8, 8), (10, 10)

22 (2, 0), (4, 0), (6, 0), (8, 0), (10, 0) 11 (11, 0) 121 V
(2, 2), (4, 4), (6, 6), (8, 8), (10, 10)
(1, 0), (3, 0), (5, 0), (7, 0), (9, 0) 22 (22, 0) 484 V
(11, 2), (11, 4), (11, 6), (11, 8), (11, 10) 11
(1, 1), (3, 3), (5, 5), (7, 7), (9, 9) 22 (11, 11) 242 M
(11, 1), (11, 3), (11, 5), (11, 7), (11, 9) 22

23 (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0), (8, 0), (9, 0), (10, 0) 23 (23, 0) 529 V
(11, 0)
(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (8, 8), (9, 9), (10, 10)
(11, 11)

24 (8, 0) 3 (3, 0) 9 V
(8, 8)
(6, 0) 4 (4, 0) 16 V
(12, 6) 4
(4, 0) 6 (6, 0) 36 V
(12, 8) 3
(3, 0), (9, 0) 8 (8, 0) 64 V
(12, 3), (12, 9) 8
(2, 0), (10, 0) 12 (12, 0) 144 V
(12, 2), (12, 10) 12
(1, 0), (5, 0), (7, 0), (11, 0) 24 (24, 0) 576 V
(12, 1), (12, 5), (12, 7)(12, 11) 24
(6, 6) 4 (2, 2) 8 M
(4, 4) 6 (3, 3) 18 M
(12, 4) 6
(3, 3), (9, 9) 8 (4, 4) 32 M
(2, 2), (10, 10) 12 (6, 6) 72 M
(1, 1), (5, 5), (7, 7), (11, 11) 24 (12, 12) 288 M

25 (5, 0), (10, 0) 5 (5, 0) 25 V
(5, 5), (10, 10)
(1, 0), (2, 0), (3, 0), (4, 0), (6, 0), (7, 0), (8, 0), (9, 0), (11, 0), (12, 0) 25 (25, 0) 625 V
(1, 1), (2, 2), (3, 3), (4, 4), (6, 6), (7, 7), (8, 8), (9, 9), (11, 11), (12, 12)

26 (2, 0), (4, 0), (6, 0), (8, 0), (10, 0), (12, 0) 13 (13, 0) 169 V
(2, 2), (4, 4), (6, 6), (8, 8), (10, 10), (12, 12)
(1, 0), (3, 0), (5, 0), (7, 0), (9, 0), (11, 0) 26 (26, 0) 676 V
(13, 2), (13, 4), (13, 6), (13, 8), (13, 10), (13, 12) 13
(1, 1), (3, 3), (5, 5), (7, 7), (9, 9), (11, 11) 26 (13, 13) 338 M
(13, 1), (13, 3), (13, 5), (13, 7), (13, 9), (13, 11) 26
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Table 3.14: Square patterns arising from critical points of multiplicity 4 for several lattice sizes n (ň is given for
(4; k, 0,+) and (4; k, k,+), and ñ is given for (4; n/2, ℓ,+)).

n (k, ℓ) in (4; k, ℓ, +) ň ñ (α, β) D Type
27 (9, 0) 3 (3, 0) 9 V

(9, 9)
(3, 0), (6, 0), (12, 0) 9 (9, 0) 81 V
(3, 3), (6, 6), (12, 12)
(1, 0), (2, 0), (4, 0), (5, 0), (7, 0), (8, 0), (10, 0), (11, 0), (13, 0) 27 (27, 0) 729 V
(1, 1), (2, 2), (4, 4), (5, 5), (7, 7), (8, 8), (10, 10), (11, 11), (13, 13) 27

28 (7, 0) 4 (4, 0) 16 V
(14, 7) 4
(4, 0), (8, 0), (12, 0) 7 (7, 0) 49 V
(4, 4), (8, 8), (12, 12)
(2, 0), (6, 0), (10, 0) 14 (14, 0) 392 V
(14, 4), (14, 8), (14, 12) 7
(1, 0), (3, 0), (5, 0), (9, 0), (11, 0), (13, 0) 28 (28, 0) 784 V
(14, 1), (14, 3), (14, 5), (14, 9), (14, 11), (14, 13) 28
(7, 7) 24 (2, 2) 8 M
(2, 2), (6, 6), (10, 10) 14 (7, 7) 98 M
(14, 2), (14, 6), (14, 10) 14
(1, 1), (3, 3), (5, 5), (9, 9), (11, 11), (13, 13) 28 (14, 14) 392 M

29 (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0), (8, 0), (9, 0), (10, 0) 29 (29, 0) 841 V
(11, 0), (12, 0), (13, 0), (14, 0)
(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (8, 8), (9, 9), (10, 10)
(11, 11), (12, 12), (13, 13), (14, 14)

30 (10, 0) 3 (3, 0) 9 V
(10, 10)
(6, 0), (12, 0) 5 (5, 0) 25 V
(6, 6), (12, 12)
(5, 0) 6 (6, 0) 36 V
(15, 10) 3
(3, 0), (9, 0) 10 (10, 0) 100 V
(15, 6), (15, 12) 5
(2, 0), (4, 0), (8, 0), (14, 0) 15 (15, 0) 225 V
(2, 2), (4, 4), (8, 8), (14, 14)
(1, 0), (7, 0), (11, 0), (13, 0) 30 (30, 0) 900 V
(15, 2), (15, 4), (15, 8), (15, 14) 15
(5, 5) 6 (3, 3) 18 M
(15, 5) 6
(3, 3), (9, 9) 10 (5, 5) 50 M
(15, 3), (15, 9) 10
(1, 1), (7, 7), (11, 11), (13, 13) 30 (15, 15) 450 M
(15, 1), (15, 7), (15, 11), (15, 13) 30
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3.5.6. Bifurcation Point of Multiplicity 8
We investigate square patterns branching from critical points of multiplicity 8. The emergence

of tilted square patterns of type T is the most phenomenal finding of this section. In addition, larger
square patterns of type V and type M also branch.

Representation in Complex Variables
As shown by Table 3.10 in Section 3.5.2, a critical point of multiplicity 8 is associated with the

eight-dimensional irreducible representation (8; k, ℓ) with

1 ≤ ℓ ≤ k − 1, 2 ≤ k ≤
⌊
n − 1

2

⌋
, (3.154)

where n ≥ 5.
Recall from (3.62)–(3.63) that the irreducible representation (8; k, ℓ) is given by

T (8;k,ℓ)(r) =


S

I
I

S

 , T (8;k,ℓ)(s) =


I

I
I

I

 , (3.155)

T (8;k,ℓ)(p1) =


Rk

R−ℓ

Rk

R−ℓ

 , T (8;k,ℓ)(p2) =


Rℓ

Rk

R−ℓ

R−k

 (3.156)

with
R =

[
cos(2π/n) − sin(2π/n)
sin(2π/n) cos(2π/n)

]
, S =

[
1
−1

]
, I =

[
1

1

]
. (3.157)

Let us assume that the variable w = (w1,w2,w3,w4,w5,w6,w7,w8)⊤ for the bifurcation equation
in (3.108) corresponds to the column vectors of

Q(8;k,ℓ) = [⟨cos(2π(kn1 + ℓn2)/n)⟩, ⟨sin(2π(kn1 + ℓn2)/n)⟩,
⟨cos(2π(−ℓn1 + kn2)/n)⟩, ⟨sin(2π(−ℓn1 + kn2)/n)⟩,
⟨cos(2π(kn1 − ℓn2)/n)⟩, ⟨sin(2π(kn1 − ℓn2)/n)⟩,
⟨cos(2π(−ℓn1 − kn2)/n)⟩, ⟨sin(2π(−ℓn1 − kn2)/n)⟩],

1 ≤ ℓ ≤ k − 1, 2 ≤ k ≤
⌊
n − 1

2

⌋
. (3.158)

The spatial patterns for these vectors are depicted in Fig. 3.10 for n = 6.
The action given in (3.155) and (3.156) on 8-dimensional vectors (w1, . . . ,w8) can be expressed
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(a) q1 (b) q2 (c) q3 (d) q4 (e) q5

(f) q6 (g) q7 (h) q8 (i) q1 + q3 + q5 + q7 (⟨r, s⟩)

Figure 3.10: Patterns on the 6 × 6 square lattice expressed by the column vectors of Q(8;2,1). A black circle denotes a
positive component, and a white circle denotes a negative component.

for complex variables z j = w2 j−1 + iw2 j ( j = 1, . . . , 4) as

r :


z1
z2
z3
z4

 7→

z2
z1
z4
z3

 , s :


z1
z2
z3
z4

 7→

z3
z4
z1
z2

 , (3.159)

p1 :


z1
z2
z3
z4

 7→

ωk z1
ω−ℓ z2
ωk z3
ω−ℓ z4

 , p2 :


z1
z2
z3
z4

 7→

ωℓ z1
ωk z2
ω−ℓ z3
ω−k z4

 , (3.160)

where ω = exp(i2π/n).

Summary of the Theoretical Results
We preview the major ingredients of our analysis for critical points of multiplicity 8 associated

with (8; k, ℓ).
We denote the isotropy subgroup of z = (z1, . . . , z4) with respect to (8; k, ℓ) as

Σ
(8;k,ℓ)(z) = {g ∈ G | T (8;k,ℓ)(g) · z = z}, (3.161)

where T (8;k,ℓ)(g) · z means the action of g ∈ G = D4 ⋉ (Zn × Zn) on z given in (3.159) and (3.160).
It turns out that the isotropy subgroup of z = (1, 1, 0, 0) plays a crucial role in our analysis and that

Σ
(8;k,ℓ)((1, 1, 0, 0)) = Σ0(α, β) (3.162)
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irred. rep.
(k, ℓ) →(Φ)→ symmetry

(α, β) →(Eq. Br. Lemma)→ bifurcating
solution

Figure 3.11: Two stages of bifurcation analysis at a critical point of multiplicity 8.

for a uniquely determined (α, β) with 0 ≤ β ≤ α ≤ n (see Proposition 3.21). We denote this
correspondence (k, ℓ) 7→ (α, β) = (α(k, ℓ, n), β(k, ℓ, n)) by

Φ(k, ℓ, n) = (α, β). (3.163)

In a sense, (k, ℓ) and (α, β) are dual to each other; (k, ℓ) prescribes the action of the translations p1
and p2, and (α, β) describes the symmetry preserved under this action.7

Whereas the concrete form of the correspondenceΦ is discussed in detail in Appendix A.2, the
following proposition shows the most fundamental formulas connecting (k, ℓ) and (α, β). We use
the notations:

k̂ =
k

gcd(k, ℓ, n), ℓ̂ =
ℓ

gcd(k, ℓ, n), n̂ =
n

gcd(k, ℓ, n), (3.164)

where gcd(k, ℓ, n) means the greatest common divisor of k, ℓ, and n.

Proposition 3.15. Let (α, β) = Φ(k, ℓ, n).
(i)

n̂ =
D(α, β)

gcd(α, β) . (3.165)

(ii)
n̂

gcd(k̂2 + ℓ̂2, n̂)
= gcd(α, β). (3.166)

Proof. The proof is given in Appendix A.3; see Propositions A.7(ii) and A.8. It is mentioned here
that the proof relies on the Smith normal form for integer matrices. □

Our analysis of bifurcation consists of two stages (see Fig. 3.11):

1. Connect the irreducible representation (k, ℓ) to the associated symmetry represented by (α, β)
by obtaining the function Φ : (k, ℓ) 7→ (α, β).

2. Connect the symmetry represented by (α, β) to the existence of bifurcating solutions on the
basis of the equivariant branching lemma.

Proposition 3.16 below is a preview of a major result (Proposition 3.24) in a simplified form.
For classification of bifurcation into several cases, we consider the condition

GCD-div: 2 gcd(k̂, ℓ̂) is not divisible by gcd(k̂2 + ℓ̂2, n̂), (3.167)

and the negation of this condition is referred to as GCD-div. The set of even integers is denoted
by 2Z below.

7 In an analogy with physics we may compare (k, ℓ) to frequency and (α, β) to wave length.
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Proposition 3.16. For a critical point of multiplicity 8, let (8; k, ℓ) be the associated irreducible
representation and (α, β) = Φ(k, ℓ, n). The bifurcation at this point is classified as follows.

Case 1: GCD-div and gcd(k̂ − ℓ̂, n̂) < 2Z: A bifurcating solution with symmetry Σ(n̂, 0) exists.
This solution is of type V.

Case 2: GCD-div and gcd(k̂ − ℓ̂, n̂) ∈ 2Z: A bifurcating solution with symmetry Σ(n̂/2, n̂/2)
exists. This solution is of type M.

Case 3: GCD-div and gcd(k̂ − ℓ̂, n̂) < 2Z: Bifurcating solutions with symmetries Σ(n̂, 0),
Σ0(α, β), and Σ0(β, α) exist.8 The first solution is of type V, and the other two solutions are of type T.

Case 4: GCD-div and gcd(k̂ − ℓ̂, n̂) ∈ 2Z: Bifurcating solutions with symmetries Σ(n̂/2, n̂/2),
Σ0(α, β), and Σ0(β, α) exist. The first solution is of type M, and the other two solutions are of type T.

The classification criteria for the above four cases become more transparent when expressed in
terms of (α, β) (= Φ(k, ℓ, n)) rather than (k, ℓ). The expressions in terms of (α, β) can be obtained
from Proposition 3.17 below, where

α̂ =
α

gcd(α, β), β̂ =
β

gcd(α, β), (3.168)

D̂ = α̂2 + β̂2 =
D(α, β)
(gcd(α, β))2

. (3.169)

It is noted in passing that an alternative expression

D̂ = gcd(k̂2 + ℓ̂2, n̂) (3.170)

results from (3.165), (3.166), and (3.169).

Proposition 3.17. Let (α, β) = Φ(k, ℓ, n).
(i) gcd(k̂ − ℓ̂, n̂) ∈ 2Z ⇐⇒ D̂ ∈ 2Z.
(ii) GCD-div in (3.167) ⇐⇒ β = 0 or α = β.

Proof. The proof is given in Appendix A.3; see Proposition A.7(i) and Proposition A.12. It is
mentioned here that the proof of the equivalence in (ii) relies on the Smith normal form for integer
matrices and the integer analogue of the Farkas lemma. □

Propositions 3.16 and 3.17 together yield Table 3.15 that summarizes the classification of
bifurcation phenomena into the four cases in terms of both (k, ℓ) and (α, β).

An important observation here is that the classification into the four cases in Proposition 3.16,
as well as in Table 3.15, can also be described in terms of the subgroup Σ0(α, β). The following
proposition shows how the conditions “β = 0 or α = β” and “D̂ ∈ 2Z” can be replaced by
conditions for Σ0(α, β).

8 To be precise, Σ0(β, α) should be denoted as Σ0(α′, β′) with (α′, β′) in (3.178), which lies in the parameter space
of (3.99).
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Table 3.15: The classification of bifurcation at a critical point associated with (8; k, ℓ) with (α, β) = Φ(k, ℓ, n).

gcd(k̂ − ℓ̂, n̂) < 2Z gcd(k̂ − ℓ̂, n̂) ∈ 2Z
D̂ < 2Z D̂ ∈ 2Z

GCD-div Case 1: Case 2:
β = 0 or α = β type V type M

GCD-div Case 3: Case 4:
β , 0 and α , β type V and type T type M and type T

Table 3.16: Bifurcation at a critical point associated with (8; k, ℓ) classified in terms of the subgroup Σ0(α, β) for
(α, β) = Φ(k, ℓ, n).

Σ0(α, β) ∩ Σ0(β, α) Σ0(α, β) ∩ Σ0(β, α)
= Σ0(α′′, 0) = Σ0(β′′, β′′)

Σ0(α, β) = Σ0(β, α) Case 1: Case 2:
type V type M

Σ0(α, β) , Σ0(β, α) Case 3: Case 4:
type V and type T type M and type T

Proposition 3.18.
(i) Σ0(α, β) = Σ0(β, α) ⇐⇒ β = 0 or α = β.
(ii)

Σ0(α, β) ∩ Σ0(β, α) =
{
Σ0(α′′, 0) if D̂ < 2Z,
Σ0(β′′, β′′) if D̂ ∈ 2Z

(3.171)

with
α′′ =

D(α, β)
gcd(α, β), β′′ =

D(α, β)
2 gcd(α, β) . (3.172)

Proof. (i) This is obvious from the definition of Σ0(α, β) in (3.102).
(ii) The proof is given in Proposition A.4 in Appendix A.3. □

By Proposition 3.18 above, we can rewrite Table 3.15 as Table 3.16. In particular, solutions
of type T exist if and only if Σ0(α, β) is asymmetric in the sense of Σ0(α, β) , Σ0(β, α). Not
only is this statement intuitively appealing, but it plays a crucial role in our technical arguments in
Appendix A.3.

Remark 3.6. Some comments are in order about (3.171) in each case corresponding to type V,
type M, or type T.

• If β = 0, we have D̂ = 1 and α′′ = D(α, 0)/gcd(α, 0) = α2/α = α.

• If α = β, we have D̂ = 2 and β′′ = D(β, β)/(2 gcd(β, β)) = (2β2)/(2β) = β.
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• For (α, β) with 1 ≤ β < α, we have D̂ = 5, 10, 13, 17, 20, and so on, some of which satisfy
D̂ ∈ 2Z, while others do not.

It should be also mentioned that the identity (3.171) is purely geometric in that it is valid for all
(α, β) that may or may not be related to irreducible representation (8; k, ℓ). If (α, β) is associated
with (8; k, ℓ), we have α′′ = n̂ and β′′ = n̂/2 by (3.165) and (3.172), respectively.

□

Isotropy Subgroups
To apply the method of analysis described in Section 3.5.2, we identify isotropy subgroups for

(8; k, ℓ) related to square patterns.
We denote the fixed-point subspace of Σ in terms of z = (z1, . . . , z4) as

Fix(8;k,ℓ)(Σ) = {z | T (8;k,ℓ)(g) · z = z for all g ∈ Σ}, (3.173)

where T (8;k,ℓ)(g) · z means the action of g ∈ G = D4 ⋉ (Zn × Zn) on z given in (3.159) and (3.160).
Also recall from (3.161) the notation Σ(8;k,ℓ)(z) for the isotropy subgroup of z.

The symmetries of ⟨r⟩ and ⟨r, s⟩ are dealt with in Proposition 3.19 below, and the translational
symmetry p1

ap2
b is considered thereafter. Remark 3.10 below should be consulted with regard to

the geometrical interpretation of the following discussion.

Proposition 3.19.
(i) Fix(8;k,ℓ)(⟨r⟩) = {c(1, 1, 0, 0) + c′(0, 0, 1, 1) | c, c′ ∈ R}.
(ii) Fix(8;k,ℓ)(⟨r, s⟩) = {c(1, 1, 1, 1) | c ∈ R}.

Proof. (i) By (3.159), z is invariant to r if and only if (z2, z1, z4, z3) = (z1, z2, z3, z4), which is
equivalent to z1 = z2 ∈ R and z3 = z4 ∈ R.

(ii) By (3.159), z is invariant to s if and only if (z3, z4, z1, z2) = (z1, z2, z3, z4), which is equivalent
to z1 = z3 and z2 = z4. Hence z is invariant to both r and s if and only if z1 = z2 = z3 = z4 ∈ R. □

The above proposition implies that any isotropy subgroup Σ containing ⟨r⟩, which is of our
interest, can be represented as Σ = Σ(8;k,ℓ)(z) for some vector z of the form

z = c(1, 1, 0, 0) + c′(0, 0, 1, 1), c, c′ ∈ R, (3.174)

and that dim Fix(8;k,ℓ)(Σ) ≤ 2.
We now turn to the invariance to the translational symmetry p1

ap2
b.

Proposition 3.20.
(i) p1

ap2
b ∈ Σ(8;k,ℓ)((1, 1, 0, 0)) if and only if

k̂a + ℓ̂b ≡ 0, ℓ̂a − k̂b ≡ 0 mod n̂. (3.175)

(ii) p1
ap2

b ∈ Σ(8;k,ℓ)((0, 0, 1, 1)) if and only if

k̂a − ℓ̂b ≡ 0, ℓ̂a + k̂b ≡ 0 mod n̂. (3.176)
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Proof. (i) By (3.160), the invariance of z = (1, 1, 0, 0) to p1
ap2

b is expressed as

ka + ℓb ≡ 0, ℓa − kb ≡ 0 mod n,

which is equivalent to (3.175) with the notations in (3.164).
(ii) By (3.160) the invariance of z = (0, 0, 1, 1) to p1

ap2
b is expressed as

ka − ℓb ≡ 0, ℓa + kb ≡ 0 mod n,

which is equivalent to (3.176). □

The isotropy subgroup of z = c(1, 1, 0, 0) + c′(0, 0, 1, 1) of the form of (3.174) is identified in
the following two propositions: the case with cc′ = 0 in Proposition 3.21 and the case with cc′ , 0
in Proposition 3.22.

Proposition 3.21.
(i) For each (k, ℓ), we have

Σ
(8;k,ℓ)((1, 1, 0, 0)) = Σ0(α, β) (3.177)

for a uniquely determined (α, β) with 0 ≤ β < n, 0 < α ≤ n.
(ii) For the (α, β) associated with (k, ℓ) as in (i) above, define

(α′, β′) =
{
(β, α) if β > 0,
(α, 0) if β = 0.

(3.178)

Then we have
Σ
(8;k,ℓ)((0, 0, 1, 1)) = Σ0(α′, β′). (3.179)

Proof. (i) By (3.159), Σ(8;k,ℓ)((1, 1, 0, 0)) contains r and not s. To investigate the translation
symmetry, denote by A(k, ℓ, n) the set of all (a, b) satisfying (3.175). That is,

A(k, ℓ, n) = {(a, b) ∈ Z2 | k̂a + ℓ̂b ≡ 0, ℓ̂a − k̂b ≡ 0 mod n̂}. (3.180)

Then A(k, ℓ, n) is closed under integer combination, i.e., if (a1, b1), (a2, b2) ∈ A(k, ℓ, n), then
n1(a1, b1) + n2(a2, b2) ∈ A(k, ℓ, n) for any n1, n2 ∈ Z. Next, if (a, b) ∈ A(k, ℓ, n), then (a′, b′) =
(−b, a) also belongs to A(k, ℓ, n) since

k̂a′ + ℓ̂b′ = k̂(−b) + ℓ̂a = ℓ̂a − k̂b ≡ 0 mod n̂,

ℓ̂a′ − k̂b′ = ℓ̂(−b) − k̂a = −(k̂a + ℓ̂b) ≡ 0 mod n̂.

The above argument shows that A(k, ℓ, n) coincides with a set of the form

L(α, β) = {(a, b) ∈ Z2 | (a, b) = n1(α, β) + n2(−β, α), n1, n2 ∈ Z} (3.181)

for some appropriately chosen integers α and β. For such (α, β) we have

Σ
(8;k,ℓ)((1, 1, 0, 0)) = ⟨r⟩ ⋉ ⟨p1

αp2
β, p1

−βp2
α⟩ = Σ0(α, β).
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To see the uniqueness of (α, β) we note the obvious correspondence between L(α, β) and the
square sublatticeH(α, β) in (3.4). By Proposition 3.1,H(α, β) is uniquely parameterized by (α, β)
with 0 ≤ β < α. Furthermore, we have α ≤ n as a consequence of the fact that L(α, β) contains
no point (a, b) of the form of (a, b) = x(α, β) + y(−β, α) with 0 < x < 1 and 0 < y < 1, which lies
in the interior of the parallelogram formed by its basis vectors (α, β) and (−β, α). To prove this by
contradiction, suppose that α > n and consider the point (a, b) = (α − n, β). This point belongs to
L(α, β), satisfying the defining conditions in of A(k, ℓ, n) in (3.180), whereas the corresponding
(x, y) satisfies 0 < x < 1 and 0 < y < 1, which is a contradiction.

(ii) Since
(0, 0, 1, 1) = T (8;k,ℓ)(s) · (1, 1, 0, 0),

it follows using the relation for the orbit Σ(T(g)u) = g · Σ(u) · g−1 (g ∈ G), (3.177), (3.32), and
(3.178) in this order that

Σ
(8;k,ℓ)((0, 0, 1, 1)) = s · Σ(8;k,ℓ)((1, 1, 0, 0)) · s−1 = s · Σ0(α, β) · s−1 = Σ0(β, α) = Σ0(α′, β′).

□

We denote the correspondence (k, ℓ) 7→ (α, β) = (α(k, ℓ, n), β(k, ℓ, n)) defined by (3.177) in
Proposition 3.21 as

Φ(k, ℓ, n) = (α, β). (3.182)

Remark 3.7. A preliminary explanation is presented here about how the value of (α, β) = Φ(k, ℓ, n)
can be determined, whereas a systematic method is given in Appendix A.2.

The condition for (a, b) ∈ A(k, ℓ, n) in (3.180) is equivalent to the existence of integers p and
q satisfying [

k̂ ℓ̂

ℓ̂ −k̂

] [
a
b

]
= n̂

[
p
q

]
. (3.183)

Hence a pair of integers (a, b) belongs to A(k, ℓ, n) if and only if[
a
b

]
= n̂

[
k̂ ℓ̂

ℓ̂ −k̂

]−1 [
p
q

]
=

n̂

k̂2 + ℓ̂2

[
k̂ ℓ̂

ℓ̂ −k̂

] [
p
q

]
(3.184)

for some integers p and q. There are two cases to consider.

• If n̂/(k̂2 + ℓ̂2) is an integer, a simpler method works. In this case, the right-hand side of
(3.184) gives a pair of integers for any integers p and q. Therefore, we set (p, q) = (1, 0) to
obtain an integer vector [

α
β

]
=

n̂

k̂2 + ℓ̂2

[
k̂
ℓ̂

]
(3.185)

and note that the vectors (a, b)⊤ of integers satisfying (3.183) form a lattice spanned by
(α, β)⊤ and (β,−α)⊤. For (k, ℓ, n) = (3, 1, 20), for example, we have (k̂, ℓ̂, n̂) = (3, 1, 20) and
n̂/(k̂2 + ℓ̂2) = 20/10 = 2, and hence (3.184) reads[

a
b

]
= 2

[
3 1
1 −3

] [
p
q

]
.

This shows Φ(3, 1, 20) = (α, β) = (6, 2), corresponding to (p, q) = (1, 0).
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• If n̂/(k̂2 + ℓ̂2) is not an integer, number-theoretic considerations are needed to determine
(α, β) = Φ(k, ℓ, n). For (k, ℓ, n) = (18, 2, 42), for instance, we have (k̂, ℓ̂, n̂) = (9, 1, 21) and
k̂2 + ℓ̂2 = 82, and (3.184) reads [

a
b

]
=

21
82

[
9 1
1 −9

] [
p
q

]
.

With some inspection we could arrive at Φ(18, 2, 42) = (α, β) = (21, 0), which corresponds
to (p, q) = (9, 1). A systematic procedure based on the Smith normal form is given in
Appendix A.2.

□

Remark 3.8. In the following arguments we shall make use of Propositions 3.15, 3.17, and 3.18
presented in Section 3.5.6. The readers may take these propositions for granted in the first reading,
but those who are interested in mathematical issues are advised to have a look at their proofs given
in Appendix A.3.

□

Proposition 3.22. Let (α, β) = Φ(k, ℓ, n), and define

α′′ =
D(α, β)

gcd(α, β), β′′ =
D(α, β)

2 gcd(α, β) . (3.186)

For distinct nonzero real numbers c and c′ (c , c′), we have the following statements:
(i)

Σ
(8;k,ℓ)((c, c, c, c)) =

{
Σ(α′′, 0) if D̂ < 2Z,
Σ(β′′, β′′) if D̂ ∈ 2Z,

where D̂ is defined in (3.169) and D̂ ∈ 2Z means that D̂ is even.
(ii)

Σ
(8;k,ℓ)((c, c, c′, c′)) =

{
Σ0(α′′, 0) if D̂ < 2Z,
Σ0(β′′, β′′) if D̂ ∈ 2Z.

Proof. We first prove (ii). By (3.159), Σ(8;k,ℓ)((c, c, c′, c′)) contains r and not s. We have

Σ
(8;k,ℓ)((c, c, c′, c′)) = Σ(8;k,ℓ)((1, 1, 0, 0)) ∩ Σ(8;k,ℓ)((0, 0, 1, 1))

= Σ0(α, β) ∩ Σ0(α′, β′),

where the second equality is due to Proposition 3.21. Then the claim follows from Proposi-
tion 3.18(ii).

Next we prove (i). By (3.159), Σ(8;k,ℓ)((c, c, c, c)) contains both r and s. We can proceed in a
similar manner as above while including the element s. Therefore

Σ
(8;k,ℓ)((c, c, c, c)) = Σ(α, β) ∩ Σ(α′, β′),

which implies the claim. □
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A general result

Case 1. (α, β) = (α, 0)
dim FixΣ(α, 0) = 1: type V, z = (1, 1, 1, 1)

dim FixΣ0(α, 0) = 2: non-targeted

Case 2. (α, β) = (β, β)
dim FixΣ(β, β) = 1: type M, z = (1, 1, 1, 1)

dim FixΣ0(β, β) = 2: non-targeted

Case 3. (α, β) : α , β,
1 ≤ α ≤ n − 1, 1 ≤ β ≤ n − 1, D̂ < 2Z

dim FixΣ(α′′, 0) = 1: type V, z = (1, 1, 1, 1)

dim FixΣ0(α, β) = 1: type T, z = (1, 1, 0, 0)

dim FixΣ0(α′, β′) = 1: type T, z = (0, 0, 1, 1)

dim FixΣ0(α′′, 0) = 2: non-targeted

Case 4. (α, β) : α , β,
1 ≤ α ≤ n − 1, 1 ≤ β ≤ n − 1, D̂ ∈ 2Z

dim FixΣ(β′′, β′′) = 1: type M, z = (1, 1, 1, 1)

dim FixΣ0(α, β) = 1: type T, z = (1, 1, 0, 0)

dim FixΣ0(α′, β′) = 1: type T, z = (0, 0, 1, 1)

dim FixΣ0(β′′, β′′) = 2: non-targeted

Figure 3.12: Isotropy subgroups for (8; k, ℓ) with (α, β) = Φ(k, ℓ, n), (α′, β′) in (3.178), and (α′′, β′′) in (3.186).
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In Proposition 3.23, we can present the isotropy subgroups containing ⟨r⟩, with a classification
of the irreducible representations (8; k, ℓ) in terms of (α, β) = Φ(k, ℓ, n). See Fig. 3.12 for the
classification.

Proposition 3.23. For an irreducible representation (8; k, ℓ), let (α, β) = Φ(k, ℓ, n), and define
(α′, β′), α′′ and β′′ by (3.178) and (3.186), respectively. Then the isotropy subgroups containing
⟨r⟩ are given by Σ listed below.

Case 1: (α, β) = (α, 0) with 1 ≤ α ≤ n.
(a) Σ = Σ(α, 0) = Σ(8;k,ℓ)((1, 1, 1, 1)),

Fix(8;k,ℓ)(Σ) = {(c, c, c, c) | c ∈ R}, dim Fix(8;k,ℓ)(Σ) = 1.
(b) Σ = Σ0(α, 0) = Σ(8;k,ℓ)((c, c, c′, c′)) (c , c′, c , 0, c′ , 0),

Fix(8;k,ℓ)(Σ) = {(c, c, c′, c′) | c, c′ ∈ R}, dim Fix(8;k,ℓ)(Σ) = 2.

Case 2: (α, β) = (β, β) with 1 ≤ β ≤ n/2.
(a) Σ = Σ(β, β) = Σ(8;k,ℓ)((1, 1, 1, 1)),

Fix(8;k,ℓ)(Σ) = {(c, c, c, c) | c ∈ R}, dim Fix(8;k,ℓ)(Σ) = 1.
(b) Σ = Σ0(β, β) = Σ(8;k,ℓ)((c, c, c′, c′)) (c , c′, c , 0, c′ , 0),

Fix(8;k,ℓ)(Σ) = {(c, c, c′, c′) | c, c′ ∈ R}, dim Fix(8;k,ℓ)(Σ) = 2.

Case 3: (α, β) with 1 ≤ α ≤ n − 1, 1 ≤ β ≤ n − 1, α , β, and D̂ < 2Z.

(a) Σ = Σ(α′′, 0) = Σ(8;k,ℓ)((1, 1, 1, 1)),
Fix(8;k,ℓ)(Σ) = {(c, c, c, c) | c ∈ R}, dim Fix(8;k,ℓ)(Σ) = 1.

(b) Σ = Σ0(α, β) = Σ(8;k,ℓ)((1, 1, 0, 0)),
Fix(8;k,ℓ)(Σ) = {(c, c, 0, 0) | c ∈ R}, dim Fix(8;k,ℓ)(Σ) = 1.

(c) Σ = Σ0(α′, β′) = Σ(8;k,ℓ)((0, 0, 1, 1)),
Fix(8;k,ℓ)(Σ) = {(0, 0, c′, c′) | c′ ∈ R}, dim Fix(8;k,ℓ)(Σ) = 1.

(d) Σ = Σ0(α′′, 0) = Σ(8;k,ℓ)((c, c, c′, c′)) (c , c′, c , 0, c′ , 0),
Fix(8;k,ℓ)(Σ) = {(c, c, c′, c′) | c, c′ ∈ R}, dim Fix(8;k,ℓ)(Σ) = 2.

Case 4: (α, β) with 1 ≤ α ≤ n − 1, 1 ≤ β ≤ n − 1, α , β, and D̂ ∈ 2Z.

(a) Σ = Σ(β′′, β′′) = Σ(8;k,ℓ)((1, 1, 1, 1)),
Fix(8;k,ℓ)(Σ) = {(c, c, c, c) | c ∈ R}, dim Fix(8;k,ℓ)(Σ) = 1.

(b) Σ = Σ0(α, β) = Σ(8;k,ℓ)((1, 1, 0, 0)),
Fix(8;k,ℓ)(Σ) = {(c, c, 0, 0) | c ∈ R}, dim Fix(8;k,ℓ)(Σ) = 1.

(c) Σ = Σ0(α′, β′) = Σ(8;k,ℓ)((0, 0, 1, 1)),
Fix(8;k,ℓ)(Σ) = {(0, 0, c′, c′) | c′ ∈ R}, dim Fix(8;k,ℓ)(Σ) = 1.

(d) Σ = Σ0(β′′, β′′) = Σ(8;k,ℓ)((c, c, c′, c′)) (c , c′, c , 0, c′ , 0),
Fix(8;k,ℓ)(Σ) = {(c, c, c′, c′) | c, c′ ∈ R}, dim Fix(8;k,ℓ)(Σ) = 2.
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(a) q1 (b) q3 (c) q5 (d) q7
(⟨p1

2p2, p1
−1p2

2⟩) (⟨p1
2p2, p1

−1p2
2⟩) (⟨p1p2

2, p1
−2p2⟩) (⟨p1p2

2, p1
−2p2⟩)

(e) q1 + q3 (f) q5 + q7 (g)
∑

i=1,3,5,7 qi
(Σ0(2, 1) = ⟨r, p1

2p2, p1
−1p2

2⟩) (Σ0(1, 2) = ⟨r, p1p2
2, p1

−2p2⟩) (D4 = ⟨r, s⟩)

Figure 3.13: Patterns on the 5 × 5 square lattice expressed by the column vectors of Q(8;2,1). A white circle denotes a
positive component, and a black circle denotes a negative component.

Proof. With an observation that Σ0(α, β) , Σ0(α′, β′) in Cases 3 and 4, the above classification
follows immediately from Propositions 3.21 and 3.22. □

Remark 3.9. In Case 1 of Proposition 3.23, we may have α = n, in which case Σ(α, 0) = Σ(0, 0) =
⟨r, s⟩ and Σ0(α, 0) = Σ0(0, 0) = ⟨r⟩, and the translational symmetry is absent.

□

Remark 3.10. The isotropy subgroups in Proposition 3.23 can be understood quite naturally with
reference to the column vectors of the matrix

Q(8;k,ℓ) = [q1, . . . , q8]

given in (3.89). The spatial patterns for these vectors are depicted in Fig. 3.13, for example,
for (8; 2, 1) with n = 5. Although the four vectors q1, q3, q5, and q7 do not represent square
patterns (Figs. 3.13(a)–(f)), the sum of these four vectors, which is associated with z = (1, 1, 1, 1)
(w = (1, 0, 1, 0, 1, 0, 1, 0)⊤), represents a square pattern of type V with D = 25 (Fig. 3.13(g)).
Moreover, the sum q1 + q3, which is associated with z = (1, 1, 0, 0), represents square pattern of
type T with D = 5 (Fig. 3.13(e)). On the other hand, the pattern in Fig. 3.13(f), which is associated
with z = (0, 0, 1, 1), represents another square pattern of type T with D = 5.

□

Existence of Square Patterns
A combination of Proposition 3.23 with the equivariant branching lemma (Section 3.5.2) shows

the existence of solutions with the targeted symmetry bifurcating from a critical point associated
with (8; k, ℓ).
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Bifurcating solutions can be classified in accordance with number-theoretic properties of (k, ℓ).
To be specific, it depends on the following two properties:

2 gcd(k̂, ℓ̂) is divisible by gcd(k̂2 + ℓ̂2, n̂), (3.187)
gcd(k̂ − ℓ̂, n̂) ∈ 2Z. (3.188)

We refer to the condition (3.187) as GCD-div and its negation as GCD-div. It should be mentioned
that a simplified version of the following proposition has already been presented as Proposition 3.16
in Section 3.5.6. See also Table 3.15.

Proposition 3.24. From a critical point associated with the irreducible representation (8; k, ℓ),
solutions with the following symmetries emerge as bifurcating solutions, where (α, β) = Φ(k, ℓ, n)
and (α′, β′) is defined in (3.178). We have four cases.

Case 1: GCD-div and gcd(k̂ − ℓ̂, n̂) < 2Z: We have Φ(k, ℓ, n) = (α, β) = (n̂, 0). A bifurcating
solution with symmetry Σ(n̂, 0), which corresponds to z(1) = c(1, 1, 1, 1), exists. This solution is of
type V.

Case 2: GCD-div and gcd(k̂ − ℓ̂, n̂) ∈ 2Z: We have Φ(k, ℓ, n) = (α, β) = (n̂/2, n̂/2). A
bifurcating solution with symmetry Σ(n̂/2, n̂/2), corresponding to z(1) = c(1, 1, 1, 1), exists. This
solution is of type M.

Case 3: GCD-div and gcd(k̂ − ℓ̂, n̂) < 2Z: We have Φ(k, ℓ, n) = (α, β) with 1 ≤ α ≤
n − 1, 1 ≤ β ≤ n − 1, α , β, and D̂ < 2Z. Bifurcating solutions with symmetries Σ(n̂, 0), Σ0(α, β),
and Σ0(α′, β′), corresponding to z(1) = c(1, 1, 1, 1), z(2) = c(1, 1, 0, 0), and z(3) = c(0, 0, 1, 1),
respectively, exist. The first solution is of type V, and the other two solutions are of type T.

Case 4: GCD-div and gcd(k̂ − ℓ̂, n̂) ∈ 2Z: We haveΦ(k, ℓ, n) = (α, β) with 1 ≤ α ≤ n−1, 1 ≤
β ≤ n − 1, α , β, and D̂ ∈ 2Z. Bifurcating solutions with symmetries Σ(n̂/2, n̂/2), Σ0(α, β),
and Σ0(α′, β′), corresponding to z(1) = c(1, 1, 1, 1), z(2) = c(1, 1, 0, 0), and z(3) = c(0, 0, 1, 1),
respectively, exist. The first solution is of type M, and the other two solutions are of type T.

Proof. By Proposition 3.17, as well as Remark 3.6 in Section 3.5.6, the above four cases correspond
to those in Proposition 3.23. In all cases, the relevant subgroup Σ is an isotropy subgroup with
dim Fix(8;k,ℓ)(Σ) = 1 by Proposition 3.23. Then the equivariant branching lemma (Section 3.5.2)
guarantees the existence of a bifurcating solution with symmetry Σ. □

Remark 3.11. The subgroup Σ = Σ0(α, 0), Σ0(β, β), Σ0(n̂, 0) or Σ0(n̂/2, n̂/2) appearing in Propo-
sition 3.23 is an isotropy subgroup with dim Fix(8;k,ℓ)(Σ) = 2, for which the equivariant branching
lemma is not effective. It is emphasized that Proposition 3.24 does not assert the nonexistence of
solutions of these symmetries. Nonetheless, we do not have to deal with these subgroups since
none of these symmetries corresponds to square patterns (see (3.102)).

□

Square Patterns of Type V
Square patterns of type V (with D ≥ 25) are predicted to branch from critical points of

multiplicity 8, whereas smaller square patterns of type V with D = 4, 9, 16 do not exist. Recall
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that a square pattern of type V is characterized by the symmetry of Σ(α, 0) with 2 ≤ α ≤ n (see
(3.102)) and that D(α, 0) = α2.

The following propositions show such nonexistence and existence of square patterns of type V.

Proposition 3.25. Square patterns of type V with D = 4, 9, 16 do not arise as bifurcating solutions
from critical points of multiplicity 8 for any n.

Proof. The proof is given at the end of the proof of Proposition 3.26. □

Proposition 3.26. Square patterns of type V with the symmetry of Σ(α, 0) (5 ≤ α ≤ n) arise as
bifurcating solutions from critical points of multiplicity 8 for specific values of n and irreducible
representations given by

(α, β) D n (k, ℓ) in (8; k, ℓ)
(α, 0) α2 αm ((p + q)m, qm) (3.189)

with m ≥ 1 and
p ≥ 1, q ≥ 1, gcd(p, q, α) = 1, gcd(p, α) < 2Z,{

2(p + q + 1) ≤ α n is even, and m = 1,
2(p + q) + 1 ≤ α otherwise.

(3.190)

Proof. Type V occurs in Case 1 and Case 3 in Proposition 3.24, characterized by the condition
of gcd(k̂ − ℓ̂, n̂) < 2Z. Put k̂ = p + q and ℓ̂ = q for some p, q ∈ Z and note n̂ = α. Since
gcd(k̂ − ℓ̂, n̂) = gcd(p, α), the condition gcd(k̂ − ℓ̂, n̂) < 2Z holds if and only if gcd(p, α) < 2Z. We
have (k, ℓ, n) = ((p + q)m, qm, αm) for m = gcd(k, ℓ, n). Here we must have

1 = gcd(k̂, ℓ̂, n̂) = gcd(p + q, q, α) = gcd(p, q, α).
The inequality constraint in (3.154) is translated as

1 ≤ ℓ ≤ k − 1, 2 ≤ k ≤
⌊
n − 1

2

⌋
⇐⇒

p ≥ 1, q ≥ 1,

{
2(p + q + 1) ≤ α if n is even and m = 1,
2(p + q) + 1 ≤ α otherwise.

Proposition 3.26 is thus obtained.
To prove Proposition 3.25, we note that, for α = 2, 3, 4, no (p, q) satisfies (3.190), which proves

the nonexistence of the smaller square patterns claimed in Proposition 3.25. □

Example 3.5. The parameter values of (3.189) in Proposition 3.26 give Table 3.17. The asterisk
(·)∗ indicates coexistence of type T (see (3.193)), i.e., Case 3 of Proposition 3.24, whereas unmarked
cases correspond to Case 1 of Proposition 3.24, where no solution of type T coexists.

□

Remark 3.12. In all cases in (3.189), the compatibility condition (3.104) is satisfied for Σ(α, 0) as
n = mα with m = gcd(k, ℓ, n), since we have

gcd(k, ℓ, n) = ((p + q)m, qm, αm) = m gcd(p + q, q, α) = m gcd(p, q, α) = m

by (3.189) and (3.190).
□
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Table 3.17: Correspondence of irreducible representation (8; k, ℓ) to (α, β) for square patterns of type V.

(α, β) D n (k, ℓ) in (8; k, ℓ)
(5, 0) 25 5m (2m,m)∗
(6, 0) 36 6m (2m,m)
(7, 0) 49 7m (2m,m), (3m,m), (3m, 2m)
(8, 0) 64 8m (2m,m), (3m, 2m)
(9, 0) 81 9m (2m,m), (3m,m), (3m, 2m), (4m,m), (4m, 2m), (4m, 3m)
(10, 0) 100 10m (2m,m)∗, (3m, 2m), (4m,m), (4m, 3m)∗
(11, 0) 121 11m (2m,m), (3m,m), (3m, 2m), (4m,m), (4m, 2m), (4m, 3m),

(5m,m), (5m, 2m), (5m, 3m), (5m, 4m)
(12, 0) 144 12m (2m,m), (3m, 2m), (4m,m), (4m, 3m), (5m, 2m), (5m, 4m)
m = 1, 2, . . . ; (·)∗ indicates coexistence of type T (Case 3)

Square Patterns of Type M
Larger square patterns of type M (with D ≥ 32) are predicted to branch from critical points of

multiplicity 8, whereas smaller square patterns of type M with D = 2, 8, 18 do not exist. Recall
that a square pattern of type M is characterized by the symmetry of Σ(β, β) with 1 ≤ β ≤ n/2 (see
(3.102)) and that D(β, β) = 2β2.

The following propositions show such nonexistence and existence of square patterns of type M.

Proposition 3.27. Square patterns of type M with D = 2, 8, 18 do not arise as bifurcating solutions
from critical points of multiplicity 8 for any n.

Proof. The proof is given at the end of the proof of Proposition 3.28. □

Proposition 3.28. Square patterns of type M with the symmetry of Σ(β, β) (4 ≤ β ≤ n/2) arise as
bifurcating solutions from critical points of multiplicity 8 for specific values of n and irreducible
representations given by

(α, β) D n (k, ℓ) in (8; k, ℓ)
(β, β) 2β2 2βm ((2p + q)m, qm) (3.191)

where m ≥ 1 and

p ≥ 1, q ≥ 1, 2p + q ≤ β − 1, q < 2Z, gcd(p, q, β) = 1. (3.192)

Proof. Type M occurs in Case 2 and Case 4 in Proposition 3.24, characterized by the condition of
gcd(k̂ − ℓ̂, n̂) ∈ 2Z. For k̂ − ℓ̂ ∈ 2Z to be true, we can put k̂ = 2p + q and ℓ̂ = q for some p, q ∈ Z.
Then (k, ℓ, n) = ((2p + q)m, qm, 2βm) for m = gcd(k, ℓ, n). Since

1 = gcd(k̂, ℓ̂, n̂) = gcd(2p + q, q, 2β) = gcd(2p, q, 2β),
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Table 3.18: Correspondence of irreducible representation (8; k, ℓ) to (α, β) for square patterns of type M.

(α, β) D n (k, ℓ) in (8; k, ℓ)
(4, 4) 32 8m (3m,m)
(5, 5) 50 10m (3m,m)∗
(6, 6) 72 12m (3m,m), (5m,m), (5m, 3m)
(7, 7) 98 14m (3m,m), (5m,m), (5m, 3m)
(8, 8) 128 16m (3m,m), (5m,m), (5m, 3m), (7m,m), (7m, 3m), (7m, 5m)
(9, 9) 162 18m (3m,m), (5m,m), (5m, 3m), (7m,m), (7m, 3m), (7m, 5m)
(10, 10) 162 20m (3m,m)∗, (5m,m), (5m, 3m), (7m,m)∗, (7m, 3m), (7m, 5m),

(9m,m), (9m, 3m)∗, (9m, 5m), (9m, 7m)∗
(11, 11) 242 22m (3m,m), (5m,m), (5m, 3m), (7m,m), (7m, 3m), (7m, 5m),

(9m,m), (9m, 3m), (9m, 5m), (9m, 7m)
(12, 12) 288 24m (3m,m), (5m,m), (5m, 3m), (7m,m), (7m, 3m), (7m, 5m),

(9m,m), (9m, 5m), (9m, 7m), (11m,m), (11m, 3m), (11m, 5m),
(11m, 7m), (11m, 9m)

m = 1, 2, . . . ; (·)∗ indicates coexistence of type T (Case 3)

we must have q < 2Z and gcd(p, q, β) = 1. The inequality constraint in (3.154) is translated as

1 ≤ ℓ ≤ k − 1, 2 ≤ k ≤
⌊
n − 1

2

⌋
⇐⇒ p ≥ 1, q ≥ 1, 2p + q ≤ β − 1.

Proposition 3.28 is thus proved.
Finally, for β = 1, 2, 3, no (p, q) satisfies (3.192), which proves the nonexistence of the smaller

square patterns claimed in Proposition 3.27. □

Example 3.6. The parameter values of (3.191) in Proposition 3.28 give Table 3.17. The asterisk
(·)∗ indicates the coexistence of type T (see (3.193)), i.e., Case 4 of Proposition 3.24. The other
(unmarked) cases correspond to Case 2 of Proposition 3.24, where no solution of type T coexists.
The coexistence of type T is a relatively rare event; it does not occur for n = 8m, 12m, 14m, but it
recurs for n = 10m.

□

Remark 3.13. In all cases in (3.191), the compatibility condition (3.104) for Σ(β, β) is satisfied as
n = 2mβ with m = gcd(k, ℓ, n), since

gcd(k, ℓ, n) = gcd((2p + q)m, qm, 2βm) = m gcd(2p + q, q, 2β) = m gcd(2p, q, 2β) = m

by (3.191) and (3.192).
□
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Square Patterns of Type T
Square patterns of type T are shown here to branch from critical points of multiplicity 8. Recall

that a square pattern of type T is characterized by the symmetry of Σ0(α, β) with 1 ≤ α ≤ n − 1,
1 ≤ β ≤ n − 1, and α , β (see (3.102)).

The following proposition is concerned with the five square patterns of type T with D = 5, 10,
13, 17 and 20 among ten smallest square patterns.

Proposition 3.29. Square patterns of type T with D = 5, 10, 13, 17, and 20 arise as bifurcating
solutions from critical points of multiplicity 8 for specific values of n and irreducible representations
given by

(α, β) D n (k, ℓ) in (8; k, ℓ)
z(2) = c(1, 1, 0, 0) z(3) = c(0, 0, 1, 1)

(2, 1) 5 5m (2m,m) none
(1, 2) none (2m,m)
(3, 1) 10 10m (3m,m) none
(1, 3) none (3m,m)
(3, 2) 13 13m (3m,m), (6m, 4m) (5m,m)
(2, 3) (5m,m) (3m,m), (6m, 4m)
(4, 1) 17 17m (4m,m), (7m, 6m), (8m, 2m) (5m, 3m)
(1, 4) (5m, 3m) (4m,m), (7m, 6m)(8m, 2m)
(4, 2) 20 20m (4m, 2m) (8m, 6m)
(2, 4) (8m, 6m) (4m, 2m)

(3.193)

where m ≥ 1 is an integer.

Proof. By Proposition 3.24 (Case 3 and 4), a bifurcating solution with symmetry Σ0(α, β) exists
for (k, ℓ) such thatΦ(k, ℓ, n) = (α, β), where the bifurcating solution corresponds to z = c(1, 1, 0, 0).
For such (k, ℓ), another bifurcating solution exists, which corresponds to z = c(0, 0, 1, 1) and is
endowed with the symmetry Σ0(α′, β′) for (α′, β′) given by (3.178). The list of parameters in
(3.193) is obtained by searching for such (k, ℓ) in the range of (3.154) using the method given in
Appendix A.2, which was previewed in Remark 3.7. Alternatively, we can search for such (k, ℓ) in
the range of (3.154) satisfying (3.175) for a given (a, b). □

For square patterns of type T, in general, the above statement extends as follows.

Proposition 3.30. Assume 1 ≤ α ≤ n − 1, 1 ≤ β ≤ n − 1, and α , β for (α, β).
(i) Square patterns of type T with the symmetry of Σ0(α, β) arise as bifurcating solutions from

critical points of multiplicity 8 associated with the irreducible representation (8; k, ℓ) such that
Φ(k, ℓ, n) = (α, β) or (α′, β′), where (α′, β′) is defined by (3.178).

(ii) Some (k, ℓ, n) exist such that Φ(k, ℓ, n) = (α, β) or (α′, β′).

Proof. (i) The proof is the same as the proof of Proposition 3.29.
(ii) We can assume α > β by replacing (α, β) by (α′, β′) if necessary. Take

(k, ℓ, n) = m(α̂, β̂,D(α, β)/gcd(α, β)),
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for instance. Then m = gcd(k, ℓ, n) and (k̂, ℓ̂, n̂) = (α̂, β̂,D(α, β)/gcd(α, β)), and therefore

k̂2 + ℓ̂2 = α̂2 + β̂2 = n̂/gcd(α, β).

This shows that the simpler method of computingΦ(k, ℓ, n), described in Remark 3.7, is applicable.
The right-hand side of (3.185) is calculated as

n̂

k̂2 + ℓ̂2

[
k̂
ℓ̂

]
= gcd(α, β)

[
α̂

β̂

]
=

[
α
β

]
,

which shows Φ(k, ℓ, n) = (α, β).
We also note that the chosen parameter (k, ℓ) lies in the range of (3.154). The inequality

1 ≤ ℓ ≤ k − 1 is immediate from β ≥ 1 and α > β, whereas 2 ≤ k ≤
⌊ n−1

2
⌋

is shown as follows.
The inequality k ≥ 2 holds since α̂ ≥ 2. When n is odd,

2
m

(⌊
n − 1

2

⌋
− k

)
=

1
m
(n − 1 − 2k) = gcd(α, β)(α̂2 + β̂2) − 1

m
− 2α̂

≥ (α̂2 + β̂2) − 1 − 2α̂ = α̂(α̂ − 2) + β̂2 − 1 ≥ 0.

where α̂ ≥ 2 and β̂ ≥ 1 is used in the last inequality. When n is even,

2
m

(⌊
n − 1

2

⌋
− k

)
=

1
m
(n − 2 − 2k) = gcd(α, β)(α̂2 + β̂2) − 2

m
− 2α̂.

If n̂ is odd, we have m even since n is even and

2
m

(⌊
n − 1

2

⌋
− k

)
≥ (α̂2 + β̂2) − 1 − 2α̂ = α̂(α̂ − 2) + β̂2 − 1 ≥ 0.

If n̂ is even,

2
m

(⌊
n − 1

2

⌋
− k

)
≥ (α̂2 + β̂2) − 2 − 2α̂ = [α̂(α̂ − 2) + β̂2 − 1] − 1 ≥ 0

because [α̂(α̂ − 2) + β̂2 − 1 ≥ 1 as (α̂, β̂) = (2, 1), which gives n̂ = 5, is excluded by n̂ even. □

Square patterns of type T appear in Cases 3 and 4 in Proposition 3.24, and these two cases are
characterized by a single condition

GCD-div: 2 gcd(k̂, ℓ̂) is not divisible by gcd(k̂2 + ℓ̂2, n̂). (3.194)

This observation yields the following statement:

Proposition 3.31. A bifurcating solution of type T exists if and only if GCD-div holds.

In addition, we have the following statement for some concrete cases.
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Proposition 3.32. A bifurcating solution of type T does not exist for the cases (n̂, k̂, ℓ̂) = (4k̂, k̂, ℓ̂),
(4ℓ̂, k̂, ℓ̂), and (2k̂ + 2ℓ̂, k̂, ℓ̂).
Proof. First, we show that (n̂, k̂, ℓ̂) = (4k̂, k̂, ℓ̂) contradicts the condition GCD-div in (3.194). Let
gcd(k̂, ℓ̂) = α. Then, we have n̂ = 4k̂ = 4α(k̂/α). Recall that gcd(k̂, ℓ̂, n̂) = 1. If α , 1, then
n̂, k̂, and ℓ̂ have a common divisor α ≥ 2. This contradicts gcd(k̂, ℓ̂, n̂) = 1. Hence, we have
gcd(k̂, ℓ̂) = α = 1. Thus, we rewrite (3.194) as

GCD-div for (n̂, k̂, ℓ̂) = (4k̂, k̂, ℓ̂): 2 is not divisible by gcd(k̂2 + ℓ̂2, 4k̂). (3.195)

This condition is equivalent to that k̂2 + ℓ̂2 and 4k̂ have 4 or a prime number m ≥ 3 as a common
divisor.

• For the case that k̂2 + ℓ̂2 and 4k̂ have 4 as a common divisor, we have

k̂2 + ℓ̂2 = 4p. (3.196)

Here, p is a positive integer. Using k̂2 + ℓ̂2 = (k̂ − ℓ̂)2 + 2k̂ ℓ̂, we have

(k̂ − ℓ̂)2 + 2k̂ ℓ̂ = 4p. (3.197)

Recall that gcd(k̂, ℓ̂) = 1. Hence, either k̂ or ℓ̂, or both are odd. When we consider either k̂
or ℓ̂ is odd, we see that k̂ − ℓ̂ is odd. Hence, (k̂ − ℓ̂)2 is odd. Thus, (k̂ − ℓ̂)2 + 2k̂ ℓ̂ is odd.
This contradicts (3.197). On the other hand, when we consider both k̂ and ℓ̂ are odd, we see
that k̂ − ℓ̂ is even. Hence, (k̂ − ℓ̂)2 is divisible by 4. Since k̂ ℓ̂ is odd, 2k̂ ℓ̂ is not divisible by
4. Hence, (k̂ − ℓ̂)2 + 2k̂ ℓ̂ is not divisible by 4. This contradicts (3.197).

• For the case that k̂2 + ℓ̂2 and 4k̂ have a prime number m ≥ 3 as a common divisor, we have

k̂2 + ℓ̂2 = mp, (3.198)
4k̂ = mq. (3.199)

Here, p and q are positive integers. Multiplying the both sides of (3.198) by q, we have

q(k̂2 + ℓ̂2) = mpq. (3.200)

Multiplying the both sides of (3.199) by p, we have

4pk̂ = mpq. (3.201)

Combining (3.200) and (3.201), we have q(k̂2+ ℓ̂2) = 4pk̂. Hence, we have qℓ̂2 = k̂(4p−qk̂).
Since gcd(k̂, ℓ̂) = 1, q is divisible by k̂. Hence, we have q = r k̂ with some positive integer
r . Substituting this into (3.199), we have m = 4/r . Recall that m ≥ 3. From this, we have
r = 1. Hence, we have m = 4/r = 4. Thus, we have q = r k̂ = k̂. Substituting this into
(3.200), we have k̂2 + ℓ̂2 = 4p. Using k̂2 + ℓ̂2 = (k̂ − ℓ̂)2 + 2k̂ ℓ̂, we have

(k̂ − ℓ̂)2 + 2k̂ ℓ̂ = 4p. (3.202)

This condition is equivalent to (3.197) in the above case. Hence, we have contradiction in a
similar manner to the above case.
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Thus, we see that (n̂, k̂, ℓ̂) = (4k̂, k̂, ℓ̂) contradicts GCD-div. In the same way, we can see that
(n̂, k̂, ℓ̂) = (4ℓ̂, k̂, ℓ̂) contradicts GCD-div.

Next, we show that (n̂, k̂, ℓ̂) = (2k̂ + 2ℓ̂, k̂, ℓ̂) contradicts the condition GCD-div in (3.194).
Let gcd(k̂, ℓ̂) = α. Then, n̂ = 2k̂ + 2ℓ̂ = 2α(k̂ + ℓ̂)/α. Recall that gcd(k̂, ℓ̂, n̂) = 1. If α , 1,
then n̂, k̂, and ℓ̂ have a common divisor α. This contradicts gcd(k̂, ℓ̂, n̂) = 1. Hence, we have
gcd(k̂, ℓ̂) = α = 1. Thus, we rewrite GCD-div as

GCD-div for (n̂, k̂, ℓ̂) = (2k̂ + 2ℓ̂, k̂, ℓ̂): 2 is not divisible by gcd(k̂2 + ℓ̂2, 2k̂ + 2ℓ̂). (3.203)

This condition is equivalent to that k̂2 + ℓ̂2 and 2k̂ + 2ℓ̂ have 4 or a prime number m ≥ 3 as a
common divisor.

• For the case that k̂2 + ℓ̂2 and 2k̂ + 2ℓ̂ have 4 as a common divisor, we have

k̂2 + ℓ̂2 = 4p, (3.204)
2k̂ + 2ℓ̂ = 4q. (3.205)

Here, p and q are positive integers. From (3.205), we have k̂ + ℓ̂ = 2q. Since gcd(k̂, ℓ̂) =
α = 1, k̂ and ℓ̂ are not both even. Hence, we have

k̂ = 2r + 1, (3.206)
ℓ̂ = 2s + 1. (3.207)

Here, r and s are positive integers. Substituting (3.206) and (3.207) into (3.204), we have
(2r + 1)2 + (2s + 1)2 = 4p. Rearranging this, we have

p − r(r + 1) − s(s + 1) = 1/2. (3.208)

This equality has contradiction since p − r(r + 1) − s(s + 1) is an integer.

• For the case that k̂2 + ℓ̂2 and 2k̂ + 2ℓ̂ have a prime number m ≥ 3 as a common divisor, we
have

k̂2 + ℓ̂2 = mp, (3.209)
2k̂ + 2ℓ̂ = mq. (3.210)

Here, p and q are positive integers. Using k̂2 + ℓ̂2 = (k̂ + ℓ̂)2 − 2k̂ ℓ̂, we have

(k̂ + ℓ̂)2 − 2k̂ ℓ̂ = mp. (3.211)

Substituting (3.210) into (3.211), we have q2m2/4 − 2k̂ ℓ̂ = mp. Rearranging this, we have

8k̂ ℓ̂/m = −4p + mq2. (3.212)

Hence, k̂/m or ℓ̂/m is an integer. When we consider k̂/m is an integer, we have k̂ = mr with
some positive integer r . From (3.210), we have ℓ̂ = m(q − r). Hence, ℓ̂ and k̂ has m as a
common divisor. This contradicts gcd(k̂, ℓ̂) = 1. When we consider ℓ̂/m is an integer, we
have contradiction in a similar manner.
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Thus, we see that (n̂, k̂, ℓ̂) = (2k̂ + 2ℓ̂, k̂, ℓ̂) contradicts GCD-div. □

Remark 3.14. The compatibility condition (3.104) for Σ0(α, β) is satisfied as

n = m
D(α, β)

gcd(α, β)
with m = gcd(k, ℓ, n) by (3.165) with (3.164).

□

Possible Square patterns for Several Lattice Sizes
In the previous subsections, we have investigated possible occurrences of square patterns for

each of the three types V, M, and T and have enumerated all possible combinations of lattice size
n and irreducible representation (8; k, ℓ) that can potentially engender square patterns. Compiling
these results, we can capture, for each n, all square patterns that can potentially arise from critical
points of multiplicity 8. The results are given in Tables 3.19 and 3.20 for several lattice sizes. The
results are also incorporated in Table 3.8. Recall from Proposition 3.24 that bifurcating square
patterns are associated with

z =


z(1) = c(1, 1, 1, 1) for type V or type M,
z(2) = c(1, 1, 0, 0) for type T,
z(3) = c(0, 0, 1, 1) for type T.

For n = 5, square patterns of type T exist for the irreducible representation (8; k, ℓ) = (8; 2, 1)
with Σ0(α, β) = Σ0(2, 1) and Σ0(1, 2). For a composite number n = 20 with several divisors, square
patterns of various kinds exist. Subgroups of D4 ⋉ (Zn × Zn) expressing square patterns satisfy the
inclusion relations given below.

Example 3.7. For n = 20, possible square patterns are of types V, M, and T. Subgroups for square
patterns of type T have inclusion relations

Σ0(2, 1) ⊃
{
Σ0(1, 3) ⊃ Σ0(2, 6)
Σ0(4, 2) ⊃ Σ0(8, 4)

}
⊃ Σ0(20, 0) = ⟨r⟩,

Σ0(1, 2) ⊃
{
Σ0(3, 1) ⊃ Σ0(6, 2)
Σ0(2, 4) ⊃ Σ0(4, 8)

}
⊃ Σ0(20, 0) = ⟨r⟩,

and satisfy
Σ0(3, 1) ∩ Σ0(1, 3) = Σ0(5, 5),
Σ0(4, 2) ∩ Σ0(2, 4) = Σ0(10, 0),
Σ0(6, 2) ∩ Σ0(2, 6) = Σ0(10, 10),
Σ0(8, 4) ∩ Σ0(4, 8) = Σ0(20, 0) = ⟨r⟩.

In addition, subgroups for square patterns of types V and M satisfy

Σ(1, 0) ⊃
{
Σ(1, 1) ⊃ Σ(2, 0) ⊃ Σ(2, 2) ⊃ Σ(4, 0) ⊃ Σ(4, 4)
Σ(5, 0) ⊃ Σ(5, 5) ⊃ Σ(10, 0) ⊃ Σ(10, 10)

}
⊃ Σ(20, 0) = ⟨r, s⟩.

□
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Table 3.19: Square patterns of types V, M, and T arising from critical points of multiplicity 8 for the n × n square
lattices with n = 5, 6, 10, 13, 17, 18 (D̂ is defined in (3.169)).

n (k, ℓ) in (8; k, ℓ) n̂ z (α, β) D D̂ Type
5 (2, 1) 5 z(1) (5, 0) 25 1 V

5 z(2) (2, 1) 5 5 T
5 z(3) (1, 2) 5 5 T

6 (2, 1) 6 z(1) (6, 0) 36 1 V
10 (4, 2) 5 z(1) (5, 0) 25 1 V

z(2) (2, 1) 5 5 T
z(3) (1, 2) 5 5 T

(3, 1) 10 z(1) (5, 5) 50 2 M
z(2) (3, 1) 10 10 T
z(3) (1, 3) 10 10 T

(2, 1) 10 z(1) (10, 0) 100 1 V
z(2) (4, 2) 20 20 T
z(3) (2, 4) 20 20 T

(4, 3) 10 z(1) (10, 0) 100 1 V
z(2) (2, 4) 20 20 T
z(3) (4, 2) 20 20 T

(3, 2), (4, 1) 10 z(1) (10, 0) 100 1 V
13 (3, 2), (6, 4) 13 z(1) (13, 0) 169 1 V

z(2) (3, 2) 13 13 T
z(3) (2, 3) 13 13 T

(5, 1) 13 z(1) (13, 0) 169 1 V
z(2) (2, 3) 13 13 T
z(3) (3, 2) 13 13 T

other (k, ℓ)’s 13 z(1) (13, 0) 169 1 V
17 (4, 1), (7, 6), (8, 2) 17 z(1) (17, 0) 172 1 V

z(2) (4, 1) 17 17 T
z(3) (1, 4) 17 17 T

(5, 3) 17 z(1) (17, 0) 172 1 V
z(2) (1, 4) 17 17 T
z(3) (4, 1) 17 17 T

other (k, ℓ)’s 17 z(1) (17, 0) 172 1 V
18 (6, 3) 6 z(1) (6, 0) 36 1 V

(4, 2), (6, 2), (6, 4), (8, 2), (8, 4), (8, 6) 9 z(1) (9, 0) 81 1 V
(2, 1), (3, 2), (4, 1), (4, 3), (5, 2), (5, 4), (6, 1), (6, 5) 18 z(1) (18, 0) 182 1 V
(7, 2), (7, 4), (7, 6), (8, 1), (8, 3), (8, 5), (8, 7)
(3, 1), (5, 1), (5, 3), (7, 1), (7, 3), (7, 5) 18 z(1) (9, 9) 162 2 M
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Table 3.20: Square patterns of types V, M, and T arising from critical points of multiplicity 8 for the n × n square
lattice with n = 20, 24 (D̂ is defined in (3.169)).

n (k, ℓ) in (8; k, ℓ) n̂ z (α, β) D D̂ Type
20 (8, 4) 5 z(1) (5, 0) 25 1 V

z(2) (2, 1) 5 5 T
z(3) (1, 2) 5 5 T

(6, 2) 10 z(1) (5, 5) 50 2 M
z(2) (3, 1) 10 10 T
z(3) (1, 3) 10 10 T

(4, 2) 10 z(1) (10, 0) 100 1 V
z(2) (4, 2) 20 20 T
z(3) (2, 4) 20 20 T

(8, 6) 10 z(1) (10, 0) 100 1 V
z(2) (2, 4) 20 20 T
z(3) (4, 2) 20 20 T

(3, 1), (9, 3) 20 z(1) (10, 10) 200 2 M
z(2) (6, 2) 40 40 T
z(3) (2, 6) 40 40 T

(7, 1), (9, 7) 20 z(1) (10, 10) 200 2 M
z(2) (2, 6) 40 40 T
z(3) (6, 2) 40 40 T

(4, 3), (7, 4), (8, 1), (9, 8) 20 z(1) (20, 0) 400 1 V
z(2) (8, 4) 80 80 T
z(3) (4, 8) 80 80 T

(2, 1), (6, 3), (7, 6), (9, 2) 20 z(1) (20, 0) 400 1 V
z(2) (4, 8) 80 80 T
z(3) (8, 4) 80 80 T

(6, 4), (8, 2) 10 z(1) (10, 0) 100 1 V
(3, 2), (4, 1), (5, 2), (5, 4), (6, 1), (6, 5) 20 z(1) (20, 0) 400 1 V
(7, 2), (8, 3), (8, 5), (8, 7), (9, 4), (9, 6)
(5, 1), (5, 3), (7, 3), (7, 5), (9, 1), (9, 5) 10 z(1) (10, 10) 200 2 M

24 (8, 4) 6 z(1) (6, 0) 36 1 V
(6, 3), (9, 6) 8 z(1) (8, 0) 64 1 V
(4, 2), (6, 4), (8, 2), (8, 6), (10, 4), (10, 8) 12 z(1) (12, 0) 144 1 V
(2, 1), (3, 2), (4, 1), (4, 3), (5, 2), (5, 4), (6, 1), (6, 5) 24 z(1) (24, 0) 242 1 V
(7, 2), (7, 4), (7, 6), (8, 1), (8, 3), (8, 5), (8, 7), (9, 2)
(9, 4), (9, 8), (10, 1), (10, 3), (10, 5), (10, 7), (10, 9)
(11, 2), (11, 4), (11, 6, (11, 8), (11, 10)
(9, 3) 8 z(1) (4, 4) 32 2 M
(6, 2), (10, 2), (10, 6) 12 z(1) (6, 6) 72 2 M
(3, 1), (5, 1), (5, 3), (7, 1), (7, 3), (7, 5), (9, 1) 24 z(1) (12, 12) 288 2 M
(9, 5), (9, 7), (11, 1), (11, 3), (11, 5), (11, 7), (11, 9)
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Table 3.21: Square patterns of types V and M arising from for critical points of all kinds of multiplicity (M = 1, 2, 4, 8)
for the n × n square lattice with n = 18, 24.

n µ or (k, ℓ) in (4; k, ℓ) or (k, ℓ) in (8; k, ℓ) (α, β) D Type M

18 (1;+, +, −) (1, 1) 2 M 1
(2;+, +) (2, 0) 4 V 2
(6, 0) (3, 0) 9 V 4
(6, 6)
(3, 0) (6, 0) 36 V
(9, 6)
(2, 0), (4, 0), (8, 0) (9, 0) 81 V
(2, 2), (4, 4), (8, 8)
(1, 0), (5, 0), (7, 0) (18, 0) 324 V
(9, 2), (9, 4), (9, 8)
(3, 3) (3, 3) 18 M
(9, 3) 18 M
(1, 1), (5, 5), (7, 7) (9, 9) 162 M
(9, 1), (9, 5), (9, 7) 162 M
(6, 3) (6, 0) 36 V 8
(4, 2), (6, 2), (6, 4), (8, 2), (8, 4), (8, 6) (9, 0) 81 V
(2, 1), (3, 2), (4, 1), (4, 3), (5, 2), (5, 4), (6, 1), (6, 5) (18, 0) 182 V
(7, 2), (7, 4), (7, 6), (8, 1), (8, 3), (8, 5), (8, 7)
(3, 1), (5, 1), (5, 3), (7, 1), (7, 3), (7, 5) (9, 9) 162 M

24 (1;+, +, −) (1, 1) 2 M 1
(2;+, +) (2, 0) 4 V 2
(8, 0) (3, 0) 9 V 4
(8, 8)
(6, 0) (4, 0) 16 V
(12, 6)
(4, 0) (6, 0) 36 V
(12, 8)
(3, 0), (9, 0) (8, 0) 64 V
(12, 3), (12, 9)
(2, 0), (10, 0) (12, 0) 144 V
(12, 2), (12, 10)
(1, 0), (5, 0), (7, 0), (11, 0) (24, 0) 576 V
(12, 1), (12, 5), (12, 7)(12, 11)
(6, 6) (2, 2) 8 M
(4, 4) (3, 3) 18 M
(12, 4)
(3, 3), (9, 9) (4, 4) 32 M
(2, 2), (10, 10) (6, 6) 72 M
(1, 1), (5, 5), (7, 7), (11, 11) (12, 12) 288 M
(8, 4) (6, 0) 36 V 8
(6, 3), (9, 6) (8, 0) 64 V
(4, 2), (6, 4), (8, 2), (8, 6), (10, 4), (10, 8) (12, 0) 144 V
(2, 1), (3, 2), (4, 1), (4, 3), (5, 2), (5, 4), (6, 1), (6, 5) (24, 0) 242 V
(7, 2), (7, 4), (7, 6), (8, 1), (8, 3), (8, 5), (8, 7), (9, 2)
(9, 4), (9, 8), (10, 1), (10, 3), (10, 5), (10, 7), (10, 9)
(11, 2), (11, 4), (11, 6), (11, 8), (11, 10)
(9, 3) (4, 4) 32 M
(6, 2), (10, 2), (10, 6) (6, 6) 72 M
(3, 1), (5, 1), (5, 3), (7, 1), (7, 3), (7, 5), (9, 1) (12, 12) 288 M
(9, 5), (9, 7), (11, 1), (11, 3), (11, 5), (11, 7), (11, 9)
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Table 3.22: Square patterns of types V, M, and T arising from for critical points of all kinds of multiplicity (M =
1, 2, 4, 8) for the n × n square lattice with n = 20.

n µ or (k, ℓ) in (4; k, ℓ) or (k, ℓ) in (8; k, ℓ) (α, β) D Type M

20 (1;+, +, −) (1, 1) 2 M 1
(2;+, +) (2, 0) 4 V 2
(5, 0) (4, 0) 16 V 4
(10, 5)
(4, 0), (8, 0) (5, 0) 25 V
(4, 4), (8, 8)
(2, 0), (6, 0) (10, 0) 100 V
(10, 4), (10, 8)
(1, 0), (3, 0), (7, 0), (9, 0) (20, 0) 400 V
(10, 1), (10, 3), (10, 7), (10, 9)
(5, 5) (2, 2) 8 M
(2, 2), (6, 6) (5, 5) 50 M
(10, 2), (10, 6)
(1, 1), (3, 3), (7, 7), (9, 9) (10, 10) 200 M
(8, 4) (5, 0) 25 V 8

(2, 1) 5 T
(1, 2) 5 T

(6, 2) (5, 5) 50 M
(3, 1) 10 T
(1, 3) 10 T

(4, 2) (10, 0) 100 V
(4, 2) 20 T
(2, 4) 20 T

(8, 6) (10, 0) 100 V
(2, 4) 20 T
(4, 2) 20 T

(3, 1), (9, 3) (10, 10) 200 M
(6, 2) 40 T
(2, 6) 40 T

(7, 1), (9, 7) (10, 10) 200 M
(2, 6) 40 T
(6, 2) 40 T

(4, 3), (7, 4), (8, 1), (9, 8) (20, 0) 400 V
(8, 4) 80 T
(4, 8) 80 T

(2, 1), (6, 3), (7, 6), (9, 2) (20, 0) 400 V
(4, 8) 80 T
(8, 4) 80 T

(6, 4), (8, 2) (10, 0) 100 V
(3, 2), (4, 1), (5, 2), (5, 4), (6, 1), (6, 5) (20, 0) 400 V
(7, 2), (8, 3), (8, 5), (8, 7), (9, 4), (9, 6)
(5, 1), (5, 3), (7, 3), (7, 5), (9, 1), (9, 5) (10, 10) 200 M
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q(2;+,+)
1 q(2;+,+)

2 q(2;+,+)
1 + q(2;+,+)

2

(a) Stripe patterns (b) A square pattern

Figure 3.14: Patterns of the eigenvectors q(2;+,+)
1 and q(2;+,+)

2 on the 6 × 6 square lattice. A black circle denotes a
positive component and a white circle denotes a negative component of the associated eigenvector. The size of a circle
represents the magnitude of the associated component.

In particular, possible square patterns for n = 18, 20, 24 for critical points of all kinds of
multiplicity (M = 1, 2, 4, 8) are classified in Tables 3.21 and 3.22.

3.6. Stability of Bifurcating Solutions
In Section 3.5, we showed the existence of square patterns by using the equivariant branching

lemma. In this section, we explain another approach of group-theoretic bifurcation analysis with
bifurcation equations. As worked out in Appendix A.4, we can show the existence of bifurcating
solutions by solving bifurcation equations. In addition, we can investigate the stability of bifurcating
solutions by using the Jacobian matrix.

3.6.1. Illustration of Analysis
Let us consider the bifurcation equation

F̃(w, ϕ̃) = 0 (3.213)

in (3.108), where F̃ : RM × R → RM is a function, and ϕ̃ = ϕ − ϕc denotes the increment of ϕ.
With the use of the matrix representation T µ(g) for the associated irreducible representation µ of
the group G = D4 ⋉ (Zn × Zn), we have the equivariance condition

T µ(g)F̃(w, ϕ̃) = F̃(T µ(g)w, ϕ̃), g ∈ G (3.214)

in (3.109).
We demonstrate, for example, group-theoretic bifurcation analysis of a critical point of multi-

plicity 2 associated with the irreducible representation µ = (2;+,+). The matrices T̃ µ(g) in (3.214)
for µ = (2;+,+) are represented as

T (2;+,+)(r) =
[

1
1

]
, T (2;+,+)(s) =

[
1

1

]
,

T (2;+,+)(p1) =
[
−1

1

]
, T (2;+,+)(p2) =

[
1
−1

]
.
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By the equivariance condition in (3.214), we see that F̃i (i = 1, 2) in (3.213) take the form

F̃1(w1,w2, ϕ̃) = w1

∞∑
a=0

∞∑
b=0

A2a+1,2b(ϕ̃)w1
2aw2

2b, (3.215)

F̃2(w1,w2, ϕ̃) = w2

∞∑
a=0

∞∑
b=0

A2a+1,2b(ϕ̃)w2
2aw1

2b (3.216)

with coefficients A2a+1,2b ∈ R (see Appendix A.4.3 for the proof). We use the column vectors
q(2;+,+)

1 and q(2;+,+)
2 of Q(2;+,+) in (3.85) as the basis vectors of the two-dimensional space for

w = (w1,w2). Fig. 3.14(a) depicts the spatial patterns of q(2;+,+)
1 and q(2;+,+)

2 . We see that these two
vectors represent stripe patterns.

Using the equations in (3.215) and (3.216), we have the following propositions for the existence
and the symmetry of bifurcating solutions.

Proposition 3.33. For a critical point of multiplicity 2 associated with µ = (2;+,+), we have the
following bifurcating solutions:

• the stripe pattern: wstripe = (w, 0) (w ∈ R) [Fig. 3.14(a)],

• the square pattern: wsq = (w,w) (w ∈ R) [Fig. 3.14(b)].

Proof. Substituting wstripe = (w, 0) into (3.215), we have

F̃1(w, 0, ϕ̃) = w

∞∑
a=0

A2a+1,0(ϕ̃)w2a ≈ w
{

A′10(0)ϕ̃ + A30(0)w2} (3.217)

with A′10(0) = ∂A10/∂ϕ̃(0). Thus, F̃1(w, 0, ϕ̃) = 0 represents the ϕ̃ versus w relation for wstripe.
Substituting wstripe into (3.216), we see that F̃2(w, 0, ϕ̃) = 0 is satisfied for any w. Thus, there is a
bifurcating curve satisfying F̃1 = F̃2 = 0 for wstripe. Similar discussion holds for wsq. □

Proposition 3.34. For a critical point of multiplicity 2 associated with µ = (2;+,+), the two
bifurcating solutions (w, ϕ̃) and (−w, ϕ̃) are conjugate for w = wsq, wstripe.

Proof. Since w = (w, 0) and (−w, 0) satisfy the same relation
∑∞

a=0 A2a+1,0(ϕ̃)w2a = 0 (cf., (3.217)),
F̃1(w, 0, ϕ̃) is an odd function in w, that is, F̃1(−w, 0, ϕ̃) = −F̃1(w, 0, ϕ̃). Thus, (wstripe, ϕ̃) and
(−wstripe, ϕ̃) are conjugate solutions for F̃1 = 0. Similar discussion holds for wsq. □

We evaluate the stability of bifurcating solutions. The Jacobian matrix of F̃ becomes

J̃(w, ϕ̃) ≈
[
A′10(0)ϕ̃ + 3A30(0)w1

2 + A12(0)w2
2 2A12(0)w1w2

2A12(0)w1w2 A′10(0)ϕ̃ + 3A30(0)w2
2 + A12(0)w1

2

]
(3.218)

with A′10(0) = ∂A10/∂ϕ̃(0). Evaluating the eigenvalues of J̃ for each bifurcating solution and
employing the assumption that the pre-bifurcation distribution is stable, we have the following
proposition (see Appendix A.4.3 for the proof):
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Table 3.23: Theoretically predicted bifurcating solutions for critical points with multiplicity M .

M Bifurcating solutions (w ∈ R) Existence conditions

1 w if n is even
2 wsq = (w,w) if n is even

wstripe = (w, 0) if n is even
4 wsq = (w, 0,w, 0) Always

wstripeI = (w, 0, 0, 0) Always
wstripeII = (0,w, 0, 0) if ň is even

8 wsqVM = (w, 0,w, 0,w, 0,w, 0) Always
wsqT = (w, 0,w, 0, 0, 0, 0, 0) if 2 gcd(k̂, ℓ̂) is not divisible by gcd(k̂2 + ℓ̂2, n̂)
wupside−downI = (w, 0, 0, 0,w, 0, 0, 0) if (k̂ + ℓ̂) gcd(k̂ + ℓ̂, k̂ − ℓ̂) is not divisible by gcd(2k̂ ℓ̂, n̂)
wupside−downII = (0,w, 0, 0, 0,w, 0, 0) if n̂ is even and

(k̂ + ℓ̂) gcd(k̂ + ℓ̂, k̂ − ℓ̂) is not divisible by gcd(2k̂ ℓ̂, n̂)
wstripeI = (w, 0, 0, 0, 0, 0, 0, 0) if k̂2 + ℓ̂2, 2k̂ ℓ̂, and k̂2 − ℓ̂2 are not divisible by n̂
wstripeII = (0,w, 0, 0, 0, 0, 0, 0) if n̂ is even and

k̂2 + ℓ̂2, 2k̂ ℓ̂, and k̂2 − ℓ̂2 are not divisible by n̂

ň = n/gcd(k, n) for M = 4 in (3.138);
n̂ = n/gcd(k, ℓ, n), k̂ = k/gcd(k, ℓ, n), ℓ̂ = ℓ/gcd(k, ℓ, n) for M = 8 in (3.164)

Proposition 3.35. For a critical point of multiplicity 2 associated with µ = (2;+,+), under the
assumption that all the eigenvalues of the Jacobian matrix other than those for µ = (2;+,+) are
negative, we have the following statements in the neighborhood of the critical point.

• If A30(0) < A12(0) < −A30(0) is satisfied, the square pattern wsq is stable.

• If A12(0) < A30(0) < 0 is satisfied, the stripe pattern wstripe is stable.

• The two solutions wsq and wstripe are not stable simultaneously.

Proposition 3.35 implies possible existence of stable bifurcating solutions from the uniform
distribution for economic geography models on the square lattice. This makes a sharp contrast
with a knowledge on SN invariant space and a hexagonal lattice, for which all bifurcating paths
are unstable in the neighborhood of the bifurcation points (Elmihirst, 2004; Ikeda et al., 2018a;
Aizawa et al., 2020).

3.6.2. Summary of Theoretical Results
Similarly to the case of a critical point of multiplicity 2, we also investigate the existence

and the stability of bifurcating solutions for other bifurcation points. We summarize theoretically
predicted bifurcating solutions in Table 3.23. For these bifurcating solutions, we have the following
propositions (see Appendices A.4.4 and A.4.5 for the proofs):
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Proposition 3.36. For a critical point of multiplicity 4, we have the following statements:

• For µ = (4; k, 0,+) and µ = (4; k, k,+) with ň = 3, under the assumption that all the
eigenvalues of the Jacobian matrix other than those for µ = (4; k, 0,+) and (4; k, k,+) are
negative, the bifurcating solutions wsq and wstripeI are always unstable in the neighborhood
of the critical point. The bifurcating curve takes the form ϕ̃ ≈ cw for some constant c.

• For any other cases, the stability of wsq, wstripeI, and wstripeII depends on the values of the
coefficients of the power series expansion of the bifurcation equation. The bifurcating curve
takes the form ϕ̃ ≈ cw2 for some constant c.

Proposition 3.37. For a critical point of multiplicity 8, we have the following statements:

• For µ = (8; k, ℓ) with (n̂, k̂, ℓ̂) = (5, 2, 1), under the assumption that all the eigenvalues of the
Jacobian matrix other than those for µ = (8; k, ℓ) are negative, the bifurcating solution wsqT
is always unstable in the neighborhood of the critical point. The bifurcating curve takes the
form ϕ̃ ≈ cw for some constant c.

• For any other cases, the stability of wstripeI, wstripeII, wupside−downI, wupside−downII, wsqT, and
wsqVM depends on the values of the coefficients of the power series expansion of the bifurca-
tion equation. The bifurcating curve takes the form ϕ̃ ≈ cw2 for some constant c.

Propositions 3.36 and 3.37 indicate that for particular lattice sizes n, several types of bifurcating
solutions are always unstable in the neighborhood of the critical point. Note that these are common
results for any models with the equivariance to the group G = D4 ⋉ (Zn × Zn).

3.7. Bifurcation Behavior of Economic Geography Models
In this section, we conduct numerical bifurcation analysis for economic geography models on

the square lattice. To emphasize the applicability of theoretical results in this chapter, we employ
three types of economic geography models: the FO model (Forslid and Ottaviano, 2003), the Hm
model (Helpman, 1998), and the PS model (Pflüger and Südekum, 2008). We demonstrate the
emergence of theoretically predicted bifurcating solutions that were presented in Section 3.5 and
Appendix A.4,. We search for bifurcating solution curves and investigate their stability numerically
by using comparative static analysis with respect to the trade freeness, which is one of the major
parameter of economic geography models and is employed here as the bifurcation parameter.

3.7.1. Group Equivariance
The FO model, the Hm model, and the PS model with the replicator dynamics on the n × n

square lattice satisfies the equivariance to G = D4 ⋉ (Zn ×Zn) (see Proposition 2.1 in Section 2.3.2
for the proof):

T(g)F(λ, ϕ) = F(T(g)λ, ϕ), g ∈ G (3.219)

for the K(= n2)-dimensional permutation representation T(g) of G.9 Thus, theoretical results in
this chapter is applicable to these models.

9 The concrete form of T(g) was given in Section 3.4.1.
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Table 3.24: Bifurcating solutions for the 6 × 6 square lattice.

µ Bifurcating solutions (w ∈ R)
(1;+,+,−) w

(2;+,+) wsq = (w,w), wstripe = (w, 0)
(4; 1, 0,+) wsq = (w, 0,w, 0), wstripeI = (w, 0, 0, 0)
(4; 2, 0,+) wsq = (w, 0,w, 0), wstripeI = (w, 0, 0, 0)
(4; 1, 1,+) wsq = (w, 0,w, 0), wstripeI = (w, 0, 0, 0)
(4; 2, 2,+) wsq = (w, 0,w, 0), wstripeI = (w, 0, 0, 0)
(4; 3, 1,+) wsq = (w, 0,w, 0), wstripeI = (w, 0, 0, 0), wstripeII = (0,w, 0, 0)
(4; 3, 2,+) wsq = (w, 0,w, 0), wstripeI = (w, 0, 0, 0), wstripeII = (0,w, 0, 0)
(8; 2, 1) wsqVM = (w, 0,w, 0,w, 0,w, 0),

wupside−downI = (w, 0, 0, 0,w, 0, 0, 0), wupside−downII = (0,w, 0, 0, 0,w, 0, 0),
wstripeI = (w, 0, 0, 0, 0, 0, 0, 0), wstripeII = (0,w, 0, 0, 0, 0, 0, 0),

Note that the uniform distribution

λuniform = (1/K, . . . , 1/K)⊤ (3.220)

on the n × n square lattice satisfies the governing equation in (2.3) for any ϕ.10 All places have the
same economic environments with the same indirect utility vi = v̄ (i = 1, . . . , n2). The uniform
distribution satisfies

T(g)λuniform = λuniform, g ∈ G, (3.221)
and hence this solution is G-symmetric. We investigate group-theoretic critical points on the
uniform distribution in the following subsections.

3.7.2. Theoretically Predicted Bifurcating Solutions
We focus on the 6 × 6 square lattice that accommodates various kinds of bifurcating solutions.

As a consequence of the irreducible decomposition (3.73) of the permutation representation T for
this lattice, the irreducible representation µ of the group G = D4 ⋉ (Z6 × Z6) to be considered in
bifurcation analysis is restricted to

µ = (1;+,+,+), (1;+,+,−), (2;+,+), (4; 1, 0,+), (4; 2, 0,+),
(4; 1, 1,+), (4; 2, 2,+), (4; 3, 1,+), (4; 3, 2,+), (8; 2, 1). (3.222)

Theoretically possible bifurcating solutions associated with µ in (3.222) are listed in Table 3.24
and depicted in Fig. 3.15. Note that for µ = (4; 2, 0,+) and µ = (4; 2, 2,+), the two solutions wsq
and −wsq, which have opposite signs, represent different physical behaviour. The same holds for
the solutions wstripeI and −wstripeI. Other bifurcating solutions with opposite signs represent the
same physical behaviour.

10 We call such distributions as invariant patterns. See Proposition 4.2 in Section 4.3.
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w wsq wstripe wsq wstripeI

(a) µ = (1;+,+,−) (b) µ = (2;+,+) (c) µ = (4; 1, 0,+)

wsq wstripeI wsq wstripeI wsq wstripeI

(d) µ = (4; 2, 0,+) (e) µ = (4; 1, 1,+) (f) µ = (4; 2, 2,+)

wsq wstripeI wstripeII wsq wstripeI wstripeII

(g) µ = (4; 3, 1,+) (h) µ = (4; 3, 2,+)

wsqVM wstripeI wstripeII wupside−downI wupside−downII

(i) µ = (8; 2, 1)

Figure 3.15: Bifurcating solutions for the 6×6 square lattice. A black circle denotes a positive component, and a white
circle denotes a negative component. The size of a circle represents the magnitude of the associated component.
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Remark 3.15. For the 6 × 6 square lattice, we have the following statements:

• For µ = (4; 1, 0,+), (4; 2, 0,+), (4; 1, 1,+), (4; 2, 2,+), the solution wstripeII = (0,w, 0, 0) does
not exist. See Proposition A.17 in Section A.4.4. Note that the condition in Proposition A.17
is not satisfied since ň is odd for these cases.

• For µ = (8; 2, 1), the solution wsqT = (w, 0,w, 0, 0, 0, 0, 0) does not exist. See Proposition
3.32 in Section 3.5.6. This case corresponds to the case (n̂, k̂, ℓ̂) = (2k̂ + 2ℓ̂, k̂, ℓ̂). In fact,
2 gcd(k̂, ℓ̂) = 2 gcd(2, 1) = 2. This is divisible by gcd(k̂2 + ℓ̂2, n̂) = gcd(6, 6) = 1. Hence,
GCD-div in (3.194) is not satisfied.

□

3.7.3. Numerical Bifurcation Analysis
We conduct comparative static analysis for the FO model (Forslid and Ottaviano, 2003), the

Hm model (Helpman, 1998), and the PS model (Pflüger and Südekum, 2008) with respect to the
trade freeness ϕ ∈ (0, 1). We aim to demonstrate the applicability of theoretical results in this
chapter for these models. We focus on group-theoretic critical points on the uniform distribution
λ0 = (1/36, . . . , 1/36)⊤ associated with the irreducible representations µ = (1;+,+,−), µ =
(2;+,+), and µ = (4; 1, 0,+) in (3.222) and compute bifurcating solution curves from these points.
Figures 3.16–3.18 show the results of numerical simulations, in which λmax = max(λ1, . . . , λK) is
plotted against ϕ.

For these three models, the elasticity of substitution σ ∈ (1,∞) and the expenditure share of
manufacturing goods µ ∈ (0, 1) are model parameters. Note that the expenditure share of housing
goods γ ∈ (0, 1) is another model parameter for the PS model. Bifurcating curves for other
irreducible representations are presented in Appendix A.5 for the FO model.

FO model
Figure 3.16 shows equilibrium curves of the FO model. Following Fujita et al. (1999b), we

choose the parameter values as σ = 6.0, µ = 0.4. In the early state where ϕ is small, the uniform
distribution is the only stable equilibrium. When ϕ reaches ϕ∗ in Fig. 3.16(a), the first bifurcation
occurs at the bifurcation point P associated with µ = (1;+,+,−). A 18-centric distribution emerges
and becomes stable at the point B. From the bifurcation point Q associated with µ = (2;+,+), a 9-
centric distribution and a stripe one emerge simultaneously (see Fig. 3.16(b)). From the bifurcation
point R associated with µ = (4; 1, 0,+), a diffused distribution and another stripe one emerge (see
Fig. 3.16(c)). This diffused distribution tends to be agglomerated to a single place and arrives at
the mono-centric distribution that becomes stable when ϕ is close to 1.

The state A of each diagram is consistent with theoretically predicted bifurcating solutions in
Fig. 3.15. After the bifurcation, population tends to be agglomerated completely to places with
the largest positive components of the bifurcation mode. Note that all the bifurcating solutions are
unstable just after the bifurcation. Stable ones are theoretically possible and may exist for other
parameter values.

99



(a) µ = (1;+,+,−)

(b) µ = (2;+,+)

(c) µ = (4; 1, 0,+)

Figure 3.16: Equilibrium curves of the FO model for several irreducible representations µ. Solid curves represent
stable stationary points, and dashed curves represent unstable ones.
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(a) µ = (1;+,+,−)

(b) µ = (2;+,+)

(c) µ = (4; 1, 0,+)

Figure 3.17: Equilibrium curves of the Hm model for several irreducible representations µ. Solid curves represent
stable stationary points, and dashed curves represent unstable ones.
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Hm model
Figure 3.17 shows equilibrium curves of the Hm model. We choose the parameter values

as σ = 2.0, µ = 0.8 in order to realise bifurcation from the uniform distribution.11 When ϕ is
close to 1, the uniform distribution is stable, unlike the FO model. When ϕ decreases to ϕ∗∗ in
Fig. 3.17(c), the first bifurcation occurs at the bifurcation point R associated with µ = (4; 1, 0,+),
and the stable mono-centric agglomeration pattern emerges. Note that this bifurcating solution is
stable (subcritical bifurcation), while the others are unstable.

Similarly to the case of the FO model, we see that population tends to be agglomerated to places
with the largest positive components of the bifurcation mode. Progress of stable equilibria of the
Hm model as ϕ increases 0 to 1, however, is significantly different from that of the FO model.
While the uniform distribution prevails for small ϕ for the FO model, the mono-centric distribution
prevails for small ϕ for the Hm model.

PS model
Figure 3.18 shows equilibrium curves of the PS model. We choose the parameter values as

σ = 3.0, µ = 0.6, γ = 0.2 in reference to Akamatsu et al. (2021); in the early state where ϕ is small,
the stable equilibrium is the uniform distribution. The first bifurcation occurs at the subcritical
bifurcation point P associated with µ = (1;+,+,−) when ϕ decreases to ϕ∗∗∗ in Fig. 3.18(a). Then,
a stable 18-centric distribution emerges. The progress of stable equilibria as ϕ increases of the PS
model is similar to that of the FO model.

3.8. Concluding Remarks
This chapter has tried to exhaustively find bifurcating solutions of economic geography models

on an n × n square lattice by group-theoretic bifurcation analysis. We presented a complete list of
typical bifurcating solutions from the uniform distribution for an arbitrary lattice size n. Possible
bifurcating solutions elucidated in this chapter were square, stripe, and upside-down patterns. In
numerical analysis of several economic geography models, we demonstrated the emergence of
these bifurcating solutions. The stability of bifurcating solutions and the order of occurrence of
particular bifurcations are found to be dependent on the models.

The main message of this chapter is not only to demonstrate the emergence of bifurcating solu-
tions for particular models but also to develop a general theory to understand bifurcation behaviour
for any economic geography model. This chapter would provide the important contribution of
nonlinear mathematics to the study of economic agglomerations in spatial economics.

11 For the Hm model, the uniform distribution is the unique equilibrium, and no bifurcation occurs when (1−µ)σ > 1
(Redding and Sturm, 2008). For the parameter values (σ, µ) = (6.0, 0.4) used for the FO model, no bifurcation,
accordingly, takes place for the Hm model.
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(a) µ = (1;+,+,−)

(b) µ = (2;+,+)

(c) µ = (4; 1, 0,+)

Figure 3.18: Equilibrium curves of the PS model for several irreducible representations µ. Solid curves represent
stable stationary points, and dashed curves represent unstable ones.
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Figure 4.1: Equilibrium curves from the uniform distribution on a square lattice for the FO model (σ = 6.0, µ = 0.4).
Square domains denote population distributions for the associated equilibria. The horizontal axis shows the bifurcation
patameter (trade freeness), and the vertical axis shows the maximum population. Solid curves represent stable stationary
points, and dashed curves represent unstable ones.

4. Invariant Patterns for the Replicator Dynamics

4.1. Introduction
Bifurcation analysis of economic geography models on lattice economies has come to be

simulated in several studies (Ikeda and Murota, 2014; Ikeda et al., 2012b, 2014, 2017b, 2018a).
In these analysis, we have observed a plethora of direct and further bifurcating patterns from the
uniform distribution that form a complicated network of equilibrium curves. This chapter aims to
elucidate the mechanism of this complicated network in the light of geometrical symmetry.

As a hint of this, we refer to an example of bifurcation diagrams for an economic geography
model with the replicator dynamics on a square lattice shown in Fig. 4.1. From the curve OA
of the uniform distribution, a bifurcating curve AB branches and arrives at the curve BC of an
18-centric distribution. It is to be noted that the curves OA and BC are horizontal as the population
distribution remains constant along these curves when the bifurcation parameter changes. We
may wonder why these curves are horizontal. The existence of such constant distributions, called
invariant patterns (Ikeda et al., 2018b), has come to be acknowledged in economic geography
models with the replicator dynamics, which is widely used in economics (Sandholm, 2010). The
horizontal curves are connected by non-horizontal ones AB and DE to form a mesh-like structure.
Moreover, we encounter, in Section 4.4, a complicated mesh-like structure with a large number of
horizontal and non-horizontal curves, just like threads of warp and weft.

That said, this chapter aims to carry out a theoretical study of invariant patterns for the replicator
dynamics on a square lattice. We consider an n × n square lattice that has symmetry expressed
by the finite group D4 ⋉ (Zn × Zn) with periodic boundary conditions. Exploiting the geometrical
symmetry and the structure of the replicator dynamics, We obtain invariant patterns exhaustively,
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including the uniform, mono-centric, and poly-centric distributions. A list of invariant patterns
advanced in this chapter would be of assistance in the study of economic agglomerations.

In addition, we combine invariant patterns with bifurcation mechanisms due to the geometrical
symmetry. We propose the following innovative bifurcation analysis procedure to find stable
equilibria:

• Obtain all invariant patterns and investigate their stability.

• Search for bifurcating equilibrium curves that connect stable invariant patterns and investigate
their stability.

We apply such a procedure to the FO model (Forslid and Ottaviano, 2003) and the PS model
(Pflüger and Südekum, 2008) to observe a network structure of equilibrium curves. We elucidate
the connectivity between the uniform distribution and invariant patterns: Population tends to
be agglomerated to places with the largest positive components of a bifurcating solution from
the uniform distribution, and then the spatial distribution arrives at an invariant pattern via a
bifurcating curve. We see that when two half branches at a bifurcation point are symmetric
(respectively, asymmetric), they would arrive at one (respectively, two) invariant patterns.

A knowledge of invariant patterns have come to be used in analysis of economic geography
models to capture a series of agglomeration patterns of economic interest (Takayama et al., 2020;
Osawa et al., 2020). Such an application of invariant patterns would contribute to the study of
economic geography, in which economic agglomerations are studied for several spatial platforms,
including the two-places economy (Fujita et al., 1999b; Baldwin et al., 2011), a long narrow
economy (Fujita and Mori, 1997; Mori, 1997; Fujita et al., 1999a), and a racetrack economy
(Tabuchi and Thisse, 2011; Mossay and Picard, 2011; Akamatsu et al., 2012). Invariant patterns
on a racetrack economy were observed in several studies (Castro et al., 2012; Ikeda et al., 2012a,
2019b). We use a systematic procedure proposed for a hexagonal lattice (Ikeda et al., 2019a) and
obtain invariant patterns exhaustively.

This chapter is organized as follows. A general framework of economic geography models
with the replicator dynamics is presented in Section 4.2. A theory of invariant patterns for the
replicator dynamics is introduced in Section 4.3. Numerical stability analysis of invariant patterns
on the square lattice is conducted for the FO model and PS model in Section 4.4. The bifurcation
behaviour of the FO model is investigated in detail in Section 4.5 by focusing on the connectivity
of bifurcating solutions from the uniform distribution to invariant patterns.

4.2. Spatial Equilibrium and the Replicator Dynamics
We employ a general framework of economic geography models with the replicator dynamics

that was introduced in Section 2.1. We briefly explain a spatial equilibrium of the economy
comprising K places. Mobile agents (e.g., skilled workers for the FO model) can migrate among
the K places.

Let P = {1, . . . ,K} be the set of places. Define the payoff function vector v = v(λ, ϕ) ∈ RK

as a continuous function of the spatial distribution of mobile agents λ (λi ≥ 0; i ∈ P) and the
trade freeness ϕ. Define a spatial equilibrium as a spatial distribution that satisfies the following
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Figure 4.2: Square lattice.

conditions: {
v∗ − vi = 0 if λi > 0,
v∗ − vi ≤ 0 if λi = 0,

(4.1)

and ∑
i∈P

λi = 1, (4.2)

where v∗ denotes the equilibrium payoff level. This condition means that there is no incentive for
mobile agents to change the location choice.

We consider the replicator dynamics:

dλ
dt
= F(λ, ϕ), (4.3)

where F(λ, ϕ) = (Fi(λ, ϕ) | i ∈ P), and Fi takes the form

Fi(λ, ϕ) = λi(vi(λ, ϕ) − v̄(λ, ϕ)), i ∈ P. (4.4)

Here, v̄ =
∑

i∈P λivi represents the weighted average payoff. We can restate a problem to obtain
a set of stable spatial equilibria by another problem to find a set of stable stationary points of the
replicator dynamics (Sandholm, 2010). A stationary point (λ, ϕ) of the replicator dynamics is a
solution to the governing equation:

F(λ, ϕ) = 0. (4.5)

A stationary point is linearly stable if every eigenvalue of the Jacobian matrix J = ∂F/∂λ has a
negative real part.

4.3. Theory of Invariant Patterns
In this section, we explain a theory of invariant patterns for the replicator dynamics. Consider

a system of places allocated at each node of the n× n square lattice: Figure 4.2 depicts an example
for n = 2 by the dashed lines. The n× n square lattice provides uniformly distributed n× n discrete
regions (K = n2), which are connected by links of the same length d forming a square mesh.

The symmetry of the n × n square lattice is described by the group

G = ⟨r, s, p1, p2⟩ = D4 ⋉ (Zn × Zn), (4.6)

where ⟨· · · ⟩ denotes a group generated by the elements therein, and
106



• r: counterclockwise rotation about the origin at an angle of π/2,

• s: reflection y 7→ −y,

• p1: periodic translation along the ℓ1-axis (i.e., the x-axis), and

• p2: periodic translation along the ℓ2-axis (i.e., the y-axis).

The symmetry of the n × n square lattice ensures the equivariance in the sense that

T(g)F(λ, ϕ) = F(T(g)λ, ϕ), g ∈ G. (4.7)

Therein, T(g) (g ∈ G) denotes an orthogonal matrix representation of the group G on the K-
dimensional space RK . The concrete form of T(g) was presented in Section 3.4.

Stationary points of the replicator dynamics form solution curves (λ∗(ϕ), ϕ). In general, a
spatial distribution λ∗(ϕ) changes as the value of ϕ along a solution curve. In contrast, there can
be a special solution curve (λ∗(ϕ), ϕ) = (λ̄, ϕ) that has a constant spatial distribution λ̄ along a
solution curve.12 Such a distribution λ̄ is called an invariant pattern, and (λ̄, ϕ) is a solution for any
ϕ. In contrast, a solution curve with distribution λ∗(ϕ) that varies with ϕ is called a non-invariant
pattern. Thus, stationary points are classified into{

invariant pattern: λ∗ = λ̄,

non-invariant pattern: λ∗ = λ∗(ϕ).

Rearranging the order of the components of λ∗, we introduce (λ+, λ0) with λ+ = {λi > 0 | i =
1, . . . ,m} and λ0 = 0 for later discussion of invariant patterns. As a candidate of invariant patterns,
we consider a spatial distribution of a special form

(λ+, λ0) =
(

1
m

1, 0
)
, 1 ≤ m ≤ K (4.8)

with an m-dimensional vector 1 = (1, . . . , 1)⊤. This distribution expresses equal complete ag-
glomeration to m places and can be an invariant pattern under some symmetry conditions in the
following proposition:

Proposition 4.1. A spatial distribution (λ+, λ0) = ( 1
m1, 0) of an economic geography model with

the replicator dynamics is an invariant pattern if this distribution satisfies
(i) (λ+, λ0) = ( 1

m1, 0) is invariant to some subgroup G′ of G.
(ii) The set of points for λ+ belongs to an orbit of G′.

Proof. Since the m places of λ+ belong to an orbit, we have v1 = · · · = vm. Then, we have
v̄ =

∑m
i=1 λivi = vi and vi − v̄ = 0 (i = 1, . . . ,m). Hence, we have Fi( 1

m1, 0, ϕ) = 0 (i = 1, . . . ,m).
For K − m places with no population, we have λ j = 0 ( j = m + 1, . . . ,K). Hence, we have
Fi( 1

m1, 0, ϕ) = 0 (i = m + 1, . . . ,K). This shows that (λ+, λ0, ϕ) = ( 1
m1, 0, ϕ) is a solution for any ϕ.

Hence, ( 1
m1, 0) is an invariant pattern. □

12 Such a solution curve observed in the two-place economy (Fujita et al., 1999b).
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Remark 4.1. The concept of invariant patterns is not applicable to some kind of models. We
employ the replicator dynamics and admit λ to have zero components. Hence, it cannot be applied
to models that do not take corner solutions due to the existence of the housing market such as
Helpman (1998) and Allen and Arkolakis (2014) models. Also it cannot be applied to other
dynamics such as the logit dynamics in (2.6). □

Spatial distributions for m = 1, 2,K in (4.8) are called mono-centric, duo-centric, and uniform
distribution, respectively.13 We have the following propositions for these distributions.

Proposition 4.2. A mono-centric distribution at any place is an invariant pattern for any economy.

Proof. Consider λ1 = 1 and λi = 0 (i = 2, . . . ,K). Then, we have v̄ =
∑m

i=1 λivi = v1. Thus, we
have v1 − v̄ = 0. Hence, we have F1(1, 0, ϕ) = 0. For K − 1 places with no population, we have
λi = 0. Hence, we have Fi(1, 0, ϕ) = 0 (i = 2, . . . ,K). This shows that (λ+, λ0, ϕ) = (1, 0, ϕ) serves
as a solution for any ϕ. Hence, a mono-center at one place is an invariant pattern. □

Proposition 4.3. The uniform and a duo-centric distribution are invariant patterns for an n × n
square lattice.

Proof. Consider two nodes (n1, n2) and (n′1, n′2). Then, we have

r2p1
i p2

j · (n1, n2) ≡ (−n1 − i,−n2 − j) mod n.

Hence, for any pair of (n1, n2) and (n′1, n′2), we see that

g · (n1, n2) ≡ (n′1, n′2), g · (n′1, n′2) ≡ (n1, n2) mod n

by g = r2p1
i p2

j with i = −n1 − n′1 and j = −n2 − n′2. By choosing G′ = ⟨r3p1
i p2

j⟩, we see
that a duo-center (m = 2) at any places is an invariant pattern by Proposition 4.1. The uniform
distribution can be shown as an invariant pattern by extending the proof for the duo-center. □

We search for invariant patterns on the n × n square lattice by finding a set of m nodal points
and a subgroup G′ that satisfy Proposition 4.1 for the group G = D4 ⋉ (Zn × Zn). We propose the
following procedure to obtain all invariant patterns.

• Choose a set of m nodal points among a total of n2 nodal points.

• Find elements of G that retain the set of points invariant.

• If these elements form a group and permute any two of the m nodal points, this group is
chosen as G′ in Proposition 4.1 to ensure that the set of points gives an invariant pattern.

In this procedure, it is convenient to note that the number m of agglomerated places is not arbitrary
but depends on the lattice size n as explained in the following proposition:

Proposition 4.4. If a spatial distribution (λ+, λ0) = ( 1
m1, 0) is an invariant pattern on an n × n

square lattice, then the number m (1 ≤ m ≤ n2) divides 8n2.
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1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

37 38 39 40 41 42

Figure 4.3: List of invariant patterns for the 6× 6 square lattice. The size of a circle represents the mass of population
in each place.
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43 44 45 46 47 48

49 50 51 52 53 54

55 56 57 58 59 60

61 62 63 64 65 66

67 68 69 70 71 72

73 74 75 76 77 78

79 80 81 82 83

Figure 4.4: List of invariant patterns for the 6× 6 square lattice. The size of a circle represents the mass of population
in each place.
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Proof. Since G′ is a subgroup of G with |G | = |⟨r, s, p1, p2⟩| = 8n2, |G′| divides 8n2 by Lagrange’s
theorem. The number m of elements of an orbit divides |G′| (e.g., see §3.1.2 of Kochendörfer,
1970). Hence, 8n2 is divisible by m. □

For example, a list of invariant patterns for n = 6 are depicted in Figs. 4.3 and 4.4.

4.4. Stable Invariant Patterns for Economic Geography Models
In this section, we investigate the stability of invariant patterns by numerical analysis. We

employ the FO model (Forslid and Ottaviano, 2003) and the PS model (Pflüger and Südekum,
2008) as specific examples of economic geography models. Note that these models with the
replicator dynamics on the n × n square lattice satisfy the equivariance to G = D4 ⋉ (Zn × Zn) (see
Proposition 2.1 in Section 2.3.2 for the proof):

T(g)F(λ, ϕ) = F(T(g)λ, ϕ), g ∈ G (4.9)

for the K(= n2)-dimensional permutation representation T(g) of G.14 Thus, the theoretical predic-
tion of invariant patterns in Section 4.3 is applicable to these models.

We show the stability of invariant patterns on the 6 × 6 square lattice by comparative static
analysis with respect to the bifurcation parameter (trade freeness) ϕ ∈ (0, 1) for each model. We
use the same settings of the model parameters as in Section 3.7. Note that we can systematically
investigate the stability of invariant patterns also for the other parameter settings.

FO model
Figure 4.5 depicts by solid lines the range of ϕ where the associated patterns are stable.

Parameter values for the FO model are chosen as σ = 6.0, µ = 0.4. There are as many as 22
invariant patterns that are stable for some range of ϕ. We see a tendency that when the trade
freeness ϕ increases from a small value, the number of places with positive population decreases.
Although most of the invariant patterns are not connected directly to the uniform distribution, some
of them may be activated through secondary and further bifurcations or bifurcations from other
invariant patterns.

PS model
Figure 4.6 depicts by solid lines the range of ϕ where the associated patterns are stable.

Parameter values for the PS model are chosen as σ = 3.0, µ = 0.6, γ = 0.2. There are as many
as 8 invariant patterns that are stable for some range of ϕ. Unlike the FO model, invariant patterns
with small number of agglomerated places (e.g., mono-centric and duo-centric distributions) are
not stable. When ϕ is close to 0, the uniform distribution is stable. As ϕ increases, the uniform
distribution loses its stability. When ϕ is close to 1, the uniform distribution becomes stable again.
The 8-centric (51) and 12-centric (65) distributions also show the same feature as the uniform
distribution.

13 These three distributions are proved to be invariant patterns for the hexagonal lattice (Ikeda et al., 2019a).
14 The concrete form of T(g) was given in Section 3.4.1.
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Duo-centric (9)
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Quad-centric (24)

Quad-centric (26)

Quad-centric (29)

Quad-centric (30)

Quad-centric (33)

Quad-centric (36)

Quad-centric (37)

6-centric (45)

6-centric (47)

6-centric (49)

8-centric (61)

8-centric (62)

8-centric (63)

12-centric (71)

12-centric (76)

18-centric (80)

Duo-centric (8)

Mono-centric (1)

Mono-centric (1) Duo-centric (8) Duo-centric (9) Duo-centric (10) Tri-centric (12)

Quad-centric (24) Quad-centric (26) Quad-centric (29) Quad-centric (30) Quad-centric (33)

Quad-centric (36) Quad-centric (37) 6-centric (45) 6-centric (47) 6-centric (49)

8-centric (61) 8-centric (62) 8-centric (63) 12-centric (71) 12-centric (76)

18-centric (80) Uniform (83)

Figure 4.5: The ranges of ϕ for stable invariant patterns on the 6× 6 square lattice for the FO model with σ = 6.0, µ =
0.4. A number in the label of each invariant pattern corresponds to Figs. 4.3 and 4.4.
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Uniform (83)

8-centric (51)

12-centric (65)

16-centric (77)

12-centric (69)

12-centric (74)

12-centric (70)

16-centric (78)

8-centric (51) 12-centric (65) 12-centric (69) 12-centric (70) 12-centric (74)

16-centric (77) 16-centric (78) Uniform (83)

Figure 4.6: The ranges of ϕ for stable invariant patterns on the 6× 6 square lattice for the PS model with σ = 3.0, µ =
0.6, γ = 0.2. A number in the label of each invariant pattern corresponds to Figs. 4.3 and 4.4.
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Figure 4.7: Stable invariant patterns engendered by direct bifurcation on the 6×6 square lattice for the FO model. The
vertical axis shows λmax = max(λ1, . . . , λK ). M represents the multiplicity of critical points. Solid curves represent
stable equilibria, and dashed ones represent unstable ones. A number in the label of each invariant pattern corresponds
to Figs. 4.3 and 4.4.

4.5. Bifurcation Behaviour of Forslid and Ottaviano (2003) Model
In this section, we conduct numerical bifurcation and stability analysis of the FO model (Forslid

and Ottaviano, 2003) on the 6×6 square lattice, focusing on the connectivity of bifurcating solutions
to invariant patterns. We would like to show the usefulness of invariant patterns for bifurcation
analysis of economic geography models.

4.5.1. Path Tracing Focusing on Invariant Patterns
Figure 4.7 depicts the λmax = max(λ1, . . . , λK) versus ϕ relation of the equilibrium curves.

When the trade freeness ϕ increases from 0, the uniform distribution (83) in Fig. 4.5 loses its
stability at the bifurcation point A associated with µ = (1;+,+,−). Then, the bifurcating solution
q(1;+,+,−)

1 emerges, and the solution curve connects to an invariant pattern of 18-centric distribution
(80) in Fig. 4.5. During this process, population tends to be agglomerated completely to places
with the largest positive components of the bifurcating solution. There is the same tendency for
the solution curves from the bifurcation points B, C, D, E, F, and G associated with the irreducible
representations (4; 2, 2,+), (4; 3, 1,+), (8; 2, 1), (4; 2, 0,+), (4; 1, 1,+), and (4; 1, 0,+), respectively.

Figure 4.7 captures stable invariant patterns engendered from the uniform distribution and
solution curves for non-invariant patterns connecting the uniform distribution to these invariant
patterns. So far as these solution curves are concerned, stable equilibria are always invariant
patterns, and non-invariant patterns are all unstable. These unstable non-invariant patterns often
regain their stability by arriving at stable invariant patterns. We have observed a mesh-like structure
of the horizontal curves for stable invariant patterns and unstable non-invariant ones in Fig. 4.7. As
we have seen, a knowledge of invariant patterns is useful in the understanding of the mechanism
of such network-like structure of the bifurcation behaviour.

114



Table 4.1: Bifurcating solutions for the 6 × 6 square lattice

µ Bifurcating solutions (w ∈ R)
(1;+,+,−) w

(2;+,+) wsq = (w,w), wstripe = (w, 0)
(4; 1, 0,+) wsq = (w, 0,w, 0), wstripeI = (w, 0, 0, 0)
(4; 2, 0,+) wsq = (w, 0,w, 0), wstripeI = (w, 0, 0, 0)
(4; 1, 1,+) wsq = (w, 0,w, 0), wstripeI = (w, 0, 0, 0)
(4; 2, 2,+) wsq = (w, 0,w, 0), wstripeI = (w, 0, 0, 0)
(4; 3, 1,+) wsq = (w, 0,w, 0), wstripeI = (w, 0, 0, 0), wstripeII = (0,w, 0, 0)
(4; 3, 2,+) wsq = (w, 0,w, 0), wstripeI = (w, 0, 0, 0), wstripeII = (0,w, 0, 0)
(8; 2, 1) wsqVM = (w, 0,w, 0,w, 0,w, 0),

wupside−downI = (w, 0, 0, 0,w, 0, 0, 0), wupside−downII = (0,w, 0, 0, 0,w, 0, 0),
wstripeI = (w, 0, 0, 0, 0, 0, 0, 0), wstripeII = (0,w, 0, 0, 0, 0, 0, 0),

4.5.2. Connectivity of Bifurcating Solutions to Invariant Patterns
We can observe the connectivity of the uniform distribution to invariant patterns via bifurcating

solutions. As a consequence of the irreducible decomposition (3.73) in Section 3.4.2 of the
permutation representation T for the 6 × 6 square lattice, the irreducible representation µ of the
group G = D4 ⋉ (Z6 × Z6) to be considered in bifurcation analysis is restricted to

µ = (1;+,+,+), (1;+,+,−), (2;+,+), (4; 1, 0,+), (4; 2, 0,+),
(4; 1, 1,+), (4; 2, 2,+), (4; 3, 1,+), (4; 3, 2,+), (8; 2, 1). (4.10)

Theoretically possible bifurcating solutions associated with µ in (4.10) are listed in Table 4.1 and
depicted in Fig. 4.8. Note that for µ = (4; 2, 0,+) and µ = (4; 2, 2,+), the two solutions wsq and
−wsq, which have opposite signs, represent different physical behaviour. The same holds for the
solutions wstripeI and −wstripeI. Other bifurcating solutions with opposite signs represent the same
physical behaviour.

Note that the connectivity of the uniform distribution to invariant patterns via bifurcating
solutions presented in Fig. 4.8. The eigenvector of a bifurcating solution at the left and the
associated invariant pattern at the right connected by an arrow → that forms a pair and several
are presented in Figs 4.9–4.11. Each pair displays similar geometrical patterns. In numerical
bifurcation analysis of the FO model from the uniform distribution to be conducted in Section 4.5.1,
we see how such connectivity arises from a bifurcation mechanism. Population in places with the
positive components of bifurcating solutions tended to increase, while population in places with
the negative components of bifurcating solutions tended to decrease along all bifurcating curves.

Based on this tendency, we predict that invariant patterns shown in Figs. 4.9–4.11 can be
engendered from the uniform distribution as consequence of direct bifurcations. For example,
a mono-center can be engendered from a critical point associated with q(4;1,0)

1 + q(4;1,0)
3 (see the

top-left of Fig. 4.9). Such connectivity is also observed for other pairs connected by the arrow→.
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w wsq wstripe wsq wstripeI

(a) µ = (1;+,+,−) (b) µ = (2;+,+) (c) µ = (4; 1, 0,+)

wsq wstripeI wsq wstripeI wsq wstripeI

(d) µ = (4; 2, 0,+) (e) µ = (4; 1, 1,+) (f) µ = (4; 2, 2,+)

wsq wstripeI wstripeII wsq wstripeI wstripeII

(g) µ = (4; 3, 1,+) (h) µ = (4; 3, 2,+)

wsqVM wstripeI wstripeII wupside−downI wupside−downII

(i) µ = (8; 2, 1)

Figure 4.8: Bifurcating solutions for the 6× 6 square lattice. A black circle denotes a positive component, and a white
circle denotes a negative component. The size of a circle represents the magnitude of the associated component.
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→ →

∑
i=1,3 q

(4;1,0,+)
i Mono-centric (1)

∑
i=1,5 q

(8;2,1)
i Duo-centric (4)

→ →

∑
i=1,3 q

(4;1,1,+)
i Duo-centric (10)

∑
i=2,6 q

(8;2,1)
i Quad-centric (30)

→ →

q(4;1,0,+)
1 6-centric (38) q(4;3,2,+)

1 6-centric (44)

→ →

q(4;3,1,+)
1 6-centric (45) q(8;2,1)

1 6-centric (47)

Figure 4.9: Invariant patterns that are engendered through asymmetric bifurcating solutions from the uniform distri-
bution for the 6 × 6 square lattice. Figures to the left represent bifurcating solutions, and ones to the right represent
corresponding invariant patterns. The number (·) in the parenthesis for each invariant pattern corresponds to that in
Figs. 4.3 and 4.4.
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→ →

q(4;1,1,+)
1 6-centric (48)

∑
i=1,2 q

(2;+,+)
i 9-centric (64)

→ →

q(8;2,1)
2 12-centric (71) q(4;3,1,+)

2 12-centric (72)

→ →

q(4;3,2,+)
2 12-centric (73) q(2;+,+)

1 18-centric (79)

→

q(1;+,+,−)
1 18-centric (80)

Figure 4.10: Invariant patterns that are engendered through asymmetric bifurcating solutions from the uniform
distribution for the 6 × 6 square lattice. Figures to the left represent bifurcating solutions, and ones to the right
represent corresponding invariant patterns. The number (·) in the parenthesis for each invariant pattern corresponds
to that in Figs. 4.3 and 4.4.
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∑
i=1,3 q

(4;2,0,+)
i

↗

↘

Quad-centric (29)

16-centric (77)

q(4;2,0,+)
1

↗

↘

12-centric (67)

24-centric (81)

∑
i=1,3 q

(4;2,2,+)
i

↗

↘

Quad-centric (29)

16-centric (78)

q(4;2,2,+)
2

↗

↘

12-centric (76)

24-centric (82)

Figure 4.11: Invariant patterns that are engendered through asymmetric bifurcating solutions from the uniform
distribution for the 6 × 6 square lattice. Figures to the left represent bifurcating solutions, and ones to the right
represent corresponding invariant patterns. The number (·) in the parenthesis for each invariant pattern corresponds
to that in Figs. 4.3 and 4.4.
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This prediction is fairly in line with the bifurcation behaviour of the FO model that was investigated
in Section 4.5.1 and is insightful in the understanding of spatial economic agglomerations.

A remark is on the symmetry/asymmetry of the bifurcating solutions. When the solutions in
the positive and the negative directions from the bifurcation point are conjugate, these solutions
can arrive at the same invariant pattern (see Figs. 4.9 and 4.10). When the two solutions are not
conjugate, these solutions can arrive at two different patterns (see Fig. 4.11).

4.6. Concluding Remarks
This chapter has shown the usefulness of invariant patterns for analysis of economic geography

models with the replicator dynamics. Focusing on invariant patterns, we proposed a systematic
procedure to find stable equilibria of economic geography models: (i) obtaining all invariant pat-
terns and investigate their stability, and (ii) searching for bifurcating equilibrium curves connecting
stable invariant patterns. In numerical analysis of the FO model and PS model, we demonstrated
the usefulness of this procedure in the elucidation of the agglomeration behaviour of economic
geography models.

Invariant patterns on an n × n square lattice display characteristic geometrical patterns, includ-
ing mono-centric and poly-centric distributions. Using the FO model, we showed the connectivity
between such invariant patterns and bifurcating solutions via bifurcation from the uniform distri-
bution. We demonstrated that such connectivity produces a mesh-like structure of the equilibrium
curves for stable invariant patterns and unstable non-invariant ones.

The main contribution of this chapter is not only revealing the agglomeration behaviour of
particular models but also proposing a general framework to understand bifurcation behaviour for
any economic geography model that takes corner solutions under the replicator dynamics. Using
the procedure proposed in this chapter, we can completely figure out bifurcation behaviour for any
economic geography model.
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5. Bifurcation Mechanism from the Mono-centric Distribution on a Square Domain

5.1. Introduction
Central place theory (Christaller, 1933; Lösch, 1940) put forward agglomeration patterns of

one core city surrounded by satellite cities. In fact, such agglomeration patterns prosper worldwide.
Using population data of Germany and the U.S., Ikeda et al. (2022) detected such core–periphery
distributions by group-theoretic spectrum analysis.

Several studies in spatial economics dealt with the emergence of cities. The formation of
satellite cities around a single large city was explored in a linear space (Mori, 1997; Fujita and
Mori, 1997; Fujita et al., 1999a). A hub city formation from a central mono-center was investigated
in three regions on a line segment (Ago et al., 2006). The spatial platforms in these studies, however,
are restricted to be one-dimensional. To describe the mechanism of economic agglomerations in the
real world, spatial platforms for economic geography models are to be extended to two-dimensional
spaces or various network topologies. For example, Barbero and Zofío (2016) analyzed the
agglomeration and dispersion forces of the core–periphery model with a ring and heterogeneous
star network topologies.

That said, this chapter aims to elucidate a bifurcation mechanism, which can be interpreted as
the formation of satellite cities, from the mono-centric distribution in a two-dimensional space for
economic geography models. In search of realistic agglomeration patterns, we employ a square
lattice with ordinary boundaries (cf., periodic boundaries in Chapter 3), that is, a two-dimensional
square domain where discrete places are evenly distributed. Focusing on a bifurcation mechanism
due to the geometrical symmetry, we present an exhaustive list of bifurcating solutions from the
mono-centric distribution. The list of bifurcating solutions advanced in this chapter would be of
assistance in the study of spatial economics.

In numerical analysis, we demonstrate the emergence of theoretically predicted bifurcating
solutions. We use the FO model (Forslid and Ottaviano, 2003) and the PS model (Pflüger and
Südekum, 2008) as specific examples of economic geography models. For each parameter value of
these models, we investigate which bifurcating solution occurs from the mono-centric distribution
as the trade freeness (transportation cost) changes.

This chapter is organized as follows. Basic assumptions of economic geography models with
the replicator dynamics are presented in Section 5.2. A square lattice and its orbit decomposition is
explained in Section 5.3. Bifurcation from the mono-centric distribution is studied in Section 5.4.
Numerical analysis of economic geography models on the square lattice is conducted in Section 5.5.

5.2. Spatial Equilibrium and the Replicator Dynamics
We employ a general framework of economic geography models with the replicator dynamics

that was introduced in Section 2.1. We briefly explain a spatial equilibrium of the economy
comprising K places. Mobile agents (e.g., skilled workers for the FO model) can migrate among
the K places.

Let P = {1, . . . ,K} be the set of places. Define the payoff function vector v = v(λ, ϕ) ∈ RK

as a continuous function of the spatial distribution of mobile agents λ (λi ≥ 0; i ∈ P) and the
trade freeness ϕ. Define a spatial equilibrium as a spatial distribution that satisfies the following
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Figure 5.1: Square lattice with 25 places.

conditions: {
v∗ − vi = 0 if λi > 0,
v∗ − vi ≤ 0 if λi = 0,

(5.1)

and ∑
i∈P

λi = 1, (5.2)

where v∗ denotes the equilibrium payoff level.
We consider the replicator dynamics:

dλ
dt
= F(λ, ϕ), (5.3)

where F(λ, ϕ) = (Fi(λ, ϕ) | i ∈ P), and Fi takes the form

Fi(λ, ϕ) = λi(vi(λ, ϕ) − v̄(λ, ϕ)), i ∈ P. (5.4)

Here, v̄ =
∑

i∈P λivi represents the weighted average payoff. We can restate a problem to obtain
a set of stable spatial equilibria by another problem to find a set of stable stationary points of the
replicator dynamics (Sandholm, 2010). A stationary point (λ, ϕ) of the replicator dynamics is a
solution to the governing equation:

F(λ, ϕ) = 0. (5.5)

A stationary point is linearly stable if every eigenvalue of the Jacobian matrix J = ∂F/∂λ has a
negative real part.

5.3. Square Lattice and Orbit Decomposition of Places
We employ a square lattice with a set of K places at the nodal points (cf., Fig. 5.1 for K = 25).

In the description of spatial distributions in this lattice, it is essential to resort to its symmetry
labeled by the dihedral group:

G = D4 = {e, r, . . . , r3, s, sr, . . . , sr3}, (5.6)

where e is the identity transformation, s is a reflection y 7→ −y, and r j is a counterclockwise
rotation about the center of the square lattice by an angle of π j/2 ( j = 0, 1, 2, 3).
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(a) D4

(b) D2

(b) D1

(d) C4 (d) C2 (d) C1

Figure 5.2: Orbit decompositions of places on a square lattice with respect to subgroups of G.

123



We can decompose the K places into subsets, called orbits. Each orbit has some geometrical
symmetry described by a subgroup of G. Subgroups of G are given as follows:

D4 = {e, r, r2, r3, s, sr, sr2, sr3} : square symmetry,
D2 = {e, r2, s, sr2} : diagonal symmetry,
D1 = {e, s} : bilateral symmetry,
C4 = {e, r, r2, r3} : (π/2)−rotation symmetry,
C2 = {e, r2} : π−rotation symmetry,
E = C1 = {e} : asymmetry.

The set of places P is decomposed into disjoint orbits with respect to a subgroup G′ of G:

P =
∪
l∈L

Pl, (5.7)

where Pl is an orbit, and L is the whole set of orbits with the symmetry labeled by G′. Orbit
decompositions with respect to subgroups other than E are depicted in Fig. 5.2, while each node
becomes an orbit for G′ = E . The same symbols in Fig. 5.2 (such as ◦ or □) imply that they belong
to the same orbit.

We assume that the symmetry of the square lattice ensures the equivariance with respect to the
payoff function:

T(g)v(λ, ϕ) = v(T(g)λ, ϕ), g ∈ G, (5.8)

where T(g) is a matrix representation of G that permutes place numbers. Under this assumption,
we have the following lemma:

Lemma 1. The payoff function vi in the same orbit for a subgroup takes the same value when a
spatial distribution is symmetric with respect to the subgroup.

Proof. The spatial distribution is symmetric with respect to a subgroup G′ of G, that is, T(g)λ = λ
for g ∈ G′. Hence, we have T(g)v(λ, ϕ) = v(λ, ϕ) for g ∈ G′ by virtue of the equivariance in (5.8).
This means that vi in the same orbit is permutable. This suffices for the proof. □

5.4. Bifurcating Solutions from the Mono-centric Distribution
Let λFA = (1, 0, . . . , 0) be the mono-centric distribution,15 which represents the full agglom-

eration to the place at the center of the square lattice. We investigate bifurcation points on the
mono-centric distribution. Recall that a bifurcation occurs when the Jacobian matrix becomes
singular. The following lemma provides the form of the Jacobian matrix at the mono-centric
distribution.

15 Note that the mono-centric distribution is an invariant pattern, which satisfies the governing equation in (5.5) for
any ϕ (cf., Proposition 4.3 in Section 4.3).
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{1} α1 α2 α3 α4 β1

Figure 5.3: Orbits with respect to D4 for a square lattice with 25 places.

Lemma 2. The Jacobian matrix at the mono-centric distribution takes the following form:

J(λFA, ϕ) =
(
−v1 J+0

J0

)
, (5.9)

where
J+0 = (−v2, . . . ,−vK), J0 = diag(v2 − v1, . . . , vK − v1). (5.10)

Proof. Since the replicator dynamics takes Fi = λi(vi − v̄) (i = 1, . . . ,K), we have

∂Fi

∂λi
= vi − v̄ + λi

(
∂vi

∂λi
− vi −

K∑
k=1

λk
∂vk

∂λi

)
, i = 1, . . . ,K, (5.11)

∂Fi

∂λ j
= λi

(
∂vi

∂λ j
− v j −

K∑
k=1

λk
∂vk

∂λ j

)
, i, j = 1, . . . ,K, j , i. (5.12)

Note that v̄ =
∑K

j=1 λ jv j = v1 at λ = λFA. Substituting λ = λFA into (5.11) and (5.12), we have

∂Fi

∂λi

����
λ=λFA

=

{
−v1 (i = 1)
vi − v1 (i , 1)

, (5.13)

∂Fi

∂λ j

����
λ=λFA

=

{
−v j (i = 1)
0 (i , 1)

. (5.14)

Thus, the Jacobian matrix J = ∂F/∂λ(λFA, ϕ) takes the form (5.9) with (5.10). □

Note that the mono-centric distribution is symmetric with respect to the group D4:

T(g)λFA = λFA, g ∈ D4. (5.15)

Thus, we carry out orbit decomposition with respect to D4 in order to apply Lemma 1 to the mono-
centric distribution. As s result, each orbit other than the center of the square lattice comprises
four or eight places. We denote these orbits by

P = {1} ∪ α1 ∪ . . . ∪ αn1 ∪ β1 ∪ . . . ∪ βn2, (5.16)
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(a) Type αi orbit (b) Type βi orbit

Figure 5.4: Definition of variables for each orbit.

(a) Square-I (b) Duo-I (c) Duo-II (d) Mono-I

Figure 5.5: Geometrical configurations of bifurcating solutions from the mono-centric distribution for Type αi orbit.

where {1} represents an orbit comprising only the place at the center, αi (i = 1, . . . , n1) represents
an orbit with square-shaped four places, and βi (i = 1, . . . , n2) represents an orbit with eight places.
For example, Fig. 5.3 depicts orbits for K = 25 places (n1 = 4, n2 = 1).

By Lemma 1, the payoff function vi in the same orbit with respect to D4 takes the same value
at the mono-centric distribution. We denote such values as

vα1, . . . , vαn1
for αi (i = 1, . . . , n1),

vβ1, . . . , vβn2
for βi (i = 1, . . . , n2).

(5.17)

Then, we have the following condition:

Lemma 3. A bifurcating solution in the space
∑K

j=1 λ j = 1 emerges from the mono-centric
distribution if one of the following conditions is satisfied:

vαi − v1 = 0 for some αi (i = 1, . . . , n1), (5.18)
vβi − v1 = 0 for some βi (i = 1, . . . , n2). (5.19)

Proof. The Jacobian matrix (5.9) becomes singular if one of the following conditions is satisfied:

v1 = 0, (5.20)
vαi − v1 = 0 for some αi (i = 1, . . . , n1), (5.21)
vβi − v1 = 0 for some βi (i = 1, . . . , n2). (5.22)

For (5.20), no bifurcating solution emerges in the space
∑K

i=1 λi = 1 since the direction of this
solution is (1, 0, . . . , 0). Thus, only (5.21) and (5.22) are the bifurcating conditions from the
mono-center. □

Let ϕk
c be the trade freeness at vk − v1 = 0 (k ∈ P − {1}). In analysis of bifurcating solutions

from a critical point (λFA, ϕk
c ), we employ the bifurcation equation. The bifurcation equation for

Type αi orbit takes the following form:
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(a) Square-II (b) Square-III (c) Quad-I (d) Quad-II

(e) Duo-III (f) Duo-IV (g) Duo-V (h) Duo-VI (i) Duo-VII (j) Mono-II

Figure 5.6: Geometrical configurations of bifurcating solutions from the mono-centric distribution for Type βi orbit.

Lemma 4. For a bifurcation point associated with Type αi orbit, the bifurcation equation is
four-dimensional and is expressed as

F̃1(x1, x2, x3, x4, ψ) = x1R(x1, x2, x3, x4, ψ) = 0,
F̃2(x1, x2, x3, x4, ψ) = x2R(x2, x3, x4, x1, ψ) = 0,
F̃3(x1, x2, x3, x4, ψ) = x3R(x3, x4, x1, x2, ψ) = 0,
F̃4(x1, x2, x3, x4, ψ) = x4R(x4, x1, x2, x3, ψ) = 0,

(5.23)

where x = (x1, x2, . . . , x4) = {λ j | j ∈ αi} (cf., Fig. 5.4 (a)), and R is a function with

R(x1, x2, x3, x4, ψ) = R(x1, x4, x3, x2, ψ). (5.24)

Proof. See Appendix B.1.1. □

Solving the bifurcation equation for αi, we obtain the following bifurcating solutions:

Proposition 5.1. A bifurcation point associated with Type αi orbit has the following bifurcating
solutions (cf., Fig. 5.5):

x =


w(1, 1, 1, 1): Square-I,
w(1, 1, 0, 0): Duo-I,
w(1, 0, 1, 0): Duo-II,
w(1, 0, 0, 0): Mono-I

(5.25)

for some w > 0.

Proof. See Appendix B.1.2. □

The bifurcation equation for Type βi orbit takes the following form:
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Lemma 5. For a bifurcation point associated with Type βi orbit, the bifurcation equation is
eight-dimensional and is expressed as

F̃1(x, ψ) = x1R(x1, x2, x3, x4, x5, x6, x7, x8, ψ) = 0,
F̃2(x, ψ) = x2R(x2, x1, x8, x7, x6, x5, x4, x3, ψ) = 0,
F̃3(x, ψ) = x3R(x3, x4, x5, x6, x7, x8, x1, x2, ψ) = 0,
F̃4(x, ψ) = x4R(x4, x3, x2, x1, x8, x7, x6, x5, ψ) = 0,
F̃5(x, ψ) = x5R(x5, x6, x7, x8, x1, x2, x3, x4, ψ) = 0,
F̃6(x, ψ) = x6R(x6, x5, x4, x3, x2, x1, x8, x7, ψ) = 0,
F̃7(x, ψ) = x7R(x7, x8, x1, x2, x3, x4, x5, x6, ψ) = 0,
F̃8(x, ψ) = x8R(x8, x7, x6, x5, x4, x3, x2, x1, ψ) = 0,

(5.26)

where x = (x1, x2, . . . , x8) = {λ j | j ∈ βi} (cf., Fig. 5.4(b)), and R is a function.

Proof. See Appendix B.2.1. □

Solving the bifurcation equation for βi, we obtain the following bifurcating solutions:

Proposition 5.2. A bifurcation point associated with Type βi orbit has the following bifurcating
solutions (cf., Fig. 5.6):

x =



w(1, 1, 1, 1, 1, 1, 1, 1): Square-II,
w(1, 0, 1, 0, 1, 0, 1, 0): Square-III,
w(1, 1, 0, 0, 1, 1, 0, 0): Quad-I,
w(1, 0, 0, 1, 1, 0, 0, 1): Quad-II,
w(1, 1, 0, 0, 0, 0, 0, 0): Duo-III,
w(1, 0, 0, 1, 0, 0, 0, 0): Duo-IV,
w(1, 0, 0, 0, 1, 0, 0, 0): Duo-V,
w(1, 0, 0, 0, 0, 1, 0, 0): Duo-VI,
w(1, 0, 0, 0, 0, 0, 0, 1): Duo-VII,
w(1, 0, 0, 0, 0, 0, 0, 0): Mono-II

(5.27)

for some w > 0.

Proof. See Appendix B.2.2. □

Note that the stability of all the bifurcating solutions depend on cases. See Appendix B.1.3 for
αi and Appendix B.2.3 for βi.

5.5. Bifurcation Behaviour of Economic Geography Models
Based on theoretically possible bifurcating solutions presented in Section 5.4, we conduct

numerical bifurcation analysis of the FO model (Forslid and Ottaviano, 2003) and the PS model
(Pflüger and Südekum, 2008) on the square lattice. For these two models, the elasticity of
substitution σ ∈ (1,∞) and the expenditure share of manufacturing goods µ ∈ (0, 1) are model
parameters. Note that the expenditure share of housing goods γ ∈ (0, 1) is another model parameter
for the PS model. The trade freeness ϕ ∈ (0, 1) serves as the bifurcation parameter.
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(a) σ = 6.0 (b) σ = 3.0

Figure 5.7: The stability areas of the mono-centric distribution on the square lattice with 25 places for the FO model
in (ϕ, µ) ∈ (0, 1) × (0, 1).

5.5.1. Forslid and Ottaviano (2003) Model
We conduct numerical bifurcation analysis of the FO model (Forslid and Ottaviano, 2003) on

the square lattice. We investigate the influence of the model parameters σ and µ on the types
of bifurcating solutions from the stable mono-centric distribution. We additionally discuss the
influence of boundary conditions of the square lattice.

Bifurcation Behaviour on the Square Lattice with 25 Places
We employ the square lattice with 25 places (cf., Fig. 5.1) and demonstrate the bifurcation

behaviour of the FO model. The 25 places can be decomposed into six kinds of orbits (cf.,
Fig. 5.3): 

{1}: a place at the center,
α1, . . . , α4: 4 places,
β1: 8 places.

(5.28)

There are five kinds of bifurcation points associated with Type α1, . . . , α4, and β1 orbits, whereas
the orbit {1} is not associated with bifurcation.

We specify a bifurcation point on the stable mono-centric distribution. Figures 5.7(a) and (b)
show the stability areas of the mono-centric distribution in the space of (ϕ, µ) ∈ (0, 1) × (0, 1) for
σ = 6.0 and σ = 3.0, respectively. For each µ, the mono-centric distribution loses its stability at
a bifurcation point when ϕ decreases from 1. An increase of µ expands a range of ϕ where the
mono-centric distribution becomes stable. Comparing Figs. 5.7(a) and (b), we see that a decrease
of σ expands the stability area of the mono-centric distribution.

We show the emergence of bifurcating solutions from the stable mono-centric distribution.
Figure 5.8(a) shows equilibrium curves for (σ, µ) = (6.0, 0.4). When ϕ decreases from 1, a
bifurcation occurs at the point E. The bifurcating path EA shows that the stable agglomeration
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Equilibrium curves

→

E A

The progress of stable equilibria

B C D

Unstable bifurcating patterns

(a) (σ, µ) = (6.0, 0.4)

Equilibrium curves

→

E A

The progress of stable equilibria

B C D

Unstable bifurcating patterns

(b) (σ, µ) = (3.0, 0.4)

Figure 5.8: Equilibrium curves for the FO model on the square lattice with 25 places. The vertical axis shows the size
of population at the center. Solid curves represent stable equilibria, and dashed ones represent unstable ones. A blue
circle shows the size of population at each place.
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(a) 25 places (b) 49 places

Figure 5.9: The dependence of the types of bifurcating solutions on the values of (1/σ, µ) ∈ (0, 1) × (0, 1) for the FO
model on the square lattice. A blue circle shows the size of population at each place.

pattern shifts from the mono-centric distribution to Square-I pattern for Type α3 orbit (cf., α3 in
Fig. 5.3). The other bifurcating paths EB, EC, and ED are all unstable.

the types of bifurcating solutions from a bifurcation point on the stable mono-centric distribution
varies with the model parameters σ and µ. Figure 5.8(b) depicts equilibrium curves for (σ, µ) =
(3.0, 0.4). Similarly to those for the case of (σ, µ) = (6.0, 0.4), a bifurcation occurs at the point E
when ϕ decreases from 1. The stable bifurcating path EA, however, represents Square-I pattern for
Type α4 orbit (cf., α4 in Fig. 5.3).

Influence of the Model Parameters
With the results above in mind, we investigate the influence of the model parameters σ and µ

on bifurcation behaviour. We use the square lattice with 25 places and that with 49 places.
Figure 5.9(a) shows the parameter dependence of the types of bifurcating solutions from the

stable mono-centric distribution on the square lattice with 25 places. The areas painted using
different colors express the emergence of different bifurcating solutions.16 There are two possible
bifurcating solutions. This result indicates that locations where population emerges are dependent
on an agglomeration force: As an agglomeration force increases (1/σ and µ become close to 1),
population emerges at the places away from the center.

16 For the FO model, no bifurcation occurs in the area of µ > σ − 1. This condition is called the no-black-hole
condition (Robert-Nicoud, 2005).
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(a) n = 5 (b) n = 7

Figure 5.10: The dependence of the types of bifurcating solutions on the values of (1/σ, µ) ∈ (0, 1) × (0, 1) for the FO
model on the n × n square lattice with periodic boundaries. A blue circle shows the size of population at each place.

Figure 5.9(b) shows the parameter dependence of the types of bifurcating solutions from the
stable mono-centric distribution on the square lattice with 49 places. Similarly to that for the case
of 25 places, population emerges at places away from the center as σ and µ become close to 1.
There are three possible bifurcating solutions. When µ or 1/σ is close to 0 (cf., the area painted
using green in Fig. 5.9(b)), a bifurcating solution that can be interpreted as the formation of satellite
places surrounding the center occurs.

Influence of Boundary Conditions
We investigate the influence of boundary conditions for the square lattice on bifurcation be-

haviour. We employ the n×n square lattice (n = 5, 7) with periodic boundaries that was introduced
in Chapter 3, while we have used the square lattice with ordinary boundaries in this chapter. Note
that periodic boundaries remove the exogenous disadvantages of the places near the borders.

Figure 5.10 shows the parameter dependence of the types of bifurcating solutions from the stable
mono-centric distribution on the n × n square lattice (n = 5, 7). For n = 5, population emerges
at the corners for any value of σ and µ. For n = 7, there are two possible bifurcating solutions.
For each case, bifurcating solutions that represent the formation of satellite places surrounding the
center do not arise, while those can occur on the square lattice with ordinary boundaries (cf., the
area painted using green in Fig. 5.9(b) for 49 places). Note that population emerges at the inside
of the borders when µ is close to 0 and σ is close to 1 (cf., the area painted using magenta in
Fig. 5.10(b) for n = 7).
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(a) σ = 6.0

(b) σ = 3.0

Figure 5.11: The stability areas of the mono-centric distribution on the square lattice with 25 places for the PS model
in (ϕ, µ, γ) ∈ (0, 1) × (0, 1) × (0, 1).

5.5.2. Pflüger and Südekum (2008) Model
We conduct numerical bifurcation analysis of the PS model (Pflüger and Südekum, 2008). We

employ the square lattice with 25 places and investigate the influence of the model parameters σ,
µ, and γ on the types of bifurcating solutions from the stable mono-centric distribution.

We first examine bifurcation points on the stable mono-centric distribution. Figures 5.11(a)
and (b) show the stability areas of the mono-centric distribution in (ϕ, µ, γ) ∈ (0, 1) × (0, 1) × (0, 1)
for σ = 6.0 and σ = 3.0, respectively. For each case, the mono-centric distribution is unstable
when ϕ is close to 0. The plane γ = 0.2 indicates that the mono-centric distribution becomes stable
at a bifurcation point as ϕ increases from 0. The stable mono-centric distribution loses its stability
when ϕ reaches another bifurcation point. This observation implies that the stable mono-centric
distribution encounters two kinds of bifurcation points as the value of ϕ changes. Thus, the PS
model can potentially describe the formation of satellite places due to an increase or decrease of ϕ.
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(a) Equilibrium curves

→ →

A E F

(b) The progress of stable equilibria

B C D G H I

(c) Unstable bifurcating patterns

Figure 5.12: Equilibrium curves for the PS model with (σ, µ, γ) = (3.0, 0.6, 0.2) on the square lattice with 25 places.
The vertical axis shows the size of population at the center. Solid curves represent stable equilibria, and dashed ones
represent unstable ones. A blue circle shows the size of population at each place.
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We next demonstrate the emergence of bifurcating solutions from the stable mono-centric
distribution. Figure 5.12 shows equilibrium curves for (σ, µ, γ) = (3.0, 0.6, 0.2). The path AEE′F
shows the progress of stable equilibria when ϕ increases from 0 to 1. The stable path AE represents
Square-I pattern for Type α1 orbit (cf., α1 in Fig. 5.3). As ϕ increases from the point A, population
surrounding the center disappears. The mono-centric distribution becomes stable at the bifurcation
point E and loses its stability at another bifurcation point E′. The stable path E′A represents Square-I
pattern for Type α1 orbit again. The other bifurcating paths are all unstable.

The stable mono-centric distribution encounters two kinds of bifurcation points (cf., the points
E and E′ in Fig. 5.12). Bifurcating solutions emerge from the bifurcation point E when ϕ decreases.
On the other hand, bifurcating solutions emerge from the bifurcation point E′ when ϕ increases.
With these results in mind, we investigate the dependence of the types of bifurcating solutions
from the bifurcation points E and E′ on the model parameters. Figure 5.13(a) and (b) show the
dependence of the types of bifurcating solutions on the values of the model parameters σ and µ
for γ = 0.2 and γ = 0.5, respectively. For the bifurcation point E, population tends to emerge
away from the center as an agglomeration force increases (1/σ and µ become close to 1). For
the bifurcation point E′, bifurcating solutions with population surrounding the center is the only
possibility regardless of the value of σ and µ. Note that such a tendency is common with the case
of γ = 0.5.

5.6. Concluding Remarks
This chapter has elucidated a bifurcation mechanism from the mono-centric distribution on

a square lattice with ordinary boundaries. We derived bifurcating solutions, including spatial
distributions that represent the formation of satellite places surrounding a central place, from
the mono-centric distribution on a square lattice by group-theoretic bifurcation analysis. We
demonstrated the emergence of theoretically predicted bifurcating solutions from the stable mono-
centric distribution by numerical analysis of the FO model and the PS model. We also investigated
the influence of the model parameters on the types of bifurcating solutions for these models.

The main contribution of this chapter is to propose a general theory to understand bifurcation
behaviour of economic geography models from the mono-centric distribution. It is emphasized
that theoretical analysis conducted in this chapter relies only on the symmetry of spatial platforms.
Thus, this analysis procedure would be applicable to any economic geography model that takes
the mono-centric distribution under the replicator dynamics. It is a future topic to apply such
investigation to many other economic geography models.
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The bifurcation point E The bifurcation point E′

(a) γ = 0.2

The bifurcation point E The bifurcation point E′

(b) γ = 0.5

Figure 5.13: The dependence of the type of bifurcating solutions on the values of (1/σ, µ) ∈ (0, 1) × (0, 1) for the PS
model on the square lattice with 25 places. A blue circle shows the size of population at each place.
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(a) Stelder (2005) (b) Allen and Arkolakis (2014)

Figure 6.1: A spatial platform of Europe in Stelder (2005) and that of the U.S. in Allen and Arkolakis (2014).

6. Interacting Local and Global Platforms for Economic Geography Models

6.1. Introduction
A hierarchical spatial structure of economic agglomerations comprising countries, cities, towns,

and so on, is observed worldwide. Central place theory proposed the geometrical mechanism of the
self-organization of such a hierarchical structure (Christaller, 1933; Lösch, 1940) but failed to im-
plement microeconomic mechanisms. Krugman (1991) elucidated the microeconomic mechanism
of the emergence of core and periphery places from two identical places, highlighting bifurcation as
a catalyst to engender the simplest two-level hierarchy. Economic geography models mushroomed
thereafter but mostly dealt with two places that is too simple to represent such a hierarchical struc-
ture. Qualitative spatial economics (Redding and Rossi-Hansberg, 2017) has been developed to
deal with a realistic spatial platform with a large number of places, but does not necessarily have
insightful bifurcation mechanisms.

Figure 6.1 shows a spatial platform of Europe in Stelder (2005) and that of the U.S. in Allen
and Arkolakis (2014). Stelder (2005) used a grid of land points in Europe and conducted a
simulation of agglomeration. Allen and Arkolakis (2014) used a geography based on the data of
highway, rail, and navigable water networks in the U.S. and estimated the topography of trade costs,
productivities, and amenities. Sheard (2021) studied the influence of the network of airports in the
U.S on employment. Such spatial platforms with irregular and asymmetric networks can express
detailed and complicated geometries but rely too heavily on numerical analysis.

This chapter aims to develop a spatial platform that can present a hierarchical structure but
can still retain the insightfulness of a bifurcation mechanism. We consider a two level hierarchy
of global and local systems. A global system is made up of a system of cities and expresses the
geographical distribution of cites. Each city has a micro structure comprising a system of local
places and has its particular population size and geography. The number of grid points in a local
system is used to index the amount of mobile population of a city, and the distribution of these
points to express its geographical properties.
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(a) Two places (b) Line segment (c) Equidistant

(d) Radial network (e) Square lattice (f) Hexagonal lattice

Figure 6.2: Examples of spatial platforms for economic geography models. Each node represents a place to locate,
and each edge indicates a transportation link.

Candidates of local and/or global spatial platforms are depicted in Fig. 6.2. The two places in
(a) is most popular but does not have much spatial structure. The line segment in (b) expresses a
chain of cities. The equidistant economy in (c) represents a system of cities connected each other
by airplanes. The radial network in (d) can be seen in many traditional cities such as Paris. The
square and hexagonal lattices in (e) and (f), respectively, are suitable in modeling densely and
regularly distributed locations.

In the selection of a local spatial platform, it is to be noted that square road networks prosper
worldwide. Chicago (the U.S.) and Kyoto (Japan), for example, are well-known to accommodate
such square networks historically (see Fig. 6.3). Accordingly, this chapter employs a square lattice
as a local spatial platform, whereas a hexagonal lattice network would be suitable in other cases.
In fact, several studies of spatial economic agglomerations have been conducted on square lattices

(a) Chicago (the U.S.) (b) Kyoto (Japan)

Figure 6.3: Satellite photographs of cities provided by the Google Map displaying square road networks.
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G ≃ D2 G ≃ D1

Figure 6.4: Systems comprising two local platforms connected at the borders. A group G represents the symmetry of
a system.

(Clarke and Wilson, 1983, 1985; Weidlich and Haag, 1987; Munz and Weidlich, 1990; Brakman
et al., 1999).

As a global spatial platform, this chapter employs an equidistant economy. This economy is
welcomed as a simplifying assumption and is popular in spatial economics (Puga, 1999; Tabuchi
et al., 2005; Bosker et al., 2010; Gaspar et al., 2018, 2020). Break and sustain bifurcations of an
equidistant economy with arbitrary many regions were studied in Aizawa et al. (2020) extending the
analysis for break bifurcation for the symmetric group SN for N objects (Golubitsky and Stewart,
2002; Elmihirst, 2004).

We intend to investigate the bifurcation behaviour of economic geography models on local-
global systems. In numerical analysis for the demonstration of the performance of local-global
systems, we use the FO model (Forslid and Ottaviano, 2003) as an example.

This chapter is organized as follows. The extension of spatial platforms for economic geography
models is discussed in Section 6.2. A local-global system with two identical local platforms is
introduced, and its symmetry is explained in Section 6.3. Systems with different local platforms
are treated in Section 6.4.

6.2. Extension of Spatial Platforms for Economic Geography Models
In this section, we discuss the extension of spatial platforms, which is applicable to hub

airports in the U.S. that is presented as a future target in Section 6.5, for conventional economic
geography models. We explain the concept of local-global systems for realistic modeling of global
transportation networks.

As a first step, we consider systems that are made up of two local platforms. The left of Fig. 6.4
depicts a system comprising two identical local platforms that are connected at the borders. The
right of Fig. 6.4 depicts a system with two different ones. This kind of connections reduces the
symmetry of the whole space. The symmetry of such systems is labeled by the dihedral groups
G ≃ D2 and G ≃ D1 with simple structures. Here, DN represents the N-dimensional dihedral
group.

We next introduce hierarchical spatial platforms, called local-global systems, by connecting
the centers of the local platforms as depicted in Fig. 6.5. These systems can describe economic
interactions between local and global scales. Such a way of connection retains the symmetry
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G ≃ (D4 × D4) ∔ S2 G ≃ D4 × D4

Figure 6.5: Systems comprising two local platforms connected at the centers (local-global systems). A group G
represents the symmetry of a system.
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Figure 6.6: A local-global system with two identical square lattices. A number associated with each node represents
the label of each place.

of each local platform and provides rich bifurcation mechanisms. The group G describing the
symmetry is represented by larger groups G ≃ (D4 × D4) ∔ S2 and G ≃ D4 × D4. Here, S2
represents the two-dimensional symmetric group.

Note that radial and square lattices are suitable to represent local transportation networks in
France (Paris) and Germany, respectively. We would like to employ systems comprising these two
different lattices in Section 6.4 as extended examples.

6.3. Local-global System with Two Identical Local Platforms
In this section, we consider two identical local platforms. We employ the general framework

of economic geography models with the replicator dynamics that was introduced in Chapter 2. As
candidates of stable equilibria of the system, we obtain invariant patterns that were explained in
Chapter 4.

6.3.1. Symmetry of the System
We consider the local-global system in Fig. 6.6 that is made up of two identical square lat-

tices, which represent intra-regional (local scale) transportation networks such as local roads and
railroads. The centers of the square lattices are connected by an inter-regional (global scale) trans-
portation networks such as a high-speed train or an airplane. A set of 18 places are allocated at the
nodal points.
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Figure 6.7: An orbit decomposition of the local-global system with two identical square lattices with respect to
G ≃ (D4 × D4) ∔ S2.

The symmetry of this local-global system is described by the group

G = (G1 × G2) ∔ G3 ≃ (D4 × D4) ∔ S2. (6.1)

A group G1 is isomorphic to D4 and is described as

G1 = {e1, r1, r1
2, r1

3, s1, s1r1, s1r1
2, s1r1

3}, (6.2)

where e1 is the identity transformation, s1 is the reflection with respect to the x1-axis, and r1
j is a

counterclockwise rotation about the origin (x1, y1) = (0, 0) by an angle of π j/2 ( j = 0, 1, 2, 3). A
group G2 is also isomorphic to D4 and is described as

G2 = {e2, r2, r2
2, r2

3, s2, s2r2, s2r2
2, s2r2

3}, (6.3)

where e2 is the identity transformation, s2 is the reflection with respect to the x2-axis, and r2
j is a

counterclockwise rotation about the origin (x2, y2) = (0, 0) by an angle of π j/2 ( j = 0, 1, 2, 3). A
group G3 is isomorphic to S2 and is described as

G3 = {e3, s3} ≃ S2, (6.4)

where s3 is the permutation among the coordinates (x1, y1, x2, y2) 7→ (x2, y2, x1, y1), and e3 is the
identity transformation.

A set of the nodal points is decomposed into disjoint subsets, called orbits for a subgroup of
G. For example, Figure 6.7 depicts an orbit decomposition with respect to G ≃ (D4 ×D4) ∔ S2. In
Fig. 6.7, places belonging to the same orbit are labeled by the same symbol ◦.

6.3.2. Invariant Patterns
Recall the concept of invariant patterns for the replicator dynamics in Section 4.3. For the

present local-global system, an identical complete agglomeration to places in the same orbit with
respect to a subgroup of G becomes an invariant pattern. An orbit decomposition with respect to
G ≃ (D4 × D4) ∔ S2 was shown in Fig. 6.7.

Conducting orbit decompositions with respect to all subgroups of G, we can obtain invariant
patterns for this local-global system exhaustively. This local-global system has 18 invariant patterns
depicted in Fig. 6.8. Through numerical stability analysis of the FO model to be conducted in
Section 6.3.3, it turns out that the mono-centric distribution at i = 1 or 10 (at the center of a square
lattice) and the duo-centric one at i = 1 and 10 are superior in stability.
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1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

Figure 6.8: A list of invariant patterns for the local-global system with two identical square lattices. The size of a blue
circle represents the size of population at each place.

6.3.3. Bifurcation Behaviour of Forslid and Ottaviano (2003) Model
We investigate by numerical analysis the bifurcation behaviour of the local-global system

with two identical square lattices for the FO model (Forslid and Ottaviano, 2003). Recall a
general framework of the FO model that was introduced in Section 2.3. We introduce two
kinds of bifurcation parameters, ϕlocal and ϕglobal, which represent trade freeness of local and
global scales, respectively. We investigate the stability of invariant patterns for the whole set
(ϕlocal, ϕglobal) ∈ (0, 1] × (0, 1] of the two parameters to find stable equilibria in the space of
(ϕlocal, ϕglobal). We obtain bifurcating solution curves emanating from the equilibrium curves of
these invariant patterns to observe the transition of stable equilibria.

Basic Assumptions
We label nodal number of places as I1 = {1, . . . , 9} for the square lattice at the left and

I2 = {10, . . . , 18} for that at the right for the present local-global system. We set the transportation
cost τi j in (2.11) as follows:

τi j =

{
exp[m(i, j)τlocal] for i, j ∈ Ik (k = 1, 2),
exp[(m(i, 1) + m(10, j))τlocal + m(1, 10)τglobal] for i ∈ I1, j ∈ I2,

(6.5)

τji = τi j . (6.6)

Here, τlocal and τglobal represent transportation cost parameters for intra-regional and inter-regional
transportation, respectively; m(i, j) denotes the shortest distance between places i and j. We choose
the nominal length of the two local platforms as the unity, i.e., m(1, 2) = 1, and set the distance
between the centers of the two local platforms to be also the unity, i.e., m(1, 10) = 1. Other
distances m(i, j)’s within each lattice follow geometrically.

Define the spatial discounting factor di j as

di j = τi j
−(σ−1). (6.7)
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(a) The stability areas of spatial distributions

A B

(b) Stable invariant patterns

C D E F

G H I J

(c) Stable non-invariant patterns

Figure 6.9: The stability areas of spatial distributions that become stable for some (ϕlocal, ϕglobal).

Then, di j is evaluated to

di j =

{
ϕlocal

m(i, j) for i, j ∈ Ik (k = 1, 2),
ϕlocal

m(i,1)ϕlocal
m(10, j)ϕglobal

m(1,10) for i ∈ I1, j ∈ I2,
(6.8)

where

ϕlocal = exp[−(σ − 1)τlocal],
ϕglobal = exp[−(σ − 1)τglobal].

We use ϕlocal and ϕglobal as the bifurcation parameters.

Numerical Simulations
We conduct numerical bifurcation and stability analysis of the FO model on the present local-

global system. We choose parameter values of the FO model as (σ, µ) = (6.0, 0.4).
Figure 6.9 shows the stability areas of spatial distributions that become stable for some

(ϕlocal, ϕglobal). Among all the invariant patterns in Fig. 6.8, only two patterns, the mono-centric
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A B

Figure 6.10: Equilibrium curves for ϕlocal = 0.5. The vertical axis shows λmax = max(λ1, . . . , λ18). Solid curves
represent stable equilibria, and dashed ones represent unstable ones.

distribution at the center of a square lattice and the duo-centric one at the centers of the square
lattices, are stable for some (ϕlocal, ϕglobal). The stability areas of these two invariant patterns are
disjoint. When ϕlocal is relatively high (ϕlocal > 0.389), either the mono-centric or the duo-centric
distribution is stable for any ϕglobal. A stable invariant pattern shifts from the duo-centric dis-
tribution to the mono-centric one at ϕglobal = 0.745 as ϕ increases from 0. When ϕlocal is low
(ϕlocal < 0.227), there is no stable invariant pattern for any ϕglobal.

With Fig. 6.9 in mind, we first fix the local trade freeness ϕlocal to some particular values
and investigate the transition of stable equilibria when the global trade freeness ϕglobal increases.
Figure 6.10 shows equilibrium curves for ϕlocal = 0.5. In this case, stable equilibria consist of
two invariant patterns: mono-centric and duo-centric distributions. A curve of an unstable non-
invariant solution connects these two invariant patterns. Such bifurcation behaviour is similar to
that observed for the two-region economy (Krugman, 1991). This behaviour can be seen to prevail
for ϕlocal > 0.5 from Fig. 6.9.

Figure 6.11 shows equilibrium curves for ϕlocal = 0.3. The equilibrium curves for ϕglobal >
0.355 are similar to those for the case of ϕlocal = 0.5 in Fig. 6.10. For ϕglobal < 0.355, we
see the emergence of satellite places at the corners of the two square lattices (cf., the state A).
A bifurcation occurs from the duo-centric distribution at the point B of ϕglobal = 0.355. The
population agglomerates from the corners to the centers. Such agglomeration of population cannot
be expressed by the two-region economy. It shows the importance of the use of square lattices as
local platforms.

Figure 6.12 shows equilibrium curves for ϕlocal = 0.2. In this case, no invariant pattern is stable,
and some non-invariant patterns are stable. In the search of equilibrium curves, we employ a nearly
uniform distribution as an initial distribution (cf., the state A). The population at the centers of the
two square lattices increases along the curve ABB′ as ϕglobal increases. A bifurcation occurs at the
point B′ of ϕglobal = 0.616. Then, the population at the center of a square lattice becomes zero,
while the population at the center of another square lattice increases (cf., the state C).

Figure 6.13 shows equilibrium curves for ϕlocal = 0.1. Similarly to the case of ϕlocal = 0.2,
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A B C

Figure 6.11: Equilibrium curves for ϕlocal = 0.3. The vertical axis shows λmax = max(λ1, . . . , λ18). Solid curves
represent stable equilibria, and dashed ones represent unstable ones.

A B B′

C

Figure 6.12: Equilibrium curves for ϕlocal = 0.2. The vertical axis shows λmax = max(λ1, . . . , λ18). Solid curves
represent stable equilibria, and dashed ones represent unstable ones.
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A A′ B

C D

Figure 6.13: Equilibrium curves for ϕlocal = 0.1. The vertical axis shows λmax = max(λ1, . . . , λ18). Solid curves
represent stable equilibria, and dashed ones represent unstable ones.

no invariant pattern is stable. In the early state A, a nearly uniform distribution is stable. At the
point A′ of ϕglobal = 0.504, a bifurcation occurs. The population at the center of a square lattice
becomes zero, while the population at the center of another lattice increases (cf., the state B). The
number of agglomerated places decreases along the curve BCD as ϕglobal increases.

The results depicted in Figs. 6.10–6.13 imply that agglomeration behavior varies greatly with
the value of ϕlocal. Note that the agglomeration behaviour on this local-global system is similar to
that on the two-region economy when ϕlocal is high (cf., Figs. 6.10 and 6.11). When ϕlocal is low
(cf., Figs. 6.12 and 6.13), the imbalance between the two local platforms becomes predominant
due to the relative superiority of the global trade.

We next fix the global trade freeness ϕglobal to some particular values and examine the transition
of stable equilibria when the local trade freeness ϕlocal increases. Figure 6.14 shows equilibrium
curves for ϕglobal = 0.8. For any value of ϕlocal, the population at the center of a square lattice
is zero. The population at the center of another square lattice increases as ϕlocal increases. At
the point E of ϕlocal = 0.261, the mono-centric distribution becomes stable and remains stable
thereafter.

Figure 6.15 shows equilibrium curves for ϕglobal = 0.2. In contrast to the case of ϕglobal = 0.8
in Fig. 6.14, the population at the two square lattices remains at some place for any value of ϕlocal.
The population at the centers of square lattices increases as ϕlocal increases. At the point C of
ϕlocal = 0.332, the duo-centric distribution becomes stable.

The results depicted in Figs. 6.14 and 6.15 imply that the values of ϕglobal affect the difference
of spatial distributions at each local platform. When ϕglobal is high, population at each square lattice
shows different spatial distributions. We see that the mono-centric distribution at the center of a
square lattice becomes stable. When ϕglobal is low, population at each square lattice shows identical
spatial distributions. We see that the duo-centric distribution at the centers of the two square
lattices becomes stable. It is noteworthy that a large ϕglobal accelerates the imbalance between the
two local systems.

146



A B C

D E

Figure 6.14: Equilibrium curves for ϕglobal = 0.8. The vertical axis shows λmax = max(λ1, . . . , λ18). Solid curves
represent stable equilibria, and dashed ones represent unstable ones.

A B C

Figure 6.15: Equilibrium curves for ϕglobal = 0.2. The vertical axis shows λmax = max(λ1, . . . , λ18). Solid curves
represent stable equilibria, and dashed ones represent unstable ones.
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Figure 6.16: A system comprising two different local platforms connected at the borders proposed by J.-F. Thisse to
K. Ikeda. A number associated with each node represents the label of each place.

6.4. Systems with Two Different Local Platforms
In this section, we consider systems comprising two different local platforms, which were

discussed in Section 6.2. We show the usefulness of the bifurcation mechanism of a local-global
system with reference to numerical simulations of the FO model.

6.4.1. Connection at the Borders
We introduce a spatial platform where the borders of the two local platforms are connected as

depicted in Fig. 6.16. Such a simple way of connection has been used widely in spatial economics.
Figure 6.17 shows equilibrium curves for the FO model on this spatial platform. Continuing from
the previous section, we chose the parameter values as σ = 6.0 and µ = 0.4. In the early state
A with low trade freeness, the population distributes almost uniformly. As the trade freeness ϕ
increases, the population agglomerates mostly at places i = 1 and 10, and 13 in the state J (cf.,
Fig. 6.16 for node numbers). Along the curve JKL, places i = 1 and 10 lose their population. At
the end, the mono-centric distribution at i = 13 (the left border of the square lattice at the right)
becomes stable.

6.4.2. Connection between the Centers: Local-global System
We introduce a local-global system with two different local platforms the centers of which are

connected directly as depicted in Fig. 6.18. This system retains the geometrical symmetry of each
local platform unlike the system with simple connection in Section 6.4.1. Thus, there exist invariant
patterns and associated bifurcation mechanisms. Continuing from the previous section, we use the
FO model (σ = 6.0, µ = 0.4) for numerical bifurcation and stability analysis. We set the distances
as m(1, 2) = 1, m(1, 10) = 1, m(10, 11) = 1, and the other distances follow geometrically.

Figure 6.19 depicts all invariant patterns for this local-global system. Almost all patterns
correspond to those of each local platform. Note that the duo-centric distribution at i = 1 and 10
becomes an invariant pattern since places i = 1 and 10 are in the same geometrical connectivity
with other places.17

17 Note that Proposition 4.1 in Section 4.3 provides sufficient conditions for invariant patterns based only on their
geometrical configurations although it is not obvious geometrically.
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Figure 6.17: Equilibrium curves for the connection of two different local platforms at the borders. The vertical axis
shows the size of population at i = 1 (the center of the radial network). Solid curves represent stable equilibria.
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Figure 6.18: A local-global system with two different local platforms. A number associated with each node represents
the label of each place.
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Figure 6.19: A list of invariant patterns for the local-global system with two different local platforms. The size of a
blue circle represents the size of population at each place.

A B C

Figure 6.20: The stability areas of invariant patterns with local square symmetry that become stable for some
(ϕlocal, ϕglobal).
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A B C

Figure 6.21: Equilibrium curves for ϕlocal = 0.5. The vertical axis shows the size of population at i = 1 (the center of
the radial network). Solid curves represent stable equilibria, and dashed ones represent unstable ones.

To find stable equilibria for this local-global system, we focus on invariant patterns in Fig. 6.19
and investigate the stability of these patterns. Among all these patterns, only three patterns, the
mono-centric distribution at i = 1, the mono-centric one at i = 10, and the duo-centric one at
i = 1 and 10, are stable for some (ϕlocal, ϕglobal). Figure 6.20 shows the stability areas of these
three patterns. Note that the stability areas of the two mono-centric distributions and that of the
duo-centric one are disjoint and is separated by the horizontal line at ϕglobal = 0.745.

We fix the local trade freeness ϕlocal to some particular values to investigate the influence of the
local trade freeness ϕglobal on the progress of stable equilibria. Figures 6.21–6.23 show equilibrium
curves for ϕlocal = 0.5, 0.3, and 0.1, respectively. When ϕlocal is high (cf., Figs. 6.21 and 6.22), the
mono-centric distributions and the duo-centric one are stable for a wide range of ϕglobal like the
two-region economy. When ϕlocal is low (cf., Fig. 6.23), the population agglomerates to the center
of the radial network as ϕglobal increases; this shows the relative superiority of this center for ϕlocal
small. Such bifurcation behaviour is quite similar to that of the system with two identical square
lattices in Section 6.3.3.

We fix the global trade freeness ϕglobal to some particular values to examine the influence of
the local trade freeness ϕlocal on the progress of stable equilibria. Figures 6.24 and 6.25 show
equilibrium curves for ϕglobal = 0.8 and 0.2, respectively. When ϕglobal is high (cf., Fig. 6.24), we
find two kinds of stable equilibrium paths. The path ABCDE represents transition of equilibria
from a spatial distribution where the center of the square lattice attracts population to the mono-
centric distribution at the center of the square lattice. The path FGH shows transition of equilibria
from a spatial distribution where the center of the radial network gains large population to the
mono-centric distribution at the center of the radial network. When ϕglobal is low (cf., Fig. 6.25),
population at each local platform shows similar behaviour. The duo-centric distribution at the
centers of the two local platforms becomes stable for a wide range of ϕlocal. Similarly to the case of
the system with two identical square lattices in Section 6.3.3, a large ϕglobal facilitates the imbalance
between the two local systems.
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D E

Figure 6.22: Equilibrium curves for ϕlocal = 0.3. The vertical axis shows the size of population at i = 1 (the center of
the radial network). Solid curves represent stable equilibria, and dashed ones represent unstable ones.

A B C

D

Figure 6.23: Equilibrium curves for ϕlocal = 0.1. The vertical axis shows the size of population at i = 1 (the center of
the radial network). Solid curves represent stable equilibria.
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Figure 6.24: Equilibrium curves for ϕglobal = 0.8. The vertical axis of a diagram to the left shows the size of population
at i = 10 (the center of the square lattice), while that of a diagram to the right shows the size of population at i = 1
(the center of the radial network). Solid curves represent stable equilibria.

A B C

D E

Figure 6.25: Equilibrium curves for ϕglobal = 0.2. The vertical axis shows the size of population at i = 1 (the center
of the radial network). Solid curves represent stable equilibria.
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Figure 6.26: Seven largest hub cities in the U.S. (plotted on the Google Map). Population is expressed by the area of
the red circles.

6.5. Concluding Remarks
This chapter has introduced local-global systems that can express a hierarchical spatial structure

and can retain the insightfulness of bifurcation mechanisms. We obtained invariant patterns on
these systems as candidates of stable equilibria. As a specific model for numerical bifurcation and
stability analysis, we employed the FO model We considered two kinds of bifurcation parameters,
the local and global trade freeness. It turns out that the mono-centric and the duo-centric invariant
patterns are stable for wide ranges of the local and global trade freeness.

The main contribution of this chapter is to propose a general framework to explain economic
interaction between local and global scales for any economic geography model. This chapter,
however, focused on prototype local-global systems that are made up of two local platforms. It is
a future topic to consider local-global systems comprising three or more local platforms. Such a
research direction is essential to elucidate the mechanism of economic agglomerations on realistic
global transportation networks.

Future Topic: Modeling of Hub Airports in the U.S.
We would like to target a direction of the Qualitative Spatial Economics (Redding and Rossi-

Hansberg, 2017), which is based on the framework of conventional economic geography models.
The spatial structures in mind, for example, are the seven largest hub cities in the U.S. in 2019 that
are connected by airlines in Fig. 6.26.

We model a network of hub cities in the U.S. focusing on the seven cities that have seven largest
enplaned passengers as listed in Table 6.1(a). The populations of these seven cities are listed in
Table 6.1(b) and are normalized using λ∗ = 330, 000 as a normalizing constant.

With Table 6.1 in mind, we model the local transportation networks of these seven cities by
either a two-places economy or a square lattice economy as follows:

• Square lattice economy (25 places): New York.
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Table 6.1: Seven largest hub airports in the U.S. in 2019 by United States Department of Transportation
(https://www.bts.gov/content/passengers-boarded-top-50-us-airports) and the population of each city in 2021 by World
Population Review (https://worldpopulationreview.com/us-cities)

(a) Enplaned passengers at the seven hub airports

City Airport Total enplaned passengers (rank)
Atlanta Hartsfield-Jackson Atlanta International 53,505,357 (1)
Los Angeles Los Angeles International 42,965,731 (2)
Chicago Chicago O’Hare International 40,887,890 (3)
Dallas Dallas/Fort Worth International 35,785,318 (4)
Denver Denver International 33,592,645 (5)
New York John F. Kennedy International 31,123,436 (6)
San Francisco San Francisco International 27,715,305 (7)

(b) The population of each city

City Population Normalized population Lattice size
Atlanta 524,067 1.6 2
Los Angeles 3,983,540 12.0 3 × 3
Chicago 2,679,080 8.1 3 × 3
Dallas 1,347,120 4.1 1 + 4
Denver 749,103 2.3 2
New York 8,230,290 24.9 5 × 5
San Francisco 883,255 2.7 2

New York

Chicago

Atlanta

Denver

DallasLos Angels

San Francisco

Figure 6.27: Seven largest hubs cities in the U.S. modeled by square lattices and two-places economies (plotted on the
Google Map).
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• Square lattice economy (9 places): Los Angels and Chicago.

• Square lattice economy (star economy with 1 + 4 places): Dallas.

• Two-places economy: San Francisco, Denver, and Atlanta.

Figure 6.27 depicts square lattices and two-places economies that represent local transportation
networks in the U.S. We consider a local-global system where the centers of these local platforms
(one of the two places for the two-places economy) are connected equidistantly by inter-regional
transportation networks of airplanes. The symmetry of such a local-global system is described by
the group

G ≃ D4 × {(D4 × D4) ∔ S2} × D4 × {(D2 × D2 × D2) ∔ S3}.
Here, S3 represents the three-dimensional symmetric group.
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7. Concluding Remarks

The present thesis developed group-theoretic methods for analyzing economic geography mod-
els on a square lattice in collaboration with nonlinear mathematics and spatial economics. Such a
methodology provides an effective approach to elucidate the complicated agglomeration behaviour
of economic geography models systematically in the light of bifurcation mechanisms.

Chapter 3 provided a group-theoretic bifurcation mechanism from the uniform distribution on
an n × n square lattice, which has the symmetry of the group D4 ⋉ (Zn × Zn). We revealed the
self-organization of square patterns as bifurcation phenomena in a system of equations modeled on
the square lattice. Two different approaches, using the equivariant branching lemma and solving
the bifurcation equation, were employed.

We presented in Chapter 3 a complete list of typical bifurcating solutions from the uniform
distribution on the square lattice for an arbitrary lattice size n. To demonstrate the emergence
of these bifurcating solutions, we conducted numerical analysis of economic geography models.
For the FO model, the uniform distribution prevails for small ϕ. For the Fm model, the uniform
distribution dominates for large ϕ. For the PS model, the uniform distribution becomes stable when
ϕ is close to 0 or 1. All the bifurcating solutions are unstable just after the bifurcation for the FO
model and the PS model, while stable bifurcating solutions occur for the Hm model.

Chapter 4 provided a theory of invariant patterns, which are one kind of stationary points of
the replicator dynamics. Invariant patterns retain their spatial distribution when the value of the
bifurcation parameter changes and display characteristic population distribution.

We proposed in Chapter 4 a methodology to find invariant patterns exhaustively. In view
of invariant patterns, we proposed an innovative bifurcation analysis procedure to find stable
equilibria: investigating the stability of invariant patterns and searching for bifurcating equilibrium
curves that connect stable invariant patterns. We applied this procedure to the FO model and
numerically showed the connectivity between bifurcating solutions and invariant patterns via
bifurcating solutions from the uniform state. We found a mesh-like structure of the solution curves
for stable invariant patterns and unstable non-invariant ones.

Chapter 5 provided a group-theoretic bifurcation mechanism from the mono-centric distribution
in a two-dimensional square domain. We obtained bifurcating solutions from the mono-centric
distribution by group-theoretic bifurcation analysis. We demonstrated the emergence of such
bifurcating solutions by numerical analysis of economic geography models. For the FO model,
the mono-centric distribution encounters a bifurcation point as ϕ decreases from 1 to 0. For the
PS model, the mono-centric distribution encounters two bifurcation points as ϕ changes. When ϕ
increases, a bifurcating solution that represents the emergence of satellite cities emerges. When ϕ
decreases, several bifurcating solutions that represent square distributions emerge.

Chapter 6 developed a spatial platform, a local-global system, that can present a hierarchical
structure but can still retain the insightfulness of bifurcation mechanisms. We employed a local-
global system constructed by two identical square lattices. We introduced two kinds of bifurcating
parameter, ϕlocal and ϕglobal, which represent the local trade freeness (related to transportation in a
lattice) and global trade freeness (related to transportation between two lattices), respectively. We
demonstrated complicated bifurcation behaviour due to the change of two bifurcation parameters
by numerical analysis of the FO model.
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A. Appendices for Chapter 3

A.1. Details of Irreducible Representations
In Section 3.3, we listed the matrix forms of the irreducible representations of the group G.

In this section, we describe a systematic method using little groups to construct these irreducible
representations.

A.1.1. Characters
We explain the characters of the irreducible representations of G, which play a vital role in the

method of little groups (Appendix A.1.2).

One-Dimensional Irreducible Representations
The characters χµ(g) = Tr T µ(g), which are equal to T µ(g) for one-dimensional representations,

are given as follows:

g χ(1;+,+,+)(g) χ(1;+,−,+)(g) χ(1;−,+,+)(g) χ(1;−,−,+)(g)
p1

i p2
j 1 1 1 1

rp1
i p2

j 1 1 −1 −1
r2p1

i p2
j 1 1 1 1

r3p1
i p2

j 1 1 −1 −1
srmp1

i p2
j (m : even) 1 −1 1 −1
(m : odd) 1 −1 −1 1

(A.1)

g χ(1;+,+,−)(g) χ(1;+,−,−)(g) χ(1;−,+,−)(g) χ(1;−,−,−)(g)
p1

i p2
j (−1)i+ j (−1)i+ j (−1)i+ j (−1)i+ j

rp1
i p2

j (−1)i+ j (−1)i+ j −(−1)i+ j −(−1)i+ j

r2p1
i p2

j (−1)i+ j (−1)i+ j (−1)i+ j (−1)i+ j

r3p1
i p2

j (−1)i+ j (−1)i+ j −(−1)i+ j −(−1)i+ j

srmp1
i p2

j (m : even) (−1)i+ j −(−1)i+ j (−1)i+ j −(−1)i+ j

(m : odd) (−1)i+ j −(−1)i+ j −(−1)i+ j (−1)i+ j

(A.2)

where i, j = 0, 1, . . . , n − 1 and m = 0, 1, 2, 3.

Two-Dimensional Irreducible Representations
The characters χµ(g) = Tr T µ(g) for two-dimensional irreducible representations are given as

follows. For µ = (2;+), (2;−) in (3.45) and (3.46), we have

g χ(2;+)(g) χ(2;−)(g)
p1

i p2
j 2 (−1)i+ j2

rp1
i p2

j 0 0
r2p1

i p2
j −2 −(−1)i+ j2

r3p1
i p2

j 0 0
srmp1

i p2
j 0 0

(A.3)
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where i, j = 0, 1, . . . , n− 1 and m = 0, 1, 2, 3. For µ = (2;+,+), (2;+,−), (2;−,+), (2;−,−) in (3.47)
and (3.48), we have

g χ(2;+,+)(g) χ(2;+,−)(g) χ(2;−,+)(g) χ(2;−,−)(g)
p1

i p2
j (−1)i + (−1) j (−1)i + (−1) j (−1)i + (−1) j (−1)i + (−1) j

rp1
i p2

j 0 0 0 0
r2p1

i p2
j (−1)i + (−1) j (−1)i + (−1) j −(−1)i − (−1) j −(−1)i − (−1) j

r3p1
i p2

j 0 0 0 0
sp1

i p2
j (−1)i + (−1) j −(−1)i − (−1) j (−1)i − (−1) j −(−1)i + (−1) j

srp1
i p2

j 0 0 0 0
sr2p1

i p2
j (−1)i + (−1) j −(−1)i − (−1) j −(−1)i + (−1) j (−1)i − (−1) j

sr3p1
i p2

j 0 0 0 0

(A.4)

where i, j = 0, 1, . . . , n − 1 and m = 0, 1, 2, 3.

Four-Dimensional Irreducible Representations
The characters χµ(g) = Tr T µ(g) for four-dimensional irreducible representations are given as

follows:

g χ(4;k,0,σ)(g) χ(4;k,k,σ)(g) χ(4;n/2,ℓ,σ)(g)
p1

i p2
j 2[cos(kiθ) 2[cos(k(i + j)θ) 2[(−1)i cos(ℓ jθ)

+ cos(k jθ)] + cos(k(i − j)θ)] +(−1) j cos(ℓiθ)]
rmp1

i p2
j 0 0 0

(m = 1, 2, 3)
sp1

i p2
j 2σ cos(kiθ) 0 2σ(−1) j cos(ℓiθ)

srp1
i p2

j 0 2σ cos(k(i − j)θ) 0
sr2p1

i p2
j 2σ cos(k jθ) 0 2σ(−1)i cos(ℓ jθ)

sr3p1
i p2

j 0 2σ cos(k(i + j)θ) 0

(A.5)

where θ = 2π/n and i, j = 0, 1, . . . , n − 1.

Eight-Dimensional Irreducible Representations
The characters χ(8;k,ℓ)(g) = Tr T (8;k,ℓ)(g) are given as follows. For g = p1

i p2
j , being free from

r and s, we have

χ(8;k,ℓ)(p1
i p2

j) = 2{cos((ki+ℓ j)θ)+cos((−ℓi+ k j)θ)+cos((ki−ℓ j)θ)+cos((−ℓi− k j)θ)}, (A.6)

where θ = 2π/n and i, j = 0, 1, . . . , n − 1. For other g, we have χ(8;k,ℓ)(g) = 0.
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A.1.2. Method of Little Groups
We describe a systematic method, called the method of little groups, for constructing irreducible

representations of a general group with the structure of the semidirect product by an abelian group.
For details about semidirect products, see Section 8.2 of Serre (1977).

Let G be a group that is a semidirect product of a group H and an abelian group A. This means
that A is a normal subgroup of G, and each element g ∈ G is represented uniquely as g = ah with
a ∈ A and h ∈ H.

Since A is abelian, every irreducible representation of A over C is one-dimensional, and is
identified with its character χ. Accordingly, the set of all irreducible representations of A over C
can be denoted as

X = {χi | i ∈ R(A)} (A.7)

with a suitable index set R(A). For χ ∈ X and g ∈ G, we define a function g χ on A by

g χ(a) = χ(g−1ag), a ∈ A, (A.8)

which is also a character of A, belonging to X . This defines an action of G on X .
With reference to the action of G on X , we classify the elements of X into orbits. It should be

noted that, for g = bh with b ∈ A and h ∈ H, we have

g χ(a) = χ((bh)−1a(bh)) = χ(h−1ah) =h χ(a), a ∈ A, (A.9)

in which b−1ab = a since A is abelian. Hence, the orbits can in fact be obtained by the action of
the subgroup H on X , instead of that of G. Denote by

{χi | i ∈ R(A)/H} (A.10)

a system of representatives from the orbits, where R(A)/H is an index set, or the set of “names” of
the orbit. This means that

• χi ∈ X for each i ∈ R(A)/H,

• for distinct i and j in R(A)/H, χi ,h (χ j) for any h ∈ H, and

• for each χ ∈ X , there exist some i ∈ R(A)/H and h ∈ H such that χ =h (χi).

For each i ∈ R(A)/H, we define

Hi = {h ∈ H |h (χi) = χi}, (A.11)

which is a subgroup of H associated with the orbit i, and

Gi = {ah | a ∈ A, h ∈ Hi}, (A.12)

which is a subgroup of G, called the little group. Noting that each element of Gi can be represented
as ah with a ∈ A and h ∈ Hi, we define a function χ̃i on Gi by

χ̃i(ah) = χi(a), a ∈ A, h ∈ Hi, (A.13)
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which is a one-dimensional representation (a character of degree one) of Gi.
Let T µ be an irreducible representation of Hi over C indexed by µ ∈ R(Hi). Then the matrix-

valued function T (i,µ) defined on Gi of (A.12) by

T (i,µ)(ah) = χi(a)T µ(h), a ∈ A, h ∈ Hi (A.14)

is an irreducible representation of Gi. Denote by T̃ (i,µ) the induced representation of G obtained
from T (i,µ) (see Remark A.1 below). Then T̃ (i,µ) is an irreducible representation of G. Moreover,
all the irreducible representations of G can be obtained in this manner, and T̃ (i,µ)’s are mutually
inequivalent for different (i, µ). Thus, the irreducible representations of G are indexed by (i, µ),
i.e.,

R(G) = {(i, µ) | i ∈ R(A)/H, µ ∈ R(Hi)} (A.15)

and
{T̃ (i,µ) | i ∈ R(A)/H, µ ∈ R(Hi)} (A.16)

gives a complete list of irreducible representations of G over C.

Remark A.1. The induced representation is explained here. Let G be a group, G′ be a subgroup
of G, and T ′ be a representation of G′ of dimension N′. Consider the coset decomposition

G = g1G′ + g2G′ + · · · + gmG′, (A.17)

where j = 1, . . . ,m and m = |G |/|G′|. Each g ∈ G causes a permutation of (g1, g2, . . . , gm) to
(gπ(1), gπ(2), . . . , gπ(m)) according to the equation

gg j = gπ( j) f j, f j ∈ G′ (A.18)

for j = 1, . . . ,m. Note that the choice of (g1, g2, . . . , gm) is not unique, but once this is fixed, f j is
uniquely determined for each g.

Define T̃(g) to be an mN′ × mN′ matrix with rows and columns partitioned into m blocks of
size N′ such that the (π( j), j)-block of T̃(g) equals T ′( f j), whereas the (i, j)-block of T̃(g) equals
O if i , π( j). Note that this is well-defined, since f j and π( j) are uniquely determined from g,
and T ′( f j) for j = 1, . . . ,m are assumed to be given. The family of matrices {T̃(g) | g ∈ G} is a
representation of G of dimension mN′, called the induced representation. For example, if m = 3,
(π(1), π(2), π(3)) = (2, 3, 1), we have

T̃(g) =


T ′( f3)
T ′( f1)

T ′( f2)

 .
We shall apply this construction to T ′ = T (i,µ) on G′ = Gi to obtain T̃ = T̃ (i,µ), where the

dimension N′ of T (i,µ) is equal to that of T µ by (A.14).
□
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A.1.3. Derivation of the Little Groups
We apply the method of little groups to

A = Zn × Zn = ⟨p1⟩ × ⟨p2⟩, H = D4 = ⟨r, s⟩ (A.19)

to obtain the irreducible representations of G = D4 ⋉ (Zn × Zn).
As the first step we determine the system of representatives (A.10) in the orbit decomposition of

X . Since A = Zn × Zn is an abelian group, all the irreducible representations are one-dimensional.
The set X of irreducible representations of A = Zn × Zn is indexed by

R(A) = {(k, ℓ) | 0 ≤ k ≤ n − 1, 0 ≤ ℓ ≤ n − 1}, (A.20)

where (k, ℓ) denotes a one-dimensional representation (or character) χ(k,ℓ) defined by

χ(k,ℓ)(p1) = ωk, χ(k,ℓ)(p2) = ωℓ (A.21)

with
ω = exp(2πi/n). (A.22)

We extend the notation (k, ℓ) for any integers, to designate the element (k′, ℓ′) of R(A) with k′ ≡ k
mod n and ℓ′ ≡ ℓ mod n.

For the orbit decomposition of X by H, we compute h−1p1h and h−1p2h for h ∈ H, to obtain

h e r r2 r3 s sr sr2 sr3

h−1p1h p1 p2
−1 p1

−1 p2 p1 p2
−1 p1

−1 p2

h−1p2h p2 p1 p2
−1 p1

−1 p2
−1 p1

−1 p2 p1

(A.23)

For example, for h = s, we have (h−1p1h, h−1p2h) = (p1, p2
−1), and we see, by (A.21), that the

action of s in (A.8) is given as s χ(k,ℓ) = χ(k,−ℓ), which is expressed symbolically as (k, ℓ) ⇒ (k,−ℓ).
In this manner, we can obtain the following orbit containing (k, ℓ):

(ℓ,−k) ← (−k,−ℓ)
↓ ↑
(k, ℓ) → (−ℓ, k)
⇓

(k,−ℓ) → (−ℓ,−k)
↑ ↓
(ℓ, k) ← (−k, ℓ)

(A.24)

where “⇓” means the action of s, and “→” (or “←”, “↑”, “↓”) means the action of r . It should be
clear that (ℓ,−k), for example, is understood as (ℓ mod n,−k mod n). The orbit (A.24) is illustrated
in Fig. A.1.

The system of representatives in (A.10) in the orbit decomposition of X with respect to the
action of G is given as follows. In view of Fig. A.1, it is natural to take

R(A)/H = {(k, ℓ) | 0 ≤ ℓ ≤ k ≤ ⌊(n − 1)/2⌋}, (A.25)
162



Figure A.1: Orbit of (k, ℓ) in (A.24).

which corresponds to the set of integer lattice points (k, ℓ) contained in the triangle with vertices
at (k, ℓ) = (0, 0), (n/2, 0), (n/2, n/2), where the points on the edges of the triangle are included.

The subgroup Hi = H(k,ℓ) in (A.11) for i = (k, ℓ), which is expressed as

H(k,ℓ) = {h ∈ D4 | χ(k,ℓ)(h−1ah) = χ(k,ℓ)(a) for all a ∈ Zn × Zn}, (A.26)

is obtained with reference to (A.21) and (A.23). For h ∈ D4, we have h ∈ H(k,ℓ) if and only if

χ(k,ℓ)(hp1h−1) = χ(k,ℓ)(p1), χ(k,ℓ)(hp2h−1) = χ(k,ℓ)(p2). (A.27)

For (k, ℓ) = (0, 0), for example, this condition is satisfied by all h ∈ D4, and hence H(0,0) = ⟨r, s⟩.
In this manner, we obtain

H(k,ℓ) =



⟨r, s⟩ for (k, ℓ) = (0, 0),
⟨r, s⟩ for (k, ℓ) = (n/2, n/2) (n: even),
⟨r2, s⟩ for (k, ℓ) = (n/2, 0) (n: even),
{e, s} for (k, ℓ) = (k, 0) (1 ≤ k ≤

⌊ n−1
2

⌋
),

{e, sr3} for (k, ℓ) = (k, k) (1 ≤ k ≤
⌊ n−1

2
⌋
),

{e, sr2} for (k, ℓ) = (n/2, ℓ) (n: even, 1 ≤ ℓ ≤
⌊ n−1

2
⌋
),

{e} for (k, ℓ) (1 ≤ ℓ ≤ k − 1, 2 ≤ k ≤
⌊ n−1

2
⌋
).

(A.28)

The little group Gi = G(k,ℓ) in (A.12) for i = (k, ℓ) is obtained as the semidirect product of H(k,ℓ)

by A = ⟨p1, p2⟩.

Example A.1. The system of representatives R(A)/H and the associated subgroups H(k,ℓ) in (A.28)
for n = 3, 4, 7, 8, 9 are given as follows:
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n = 3
(k, ℓ) H(k,ℓ)

(0, 0) ⟨r, s⟩
(1, 0) {e, s}
(1, 1) {e, sr3}

n = 4
(k, ℓ) H(k,ℓ)

(0, 0) ⟨r, s⟩
(2, 2) ⟨r, s⟩
(2, 0) ⟨r2, s⟩
(1, 0) {e, s}
(1, 1) {e, sr3}
(2, 1) {e, sr2}

n = 7
(k, ℓ) H(k,ℓ)

(0, 0) ⟨r, s⟩
(1, 0), (2, 0), (3, 0) {e, s}
(1, 1), (2, 2), (3, 3) {e, sr3}
(2, 1), (3, 1), (3, 2) {e}

n = 8
(k, ℓ) H(k,ℓ)

(0, 0) ⟨r, s⟩
(4, 4) ⟨r, s⟩
(4, 0) ⟨r2, s⟩
(1, 0), (2, 0), (3, 0) {e, s}
(1, 1), (2, 2), (3, 3) {e, sr3}
(4, 1), (4, 2), (4, 3) {e, sr2}
(2, 1), (3, 1), (3, 2) {e}

n = 9
(k, ℓ) H(k,ℓ)

(0, 0) ⟨r, s⟩
(1, 0), (2, 0), (3, 0), (4, 0) {e, s}
(1, 1), (2, 2), (3, 3), (4, 4) {e, sr3}
(2, 1), (3, 1), (3, 2) {e}
(4, 1), (4, 2), (4, 3) {e}

□

A.1.4. Construction of the Irreducible Representations
The procedure for constructing irreducible representations of G = ⟨r, s, p1, p2⟩ using orbit

decomposition and little groups is summarized as follows.
For each (k, ℓ) ∈ R(A)/H, we have the associated subgroup H(k,ℓ) in (A.28). Let T µ be an

irreducible representation of H(k,ℓ) indexed by µ ∈ R(H(k,ℓ)), and define T (k,ℓ,µ) by

T (k,ℓ,µ)(p1
i p2

j h) = χ(k,ℓ)(p1
i p2

j)T µ(h) = ωki+ℓ jT µ(h), 0 ≤ i, j ≤ n − 1, h ∈ H(k,ℓ), (A.29)

which is an irreducible representation of the little group G(k,ℓ).
The coset decomposition (A.17) takes the form of

G = g1G(k,ℓ) + g2G(k,ℓ) + · · · + gmG(k,ℓ) (A.30)

with m = |G |/|G(k,ℓ) | = |D4 |/|H(k,ℓ) | = 8/|H(k,ℓ) |. Since G(k,ℓ) ⊇ ⟨p1, p2⟩, we may assume that
g j ∈ ⟨r, s⟩ for j = 1, . . . ,m and g1 = e.

The induced representation T̃ (k,ℓ,µ)(g) is determined by its values at g = p1, p2, r, s that generate
the group G. Hence, it suffices to consider g = p1, p2, r, s in the equation (A.18):

gg j = gπ( j) f j, (A.31)

where π( j) and f j ∈ G(k,ℓ) are to be found for j = 1, . . . ,m. The induced representation T̃ (k,ℓ,µ)

is an irreducible representation of dimension mN µ = 8N µ/|H(k,ℓ) | over C, where N µ denotes the
dimension of T µ.
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Table A.1: Induced irreducible representations of D4 ⋉ (Zn × Zn).

(k, ℓ) H(k,ℓ) m Induced irreducible representations
(0, 0) ⟨r, s⟩ 1 (1;+,+,+), (1;+,−,+), (1;−,+,+), (1;−,−,+), (2;+)
(n/2, n/2) ⟨r, s⟩ 1 (1;+,+,−), (1;+,−,−), (1;−,+,−), (1;−,−,−), (2;−)
(n/2, 0) ⟨r2, s⟩ 2 (2;+,+), (2;+,−), (2;−,+), (2;−,−)
(k, 0) {e, s} 4 (4; k, 0,+), (4; k, 0,−)
(k, k) {e, sr3} 4 (4; k, k,+), (4; k, k,−)
(n/2, ℓ) {e, sr2} 4 (4; n/2, ℓ,+), (4; n/2, ℓ,−)
(k, ℓ) {e} 8 (8; k, ℓ)
(k, ℓ) = (n/2, n/2) and (n/2, 0) exist if n is even;
(k, 0) with 1 ≤ k ≤

⌊
n−1

2
⌋

in (3.49);
(k, k) with 1 ≤ k ≤

⌊
n−1

2
⌋

in (3.50);
(n/2, ℓ) with 1 ≤ ℓ ≤

⌊
n−1

2
⌋

in (3.51);
(k, ℓ) with 1 ≤ ℓ ≤ k − 1, 2 ≤ k ≤ ⌊(n − 1)/2⌋ in (3.60)

According to the general theory, T̃ (k,ℓ,µ) obtained in this manner is not a representation over R
but over C, as is evident from the fact that ω appearing in (A.29) is a complex number defined
by (A.22). Fortunately, however, all irreducible representations thus obtained are representable
over R. We can thus determine a complete list of irreducible representations over R of the group
G = D4 ⋉ (Zn × Zn). Table A.1 is a summary of the derivations below.

Case of (k, ℓ) = (0, 0)
For (k, ℓ) = (0, 0), χ(k,ℓ) is the unit representation by (A.21), and therefore

H(k,ℓ) = ⟨r, s⟩ = D4,

as is shown in (A.28). D4 has four one-dimensional irreducible representations (+,+,+), (+,−,+),
(−,+,+), (−,−,+), and one two-dimensional irreducible representation (2;+) (e.g., see Kim, 1999;
Kettle, 2007).

Since G(k,ℓ) = G, the coset decomposition (A.30) is trivial with m = 1 and g1 = e, and the
equation (A.31) reads g · g1 = g1 · g for every g ∈ G. For each µ, the induced representation
T̃ (0,0,µ)(g) for g = p1

i p2
j h with h ∈ D4 is given by (A.29) as

T̃ (0,0,µ)(g) = T̃ (0,0,µ)(p1
i p2

j h) = χ(0,0)(p1
i p2

j)T µ(h) = T µ(h).
With this result, we have the one-dimensional irreducible representations (1;+,+,+), (1;+,−,+),
(1;−,+,+), (1;−,−,+), and the two-dimensional irreducible representation (2;+) as the irreducible
representations for the group D4 ⋉ (Zn × Zn).

Case of (k, ℓ) = (n/2, n/2)
In this case, χ = χ(k,ℓ) = χ(n/2,n/2) is given by (A.21) as χ(p1) = χ(p2) = ωn/2 = −1. For

(k, ℓ) = (n/2, n/2), we have
H(k,ℓ) = ⟨r, s⟩ = D4,

as is shown in (A.28). Hence we have the one-dimensional irreducible representations (1;+,+,−),
(1;+,−,−), (1;−,+,−), (1;−,−,−), and the two-dimensional irreducible representation (2;−).
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Case of (k, ℓ) = (n/2, 0)
The case of (k, ℓ) = (n/2, 0) occurs when n is even. In this case, χ = χ(k,ℓ) = χ(n/2,0) is given

by (A.21) as χ(p1) = −1 and χ(p2) = 1, and therefore

H(k,ℓ) = {e, r2, s, sr2} = ⟨r2, s⟩ ≃ D2,

as is shown in (A.28). This group has four one-dimensional irreducible representations, say,
µ = (σr, σs) = (+,+), (+,−), (−,+), (−,−) defined by

T µ(r2) = σr = ±1, T µ(s) = σs = ±1.

Since G(k,ℓ) = ⟨r2, s, p1, p2⟩, the coset decomposition in (A.30) is given by

G = g1G(k,ℓ) + g2G(k,ℓ) = e · ⟨r2, s, p1, p2⟩ + r · ⟨r2, s, p1, p2⟩

with m = 2, g1 = e and g2 = r . The equation (A.31) for g = p1, p2, r, s reads as follows:

p1 · g j = gπ( j) · f j p2 · g j = gπ( j) · f j r · g j = gπ( j) · f j s · g j = gπ( j) · f j
p1 · e = e · p1 p2 · e = e · p2 r · e = r · e s · e = e · s

p1 · r = r · p2
−1 p2 · r = r · p1 r · r = e · r2 s · r = r · sr2

For the one-dimensional representation µ = (σ) with σ ∈ {+,−}, the induced representation
T̃ = T̃ (n/2,0,µ) is given by

T̃(p1) =
[
χ(p1)T µ(e)

χ(p2
−1)T µ(e)

]
=

[
−1

1

]
,

T̃(p2) =
[
χ(p2)T µ(e)

χ(p1)T µ(e)

]
=

[
1
−1

]
,

T̃(r) =
[

χ(e)T µ(r2)
χ(e)T µ(e)

]
=

[
σr

1

]
,

T̃(s) =
[
χ(e)T µ(s)

χ(e)T µ(sr2)

]
= σs

[
1

σr

]
,

where (A.29) is used and the nonzero blocks here are determined with reference to π( j) and f j
computed above (see Remark A.1).

Case of (k, ℓ) = (k, 0), (k, k), (n/2, ℓ)
For (k, ℓ) = (k, 0) in (3.49), we have χ(k,ℓ)(p1) = ωk and χ(k,ℓ)(p2) = 1 by (A.21), and therefore

H(k,ℓ) = {e, s},

as is shown in (A.28). For (k, ℓ) = (k, k) in (3.50), we have χ(k,ℓ)(p1) = χ(k,ℓ)(p2) = ωk , and
therefore

H(k,ℓ) = {e, sr3}.
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For (k, ℓ) = (n/2, ℓ) in (3.51), we have χ(k,ℓ)(p1) = −1 and χ(k,ℓ)(p2) = ωℓ, and therefore

H(k,ℓ) = {e, sr2}.

Let h0 = s for (k, ℓ) = (k, 0), h0 = sr3 for (k, ℓ) = (k, k), and h0 = sr2 for (k, ℓ) = (n/2, ℓ). In either
case H(k,ℓ) = {e, h0} is isomorphic to D1 and has two one-dimensional irreducible representations,
say, µ = µ1, µ2 defined by

T µ1(h0) = 1, T µ2(h0) = −1.

That is, T µ(h0) = σµ with σµ1 = 1 and σµ2 = −1. The notation is summarized as follows:

(k, ℓ) H(k,ℓ) h0 T µ1(h0) T µ2(h0)
(k, 0) {e, s} sr 1 −1
(k, k) {e, sr3} sr3 1 −1
(n/2, ℓ) {e, sr2} sr2 1 −1

The coset decomposition in (A.30) is given by G(k,ℓ) = ⟨h0, p1, p2⟩, m = 4, and g j = r j−1 for
j = 1, . . . , 4. The equation (A.31) for g = p1, p2, r, s reads as follows (see (A.23) for p1 and p2):

p1 · g j = gπ( j) · f j p2 · g j = gπ( j) · f j r · g j = gπ( j) · f j

p1 · e = e · p1 p2 · e = e · p2 r · e = r · e
p1 · r = r · p2

−1 p2 · r = r · p1 r · r = r2 · e
p1 · r2 = r2 · p1

−1 p2 · r2 = r2 · p2
−1 r · r2 = r3 · e

p1 · r3 = r3 · p2 p2 · r3 = r3 · p1 r · r3 = e · e

s · g j = gπ( j) · f j

(k, 0) (k, k) (n/2, ℓ)
s · e = e · s s · e = r3 · sr3 s · e = r2 · sr2

s · r = r3 · s s · r = r2 · sr3 s · r = r · sr2

s · r2 = r2 · s s · r2 = r · sr3 s · r2 = e · sr2

s · r3 = r · s s · r3 = e · sr3 s · r3 = r3 · sr2

For (k, ℓ) = (k, 0), (k, k), (n/2, ℓ) and µ = µ1, µ2, the induced representation T̃ (k,ℓ,µ) is given,
with ω = exp(2π i/n), by

T̃ (k,ℓ,µ)(p1) = diag(χ(p1), χ(p2
−1), χ(p1

−1), χ(p2)) = diag(ωk, ω−ℓ, ω−k, ωℓ),
T̃ (k,ℓ,µ)(p2) = diag(χ(p2), χ(p1), χ(p2

−1), χ(p1
−1)) = diag(ωℓ, ωk, ω−ℓ, ω−k),

T̃ (k,ℓ,µ)(r) = T µ(e)


1

1
1

1

 =


1
1

1
1

 ,
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and

T̃ (k,0,µ)(s) = T µ(s)


1

1
1

1

 =

1

1
1

1

 ,

T̃ (k,k,µ)(s) = T µ(sr3)


1

1
1

1

 = σ
µ


1

1
1

1

 ,

T̃ (n/2,ℓ,µ)(s) = T µ(sr2)


1

1
1

1

 = σ
µ


1

1
1

1

 .
The above representation over C can be transformed to a real representation. By permuting the

rows and columns as (1, 3, 2, 4), we obtain

T̂ (k,ℓ,µ)(p1) T̂ (k,ℓ,µ)(p2) T̂ (k,ℓ,µ)(r)

=


ωk

ω−k

ω−ℓ

ωℓ

 , =

ωℓ

ω−ℓ

ωk

ω−k

 , =


1
1

1
1

 ,
T̂ (k,0,µ)(s) T̂ (k,k,µ)(s) T̂ (n/2,ℓ,µ)(s)

= σµ


1

1
1

1

 , = σ
µ


1

1
1

1

 , = σ
µ


1

1
1

1

 .
It is apparent that these representations are equivalent, respectively, to the four-dimensional real
irreducible representations (4; k, 0, σ) and (4; k, k, σ) with σ = σµ.

Case of General (k, ℓ)
For (k, ℓ) in (3.60), χ = χ(k,ℓ) is given by (A.21), and H(k,ℓ) = {e}. The unit representation µ

is the only irreducible representation of H(k,ℓ).
The coset decomposition in (A.30) is given by G(k,ℓ) = ⟨p1, p2⟩, m = 8, and

g1 = e, g2 = r, g3 = r2, g4 = r3, g5 = s, g6 = sr, g7 = sr2, g8 = sr3.
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The equation (A.31) for g = p1, p2, r, s reads as follows:

p1 · g j = gπ( j) · f j p2 · g j = gπ( j) · f j r · g j = gπ( j) · f j s · g j = gπ( j) · f j

p1 · e = e · p1 p2 · e = e · p2 r · e = r · e s · e = s · e
p1 · r = r · p2

−1 p2 · r = r · p1 r · r = r2 · e s · r = sr · e
p1 · r2 = r2 · p1

−1 p2 · r2 = r2 · p2
−1 r · r2 = r3 · e s · r2 = sr2 · e

p1 · r3 = r3 · p2 p2 · r3 = r3 · p1
−1 r · r3 = e · e s · r3 = sr3 · e

p1 · s = s · p1 p2 · s = s · p2
−1 r · s = sr3 · e s · s = e · e

p1 · sr = sr · p2
−1 p2 · sr = sr · p1

−1 r · sr = s · e s · sr = r · e
p1 · sr2 = sr2 · p1

−1 p2 · sr2 = sr2 · p2 r · sr2 = sr · e s · sr2 = r2 · e
p1 · sr3 = sr3 · p2 p2 · sr3 = sr3 · p1 r · sr3 = sr2 · e s · sr3 = r3 · e

The induced representation T̃ = T̃ (k,ℓ,µ), of dimension 8, is given in terms of ω = exp(2πi/n)
as follows:

T̃(p1) = diag(ωk, ω−ℓ, ω−k, ωℓ, ωk, ω−ℓ, ω−k, ωℓ),
T̃(p2) = diag(ωℓ, ωk, ω−ℓ, ω−k, ω−ℓ, ω−k, ωℓ, ωk),

T̃(r) =
[
C O
O C⊤

]
, T̃(s) =

[
O I
I O

]
with

C =


1

1
1

1

 , I =


1

1
1

1

 .
The above representation over C can be transformed to a real representation. By permuting the

rows and columns as (1, 3, 2, 4, 5, 7, 6, 8), we obtain

T̂(p1) =
[
Ω1
Ω1

]
, T̂(p2) =

[
Ω2
Ω3

]
, T̂(r) =

[
D

D⊤

]
, T̂(s) =

[
I

I

]
with

Ω1 =


ωk

ω−k

ω−ℓ

ωℓ

 , Ω2 =


ωℓ

ω−ℓ

ωk

ω−k

 ,
Ω3 =


ω−ℓ

ωℓ

ω−k

ωk

 , D =


1

1
1

1

 .
This representation is easily seen to be equivalent to the eight-dimensional real irreducible repre-
sentation (8; k, ℓ).
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A.2. Construction of the Function Φ
A systematic construction procedure of the function Φ in (3.182) is given here.

Basic Facts about Integer Matrices
We present here some basic facts about integer matrices18 that are used in the construction of

the correspondence Φ and in the proofs in Appendix A.3.
A square integer matrix U is called unimodular if its determinant is equal to±1; U is unimodular

if and only if its inverse U−1 exists and is an integer matrix. For an integer matrix A, the
kth determinantal divisor, denoted dk(A), is the greatest common divisor of all k × k minors
(subdeterminants) of A. By convention we put d0(A) = 1.

The first theorem states that every integer matrix can be brought to the Smith normal form by a
bilateral unimodular transformation.

Theorem A.1. Let A be an m × n integer matrix. There exist unimodular matrices U and V such
that

U AV =


α1 0

. . . 0r,n−r

0 αr

0m−r,r 0m−r,n−r


, (A.32)

where r = rank A and α1 ≤ α2 ≤ · · · ≤ αr are positive integers with the divisibility property:19

α1 | α2 | · · · | αr .

Such integers α1, α2, . . . , αr are uniquely determined by A, and are expressed as

αk =
dk(A)

dk−1(A)
, k = 1, . . . , r,

in terms of the determinantal divisors d1(A), d2(A), . . . , dr(A) of A.

The second theorem gives a solvability criterion for a system of linear equations in unknown
integer vectors.

Theorem A.2. Let A be an m × n integer matrix and b an m-dimensional integer vector. The
following two conditions (a) and (b) are equivalent.

(a) The system of equations Ax = b admits an integer solution x.
(b) Two matrices A and [A | b] share the same determinantal divisors, i.e., rank A = rank [A | b]

and dk(A) = dk([A | b]) for all k.

As a corollary of Theorem A.2 we can obtain the following facts.

18 See Schrijver (1998) for more details on integer matrices.
19 Notation “a | b” means that a divides b, that is, b is a multiple of a.
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Proposition A.1. Let a1, . . . , an be integers.
(i) gcd(a1, . . . , an) = 1 if and only if there exist some integers x1, . . . , xn such that a1x1 + · · · +

anxn = 1.
(ii) An integer b is divisible by gcd(a1, . . . , an) if and only if there exist some integers x1, . . . , xn

such that a1x1 + · · · + anxn = b.

The third theorem is a kind of duality theorem, which is sometimes referred to as the integer
analogue of the Farkas lemma.

Theorem A.3. Let A be an m × n integer matrix and b an m-dimensional integer vector. The
following two conditions (a) and (b) are equivalent.

(a) The system of equations Ax = b admits an integer solution x.
(b) We have “y⊤A ∈ Zn =⇒ y⊤b ∈ Z” for any m-dimensional vector y.

Construction of Φ via the Smith Normal Form
The correspondence Φ : (k, ℓ) 7→ (α, β) can be constructed with the aid of the Smith normal

form. Recall notations

k̂ =
k

gcd(k, ℓ, n), ℓ̂ =
ℓ

gcd(k, ℓ, n), n̂ =
n

gcd(k, ℓ, n)

in (3.164), for which
gcd(k̂, ℓ̂, n̂) = 1. (A.33)

By the definition of the correspondence Φ of (3.182) in Proposition 3.21, we have

A(k, ℓ, n) = L(α, β) for (α, β) = Φ(k, ℓ, n), (A.34)

where

A(k, ℓ, n) = {(a, b) ∈ Z2 | k̂a + ℓ̂b ≡ 0, ℓ̂a − k̂b ≡ 0 mod n̂}, (A.35)
L(α, β) = {(a, b) ∈ Z2 | (a, b) = n1(α, β) + n2(−β, α), n1, n2 ∈ Z}. (A.36)

The condition in the definition of A(k, ℓ, n) can be rewritten in a matrix form as[
k̂ ℓ̂

ℓ̂ −k̂

] [
a
b

]
≡

[
0
0

]
mod n̂. (A.37)

We define matrices K and A as

K =
[
k̂ ℓ̂

ℓ̂ −k̂

]
, A =

[
α −β
β α

]
, (A.38)

which play the key role in our analysis. Note that

L(α, β) =
{
(a, b) |

[
a
b

]
= A

[
n1
n2

]
; n1, n2 ∈ Z

}
(A.39)
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by (A.36).
The condition for A(k, ℓ, n) in (A.37) is equivalent to the existence of integers p and q such

that [
k̂ ℓ̂ −n̂ 0
ℓ̂ −k̂ 0 −n̂

] 
a
b
p
q

 =
[
0
0

]
. (A.40)

Since the determinantal divisors d1 and d2 of this 2 × 4 coefficient matrix are

d1 = gcd(k̂, ℓ̂, n̂) = 1,
d2 = gcd(k̂2 + ℓ̂2, k̂ n̂, ℓ̂n̂, n̂2) = gcd(k̂2 + ℓ̂2, n̂ gcd(k̂, ℓ̂, n̂))
= gcd(k̂2 + ℓ̂2, n̂),

the Smith normal form of that matrix is given (see Theorem A.1) as

U
[

k̂ ℓ̂ −n̂ 0
ℓ̂ −k̂ 0 −n̂

]
V =

[
1 0 0 0
0 κ 0 0

]
, (A.41)

where U and V are unimodular matrices and

κ = gcd(k̂2 + ℓ̂2, n̂). (A.42)

The 4×4 matrix V for the Smith normal form in (A.41) affords an explicit representation of the
correspondence Φ that is defined rather implicitly by the relationship in (A.34). As stated in the
following proposition, the correspondence (α, β) = Φ(k, ℓ, n) is encoded in the upper-right block
of a suitably chosen matrix V . Partition the matrix V into 2 × 2 submatrices as

V =
[
V11 V12
V21 V22

]
,

and recall the matrix A in (A.38) that is parameterized by (α, β).

Proposition A.2. We can take V such that V12 = A for some (α, β) with α > β ≥ 0. Then
Φ(k, ℓ, n) = (α, β).

Proof. Putting

a =

[
a
b

]
, p =

[
p
q

]
,

[
x
y

]
= V−1

[
a
p

]
and using (A.41), we can rewrite (A.40) as

U[K | −n̂I]V · V−1
[
a
p

]
=

[
1 0 0 0
0 κ 0 0

] [
x
y

]
= 0.

This shows that x = 0 and y is free. Therefore, the solutions of (A.40) are given as[
a
p

]
= V

[
0
y

]
=

[
V12
V22

]
y, y ∈ Z2.
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This means, by (A.34), that

L(α, β) = {a = (a, b)⊤ | a = V12y, y ∈ Z2}.
By comparing this with (A.39), we see that the column vectors of V12 and those of A are both basis
vectors of the same lattice. As is well-known, this implies that the matrices V12 and A are related
as V12W = A for some unimodular matrix W . Therefore,

Ṽ = V
[

I O
O W

]
=

[
Ṽ11 Ṽ12
Ṽ21 Ṽ22

]
is also a valid choice for the Smith normal form (A.41), with the property that Ṽ12 = A. □

In what follows we assume V12 = A, i.e.,

V =
[
V11 V12
V21 V22

]
=

[
V11 A
V21 V22

]
. (A.43)

Remark A.2. In Remark 3.7. we indicated a simpler construction ofΦ that works when n̂/(k̂2+ ℓ̂2)
is an integer. This simpler construction can also be understood in the framework of the general
method here. Let U and V11 be some unimodular matrices that transform the matrix K in (A.38) to
its Smith normal form: UKV11 = diag (1, κ). By choosing

V12 =
n̂

k̂2 + ℓ̂2

[
k̂ −ℓ̂
ℓ̂ k̂

]
, V21 =

[
0 0
0 0

]
, V22 =

[
1 0
0 −1

]
in (A.43), we obtain a unimodular matrix V since | det V | = | det V11 | · | det V22 | = 1. Then
we have (A.41), and therefore (α, β) = Φ(k, ℓ, n) is obtained from the first column of V12, i.e.,
(α, β) = m(k̂, ℓ̂) with m = n̂/(k̂2 + ℓ̂2).

□

The use of the Smith normal form is demonstrated below when n̂/(k̂2 + ℓ̂2) is not an integer,
whereas when n̂/(k̂2 + ℓ̂2) is an integer, the simpler method of construction in Remark 3.7 is used.

The example is a case with a solution of type V and without one of type T.
Example A.2. [Case 1 of Proposition 3.23] For (k, ℓ, n) = (2m,m, 6m) with m ≥ 1, we have
(k̂, ℓ̂, n̂) = (2, 1, 6), k̂2 + ℓ̂2 = 5, and κ = gcd(5, 6) = 1. The transformation to the Smith normal
form in (A.41) is given as[

−1 0
0 −1

] [
2 1 −6 0
1 −2 0 −6

] 
2 1 6 0
1 −2 0 6
1 0 2 1
0 1 1 −2

 =
[

1 0 0 0
0 1 0 0

]
.

This shows A(2m,m, 6m) = L(6, 0), i.e., Φ(2m,m, 6m) = (6, 0) = (α, β). We have α = n̂ = 6 and
(α′, β′) = (6, 0) by (3.178). This is a case of (α, β) = (α′, β′), and we have

Σ0(α, β) = Σ0(α′, β′) = Σ0(α, β) ∩ Σ0(α′, β′) = Σ0(6, 0).
When m = 1, Σ0(6, 0) reduces to ⟨r⟩. We have (α̂, β̂) = (1, 0), D̂ = 1 < 2Z, gcd(k̂ − ℓ̂, n̂) =
gcd(1, 6) = 1 < 2Z, and GCD-div since 2 gcd(k̂, ℓ̂) = 2 gcd(2, 1) = 2 is divisible by κ = 1.

□
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A.3. Proofs of Propositions 3.15, 3.17, and 3.18
In this section we establish a series of propositions, which together serve as the proofs of

Propositions 3.15, 3.17, and 3.18 presented in Section 3.5.6.
We first focus on Proposition 3.18.

Proposition A.3.
(i) gcd(α̂ + β̂, α̂ − β̂) ∈ {1, 2}.
(ii) gcd(α̂ + β̂, α̂ − β̂) = 2 ⇐⇒ D̂ ∈ 2Z.
(iii) gcd(α̂ + β̂, α̂ − β̂) = 1 ⇐⇒ D̂ < 2Z.

Proof. (i) Since gcd(α̂, β̂) = 1, Proposition A.1(i) implies the existence of integers x and y such
that xα̂ + y β̂ = 1. For p = x + y, q = x − y, we have

p(α̂ + β̂) + q(α̂ − β̂) = 2(xα̂ + y β̂) = 2.

Then Proposition A.1(ii) shows that 2 is divisible by gcd(α̂ + β̂, α̂ − β̂), which is equivalent to the
statement of (i) of this proposition.

(ii) We have {1, 2} ∋ gcd(α̂ + β̂, α̂ − β̂) = gcd(α̂ + β̂, 2α̂). Therefore, gcd(α̂ + β̂, α̂ − β̂) = 2 if
and only if α̂+ β̂ ∈ 2Z. Finally we note a simple identity D̂ = (α̂+ β̂)2−2α̂ β̂ to see that α̂+ β̂ ∈ 2Z
if and only if D̂ ∈ 2Z.

(iii) This is obvious from (i) and (ii) above. □

Proposition A.4.

Σ0(α, β) ∩ Σ0(β, α) =
{
Σ0(α′′, 0) if D̂ < 2Z,
Σ0(β′′, β′′) if D̂ ∈ 2Z

(A.44)

with
α′′ =

D(α, β)
gcd(α, β), β′′ =

D(α, β)
2 gcd(α, β) . (A.45)

Proof. First note that Σ0(α, β) ∩ Σ0(β, α) is the subgroup generated by r and pa
1pb

2 for (a, b) ∈
L(α, β) ∩ L(β, α). In considering L(α, β) of (A.36), it is convenient to have H(α, β) of (3.96)
in mind, as it has a natural correspondence with L(α, β). The set H(α, β) ∩ H(β, α) is a square
sublattice with the reflection symmetry with respect to the x-axis, and hence it can be represented
asH(α′′, 0) orH(β′′, β′′) for some α′′ or β′′. Such α′′ is determined as the minimum α′′ satisfying
L(α′′, 0) ⊆ L(α, β), and β′′ as the minimum β′′ satisfying L(β′′, β′′) ⊆ L(α, β). Then L(α, β) ∩
L(β, α) coincides with the larger of L(α′′, 0) and L(β′′, β′′).

The parameter α′′ is determined as follows. The inclusion L(α′′, 0) ⊆ L(α, β) holds if and
only if integers n1 and n2 exist such that[

α −β
β α

] [
n1
n2

]
=

[
α′′

0

]
.
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By the solvability criterion using determinantal divisors given in Theorem A.2, this holds if and
only if

d1

( [
α −β α′′

β α 0

] )
equals d1

( [
α −β
β α

] )
= gcd(α, β),

d2

( [
α −β α′′

β α 0

] )
equals d2

( [
α −β
β α

] )
= D(α, β).

The former condition is equivalent to α′′ being a multiple of gcd(α, β), and the latter to α′′ being
a multiple of D(α, β)/gcd(α, β). Hence we have α′′ = D(α, β)/gcd(α, β), which is a multiple of
gcd(α, β) since D(α, β)/gcd(α, β) = D̂ gcd(α, β).

The parameter β′′ is determined as follows. The inclusion L(β′′, β′′) ⊆ L(α, β) holds if and
only if integers n1 and n2 exist such that[

α −β
β α

] [
n1
n2

]
=

[
β′′

β′′

]
.

Again by Theorem A.2, this holds if and only if

d1

( [
α −β β′′

β α β′′

] )
equals d1

( [
α −β
β α

] )
= gcd(α, β),

d2

( [
α −β β′′

β α β′′

] )
equals d2

( [
α −β
β α

] )
= D(α, β).

The former condition is equivalent to β′′ being a multiple of gcd(α, β), and the latter to β′′ being a
multiple of

D(α, β)
gcd(α + β, α − β) =

D(α, β)
gcd(α, β) gcd(α̂ + β̂, α̂ − β̂)

.

Then by Proposition A.3, we obtain

β′′ =

{
D(α, β)/gcd(α, β) if D̂ < 2Z,
D(α, β)/(2 gcd(α, β)) if D̂ ∈ 2Z.

We have L(α′′, 0) ⊃ L(β′′, β′′) (with β′′ = α′′) if D̂ < 2Z, and L(β′′, β′′) ⊃ L(α′′, 0) (with
β′′ = α′′/2) if D̂ ∈ 2Z. This completes the proof. □

We next focus on Proposition 3.15(i). With this aim in mind, we rephrase (A.44) in Proposi-
tion A.4 in terms of (k, ℓ) instead of (α, β).

Proposition A.5.
(i) gcd(k̂ + ℓ̂, k̂ − ℓ̂, n̂) ∈ {1, 2}.
(ii) gcd(k̂ + ℓ̂, k̂ − ℓ̂, n̂) = 2 ⇐⇒ gcd(k̂ − ℓ̂, n̂) ∈ 2Z.
(iii) gcd(k̂ + ℓ̂, k̂ − ℓ̂, n̂) = 1 ⇐⇒ gcd(k̂ − ℓ̂, n̂) < 2Z.
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Proof. (i) Since gcd(k̂, ℓ̂, n̂) = 1, Proposition A.1(i) implies the existence of integers a, b, and c
such that ak̂ + bℓ̂ + cn̂ = 1. For p = a + b, q = a − b, r = 2c, we have

p(k̂ + ℓ̂) + q(k̂ − ℓ̂) + rn̂ = 2(ak̂ + bℓ̂ + cn̂) = 2.

Then Proposition A.1(ii) shows that 2 is divisible by gcd(k̂ + ℓ̂, k̂ − ℓ̂, n̂), which is equivalent to the
claim in (i).

(ii) We have {1, 2} ∋ gcd(k̂ + ℓ̂, k̂ − ℓ̂, n̂) = gcd(k̂ − ℓ̂, 2ℓ̂, n̂). Hence follows the claim.
(iii) This is obvious from (i) and (ii) above. □

Proposition A.6.

Σ0(α, β) ∩ Σ0(β, α) =
{
Σ0(n̂, 0) if gcd(k̂ − ℓ̂, n̂) < 2Z,
Σ0(n̂/2, n̂/2) if gcd(k̂ − ℓ̂, n̂) ∈ 2Z.

(A.46)

Proof. Recall the notation A(k, ℓ, n) in (A.35). By the same argument as in the proof of Propo-
sition A.4, we compute the minimum α′′ satisfying (α′′, 0) ∈ A(k, ℓ, n) and the minimum β′′

satisfying (β′′, β′′) ∈ A(k, ℓ, n). Then L(α, β) ∩ L(β, α) coincides with the larger of L(α′′, 0) and
L(β′′, β′′).

By the definition of A(k, ℓ, n) in (A.35) we have (α′′, 0) ∈ A(k, ℓ, n) if and only if

k̂α′′ ≡ 0, ℓ̂α′′ ≡ 0 mod n̂.

Since gcd(k̂, ℓ̂, n̂) = 1, the smallest α′′ satisfying this condition is given by α′′ = n̂. As for β′′, we
have (β′′, β′′) ∈ A(k, ℓ, n) if and only if

(k̂ + ℓ̂)β′′ ≡ 0, (k̂ − ℓ̂)β′′ ≡ 0 mod n̂.

The smallest β′′ satisfying this condition is given by

β′′ =
n̂

gcd(k̂ + ℓ̂, k̂ − ℓ̂, n̂)
=

{
n̂ if gcd(k̂ − ℓ̂, n̂) < 2Z,
n̂/2 if gcd(k̂ − ℓ̂, n̂) ∈ 2Z,

where Proposition A.5 is used. We finally note L(n̂, n̂) ⊂ L(n̂, 0) and L(n̂, 0) ⊂ L(n̂/2, n̂/2) if
n̂ ∈ 2Z. This completes the proof. □

Proposition A.7.
(i) gcd(k̂ − ℓ̂, n̂) ∈ 2Z ⇐⇒ D̂ ∈ 2Z.
(ii)

n̂ =
D(α, β)

gcd(α, β) . (A.47)

Proof. This follows from a comparison of Proposition A.4 with Proposition A.6. □

We next focus on Proposition 3.15(ii).
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Proposition A.8.
n̂

gcd(k̂2 + ℓ̂2, n̂)
= gcd(α, β). (A.48)

Proof. We rely on the representation of Φ given in Proposition A.2 in terms of the transformation
matrix V in the Smith normal form of [K | −n̂I] in (A.41) with (A.38). Let

W =
[
W11 W12
W21 W22

]
be the inverse of the matrix V in (A.41). We have | det V | = 1 since V is unimodular. By a
well-known formula in linear algebra and V12 = A in (A.43), we have

| det W12 | = | det V12 |/| det V | = | det A| = D(α, β). (A.49)

On the other hand, it follows from (A.41) with V = W−1 that

U
[

k̂ ℓ̂ −n̂ 0
ℓ̂ −k̂ 0 −n̂

]
=

[
1 0 0 0
0 κ 0 0

] [
W11 W12
W21 W22

]
.

This implies

−n̂U =
[
1 0
0 κ

]
W12,

which shows
n̂2 = κ | det W12 | (A.50)

since | det U | = 1.
Combining (A.49) and (A.50) with the expression (A.42) of κ, we obtain

n̂2 = κ D(α, β) = gcd(k̂2 + ℓ̂2, n̂) · D(α, β).

By eliminating D(α, β) using (A.47), we obtain (A.48). □

Propositions A.9–A.12 below are concerned with the symmetry ofA(k, ℓ, n) of (A.35), or that
of Σ0(α, β). Interestingly, such symmetry consideration leads to the proof of Proposition 3.17 of
duality nature.

Proposition A.9. The four conditions (a), (b), (c), and (d) below are equivalent.
(a) (u1, u2) ∈ Z2 exists such that[

u1 u2
] [

k̂ ℓ̂

ℓ̂ −k̂

]
≡

[
ℓ̂ k̂

]
mod n̂. (A.51)

(b) An integer matrix U exists such that

U
[
k̂ ℓ̂

ℓ̂ −k̂

]
≡

[
ℓ̂ k̂
k̂ −ℓ̂

]
mod n̂. (A.52)

(c) gcd(k̂2 − ℓ̂2, 2k̂ ℓ̂) is divisible by gcd(k̂2 + ℓ̂2, n̂) .
(d) GCD-div in (3.167):

2 gcd(k̂, ℓ̂) is divisible by gcd(k̂2 + ℓ̂2, n̂).
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Proof. First, we show (a)⇔ (b). For (u1, u2) ∈ Z2 satisfying (A.51), the matrix U =
[

u1 u2
−u2 u1

]
is

an integer matrix that satisfies (A.52). This shows (a)⇒ (b), whereas (b)⇒ (a) is obvious.
Next, we show (a)⇔ (c). The condition (a) is equivalent to the existence of integers u1, u2, p,

and q that satisfy [
k̂ ℓ̂ −n̂ 0
ℓ̂ −k̂ 0 −n̂

] 
u1
u2
p
q

 =
[
ℓ̂

k̂

]
.

By the solvability criterion using determinantal divisors given in Theorem A.2, this holds if and
only if

d1

( [
k̂ ℓ̂ −n̂ 0 ℓ̂

ℓ̂ −k̂ 0 −n̂ k̂

] )
equals d1

( [
k̂ ℓ̂ −n̂ 0
ℓ̂ −k̂ 0 −n̂

] )
= 1,

d2

( [
k̂ ℓ̂ −n̂ 0 ℓ̂

ℓ̂ −k̂ 0 −n̂ k̂

] )
equals d2

( [
k̂ ℓ̂ −n̂ 0
ℓ̂ −k̂ 0 −n̂

] )
.

The former condition imposes nothing and the latter reduces to (c). We have thus shown (a)⇔ (c).
Finally, we show (c)⇔ (d). Since k̂2+ ℓ̂2 is a multiple of κ = gcd(k̂2+ ℓ̂2, n̂), k̂2− ℓ̂2 is divisible

by κ if and only if (k̂2 − ℓ̂2) + (k̂2 + ℓ̂2) = 2k̂2 is divisible by κ. Therefore, gcd(k̂2 − ℓ̂2, 2k̂ ℓ̂) is
divisible by κ if and only if gcd(2k̂2, 2k̂ ℓ̂) = 2k̂ gcd(k̂, ℓ̂) is divisible by κ. Since gcd(k̂, n̂) = 1,
gcd(k̂2 − ℓ̂2, 2k̂ ℓ̂) is divisible by κ if and only if 2 gcd(k̂, ℓ̂) is divisible by κ. □

Proposition A.10. The following two conditions are equivalent.
(a) A(k, ℓ, n) = A(ℓ, k, n).
(b) (a, b) ∈ A(k, ℓ, n) =⇒ (b, a) ∈ A(k, ℓ, n).

Proof. The defining equations in (A.35) for A(k, ℓ, n) are invariant under the change of variables
(a, b, k, ℓ) 7→ (b, a, ℓ, k), and therefore, A(ℓ, k, n) = {(b, a) | (a, b) ∈ A(k, ℓ, n)}. This shows the
equivalence of (a) and (b). □

Proposition A.11. The following two conditions are equivalent.
(a) A(k, ℓ, n) = A(ℓ, k, n).
(b) An integer matrix U exists such that (A.52) holds.

Proof. Although the claim is intuitively obvious from symmetry, we provide here a rigorous proof
on the basis of Theorem A.3 (the integer analogue of the Farkas lemma).

As in the proof of Proposition A.9, the condition (b) is equivalent to the existence of integer
tuples (u1, u2, p, q) and (u′1, u′2, p′, q′) such that

[
k̂ ℓ̂ −n̂ 0
ℓ̂ −k̂ 0 −n̂

] 
u1
u2
p
q

 =
[
ℓ̂

k̂

]
,

[
k̂ ℓ̂ −n̂ 0
ℓ̂ −k̂ 0 −n̂

] 
u′1
u′2
p′

q′

 =
[

k̂
−ℓ̂

]
.
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By Theorem A.3, the existence of such (u1, u2, p, q) is equivalent to the following condition:[
y1 y2

] [
k̂ ℓ̂ −n̂ 0
ℓ̂ −k̂ 0 −n̂

]
∈ Z4 =⇒

[
y1 y2

] [
ℓ̂

k̂

]
∈ Z,

which can be rewritten as

[k̂y1 + ℓ̂y2, ℓ̂y1 − k̂y2, −n̂y1, −n̂y2 ] ∈ Z4 =⇒ ℓ̂y1 + k̂y2 ∈ Z.

Integrality condition for the third and fourth components allows us to put y1 = a/n̂ and y2 = b/n̂
with integers a and b. Then we can rewrite the above as

k̂a + ℓ̂b ≡ 0, ℓ̂a − k̂b ≡ 0 mod n̂ =⇒ ℓ̂a + k̂b ≡ 0 mod n̂.

Similarly, the existence of (u′1, u′2, p′, q′) above is equivalent to the following condition:

k̂a + ℓ̂b ≡ 0, ℓ̂a − k̂b ≡ 0 mod n̂ =⇒ k̂a − ℓ̂b ≡ 0 mod n̂.

The above two conditions together are nothing but the statement that (a, b) ∈ A(k, ℓ, n) implies
(b, a) ∈ A(k, ℓ, n), which is equivalent to (a) by Proposition A.10. □

Proposition A.12. Let (α, β) = Φ(k, ℓ, n).
(i) Σ0(α, β) = Σ0(β, α) ⇐⇒ β = 0 or α = β.
(ii) Σ0(α, β) = Σ0(β, α) ⇐⇒ GCD-div in (3.167).

Proof. (i) is obvious, and (ii) follows from Propositions A.9 and A.11. Note that Σ0(α, β) is the
subgroup generated by r and p1

ap2
b for (a, b) ∈ A(k, ℓ, n). □

A.4. Details of Stability Analysis
We introduced the n×n square lattice as a two-dimensional discretized space and presented the

group D4⋉(Zn×Zn) labeling the symmetry of this lattice in Section 3.2. We obtained the irreducible
decomposition of the permutation representation of the group D4 ⋉ (Zn × Zn) in Sections 3.3 and
3.4 to identify the irreducible representations. We presented the equivariant branching lemma in
Section 3.5 as a pertinent and sufficient means to show the existence of the square patterns for each
irreducible representation.

In this section, we advance bifurcation analysis by solving bifurcation equations as a more
informative means to investigate the properties of bifurcating solutions for each irreducible repre-
sentations. We derive the expanded forms of bifurcation equations by exploiting the symmetry of
the square lattice. We evaluate the stability of bifurcating solutions and present stability conditions.

This section is organized as follows. Fundamentals of analysis are summarized in Ap-
pendix A.4.1. Bifurcation points of multiplicity 1, 2, 4, and 8 are studied in Appendices A.4.2–
A.4.5, respectively.
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Table A.2: Irreducible representations of D4 ⋉ (Zn × Zn) to be considered in bifurcation analysis.

n \ M 1 2 4 8
2m (1;+,+,+), (1;+,+,−) (2;+,+) (4; k, 0;+), (4; k, k;+), (4; n/2, ℓ,+) (8; k, ℓ)
2m − 1 (1;+,+,+) (4; k, 0;+), (4; k, k;+) (8; k, ℓ)
(4; k, 0;+), (4; k, k;+) with 1 ≤ k ≤ ⌊(n − 1)/2⌋;
(4; n/2, ℓ;+) with 1 ≤ ℓ ≤ ⌊(n − 1)/2⌋;
(8; k, ℓ) with 1 ≤ ℓ ≤ k − 1, 2 ≤ k ≤ ⌊(n − 1)/2⌋

A.4.1. Analysis Procedure Solving Bifurcation Equations
Let us consider the governing equation

F(λ, ϕ) = 0 (A.53)

in (2.3) endowed with the equivariance to the group G = D4 ⋉ (Zn × Zn) as

T(g)F(λ, ϕ) = F(T(g)λ, ϕ), g ∈ G (A.54)

in (2.7). Recall that ϕ is the bifurcation parameter, λ ∈ RK is an K = n2 dimensional independent
variable vector expressing a distribution of mobile population, F : RK × R → RK is a nonlinear
function, and T is the K-dimensional permutation representation of the group G. The Jacobian
matrix of F is an K × K matrix expressed as

J(λ, ϕ) =
(
∂Fi

∂λ j

���� i, j = 1, . . . ,K
)
. (A.55)

Let (λc, ϕc) be a critical point of multiplicity M (≥ 1), at which the Jacobian matrix of F has a
rank deficiency M . The critical point (λc, ϕc) is assumed to be G-symmetric in the sense of

T(g)λc = λc, g ∈ G. (A.56)

Moreover, it is assumed to be group-theoretic, which means, by definition, that the M-dimensional
kernel space of the Jacobian matrix at (λc, ϕc) is irreducible with respect to the representation T .
The critical point (λc, ϕc) is associated with one of the irreducible representations µ of G in Table
A.2. The multiplicity M corresponds to the dimension of µ, and a matrix representation for µ is
denoted by T µ(g).

By the Liapunov–Schmidt reduction with symmetry (Sattinger, 1979; Chow and Hale, 1982;
Golubitsky et al., 1988), the full system of the governing equation in (A.53) is reduced, in the
neighborhood of the critical point (λc, ϕc), to a system of M equations

F̃(w, ϕ̃) = 0 (A.57)

in w ∈ Ker(Jc), where F̃: RM ×R→ RM is a function, ϕ̃ = ϕ− ϕc denotes the increment of ϕ, and
Ker(Jc) is the kernel space of J(λc, ϕc). We define variables w = (w1, . . . ,wM)⊤ in the bifurcation
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equation in (A.57) by using the column vectors of Qµ = [qµ1, . . . , q
µ
M] in Section 3.4.3 that span

Ker(Jc).
In the reduction process, the equivariance in (A.54) of the full system is inherited by the reduced

system in (A.57). With the use of the matrix representation T µ(g) for the associated irreducible
representation µ, the equivariance of F̃ can be expressed as

T µ(g)F̃(w, ϕ̃) = F̃(T µ(g)w, ϕ̃), g ∈ G. (A.58)

The reduced equation (A.57) can possibly admit multiple solutions w = w(ϕ̃) with w(0) = 0,
since (w, ϕ̃) = (0, 0) is a singular point of (A.57). This gives rise to bifurcation. Each w uniquely
determines a solution λ to the full system (A.53).

Group-theoretic bifurcation analysis to investigate the stability of a bifurcating solution for a
critical point proceeds as follows:

• Specify an irreducible representation µ of D4 ⋉ (Zn × Zn) in Table A.2.

• Obtain the expanded form of the bifurcation equation by exploiting the symmetry.

• Obtain a bifurcating solution by using the equivariant branching lemma (Cicogna, 1981;
Vanderbauwhede, 1982; Golubitsky et al., 1988) or solving the bifurcation equation.

• Obtain the Jacobian matrix of F̃.

• Substitute the bifurcating solution into the Jacobian matrix and evaluate the eigenvalues to
determine their stability as{

linearly stable: every eigenvalue has a negative real part,
linearly unstable: at least one eigenvalue has a positive real part.

We showed the existence of square patterns by using the equivariant branching lemma in
Section 3.5. Additionally, in this section, we show the existence of some other bifurcating solutions
by solving bifurcation equations. Theoretically predicted bifurcating solutions are summarized in
Table A.3. Stability analysis for these solutions is also conducted in this section.

A.4.2. Bifurcation Point of Multiplicity 1
We consider a critical point associated with the one-dimensional irreducible representation

µ = (1;+,+,−) of the group D4 ⋉ (Zn × Zn). The action in (1;+,+,−) on a variable w ∈ R can be
expressed as

r, s : w 7→ w, p1, p2 : w 7→ −w. (A.59)

This case is nothing but pitchfork bifurcation and is well-known.
The bifurcation equation for a critical point of multiplicity 1 is a one-dimensional equation

over R as
F̃(w, ϕ̃) = 0, (A.60)
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Table A.3: Theoretically predicted bifurcating solutions for critical points with multiplicity M .

M Bifurcating solutions (w ∈ R) Existence conditions

1 w if n is even
2 wsq = (w,w) if n is even

wstripe = (w, 0) if n is even
4 wsq = (w, 0,w, 0) Always

wstripeI = (w, 0, 0, 0) Always
wstripeII = (0,w, 0, 0) if ň is even

8 wsqVM = (w, 0,w, 0,w, 0,w, 0) Always
wsqT = (w, 0,w, 0, 0, 0, 0, 0) if 2 gcd(k̂, ℓ̂) is not divisible by gcd(k̂2 + ℓ̂2, n̂)
wupside−downI = (w, 0, 0, 0,w, 0, 0, 0) if (k̂ + ℓ̂) gcd(k̂ + ℓ̂, k̂ − ℓ̂) is not divisible by gcd(2k̂ ℓ̂, n̂)
wupside−downII = (0,w, 0, 0, 0,w, 0, 0) if n̂ is even and

(k̂ + ℓ̂) gcd(k̂ + ℓ̂, k̂ − ℓ̂) is not divisible by gcd(2k̂ ℓ̂, n̂)
wstripeI = (w, 0, 0, 0, 0, 0, 0, 0) if k̂2 + ℓ̂2, 2k̂ ℓ̂, and k̂2 − ℓ̂2 are not divisible by n̂
wstripeII = (0,w, 0, 0, 0, 0, 0, 0) if n̂ is even and

k̂2 + ℓ̂2, 2k̂ ℓ̂, and k̂2 − ℓ̂2 are not divisible by n̂

ň = n/gcd(k, n) for M = 4 in (A.92);
n̂ = n/gcd(k, ℓ, n), k̂ = k/gcd(k, ℓ, n), ℓ̂ = ℓ/gcd(k, ℓ, n) for M = 8 in (A.228)
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where (w, ϕ̃) = (0, 0) is assumed to correspond to the critical point. We expand F̃ into a power
series as

F̃(w, ϕ̃) =
∑
a=0

Aa(ϕ̃)wa (A.61)

with coefficients Aa(ϕ̃) ∈ R. Since (w, ϕ̃) = (0, 0) corresponds to the critical point, we have

A0(0) = 0, A1(0) = 0.

Hence, we have
A1(ϕ̃) ≈ A′1(0)ϕ̃.

for A′1(0), which is generically nonzero.20

The equivariance of the bifurcation equation to the group D4 ⋉ (Zn × Zn) is identical to the
equivariance to the actions of the four elements r , s, p1, and p2 generating this group. Hence, the
equivariance condition in (A.58) of the bifurcation equation is written for (A.61) as

r, s : F̃(w, ϕ̃) = F̃(w, ϕ̃), (A.62)
p1, p2 : − F̃(w, ϕ̃) = F̃(−w, ϕ̃). (A.63)

From the equivariance condition (A.63), we have∑
a=0
(−Aa(ϕ̃))wa =

∑
a=0

Aa(ϕ̃)(−w)a.

This condition implies (−1)a = −1, that is,

a = 2b + 1, b ∈ Z+,

where Z+ represents the set of nonnegative integers. Hence, (A.61) is restricted to

F̃(w, ϕ̃) = w
∑
b=0

A2b+1(ϕ̃)w2b. (A.64)

The form of (A.64) implies that F̃(w, ϕ̃) = 0 has the trivial solution and a bifurcating solution.
Note that F̃(w, ϕ̃) is an odd function in w. Thus, (w, ϕ̃) and (−w, ϕ̃) are conjugate solutions for
F̃ = 0. We hereafter call the two solutions that are conjugate as symmetric bifurcating solutions
and those that are not as asymmetric ones.

We evaluate the stability of the bifurcating solution by considering the asymptotic form of the
bifurcation equation. The asymptotic form of the bifurcation equation in (A.64) becomes

F̃(w, ϕ̃) ≈ w(A′1(0)ϕ̃ + A3(0)w2), (A.65)

20 Notation A′1(0)means the derivative of A1(ϕ̃)with respect to ϕ̃, evaluated at ϕ̃ = 0. Generically we have A′1(0) , 0
since the group symmetry imposes no condition.
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and the Jacobian of F̃ becomes

J̃(w, ϕ̃) = ∂F̃
∂w
≈ A′1(0)ϕ̃ + 3A3(0)w2. (A.66)

Solving F̃ = 0, we have

ϕ̃ = ϕ̃sq ≈ −w2 A3(0)
A′1(0)

.

Substituting ϕ̃sq into (A.66), we have

J̃(w, ϕ̃sq) ≈ 2w2 A3(0). (A.67)

Hence, the stability of the bifurcating solution in the neighborhood of the critical point depends on
the sign of A3(0), that is, {

A3(0) < 0: stable,
A3(0) > 0: unstable.

A.4.3. Bifurcation Point of Multiplicity 2
We consider a critical point associated with the two-dimensional irreducible representation

µ = (2;+,+) of the group D4 ⋉ (Zn × Zn). The action in (2;+,+) on a two-dimensional vector
(w1,w2) ∈ R2 can be expressed as

r :
[
w1
w2

]
7→

[
w2
w1

]
, s :

[
w1
w2

]
7→

[
w1
w2

]
, (A.68)

p1 :
[
w1
w2

]
7→

[
−w1
w2

]
, p2 :

[
w1
w2

]
7→

[
w1
−w2

]
. (A.69)

The bifurcation equation for a critical point of multiplicity 2 is a two-dimensional equation in
w = (w1,w2) ∈ R2 expressed as

F̃i(w, ϕ̃) = 0, i = 1, 2, (A.70)

where (w1,w2, ϕ̃) = (0, 0, 0) is assumed to correspond to the critical point. Accordingly, the
Jacobian matrix of F̃ is an 2 × 2 matrix expressed as

J̃(w, ϕ̃) =
(
∂F̃i

∂w j

����� i, j = 1, . . . , 2

)
. (A.71)

We expand F̃1 into a power series as

F̃1(w1,w2, ϕ̃) =
∑
a=0

∑
b=0

Aab(ϕ̃)w1
aw2

b (A.72)

with coefficients Aab(ϕ̃) ∈ R. Since (w1,w2, ϕ̃) = (0, 0, 0) corresponds to the critical point, we have

A00(0) = 0, A10(0) = A01(0) = 0.
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Since A′10(0) is generically nonzero, we have

A10(ϕ̃) ≈ A′10(0)ϕ̃.

The equivariance of the bifurcation equation to the group D4 ⋉ (Zn × Zn) is identical to the
equivariance to the actions of the four elements r , s, p1, and p2 generating this group. Hence, the
equivariance condition (A.58) of the bifurcation equation is written for (A.70) as

r : F̃2(w1,w2) = F̃1(w2,w1), (A.73)
F̃1(w1,w2) = F̃2(w2,w1), (A.74)

s : F̃1(w1,w2) = F̃1(w1,w2), (A.75)
F̃2(w1,w2) = F̃2(w1,w2), (A.76)

p1 : − F̃1(w1,w2) = F̃1(−w1,w2), (A.77)
F̃2(w1,w2) = F̃2(−w1,w2), (A.78)

p2 : F̃1(w1,w2) = F̃1(w1,−w2), (A.79)
− F̃2(w1,w2) = F̃2(w1,−w2). (A.80)

From the equivariance condition (A.77) or (A.80), we have∑
a=0

∑
b=0
(−Aab(ϕ̃))w1

aw2
b =

∑
a=0

∑
b=0

Aab(ϕ̃)(−w1)aw2
b.

From the equivariance condition (A.78) or (A.79), we have∑
a=0

∑
b=0

Aab(ϕ̃)w1
aw2

b =
∑
a=0

∑
b=0

Aab(ϕ̃)w1
a(−w2)b.

These conditions imply that a is odd, and b is even. Thus,

a = 2c + 1, c ∈ Z+,
b = 2d, d ∈ Z+.

where Z+ represents the set of nonnegative integers. Hence, F̃i (i = 1, 2) is restricted to

F̃1(w1,w2, ϕ̃) = w1
∑
c=0

∑
d=0

A2c+1,2d(ϕ̃)w1
2cw2

2d . (A.81)

F̃2(w1,w2, ϕ̃) = w2
∑
c=0

∑
d=0

A2c+1,2d(ϕ̃)w2
2cw1

2d . (A.82)

Therein, F̃2 is obtained by (A.73).
We have the following propositions on the existence and the symmetry of bifurcating solutions

by solving the bifurcation equation.
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Proposition A.13. For a critical point of multiplicity 2 associated with µ = (2;+,+), we have the
following bifurcating solutions:

• the stripe pattern wstripe = (w, 0) (w ∈ R),

• the square pattern wsq = (w,w) (w ∈ R).

Proof. Substituting wstripe = (w, 0) into (A.81), we have

F̃1(w, 0, ϕ̃) = w

∞∑
a=0

A2a+1,0(ϕ̃)w2a ≈ w
{

A′10(0)ϕ̃ + A30(0)w2} (A.83)

with A′10(0) = ∂A10/∂ϕ̃(0). Thus, F̃1(w, 0, ϕ̃) = 0 represents ϕ̃ versus w relation for wstripe.
Substituting wstripe into (A.82), we have F̃2(w, 0, ϕ̃) = 0. Thus, there is a bifurcating curve
satisfying F̃1 = F̃2 = 0 for wstripe. Similar discussion holds for wsq. □

Proposition A.14. For a critical point of multiplicity 2 associated with µ = (2;+,+), the two
bifurcating solutions (w, ϕ̃) and (−w, ϕ̃) are conjugate for w = wsq, wstripe.

Proof. Since wstripe = (w, 0) and −wstripe = (−w, 0) satisfy the same relation (cf., (A.83))

∞∑
a=0

A2a+1,0(ϕ̃)w2a = 0,

F̃1(w, 0, ϕ̃) is an odd function in w, that is,

F̃1(−w, 0, ϕ̃) = −F̃1(w, 0, ϕ̃).

Thus, (wstripe, ϕ̃) and (−wstripe, ϕ̃) are conjugate solutions for F̃1 = 0. Similar discussion holds for
(wsq, ϕ̃) and (−wsq, ϕ̃). □

We evaluate the stability of the bifurcating solutions by considering the asymptotic form of the
bifurcation equation. The asymptotic form of the bifurcation equation becomes

F̃1(w1,w2, ϕ̃) ≈ w1(A′10(0)ϕ̃ + A30(0)w1
2 + A12(0)w2

2), (A.84)
F̃2(w1,w2, ϕ̃) ≈ w2(A′10(0)ϕ̃ + A30(0)w2

2 + A12(0)w1
2), (A.85)

and the Jacobian matrix of F̃ in (A.71) becomes

J̃(w, ϕ̃) ≈
[
A′10(0)ϕ̃ + 3A30(0)w1

2 + A12(0)w2
2 2A12(0)w1w2

2A12(0)w1w2 A′10(0)ϕ̃ + 3A30(0)w2
2 + A12(0)w1

2

]
. (A.86)

Substituting wsq = (w,w) into (A.84) and solving F̃1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃sq ≈ −w2 A30(0) + A12(0)
A′10(0)

.
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Evaluating the Jacobian matrix (A.86) at (wsq, ϕ̃sq), we have

J̃(wsq, ϕ̃sq) ≈ 2w2
[
A30(0) A12(0)
A12(0) A30(0)

]
. (A.87)

The eigenvalues of J̃(wsq, ϕ̃sq) are given by

λ1, λ2 ≈ 2w2(A30(0) ± A12(0)).

Hence, the sign of the eigenvalues depends on the values of the coefficients A30(0) and A12(0).
Substituting wstripe = (w, 0) into (A.84) and solving F̃1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripe ≈ −w2 A30(0)
A′10(0)

.

Evaluating the Jacobian matrix (A.86) at (wstripe, ϕ̃stripe), we have

J̃(wstripe, ϕ̃stripe) ≈ w2
[
2A30(0) 0

0 −A30(0) + A12(0)

]
. (A.88)

The eigenvalues of J̃(wstripe, ϕ̃stripe) are given by

λ1 ≈ 2w2 A30(0),
λ2 ≈ 2w2(A12(0) − A30(0)).

Hence, the sign of the eigenvalues depends on the values of the coefficients A30(0) and A12(0).
To sum up, we have the following proposition:

Proposition A.15. For a critical point of multiplicity 2 associated with µ = (2;+,+), suppose
that all eigenvalues of J(λc, ϕ) other than those for µ = (2;+,+) are negative. Then, we have the
following statements on the stability in the neighborhood of the critical point.

(i) If A30(0) < A12(0) < −A30(0) are satisfied, the square pattern wsq is stable.

(ii) If A12(0) < A30(0) < 0 are satisfied, the stripe pattern wstripe is stable.

(iii) The two solutions wsq and wstripe are not stable simultaneously.

Proof. The first and second statements are obtained by assuming that all the eigenvalues of the
Jacobian matrix at each bifurcating solution are negative. The last statement are obtained by the
fact that A30(0) < A12(0) and A12(0) < A30(0) cannot be satisfied simultaneously. □
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A.4.4. Bifurcation Point of Multiplicity 4
We consider a critical point associated with the four-dimensional irreducible representations µ

of the group D4 ⋉ (Zn × Zn):

(4; k, 0,+) with 1 ≤ k ≤
⌊
n − 1

2

⌋
, (A.89)

(4; k, k,+) with 1 ≤ k ≤
⌊
n − 1

2

⌋
, (A.90)

(4; n/2, ℓ,+) with 1 ≤ ℓ ≤ n
2
− 1, (A.91)

where n ≥ 3 and (4; n/2, ℓ,+) exists when n is even. For (4; k, 0,+) and (4; k, k,+), we use the
following notations:

ň =
n

gcd(k, n), ǩ =
k

gcd(k, n) . (A.92)

For (4; n/2, ℓ,+), we use the following notations:

ñ =
n

gcd(ℓ, n), ℓ̃ =
ℓ

gcd(ℓ, n) . (A.93)

The action in (4; k, 0,+) on a four-dimensional vector (w1, . . . ,w4) ∈ R4 can be expressed for a
two-dimensional vector (z1, z2)with complex variables z j = w2 j−1+ iw2 j ( j = 1, 2) as (cf., (3.132))

r :
[
z1
z2

]
7→

[
z2
z1

]
, s :

[
z1
z2

]
7→

[
z1
z2

]
, (A.94)

p1 :
[
z1
z2

]
7→

[
ωk z1

z2

]
, p2 :

[
z1
z2

]
7→

[
z1
ωk z2

]
(A.95)

with ω = exp(i2π/n). The action in (4; k, k,+) can be expressed as (cf., (3.133))

r :
[
z1
z2

]
7→

[
z2
z1

]
, s :

[
z1
z2

]
7→

[
z2
z1

]
, (A.96)

p1 :
[
z1
z2

]
7→

[
ωk z1
ω−k z2

]
, p2 :

[
z1
z2

]
7→

[
ωk z1
ωk z2

]
, (A.97)

and the action in (4; n/2, ℓ,+) can be expressed as (cf., (3.134))

r :
[
z1
z2

]
7→

[
z2
z1

]
, s :

[
z1
z2

]
7→

[
z1
z2

]
, (A.98)

p1 :
[
z1
z2

]
7→

[
−z1
ω−ℓz2

]
, p2 :

[
z1
z2

]
7→

[
ωℓz1
−z2

]
. (A.99)
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Derivation of Bifurcation Equation
The bifurcation equation for a critical point of multiplicity 4 is a four-dimensional equation in

w = (w1, . . . ,w4) ∈ R4 expressed as

F̃i(w, ϕ̃) = 0, i = 1, . . . , 4, (A.100)

where (w1, . . . ,w4, ϕ̃) = (0, . . . , 0, 0) is assumed to correspond to the critical point. Accordingly,
the Jacobian matrix of F̃ is a 4 × 4 matrix expressed as

J̃(w, ϕ̃) =
(
∂F̃i

∂w j

����� i, j = 1, . . . , 4

)
. (A.101)

The bifurcation equation (A.100) can be represented as a 2-dimensional equation in complex
variables z j = w2 j−1 + iw2 j ( j = 1, 2) as

Fi(z1, z2, ϕ̃) = 0, i = 1, 2, (A.102)

where (z1, z2, ϕ̃) = (0, 0, 0) corresponds to the critical point, and there are the following relationship:

F1(z1, z2, ϕ̃) = F̃1 + iF̃2, (A.103)
F2(z1, z2, ϕ̃) = F̃3 + iF̃4. (A.104)

We expand F1 into a power series as

F1(z1, z2, ϕ̃) =
∑
a=0

∑
b=0

∑
c=0

∑
d=0

Aabcd(ϕ̃)z1
az2

b z1
C z2

d (A.105)

with coefficients Aabcd(ϕ̃). Since (z1, z2, ϕ̃) = (0, 0, 0) corresponds to the critical point, we have

A0000(0) = 0, A1000(0) = A0100(0) = A0010(0) = A0001(0) = 0.

In addition, since a1 = A′1000(0) is generically nonzero, we have

A1000(ϕ̃) ≈ a1ϕ̃.

The equivariance of the bifurcation equation to the group D4 ⋉ (Zn × Zn) is identical to the
equivariance to the actions of the four elements r , s, p1, and p2 generating this group. The
equivariance condition for (4; k, 0,+) is written as

r : F2(z1, z2) = F1(z2, z1), (A.106)
F1(z1, z2) = F2(z2, z1), (A.107)

s : F1(z1, z2) = F1(z1, z2), (A.108)

F2(z1, z2) = F2(z1, z2), (A.109)
p1 : ωk F1(z1, z2) = F1(ωk z1, z2), (A.110)

F2(z1, z2) = F2(ωk z1, z2), (A.111)
p2 : F1(z1, z2) = F1(z1, ω

k z2), (A.112)
ωk F2(z1, z2) = F2(z1, ω

k z2) (A.113)
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with ω = exp(i2π/n). The equivariance condition for (4; k, k,+) is written as

r : F2(z1, z2) = F1(z2, z1), (A.114)
F1(z1, z2) = F2(z2, z1), (A.115)

s : F2(z1, z2) = F1(z2, z1), (A.116)

F1(z1, z2) = F2(z2, z1), (A.117)
p1 : ωk F1(z1, z2) = F1(ωk z1, ω

−k z2), (A.118)
ω−k F2(z1, z2) = F2(ωk z1, ω

−k z2), (A.119)
p2 : ωk F1(z1, z2) = F1(ωk z1, ω

k z2), (A.120)
ωk F2(z1, z2) = F2(ωk z1, ω

k z2). (A.121)

The equivariance condition for (4; n/2, ℓ,+) is written as

r : F2(z1, z2) = F1(z2, z1), (A.122)
F1(z1, z2) = F2(z2, z1), (A.123)

s : F1(z1, z2) = F1(z1, z2), (A.124)
F2(z1, z2) = F2(z1, z2), (A.125)

p1 : −F1(z1, z2) = F1(−z1, ω
−ℓz2), (A.126)

ω−ℓF2(z1, z2) = F2(−z1, ω
−ℓz2), (A.127)

p2 : ωℓF1(z1, z2) = F1(ωℓz1,−z2), (A.128)
−F2(z1, z2) = F2(ωℓz1,−z2). (A.129)

The equivariance condition with respect to r is equivalent to

F2(z1, z2) = F1(z2, z1), (A.130)

F1(z1, z2) = F1(z1, z2) (A.131)

for each irreducible representation. Hence, we can obtain F2 from F1 by the condition (A.130) and
see that

Aabcd(ϕ̃) ∈ R (A.132)

by the condition (A.131).
The equivariance condition with respect to s is equivalent to F1(z1, z2) = F1(z1, z2) in (A.108),

which gives
Aabcd(ϕ̃) = Aadcb(ϕ̃) (A.133)

for each irreducible representation as explained below. For (4; k, 0,+), the condition (A.108)
applies. For (4; k, k,+), substituting (A.114) into (A.116), we have F1(z2, z1) = F1(z2, z1). This
condition is equivalent to F1(z1, z2) = F1(z1, z2). For (4; n/2, ℓ,+), the condition (A.124) gives
F1(z1, z2) = F1(z1, z2). Using (A.132), we have F1(z1, z2) = F1(z1, z2). Thus, we have F1(z1, z2) =
F1(z1, z2).
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For (4; k, 0,+), the equivariance condition with respect to p1 and p2 is expressed as follows.
The equivariance condition (A.110) for p1 is expressed as∑

a=0

∑
b=0

∑
c=0

∑
d=0

ωk Aabcd(ϕ̃)z1
az2

b z1
C z2

d =
∑
a=0

∑
b=0

∑
c=0

∑
d=0

Aabcd(ϕ̃)(ωk z1)
a
z2

b(ω−k z1)
C

z2
d,

which implies

ωk(a−c−1) = exp
[
i2π
n

k(a − c − 1)
]
= 1. (A.134)

The equivariance condition (A.112) for p2 is expressed as∑
a=0

∑
b=0

∑
c=0

∑
d=0

Aabcd(ϕ̃)z1
az2

b z1
C z2

d =
∑
a=0

∑
b=0

∑
c=0

∑
d=0

Aabcd(ϕ̃)z1
a(ωk z2)

b
z1

C(ω−k z2)
d
,

which implies

ωk(b−d) = exp
[
i2π
n

k(b − d)
]
= 1. (A.135)

Using (A.130), we rewrite the remaining equivariance conditions (A.111) and (A.113) as

F1(z2, z1) = F1(z2, ω
−k z1),

ωk F1(z2, z1) = F1(ωk z2, z1),

which are expressed as∑
a=0

∑
b=0

∑
c=0

∑
d=0

Aabcd(ϕ̃)z2
a z1

b z2
C z1

d =
∑
a=0

∑
b=0

∑
c=0

∑
d=0

Aabcd(ϕ̃)z2
a(ω−k z1)

b
z2

C(ωk z1)
d
,∑

a=0

∑
b=0

∑
c=0

∑
d=0

ωk Aabcd(ϕ̃)z2
a z1

b z2
C z1

d =
∑
a=0

∑
b=0

∑
c=0

∑
d=0

Aabcd(ϕ̃)(ωk z2)
a

z1
b(ω−k z2)

C
z1

d .

Each of these conditions leads to the same result as (A.135) and (A.134), respectively. To sum up,
from (A.134) and (A.135), we have the following conditions for (4; k, 0,+):

k(a − c − 1) ≡ 0 mod n,
k(b − d) ≡ 0 mod n.

Using (A.92), we rewrite these conditions as

ǩ(a − c − 1) ≡ 0 mod ň,

ǩ(b − d) ≡ 0 mod ň,

which are equivalent to the following condition:

a = c + pň + 1, b = d + qň (p, q ∈ Z). (A.136)
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Then, F1 in (A.105) becomes

F1(z1, z2, ϕ̃) =
∞∑

c=0

∞∑
d=0

∑
p∈Z, c+pň+1≥0

∑
q∈Z, d+qň≥0

Ac+pň+1,d+qň,cd(ϕ̃)z1
c+pň+1z2

d+qň z1
C z2

d .

(A.137)
Note that a = 0 and c = 0 are not satisfied simultaneously in (A.136):

a = 0⇒ c = −pň − 1 , 0, c = 0⇒ a = pň + 1 , 0.

Thus, F1 in (A.137) becomes

F1(z1, z2, ϕ̃) = z1

∞∑
c=0

∞∑
d=0

∑
p∈Z, c+pň+1>0

∑
q∈Z, d+qň≥0

Ac+pň+1,d+qň,cd(ϕ̃)z1
c+pňz2

d+qň z1
C z2

d

+ z1

∞∑
d=0

∞∑
p=1

∑
q∈Z, d+qň≥0

A0,d+qň,pň−1,d(ϕ̃)z2
d+qň z1

pň−2 z2
d . (A.138)

For (4; k, k,+), the equivariance condition (A.118) is expressed as∑
a=0

∑
b=0

∑
c=0

∑
d=0

ωk Aabcd(ϕ̃)z1
az2

b z1
C z2

d =
∑
a=0

∑
b=0

∑
c=0

∑
d=0

Aabcd(ϕ̃)(ωk z1)
a(ω−k z2)

b(ω−k z1)
C(ωk z2)

d
,

which implies

ωk(a−b−c+d−1) = exp
[
i2π
n

k(a − b − c + d − 1)
]
= 1. (A.139)

The equivariance condition (A.120) is expressed as∑
a=0

∑
b=0

∑
c=0

∑
d=0

ωk Aabcd(ϕ̃)z1
az2

b z1
C z2

d =
∑
a=0

∑
b=0

∑
c=0

∑
d=0

Aabcd(ϕ̃)(ωk z1)
a(ωk z2)

b(ω−k z1)
C(ω−k z2)

d
,

which implies

ωk(a+b−c−d−1) = exp
[
i2π
n

k(a + b − c − d − 1)
]
= 1. (A.140)

Using (A.130), we rewrite the remaining equivariance conditions (A.119) and (A.121) as

ω−k F1(z2, z1) = F1(ω−k z2, ω
−k z1),

ωk F1(z2, z1) = F1(ωk z2, ω
−k z1),

which are expressed as∑
a=0

∑
b=0

∑
c=0

∑
d=0

ω−k Aabcd(ϕ̃)z2
a z1

b z2
C z1

d

=
∑
a=0

∑
b=0

∑
c=0

∑
d=0

Aabcd(ϕ̃)(ω−k z2)
a(ω−k z1)

b(ωk z2)
C(ωk z1)

d
,∑

a=0

∑
b=0

∑
c=0

∑
d=0

ωk Aabcd(ϕ̃)z2
a z1

b z2
C z1

d

=
∑
a=0

∑
b=0

∑
c=0

∑
d=0

Aabcd(ϕ̃)(ωk z2)
a(ω−k z1)

b(ω−k z2)
C(ωk z1)

d
.
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Each of these conditions leads to the same result as (A.140) and (A.139), respectively. To sum up,
from (A.139) and (A.140), we have the following conditions for (4; k, k,+):

k(a − b − c + d − 1) ≡ 0 mod n,
k(a + b − c − d − 1) ≡ 0 mod n.

We rewrite these conditions as

ǩ(a − b − c + d − 1) ≡ 0 mod ň,

ǩ(a + b − c − d − 1) ≡ 0 mod ň,

which are equivalent to the following condition:

a − b − c + d − 1 = vň, a + b − c − d − 1 = wň (v,w ∈ Z).

Adding and subtracting the two equations from each other, we have

2(a − c − 1) = (v + w)ň, 2(b − d) = (w − v)ň.

This condition is equivalent to

a = c + (v + w)ň/2 + 1, b = d + (w − v)ň/2. (A.141)

Since the indices a, b, c, and d are integers, we have the following condition (p, q ∈ Z):{
v + w = p, w − v = 2q − p if ň is even,
v + w = 2p, w − v = 2(q − p) if ň is odd.

(A.142)

Note that for ň odd, we can replace q − p as q (q ∈ Z). From (A.141) and (A.142), we have the
following condition:{

a = c + pň/2 + 1, b = d + (2q − p)ň/2 if ň is even,
a = c + pň + 1, b = d + qň if ň is odd.

(A.143)

Note that for both cases in (A.143), a = 0 and c = 0 are not satisfied simultaneously:{
a = 0⇒ c = −pň/2 − 1 , 0, c = 0⇒ a = pň/2 + 1 , 0 if ň is even,
a = 0⇒ c = −pň − 1 , 0, c = 0⇒ a = pň + 1 , 0 if ň is odd.

If ň is even, F1 in (A.105) becomes

F1(z1, z2, ϕ̃) = z1

∞∑
c=0

∞∑
d=0

∑
p,q∈Z, c+p ň

2+1>0, d+(2q−p) ň2 ≥0

Ac+p ň
2+1,d+(2q−p) ň2 ,cd(ϕ̃)z1

c+p ň
2 z2

d+(2q−p) ň2 z1
C z2

d

+ z1

∞∑
d=0

∞∑
p=1

∑
q∈Z, d+(2q+p) ň2 ≥0

A0,d+(2q+p) ň2 ,p
ň
2−1,d(ϕ̃)z2

d+(2q+p) ň2 z1
p ň

2−2 z2
d . (A.144)
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If ň is odd, F1 in (A.105) becomes

F1(z1, z2, ϕ̃) = z1

∞∑
c=0

∞∑
d=0

∑
p∈Z, c+pň+1>0

∑
q∈Z, d+qň≥0

Ac+pň+1,d+qň,cd(ϕ̃)z1
c+pňz2

d+qň z1
C z2

d

+ z1

∞∑
d=0

∞∑
p=1

∑
q∈Z, d+qň≥0

A0,d+qň,pň−1,d(ϕ̃)z2
d+qň z1

pň−2 z2
d . (A.145)

For (4; n/2, ℓ,+), the equivariance condition (A.126) is expressed as∑
a=0

∑
b=0

∑
c=0

∑
d=0
(−Aabcd(ϕ̃))z1

az2
b z1

C z2
d =

∑
a=0

∑
b=0

∑
c=0

∑
d=0

Aabcd(ϕ̃)(−z1)a(ω−ℓz2)
b(−z1)C(ωℓ z2)

d
,

which implies
−1 = (−1)a+cωℓ(d−b).

We rewrite this condition as

exp
[
i2π
n

{n
2
(a + c) + ℓ(d − b)

}]
= −1. (A.146)

Therein, we used

(−1)a+c = exp
[
iπ
n
(a + c)

]
(a, c ∈ Z+),

where Z+ represents the set of nonnegative integers. The equivariance condition (A.128) is
expressed as∑
a=0

∑
b=0

∑
c=0

∑
d=0
(ωℓAabcd(ϕ̃))z1

az2
b z1

C z2
d =

∑
a=0

∑
b=0

∑
c=0

∑
d=0

Aabcd(ϕ̃)(ωℓz1)
a(−z2)b(ω−ℓ z1)

C(−z2)d,

which implies
ωℓ = (−1)b+dωℓ(a−c).

We rewrite this condition as

exp
[
i2π
n

{n
2
(b + d) + ℓ(a − c − 1)

}]
= 1. (A.147)

Therein, we used

(−1)b+d = exp
[
iπ
n
(b + d)

]
(b, d ∈ Z+).

Using (A.130), we rewrite the remaining equivariance conditions (A.127) and (A.129) as

ω−ℓF1(z2, z1) = F1(ω−ℓz2,−z1),
−F1(z2, z1) = F1(−z2, ω

−ℓ z1),
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which are expressed as∑
a=0

∑
b=0

∑
c=0

∑
d=0

ω−ℓAabcd(ϕ̃)z2
a z1

b z2
C z1

d =
∑
a=0

∑
b=0

∑
c=0

∑
d=0

Aabcd(ϕ̃)(ω−ℓz2)
a(−z1)b(ωℓ z2)

C(−z1)d,∑
a=0

∑
b=0

∑
c=0

∑
d=0
(−Aabcd(ϕ̃))z2

a z1
b z2

C z1
d =

∑
a=0

∑
b=0

∑
c=0

∑
d=0

Aabcd(ϕ̃)(−z2)a(ω−ℓ z1)
b(−z2)C(ωℓz1)

d
.

Each of these conditions leads to the same result as (A.147) and (A.146), respectively.
To sum up, from (A.146) and (A.147), we have the following conditions for (4; n/2, ℓ,+):

n
2
(a + c − 1) + ℓ(d − b) ≡ 0 mod n,

n
2
(b + d) + ℓ(a − c − 1) ≡ 0 mod n.

We rewrite these conditions as

ñ(a + c − 1) + 2ℓ̃(d − b) ≡ 0 mod 2ñ,

ñ(b + d) + 2ℓ̃(a − c − 1) ≡ 0 mod 2ñ,

which are equivalent to the following condition:

ñ(a + c − 1) + 2ℓ̃(d − b) = 2pñ, ñ(b + d) + 2ℓ̃(a − c − 1) = 2qñ (p, q ∈ Z). (A.148)

We investigate this condition dependent on the parity of ñ.
When ñ is even, the condition (A.148) is equivalent to

(a + c − 1 − 2p)ñ/2 = (b − d)ℓ̃, (a − c − 1)ℓ̃ = −(b + d − 2q)ñ/2.

Since ℓ̃ and ñ are coprime, we have the following conditions (v,w ∈ Z):

b − d = vñ/2, b + d − 2q = wℓ̃, (A.149)
a + c − 1 − 2p = vℓ̃, a − c − 1 = −wñ/2. (A.150)

Adding and subtracting the two equations in (A.149) from each other, we have

2(b − q) = vñ/2 + wℓ̃, 2(d − q) = −vñ/2 + wℓ̃.

This condition is equivalent to [
b
d

]
= q

[
1
1

]
+

1
2

[
vñ/2 + wℓ̃
−vñ/2 + wℓ̃

]
. (A.151)

Since the indices b and d in (A.151) are integers, we have

vñ/2 + wℓ̃ ∈ 2Z. (A.152)

195



Note that if the condition (A.152) is satisfied, then −vñ/2 + wℓ̃ ∈ 2Z is also satisfied. Adding and
subtracting the two equations in (A.150) from each other, we have

2(a − 1 − p) = vℓ̃ − wñ/2, 2(c − p) = vℓ̃ + wñ/2.

This condition is equivalent to [
a
c

]
= p

[
1
1

]
+

1
2

[
vℓ̃ − wñ/2
vℓ̃ + wñ/2

]
+

[
1
0

]
. (A.153)

Since the indices a and c in (A.153) are integers, we have

vℓ̃ + wñ/2 ∈ 2Z. (A.154)

Note that if the condition (A.154) is satisfied, then vℓ̃ − wñ/2 ∈ 2Z is also satisfied. Since ℓ̃ and
ñ are coprime, ℓ̃ is odd. Thus, the conditions (A.152) and (A.154) are equivalent to the following
condition (t, u, t′, u′ ∈ Z):{

(v,w) = (2t, 2u) if ñ/2 is even,
(v,w) = (2t, 2u), (2t′ + 1, 2u′ + 1) if ñ/2 is odd.

(A.155)

If ñ/2 is even, the indices a, b, c, and d take the form
a
b
c
d

 = p


1
0
1
0

 + q


0
1
0
1

 + t


ℓ̃

ñ/2
ℓ̃
−ñ/2

 + u


−ñ/2
ℓ̃

ñ/2
ℓ̃

 +

1
0
0
0

 . (A.156)

Note that a = 0 and c = 0 are not satisfied simultaneously:

a = 0⇒ c = uñ − 1 , 0, c = 0⇒ a = −uñ + 1 , 0.

With this result, we define disjoint sets U and V as

U = {(p, q, t, u) ∈ Z4 | a > 0, b ≥ 0, c ≥ 0, d ≥ 0},
V = {(p, q, t, u) ∈ Z4 | a = 0, b ≥ 0, c > 0, d ≥ 0},

which satisfy U ∪ V = ϕ and are rewritten as

U =

(p, q, t, u) ∈ Z
4

��������
p + tℓ̃ − uñ/2 + 1 > 0
q + tñ/2 + uℓ̃ ≥ 0
p + tℓ̃ + uñ/2 ≥ 0
q − tñ/2 + uℓ̃ ≥ 0

 , (A.157)

V =

(p, q, t, u) ∈ Z
4

��������
p + tℓ̃ − uñ/2 + 1 = 0
q + tñ/2 + uℓ̃ ≥ 0
uñ − 1 > 0
q − tñ/2 + uℓ̃ ≥ 0

 . (A.158)
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Then, F1 in (A.105) becomes

F1(z1, z2, ϕ̃) = z1
∑

(p,q,t,u)∈U
Ap+tℓ̃−u ñ

2+1,q+t ñ2+uℓ̃,p+tℓ̃+u ñ
2 ,q−t ñ2+uℓ̃(ϕ̃)z1

p+tℓ̃−u ñ
2 z2

q+t ñ2+uℓ̃ z1
p+tℓ̃+u ñ

2 z2
q−t ñ2+uℓ̃

+ z1
∑

(p,q,t,u)∈V
A0,q+t ñ2+uℓ̃,uñ−1,q−t ñ2+uℓ̃(ϕ̃)z2

q+t ñ2+uℓ̃ z1
uñ−2 z2

q−t ñ2+uℓ̃ . (A.159)

If ñ/2 is odd, the indices a, b, c, and d take the form
a
b
c
d

 = p


1
0
1
0

 + q


0
1
0
1

 + t


ℓ̃

ñ/2
ℓ̃
−ñ/2

 + u


−ñ/2
ℓ̃

ñ/2
ℓ̃

 +

1
0
0
0

 , (A.160)


a
b
c
d

 = p′


1
0
1
0

 + q′


0
1
0
1

 + t′


ℓ̃

ñ/2
ℓ̃
−ñ/2

 + u′


−ñ/2
ℓ̃

ñ/2
ℓ̃

 +
1
2


ℓ̃ − ñ/2
ℓ̃ + ñ/2
ℓ̃ + ñ/2
ℓ̃ − ñ/2

 +

1
0
0
0

 . (A.161)

The first relation (A.160) is nothing but (A.156). Note that (A.160) and (A.161) take different
vectors. In fact, assuming (A.160) = (A.161), we have

(p′ − p)


1
0
1
0

 + (q
′ − q)


0
1
0
1

 + (t
′ − t)


ℓ̃

ñ/2
ℓ̃
−ñ/2

 + (u
′ − u)


−ñ/2
ℓ̃

ñ/2
ℓ̃

 +
1
2


ℓ̃ − ñ/2
ℓ̃ + ñ/2
ℓ̃ + ñ/2
ℓ̃ − ñ/2

 =

0
0
0
0

 .
Substituting the first equation into the third equation, we have (u′ − u + 1/2)ñ = 0. This is
a contradiction since u′ − u ∈ Z. In addition, note that a = 0 and c = 0 are not satisfied
simultaneously:{

a = 0⇒ c = uñ − 1 , 0, c = 0⇒ a = −uñ + 1 , 0 for (A.160),
a = 0⇒ c = (2u′ + 1)ň/2 − 1 , 0, c = 0⇒ a = −(2u′ + 1)ň/2 + 1 , 0 for (A.161).

With this result, we can define four disjoint sets U and V in (A.157) and (A.158) and U′ and V ′

from (A.161) as

U′ =

(p, q, t, u) ∈ Z
4

��������
p + tℓ̃ − uñ/2 + (ℓ̃ − ñ/2)/2 + 1 > 0
q + tñ/2 + uℓ̃ + (ℓ̃ + ñ/2)/2 ≥ 0
p + tℓ̃ + uñ/2 + (ℓ̃ + ñ/2)/2 ≥ 0
q − tñ/2 + uℓ̃ + (ℓ̃ − ñ/2)/2 ≥ 0

 , (A.162)

V ′ =

(p, q, t, u) ∈ Z
4

��������
p + tℓ̃ − uñ/2 + (ℓ̃ − ñ/2)/2 + 1 = 0
q + tñ/2 + uℓ̃ + (ℓ̃ + ñ/2)/2 ≥ 0
(2u + 1)ñ/2 − 1 > 0
q − tñ/2 + uℓ̃ + (ℓ̃ − ñ/2)/2 ≥ 0

 . (A.163)
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Then, F1 in (A.105) becomes

F1(z1, z2, ϕ̃) = z1
∑

(p,q,t,u)∈U
Ap+tℓ̃−u ñ

2+1,q+t ñ2+uℓ̃,p+tℓ̃+u ñ
2 ,q−t ñ2+uℓ̃(ϕ̃)z1

p+tℓ̃−u ñ
2 z2

q+t ñ2+uℓ̃ z1
p+tℓ̃+u ñ

2 z2
q−t ñ2+uℓ̃

+ z1
∑

(p,q,t,u)∈V
A0,q+t ñ2+uℓ̃,uñ−1,q−t ñ2+uℓ̃(ϕ̃)z2

q+t ñ2+uℓ̃ z1
uñ−2 z2

q−t ñ2+uℓ̃

+ z1
∑

(p,q,t,u)∈U ′
Ap+tℓ̃−u ñ

2+
1
2 (ℓ̃−

ñ
2 )+1,q+t ñ2+uℓ̃+ 1

2 (ℓ̃+
ñ
2 ),p+tℓ̃+u ñ

2+
1
2 (ℓ̃+

ñ
2 ),q−t ñ2+uℓ̃+ 1

2 (ℓ̃−
ñ
2 )
(ϕ̃)

× z1
p+tℓ̃−u ñ

2+
1
2 (ℓ̃−

ñ
2 )z2

q+t ñ2+uℓ̃+ 1
2 (ℓ̃+

ñ
2 ) z1

p+tℓ̃+u ñ
2+

1
2 (ℓ̃+

ñ
2 ) z2

q−t ñ2+uℓ̃+ 1
2 (ℓ̃−

ñ
2 )

+ z1
∑

(p,q,t,u)∈V ′
A0,q+t ñ2+uℓ̃+ 1

2 (ℓ̃+
ñ
2 ),(2u+1) ñ2−1,q−t ñ2+uℓ̃+ 1

2 (ℓ̃−
ñ
2 )
(ϕ̃)

× z2
q+t ñ2+uℓ̃+ 1

2 (ℓ̃+
ñ
2 ) z1

(2u+1) ñ2−2 z2
q−t ñ2+uℓ̃+ 1

2 (ℓ̃−
ñ
2 ). (A.164)

When ñ is odd, the condition (A.148) is rewritten as

(a + c − 1 − 2p)ñ = 2ℓ̃(b − d), 2ℓ̃(a − c − 1) = −(b + d − 2q)ñ.

Since 2ℓ̃ and ñ are coprime, we have the following conditions (v,w ∈ Z):

b − d = vñ, b + d − 2q = 2wℓ̃, (A.165)
a + c − 1 − 2p = 2vℓ̃, a − c − 1 = −wñ. (A.166)

Adding and subtracting the two equations in (A.165) from each other, we have

2(b − q) = vñ + 2wℓ̃, 2(d − q) = −vñ + 2wℓ̃.

This condition is equivalent to [
b
d

]
= q

[
1
1

]
+

1
2
v

[
ñ
−ñ

]
+ w

[
ℓ̃

ℓ̃

]
. (A.167)

Since the indices b and d in (A.167) are integers, and ñ is odd, we have v ∈ 2Z. Therefore, we
replace v as 2t (t ∈ Z). Adding and subtracting the two equations in (A.166) from each other, we
have

2(a − 1 − p) = 2vℓ̃ − wñ, 2(c − p) = 2vℓ̃ + wñ.

This condition is equivalent to[
a
c

]
= p

[
1
1

]
+ v

[
ℓ̃

ℓ̃

]
+

1
2
w

[
−ñ
ñ

]
+

[
1
0

]
. (A.168)

198



Since the indices a and c in (A.168) are integers, and ñ is odd, we have w ∈ 2Z. Therefore, we
replace w as 2u (u ∈ Z). To sum up, we have

a
b
c
d

 = p


1
0
1
0

 + q


0
1
0
1

 + t


2ℓ̃
ñ
2ℓ̃
−ñ

 + u


−ñ
2ℓ̃
ñ
2ℓ̃

 +

1
0
0
0

 . (A.169)

Note that a = 0 and c = 0 are not satisfied simultaneously:

a = 0⇒ c = 2uñ − 1 , 0, c = 0⇒ a = −uñ + 1 , 0.

Similarly to the case that ñ is even, we define sets U and V as

U =

(p, q, t, u) ∈ Z
4

��������
p + 2tℓ̃ − uñ + 1 > 0
q + tñ + 2uℓ̃ ≥ 0
p + 2tℓ̃ + uñ ≥ 0
q − tñ + 2uℓ̃ ≥ 0

 , (A.170)

V =

(p, q, t, u) ∈ Z
4

��������
p + 2tℓ̃ − uñ + 1 = 0
q + tñ + 2uℓ̃ ≥ 0
2uñ − 1 > 0
q − tñ + 2uℓ̃ ≥ 0

 . (A.171)

Then, F1 in (A.105) becomes

F1(z1, z2, ϕ̃) = z1
∑

(p,q,t,u)∈U
Ap+2tℓ̃−uñ+1,q+tñ+2uℓ̃,p+2tℓ̃+uñ,q−tñ+2uℓ̃(ϕ̃)z1

p+2tℓ̃−uñz2
q+tñ+2uℓ̃ z1

p+2tℓ̃+uñ z2
q−tñ+2uℓ̃

+ z1
∑

(p,q,t,u)∈V
A0,q+tñ+2uℓ̃,2uñ−1,q−tñ+2uℓ̃(ϕ̃)z2

q+tñ+2uℓ̃ z1
2uñ−2 z2

q−tñ+2uℓ̃ . (A.172)

Symmetry of Square Patterns
For the irreducible representations µ = (4; k, 0,+), (4; k, k,+), (4; n/2, ℓ,+), a system of the

bifurcation equations F1 = F2 = 0 has a bifurcating solution, which represent the square pattern:
(z1, z2) = (w,w) (w ∈ R). In Section 3.5.5, we showed the existence of this bifurcating solution by
using the equivariant branching lemma (see Propositions 3.9–3.11). In this section, we discuss the
symmetry of this bifurcating solution.

Consider µ = (4; k, 0,+). Substituting the square pattern (z1, z2) = (w,w) into (A.138), we have

F1(w,w, ϕ̃) = w

∞∑
c=0

∞∑
d=0

∑
p∈Z, c+pň+1>0

∑
q∈Z, d+qň≥0

Ac+pň+1,d+qň,cd(ϕ̃)w2(c+d)+(p+q)ň

+ w

∞∑
d=0

∞∑
p=1

∑
q∈Z, d+qň≥0

A0,d+qň,pň−1,d(ϕ̃)w2d+(p+q)ň−2

≈ w
{

A′1000(0)ϕ̃ + (A1101(0) + A2010(0))w2 + A00,ň−1,0(0)wň−2} .
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If ň is even, then F1(w,w, ϕ̃) becomes an odd function in w, and hence the two bifurcating solutions
(w,w, ϕ̃) and (−w,−w, ϕ̃) are conjugate. If ň is odd, the two solutions are not conjugate.

Consider µ = (4; k, k,+) with ň even. Substituting the square pattern (z1, z2) = (w,w) into
(A.144), we have

F1(w,w, ϕ̃) = w

∞∑
c=0

∞∑
d=0

∑
p,q∈Z, c+p ň

2+1>0, d+(2q−p) ň2 ≥0

Ac+p ň
2+1,d+(2q−p) ň2 ,cd(ϕ̃)w

2(c+d)+qň

+ w

∞∑
d=0

∞∑
p=1

∑
q∈Z, d+(2q+p) ň2 ≥0

A0,d+(2q+p) ň2 ,p
ň
2−1,d(ϕ̃)w

2d+qň−2

≈ w{A′1000(0)ϕ̃ + (A1101(0) + A2010(0))w2

+ (A00,ň−1,0(0) + A0, ň2 ,
ň
2−1,0(0) + A00, ň2−1, ň2

(0))wň−2}.

Since ň is even, F1(w,w, ϕ̃) is an odd function in w. Hence, the two bifurcating solutions (w,w, ϕ̃)
and (−w,−w, ϕ̃) are conjugate.

Consider µ = (4; k, k,+) with ň odd. Substituting the square pattern (z1, z2) = (w,w) into
(A.145), we have

F1(w,w, ϕ̃) = w

∞∑
c=0

∞∑
d=0

∑
p∈Z, c+pň+1>0

∑
q∈Z, d+qň≥0

Ac+pň+1,d+qň,cd(ϕ̃)w2(c+d)+(p+q)ň

+ w

∞∑
d=0

∞∑
p=1

∑
q∈Z, d+qň≥0

A0,d+qň,pň−1,d(ϕ̃)w2d+(p+q)ň−2

≈ w
{

A′1000(0)ϕ̃ + (A1101(0) + A2010(0))w2 + A00,ň−1,0(0)wň−2} .
Since ň is odd, F1(w,w, ϕ̃) is not an odd function in w. Hence, the two bifurcating solutions
(w,w, ϕ̃) and (−w,−w, ϕ̃) are not conjugate.

Consider µ = (4; n/2, ℓ,+) with ñ/2 even. Substituting the square pattern (z1, z2) = (w,w) into
(A.159), we have

F1(w,w, ϕ̃) = w
∑

(p,q,t,u)∈U
Ap+tℓ̃−u ñ

2+1,q+t ñ2+uℓ̃,p+tℓ̃+u ñ
2 ,q−t ñ2+uℓ̃(ϕ̃)w2(p+q)+2(t+u)ℓ̃

+ w
∑

(p,q,t,u)∈V
A0,q+t ñ2+uℓ̃,uñ−1,q−t ñ2+uℓ̃(ϕ̃)w2q+2u(ℓ̃+ ñ

2 )−2

≈ w
{

A′1000(0)ϕ̃ + (A1101(0) + A2010(0))w2 + A00,ñ−1,0(0)wñ−2} .
Then, F1(w,w, ϕ̃) is an odd function in w. Hence, the two bifurcating solutions (w,w, ϕ̃) and
(−w,−w, ϕ̃) are conjugate.

Consider µ = (4; n/2, ℓ,+) with ñ/2 odd. Substituting the square pattern (z1, z2) = (w,w) into
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(A.164), we have

F1(z1, z2, ϕ̃) = w
∑

(p,q,t,u)∈U1

Ap+tℓ̃−u ñ
2+1,q+t ñ2+uℓ̃,p+tℓ̃+u ñ

2 ,q−t ñ2+uℓ̃(ϕ̃)w2(p+q)+2(t+u)ℓ̃

+ w
∑

(p,q,t,u)∈V1

A0,q+t ñ2+uℓ̃,uñ−1,q−t ñ2+uℓ̃(ϕ̃)w2q+2u(ℓ̃+ ñ
2 )−2

+ w
∑

(p,q,t,u)∈U2

Ap+tℓ̃−u ñ
2+

1
2 (ℓ̃−

ñ
2 )+1,q+t ñ2+uℓ̃+ 1

2 (ℓ̃+
ñ
2 ),p+tℓ̃+u ñ

2+
1
2 (ℓ̃+

ñ
2 ),q−t ñ2+uℓ̃+ 1

2 (ℓ̃−
ñ
2 )
(ϕ̃)

× w2(p+q)+2(t+u+1)ℓ̃

+ w
∑

(p,q,t,u)∈V2

A0,q+t ñ2+uℓ̃+ 1
2 (ℓ̃+

ñ
2 ),(2u+1) ñ2−1,q−t ñ2+uℓ̃+ 1

2 (ℓ̃−
ñ
2 )
(ϕ̃)w2q+(2u+1)(ℓ̃+ ñ

2 )−2

≈ w
{

A′1000(0)ϕ̃ + (A1101(0) + A2010(0))w2 + A00,ñ−1,0(0)wñ−2} .
Since ℓ̃ + ñ/2 is even, F1(w,w, ϕ̃) is an odd function in w. Hence, the two bifurcating solutions
(w,w, ϕ̃) and (−w,−w, ϕ̃) are conjugate.

Consider µ = (4; n/2, ℓ,+) with ñ odd. Substituting the square pattern (z1, z2) = (w,w) into
(A.172), we have

F1(w,w, ϕ̃) = w
∑

(p,q,t,u)∈U
Ap+2tℓ̃−uñ+1,q+tñ+2uℓ̃,p+2tℓ̃+uñ,q−tñ+2uℓ̃(ϕ̃)w2(p+q)+4(t+u)ℓ̃

+ w
∑

(p,q,t,u)∈V
A0,q+tñ+2uℓ̃,2uñ−1,q−tñ+2uℓ̃(ϕ̃)w2q+2u(2ℓ̃+ñ)−2

≈ w
{

A′1000(0)ϕ̃ + (A1101(0) + A2010(0))w2} .
Then, F1(w,w, ϕ̃) is an odd function in w. Hence, the two bifurcating solutions (w,w, ϕ̃) and
(−w,−w, ϕ̃) are conjugate.

To sum up, we have the following proposition on the symmetry of the square pattern.

Proposition A.16. For a critical point of multiplicity 4, the two bifurcating solutions (w,w, ϕ̃) and
(−w,−w, ϕ̃) (w ∈ R) are conjugate for the following cases:

• µ = (4; k, 0,+), (4; k, k,+) with ň = n/gcd(n, k) even,

• µ = (4; n/2, ℓ,+) for any ñ = n/gcd(n, ℓ),

and are not conjugate for µ = (4; k, 0,+), (4; k, k,+) with ň odd.

Existence and Symmetry of Stripe Patterns
In this section, we would like to show the existence and the symmetry of two types of stripe

patterns, which are represented as

Type I stripe pattern: (z1, z2) = (w, 0) (w ∈ R),
Type II stripe pattern: (z1, z2) = (iw, 0) (w ∈ R).
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Consider µ = (4; k, 0,+). Substituting Type I stripe pattern (z1, z2) = (w, 0) into (A.138), we
have

F1(w, 0, ϕ̃) = w

∞∑
c=0

∑
p∈Z, c+pň+1>0

Ac+pň+1,0c0(ϕ̃)w2c+pň + w

∞∑
p=1

A00,pň−1,0(ϕ̃)wpň−2

≈ w
{

A′1000(0)ϕ̃ + A2010(0)w2 + A00,ň−1,0(0)wň−2} .
Thus, F1(w, 0, ϕ̃) = 0 has the trivial solution w = 0 and a bifurcating solution. From (A.130), we
have F2(w, 0) = F1(0,w), and hence we have F1 = F2 = 0 for (z1, z2) = (w, 0). If ň is even, then
F1(w, 0, ϕ̃) becomes an odd function in w, and hence the two bifurcating solutions (w, 0, ϕ̃) and
(−w, 0, ϕ̃) are conjugate. If ň is odd, the two solutions are not conjugate. Next, substituting Type
II stripe pattern (z1, z2) = (iw, 0) into (A.138), we have

F1(iw, 0, ϕ̃) = iw
∞∑

c=0

∑
p∈Z, c+pň+1>0

Ac+pň+1,0c0(ϕ̃)ipňw2c+pň − iw
∞∑

p=1
A00,pň−1,0(ϕ̃)(−i)pň−2wpň−2

≈ iw
{

A′1000(0)ϕ̃ + A2010(0)w2 − A00,ň−1,0(0)(−i)ň−2wň−2} .
If ň is even (ipň and (−i)pň−2 are real), then F1(iw, 0, ϕ̃) = 0 has the trivial solution (w = 0) and a
bifurcating solution, and a discussion similar to that for Type I stripe pattern holds.

Consider µ = (4; k, k,+) with ň even. Substituting Type I stripe pattern (z1, z2) = (w, 0) into
(A.144), we have

F1(w, 0, ϕ̃) = w

∞∑
c=0

∑
q∈Z, c+qň+1>0

Ac+qň+1,0c0(ϕ̃)w2c+qň + w

∞∑
p=1

A00,qň−1,0(ϕ̃)wqň−2

≈ w
{

A′1000(0)ϕ̃ + A2010(0)w2 + A00,ň−1,0(0)wň−2} .
Thus, F1(w, 0, ϕ̃) = 0 has the trivial solution (w = 0) and a bifurcating solution. From (A.130), we
have F2(w, 0) = F1(0,w), and hence we have F1 = F2 = 0 for (z1, z2) = (w, 0). Since ň is even,
F1(w, 0, ϕ̃) is an odd function in w, and hence the two bifurcating solutions (w, 0, ϕ̃) and (−w, 0, ϕ̃)
are conjugate. Next, substituting Type II stripe pattern (z1, z2) = (iw, 0) into (A.144), we have

F1(iw, 0, ϕ̃) = iw
∞∑

c=0

∑
q∈Z, c+qň+1>0

Ac+qň+1,0c0(ϕ̃)iqňw2c+qň − iw
∞∑

q=1
A00,qň−1,0(ϕ̃)(−i)qň−2wqň−2

≈ iw
{

A′1000(0)ϕ̃ + A2010(0)w2 − A00,ň−1,0(0)(−i)ň−2wň−2} .
Since ň is even (iqň and (−i)qň−2 are real), F1(iw, 0, ϕ̃) = 0 has the trivial solution (w = 0) and a
bifurcating solution, and a discussion similar to that for Type I stripe pattern holds.

Consider µ = (4; k, k,+) with ň odd. Substituting Type I stripe pattern (z1, z2) = (w, 0) into
(A.145), we have

F1(w, 0, ϕ̃) = w

∞∑
c=0

∑
p∈Z, c+pň+1>0

Ac+pň+1,0c0(ϕ̃)w2c+pň + w

∞∑
p=1

A00,pň−1,0(ϕ̃)wpň−2

≈ w
{

A′1000(0)ϕ̃ + A2010(0)w2 + A00,ň−1,0(0)wň−2} .
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Thus, F1(w, 0, ϕ̃) = 0 has the trivial solution (w = 0) and a bifurcating solution. From (A.130),
we have F2(w, 0) = F1(0,w), and hence we have F1 = F2 = 0 for (z1, z2) = (w, 0). Since ň is
odd, F1(w, 0, ϕ̃) is not an odd function in w, and hence the two bifurcating solutions (w, 0, ϕ̃) and
(−w, 0, ϕ̃) are not conjugate. Next, substituting Type II stripe pattern (z1, z2) = (iw, 0) into (A.145),
we have

F1(iw, 0, ϕ̃) = iw
∞∑

c=0

∑
p∈Z, c+pň+1>0

Ac+pň+1,0c0(ϕ̃)ipňw2c+pň − iw
∞∑

p=1
A00,pň−1,0(ϕ̃)(−i)pň−2wpň−2.

Since ň is odd (ipň and (−i)pň−2 can be imaginary), F1(iw, 0, ϕ̃) = 0 cannot be solved for ϕ̃.
Consider µ = (4; n/2, ℓ,+) with ñ/2 even. In (A.156), we have{

b = q + tñ/2 + uℓ̃ = 0
d = q − tñ/2 + uℓ̃ = 0 ⇒

{
q = −uℓ̃
t = 0 .

Thus, we have

F1(z1, 0, ϕ̃) = z1
∑

p,u∈Z, p−u ñ
2+1>0, p+u ñ

2 ≥0

Ap−u ñ
2+1,0,p+u ñ

2 ,0
(ϕ̃)z1

p−u ñ
2 z1

p+u ñ
2 + z1

∞∑
u=1

A00,uñ−1,0(ϕ̃)z1
uñ−2.

(A.173)

Substituting Type I stripe pattern (z1, z2) = (w, 0) into (A.173), we have

F1(w, 0, ϕ̃) = w
∑

p,u∈Z, p−u ñ
2+1>0, p+u ñ

2 ≥0

Ap−u ñ
2+1,0,p+u ñ

2 ,0
(ϕ̃)w2p + w

∞∑
u=1

A00,uñ−1,0(ϕ̃)wuñ−2

≈ w
{

A′1000(0)ϕ̃ + A2010(0)w2 + A00,ñ−1,0(0)wñ−2} .
Thus, F1(w, 0, ϕ̃) = 0 has the trivial solution (w = 0) and a bifurcating solution. From (A.130),
we have F2(w, 0) = F1(0,w). Thus, we have F1 = F2 = 0 for (z1, z2) = (w, 0). Since ñ is even,
F1(w, 0, ϕ̃) is an odd function in w. Hence, the two bifurcating solutions (w, 0, ϕ̃) and (−w, 0, ϕ̃) are
conjugate. Next, substituting Type II stripe pattern (z1, z2) = (iw, 0) into (A.173), we have

F1(iw, 0, ϕ̃)

= iw
∑

p,u∈Z, p−u ñ
2+1>0, p+u ñ

2 ≥0

Ap−u ñ
2+1,0,p+u ñ

2 ,0
(ϕ̃)(−1)p+u ñ

2 i2pw2p − iw
∞∑

u=1
A00,uñ−1,0(ϕ̃)iuñ−2wuñ−2

≈ iw
{

A′1000(0)ϕ̃ + A2010(0)w2 − A00,ñ−1,0(0)iñ−2wñ−2} .
Since ñ is even (iuñ−2 is real), F1(iw, 0, ϕ̃) = 0 has the trivial solution (w = 0) and a bifurcating
solution. Then, a discussion similar to that for Type I stripe pattern holds.

Consider µ = (4; n/2, ℓ,+) with ñ/2 odd. In (A.161), we have{
b = q + tñ/2 + uℓ̃ + (ℓ̃ + ñ/2)/2 = 0
d = q − tñ/2 + uℓ̃ + (ℓ̃ − ñ/2)/2 = 0 ⇒ 2q + (2u + 1)ℓ̃ = 0.
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Since ℓ̃ is odd, this relation is a contradiction. Hence, b = 0 and d = 0 are not satisfied
simultaneously. In (A.160), we have{

b = q + uℓ̃ + tñ/2 = 0
d = q + uℓ̃ − tñ/2 = 0 ⇒

{
q = −uℓ̃
t = 0 .

To sum up, we have

F1(z1, 0, ϕ̃) = z1
∑

p,u∈Z, p−u ñ
2+1>0, p+u ñ

2 ≥0

Ap−u ñ
2+1,0,p+u ñ

2 ,0
(ϕ̃)z1

p−u ñ
2 z1

p+u ñ
2 + z1

∞∑
u=1

A00,uñ−1,0(ϕ̃)z1
uñ−2.

Then, a discussion similar to that for µ = (4; n/2, ℓ,+) with (ℓ̃, ñ/2) = (odd, even) holds.
Consider µ = (4; n/2, ℓ,+) with ñ odd. In (A.169), we have{

b = q + tñ + 2uℓ̃ = 0
d = q − tñ + 2uℓ̃ = 0 ⇒

{
q = −2uℓ̃
t = 0 .

Thus, we have

F1(z1, 0, ϕ̃) = z1
∑

p,u∈Z, p−uñ+1>0, p+uñ≥0
Ap−uñ+1,0,p+uñ,0(ϕ̃)z1

p−uñ z1
p+uñ + z1

∞∑
u=1

A00,2uñ−1,0(ϕ̃)z1
2(uñ−1).

(A.174)

Substituting Type I stripe pattern (z1, z2) = (w, 0) into (A.174), we have

F1(w, 0, ϕ̃) = w
∑

p,u∈Z, p−uñ+1>0, p+uñ≥0
Ap−uñ+1,0,p+uñ,0(ϕ̃)w2p + w

∞∑
u=1

A00,2uñ−1,0(ϕ̃)w2(uñ−1)

≈ w
{

A′1000(0)ϕ̃ + A2010(0)w2} .
Thus, F1(w, 0, ϕ̃) = 0 has the trivial solution (w = 0) and a bifurcating solution. From (A.130), we
have F2(w, 0) = F1(0,w). Thus, we have F1 = F2 = 0 for (z1, z2) = (w, 0). We see that F1(w, 0, ϕ̃)
is an odd function in w. Hence, the two bifurcating solutions (w, 0, ϕ̃) and (−w, 0, ϕ̃) are conjugate.
Next, substituting Type II stripe pattern (z1, z2) = (iw, 0) into (A.174), we have

F1(w, 0, ϕ̃)

= iw
∑

p,u∈Z, p−uñ+1>0, p+uñ≥0
Ap−uñ+1,0,p+uñ,0(ϕ̃)(−1)p+uñi2pw2p − iw

∞∑
u=1

A00,2uñ−1,0(ϕ̃)i2(uñ−1)w2(uñ−1)

≈ iw
{

A′1000(0)ϕ̃ + A2010(0)w2} .
Since the indices of i are real, F1(iw, 0, ϕ̃) = 0 has the trivial solution (w = 0) and a bifurcating
solution. Then, a discussion similar to that for Type I stripe pattern holds.

To sum up, we have the following propositions on the existence and the symmetry of the stripe
patterns.
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Proposition A.17. For a critical point of multiplicity 4, the stripe patterns z = (w, 0), (iw, 0)
(w ∈ R) exist for the following cases:

• µ = (4; k, 0,+), (4; k, k,+) of Type I for any ň = n/gcd(n, k) and Type II with ň even,

• µ = (4; n/2, ℓ,+) of Type I and Type II for any ñ = n/gcd(n, ℓ).

Proposition A.18. For a critical point of multiplicity 4, the two bifurcating solutions (z, ϕ̃) and
(−z, ϕ̃) are conjugate for z = (w, 0), (iw, 0) (w ∈ R) for the following cases:

• µ = (4; k, 0,+), (4; k, k,+) with ň = n/gcd(n, k) even,

• µ = (4; n/2, ℓ,+) for any ñ = n/gcd(n, ℓ),

and are not conjugate for z = (w, 0) for µ = (4; k, 0,+), (4; k, k,+) with ň odd.

Stability of bifurcating solutions
In Section 3.5.5, we found square patterns for a critical point of multiplicity 4 by using the

equivariant branching lemma. In the previous subsections, we showed two kinds of stripe patterns
by solving the bifurcation equation. These bifurcating solutions are represented for the bifurcation
equation in real variables in (A.100) as follows (w ∈ R):

wsq = (w, 0,w, 0),
wstripeI = (w, 0, 0, 0),
wstripeII = (0,w, 0, 0).

We would like to evaluate the stability of these bifurcating solutions.
We denote by S the set of nonnegative indices (a, b, c, d) as

S =


{(a, b, c, d) ∈ Z4

+ | (A.136)} for µ = (4; k, 0,+),
{(a, b, c, d) ∈ Z4

+ | (A.143)} for µ = (4; k, k,+),
{(a, b, c, d) ∈ Z4

+ | (A.148)} for µ = (4; n/2, ℓ,+),
(A.175)

where Z4
+ represents the set of nonnegative integers in Z4. Note that (a, b, c, d) must belong to S

when Aabcd(ϕ̃) , 0. Hence, we replace the power series (A.105) with

F1(z1, z2, ϕ̃) =
∑

S

Aabcd(ϕ̃)z1
az2

b z1
c z2

d . (A.176)

To obtain the asymptotic form of the bifurcation equation and the Jacobian matrix, we elucidate the
elements of S in (A.175) and specify the form of the power series in (A.176). In other words, we
investigate which coefficient Aabcd(ϕ̃) becomes nonzero in (A.176). We focus on the coefficients of
linear terms, quadratic terms, and cubic terms, which play a vital role as leading terms in (A.176).
For this purpose, we take (a, b, c, d) ∈ Z4

+ with a + b + · · · + h ≤ 3 exhaustively and investigate
whether it belongs to S or not. For (4; k, 0,+), (4; k, k,+), and (4; n/2, ℓ,+), we can see

(1, 0, 0, 0), (1, 1, 0, 1), (2, 0, 1, 0) ∈ S.
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In addition, for some specific cases, we can see

(0, 0, 2, 0) ∈ S for (4; k, 0,+) with ň = 3,
(0, 0, 3, 0) ∈ S for (4; k, 0,+) with ň = 4,
(0, 0, 2, 0) ∈ S for (4; k, k,+) with ň = 3,
(0, 0, 3, 0), (0, 2, 1, 0), (0, 0, 1, 2) ∈ S for (4; k, k,+) with ň = 4,
(0, 0, 3, 0) ∈ S for (4; n/2, ℓ,+) with ñ = 4.

Based on the above results, Fi (i = 1, 2) in (A.102) is restricted to the form of

Fi = a1ϕ̃zi + FC
i + (other terms), i = 1, 2, (A.177)

where

FC
1 = a2z1z2z2 + a3z1

2z1, (A.178)
FC

2 = a2z2z1z1 + a3z2
2z2 (A.179)

with the following notations:

a1 = A′1000(0), a2 = A1101(0), a3 = A2010(0). (A.180)

Therein, F2 is obtained by (A.130). The form of “(other terms)” depends on the type of the
irreducible representations in (A.175). Accordingly, F̃i (i = 1, . . . , 4) in (A.100) is restricted to the
form of

F̃i = a1ϕ̃wi + F̃C
i + (other terms), i = 1, . . . , 4 (A.181)

with

F̃C
1 = a2w1(w3

2 + w4
2) + a3w1(w1

2 + w2
2), (A.182)

F̃C
2 = a2w2(w3

2 + w4
2) + a3w2(w1

2 + w2
2), (A.183)

F̃C
3 = a2w3(w1

2 + w2
2) + a3w3(w3

2 + w4
2), (A.184)

F̃C
4 = a2w4(w1

2 + w2
2) + a3w4(w3

2 + w4
2). (A.185)

In (A.177), FC
i corresponds to cubic terms, and the form of “(other terms)” varies with the

irreducible representations. For the case (4; k, 0,+) with ň = 3, we have quadratic terms as leading
terms. For any other cases, we have cubic terms as leading terms that vary with the irreducible
representations. From this point of view, we can classify the form of the bifurcation equation as
shown in Table A.4 for each irreducible representation.

As mentioned earlier, the form of “(other terms)” in (A.181) depends on the type µ of the
irreducible representations in (A.175). Therefore, we checked all the possible cases numerically
and classified each case by the form of leading terms. All the possible cases and stability conditions
for the bifurcating solutions are summarized in Table A.5. The main finding of this section is as
follows:

Proposition A.19. For a critical point of multiplicity 4, we have the following statements:
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Table A.4: Nonzero coefficients of leading terms which belong to "other terms" in (A.177).

µ Cases Nonzero coefficients

(4; k, 0,+) General ň None
ň = 3 A0020(0)
ň = 4 A0030(0)

(4; k, k,+) General ň None
ň = 3 A0020(0)
ň = 4 A0030(0), A0210(0), A0012(0)

(4; n/2, ℓ,+) General ñ None
ñ = 4 A0030(0)

ň = n/gcd(k, n) in (A.92); ñ = n/gcd(ℓ, n) in (A.93)

• For µ = (4; k, 0,+) and µ = (4; k, k,+) with ň = 3, the bifurcating solutions wsq and wstripeI
are always unstable in the neighborhood of the critical point, and the bifurcating curve takes
the form ϕ̃ ≈ cw for some constant c.

• For any other cases, the stability of the bifurcating solutions wsq, wstripeI, and wstripeII depends
on the values of the coefficients of the power series expansion of the bifurcation equation in
(A.176), and the bifurcating curve takes the form ϕ̃ ≈ cw2 for some constant c.

To show these results, we derive the asymptotic form of the bifurcation equation for each case and
conduct stability analysis for the bifurcating solutions in the remainder of this section.

Case 1: General (4; k, 0,+)
For general (4; k, 0,+), we have

(1, 0, 0, 0), (1, 1, 0, 1), (2, 0, 1, 0) ∈ S,

and the other elements of S correspond to higher order terms. Then, the asymptotic form of
Fi (i = 1, 2) in (A.177) becomes

F1(z1, z2, ϕ̃) ≈ a1ϕ̃z1 + FC
1 , (A.186)

F2(z1, z2, ϕ̃) ≈ a1ϕ̃z2 + FC
2 , (A.187)

where FC
i (i = 1, 2) is given in (A.178) and (A.179). By (A.103) and (A.104), the asymptotic form

of F̃i (i = 1, . . . , 4) in (A.100) becomes

F̃1 ≈ a1ϕ̃w1 + F̃C
1 , (A.188)

F̃2 ≈ a1ϕ̃w2 + F̃C
1 , (A.189)

F̃3 ≈ a1ϕ̃w3 + F̃C
1 , (A.190)

F̃4 ≈ a1ϕ̃w4 + F̃C
1 , (A.191)
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Table A.5: Stability conditions of bifurcating solutions for group-theoretic critical points with multiplicity 4.

µ Cases Solutions Stability conditions

(4; k, 0,+) ň = 3 wsq Always unstable
wstripeI Always unstable
wstripeII Does not exist

ň = 4 wsq a3 < −a5 < 0, a3 + a5 < −|a2 |
wstripeI a3 < −a5 < 0, a2 < a3 + a5

wstripeII a3 < −a5 < 0, a2 < a3 + a5

(4; k, k,+) ň = 3 wsq Always unstable
wstripeI Always unstable
wstripeII Does not exist

ň = 4 wsq a5 + a6 > 0, a3 + a5 < −|a2 + 2a6 |
wstripeI a3 < −a5 < 0, −2|a6 | < a3 + a5

wstripeII a3 < −a5 < 0, −2|a6 | < a3 + a5

(4; n/2, ℓ,+) ñ = 4 wsq a3 < −a5 < 0, a3 + a5 < −|a2 |
wstripeI a3 < −a5 < 0, a2 < a3 + a5

wstripeII a3 < −a5 < 0, a2 < a3 + a5

µ Cases Solutions Stability conditions (necessary condition)

(4; k, 0,+) General ň wsq a3 < −|a2 |
wstripeI a2 < a3 < 0
wstripeII a2 < a3 < 0 if ň is even

Does not exist if ň is odd
(4; k, k,+) General ň wsq a3 < −|a2 |

wstripeI a2 < a3 < 0
wstripeII a2 < a3 < 0 if ň is even

Does not exist if ň is odd
(4; n/2, ℓ,+) General ñ wsq a3 < −|a2 |

wstripeI a2 < a3 < 0
wstripeII a2 < a3 < 0

ň = n/gcd(k, n) in (A.92); ñ = n/gcd(ℓ, n) in (A.93);
a2 = A1101(0), a3 = A2010(0), a4 = A0020(0), a5 = A0030(0), a6 = A0210(0) in (A.176)
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where F̃C
i (i = 1, . . . , 4) is given in (A.182) – (A.185). Hence, the asymptotic form of the Jacobian

matrix in (A.101) becomes
J̃(w, ϕ̃) ≈ a1ϕ̃I4 + BC (A.192)

with
BC = a2B2 + a3B3, (A.193)

B2 =


w3

2 + w4
2 0 2w1w3 2w1w4

0 w3
2 + w4

2 2w2w3 2w2w4
2w1w3 2w2w3 w1

2 + w2
2 0

2w1w4 2w2w4 0 w1
2 + w2

2

 ,

B3 =


3w1

2 + w2
2 2w1w2 0 0

2w1w2 w1
2 + 3w2

2 0 0
0 0 3w3

2 + w4
2 2w3w4

0 0 2w3w4 w3
2 + 3w4

2

 .
Substituting wsq into (A.188) and solving F̃1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃sq ≈ −
a2 + a3

a1
w2.

Evaluating the Jacobian matrix (A.192) at (wsq, ϕ̃sq), we have

J̃(wsq, ϕ̃sq) ≈ 2w2


a3 0 a2 0
0 0 0 0
a2 0 a3 0
0 0 0 0

 +O(w3). (A.194)

Then, the eigenvalues of the matrix J̃(wsq, ϕ̃sq) are given by

λ1, λ2 ≈ 2(a3 ± a2)w2,

λ3 ≈ O(w3) (repeated twice).

A necessary condition where wsq is stable is a3 < −|a2 |. A more rigorous stability condition relies
on the concrete form of the terms of O(w3) for λ3. Thus, the stability of wsq depends on the values
of a2 and a3.

Substituting wstripeI into (A.188) and solving F̃1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripeI ≈ −
a3
a1

w2.

Evaluating the Jacobian matrix (A.192) at (wstripeI, ϕ̃stripeI), we have

J̃(wstripeI, ϕ̃stripeI) ≈ w2


2a3 0 0 0
0 0 0 0
0 0 a2 − a3 0
0 0 0 a2 − a3

 +O(w3). (A.195)
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Then, the eigenvalues of the matrix J̃(wstripeI, ϕ̃stripeI) are given by the diagonal components, i.e.,

λ1 ≈ 2a3w
2,

λ2 ≈ O(w3),
λ3 ≈ (a2 − a3)w2 (repeated twice).

Necessary conditions where wstripeI is stable are a2 < a3 < 0. A more rigorous stability condition
relies on the concrete form of the terms of O(w3) for λ2. Thus, the stability of wstripeI depends on
the values of a2 and a3.

Substituting wstripeII into (A.189) and solving F̃2 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripeII ≈ −
a3
a1

w2.

Evaluating the Jacobian matrix (A.192) at (wstripeII, ϕ̃stripeII), we have

J̃(wstripeII, ϕ̃stripeII) ≈ w2


0 0 0 0
0 2a3 0 0
0 0 a2 − a3 0
0 0 0 a2 − a3

 +O(w3). (A.196)

The eigenvalues of the matrix J̃(wstripeII, ϕ̃stripeII) are equivalent to that for wstripeI. Hence, stability
conditions for wstripeII are equivalent to that for wstripeI.

Case 2: (4; k, 0,+) with ň = 3
For the case (4; k, 0,+) with ň = 3, we have

(0, 0, 2, 0) ∈ S

as well as
(1, 0, 0, 0), (1, 1, 0, 1), (2, 0, 1, 0) ∈ S.

Then, the asymptotic form of Fi (i = 1, 2) in (A.177) becomes

F1(z1, z2, ϕ̃) ≈ a1ϕ̃z1 + a4z1
2 + FC

1 , (A.197)
F2(z1, z2, ϕ̃) ≈ a1ϕ̃z2 + a4z2

2 + FC
2 (A.198)

with a4 = A0020(0), where FC
i (i = 1, 2) is given in (A.178) and (A.179). By (A.103) and (A.104),

the asymptotic form of F̃i (i = 1, . . . , 4) in (A.100) becomes

F̃1 ≈ a1ϕ̃w1 + a4(w1
2 − w2

2) + F̃C
1 , (A.199)

F̃2 ≈ a1ϕ̃w2 − 2a4w1w2 + F̃C
2 , (A.200)

F̃3 ≈ a1ϕ̃w3 + a4(w3
2 − w4

2) + F̃C
3 , (A.201)

F̃4 ≈ a1ϕ̃w4 − 2a4w3w4 + F̃C
4 , (A.202)
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where F̃C
i (i = 1, . . . , 4) is given in (A.182)–(A.185). Hence, the asymptotic form of the Jacobian

matrix in (A.101) becomes
J̃(w, ϕ̃) ≈ a1ϕ̃I4 + a4B4 + BC (A.203)

with

B4 = 2


w1 −w2 0 0
−w2 −w1 0 0

0 0 w3 −w4
0 0 −w4 −w3

 ,
where BC is given in (A.193).

Substituting wsq into (A.199) and solving F̃1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃sq ≈ −
a4
a1

w.

Evaluating the Jacobian matrix (A.203) at (wsq, ϕ̃sq), we have

J̃(wsq, ϕ̃sq) ≈ a4w


1 0 0 0
0 −3 0 0
0 0 1 0
0 0 0 −3

 . (A.204)

Then, the eigenvalues of the matrix J̃(wsq, ϕ̃sq) are given by the diagonal components, i.e., a4w
(repeated twice) and −3a4w (repeated twice). Since the eigenvalues a4w and −3a4w have opposite
signs, the bifurcating solution wsq is always unstable.

Substituting wstripeI into (A.199) and solving F̃1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripeI ≈ −
a4
a1

w.

Evaluating the Jacobian matrix (A.203) at (wstripeI, ϕ̃stripeI), we have

J̃(wstripeI, ϕ̃stripeI) ≈ a4w


1 0 0 0
0 −3 0 0
0 0 −1 0
0 0 0 −1

 . (A.205)

Then, the eigenvalues of the matrix J̃(wstripeI, ϕ̃stripeI) are given by the diagonal components, i.e.,
a4w, −3a4w and −a4w (repeated twice). Since the eigenvalues a4w and −3a4w have opposite
signs, the bifurcating solution wstripeI is always unstable.

Remark A.3. Since ň is odd, wstripeII does not exist for the case (4; k, 0,+) with ň = 3. See
Proposition A.17.

□
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Case 3: (4; k, 0,+) with ň = 4
For the case (4; k, 0,+) with ň = 4, we have

(0, 0, 3, 0) ∈ S

as well as
(1, 0, 0, 0), (1, 1, 0, 1), (2, 0, 1, 0) ∈ S.

Then, the asymptotic form of Fi (i = 1, 2) in (A.177) becomes

F1(z1, z2, ϕ̃) ≈ a1ϕ̃z1 + a5z1
3 + FC

1 , (A.206)
F2(z1, z2, ϕ̃) ≈ a1ϕ̃z2 + a5z2

3 + FC
2 (A.207)

with a5 = A0030(0), where FC
i (i = 1, 2) is given in (A.178) and (A.179). By (A.103) and (A.104),

the asymptotic form of F̃i (i = 1, . . . , 4) in (A.100) becomes

F̃1 ≈ a1ϕ̃w1 + a5w1(w1
2 − 3w2

2) + F̃C
1 , (A.208)

F̃2 ≈ a1ϕ̃w2 + a5w2(w2
2 − 3w1

2) + F̃C
2 , (A.209)

F̃3 ≈ a1ϕ̃w3 + a5w3(w3
2 − 3w4

2) + F̃C
3 , (A.210)

F̃4 ≈ a1ϕ̃w4 + a5w4(w4
2 − 3w3

2) + F̃C
4 , (A.211)

where F̃C
i (i = 1, . . . , 4) is given in (A.182) – (A.185). Hence, the asymptotic form of the Jacobian

matrix in (A.101) becomes
J̃(w, ϕ̃) ≈ a1ϕ̃I4 + a5B5 + BC (A.212)

with

B5 = 3


w1

2 − w2
2 −2w1w2 0 0

−2w1w2 w2
2 − w1

2 0 0
0 0 w3

2 − w4
2 −2w3w4

0 0 −2w3w4 w4
2 − w3

2

 , (A.213)

where BC is given in (A.193).
Substituting wsq into (A.208) and solving F̃1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃sq ≈ −
a5 + a2 + a3

a1
w2.

Evaluating the Jacobian matrix (A.212) at (wsq, ϕ̃sq), we have

J̃(wsq, ϕ̃sq) ≈ 2w2


a5 + a3 0 a2 0

0 −2a5 0 0
a2 0 a5 + a3 0
0 0 0 −2a5

 . (A.214)
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Then, the eigenvalues of the matrix J̃(wsq, ϕ̃sq) are given by

λ1, λ2 ≈ 2(a5 + a3 ± a2)w2,

λ3 ≈ −4a5w
2 (repeated twice).

If a3 < −a5 < 0 and a5 + a3 < −|a2 | are satisfied, wsq is stable. Otherwise, wsq is unstable. Thus,
the stability of wsq depends on the values of a2, a3 and a5.

Substituting wstripeI into (A.208) and solving F̃1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripeI ≈ −
a5 + a3

a1
w2.

Evaluating the Jacobian matrix (A.212) at (wstripeI, ϕ̃stripeI), we have

J̃(wstripeI, ϕ̃stripeI) ≈ w2


2(a5 + a3) 0 0 0

0 −4a5 0 0
0 0 −a5 + a2 − a3 0
0 0 0 −a5 + a2 − a3

 . (A.215)

Then, the eigenvalues of the matrix J̃(wstripeI, ϕ̃stripeI) are given by the diagonal components, i.e.,

λ1 ≈ 2(a5 + a3)w2,

λ2 ≈ −4a5w
2,

λ3 ≈ −(a5 − a2 + a3)w2 (repeated twice).

If a3 < −a5 < 0 and a2 < a5 + a3 are satisfied, wstripeI is stable. Thus, the stability of wstripeI
depends on the values of a2, a3 and a5.

Substituting wstripeII into (A.209) and solving F̃2 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripeII ≈ −
a5 + a3

a1
w2.

Evaluating the Jacobian matrix (A.212) at (wstripeII, ϕ̃stripeII), we have

J̃(wstripeII, ϕ̃stripeII) ≈ w2


−4a5 0 0 0

0 2(a5 + a3) 0 0
0 0 −a5 + a2 − a3 0
0 0 0 −a5 + a2 − a3

 . (A.216)

The eigenvalues of the matrix J̃(wstripeII, ϕ̃stripeII) are equivalent to that for wstripeI. Hence, stability
conditions for wstripeII are equivalent to that for wstripeI.

Case 4: General (4; k, k,+)
For general (4; k, k,+), we have

(1, 0, 0, 0), (1, 1, 0, 1), (2, 0, 1, 0) ∈ S,

and the other elements of S correspond to higher order terms. Then, the asymptotic form of F1 in
(A.182) is equivalent to that for the case 1: General (4; k, 0,+). Hence, a discussion similar to that
for the case 1 holds.
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Case 5: (4; k, k,+) with ň = 3
For the case (4; k, k,+) with ň = 3, we have

(0, 0, 2, 0) ∈ S

as well as
(1, 0, 0, 0), (1, 1, 0, 1), (2, 0, 1, 0) ∈ S.

Then, the asymptotic form of F1 in (A.182) is equivalent to that for the case 2: (4; k, 0,+) with
ň = 3. Hence, a discussion similar to that for the case 2 holds, that is, wsq and wstripeI are always
unstable. Since ň is odd, wstripeII does not exist for this case (see Proposition A.17).

Case 6: (4; k, k,+) with ň = 4
For the case (4; k, k,+) with ň = 4, we have

(0, 0, 3, 0), (0, 2, 1, 0), (0, 0, 1, 2) ∈ S

as well as
(1, 0, 0, 0), (1, 1, 0, 1), (2, 0, 1, 0) ∈ S.

From the condition (A.133), we have A0210(0) = A0012(0). Then, the asymptotic form of Fi (i = 1, 2)
in (A.177) becomes

F1(z1, z2, ϕ̃) ≈ a1ϕ̃z1 + a5z1
3 + a6z1(z2

2 + z2
2) + FC

1 , (A.217)
F2(z1, z2, ϕ̃) ≈ a1ϕ̃z2 + a5z2

3 + a6z2(z1
2 + z1

2) + FC
2 (A.218)

with a6 = A0210(0), where FC
i (i = 1, 2) is given in (A.178) and (A.179). By (A.103) and (A.104),

the asymptotic form of F̃i (i = 1, . . . , 4) in (A.100) becomes

F̃1 ≈ a1ϕ̃w1 + a5w1(w1
2 − 3w2

2) + 2a6w1(w3
2 − w4

2) + F̃C
1 , (A.219)

F̃2 ≈ a1ϕ̃w2 + a5w2(w2
2 − 3w1

2) + 2a6w2(w4
2 − w3

2) + F̃C
2 , (A.220)

F̃3 ≈ a1ϕ̃w3 + a5w3(w3
2 − 3w4

2) + 2a6w3(w1
2 − w2

2) + F̃C
3 , (A.221)

F̃4 ≈ a1ϕ̃w4 + a5w4(w4
2 − 3w3

2) + 2a6w4(w2
2 − w1

2) + F̃C
4 , (A.222)

where F̃C
i (i = 1, . . . , 4) is given in (A.182) – (A.185). Hence, the asymptotic form of the Jacobian

matrix in (A.101) becomes

J̃(w, ϕ̃) ≈ a1ϕ̃I4 + a5B5 + a6B6 + BC (A.223)

with

B5 = 3


w1

2 − w2
2 −2w1w2 0 0

−2w1w2 w2
2 − w1

2 0 0
0 0 w3

2 − w4
2 −2w3w4

0 0 −2w3w4 w4
2 − w3

2

 ,
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B6 = 2


w3

2 − w4
2 0 2w1w3 −2w1w4

0 w4
2 − w3

2 −2w2w3 2w2w4
2w1w3 −2w2w3 w1

2 − w2
2 0

−2w1w4 2w2w4 0 w2
2 − w1

2

 ,
where B5 and BC are given in (A.213) and (A.193).

Substituting wsq into (A.219) and solving F̃1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃sq ≈ −
a2 + a3 + a5 + 2a6

a1
w2.

Evaluating the Jacobian matrix (A.223) at (wsq, ϕ̃sq), we have

J̃(wsq, ϕ̃sq) ≈ 2w2


a5 + a3 0 2a6 + a2 0

0 −2(a5 + a6) 0 0
2a6 + a2 0 a5 + a3 0

0 0 0 −2(a5 + a6)

 . (A.224)

Then, the eigenvalues of the matrix J̃(wsq, ϕ̃sq) are given by

λ1, λ2 ≈ 2{(a5 + a3) ± (2a6 + a2)}w2,

λ3 ≈ −4(a5 + a6)w2 (repeated twice).

If a5 + a6 > 0 and a5 + a3 < −|2a6 + a2 | are satisfied, wsq is stable. Otherwise, wsq is unstable.
Thus, the stability of wsq depends on the values of a2, a3, a5 and a6.

Substituting wstripeI into (A.219) and solving F̃1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripeI ≈ −
a5 + a3

a1
w2.

Evaluating the Jacobian matrix (A.223) at (wstripeI, ϕ̃stripeI), we have

J̃(wstripeI, ϕ̃stripeI) ≈ −w2


−2(a5 + a3) 0 0 0

0 4a5 0 0
0 0 a5 − 2a6 + a3 0
0 0 0 a5 + 2a6 + a3

 . (A.225)

Then, the eigenvalues of the matrix J̃(wstripeI, ϕ̃stripeI) are given by the diagonal components, i.e.,

λ1 ≈ 2(a5 + a3)w2,

λ2 ≈ −4a5w
2,

λ3, λ4 ≈ −(a5 + a3 ± 2a6)w2,

If a3 < −a5 < 0 and −2|a6 | < a5 + a3 are satisfied, wstripeI is stable. Otherwise, wstripeI is unstable.
Thus, the stability of wstripeI depends on the values of a3, a5 and a6.
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Substituting wstripeII into (A.220) and solving F̃2 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripeII ≈ −
a5 + a3

a1
w2.

Evaluating the Jacobian matrix (A.223) at (wstripeII, ϕ̃stripeII), we have

J̃(wstripeII, ϕ̃stripeII) ≈ −w2


4a5 0 0 0
0 −2(a5 + a3) 0 0
0 0 a5 − 2a6 + a3 0
0 0 0 a5 + 2a6 + a3

 . (A.226)

The eigenvalues of the matrix J̃(wstripeII, ϕ̃stripeII) are equivalent to that for wstripeI. Hence, stability
conditions for wstripeII is equivalent to that for wstripeI.

Case 7: General (4; n/2, ℓ,+)
For general (4; n/2, ℓ,+), we have

(1, 0, 0, 0), (1, 1, 0, 1), (2, 0, 1, 0) ∈ S,

and the other elements of S correspond to higher order terms. Then, the asymptotic form of F1 in
(A.182) is equivalent to that for the case 1: General (4; k, 0,+). Hence, a discussion similar to that
for the case 1 holds.

Case 8: (4; n/2, ℓ,+) with ñ = 4
For the case (4; n/2, ℓ,+) with ñ = 4, we have

(0, 0, 3, 0) ∈ S

as well as
(1, 0, 0, 0), (1, 1, 0, 1), (2, 0, 1, 0) ∈ S.

Then, the asymptotic form of F1 in (A.182) is equivalent to that for the case 3: (4; k, 0,+) with
ň = 4. Hence, a discussion similar to that for the case 3 holds.

A.4.5. Bifurcation Point of Multiplicity 8
We consider a critical point associated with eight-dimensional irreducible representations µ of

the group D4 ⋉ (Zn × Zn):

(8; k, ℓ) with 1 ≤ ℓ ≤ k − 1, 2 ≤ k ≤
⌊
n − 1

2

⌋
, (A.227)

where n ≥ 5. For (8; k, ℓ), we use the following notations:

k̂ =
k

gcd(k, ℓ, n), ℓ̂ =
ℓ

gcd(k, ℓ, n), n̂ =
n

gcd(k, ℓ, n) . (A.228)
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The action in (8; k, ℓ) on an eight-dimensional vector (w1, . . . ,w8) ∈ R8 can be expressed for a
four-dimensional vector (z1, . . . , z4) with complex variables z j = w2 j−1 + iw2 j ( j = 1, . . . , 4) as
(cf., (3.159) and (3.160))

r :


z1
z2
z3
z4

 7→

z2
z1
z4
z3

 , s :


z1
z2
z3
z4

 7→

z3
z4
z1
z2

 , (A.229)

p1 :


z1
z2
z3
z4

 7→

ωk z1
ω−ℓz2
ωk z3
ω−ℓz4

 , p2 :


z1
z2
z3
z4

 7→

ωℓz1
ωk z2
ω−ℓz3
ω−k z4

 (A.230)

with ω = exp(i2π/n).

Derivation of Bifurcation Equations
The bifurcation equation for a critical point of multiplicity 8 is an eight-dimensional equation

in w = (w1, . . . ,w8) ∈ R8 expressed as

F̃i(w, ϕ̃) = 0, i = 1, . . . , 8, (A.231)

where (w1, . . . ,w8, ϕ̃) = (0, . . . , 0, 0) is assumed to correspond to the critical point. Accordingly,
the Jacobian matrix of F̃ is an 8 × 8 matrix expressed as

J̃(w, ϕ̃) =
(
F
∂F̃i

∂w j

����� i, j = 1, . . . , 8

)
. (A.232)

The bifurcation equation (A.231) can be expressed as a four-dimensional equation in complex
variables z j = w2 j−1 + iw2 j ( j = 1, . . . , 4) as

Fi(z1, z2, z3, z4, ϕ̃) = 0, i = 1, . . . , 4, (A.233)

where (z1, . . . , z4, ϕ̃) = (0, . . . , 0, 0) corresponds to the critical point. There are the following
relationships between (A.231) and (A.233):

F1(z1, z2, z3, z4, ϕ̃) = F̃1 + iF̃2, (A.234)
F2(z1, z2, z3, z4, ϕ̃) = F̃3 + iF̃4, (A.235)
F3(z1, z2, z3, z4, ϕ̃) = F̃5 + iF̃6, (A.236)
F4(z1, z2, z3, z4, ϕ̃) = F̃7 + iF̃8. (A.237)

We expand F1 into a power series as

F1(z1, z2, z3, z4, ϕ̃) =
∑
a=0

∑
b=0

∑
c=0

∑
d=0

∑
e=0

∑
f=0

∑
g=0

∑
h=0

Aabcde f gh(ϕ̃)z1
az2

bz3
cz4

d z1
e z2

f z3
g z4

h.

(A.238)
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Since (z1, z2, z3, z4, ϕ̃) = (0, 0, 0, 0, 0) corresponds to the critical point, we have

A00000000(0) = 0, A10000000(0) = A01000000(0) = · · · = A00000001(0) = 0.

Since a1 = A′10000000(0) is generically nonzero, we have

A10000000(ϕ̃) ≈ a1ϕ̃.

The equivariance of the bifurcation equation to the group D4 ⋉ (Zn × Zn) is identical to the
equivariance to the actions of the four elements r , s, p1, and p2 generating this group. The
equivariance condition for (8; k, ℓ) is written as

r : F2(z1, z2, z3, z4) = F1(z2, z1, z4, z3), (A.239)
F1(z1, z2, z3, z4) = F2(z2, z1, z4, z3), (A.240)
F4(z1, z2, z3, z4) = F3(z2, z1, z4, z3), (A.241)

F3(z1, z2, z3, z4) = F4(z2, z1, z4, z3), (A.242)
s : F3(z1, z2, z3, z4) = F1(z3, z4, z1, z2), (A.243)

F4(z1, z2, z3, z4) = F2(z3, z4, z1, z2), (A.244)
F1(z1, z2, z3, z4) = F3(z3, z4, z1, z2), (A.245)
F2(z1, z2, z3, z4) = F4(z3, z4, z1, z2), (A.246)

p1 : ωk F1(z1, z2, z3, z4) = F1(ωk z1, ω
−ℓz2, ω

k z3, ω
−ℓz4), (A.247)

ω−ℓF2(z1, z2, z3, z4) = F2(ωk z1, ω
−ℓz2, ω

k z3, ω
−ℓz4), (A.248)

ωk F3(z1, z2, z3, z4) = F3(ωk z1, ω
−ℓz2, ω

k z3, ω
−ℓz4), (A.249)

ω−ℓF4(z1, z2, z3, z4) = F4(ωk z1, ω
−ℓz2, ω

k z3, ω
−ℓz4), (A.250)

p2 : ωℓF1(z1, z2, z3, z4) = F1(ωℓz1, ω
k z2, ω

−ℓz3, ω
−k z4), (A.251)

ωk F2(z1, z2, z3, z4) = F2(ωℓz1, ω
k z2, ω

−ℓz3, ω
−k z4), (A.252)

ω−ℓF3(z1, z2, z3, z4) = F3(ωℓz1, ω
k z2, ω

−ℓz3, ω
−k z4), (A.253)

ω−k F4(z1, z2, z3, z4) = F4(ωℓz1, ω
k z2, ω

−ℓz3, ω
−k z4). (A.254)

The equivariance conditions with respect to r and s are expressed as follows. The equivariance
condition (A.240) for r implies

F2(z1, z2, z3, z4) = F1(z2, z1, z4, z3). (A.255)

The equivariance condition (A.243) and (A.244) for s implies

F3(z1, z2, z3, z4) = F1(z3, z4, z1, z2), (A.256)
F4(z1, z2, z3, z4) = F2(z3, z4, z1, z2). (A.257)
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Combining (A.255) and (A.257), we have

F4(z1, z2, z3, z4) = F1(z4, z3, z2, z1). (A.258)

Hence, we obtain F2, F3 and F4 from F1 by using (A.255), (A.256) and (A.258). Combining
(A.239) and (A.255), we have

F1(z2, z1, z4, z3) = F1(z2, z1, z4, z3). (A.259)

Hence, we have
Aab···h(ϕ̃) ∈ R. (A.260)

It is ensured that the equivariance conditions (A.239) – (A.246) are satisfied by (A.255), (A.256),
(A.258), and (A.259).

The equivariance conditions with respect to p1 and p2 are expressed as follows. The equivari-
ance condition (A.247) for p1 is expressed as∑

a=0

∑
b=0
· · ·

∑
h=0

ωk Aab···h(ϕ̃)z1
az2

bz3
cz4

d z1
e z2

f z3
g z4

h

=
∑
a=0

∑
b=0
· · ·

∑
h=0

ωk(a+c−e−g)−ℓ(b+d− f−h)Aab···h(ϕ̃)z1
az2

bz3
cz4

d z1
e z2

f z3
g z4

h,

which implies

ωk(a+c−e−g−1)−ℓ(b+d− f−h) = exp
[
2πi
n
{k(a + c − e − g − 1) − ℓ(b + d − f − h)}

]
= 1. (A.261)

The equivariance condition (A.251) for p2 is expressed as∑
a=0

∑
b=0
· · ·

∑
h=0

ωℓAab···h(ϕ̃)z1
az2

bz3
cz4

d z1
e z2

f z3
g z4

h

=
∑
a=0

∑
b=0
· · ·

∑
h=0

ωk(b−d− f+h)+ℓ(a−c−e+g)Aab···h(ϕ̃)z1
az2

bz3
cz4

d z1
e z2

f z3
g z4

h,

which implies

ωk(b−d− f+h)+ℓ(a−c−e+g−1) = exp
[
2πi
n
{k(b − d − f + h) + ℓ(a − c − e + g − 1)}

]
= 1. (A.262)

Using (A.255), (A.256), or (A.258), we rewrite the equivariance conditions (A.248)–(A.250) for
p1 as follows:

ω−ℓF1(z2, z1, z4, z3) = F1(ω−ℓz2, ω
−k z1, ω

ℓ z4, ω
k z3), (A.263)

ωk F1(z3, z4, z1, z2) = F1(ωk z3, ω
−ℓz4, ω

k z1, ω
−ℓz2), (A.264)

ω−ℓF1(z4, z3, z2, z1) = F1(ω−ℓz4, ω
−k z3, ω

ℓ z2, ω
k z1). (A.265)
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Similarly, we rewrite the equivariance conditions (A.252)–(A.254) for p2 as follows:

ωk F1(z2, z1, z4, z3) = F1(ωk z2, ω
−ℓ z1, ω

k z4, ω
−ℓz3), (A.266)

ω−ℓF1(z3, z4, z1, z2) = F1(ω−ℓz3, ω
−k z4, ω

ℓz1, ω
k z2), (A.267)

ω−k F1(z4, z3, z2, z1) = F1(ω−k z4, ω
ℓ z3, ω

−k z2, ω
ℓz1). (A.268)

The equivariance conditions (A.263), (A.265), and (A.267) lead to the same result as (A.262). The
equivariance conditions (A.264), (A.266), and a complex conjugate of (A.268) lead to the same
result as (A.261). To sum up, we have the following conditions for (8; k, ℓ):

k(a + c − e − g − 1) − ℓ(b + d − f − h) ≡ 0 mod n,
k(b − d − f + h) + ℓ(a − c − e + g − 1) ≡ 0 mod n,

which are equivalent to

k̂(a + c − e − g − 1) − ℓ̂(b + d − f − h) ≡ 0 mod n̂, (A.269)
k̂(b − d − f + h) + ℓ̂(a − c − e + g − 1) ≡ 0 mod n̂. (A.270)

We rewrite the conditions (A.269) and (A.270) in a matrix form as

A
[
k̂
ℓ̂

]
≡

[
0
0

]
mod n̂ (A.271)

with
A =

[
a + c − e − g − 1 −b − d + f + h

b − d − f + h a − c − e + g − 1

]
. (A.272)

This condition is equivalent to the following condition:

∃p, q ∈ Z s.t. A
[
k̂
ℓ̂

]
= n̂

[
p
q

]
. (A.273)

For this condition, we define a set P as

P = {(a, b, . . . , h) ∈ Z8
+ | (A.273) with (A.272)}, (A.274)

where Z+ represents the set of nonnegative integers. Note that (a, b, . . . , h) ∈ Z8
+ must belong to P

when Aab···h(ϕ̃) , 0 in (A.238). Hence, we replace the power series (A.238) with

F1(z1, z2, z3, z4, ϕ̃) =
∑

P

Aabcde f gh(ϕ̃) z1
az2

bz3
cz4

d z1
e z2

f z3
g z4

h. (A.275)

In addition, we have the following proposition:

Proposition A.20. If n̂ = n/gcd(n, k, ℓ) is even, then (a, b, . . . , h) ∈ P satisfies a + b + c + d + e +
f + g + h < 2Z.
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Proof. Since n̂ is even, pn̂ (p ∈ Z) in (A.269) and qn̂ (q ∈ Z) in (A.270) are even. Since n̂, k̂, and
ℓ̂ do not have a common divisor, (k̂, ℓ̂) , (even, even). To prove the statement by contradiction,
assume a + b + c + d + e + f + g + h ∈ 2Z.

• For the case a + c + e + g ∈ 2Z and b + d − f − h ∈ 2Z, we have the following statements:
If (k̂, ℓ̂) = (odd, even), the left-hand side of (A.269) is odd since it takes the form:

(odd) × (odd) + (even) × (even).

If (k̂, ℓ̂) = (even, odd), the left-hand side of (A.270) is odd since it takes the form:

(even) × (even) + (odd) × (odd).

Thus, the condition (A.269) and (A.270) are cannot be satisfied simultaneously.

• For the case a + c + e + g < 2Z and b+ d + f + h < 2Z, we have the following statements: If
(k̂, ℓ̂) = (odd, even), the left-hand side of (A.270) is odd since it takes the form: (odd)+(even).
If (k̂, ℓ̂) = (even, odd), the left-hand side of (A.269) is odd since it takes the form: (even) +
(odd). Thus, the condition (A.269) and (A.270) are cannot be satisfied simultaneously.

Hence, a + b + c + d + e + f + g + h ∈ 2Z is a contradiction. □

Symmetry of Square Patterns
For the irreducible representation µ = (8; k, ℓ), a system of the equations F1 = F2 = F3 = F4 = 0

has the following bifurcating solutions:

Type VM square pattern: (z1, z2, z3, z4) = (w,w,w,w) (w ∈ R),
Type T square pattern: (z1, z2, z3, z4) = (w,w, 0, 0) (w ∈ R).

In Section 3.5.6, we showed that the Type VM solution exists for any (n̂, k̂, ℓ̂), while the Type T
solution exists if the values of (n̂, k̂, ℓ̂) satisfies

GCD-div: 2 gcd(k̂, ℓ̂) is not divisible by gcd(k̂2 + ℓ̂2, n̂) (A.276)

(see Proposition 3.24).
Substituting the Type VM solution (z1, z2, z3, z4) = (w,w,w,w) into (A.275), we have

F1(w,w,w,w, ϕ̃) =
∑

P

Aabcde f gh(ϕ̃)wa+b+d+e+ f+g+h.

Proposition A.20 shows that if n̂ is even, then F1(w,w,w,w, ϕ̃) becomes an odd function in w. Thus,
the two bifurcating solutions (w,w,w,w, ϕ̃) and (−w,−w,−w,−w, ϕ̃) are conjugate. Substituting
the Type T solution (z1, z2, z3, z4) = (w,w, 0, 0) into (A.275), we have

F1(w,w, 0, 0, ϕ̃) =
∑

(a,b,0,0,e, f ,0,0)∈P

Aab00e f 00(ϕ̃)wa+b+e+ f .

Proposition A.20 shows that if n̂ is even, then a + b + e + f < 2Z for (a, b, 0, 0, e, f , 0, 0) ∈ P.
Thus, F1(w,w, 0, 0, ϕ̃) becomes an odd function in w, and hence the two bifurcating solutions
(w,w, 0, 0, ϕ̃) and (−w,−w, 0, 0, ϕ̃) are conjugate.

To sum up, we have the following proposition on the symmetry of the square patterns.
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Proposition A.21. For a critical point of multiplicity 8 associated with µ = (8; k, ℓ), the two
bifurcating solutions (z, ϕ̃) and (−z, ϕ̃) are conjugate for z = (w,w,w,w), (w,w, 0, 0) (w ∈ R) if
n̂ = n/gcd(n, k, ℓ) is even and are not conjugate if n̂ is odd.

Existence and Symmetry of Stripe Patterns
We would like to show the existence and the symmetry of two types of stripe patterns, which

are represented as

Type I stripe pattern: (z1, z2, z3, z4) = (w, 0, 0, 0) (w ∈ R),
Type II stripe pattern: (z1, z2, z3, z4) = (iw, 0, 0, 0) (w ∈ R).

For both cases, we have (a, b, . . . , h) = (a, 0, 0, 0, e, 0, 0, 0), and hence (A.269) and (A.270) leads to

k̂(a − e − 1) ≡ 0, ℓ̂(a − e − 1) ≡ 0 mod n̂, (A.277)

which imply a = e + pn̂ + 1 (p ∈ Z). Then, F1 in (A.275) is rewritten as

F1(z1, 0, 0, 0, ϕ̃)

=

∞∑
q=0

Aq+1,q(ϕ̃)|z1 |2qz1 +

∞∑
p=1

∞∑
q=0
[Aq+pn̂+1,q(ϕ̃)|z1 |2qz1

pn̂+1 + Aq,q+pn̂−1(ϕ̃)|z1 |2q z1
pn̂−1] (A.278)

with Aae(ϕ̃) = Aa000e000(ϕ̃).
Substituting the Type I stripe pattern (z1, z2, z3, z4) = (w, 0, 0, 0) into (A.278), we have

F1(w, 0, 0, 0, ϕ̃) = w


∞∑

q=0
Aq+1,q(ϕ̃)w2q +

∞∑
p=1

∞∑
q=0
[Aq+pn̂+1,q(ϕ̃)w2q+pn̂ + Aq,q+pn̂−1(ϕ̃)w2q+pn̂−2]


≈ w

{
A′10(0)ϕ̃ + A21(0)w2 + A0,n̂−1(0)wn̂−2} .

We see that F1(w, 0, 0, 0, ϕ̃) = 0 has the trivial solution (w = 0) and a bifurcating solution. Note
that F1(w, 0, 0, 0, ϕ̃) becomes an odd function in w if n̂ is even. Then, the two bifurcating solutions
(w, 0, 0, 0, ϕ̃) and (−w, 0, 0, 0, ϕ̃) are conjugate.

Substituting (z1, z2, z3, z4) = (w, 0, 0, 0) into the equivariance conditions (A.255)–(A.258), we
have

F2(w, 0, 0, 0) = F1(0,w, 0, 0),
F3(w, 0, 0, 0) = F1(0, 0,w, 0),
F4(w, 0, 0, 0) = F1(0, 0, 0,w).

(A.279)

With the use of P in (A.274), we have Fi = 0 (i = 2, 3, 4) in (A.279) if

(0, b, 0, 0, 0, f , 0, 0) < P,
(0, 0, c, 0, 0, 0, g, 0) < P,
(0, 0, 0, d, 0, 0, 0, h) < P.
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The conditions in (A.269) and (A.270) lead to

k̂(b − f ) − ℓ̂ ≡ 0, ℓ̂(b − f ) + k̂ ≡ 0 mod n̂ for (a, b, c, d, e, f , g, h) = (0, b, 0, 0, 0, f , 0, 0),
k̂(c − g) − k̂ ≡ 0, ℓ̂(c − g) + ℓ̂ ≡ 0 mod n̂ for (a, b, c, d, e, f , g, h) = (0, 0, c, 0, 0, 0, g, 0),
k̂(d − h) + ℓ̂ ≡ 0, ℓ̂(d − h) + k̂ ≡ 0 mod n̂ for (a, b, c, d, e, f , g, h) = (0, 0, 0, d, 0, 0, 0, h).

These relations can be expressed in a matrix form as

Ax = b with A =
[
k̂ −n̂ 0
ℓ̂ 0 −n̂

]
. (A.280)

The vectors x and b vary with (a, b, c, d, e, f , g, h) as follows:

x =


b − f

p
q

 , b =
[
ℓ̂

−k̂

]
for (a, b, c, d, e, f , g, h) = (0, b, 0, 0, 0, f , 0, 0),

x =


c − g

p
q

 , b =
[

k̂
−ℓ̂

]
for (a, b, c, d, e, f , g, h) = (0, 0, c, 0, 0, 0, g, 0),

x =


d − h

p
q

 , b =
[
−ℓ̂
−k̂

]
for (a, b, c, d, e, f , g, h) = (0, 0, 0, d, 0, 0, 0, h).

The existence of an integer solution x of (A.280) is investigated by showing the two conditions
(A.281) in Remark A.4 below. The first condition is satisfied since we have

rank A = rank
[
k̂ −n̂ 0
ℓ̂ 0 −n̂

]
= 2

and

rank [A | b] = rank
[
k̂ −n̂ 0 ℓ̂

ℓ̂ 0 −n̂ −k̂

]
= 2 for (a, b, c, d, e, f , g, h) = (0, b, 0, 0, 0, f , 0, 0),

rank [A | b] = rank
[
k̂ −n̂ 0 k̂
ℓ̂ 0 −n̂ −ℓ̂

]
= 2 for (a, b, c, d, e, f , g, h) = (0, 0, c, 0, 0, 0, g, 0),

rank [A | b] = rank
[
k̂ −n̂ 0 −ℓ̂
ℓ̂ 0 −n̂ −k̂

]
= 2 for (a, b, c, d, e, f , g, h) = (0, 0, 0, d, 0, 0, 0, h).

For the second condition, we have

d1(A) = gcd(ℓ̂, k̂, n̂) = 1,
d1([A | b]) = gcd(ℓ̂, k̂, n̂) = 1,
d2(A) = gcd(k̂ n̂, ℓ̂n̂, n̂2) = n̂.
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The value of d2([A | b]) varies with (a, b, c, d, e, f , g, h) as follows:

d2([A | b]) = gcd(n̂, k̂2 + ℓ̂2) for (a, b, c, d, e, f , g, h) = (0, b, 0, 0, 0, f , 0, 0),
d2([A | b]) = gcd(n̂, 2k̂ ℓ̂) for (a, b, c, d, e, f , g, h) = (0, 0, c, 0, 0, 0, g, 0),

d2([A | b]) = gcd(n̂, k̂2 − ℓ̂2) for (a, b, c, d, e, f , g, h) = (0, 0, 0, d, 0, 0, 0, h).

For (a, b, c, d, e, f , g, h) = (0, b, 0, 0, 0, f , 0, 0), we have d2(A) = d2([A | b])when k̂2+ ℓ̂2 is divisible
by n̂. Then, the equation (A.280) has an integer solution x. Hence, we have (0, b, 0, 0, 0, f , 0, 0) ∈ P
and, in turn, F2 , 0. On the contrary, we have (0, b, 0, 0, 0, f , 0, 0) < P and, in turn, F2 = 0 when
k̂2 + ℓ̂2 is not divisible by n̂. In a similar manner, we have (0, 0, c, 0, 0, 0, g, 0) < P and, in turn,
F3 = 0 when 2k̂ ℓ̂ is not divisible by n̂. We have (0, 0, 0, d, 0, 0, 0, h) < P and, in turn, F4 = 0 when
k̂2 − ℓ̂2 is not divisible by n̂. Consequently, a system of the equations F1 = F2 = F3 = F4 = 0 holds
for (z1, z2, z3, z4) = (w, 0, 0, 0) when k̂2 + ℓ̂2, 2k̂ ℓ̂, and k̂2 − ℓ̂2 are not divisible by n̂.

Remark A.4. Let A be an m × n integer matrix and b an m-dimensional integer vector. A system
of equations Ax = b admits an integer solution x if and only if two matrices A and [A | b] share
the same determinantal divisors, i.e.,

rank A = rank [A | b], dk(A) = dk([A | b]) (A.281)

for all k. Here, dk(A) is the kth determinantal divisor, which is the greatest common divisor of all
k × k minors (subdeterminants) of the integer matrix A.

□

Substituting Type II stripe pattern (z1, z2, z3, z4) = (iw, 0, 0, 0) into (A.278), we have

F1(iw, 0, 0, 0, ϕ̃)

= iw

∞∑

q=0
Aq+1,q(ϕ̃)w2q +

∞∑
p=1

∞∑
q=0
[Aq+pn̂+1,q(ϕ̃)ipn̂w2q+pn̂ + Aq,q+pn̂−1(ϕ̃)(−i)pn̂w2q+pn̂−2]


≈ iw

{
A′10(0)ϕ̃ + A21(0)w2 + A0,n̂−1(0)(−i)n̂wn̂−2} .

Thus, F1(iw, 0, 0, 0, ϕ̃) = 0 has a bifurcating solution if n̂ is even (ipn̂ and (−i)pn̂ are real). Then, a
discussion similar to that for the Type I stripe pattern holds.

To sum up, we have the following propositions on the existence and the symmetry of the stripe
patterns.

Proposition A.22. For a critical point of multiplicity 8 associated with µ = (8; k, ℓ), Type I stripe
pattern exists if the condition

k̂2 + ℓ̂2, 2k̂ ℓ̂, and k̂2 − ℓ̂2 are not divisible by n̂ (A.282)

is satisfied. Therein, k̂ = k/gcd(n, k, ℓ), ℓ̂ = ℓ/gcd(n, k, ℓ), and n̂ = n/gcd(n, k, ℓ). Type II stripe
pattern exists if the condition (A.282) is satisfied and n̂ is even.

Proposition A.23. For a critical point of multiplicity 8 associated with µ = (8; k, ℓ), the two
bifurcating solutions (z, ϕ̃) and (−z, ϕ̃) are conjugate for z = (w, 0, 0, 0), (iw, 0, 0, 0) (w ∈ R) if
n̂ = n/gcd(n, k, ℓ) is even and are not conjugate for z = (w, 0, 0, 0) if n̂ is odd.
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Existence and Symmetry of Upside-down Patterns
We would like to show the existence and the symmetry of two types of upside-down patterns,

which are represented as

Type I upside-down pattern: (z1, z2, z3, z4) = (w, 0,w, 0) (w ∈ R),
Type II upside-down pattern: (z1, z2, z3, z4) = (iw, 0, iw, 0) (w ∈ R).

For both cases, we have (a, b, . . . , h) = (a, 0, c, 0, e, 0, g, 0), and hence (A.269) and (A.270) leads to

k̂(a − e − 1) + k̂(c − g) ≡ 0 mod n̂,

ℓ̂(a − e − 1) − ℓ̂(c − g) ≡ 0 mod n̂,

which imply a = e + pn̂ + 1 and c = g + qn̂ (p, q ∈ Z). Then, F1 in (A.275) is rewritten as

F1(z1, 0, z3, 0, ϕ̃) =
∞∑

e=0

∞∑
g=0

∑
p∈Z,e+pn̂+1≥0

∑
q∈Z,g+qn̂≥0

Ae+pn̂+1,g+qn̂,e,g(ϕ̃)z1
e+pn̂+1z3

g+qn̂ z1
e z3

g

(A.283)

with Aaceg(ϕ̃) = Aa0c0e0g0(ϕ̃).
Substituting Type I upside-down pattern (z1, z2, z3, z4) = (w, 0,w, 0) into (A.283), we have

F1(w, 0,w, 0, ϕ̃) = w


∞∑

e=0

∞∑
g=0

∑
p∈Z,e+pn̂+1≥0

∑
q∈Z,g+qn̂≥0

Ae+pn̂+1,g+qn̂,e,g(ϕ̃)w2(e+g)+(p+q)n̂


≈ w
{

A′1000(0)ϕ̃ + (A2010(0) + A1101(0))w2} .
We see that F1(w, 0,w, 0, ϕ̃) = 0 has the trivial solution (w = 0) and a bifurcating solution. Note
that F1(w, 0,w, 0, ϕ̃) becomes an odd function in w if n̂ is even. Then, the two bifurcating solutions
(w, 0,w, 0, ϕ̃) and (−w, 0,−w, 0, ϕ̃) are conjugate.

Substituting (z1, z2, z3, z4) = (w, 0,w, 0) into the equivariance conditions (A.255)–(A.258), we
have

F2(w, 0,w, 0) = F4(w, 0,w, 0) = F1(0,w, 0,w),
F3(w, 0,w, 0) = F1(w, 0,w, 0).

(A.284)

With the use of P in (A.274), we have Fi = 0 (i = 2, 4) in (A.284) if

(0, b, 0, d, 0, f , 0, h) < P.

The use of (a, b, . . . , h) = (0, b, 0, d, 0, f , 0, h) in (A.269) and (A.270) leads to

−k̂ − ℓ̂(b + d − f − h) ≡ 0 mod n̂,

k̂(b − d − f + h) − ℓ̂ ≡ 0 mod n̂.
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This relation can be expressed in a matrix form as

Ax = b with A =
[
−ℓ̂ −ℓ̂ −n̂ 0
k̂ −k̂ 0 −n̂

]
, x =


b − f
d − h

p
q

 , b =
[
k̂
ℓ̂

]
. (A.285)

The existence of an integer solution x of (A.285) is investigated by showing the two conditions
(A.281) in Remark A.4. The first condition is satisfied since

rank A = rank
[
−ℓ̂ −ℓ̂ −n̂ 0
k̂ −k̂ 0 −n̂

]
= 2,

rank [A | b] = rank
[
−ℓ̂ −ℓ̂ −n̂ 0 −k̂
k̂ −k̂ 0 −n̂ ℓ̂

]
= 2.

For the second condition, we have

d1(A) = gcd(ℓ̂, k̂, n̂) = 1,
d1([A | b]) = gcd(ℓ̂, k̂, n̂) = 1,
d2(A) = gcd(2k̂ ℓ̂, k̂ n̂, ℓ̂n̂, n̂2) = gcd(2k̂ ℓ̂, n̂),
d2([A | b]) = gcd(n̂, 2k̂ ℓ̂, k̂2 + ℓ̂2, k̂2 − ℓ̂2).

Hence, d2(A) = d2([A | b]) is satisfied if

gcd(k̂2 + ℓ̂2, k̂2 − ℓ̂2) is divisible by gcd(n̂, 2k̂ ℓ̂),

Then, the equation (A.285) has an integer solution x, and hence we have (0, b, 0, d, 0, f , 0, h) ∈ P
and, in turn, F2 = F4 , 0. On the contrary, we have (0, b, 0, d, 0, f , 0, h) < P and, in turn,
F2 = F4 = 0 if (k̂ + ℓ̂) gcd(k̂ + ℓ̂, k̂ − ℓ̂) is not divisible by gcd(n̂, 2k̂ ℓ̂).

Substituting Type II upside-down pattern (z1, z2, z3, z4) = (iw, 0, iw, 0) into (A.283), we have

F1(iw, 0, iw, 0, ϕ̃)

=

∞∑
e=0

∞∑
g=0

∑
p∈Z,e+pn̂+1≥0

∑
q∈Z,g+qn̂≥0

Ae+pn̂+1,g+qn̂,e,g(ϕ̃)(iw)e+pn̂+1(iw)g+qn̂(−iw)e(−iw)g

= iw

∞∑

e=0

∞∑
g=0

∑
p∈Z,e+pn̂+1≥0

∑
q∈Z,g+qn̂≥0

Ae+pn̂+1,g+qn̂,e,g(ϕ̃)ipn̂(−i)qn̂w2(e+g)+(p+q)n̂


≈ iw
{

A′1000(0)ϕ̃ + (A2010(0) + A1101(0))w2} .
Thus, F1(iw, 0, iw, 0, ϕ̃) = 0 has a bifurcating solution if n̂ is even (ipn̂ and (−i)qn̂ are real). Then, a
discussion similar to that for Type I stripe pattern holds.

To sum up, we have the following propositions on the existence and the symmetry of the
upside-down patterns.
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Proposition A.24. For a critical point of multiplicity 8 associated with µ = (8; k, ℓ), Type I
upside-down pattern exists if the condition

gcd(k̂2 + ℓ̂2, k̂2 − ℓ̂2) is not divisible by gcd(n̂, 2k̂ ℓ̂) (A.286)

is satisfied. Therein, k̂ = k/gcd(n, k, ℓ), ℓ̂ = ℓ/gcd(n, k, ℓ), and n̂ = n/gcd(n, k, ℓ). Type II
upside-down pattern exists if the condition (A.286) is satisfied and n̂ is even.

Proposition A.25. For a critical point of multiplicity 8 associated with µ = (8; k, ℓ), the two
bifurcating solutions (z, ϕ̃) and (−z, ϕ̃) are conjugate for z = (w, 0,w, 0), (iw, 0, iw, 0) (w ∈ R) if
n̂ = n/gcd(n, k, ℓ) is even and are not conjugate for z = (w, 0,w, 0) if n̂ is odd.

Stability of Bifurcating Solutions
In Section 3.5.6, we found the square patterns for a critical point of multiplicity 8 by using the

equivariant branching lemma. In the previous subsections, we showed the stripe and upside-down
patterns by solving the bifurcation equations. These bifurcating solutions are represented for the
bifurcation equation in real variables in (A.231) as follows (w ∈ R):

wsqVM = (w, 0,w, 0,w, 0,w, 0),
wsqT = (w, 0,w, 0, 0, 0, 0, 0),
wstripeI = (w, 0, 0, 0, 0, 0, 0, 0),
wstripeII = (0,w, 0, 0, 0, 0, 0, 0),
wupside−downI = (w, 0, 0, 0,w, 0, 0, 0),
wupside−downII = (0,w, 0, 0, 0,w, 0, 0)

We would like to evaluate the stability of these bifurcating solutions.
To obtain the the asymptotic form of the bifurcation equation and the Jacobian matrix, we first

investigate which (a, b, . . . , h) ∈ Z8
+ belongs to P in (A.274). In other words, we investigate which

Aab···h(ϕ̃) becomes nonzero in (A.275). We focus on the coefficients of linear terms, quadratic
terms, and cubic terms, which play a vital role as leading terms in (A.275). For this purpose, we
exhaustively find (a, b, . . . , h) ∈ Z8

+ such as

(a, b, . . . , h) ∈ P with a + b + · · · + h ≤ 3.

Let us take some (a, b, . . . , h) ∈ Z8
+ and substitute it into the matrix A in (A.272). Then, A becomes

any one of twelve possible forms as shown in Table A.6. The condition (A.273) varies with the
form of A.

For the case (i), the elements of A in (A.272) represent

a + c − e − g − 1 = 0, a − c − e + g − 1 = 0, (A.287)
−b − d + f + h = 0, b − d − f + h = 0. (A.288)

The condition in (A.273) is rewritten as

∃p, q ∈ Z s.t. pn̂ = 0, qn̂ = 0. (A.289)
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Table A.6: Possible cases for A in (A.272).

Cases Conditions in (A.273)

(i) A = O ∃p, q ∈ Z s.t. pn̂ = 0, qn̂ = 0

(ii) A =
[
α 0
0 0

]
∃p, q ∈ Z s.t. pn̂ = αk̂, qn̂ = 0

(iii) A =
[
0 β

0 0

]
∃p, q ∈ Z s.t. pn̂ = βℓ̂, qn̂ = 0

(iv) A =
[
0 0
γ 0

]
∃p, q ∈ Z s.t. pn̂ = 0, qn̂ = γ k̂

(v) A =
[
0 0
0 δ

]
∃p, q ∈ Z s.t. pn̂ = 0, qn̂ = δℓ̂

(vi) A =
[
α 0
γ 0

]
∃p, q ∈ Z s.t. pn̂ = αk̂, qn̂ = γ k̂

(vii) A =
[
0 β

0 δ

]
∃p, q ∈ Z s.t. pn̂ = βℓ̂, qn̂ = δℓ̂

(viii) A =
[
α β

0 0

]
∃p, q ∈ Z s.t. pn̂ = αk̂ + βℓ̂, qn̂ = 0

(ix) A =
[
0 0
γ δ

]
∃p, q ∈ Z s.t. pn̂ = 0, qn̂ = γ k̂ + δℓ̂

(x) A =
[
α 0
0 δ

]
∃p, q ∈ Z s.t. pn̂ = αk̂, qn̂ = δℓ̂

(xi) A =
[
0 β

γ 0

]
∃p, q ∈ Z s.t. pn̂ = βℓ̂, qn̂ = γ k̂

(xii) A =
[
α β

γ δ

]
∃p, q ∈ Z s.t. pn̂ = αk̂ + βℓ̂, qn̂ = γ k̂ + δℓ̂
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Table A.7: Possible cases for (a, b, c, d, e, f , g, h) ∈ Z8
+.

(a, b, c, d, e, f , g, h) α β γ δ A Existence of p, q ∈ Z in (A.272)
(0, 0, 0, 0, 0, 0, 0, 0) -1 0 0 -1 (x) -
(1, 0, 0, 0, 0, 0, 0, 0) 0 0 0 0 (i) p = 0, q = 0 for any (n̂, k̂, ℓ̂)
(0, 1, 0, 0, 0, 0, 0, 0) -1 -1 1 -1 (xii) -
(0, 0, 1, 0, 0, 0, 0, 0) 0 0 0 -2 (v) -
(0, 0, 0, 1, 0, 0, 0, 0) -1 -1 -1 -1 (xii) -
(0, 0, 0, 0, 1, 0, 0, 0) -2 0 0 -2 (x) -
(0, 0, 0, 0, 0, 1, 0, 0) -1 1 -1 -1 (xii) -
(0, 0, 0, 0, 0, 0, 1, 0) -2 0 0 0 (ii) -
(0, 0, 0, 0, 0, 0, 0, 1) -1 1 1 -1 (xii) -
(2, 0, 0, 0, 0, 0, 0, 0) 1 0 0 1 (x) -
(0, 2, 0, 0, 0, 0, 0, 0) -1 -2 2 -1 (xii) -
(0, 0, 2, 0, 0, 0, 0, 0) 1 0 0 -3 (x) -
(0, 0, 0, 2, 0, 0, 0, 0) -1 -2 -2 -1 (xii) -
(0, 0, 0, 0, 2, 0, 0, 0) -3 0 0 -3 (x) -
(0, 0, 0, 0, 0, 2, 0, 0) -1 2 -2 -1 (xii) p = 0, q = −1 for (n̂, k̂, ℓ̂) = (5, 2, 1)
(0, 0, 0, 0, 0, 0, 2, 0) -3 0 0 1 (x) -
(0, 0, 0, 0, 0, 0, 0, 2) -1 2 2 -1 (xii) -
(1, 1, 0, 0, 0, 0, 0, 0) 0 -1 1 0 (xi) -
(1, 0, 1, 0, 0, 0, 0, 0) 1 0 0 -1 (x) -
(1, 0, 0, 1, 0, 0, 0, 0) 0 -1 -1 0 (xi) -
(1, 0, 0, 0, 1, 0, 0, 0) -1 0 0 -1 (x) -
(1, 0, 0, 0, 0, 1, 0, 0) 0 1 -1 0 (xi) -
(1, 0, 0, 0, 0, 0, 1, 0) -1 0 0 1 (x) -
(1, 0, 0, 0, 0, 0, 0, 1) 0 1 1 0 (xi) -
(0, 1, 1, 0, 0, 0, 0, 0) 0 -1 1 -2 (xii) -
(0, 1, 0, 1, 0, 0, 0, 0) -1 -2 0 -1 (xii) -
(0, 1, 0, 0, 1, 0, 0, 0) -2 -1 1 -2 (xii) p = −1, q = 0 for (n̂, k̂, ℓ̂) = (5, 2, 1)
(0, 1, 0, 0, 0, 1, 0, 0) -1 0 0 -1 (x) -
(0, 1, 0, 0, 0, 0, 1, 0) -2 -1 1 0 (xii) -
(0, 1, 0, 0, 0, 0, 0, 1) -1 0 2 -1 (xii) -
α = a + c − e − g − 1; β = −b − d + f + h; γ = b − d − f + h; δ = a − c − e + g − 1
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Table A.8: Possible cases for (a, b, c, d, e, f , g, h) ∈ Z8
+.

(a, b, c, d, e, f , g, h) α β γ δ A Existence of p, q ∈ Z in (A.272)
(0, 0, 1, 1, 0, 0, 0, 0) 0 -1 -1 -2 (xii) -
(0, 0, 1, 0, 1, 0, 0, 0) -1 0 0 -3 (x) -
(0, 0, 1, 0, 0, 1, 0, 0) 0 1 -1 -2 (xii) -
(0, 0, 1, 0, 0, 0, 1, 0) -1 0 0 -1 (x) -
(0, 0, 1, 0, 0, 0, 0, 1) 0 1 1 -2 (xii) -
(0, 0, 0, 1, 1, 0, 0, 0) -2 -1 -1 -2 (xii) -
(0, 0, 0, 1, 0, 1, 0, 0) -1 0 -2 -1 (xii) -
(0, 0, 0, 1, 0, 0, 1, 0) -2 -1 -1 0 (xii) -
(0, 0, 0, 1, 0, 0, 0, 1) -1 0 0 -1 (x) -
(0, 0, 0, 0, 1, 1, 0, 0) -2 1 -1 -2 (xii) -
(0, 0, 0, 0, 1, 0, 1, 0) -3 0 0 -1 (x) -
(0, 0, 0, 0, 1, 0, 0, 1) -2 1 1 -2 (xii) -
(0, 0, 0, 0, 0, 1, 1, 0) -2 1 -1 0 (xii) -
(0, 0, 0, 0, 0, 1, 0, 1) -1 2 0 -1 (xii) -
(0, 0, 0, 0, 0, 0, 1, 1) -2 1 1 0 (xii) -
(3, 0, 0, 0, 0, 0, 0, 0) 2 0 0 2 (x) -
(0, 3, 0, 0, 0, 0, 0, 0) -1 -3 3 -1 (xii) p = −1, q = 1 for (n̂, k̂, ℓ̂) = (5, 2, 1)
(0, 0, 3, 0, 0, 0, 0, 0) 2 0 0 -4 (x) -
(0, 0, 0, 3, 0, 0, 0, 0) -1 -3 -3 -1 (xii) -
(0, 0, 0, 0, 3, 0, 0, 0) -4 0 0 -4 (x) -
(0, 0, 0, 0, 0, 3, 0, 0) -1 3 -3 -1 (xii) p = 0, q = 1 for (n̂, k̂, ℓ̂) = (10, 3, 1)
(0, 0, 0, 0, 0, 0, 3, 0) -4 0 0 2 (x) -
(0, 0, 0, 0, 0, 0, 0, 3) -1 3 3 -1 (xii) p = 0, q = −1 for (n̂, k̂, ℓ̂) = (8, 3, 1)
(2, 1, 0, 0, 0, 0, 0, 0) 1 -1 1 1 (xii) -
(2, 0, 1, 0, 0, 0, 0, 0) 2 0 0 0 (ii) -
(2, 0, 0, 1, 0, 0, 0, 0) 1 -1 -1 1 (xii) -
(2, 0, 0, 0, 1, 0, 0, 0) 0 0 0 0 (i) p = 0, q = 0 for any (n̂, k̂, ℓ̂)
(2, 0, 0, 0, 0, 1, 0, 0) 1 1 -1 1 (xii) -
(2, 0, 0, 0, 0, 0, 1, 0) 0 0 0 2 (v) -
(2, 0, 0, 0, 0, 0, 0, 1) 1 1 1 1 (xii) -
α = a + c − e − g − 1; β = −b − d + f + h; γ = b − d − f + h; δ = a − c − e + g − 1
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Table A.9: Possible cases for (a, b, c, d, e, f , g, h) ∈ Z8
+.

(a, b, c, d, e, f , g, h) α β γ δ A Existence of p, q ∈ Z in (A.272)
(1, 2, 0, 0, 0, 0, 0, 0) 0 -2 2 0 (xi) -
(0, 2, 1, 0, 0, 0, 0, 0) 0 -2 2 -2 (xii) -
(0, 2, 0, 1, 0, 0, 0, 0) -1 -3 1 -1 (xii) -
(0, 2, 0, 0, 1, 0, 0, 0) -2 -2 2 -2 (xii) -
(0, 2, 0, 0, 0, 1, 0, 0) -1 -1 1 -1 (xii) -
(0, 2, 0, 0, 0, 0, 1, 0) -2 -2 2 0 (xii) -
(0, 2, 0, 0, 0, 0, 0, 1) -1 -1 3 -1 (xii) -
(1, 0, 2, 0, 0, 0, 0, 0) 2 0 0 -2 (x) -
(0, 1, 2, 0, 0, 0, 0, 0) 1 -1 1 -3 (xii) -
(0, 0, 2, 1, 0, 0, 0, 0) 1 -1 -1 -3 (xii) -
(0, 0, 2, 0, 1, 0, 0, 0) 0 0 0 -4 (v) p = 0, q = −1 for n̂ = 4ℓ̂
(0, 0, 2, 0, 0, 1, 0, 0) 1 1 -1 -3 (xii) -
(0, 0, 2, 0, 0, 0, 1, 0) 0 0 0 -2 (v) -
(0, 0, 2, 0, 0, 0, 0, 1) 1 1 1 -3 (xii) -
(1, 0, 0, 2, 0, 0, 0, 0) 0 -2 -2 0 (xi) -
(0, 1, 0, 2, 0, 0, 0, 0) -1 -3 -1 -1 (xii) -
(0, 0, 1, 2, 0, 0, 0, 0) 0 -2 -2 -2 (xii) -
(0, 0, 0, 2, 1, 0, 0, 0) -2 -2 -2 -2 (xii) p = −1, q = −1 for n̂ = 2k̂ + 2ℓ̂
(0, 0, 0, 2, 0, 1, 0, 0) -1 -1 -3 -1 (xii) -
(0, 0, 0, 2, 0, 0, 1, 0) -2 -2 -2 0 (xii) -
(0, 0, 0, 2, 0, 0, 0, 1) -1 -1 -1 -1 (xii) -
(1, 0, 0, 0, 2, 0, 0, 0) -2 0 0 -2 (x) -
(0, 1, 0, 0, 2, 0, 0, 0) -3 -1 1 -3 (xii) p = −1, q = 0 for (n̂, k̂, ℓ̂) = (10, 3, 1)
(0, 0, 1, 0, 2, 0, 0, 0) -2 0 0 -4 (x) -
(0, 0, 0, 1, 2, 0, 0, 0) -3 -1 -1 -3 (xii) -
(0, 0, 0, 0, 2, 1, 0, 0) -3 1 -1 -3 (xii) p = −1, q = −1 for (n̂, k̂, ℓ̂) = (5, 2, 1)
(0, 0, 0, 0, 2, 0, 1, 0) -4 0 0 -2 (x) -
(0, 0, 0, 0, 2, 0, 0, 1) -3 1 1 -3 (xii) p = −1, q = 0 for (n̂, k̂, ℓ̂) = (8, 3, 1)
α = a + c − e − g − 1; β = −b − d + f + h; γ = b − d − f + h; δ = a − c − e + g − 1
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Table A.10: Possible cases for (a, b, c, d, e, f , g, h) ∈ Z8
+.

(a, b, c, d, e, f , g, h) α β γ δ A Existence of p, q ∈ Z in (A.272)
(1, 0, 0, 0, 0, 2, 0, 0) 0 2 -2 0 (xi) -
(0, 1, 0, 0, 0, 2, 0, 0) -1 1 -1 -1 (xii) -
(0, 0, 1, 0, 0, 2, 0, 0) 0 2 -2 -2 (xii) -
(0, 0, 0, 1, 0, 2, 0, 0) -1 1 -3 -1 (xii) -
(0, 0, 0, 0, 1, 2, 0, 0) -2 2 -2 -2 (xii) -
(0, 0, 0, 0, 0, 2, 1, 0) -2 2 -2 0 (xii) -
(0, 0, 0, 0, 0, 2, 0, 1) -1 3 -1 -1 (xii) -
(1, 0, 0, 0, 0, 0, 2, 0) -2 0 0 2 (x) -
(0, 1, 0, 0, 0, 0, 2, 0) -3 -1 1 1 (xii) -
(0, 0, 1, 0, 0, 0, 2, 0) -2 0 0 0 (ii) -
(0, 0, 0, 1, 0, 0, 2, 0) -3 -1 -1 1 (xii) -
(0, 0, 0, 0, 1, 0, 2, 0) -4 0 0 0 (ii) p = −1, q = 0 for n̂ = 4k̂
(0, 0, 0, 0, 0, 1, 2, 0) -3 1 -1 1 (xii) -
(0, 0, 0, 0, 0, 0, 2, 1) -3 1 1 1 (xii) -
(1, 0, 0, 0, 0, 0, 0, 2) 0 2 2 0 (xi) -
(0, 1, 0, 0, 0, 0, 0, 2) -1 1 3 -1 (xii) -
(0, 0, 1, 0, 0, 0, 0, 2) 0 2 2 -2 (xii) -
(0, 0, 0, 1, 0, 0, 0, 2) -1 1 1 -1 (xii) -
(0, 0, 0, 0, 1, 0, 0, 2) -2 2 2 -2 (xii) -
(0, 0, 0, 0, 0, 1, 0, 2) -1 3 1 -1 (xii) -
(0, 0, 0, 0, 0, 0, 1, 2) -2 2 2 0 (xii) -
(1, 1, 1, 0, 0, 0, 0, 0) 1 -1 1 -1 (xii) -
(1, 1, 0, 1, 0, 0, 0, 0) 0 -2 0 0 (iii) -
(1, 1, 0, 0, 1, 0, 0, 0) -1 -1 1 -1 (xii) -
(1, 1, 0, 0, 0, 1, 0, 0) 0 0 0 0 (i) p = 0, q = 0 for any (n̂, k̂, ℓ̂)
(1, 1, 0, 0, 0, 0, 1, 0) -1 -1 1 1 (xii) -
(1, 1, 0, 0, 0, 0, 0, 1) 0 0 2 0 (iv) -
α = a + c − e − g − 1; β = −b − d + f + h; γ = b − d − f + h; δ = a − c − e + g − 1
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Table A.11: Possible cases for (a, b, c, d, e, f , g, h) ∈ Z8
+.

(a, b, c, d, e, f , g, h) α β γ δ A Existence of p, q ∈ Z in (A.272)
(1, 0, 1, 1, 0, 0, 0, 0) 1 -1 -1 -1 (xii) -
(1, 0, 1, 0, 1, 0, 0, 0) 0 0 0 -2 (v) -
(1, 0, 1, 0, 0, 1, 0, 0) 1 1 -1 -1 (xii) -
(1, 0, 1, 0, 0, 0, 1, 0) 0 0 0 0 (i) p = 0, q = 0 for any (n̂, k̂, ℓ̂)
(1, 0, 1, 0, 0, 0, 0, 1) 1 1 1 -1 (xii) -
(1, 0, 0, 1, 1, 0, 0, 0) -1 -1 -1 -1 (xii) -
(1, 0, 0, 1, 0, 1, 0, 0) 0 0 -2 0 (iv) -
(1, 0, 0, 1, 0, 0, 1, 0) -1 -1 -1 1 (xii) -
(1, 0, 0, 1, 0, 0, 0, 1) 0 0 0 0 (i) p = 0, q = 0 for any (n̂, k̂, ℓ̂)
(1, 0, 0, 0, 1, 1, 0, 0) -1 1 -1 -1 (xii) -
(1, 0, 0, 0, 1, 0, 1, 0) -2 0 0 0 (ii) -
(1, 0, 0, 0, 1, 0, 0, 1) -1 1 1 -1 (xii) -
(1, 0, 0, 0, 0, 1, 1, 0) -1 1 -1 1 (xii) -
(1, 0, 0, 0, 0, 1, 0, 1) 0 2 0 0 (iii) -
(1, 0, 0, 0, 0, 0, 1, 1) -1 1 1 1 (xii) -
(0, 1, 1, 1, 0, 0, 0, 0) 0 -2 0 -2 (vii) -
(0, 1, 1, 0, 1, 0, 0, 0) -1 -1 1 -3 (xii) -
(0, 1, 1, 0, 0, 1, 0, 0) 0 0 0 -2 (v) -
(0, 1, 1, 0, 0, 0, 1, 0) -1 -1 1 -1 (xii) -
(0, 1, 1, 0, 0, 0, 0, 1) 0 0 2 -2 (ix) -
(0, 1, 0, 1, 1, 0, 0, 0) -2 -2 0 -2 (xii) -
(0, 1, 0, 1, 0, 1, 0, 0) -1 -1 -1 -1 (xii) -
(0, 1, 0, 1, 0, 0, 1, 0) -2 -2 0 0 (viii) p = −1, q = 0 for n̂ = 2k̂ + 2ℓ̂
(0, 1, 0, 1, 0, 0, 0, 1) -1 -1 1 -1 (xii) -
(0, 1, 0, 0, 1, 1, 0, 0) -2 0 0 -2 (x) -
(0, 1, 0, 0, 1, 0, 1, 0) -3 -1 1 -1 (xii) -
(0, 1, 0, 0, 1, 0, 0, 1) -2 0 2 -2 (xii) -
(0, 1, 0, 0, 0, 1, 1, 0) -2 0 0 0 (ii) -
(0, 1, 0, 0, 0, 1, 0, 1) -1 1 1 -1 (xii) -
(0, 1, 0, 0, 0, 0, 1, 1) -2 0 2 0 (vi) -
α = a + c − e − g − 1; β = −b − d + f + h; γ = b − d − f + h; δ = a − c − e + g − 1
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Table A.12: Possible cases for (a, b, c, d, e, f , g, h) ∈ Z8
+.

(a, b, c, d, e, f , g, h) α β γ δ A Existence of p, q ∈ Z in (A.272)
(0, 0, 1, 1, 1, 0, 0, 0) -1 -1 -1 -3 (xii) -
(0, 0, 1, 1, 0, 1, 0, 0) 0 0 -2 -2 (ix) -
(0, 0, 1, 1, 0, 0, 1, 0) -1 -1 -1 -1 (xii) -
(0, 0, 1, 1, 0, 0, 0, 1) 0 0 0 -2 (v) p = 0, q = −1 for n̂ = 2k̂ + 2ℓ̂
(0, 0, 1, 0, 1, 1, 0, 0) -1 1 -1 -3 (xii) -
(0, 0, 1, 0, 1, 0, 1, 0) -2 0 0 -2 (x) -
(0, 0, 1, 0, 1, 0, 0, 1) -1 1 1 -3 (xii) -
(0, 0, 1, 0, 0, 1, 1, 0) -1 1 -1 -1 (xii) -
(0, 0, 1, 0, 0, 1, 0, 1) 0 2 0 -2 (vii) -
(0, 0, 1, 0, 0, 0, 1, 1) -1 1 1 -1 (xii) -
(0, 0, 0, 1, 1, 1, 0, 0) -2 0 -2 -2 (xii) -
(0, 0, 0, 1, 1, 0, 1, 0) -3 -1 -1 -1 (xii) -
(0, 0, 0, 1, 1, 0, 0, 1) -2 0 0 -2 (x) -
(0, 0, 0, 1, 0, 1, 1, 0) -2 0 -2 0 (vi) -
(0, 0, 0, 1, 0, 1, 0, 1) -1 1 -1 -1 (xii) -
(0, 0, 0, 1, 0, 0, 1, 1) -2 0 0 0 (ii) -
(0, 0, 0, 0, 1, 1, 1, 0) -3 1 -1 -1 (xii) -
(0, 0, 0, 0, 1, 1, 0, 1) -2 2 0 -2 (xii) -
(0, 0, 0, 0, 1, 0, 1, 1) -3 1 1 -1 (xii) -
(0, 0, 0, 0, 0, 1, 1, 1) -2 2 0 0 (viii) -
α = a + c − e − g − 1; β = −b − d + f + h; γ = b − d − f + h; δ = a − c − e + g − 1
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This condition is satisfied for any values of (n̂, k̂, ℓ̂)when p = q = 0. Recall that a+ b+ . . .+ h ≤ 3.
Then, (a, b, . . . , h) which satisfy (A.287) and (A.288) are enumerated as follows:

(1, 0, 0, 0, 0, 0, 0, 0), (2, 0, 0, 0, 1, 0, 0, 0), (1, 1, 0, 0, 0, 1, 0, 0),
(1, 0, 1, 0, 0, 0, 1, 0), (1, 0, 0, 1, 0, 0, 0, 1) ∈ P for any (n̂, k̂, ℓ̂). (A.290)

For the case (ii), the elements of A in (A.272) represent

a + c − e − g − 1 = α, a − c − e + g − 1 = 0, (A.291)
−b − d + f + h = 0, b − d − f + h = 0. (A.292)

The condition in (A.273) is rewritten as

∃p, q ∈ Z s.t. pn̂ = αk̂, qn̂ = 0. (A.293)

From the conditions for ℓ, k, and n in (A.227), we have necessary conditions 1 ≤ ℓ < k < n/2.
Dividing each side of these inequalities by gcd(k, ℓ, n), we have 1/gcd(k, ℓ, n) ≤ ℓ̂ < k̂ < n̂/2.
Since ℓ̂, k̂, and n̂ are integers, we have 1 ≤ ℓ̂ < k̂ < n̂/2. Thus, for the case |α | ≤ 2, we see that
pn̂ = αk̂ is not satisfied for any p. From this, we have |α | ≥ 3. The sum of equalities in (A.291)
leads to α = 2(a − e − 1). From this, α is even. Recall that a + b + . . . + h ≤ 3. From this,
α = a + c − e − g − 1 takes a value within the range of −4 ≤ α ≤ 2. From this and |α | ≥ 3, we
have α = −4. From (A.291) and (A.292), we have (a, b, c, d, e, f , g, h) = (0, 0, 0, 0, 1, 0, 2, 0). From
(A.293), we have −4k̂ = pn̂. This condition is satisfied for p = −1. Hence, we have

(0, 0, 0, 0, 1, 0, 2, 0) ∈ P for n̂ = 4k̂ .

For the case (iii), the elements of A in (A.272) represent

a + c − e − g − 1 = 0, a − c − e + g − 1 = 0, (A.294)
−b − d + f + h = β, b − d − f + h = 0. (A.295)

The condition in (A.273) is rewritten as

∃p, q ∈ Z s.t. pn̂ = βℓ̂, qn̂ = 0. (A.296)

Recall that 1 ≤ ℓ̂ < k̂ < n̂/2. Thus, for the case |β| ≤ 2, we see that pn̂ = βℓ̂ is not satisfied for
any p. From this, we have |β | ≥ 3. The sum of equalities in (A.295) leads to β = −2(d − h). From
this, β is even. Recall that a + b+ . . . + h ≤ 3. From this, β = −b− d + f + h takes a value within
the range of −3 ≤ β ≤ 3. Hence, we have β = ±2. This contradicts |β | ≥ 3.

For the case (iv), the elements of A in (A.272) represent

a + c − e − g − 1 = 0, a − c − e + g − 1 = 0, (A.297)
−b − d + f + h = 0, b − d − f + h = γ. (A.298)

The condition in (A.273) is rewritten as

∃p, q ∈ Z s.t. pn̂ = 0, qn̂ = γ k̂ . (A.299)
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Recall that 1 ≤ ℓ̂ < k̂ < n̂/2. Thus, for the case |γ | ≤ 2, we see that qn̂ = γ k̂ is not satisfied for
any q. From this, we have |γ | ≥ 3. The sum of equalities in (A.298) leads to γ = −2(d − h). From
this, γ is even. Recall that a + b + . . . + h ≤ 3. From this, γ = b − d − f + h takes a value within
the range of −3 ≤ γ ≤ 3. Hence, we have γ = ±2. This contradicts |γ | ≥ 3.

For the case (v), the elements of A in (A.272) represent

a + c − e − g − 1 = 0, a − c − e + g − 1 = δ, (A.300)
−b − d + f + h = 0, b − d − f + h = 0. (A.301)

The condition in (A.273) is rewritten as

∃p, q ∈ Z s.t. pn̂ = 0, qn̂ = δℓ̂. (A.302)

Recall that 1 ≤ ℓ̂ < k̂ < n̂/2. Thus, for the case |δ | ≤ 2, we see that qn̂ = δℓ̂ is not satisfied for any
p. From this, we have |δ | ≥ 3. Recall that a+ b+ . . .+ h ≤ 3. From this, δ = a− c− e+g−1 takes
a value within the range of −4 ≤ δ ≤ 2. From this and |δ | ≥ 3, we have δ = −4. From (A.300)
and (A.301), we have (a, b, c, d, e, f , g, h) = (0, 0, 2, 0, 1, 0, 0, 0). From (A.302), we have −4ℓ̂ = pn̂.
This condition is satisfied for p = −1. Hence, we have

(0, 0, 2, 0, 1, 0, 0, 0) ∈ P for n̂ = 4ℓ̂.

For the case (vi), the elements of A in (A.272) represent

a + c − e − g − 1 = α, a − c − e + g − 1 = 0, (A.303)
−b − d + f + h = 0, b − d − f + h = γ. (A.304)

The condition in (A.273) is rewritten as

∃p, q ∈ Z s.t. pn̂ = αk̂, qn̂ = γ k̂ . (A.305)

Recall that 1 ≤ ℓ̂ < k̂ < n̂/2. Thus, for the case |γ | ≤ 2, we see that qn̂ = γ k̂ is not satisfied for
any q. From this, we have |γ | ≥ 3. The sum of equalities in (A.304) leads to γ = −2(d − h). From
this, γ is even. Recall that a + b + . . . + h ≤ 3. From this, γ = b − d − f + h takes a value within
the range of −3 ≤ γ ≤ 3. Hence, we have γ = ±2. This contradicts |γ | ≥ 3.

For the case (vii), the elements of A in (A.272) represent

a + c − e − g − 1 = 0, a − c − e + g − 1 = δ, (A.306)
−b − d + f + h = β, b − d − f + h = 0. (A.307)

The condition in (A.273) is rewritten as

∃p, q ∈ Z s.t. pn̂ = βℓ̂, qn̂ = δℓ̂. (A.308)

Recall that 1 ≤ ℓ̂ < k̂ < n̂/2. Thus, for the case |β| ≤ 2, we see that pn̂ = βℓ̂ is not satisfied for
any p. From this, we have |β | ≥ 3. The sum of equalities in (A.307) leads to β = −2(d − h). From
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this, β is even. Recall that a + b+ . . . + h ≤ 3. From this, β = −b− d + f + h takes a value within
the range of −3 ≤ β ≤ 3. Hence, we have β = ±2. This contradicts |β | ≥ 3.

For the case (viii), the elements of A in (A.272) represent

a + c − e − g − 1 = α, a − c − e + g − 1 = 0, (A.309)
−b − d + f + h = β, b − d − f + h = 0. (A.310)

The condition in (A.273) is rewritten as

∃p, q ∈ Z s.t. pn̂ = αk̂ + βℓ̂, qn̂ = 0. (A.311)

Recall that a + b + . . . + h ≤ 3. From this, α = a + c − e − g − 1 takes a value within the range
of −4 ≤ α ≤ 2. The sum of equalities in (A.309) leads to α = 2(a − e − 1). Thus, α is even.
Hence, we have α = ±2,−4. In a similar manner, β = −b − d + f + h takes a value within
the range of −3 ≤ β ≤ 3. The sum of equalities in (A.310) leads to β = −2(d − h). Thus, β
is even. Hence, we have β = ±2. When we consider α = −4, we have (a, b, c, d, e, f , g, h) =
(0, 0, 0, 0, 1, 0, 2, 0). Hence, we have β = 0. This contradicts β , 0. When we consider α = 2,
we have (a, b, c, d, e, f , g, h) = (2, 0, 1, 0, 0, 0, 0, 0). Hence, we have β = 0. This contradicts β , 0.
When we consider α = −2 with β = 2, we have (a, b, c, d, e, f , g, h) = (0, 0, 0, 0, 0, 1, 1, 1). From
(A.311), we have−2(k̂−ℓ̂) = pn̂. Recall that 1 ≤ ℓ̂ < k̂ < n̂/2. From this, we have 1 ≤ k̂−ℓ̂ < n̂/2.
Thus, the condition −2(k̂ − ℓ̂) = pn̂ is not satisfied for any p. When we consider α = −2 with
β = −2, we have (a, b, c, d, e, f , g, h) = (0, 1, 0, 1, 0, 0, 1, 0). From (A.311), we have −2(k̂ + ℓ̂) = pn̂.
This condition is satisfied for p = −1. Hence, we have

(0, 1, 0, 1, 0, 0, 1, 0) ∈ P for n̂ = 2k̂ + 2ℓ̂.

For the case (ix), the elements of A in (A.272) represent

a + c − e − g − 1 = 0, a − c − e + g − 1 = δ, (A.312)
−b − d + f + h = 0, b − d − f + h = γ. (A.313)

The condition in (A.273) is rewritten as

∃p, q ∈ Z s.t. pn̂ = 0, qn̂ = γ k̂ + δℓ̂. (A.314)

Recall that a + b + . . . + h ≤ 3. From this, α = a − c − e + g − 1 takes a value within the
range of −4 ≤ α ≤ 2. The sum of equalities in (A.312) leads to α = 2(a − e − 1). Thus, α is
even. Hence, we have α = ±2,−4. In a similar manner, β = b − d − f + h takes a value within
the range of −3 ≤ β ≤ 3. The sum of equalities in (A.313) leads to β = −2(d − h). Thus, β
is even. Hence, we have β = ±2. When we consider α = −4, we have (a, b, c, d, e, f , g, h) =
(0, 0, 2, 0, 1, 0, 0, 0). Hence, we have β = 0. This contradicts β , 0. When we consider α = 2,
we have (a, b, c, d, e, f , g, h) = (2, 0, 0, 0, 0, 0, 1, 0). Hence, we have β = 0. This contradicts β , 0.
When we consider α = −2 with β = 2, we have (a, b, c, d, e, f , g, h) = (0, 1, 1, 0, 0, 0, 0, 1). From
(A.314), we have−2(k̂−ℓ̂) = qn̂. Recall that 1 ≤ ℓ̂ < k̂ < n̂/2. From this, we have 1 ≤ k̂−ℓ̂ < n̂/2.
Thus, the condition −2(k̂ − ℓ̂) = qn̂ is not satisfied for any q. When we consider α = −2 with
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β = −2, we have (a, b, c, d, e, f , g, h) = (0, 0, 1, 1, 0, 1, 0, 0). From (A.314), we have −2(k̂ + ℓ̂) = qn̂.
This condition is satisfied for q = −1. Hence, we have

(0, 0, 1, 1, 0, 1, 0, 0) ∈ P for n̂ = 2k̂ + 2ℓ̂.

For the case (x), the elements of A in (A.272) represent

a + c − e − g − 1 = α, a − c − e + g − 1 = δ, (A.315)
−b − d + f + h = 0, b − d − f + h = 0. (A.316)

The condition in (A.273) is equivalent to

∃p, q ∈ Z s.t. pn̂ = αk̂, qn̂ = δℓ̂. (A.317)

Recall that 1 ≤ ℓ̂ < k̂ < n̂/2. Thus, for the case |α | ≤ 2, we see that pn̂ = αk̂ is not satisfied
for any p. From this, we have |α | ≥ 3. Similarly, for the case |δ | ≤ 2, we see that qn̂ = δℓ̂ is
not satisfied for any q. From this, we have |δ | ≥ 3. According to the results in Table A.12–A.12,
only (a, b, c, d, e, f , g, h) = (0, 0, 0, 0, 2, 0, 0, 0) corresponds to this case. From (A.317), we have
pn̂ = −3k̂ and qn̂ = −3ℓ̂. From 1 ≤ ℓ̂ < k̂ < n̂/2, we have p = −1 and q = −1. Thus, we have
n̂ = 3k̂ and n̂ = 3ℓ̂. This contradicts k̂ , ℓ̂.

For the case (xi), the elements of A in (A.272) represent

a + c − e − g − 1 = 0, a − c − e + g − 1 = 0, (A.318)
−b − d + f + h = β, b − d − f + h = γ. (A.319)

The condition in (A.273) is equivalent to

∃p, q ∈ Z s.t. pn̂ = βℓ̂, qn̂ = γ k̂ . (A.320)

Recall that 1 ≤ ℓ̂ < k̂ < n̂/2. Thus, for the case |β| ≤ 2, we see that pn̂ = βℓ̂ is not satisfied for
any p. From this, we have |β | ≥ 3. Similarly, for the case |γ | ≤ 2, we see that qn̂ = γ k̂ is not
satisfied for any q. From this, we have |γ | ≥ 3. According to the results in Table A.7–A.12, no
(a, b, c, d, e, f , g, h) corresponds to this case.

For the case (xii), the elements of A in (A.272) represent

a + c − e − g − 1 = α, a − c − e + g − 1 = δ, (A.321)
−b − d + f + h = β, b − d − f + h = γ. (A.322)

The condition in (A.273) is rewritten as

∃p, q ∈ Z s.t. pn̂ = αk̂ + βℓ̂, qn̂ = γ k̂ + δℓ̂. (A.323)

All (a, b, c, d, e, f , g, h) that correspond to this case are shown in Table A.7–A.12.
Based on the above discussion, Fi (i = 1, . . . , 4) is restricted to the form of

Fi = a1ϕ̃zi + FC
i + (other terms), i = 1, . . . , 4, (A.324)
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Table A.13: Nonzero coefficients of leading terms which belong to "other terms" in (A.324).

(n̂, k̂, ℓ̂) Nonzero coefficients

General (n̂, k̂, ℓ̂) None
(5, 2, 1) A01001000(0), A00000200(0), A03000000(0), A00002100(0)
(8, 3, 1) A01010010(0), A00110100(0), A00021000(0), A00002001(0), A00000003(0)
(10, 3, 1) A01002000(0), A00000300(0)
(4k̂, k̂, ℓ̂) A00001020(0)
(4ℓ̂, k̂, ℓ̂) A00201000(0)
(2k̂ + 2ℓ̂, k̂, ℓ̂) A01010010(0), A00110100(0), A00021000(0)
with (k̂, ℓ̂) , (3, 1)

where

FC
1 = z1(a2 |z1 |2 + a3 |z2 |2 + a4 |z3 |2 + a5 |z4 |2), (A.325)

FC
2 = z2(a2 |z2 |2 + a3 |z1 |2 + a4 |z4 |2 + a5 |z3 |2), (A.326)

FC
3 = z3(a2 |z3 |2 + a3 |z4 |2 + a4 |z1 |2 + a5 |z2 |2), (A.327)

FC
4 = z4(a2 |z4 |2 + a3 |z3 |2 + a4 |z2 |2 + a5 |z1 |2) (A.328)

with the following notations:21

a1 = A′10000000(0), a2 = A20001000(0), a3 = A11000100(0),
a4 = A10100010(0), a5 = A10010001(0). (A.329)

F2, F3, and F4 are obtained by (A.255), (A.256), and (A.258), respectively.
In (A.324), FC

i corresponds to cubic terms, and the form of “(other terms)” varies with the
values of (n̂, k̂, ℓ̂). For the case (n̂, k̂, ℓ̂) = (5, 2, 1), we have quadratic terms as leading terms. For
any other cases, we have cubic terms as leading terms that vary with the values of (n̂, k̂, ℓ̂). From
this point of view, we classify the form of the bifurcation equation as shown in Table A.13 by the
values of (n̂, k̂, ℓ̂).

The form of “(other terms)” in (A.324) depends on the values of (n̂, k̂, ℓ̂) in (A.228). All
the possible cases and stability conditions for the bifurcating solutions are summarized in Tables
A.14–A.16. The main finding of this section is as follows:

Proposition A.26. For a critical point of multiplicity 8 associated with µ = (8; k, ℓ), we have the
following statements:

• For the case (n̂, k̂, ℓ̂) = (5, 2, 1), the bifurcating solution wsqT is always unstable in the
neighborhood of the critical point, and the bifurcating curve takes the form ϕ̃ ≈ cw for some
constant c.

21 These notations are local and should not be confused with (A.180) used in Appendix A.4.4.
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Table A.14: Stability conditions of bifurcating solutions for group-theoretic critical points with multiplicity 8.

(n̂, k̂, ℓ̂) Solutions Stability conditions (necessary conditions)

General (n̂, k̂, ℓ̂) wstripeI, wstripeII max(a3, a4, a5) < a2 < 0
wupside−downI, wupside−downII a3 − a4 + a5 < a2 < −|a4 |
wsqT −a3 + a4 + a5 < a2 < −|a3 |
wsqVM a2 + a3 < −|a4 + a5 |, a2 − a3 < −|a4 − a5 |

Table A.15: Stability conditions of bifurcating solutions for group-theoretic critical points with multiplicity 8.

(n̂, k̂, ℓ̂) Solutions Stability conditions

(5, 2, 1) wstripeI, wstripeII Does not exist
wupside−downI, wupside−downII Does not exist
wsqT Always unstable
wsqVM a6 + a7 < 0, 3a6 + a7 > 0, 2a6 + a7 > 0 if w > 0

a6 + a7 > 0, 3a6 + a7 > 0, 2a6 + a7 > 0 if w < 0
(8, 3, 1) wstripeI, wstripeII Does not exist

wupside−downI, wupside−downII Does not exist
wsqT Does not exist
wsqVM a2 + a3 + a4 + a5 + a10 + a11 + a12 + a13 + a14 < 0

a2 + a3 − a4 − a5 − a10 − a11 − a12 − 2a14 < 0
a2 − a3 + a4 − a5 − a10 − a11 − a12 − 2a14 < 0
a2 − a3 − a4 + a5 − a10 − a11 + a12 + a13 + a14 < 0
a10 + a11 + 2a12 + a13 − a14 > 0
a13 + a14 > 0

(10, 3, 1) wstripeI, wstripeII Does not exist
wupside−downI, wupside−downII Does not exist
wsqT a2 + a3 + a15 + a16 < 0

a2 − a3 − 2a16 < 0
3a15 + a16 > 0
a2 + a3 − a4 − a5 + a15 + a16 < 0

wsqVM a2 + a3 + a4 + a5 + a15 + a16 < 0
a2 + a3 − a4 − a5 − a15 − a16 < 0
a2 − a3 + a4 − a5 − 2a16 < 0
a2 − a3 − a4 + a5 − 2a16 < 0
3a15 + a16 > 0

240



Table A.16: Stability conditions of bifurcating solutions for group-theoretic critical points with multiplicity 8.

(n̂, k̂, ℓ̂) Solutions Stability conditions (necessary conditions)

(4k̂, k̂, ℓ̂) wstripeI, wstripeII max(a3, a4 + |a17 |, a5) < a2 < 0
wupside−downI, wupside−downII a3 − a4 + a5 − a17 < a2 < −|a4 + a17 |

a4 > 0
wSqT Does not exist
wsqVM a2 + a3 + a4 + a5 + a17 < 0

a2 + a3 − a4 − a5 − a17 < 0
a2 − a3 + a4 − a5 + a17 < 0
a2 − a3 − a4 + a5 − a17 < 0
a17 > 0

(4ℓ̂, k̂, ℓ̂) wstripeI, wstripeII max(a3, a4 + |a18 |, a5) < a2 < 0
wupside−downI, wupside−downII a3 − a4 + a5 + a17 < a2 < −|a4 + a18 |

a18 > 0
wSqT Does not exist
wSqVM a2 + a3 + a4 + a5 + a18 < 0

a2 + a3 − a4 − a5 − a18 < 0
a2 − a3 + a4 − a5 + a18 < 0
a2 − a3 − a4 + a5 − a18 < 0
a18 > 0

(2k̂ + 2ℓ̂, k̂, ℓ̂) wstripeI, wstripeII max(a3, a4, a5 − |a12 |) < a2 < 0
with (k̂, ℓ̂) , (3, 1) wupside−downI, wupside−downII a2 < −|a4 |

a2 + a3 − a4 − a5 − a12 > −|a10 + a11 |
a2 + a3 − a4 − a5 + a12 > −|a10 − a11 |

wsqT Does not exist
wsqVM a2 + a3 + a4 + a5 + a10 + a11 + a12 < 0

a2 + a3 − a4 − a5 − a10 − a11 − a12 < 0
a2 − a3 + a4 − a5 − a10 − a11 − a12 < 0
a2 − a3 − a4 + a5 − a10 − a11 + a12 < 0
a10 + a11 + 2a12 > 0
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• For any other cases, the stability of the bifurcating solutions wstripeI, wstripeII, wupside−downI,
wupside−downII, wsqT, and wsqVM depends on the values of the coefficients of the power series
expansion of the bifurcation equation in (A.275), and the bifurcating curve takes the form
ϕ̃ ≈ cw2 for some constant c.

To show these results, we focus on each case and study stability conditions for the bifurcating
solutions in the remainder of this section.

Case 1: General (n̂, k̂, ℓ̂)
For general cases, other than special cases to be treated in the sequel, the asymptotic form of

Fi (i = 1, . . . , 4) in (A.324) becomes

Fi ≈ a1ϕ̃zi + FC
i , (A.330)

where FC
i (i = 1, . . . , 4) are given in (A.325)–(A.328). Then, the asymptotic form of F̃i (i =

1, . . . , 8) in (A.234)–(A.237) becomes

F̃i ≈ a1ϕ̃wi + F̃C
i (A.331)

with

F̃C
1 = w1{a2(w1

2 + w2
2) + a3(w3

2 + w4
2) + a4(w5

2 + w6
2) + a5(w7

2 + w8
2)}, (A.332)

F̃C
2 = w2{a2(w1

2 + w2
2) + a3(w3

2 + w4
2) + a4(w5

2 + w6
2) + a5(w7

2 + w8
2)}, (A.333)

F̃C
3 = w3{a2(w3

2 + w4
2) + a3(w1

2 + w2
2) + a4(w7

2 + w8
2) + a5(w5

2 + w6
2)}, (A.334)

F̃C
4 = w4{a2(w3

2 + w4
2) + a3(w1

2 + w2
2) + a4(w7

2 + w8
2) + a5(w5

2 + w6
2)}, (A.335)

F̃C
5 = w5{a2(w5

2 + w6
2) + a3(w7

2 + w8
2) + a4(w1

2 + w2
2) + a5(w3

2 + w4
2)}, (A.336)

F̃C
6 = w6{a2(w5

2 + w6
2) + a3(w7

2 + w8
2) + a4(w1

2 + w2
2) + a5(w3

2 + w4
2)}, (A.337)

F̃C
7 = w7{a2(w7

2 + w8
2) + a3(w5

2 + w6
2) + a4(w3

2 + w4
2) + a5(w1

2 + w2
2)}, (A.338)

F̃C
8 = w8{a2(w7

2 + w8
2) + a3(w5

2 + w6
2) + a4(w3

2 + w4
2) + a5(w1

2 + w2
2)}, (A.339)

Hence, the asymptotic form of the Jacobian matrix in (A.232) becomes

J̃(w, ϕ̃) ≈ a1ϕ̃I8 + BC (A.340)

with the following notations:22

BC = a2B2 + a3B3 + a4B4 + a5B5, (A.341)

B2 =

[
B2

1 O
O B2

2

]
, B3 =

[
B3

1 O
O B3

2

]
, B4 =

[
B4

1 B4
3

(B4
3)
⊤ B4

2

]
, B5 =

[
B5

1 B5
3

(B5
3)
⊤ B5

2

]
,

22 The notations here are local and should not be confused with (A.193) used in Appendix A.4.4.
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B2
1 =


3w1

2 + w2
2 2w1w2 0 0

2w1w2 w1
2 + 3w2

2 0 0
0 0 3w3

2 + w4
2 2w3w4

0 0 2w3w4 w3
2 + 3w4

2

 ,

B2
2 =


3w5

2 + w6
2 2w5w6 0 0

2w5w6 w5
2 + 3w6

2 0 0
0 0 3w7

2 + w8
2 2w7w8

0 0 2w7w8 w7
2 + 3w8

2

 ,

B3
1 =


w3

2 + w4
2 0 2w1w3 2w1w4

0 w3
2 + w4

2 2w2w3 2w2w4
2w1w3 2w2w3 w1

2 + w2
2 0

2w1w4 2w2w4 0 w1
2 + w2

2

 ,

B3
2 =


w7

2 + w8
2 0 2w5w7 2w5w8

0 w7
2 + w8

2 2w6w7 2w6w8
2w5w7 2w6w7 w5

2 + w6
2 0

2w5w8 2w6w8 0 w5
2 + w6

2

 ,
B4

1 =

[
(w5

2 + w6
2)I2 O

O (w7
2 + w8

2)I2

]
, B4

2 =

[
(w1

2 + w2
2)I2 O

O (w3
2 + w4

2)I2

]
,

B4
3 = 2


w1w5 w1w6 0 0
w2w5 w2w6 0 0

0 0 w3w7 w3w8
0 0 w4w7 w4w8

 , B5
1 =

[
(w7

2 + w8
2)I2 O

O (w5
2 + w6

2)I2

]
,

B5
2 =

[
(w3

2 + w4
2)I2 O

O (w1
2 + w2

2)I2

]
, B5

3 = 2


0 0 w1w7 w1w8
0 0 w2w7 w2w8

w3w5 w3w6 0 0
w4w5 w4w6 0 0

 .
Substituting wstripeI = (w, 0, 0, 0, 0, 0, 0, 0) into (A.331) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripeI ≈ −
a2
a1

w2.

Evaluating the Jacobian matrix (A.340) at (wstripeI, ϕ̃stripeI), we have

J̃(wstripeI, ϕ̃stripeI) = J̃C
stripeI ≈ w2

[
C1 O
O C2

]
(A.342)
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with

C1 =


2a2 0 0 0
0 0 0 0
0 0 −a2 + a3 0
0 0 0 −a2 + a3

 , C2 =

[
(−a2 + a4)I2 O

O (−a2 + a5)I2

]
. (A.343)

The eigenvalues of the matrix J̃(wstripeI, ϕ̃stripeI) are given by

λ1 ≈ 2a2w
2,

λ2 ≈ O(w3),
λ3 ≈ −(a2 − a3)w2 (repeated twice),
λ4 ≈ −(a2 − a4)w2 (repeated twice),
λ5 ≈ −(a2 − a5)w2 (repeated twice).

Assuming that all eigenvalues are negative, we have the following stability conditions (necessary
conditions):

a2 < 0, a2 − a3 > 0, a2 − a4 > 0, a2 − a5 > 0.

These conditions are equivalent to

max(a3, a4, a5) < a2 < 0. (A.344)

Thus, the stability of wstripeI is conditional and depends on the values of a2, . . . , a5.
Substituting wstripeII = (0,w, 0, 0, 0, 0, 0, 0) into (A.331) and solving F2 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripeII ≈ −
a2
a1

w2.

Evaluating the Jacobian matrix (A.340) at (wstripeII, ϕ̃stripeII), we have

J̃(wstripeII, ϕ̃stripeII) = J̃C
stripeII ≈ w2

[
C3 O
O C2

]
(A.345)

with

C3 =


0 0 0 0
0 2a2 0 0
0 0 −a2 + a3 0
0 0 0 −a2 + a3

 , (A.346)

where C2 is given in (A.343). The eigenvalues of the matrix J̃(wstripeII, ϕ̃stripeII) are equivalent to
that for wstripeI. Hence, stability conditions for wstripeII are equivalent to that for wstripeI.

Substituting wupside−downI = (w, 0, 0, 0,w, 0, 0, 0) into (A.331) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃upside−downI ≈ −
a2 + a4

a1
w2.
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Evaluating the Jacobian matrix (A.340) at (wupside−downI, ϕ̃upside−downI), we have

J̃(wupside−downI, ϕ̃upside−downI) = J̃C
upside−downI ≈ w2

[
C4 C5
C5 C4

]
(A.347)

with

C4 =


2a2 0 0 0
0 0 0 0
0 0 −a2 + a3 − a4 + a5 0
0 0 0 −a2 + a3 − a4 + a5

 , C5 =


2a4 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 . (A.348)

The eigenvalues of the matrix J̃(wupside−downI, ϕ̃upside−downI) are given by

λ1, λ2 ≈ 2(a2 ± a4)w2,

λ3 ≈ O(w3) (repeated twice),
λ4 ≈ −(a2 − a3 + a4 − a5)w2 (repeated 4 times).

Assuming that all eigenvalues are negative, we have the following stability conditions (necessary
conditions):

a2 < −|a4 |, a2 − a3 + a4 − a5 > 0.

These conditions are equivalent to

a3 − a4 + a5 < a2 < −|a4 |. (A.349)

Thus, the stability of wupside−downI is conditional and depends on the values of a2, . . . , a5.
Substituting wupside−downII = (0,w, 0, 0, 0,w, 0, 0) into (A.331) and solving F2 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃upside−downII ≈ −
a2 + a4

a1
w2.

Evaluating the Jacobian matrix (A.340) at (wupside−downI, ϕ̃upside−downI), we have

J̃(wupside−downII, ϕ̃upside−downII) = J̃C
upside−downII ≈ w2

[
C6 C7
C7 C6

]
(A.350)

with

C6 =


0 0 0 0
0 2a2 0 0
0 0 −a2 + a3 − a4 + a5 0
0 0 0 −a2 + a3 − a4 + a5

 , C7 =


0 0 0 0
0 2a4 0 0
0 0 0 0
0 0 0 0

 . (A.351)

The eigenvalues of the matrix J̃(wupside−downII, ϕ̃upside−downII) are equivalent to that for wupside−downI.
Hence, stability conditions for wupside−downII are equivalent to that for wupside−downI.
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Substituting wsqT = (w, 0,w, 0, 0, 0, 0, 0) into (A.331) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃sqT ≈ −
a2 + a3

a1
w2.

Evaluating the Jacobian matrix (A.340) at (wsqT, ϕ̃sqT), we have

J̃(wsqT, ϕ̃sqT) = J̃C
sqT ≈ w2

[
C8 O
O C9

]
(A.352)

C8 = 2


a2 0 a3 0
0 0 0 0
a3 0 a2 0
0 0 0 0

 , C9 = −(a2 + a3 − a4 − a5)I4. (A.353)

The eigenvalues of the matrix J̃(wsqT, ϕ̃sqT) are given by

λ1, λ2 ≈ 2(a2 ± a3)w2,

λ3 ≈ O(w3) (repeated twice),
λ4 ≈ −(a2 + a3 − a4 − a5)w2 (repeated 4 times).

Assuming that all eigenvalues are negative, we have the following stability conditions (necessary
conditions):

a2 < −|a3 |, a2 + a3 − a4 − a5 > 0.

These conditions are equivalent to

− a3 + a4 + a5 < a2 < −|a3 |. (A.354)

Thus, the stability of wsqT is conditional and depends on the values of a2, . . . , a5.
Substituting wsqVM = (w, 0,w, 0,w, 0,w, 0) into (A.331) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃sqVM ≈ −
a2 + a3 + a4 + a5

a1
w2.

Evaluating the Jacobian matrix (A.340) at (wsqVM, ϕ̃sqVM), we have

J̃(wsqVM, ϕ̃sqVM) = J̃C
sqVM ≈ w2

[
C8 C10
C10 C8

]
(A.355)

with

C10 = 2


a4 0 a5 0
0 0 0 0
a5 0 a4 0
0 0 0 0

 , (A.356)
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where C8 is given in (A.353). The eigenvalues of the matrix J̃(wsqVM, ϕ̃sqVM) are given by

λ1, λ2 ≈ 2{a2 + a3 ± (a4 + a5)}w2,

λ3, λ4 ≈ 2{a2 − a3 ± (a4 − a5)}w2,

λ5 ≈ O(w3) (repeated 4 times).

Assuming that all eigenvalues are negative, we have the following stability conditions (necessary
conditions):

a2 + a3 < −|a4 + a5 |, (A.357)
a2 − a3 < −|a4 − a5 |. (A.358)

Thus, the stability of wsqVM is conditional and depends on the values of a2, . . . , a5.

Case 2: (n̂, k̂, ℓ̂) = (5, 2, 1)
For the case (n̂, k̂, ℓ̂) = (5, 2, 1), we have

(0, 1, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 2, 0, 0), (0, 3, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 2, 1, 0, 0) ∈ P

as well as

(1, 0, 0, 0, 0, 0, 0, 0), (2, 0, 0, 0, 1, 0, 0, 0), (1, 1, 0, 0, 0, 1, 0, 0),
(1, 0, 1, 0, 0, 0, 1, 0), (1, 0, 0, 1, 0, 0, 0, 1) ∈ P

in (A.290). Then, the asymptotic form of Fi (i = 1, . . . , 4) in (A.324) becomes

F1 ≈ a1ϕ̃z1 + a6z2z1 + a7z2
2 + a8z2

3 + a9z1
2z2 + FC

1 , (A.359)
F2 ≈ a1ϕ̃z2 + a6z1z2 + a7z1

2 + a8z1
3 + a9z2

2z1 + FC
2 , (A.360)

F3 ≈ a1ϕ̃z3 + a6z4z3 + a7z4
2 + a8z4

3 + a9z3
2z4 + FC

3 , (A.361)
F4 ≈ a1ϕ̃z4 + a6z3z4 + a7z3

2 + a8z3
3 + a9z4

2z3 + FC
4 (A.362)

with

a6 = A01001000(0), a7 = A00000200(0), a8 = A03000000(0), a9 = A00002100(0),

where FC
i (i = 1, . . . , 4) is given in (A.325)–(A.328). Then, the asymptotic form of F̃i (i = 1, . . . , 8)

in (A.234)–(A.237) becomes

F̃1 ≈ a1ϕ̃w1 + a6(w1w3 + w2w4) + a7(w3
2 − w4

2)
+ a8w3(w3

2 − 3w4
2) + a9{w3(w1

2 − w2
2) − 2w1w2w4} + F̃C

1 , (A.363)
F̃2 ≈ a1ϕ̃w2 + a6(w1w4 − w2w3) − 2a7w3w4

+ a8w4(3w3
2 − w4

2) + a9{−w4(w1
2 − w2

2) − 2w1w2w3} + F̃C
2 , (A.364)
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F̃3 ≈ a1ϕ̃w3 + a6(w1w3 − w2w4) + a7(w1
2 − w2

2)
+ a8w1(w1

2 − 3w2
2) + a9{w1(w3

2 − w4
2) + 2w3w4w2} + F̃C

3 , (A.365)
F̃4 ≈ a1ϕ̃w4 + a6(−w1w4 − w2w3) + 2a7w1w2

+ a8w2(−3w1
2 + w2

2) + a9{w2(w3
2 − w4

2) − 2w3w4w1} + F̃C
4 , (A.366)

F̃5 ≈ a1ϕ̃w5 + a6(w5w7 + w6w8) + a7(w7
2 − w8

2)
+ a8w7(w7

2 − 3w8
2) + a9{w7(w5

2 − w6
2) − 2w5w6w8} + F̃C

5 , (A.367)
F̃6 ≈ a1ϕ̃w6 + a6(w5w8 − w6w7) − 2a7w7w8

+ a8w8(3w7
2 − w8

2) + a9{−w8(w5
2 − w6

2) − 2w5w6w7} + F̃C
6 , (A.368)

F̃7 ≈ a1ϕ̃w7 + a6(w5w7 − w6w8) + a7(w5
2 − w6

2)
+ a8w5(w5

2 − 3w6
2) + a9{w5(w7

2 − w8
2) + 2w7w8w6} + F̃C

7 , (A.369)
F̃8 ≈ a1ϕ̃w8 + a6(−w5w8 − w6w7) + 2a7w5w6

+ a8w6(−3w5
2 + w6

2) + a9{w6(w7
2 − w8

2) − 2w7w8w5} + F̃C
8 , (A.370)

where F̃C
i (i = 1, . . . , 8) is given in (A.332)–(A.339). Hence, the asymptotic form of the Jacobian

matrix in (A.232) becomes

J̃(w, ϕ̃) ≈ a1ϕ̃I8 + a6B6 + a7B7 + a8B8 + a9B9 + BC, (A.371)

where BC is given in (A.341) and

B6 =

[
B6

1 O
O B6

2

]
, B7 =

[
B7

1 O
O B7

2

]
, B8 =

[
B8

1 O
O B8

2

]
, B9 =

[
B9

1 O
O B9

2

]
,

B6
1 =


w3 w4 w1 w2
w4 −w3 −w2 w1
w3 −w4 w1 −w2
−w4 −w3 −w2 −w1

 , B6
2 =


w7 w8 w5 w6
w8 −w7 −w6 w5
w7 −w8 w5 −w6
−w8 −w7 −w6 −w5

 ,

B7
1 = 2


0 0 w3 −w4
0 0 −w4 −w3
w1 −w2 0 0
w2 w1 0 0

 , B7
2 = 2


0 0 w7 −w8
0 0 −w8 −w7
w5 −w6 0 0
w6 w5 0 0

 ,

B8
1 = 3


0 0 w3

2 − w4
2 −2w3w4

0 0 2w3w4 w3
2 − w4

2

w1
2 − w2

2 −2w1w2 0 0
−2w1w2 −w1

2 + w2
2 0 0

 ,
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B8
2 = 3


0 0 w7

2 − w8
2 −2w7w8

0 0 2w7w8 w7
2 − w8

2

w5
2 − w6

2 −2w5w6 0 0
−2w5w6 −w5

2 + w6
2 0 0

 ,

B9
1 =


2(w1w3 − w2w4) 2(−w1w4 − w2w3) w1

2 − w2
2 −2w1w2

2(−w1w4 − w2w3) 2(−w1w3 + w2w4) −2w1w2 −w1
2 + w2

2

w3
2 − w4

2 2w3w4 2(w1w3 + w2w4) 2(−w1w4 + w2w3)
−2w3w4 w3

2 − w4
2 2(−w1w4 + w2w3) 2(−w1w3 − w2w4)

 ,

B9
2 =


2(w5w7 − w6w8) 2(−w5w8 − w6w7) w5

2 − w6
2 −2w5w6

2(−w5w8 − w6w7) 2(−w5w7 + w6w8) −2w5w6 −w5
2 + w6

2

w7
2 − w8

2 2w7w8 2(w5w7 + w6w8) 2(−w5w8 + w6w7)
−2w7w8 w7

2 − w8
2 2(−w5w8 + w6w7) 2(−w5w7 − w6w8)

 .
Substituting wsqT = (w, 0,w, 0, 0, 0, 0, 0) into (A.363) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃sqT ≈ −
a6 + a7

a1
w.

Evaluating the Jacobian matrix (A.371) at (wsqT, ϕ̃sqT), we have

J̃(wsqT, ϕ̃sqT) ≈ w

[
C11 O
O C12

]
(A.372)

with

C11 =


−a7 0 a6 + 2a7 0
0 −2a6 − a7 0 a6 − 2a7

a6 + 2a7 0 −a7 0
0 −a6 + 2a7 0 −2a6 − a7

 , C12 = −(a6 + a7)I4. (A.373)

The eigenvalues of the matrix J̃(wsqT, ϕ̃sqT) are given by

λ1 ≈ (a6 + a7)w, (A.374)
λ2 ≈ −(a6 + 3a7)w, (A.375)
λ3, λ4 ≈ −(2a6 + a7)w ± i(a6 − 2a7)w, (A.376)
λ5 ≈ −(a6 + a7)w (repeated 4 times). (A.377)

Since the eigenvalues λ1 and λ5 have opposite signs, there is at least one positive eigenvalue. Thus,
the bifurcating solution wsqT is always unstable.

Substituting wsqVM = (w, 0,w, 0,w, 0,w, 0) into (A.363) with (A.332) and solving F1 = 0 for ϕ̃,
we have

ϕ̃ = ϕ̃sqVM ≈ −
a6 + a7

a1
w.
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Evaluating the Jacobian matrix (A.371) at (wsqVM, ϕ̃sqVM), we have

J̃(wsqVM, ϕ̃sqVM) ≈ w

[
C11 O
O C11

]
, (A.378)

where C11 is given in (A.373). The eigenvalues of the matrix J̃(wsqVM, ϕ̃sqVM) are given by

λ1 ≈ (a6 + a7)w,
λ2 ≈ −(3a6 + a7)w,
λ3, λ4 ≈ −{2a6 + a7 ± i(a6 − 2a7)}w

and are all repeated twice. Assume that all eigenvalues have negative real parts. If w < 0, we have
the following stability conditions:

a6 + a7 < 0, (A.379)
3a6 + a7 > 0, (A.380)
2a6 + a7 > 0. (A.381)

If w < 0, we have the following stability conditions:

a6 + a7 > 0, (A.382)
3a6 + a7 < 0, (A.383)
2a6 + a7 < 0. (A.384)

Thus, the stability of wsqVM depends on the direction w of the bifurcating solution and the values
of a6 and a7.

Remark A.5. For the case (n̂, k̂, ℓ̂) = (5, 2, 1), we have the following statements:

• The solutions wstripeI and wstripeII do not exist. See Proposition A.22. In fact, k̂2 + ℓ̂ = 5.
This is divisible by n̂ = 5. Hence, the condition (A.282) is not satisfied.

• The solutions wupside−downI and wupside−downII do not exist. See Proposition A.24. In fact,
gcd(k̂2 + ℓ̂, k̂2 − ℓ̂) = gcd(5, 3) = 1. This is divisible by gcd(n̂, 2k̂ ℓ̂) = gcd(5, 4) = 1. Hence,
the condition (A.286) is not satisfied.

□

Case 3: (n̂, k̂, ℓ̂) = (8, 3, 1)
For the case of (n̂, k̂, ℓ̂) = (8, 3, 1), we have

(0, 1, 0, 1, 0, 0, 1, 0), (0, 0, 1, 1, 0, 1, 0, 0), (0, 0, 0, 2, 1, 0, 0, 0),
(0, 0, 0, 0, 2, 0, 0, 1), (0, 0, 0, 0, 0, 0, 0, 3) ∈ P
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as well as

(1, 0, 0, 0, 0, 0, 0, 0), (2, 0, 0, 0, 1, 0, 0, 0), (1, 1, 0, 0, 0, 1, 0, 0),
(1, 0, 1, 0, 0, 0, 1, 0), (1, 0, 0, 1, 0, 0, 0, 1) ∈ P

in (A.290). Then, the asymptotic form of Fi (i = 1, . . . , 4) in (A.324) becomes

F1 ≈ a1ϕ̃z1 + a10z2z4z3 + a11z3z4z2 + a12z4
2z1 + a13z1

2z4 + a14z4
3 + FC

1 , (A.385)
F2 ≈ a1ϕ̃z2 + a10z1z3z4 + a11z4z3z1 + a12z3

2z2 + a13z2
2z3 + a14z3

3 + FC
2 , (A.386)

F3 ≈ a1ϕ̃z3 + a10z4z2z1 + a11z1z2z4 + a12z2
2z3 + a13z3

2z2 + a14z2
3 + FC

3 , (A.387)
F4 ≈ a1ϕ̃z4 + a10z3z1z2 + a11z2z1z3 + a12z1

2z4 + a13z4
2z1 + a14z1

3 + FC
4 (A.388)

with

a10 = A01010010(0), a11 = A00110100(0), a12 = A00021000(0),
a13 = A00002001(0), a14 = A00000003(0), (A.389)

where FC
i (i = 1, . . . , 4) is given in (A.325)–(A.328). Then, the asymptotic form of F̃i (i = 1, . . . , 8)

in (A.234)–(A.237) becomes

F̃1 ≈ a1ϕ̃w1 + a10{w5(w3w7 − w4w8) + w6(w3w8 + w4w7)}
+ a11{w3(w5w7 − w6w8) + w4(w5w8 + w6w7)}
+ a12{w1(w7

2 − w8
2) + 2w2w7w8} + a13{w7(w1

2 − w2
2) − 2w8w1w2}

+ a14w7(w7
2 − 3w8

2) + F̃C
1 , (A.390)

F̃2 ≈ a1ϕ̃w2 + a10{w5(w3w8 + w4w7) − w6(w3w7 − w4w8)}
+ a11{w3(w5w8 + w6w7) − w4(w5w7 − w6w8)}
+ a12{−w2(w7

2 − w8
2) + 2w1w7w8} + a13{−w8(w1

2 − w2
2) − 2w7w1w2}

+ a14w8(−3w7
2 + w8

2) + F̃C
2 , (A.391)

F̃3 ≈ a1ϕ̃w3 + a10{w1(w5w7 − w6w8) + w2(w5w8 + w6w7)}
+ a11{w7(w1w5 − w2w6) + w8(w1w6 + w2w5)}
+ a12{w3(w5

2 − w6
2) + 2w4w5w6} + a13{w5(w3

2 − w4
2) − 2w6w3w4}

+ a14w5(w5
2 − 3w6

2) + F̃C
3 , (A.392)

F̃4 ≈ a1ϕ̃w4 + a10{w1(w5w8 + w6w7) − w2(w5w7 − w6w8)}
+ a11{w7(w1w6 + w2w5) − w8(w1w5 − w2w6)}
+ a12{−w4(w5

2 − w6
2) + 2w3w5w6} + a13{−w6(w3

2 − w4
2) − 2w5w3w4}

+ a14w6(−3w5
2 + w6

2) + F̃C
4 , (A.393)

F̃5 ≈ a1ϕ̃w5 + a10{w1(w3w7 − w4w8) + w2(w3w8 + w4w7)}
+ a11{w7(w1w3 − w2w4) + w8(w1w4 + w2w3)}
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+ a12{w5(w3
2 − w4

2) + 2w3w4w6} + a13{w3(w5
2 − w6

2) − 2w4w5w6}
+ a14w3(w3

2 − 3w4
2) + F̃C

5 , (A.394)
F̃6 ≈ a1ϕ̃w6 + a10{w1(w3w8 + w4w7) − w2(w3w7 − w4w8)}

+ a11{w7(w1w4 + w2w3) − w8(w1w3 − w2w4)}
+ a12{−w6(w3

2 − w4
2) + 2w3w4w5} + a13{−w4(w5

2 − w6
2) − 2w3w5w6}

+ a14w4(−3w3
2 + w4

2) + F̃C
6 , (A.395)

F̃7 ≈ a1ϕ̃w7 + a10{w5(w1w3 − w2w4) + w6(w1w4 + w2w3)}
+ a11{w3(w1w5 − w2w6) + w4(w1w6 + w2w5)}
+ a12{w7(w1

2 − w2
2) + 2w8w1w2} + a13{w1(w7

2 − w8
2) − 2w2w7w8}

+ a14w1(w1
2 − 3w2

2) + F̃C
7 , (A.396)

F̃8 ≈ a1ϕ̃w8 + a10{w5(w1w4 + w2w3) − w6(w1w3 − w2w4)}
+ a11{w3(w1w6 + w2w5) − w4(w1w5 − w2w6)}
+ a12{−w8(w1

2 − w2
2) + 2w7w1w2} + a13{−w2(w7

2 − w8
2) − 2w1w7w8}

+ a14w2(−3w1
2 + w2

2) + F̃C
8 , (A.397)

where F̃C
i (i = 1, . . . , 8) is given in (A.332)–(A.339). Hence, the asymptotic form of the Jacobian

matrix in (A.232) becomes

J̃(w, ϕ̃) ≈ a1ϕ̃I8 + a10B10 + a11B11 + a12B12 + a13B13 + a14B14 + BC, (A.398)

where BC is given in (A.341) and

B10 =

[
B10

1 B10
3

B10
4 B10

2

]
, B11 =

[
B11

1 B11
3

B11
4 B11

2

]
, B12 =

[
B12

1 B12
3

(B12
3 )
⊤ B12

2

]
, (A.399)

B13 =

[
B13

1 B13
3

B13
4 B13

2

]
, B14 =

[
O B14

1
B14

2 O

]
, (A.400)

B10
1 =


0 0 w5w7 + w6w8 −w5w8 + w6w7
0 0 w5w8 − w6w7 w5w7 + w6w8

w5w7 − w6w8 w5w8 + w6w7 0 0
w5w8 + w6w7 −w5w7 + w6w8 0 0

 ,

B10
2 =


0 0 w1w3 + w2w4 −w1w4 + w2w3
0 0 w1w4 − w2w3 w1w3 + w2w4

w1w3 − w2w4 w1w4 + w2w3 0 0
w1w4 + w2w3 −w1w3 + w2w4 0 0

 ,
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B10
3 =


w3w7 − w4w8 w3w8 + w4w7 w3w5 + w4w6 w3w6 − w4w5
w3w8 + w4w7 −w3w7 + w4w8 −w3w6 + w4w5 w3w5 + w4w6
w1w7 + w2w8 −w1w8 + w2w7 w1w5 + w2w6 −w1w6 + w2w5
w1w8 − w2w7 w1w7 + w2w8 w1w6 − w2w5 w1w5 + w2w6

 ,

B10
4 =


w3w7 − w4w8 w3w8 + w4w7 w1w7 + w2w8 −w1w8 + w2w7
w3w8 + w4w7 −w3w7 + w4w8 w1w8 − w2w7 w1w7 + w2w8
w3w5 + w4w6 w3w6 − w4w5 w1w5 + w2w6 w1w6 − w2w5
−w3w6 + w4w5 w3w5 + w4w6 −w1w6 + w2w5 w1w5 + w2w6

 ,

B11
1 =


0 0 w5w7 − w6w8 w5w8 + w6w7
0 0 w5w8 + w6w7 −w5w7 + w6w8

w5w7 + w6w8 w5w8 − w6w7 0 0
−w5w8 + w6w7 w5w7 + w6w8 0 0

 ,

B11
2 =


0 0 w1w3 − w2w4 w1w4 + w2w3
0 0 w1w4 + w2w3 −w1w3 + w2w4

w1w3 + w2w4 w1w4 − w2w3 0 0
−w1w4 + w2w3 w1w3 + w2w4 0 0

 ,

B11
3 =


w3w7 + w4w8 −w3w8 + w4w7 w3w5 + w4w6 −w3w6 + w4w5
w3w8 − w4w7 w3w7 + w4w8 w3w6 − w4w5 w3w5 + w4w6
w1w7 + w2w8 w1w8 − w2w7 w1w5 − w2w6 w1w6 + w2w5
−w1w8 + w2w7 w1w7 + w2w8 w1w6 + w2w5 −w1w5 + w2w6

 ,

B11
4 =


w3w7 + w4w8 w3w8 − w4w7 w1w7 + w2w8 w1w8 − w2w7
−w3w8 + w4w7 w3w7 + w4w8 −w1w8 + w2w7 w1w7 + w2w8
w3w5 + w4w6 −w3w6 + w4w5 w1w5 − w2w6 w1w6 + w2w5
w3w6 − w4w5 w3w5 + w4w6 w1w6 + w2w5 −w1w5 + w2w6

 ,

B12
1 =


w7

2 − w8
2 2w7w8 0 0

2w7w8 −w7
2 + w8

2 0 0
0 0 w5

2 − w6
2 2w5w6

0 0 2w5w6 −w5
2 + w6

2

 ,

B12
2 =


w3

2 − w4
2 2w3w4 0 0

2w3w4 −w3
2 + w4

2 0 0
0 0 w1

2 − w2
2 2w1w2

0 0 2w1w2 −w1
2 + w2

2

 ,
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B12
3 = 2


0 0 w1w7 + w2w8 −w1w8 + w2w7
0 0 w1w8 − w2w7 w1w7 + w2w8

w3w5 + w4w6 −w3w6 + w4w5 0 0
w3w6 − w4w5 w3w5 + w4w6 0 0

 ,

B13
1 = 2


w1w7 − w2w8 −w1w8 − w2w7 0 0
−w1w8 − w2w7 −w1w7 + w2w8 0 0

0 0 w3w5 − w4w6 −w3w6 − w4w5
0 0 −w3w6 − w4w5 −w3w5 + w4w6

 ,

B13
2 = 2


w3w5 − w4w6 −w3w6 − w4w5 0 0
−w3w6 − w4w5 −w3w5 + w4w6 0 0

0 0 w1w7 − w2w8 −w1w8 − w2w7
0 0 −w1w8 − w2w7 −w1w7 + w2w8

 ,

B13
3 =


0 0 w1

2 − w2
2 −2w1w2

0 0 −2w1w2 −w1
2 + w2

2

w3
2 − w4

2 −2w3w4 0 0
−2w3w4 −w3

2 + w4
2 0 0

 ,

B13
4 =


0 0 w5

2 − w6
2 −2w5w6

0 0 −2w5w6 −w5
2 + w6

2

w7
2 − w8

2 −2w7w8 0 0
−2w7w8 −w7

2 + w8
2 0 0

 ,

B14
1 = 3


0 0 w7

2 − w8
2 −2w7w8

0 0 −2w7w8 −w7
2 + w8

2

w5
2 − w6

2 −2w5w6 0 0
−2w5w6 −w5

2 + w6
2 0 0

 ,

B14
2 = 3


0 0 w3

2 − w4
2 −2w3w4

0 0 −2w3w4 −w3
2 + w4

2

w1
2 − w2

2 −2w1w2 0 0
−2w1w2 −w1

2 + w2
2 0 0

 .
Substituting wsqVM = (w, 0,w, 0,w, 0,w, 0) into (A.390) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃sqVM ≈ −
a2 + a3 + a4 + a5 + a10 + a11 + a12 + a13 + a14

a1
w2.
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Evaluating the Jacobian matrix (A.398) at (wsqVM, ϕ̃sqVM), we have

J̃(wsqVM, ϕ̃sqVM) ≈ w2
[
C12 C13
C13 C12

]
+ J̃C

sqVM
, (A.401)

where J̃C
sqVM is given in (A.355) and

C12 =


c1 0 c3 0
0 c2 0 c4
c3 0 c1 0
0 −c4 0 c2

 , C13 =


c3 0 c5 0
0 −c4 0 c6
c5 0 c3 0
0 c6 0 c4

 ,
c1 = −a10 − a11 + a13 − a14, c2 = −a10 − a11 − 2a12 − 3a13 − a14, c3 = a10 + a11,

c4 = a10 − a11, c5 = a10 + a11 + 2a12 + a13 + 3a14, c6 = a10 + a11 + 2a12 − a13 − 3a14.

The eigenvalues of the matrix J̃(wsqVM, ϕ̃sqVM) are given by

λ1, λ2 ≈ {(c1 + c3) ± (c5 + c6)}w2,

λ3, λ4 ≈ {(c1 − c3) ± (c5 − c6)}w2,

λ5, λ6 ≈ (c2 ± c7)w2 (repeated twice),

which are rewritten as

λ1 ≈ 2(a2 + a3 + a4 + a5 + a10 + a11 + a12 + a13 + a14)w2,

λ2 ≈ 2(a2 + a3 − a4 − a5 − a10 − a11 − a12 − 2a14)w2,

λ3 ≈ 2(a2 − a3 + a4 − a5 − a10 − a11 − a12 − 2a14)w2,

λ4 ≈ 2(a2 − a3 − a4 + a5 − a10 − a11 + a12 + a13 + a14)w2,

λ5 ≈ −2(a10 + a11 + 2a12 + a13 − a14)w2 (repeated twice),
λ6 ≈ −4(a13 + a14)w2 (repeated twice).

Assuming that all eigenvalues are negative, we have the following stability conditions:

a2 + a3 + a4 + a5 + a10 + a11 + a12 + a13 + a14 < 0, (A.402)
a2 + a3 − a4 − a5 − a10 − a11 − a12 − 2a14 < 0, (A.403)
a2 − a3 + a4 − a5 − a10 − a11 − a12 − 2a14 < 0, (A.404)
a2 − a3 − a4 + a5 − a10 − a11 + a12 + a13 + a14 < 0, (A.405)
a10 + a11 + 2a12 + a13 − a14 > 0, (A.406)
a13 + a14 > 0. (A.407)

Thus, the stability of wsqVM depends on the values of a2, . . . , a5 and a10, . . . , a14.
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Remark A.6. For the case (n̂, k̂, ℓ̂) = (8, 3, 1), we have the following statements:

• The solutions wstripeI and wstripeII do not exist. See Proposition A.22. In fact, k̂2 − ℓ̂ = 8.
This is divisible by n̂ = 8. Hence, the condition (A.282) is not satisfied.

• The solutions wupside−downI and wupside−downII do not exist. See Proposition A.24. In fact,
gcd(k̂2 + ℓ̂, k̂2 − ℓ̂) = 2 gcd(10, 8) = 2. This is divisible by gcd(n̂, 2k̂ ℓ̂) = gcd(8, 6) = 2.
Hence, the condition (A.286) is not satisfied.

• The solution wsqT does not exist. See Proposition 3.32. This case corresponds to the
case (n̂, k̂, ℓ̂) = (2k̂ + 2ℓ̂, k̂, ℓ̂). In fact, 2 gcd(k̂, ℓ̂) = 2 gcd(3, 1) = 2. This is divisible by
gcd(k̂2 + ℓ̂2, n̂) = gcd(10, 8) = 2. Hence, GCD-div in (3.194) is not satisfied.

□

Case 4: (n̂, k̂, ℓ̂) = (10, 3, 1)
For the case of (n̂, k̂, ℓ̂) = (10, 3, 1), we have

(0, 1, 0, 0, 2, 0, 0, 0), (0, 0, 0, 0, 0, 3, 0, 0) ∈ P

as well as

(1, 0, 0, 0, 0, 0, 0, 0), (2, 0, 0, 0, 1, 0, 0, 0), (1, 1, 0, 0, 0, 1, 0, 0),
(1, 0, 1, 0, 0, 0, 1, 0), (1, 0, 0, 1, 0, 0, 0, 1) ∈ P

in (A.290). Then, the asymptotic form of Fi (i = 1, . . . , 4) in (A.324) becomes

F1 ≈ a1ϕ̃z1 + a15z2z1
2 + a16z2

3 + FC
1 , (A.408)

F2 ≈ a1ϕ̃z2 + a15z1z2
2 + a16z1

3 + FC
2 , (A.409)

F3 ≈ a1ϕ̃z3 + a15z4z3
2 + a16z4

3 + FC
3 , (A.410)

F4 ≈ a1ϕ̃z4 + a15z3z4
2 + a16z3

3 + FC
4 (A.411)

with
a15 = A01002000(0), a16 = A00000300(0),

where FC
i (i = 1, . . . , 4) is given in (A.325)–(A.328). Then, the asymptotic form of F̃i (i = 1, . . . , 8)

in (A.234)–(A.237) becomes

F̃1 ≈ a1ϕ̃w1 + a15{w3(w1
2 − w2

2) + 2w4w1w2} + a16w3(w3
2 − 3w4

2) + F̃C
1 , (A.412)

F̃2 ≈ a1ϕ̃w2 + a15{w4(w1
2 − w2

2) − 2w3w1w2} + a16w4(−3w3
2 + w4

2) + F̃C
2 , (A.413)

F̃3 ≈ a1ϕ̃w3 + a15{w1(w3
2 − w4

2) − 2w2w3w4} + a16w1(w1
2 − 3w2

2) + F̃C
3 , (A.414)

F̃4 ≈ a1ϕ̃w4 + a15{−w2(w3
2 − w4

2) − 2w1w3w4} + a16w2(3w1
2 − w2

2) + F̃C
4 , (A.415)

F̃5 ≈ a1ϕ̃w5 + a15{w7(w5
2 − w6

2) + 2w8w5w6} + a16w7(w7
2 − 3w8

2) + F̃C
5 , (A.416)
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F̃6 ≈ a1ϕ̃w6 + a15{w8(w5
2 − w6

2) − 2w7w5w6} + a16w8(−3w7
2 + w8

2) + F̃C
6 , (A.417)

F̃7 ≈ a1ϕ̃w7 + a15{w5(w7
2 − w8

2) − 2w6w7w8} + a16w5(w5
2 − 3w6

2) + F̃C
7 , (A.418)

F̃8 ≈ a1ϕ̃w8 + a15{−w6(w7
2 − w8

2) − 2w5w7w8} + a16w6(3w5
2 − w6

2) + F̃C
8 , (A.419)

where F̃C
i (i = 1, . . . , 8) is given in (A.332)–(A.339). Hence, the asymptotic form of the Jacobian

matrix in (A.232) becomes

J̃(w, ϕ̃) ≈ a1ϕ̃I8 + a15B15 + a16B16 + BC, (A.420)

where BC is given in (A.341) and

B15 =

[
B15

1 O
O B15

2

]
, B16 =

[
B16

1 O
O B16

2

]
,

B15
1 =


2(w1w3 + w2w4) 2(w1w4 − w2w3) w1

2 − w2
2 2w1w2

2(w1w4 − w2w3) 2(−w1w3 − w2w4) −2w1w2 w1
2 − w2

2

w3
2 − w4

2 −2w3w4 2(w1w3 − w2w4) 2(−w1w4 − w2w3)
−2w3w4 −w3

2 + w4
2 2(−w1w4 − w2w3) 2(−w1w3 + w2w4)

 ,

B15
2 =


2(w5w7 + w6w8) 2(w5w8 − w6w7) w5

2 − w6
2 2w5w6

2(w5w8 − w6w7) 2(−w5w7 − w6w8) −2w5w6 w5
2 − w6

2

w7
2 − w8

2 −2w7w8 2(w5w7 − w6w8) 2(−w5w8 − w6w7)
−2w7w8 −w7

2 + w8
2 2(−w5w8 − w6w7) 2(−w5w7 + w6w8)

 ,

B16
1 = 3


0 0 w3

2 − w4
2 −2w3w4

0 0 −2w3w4 −w3
2 + w4

2

w1
2 − w2

2 −2w1w2 0 0
2w1w2 w1

2 − w2
2 0 0

 ,

B16
2 = 3


0 0 w7

2 − w8
2 −2w7w8

0 0 −2w7w8 −w7
2 + w8

2

w5
2 − w6

2 −2w5w6 0 0
2w5w6 w5

2 − w6
2 0 0

 .
Substituting wsqT = (w, 0,w, 0, 0, 0, 0, 0) into (A.412) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃sqT ≈ −
a2 + a3 + a15 + a16

a1
w2.

Evaluating the Jacobian matrix (A.420) at (wsqT, ϕ̃sqT), we have

J̃(wsqT, ϕ̃sqT) ≈ w2
[
C14 O
O C15

]
+ J̃C

sqT
, (A.421)
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where J̃C
sqT is given in (A.342) and

C14 =


a15 − a16 0 a15 + 3a16 0

0 −3a15 − a16 0 a15 − 3a16
a15 + 3a16 0 a15 − a16 0

0 −a15 + 3a16 0 −3a15 − a16

 , (A.422)

C15 = −(a15 + a16)I4. (A.423)

The eigenvalues of the matrix J̃(wsqT, ϕ̃sqT) are given by

λ1 ≈ 2(a2 + a3 + a15 + a16)w2,

λ2 ≈ 2(a2 − a3 − 2a16)w2,

λ3, λ4 ≈ −{3a15 + a16 ± i(a15 − 3a16)}w2,

λ5 ≈ −(a2 + a3 − a4 − a5 + a15 + a16)w2 (repeated 4 times).

Assuming that all eigenvalues have negative real parts, we have the following stability conditions:

a2 + a3 + a15 + a16 < 0, (A.424)
a2 − a3 − 2a16 < 0, (A.425)
3a15 + a16 > 0, (A.426)
a2 + a3 − a4 − a5 + a15 + a16 < 0. (A.427)

Thus, the stability of wsqT depends on the values of a2, . . . , a5, a15 and a16.
Substituting wsqVM = (w, 0,w, 0,w, 0,w, 0) into (A.412) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃sqVM ≈ −
a2 + a3 + a4 + a5 + a15 + a16

a1
w2.

Evaluating the Jacobian matrix (A.420) at (wsqVM, ϕ̃sqVM), we have

J̃(wsqVM, ϕ̃sqVM) ≈ w2
[
C14 O
O C14

]
+ J̃C

sqVM
, (A.428)

where C14 is given in (A.422), and J̃C
sqVM is given in (A.355). The eigenvalues of the matrix

J̃(wsqVM, ϕ̃sqVM) are given by

λ1 ≈ 2(a2 + a3 + a4 + a5 + a15 + a16)w2,

λ2 ≈ 2(a2 + a3 − a4 − a5 − a15 − a16)w2,

λ3 ≈ 2(a2 − a3 + a4 − a5 − 2a16)w2,

λ4 ≈ 2(a2 − a3 − a4 + a5 − 2a16)w2,

λ5, λ6 ≈ −{3a15 + a16 ± i(a15 − 3a16)}w2 (repeated twice).
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Assuming that all eigenvalues have negative real parts, we have the following stability conditions:

a2 + a3 + a4 + a5 + a15 + a16 < 0, (A.429)
a2 + a3 − a4 − a5 − a15 − a16 < 0, (A.430)
a2 − a3 + a4 − a5 − 2a16 < 0, (A.431)
a2 − a3 − a4 + a5 − 2a16 < 0, (A.432)
3a15 + a16 > 0. (A.433)

Thus, the stability of wsqVM depends on the values of a2, . . . , a5, a15 and a16.

Remark A.7. For the case (n̂, k̂, ℓ̂) = (10, 3, 1), we have the following statements:

• The solutions wstripeI and wstripeII do not exist. See Proposition A.22. In fact, k̂2 + ℓ̂ = 10.
This is divisible by n̂ = 10. Hence, the condition (A.282) is not satisfied.

• The solutions wupside−downI and wupside−downII do not exist. See Proposition A.24. In fact,
gcd(k̂2 + ℓ̂, k̂2 − ℓ̂) = 2 gcd(10, 8) = 2. This is divisible by gcd(n̂, 2k̂ ℓ̂) = gcd(10, 6) = 2.
Hence, the condition (A.286) is not satisfied.

□

Case 5: (n̂, k̂, ℓ̂) = (4k̂, k̂, ℓ̂)
For the case of (n̂, k̂, ℓ̂) with n̂ = 4k̂, we have

(0, 0, 0, 0, 1, 0, 2, 0) ∈ P

as well as

(1, 0, 0, 0, 0, 0, 0, 0), (2, 0, 0, 0, 1, 0, 0, 0), (1, 1, 0, 0, 0, 1, 0, 0),
(1, 0, 1, 0, 0, 0, 1, 0), (1, 0, 0, 1, 0, 0, 0, 1) ∈ P

in (A.290). Then, the asymptotic form of Fi (i = 1, . . . , 4) in (A.324) becomes

F1 ≈ a1ϕ̃z1 + a17z1z3
2 + FC

1 , (A.434)
F2 ≈ a1ϕ̃z2 + a17z2z4

2 + FC
2 , (A.435)

F3 ≈ a1ϕ̃z3 + a17z3z1
2 + FC

3 , (A.436)
F4 ≈ a1ϕ̃z4 + a17z4z2

2 + FC
4 (A.437)

with
a17 = A00001020(0),

where FC
i (i = 1, . . . , 4) is given in (A.325)–(A.328). Then, the asymptotic form of F̃i (i = 1, . . . , 8)

in (A.234)–(A.237) becomes

F̃1 ≈ a1ϕ̃w1 + a17{ w1(w5
2 − w6

2) − 2w2w5w6)} + F̃C
1 , (A.438)
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F̃2 ≈ a1ϕ̃w2 + a17{−w2(w5
2 − w6

2) − 2w1w5w6} + F̃C
2 , (A.439)

F̃3 ≈ a1ϕ̃w3 + a17{ w3(w7
2 − w8

2) + 2w4w7w8} + F̃C
3 , (A.440)

F̃4 ≈ a1ϕ̃w4 + a17{−w4(w7
2 − w8

2) + 2w3w7w8} + F̃C
4 , (A.441)

F̃5 ≈ a1ϕ̃w5 + a17{ w5(w1
2 − w2

2) − 2w6w1w2} + F̃C
5 , (A.442)

F̃6 ≈ a1ϕ̃w6 + a17{−w6(w1
2 − w2

2) − 2w5w1w2} + F̃C
6 , (A.443)

F̃7 ≈ a1ϕ̃w7 + a17{ w7(w3
2 − w4

2) + 2w8w3w4} + F̃C
7 , (A.444)

F̃8 ≈ a1ϕ̃w8 + a17{−w8(w3
2 − w4

2) + 2w7w3w4} + F̃C
8 , (A.445)

where F̃C
i (i = 1, . . . , 8) is given in (A.332)–(A.339). Hence, the asymptotic form of the Jacobian

matrix in (A.232) becomes
J̃(w, ϕ̃) ≈ a1ϕ̃I8 + a17B17 + BC, (A.446)

where BC is given in (A.341) and

B17 =

[
B17

1 B17
3

(B17
3 )
⊤ B17

2

]
,

B17
1 =


w5

2 − w6
2 −2w5w6 0 0

−2w5w6 −w5
2 + w6

2 0 0
0 0 w7

2 − w8
2 2w7w8

0 0 2w7w8 −w7
2 + w8

2

 ,

B17
2 =


w1

2 − w2
2 −2w1w2 0 0

−2w1w2 −w1
2 + w2

2 0 0
0 0 w3

2 − w4
2 2w3w4

0 0 2w3w4 −w3
2 + w4

2

 ,

B17
3 = 2


w1w5 − w2w6 −w1w6 − w2w5 0 0
−w1w6 − w2w5 −w1w5 + w2w6 0 0

0 0 w3w7 + w4w8 −w3w8 + w4w7
0 0 w3w8 − w4w7 w3w7 + w4w8

 .
Substituting wstripeI = (w, 0, 0, 0, 0, 0, 0, 0) into (A.438) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripeI ≈ −
a2
a1

w2.

Evaluating the Jacobian matrix (A.446) at (wstripeI, ϕ̃stripeI), we have

J̃(wstripeI, ϕ̃stripeI) ≈ w2
[
O O
O C16

]
+ J̃C

stripeI
, (A.447)
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where J̃C
stripeI is given in (A.342) and

C16 =


a17 0 0 0
0 −a17 0 0
0 0 0 0
0 0 0 0

 .
The eigenvalues of the matrix J̃(wstripeI, ϕ̃stripeI) are given by

λ1 ≈ 2a2w
2,

λ2 ≈ O(w3),
λ3, λ4 ≈ −(a2 − a4 ± a17)w2,

λ5 ≈ −(a2 − a3)w2 (repeated twice),
λ6 ≈ −(a2 − a5)w2 (repeated twice).

Assuming that all eigenvalues are negative, we have the following stability conditions (necessary
conditions):

a2 < 0, a2 − a4 ± a17 > 0, a2 − a3 > 0, a2 − a5 > 0.

These conditions are equivalent to

max(a3, a4 + |a17 |, a5) < a2 < 0. (A.448)

Thus, the stability of wstripeI depends on the values of a2, . . . , a5 and a17.
Substituting wstripeII = (0,w, 0, 0, 0, 0, 0, 0) into (A.438) and solving F2 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripeII ≈ −
a2
a1

w2.

Evaluating the Jacobian matrix (A.446) at (wstripeII, ϕ̃stripeII), we have

J̃(wstripeII, ϕ̃stripeII) ≈ w2
[
O O
O −C16

]
+ J̃C

stripeII
, (A.449)

where C16 is given in (A.4.5), and J̃C
stripeII is given in (A.345). The eigenvalues of the matrix

J̃(wstripeII, ϕ̃stripeII) are equivalent to that for wstripeI. Hence, stability conditions for wstripeII are
equivalent to that for wstripeI.

Substituting wupside−downI = (w, 0, 0, 0,w, 0, 0, 0) into (A.331) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃upside−downI ≈ −
a2 + a4 + a17

a1
w2.

Evaluating the Jacobian matrix (A.340) at (wupside−downI, ϕ̃upside−downI), we have

J̃(wupside−downI, ϕ̃upside−downI) ≈ w2
[
C17 C18
C18 C17

]
+ J̃C

upside−downI (A.450)
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with

C17 =


0 0 0 0
0 −2a17 0 0
0 0 −a17 0
0 0 0 −a17

 , C18 =


2a17 0 0 0

0 −2a17 0 0
0 0 0 0
0 0 0 0

 . (A.451)

The eigenvalues of the matrix J̃(wupside−downI, ϕ̃upside−downI) are given by

λ1, λ2 ≈ 2a2 ± (a4 + a17)w2,

λ3 ≈ −4a17w
2,

λ4 ≈ O(w3),
λ5 ≈ −(a2 − a3 + a4 − a5 + a17)w2 (repeated 4 times).

Assuming that all eigenvalues are negative, we have the following stability conditions (necessary
conditions):

a2 < −|a4 + a17 |, a17 > 0, a2 − a3 + a4 − a5 + a17 > 0.

These conditions are equivalent to

a3 − a4 + a5 − a17 < a2 < −|a4 + a17 | (A.452)
a4 > 0. (A.453)

Thus, the stability of wupside−downI is conditional and depends on the values of a2, . . . , a5 and a17.
Substituting wupside−downII = (0,w, 0, 0, 0,w, 0, 0) into (A.331) and solving F2 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃upside−downII ≈ −
a2 + a4 + a17

a1
w2.

Evaluating the Jacobian matrix (A.340) at (wupside−downII, ϕ̃upside−downII), we have

J̃(wupside−downII, ϕ̃upside−downII) = J̃C
upside−downII ≈ w2

[
C19 −C18
−C18 C19

]
(A.454)

with

C19 =


−2a17 0 0 0

0 0 0 0
0 0 −a17 0
0 0 0 −a17

 , (A.455)

where C18 is given in (A.451). The eigenvalues of the matrix J̃(wupside−downII, ϕ̃upside−downII) are
equivalent to that for wupside−downI. Hence, stability conditions for wupside−downII are equivalent to
that for wupside−downI.

Substituting wsqVM = (w, 0,w, 0,w, 0,w, 0) into (A.438) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃sqVM ≈ −
a2 + a3 + a4 + a5 + a17

a1
w2.

262



Evaluating the Jacobian matrix (A.446) at (wsqVM, ϕ̃sqVM), we have

J̃(wsqVM, ϕ̃sqVM) ≈ w2
[
C20 C21
C21 C20

]
+ J̃C

sqVM
, (A.456)

where J̃C
sqVM is given in (A.355) and

C20 = 2


0 0 0 0
0 −a17 0 0
0 0 0 0
0 0 0 −a17

 , C21 = 2


a17 0 0 0
0 −a17 0 0
0 0 a17 0
0 0 0 a17

 .
The eigenvalues of the matrix J̃(wsqVM, ϕ̃sqVM) are given by

λ1 ≈ 2(a2 + a3 + a4 + a5 + a17)w2,

λ2 ≈ 2(a2 + a3 − a4 − a5 − a17)w2,

λ3 ≈ 2(a2 − a3 + a4 − a5 + a17)w2,

λ4 ≈ 2(a2 − a3 − a4 + a5 − a17)w2,

λ5 ≈ −4a17w
2, (repeated twice)

λ6 ≈ O(w3) (repeated twice).

Assuming that all eigenvalues are negative, we have the following stability conditions (necessary
conditions):

a2 + a3 + a4 + a5 + a17 < 0, (A.457)
a2 + a3 − a4 − a5 − a17 < 0, (A.458)
a2 − a3 + a4 − a5 + a17 < 0, (A.459)
a2 − a3 − a4 + a5 − a17 < 0, (A.460)
a17 > 0. (A.461)

Thus, the stability of wsqVM depends on the values of a2, . . . , a5 and a17.

Remark A.8. For the case (n̂, k̂, ℓ̂) = (4k̂, k̂, ℓ̂), wsqT does not exist. See Proposition 3.32.
□

Case 6: (n̂, k̂, ℓ̂) = (4ℓ̂, k̂, ℓ̂)
For the case of (n̂, k̂, ℓ̂) with n̂ = 4ℓ̂, we have

(0, 0, 2, 0, 1, 0, 0, 0) ∈ P

as well as

(1, 0, 0, 0, 0, 0, 0, 0), (2, 0, 0, 0, 1, 0, 0, 0), (1, 1, 0, 0, 0, 1, 0, 0),
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(1, 0, 1, 0, 0, 0, 1, 0), (1, 0, 0, 1, 0, 0, 0, 1) ∈ P

in (A.290). Then, the asymptotic form of Fi (i = 1, . . . , 4) in (A.324) becomes

F1 ≈ a1ϕ̃z1 + a18z3
2z1 + FC

1 , (A.462)
F2 ≈ a1ϕ̃z2 + a18z4

2z2 + FC
2 , (A.463)

F3 ≈ a1ϕ̃z3 + a18z1
2z3 + FC

3 , (A.464)
F4 ≈ a1ϕ̃z4 + a18z2

2z4 + FC
4 (A.465)

with

a18 = A00201000(0).

where FC
i (i = 1, . . . , 4) is given in (A.325)–(A.328). Then, the asymptotic form of F̃i (i = 1, . . . , 8)

in (A.234)–(A.237) becomes

F̃1 ≈ a1ϕ̃w1 + a18{ w1(w5
2 − w6

2) + 2w2w5w6)} + F̃C
1 , (A.466)

F̃2 ≈ a1ϕ̃w2 + a18{−w2(w5
2 − w6

2) + 2w1w5w6)} + F̃C
2 , (A.467)

F̃3 ≈ a1ϕ̃w3 + a18{ w3(w7
2 − w8

2) − 2w4w7w8)} + F̃C
3 , (A.468)

F̃4 ≈ a1ϕ̃w4 + a18{−w4(w7
2 − w8

2) − 2w3w7w8)} + F̃C
4 , (A.469)

F̃5 ≈ a1ϕ̃w5 + a18{ w5(w1
2 − w2

2) + 2w6w1w2)} + F̃C
5 , (A.470)

F̃6 ≈ a1ϕ̃w6 + a18{−w6(w1
2 − w2

2) + 2w5w1w2)} + F̃C
6 , (A.471)

F̃7 ≈ a1ϕ̃w7 + a18{ w7(w3
2 − w4

2) − 2w8w3w4)} + F̃C
7 , (A.472)

F̃8 ≈ a1ϕ̃w8 + a18{−w8(w3
2 − w4

2) − 2w7w3w4)} + F̃C
8 , (A.473)

where F̃C
i (i = 1, . . . , 8) is given in (A.332)–(A.339). Hence, the asymptotic form of the Jacobian

matrix in (A.232) becomes
J̃(w, ϕ̃) ≈ a1ϕ̃I8 + a18B18 + BC, (A.474)

where BC is given in (A.341) and

B18 =

[
B18

1 B18
3

(B18
3 )
⊤ B18

2

]
,

B18
1 =


w5

2 − w6
2 2w5w6 0 0

2w5w6 −w5
2 + w6

2 0 0
0 0 w7

2 − w8
2 −2w7w8

0 0 −2w7w8 −w7
2 + w8

2

 ,
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B18
2 =


w1

2 − w2
2 2w1w2 0 0

2w1w2 −w1
2 + w2

2 0 0
0 0 w3

2 − w4
2 −2w3w4

0 0 −2w3w4 −w3
2 + w4

2

 ,

B18
3 = 2


w1w5 + w2w6 −w1w6 + w2w5 0 0
w1w6 − w2w5 w1w5 + w2w6 0 0

0 0 w3w7 − w4w8 −w3w8 − w4w7
0 0 −w3w8 − w4w7 −w3w7 + w4w8

 .
Substituting wstripeI into (A.466) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripeI ≈ −
a2
a1

w2.

Evaluating the Jacobian matrix (A.474) at (wstripeI, ϕ̃stripeI), we have

J̃(wstripeI, ϕ̃stripeI) ≈ w2
[
O O
O C22

]
+ J̃C

stripeI
, (A.475)

where J̃C
stripeI is given in (A.342) and

C22 =


a18 0 0 0
0 −a18 0 0
0 0 0 0
0 0 0 0

 .
The eigenvalues of the matrix J̃(wstripeI, ϕ̃stripeI) are given by

λ1 ≈ 2a2w
2,

λ2 ≈ O(w3),
λ3, λ4 ≈ −(a2 − a4 ± a18)w2,

λ5 ≈ −(a2 − a3)w2 (repeated twice),
λ6 ≈ −(a2 − a5)w2 (repeated twice).

Assuming that all eigenvalues are negative, we have the following stability conditions (necessary
conditions):

a2 < 0, a2 − a4 ± a18 > 0, a2 − a3 > 0, a2 − a5 > 0.

These conditions are equivalent to

max(a3, a4 + |a18 |, a5) < a2 < 0. (A.476)
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Thus, the stability of wstripeI depends on the values of a2, . . . , a5 and a18.
Substituting wstripeII = (0,w, 0, 0, 0, 0, 0, 0) into (A.438) and solving F2 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripeII ≈ −
a2
a1

w2.

Evaluating the Jacobian matrix (A.474) at (wstripeII, ϕ̃stripeII), we have

J̃(wstripeII, ϕ̃stripeII) ≈ w2
[
O O
O −C22

]
+ J̃C

stripeII
, (A.477)

where C22 is given in (A.4.5), and J̃C
stripeII is given in (A.345). The eigenvalues of the matrix

J̃(wstripeII, ϕ̃stripeII) are equivalent to that for wstripeI. Hence, stability conditions for wstripeII are
equivalent to that for wstripeI.

Substituting wupside−downI = (w, 0, 0, 0,w, 0, 0, 0) into (A.331) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃upside−downI ≈ −
a2 + a4 + a18

a1
w2.

Evaluating the Jacobian matrix (A.340) at (wupside−downI, ϕ̃upside−downI), we have

J̃(wupside−downI, ϕ̃upside−downI) ≈ w2
[
C23 C24
C24 C23

]
+ J̃C

upside−downI (A.478)

with

C23 =


0 0 0 0
0 −2a18 0 0
0 0 −a18 0
0 0 0 −a18

 , C24 =


2a18 0 0 0

0 2a18 0 0
0 0 0 0
0 0 0 0

 . (A.479)

The eigenvalues of the matrix J̃(wupside−downI, ϕ̃upside−downI) are given by

λ1, λ2 ≈ 2a2 ± (a4 + a18)w2,

λ3 ≈ −a18w
2,

λ4 ≈ O(w3),
λ5 ≈ −(a2 − a3 + a4 − a5 + a18)w2 (repeated 4 times).

Assuming that all eigenvalues are negative, we have the following stability conditions (necessary
conditions):

a2 < −|a4 + a18 |, a18 > 0, a2 − a3 + a4 − a5 + a18 > 0.

These conditions are equivalent to

a3 − a4 + a5 + a17 < a2 < −|a4 + a18 | (A.480)
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a18 > 0. (A.481)

Thus, the stability of wupside−downI is conditional and depends on the values of a2, . . . , a5 and a18.
Substituting wupside−downII = (0,w, 0, 0, 0,w, 0, 0) into (A.331) and solving F2 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃upside−downII ≈ −
a2 + a4 + a18

a1
w2.

Evaluating the Jacobian matrix (A.340) at (wupside−downII, ϕ̃upside−downII), we have

J̃(wupside−downII, ϕ̃upside−downII) = J̃C
upside−downII ≈ w2

[
C25 C24
C24 C25

]
(A.482)

with

C25 =


−2a18 0 0 0

0 0 0 0
0 0 −a18 0
0 0 0 −a18

 , (A.483)

where C18 is given in (A.451). The eigenvalues of the matrix J̃(wupside−downII, ϕ̃upside−downII) are
equivalent to that for wupside−downI. Hence, stability conditions for wupside−downII are equivalent to
that for wupside−downI.

Substituting wsqVM = (w, 0,w, 0,w, 0,w, 0) into (A.466) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃sqVM ≈ −
a2 + a3 + a4 + a5 + a18

a1
w2.

Evaluating the Jacobian matrix (A.474) at (wsqVM, ϕ̃sqVM), we have

J̃(wsqVM, ϕ̃sqVM) ≈ w2
[
C21 C22
C22 C21

]
+ J̃C

sqVM
, (A.484)

where J̃C
sqVM is given in (A.355) and

C21 = 2


0 0 0 0
0 −a18 0 0
0 0 0 0
0 0 0 −a18

 , C22 = 2


a18 0 0 0
0 a18 0 0
0 0 a18 0
0 0 0 −a18

 .
The eigenvalues of the matrix J̃(wsqVM, ϕ̃sqVM) are given by

λ1 ≈ 2(a2 + a3 + a4 + a5 + a18)w2,

λ2 ≈ 2(a2 + a3 − a4 − a5 − a18)w2,

λ3 ≈ 2(a2 − a3 + a4 − a5 + a18)w2,

λ4 ≈ 2(a2 − a3 − a4 + a5 − a18)w2,
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λ5 ≈ −4a18w
2 (repeated twice),

λ6 ≈ O(w3) (repeated twice).

Assuming that all eigenvalues are negative, we have the following stability conditions (necessary
conditions):

a2 + a3 + a4 + a5 + a18 < 0, (A.485)
a2 + a3 − a4 − a5 − a18 < 0, (A.486)
a2 − a3 + a4 − a5 + a18 < 0, (A.487)
a2 − a3 − a4 + a5 − a18 < 0, (A.488)
a18 > 0. (A.489)

Thus, the stability of wsqVM depends on the values of a2, . . . , a5 and a18.

Remark A.9. For the case (n̂, k̂, ℓ̂) = (4ℓ̂, k̂, ℓ̂), wsqT does not exist. See Proposition 3.32.
□

Case 7: (n̂, k̂, ℓ̂) = (2k̂ + 2ℓ̂, k̂, ℓ̂), (k̂, ℓ̂) , (3, 1)
For the case of (n̂, k̂, ℓ̂) with n̂ = 2(k̂ + ℓ̂) and (k̂, ℓ̂) , (3, 1), we have

(0, 1, 0, 1, 0, 0, 1, 0), (0, 0, 1, 1, 0, 1, 0, 0), (0, 0, 0, 2, 1, 0, 0, 0) ∈ P.

as well as

(1, 0, 0, 0, 0, 0, 0, 0), (2, 0, 0, 0, 1, 0, 0, 0), (1, 1, 0, 0, 0, 1, 0, 0),
(1, 0, 1, 0, 0, 0, 1, 0), (1, 0, 0, 1, 0, 0, 0, 1) ∈ P

in (A.290). Then, the asymptotic form of Fi (i = 1, . . . , 4) in (A.324) becomes

F1 ≈ a1ϕ̃z1 + a10z2z4z3 + a11z3z4z2 + a12z4
2z1 + FC

1 , (A.490)
F2 ≈ a1ϕ̃z2 + a10z1z3z4 + a11z4z3z1 + a12z3

2z2 + FC
2 , (A.491)

F3 ≈ a1ϕ̃z3 + a10z4z2z1 + a11z1z2z4 + a12z2
2z3 + FC

3 , (A.492)
F4 ≈ a1ϕ̃z4 + a10z3z1z2 + a11z2z1z3 + a12z1

2z4 + FC
4 (A.493)

with a10, a11, a12 given in (A.389), and FC
i (i = 1, . . . , 4) given in (A.325)–(A.328). Then, the

asymptotic form of F̃i (i = 1, . . . , 8) in (A.234)–(A.237) becomes

F̃1 ≈ a1ϕ̃w1 + a10{w5(w3w7 − w4w8) + w6(w3w8 + w4w7)}
+ a11{w3(w5w7 − w6w8) + w4(w5w8 + w6w7)}
+ a12{w1(w7

2 − w8
2) + 2w2w7w8} + F̃C

1 , (A.494)
F̃2 ≈ a1ϕ̃w2 + a10{w5(w3w8 + w4w7) − w6(w3w7 − w4w8)}

+ a11{w3(w5w8 + w6w7) − w4(w5w7 − w6w8)}
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+ a12{−w2(w7
2 − w8

2) + 2w1w7w8} + F̃C
2 , (A.495)

F̃3 ≈ a1ϕ̃w3 + a10{w1(w5w7 − w6w8) + w2(w5w8 + w6w7)}
+ a11{w7(w1w5 − w2w6) + w8(w1w6 + w2w5)}
+ a12{w3(w5

2 − w6
2) + 2w4w5w6} + F̃C

3 , (A.496)
F̃4 ≈ a1ϕ̃w4 + a10{w1(w5w8 + w6w7) − w2(w5w7 − w6w8)}

+ a11{w7(w1w6 + w2w5) − w8(w1w5 − w2w6)}
+ a12{−w4(w5

2 − w6
2) + 2w3w5w6} + F̃C

4 , (A.497)
F̃5 ≈ a1ϕ̃w5 + a10{w1(w3w7 − w4w8) + w2(w3w8 + w4w7)}

+ a11{w7(w1w3 − w2w4) + w8(w1w4 + w2w3)}
+ a12{w5(w3

2 − w4
2) + 2w3w4w6} + F̃C

5 , (A.498)
F̃6 ≈ a1ϕ̃w6 + a10{w1(w3w8 + w4w7) − w2(w3w7 − w4w8)}

+ a11{w7(w1w4 + w2w3) − w8(w1w3 − w2w4)}
+ a12{−w6(w3

2 − w4
2) + 2w3w4w5} + F̃C

6 , (A.499)
F̃7 ≈ a1ϕ̃w7 + a10{w5(w1w3 − w2w4) + w6(w1w4 + w2w3)}

+ a11{w3(w1w5 − w2w6) + w4(w1w6 + w2w5)}
+ a12{w7(w1

2 − w2
2) + 2w8w1w2} + F̃C

7 , (A.500)
F̃8 ≈ a1ϕ̃w8 + a10{w5(w1w4 + w2w3) − w6(w1w3 − w2w4)}

+ a11{w3(w1w6 + w2w5) − w4(w1w5 − w2w6)}
+ a12{−w8(w1

2 − w2
2) + 2w7w1w2} + F̃C

8 , (A.501)

where F̃C
i (i = 1, . . . , 8) is given in (A.332)–(A.339). Hence, the asymptotic form of the Jacobian

matrix in (A.232) becomes

J̃(w, ϕ̃) ≈ a1ϕ̃I8 + a10B10 + a11B11 + a12B12 + BC, (A.502)

with BC given in (A.341), B10, B11 and B12 given in (A.399).
Substituting wstripeI = (w, 0, 0, 0, 0, 0, 0, 0) into (A.494) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripeI ≈ −
a2
a1

w2.

Evaluating the Jacobian matrix (A.502) at (wstripeI, ϕ̃stripeI), we have

J̃(wstripeI, ϕ̃stripeI) ≈ w2
[
O O
O C23

]
+ J̃C

stripeI
, (A.503)
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where J̃C
stripeI is given in (A.342) and

C23 =


0 0 0 0
0 0 0 0
0 0 a12 0
0 0 0 −a12

 .
The eigenvalues of the matrix J̃(wstripeI, ϕ̃stripeI) are given by

λ1 ≈ 2a2w
2,

λ2, λ3 ≈ −(a2 − a5 ± a12)w2,

λ4 ≈ O(w3),
λ5 ≈ −(a2 − a3)w2, (repeated twice)
λ6 ≈ −(a2 − a4)w2, (repeated twice).

Assuming that all eigenvalues are negative, we have the following stability conditions (necessary
conditions):

a2 < 0, a2 − a5 > −|a12 |, a2 − a3 > 0, a2 − a4 > 0.

These conditions are equivalent to

max(a3, a4, a5 − |a12 |) < a2 < 0. (A.504)

Thus, the stability of wstripeI depends on the values of a2, . . . , a5 and a12.
Substituting wstripeII = (0,w, 0, 0, 0, 0, 0, 0) into (A.494) and solving F2 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripeII ≈ −
a2
a1

w2.

Evaluating the Jacobian matrix (A.502) at (wstripeII, ϕ̃stripeII), we have

J̃(wstripeII, ϕ̃stripeII) ≈ w2
[
O O
O −C23

]
+ J̃C

stripeII
, (A.505)

where C23 is given in (A.4.5), and J̃C
stripeII is given in (A.345). The eigenvalues of the matrix

J̃(wstripeII, ϕ̃stripeII) are equivalent to that for wstripeI. Hence, stability conditions for wstripeII are
equivalent to that for wstripeI.

Substituting wupside−downI = (w, 0, 0, 0,w, 0, 0, 0) into (A.494) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃upside−downI ≈ −
a2 + a4

a1
w2.

Evaluating the Jacobian matrix (A.502) at (wupside−downI, ϕ̃upside−downI), we have

J̃(wupside−downI, ϕ̃upside−downI) ≈ w2
[
C24 C25
C25 C24

]
+ J̃C

upside−downI (A.506)
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with

C24 =


0 0 0 0
0 0 0 0
0 0 a12 0
0 0 0 −a12

 , C25 =


0 0 0 0
0 0 0 0
0 0 a10 + a11 0
0 0 0 a10 − a11

 . (A.507)

The eigenvalues of the matrix J̃(wupside−downI, ϕ̃upside−downI) are given by

λ1, λ2 ≈ 2(a2 ± a4)w2,

λ3, λ4 ≈ {−(a2 + a3 − a4 − a5 − a12) ± (a10 + a11)}w2,

λ5, λ6 ≈ {−(a2 + a3 − a4 − a5 + a12) ± (a10 − a11)}w2,

λ7 ≈ O(w3) (repeated twice).

Assuming that all eigenvalues are negative, we have the following stability conditions (necessary
conditions):

a2 < −|a4 |, (A.508)
a2 + a3 − a4 − a5 − a12 > −|a10 + a11 |, (A.509)
a2 + a3 − a4 − a5 + a12 > −|a10 − a11 |. (A.510)

Thus, the stability of wupside−downI depends on the values of a2, . . . , a5 and a10, . . . , a12.
Substituting wupside−downII = (0,w, 0, 0, 0,w, 0, 0) into (A.331) and solving F2 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃upside−downII ≈ −
a2 + a4

a1
w2.

Evaluating the Jacobian matrix (A.340) at (wupside−downII, ϕ̃upside−downII), we have

J̃(wupside−downII, ϕ̃upside−downII) ≈ w2
[
−C24 C26
C26 −C24

]
+ J̃C

upside−downII (A.511)

with

C26 =


0 0 0 0
0 0 0 0
0 0 a10 − a11 0
0 0 0 a10 + a11

 , (A.512)

where C24 is given in (A.507). The eigenvalues of the matrix J̃(wupside−downII, ϕ̃upside−downII) are
equivalent to that for wupside−downI. Hence, stability conditions for wupside−downII are equivalent to
that for wupside−downI.

Substituting wsqVM = (w, 0,w, 0,w, 0,w, 0) into (A.494) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃sqVM ≈ −
a2 + a3 + a4 + a5 + a10 + a11 + a12

a1
w2.
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Evaluating the Jacobian matrix (A.502) at (wsqVM, ϕ̃sqVM), we have

J̃(wsqVM, ϕ̃sqVM) ≈ w2
[
C27 C28
C28 C27

]
+ J̃C

sqVM
, (A.513)

where J̃C
sqVM is given in (A.355) and

C27 =


−a10 − a11 0 a10 + a11 0

0 −a10 − a11 − 2a12 0 a10 − a11
a10 + a11 0 −a10 − a11 0

0 −a10 + a11 0 −a10 − a11 − 2a12

 ,

C28 =


a10 + a11 0 a10 + a11 + 2a12 0

0 −a10 + a11 0 a10 + a11 + 2a12
a10 + a11 + 2a12 0 a10 + a11 0

0 a10 + a11 + 2a12 0 a10 − a11

 .
The eigenvalues of the matrix J̃(wsqVM, ϕ̃sqVM) are given by

λ1 ≈ 2(a2 + a3 + a4 + a5 + a10 + a11 + a12)w2,

λ2 ≈ 2(a2 + a3 − a4 − a5 − a10 − a11 − a12)w2,

λ3 ≈ 2(a2 − a3 + a4 − a5 − a10 − a11 − a12)w2,

λ4 ≈ 2(a2 − a3 − a4 + a5 − a10 − a11 + a12)w2,

λ5 ≈ −2(a10 + a11 + 2a12)w2 (repeated twice),
λ6 ≈ O(w3) (repeated twice).

Assuming that all eigenvalues are negative, we have the following stability conditions (necessary
conditions):

a2 + a3 + a4 + a5 + a10 + a11 + a12 < 0, (A.514)
a2 + a3 − a4 − a5 − a10 − a11 − a12 < 0, (A.515)
a2 − a3 + a4 − a5 − a10 − a11 − a12 < 0, (A.516)
a2 − a3 − a4 + a5 − a10 − a11 + a12 < 0, (A.517)
a10 + a11 + 2a12 > 0. (A.518)

Thus, the stability of wsqVM depends on the values of a2, . . . , a5 and a10, . . . , a12.

Remark A.10. For the case (n̂, k̂, ℓ̂) = (2k̂ + 2ℓ̂, k̂, ℓ̂), wsqT does not exist. See Proposition 3.32.
□
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Figure A.2: Equilibrium curves for µ = (1;+,+,−). Solid curves represent stable stationary points, and dashed curves
represent unstable ones.

A.5. Bifurcation Behaviour of the FO Model
We identified bifurcating solutions from the uniform state on the 6 × 6 square lattice and

demonstrated the emergence of some typical solutions for three types of economic geography
models in Section 3.7. In this section, we compute equilibrium curves of all the bifurcating
solutions for the FO model (Forslid and Ottaviano, 2003).

Figures A.2–A.10 show bifurcating solution curves for each µ. We see that all the bifurcating
solutions are unstable just after bifurcation although stable ones are theoretically possible. For
almost all the bifurcating solution curves, population tend to be agglomerated completely to places
with the largest positive or negative components of the bifurcating solution after the bifurcation.
Note that wsq with µ = (4; 3, 2,+) in Fig. A.9 and wsqVM with µ = (8; 2, 1) in Fig. A.10 are
exceptions to this tendency. These solutions have a common property that some places have a
zero component. For solutions with such a property, computing the bifurcating solution curves
is troublesome since we cannot predict increase and decrease in population in places with a zero
component.
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Figure A.3: Equilibrium curves for µ = (2;+,+). Solid curves represent stable stationary points, and dashed curves
represent unstable ones.
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Figure A.4: Equilibrium curves for µ = (4; 1, 0,+). Solid curves represent stable stationary points, and dashed curves
represent unstable ones.
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Figure A.5: Equilibrium curves for µ = (4; 2, 0,+). Solid curves represent stable stationary points, and dashed curves
represent unstable ones.
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Figure A.6: Equilibrium curves for µ = (4; 1, 1,+). Solid curves represent stable stationary points, and dashed curves
represent unstable ones.
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Figure A.7: Equilibrium curves for µ = (4; 2, 2,+). Solid curves represent stable stationary points, and dashed curves
represent unstable ones.
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Figure A.8: Equilibrium curves for µ = (4; 3, 1,+). Solid curves represent stable stationary points, and dashed curves
represent unstable ones.

278



0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

a

b c
d e

f

a b c

d e f

(a) wsq

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1 a b c

a b

c

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1 a b c

a b
c

(b) wstripeI (c) wstripeII

Figure A.9: Equilibrium curves for µ = (4; 3, 2,+). Solid curves represent stable stationary points, and dashed curves
represent unstable ones.
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Figure A.10: Equilibrium curves for µ = (8; 2, 1). Solid curves represent stable stationary points, and dashed curves
represent unstable ones.
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B. Appendices for Chapter 5

We describe details of theoretical analysis in Chapter 5. Using the governing equation

Fi(λ, ϕ) = λi(vi(λ, ϕ) − v̄(λ, ϕ)) = 0, i ∈ P (B.1)

in (5.5), we derive bifurcation equations. Solving the bifurcation equations, we show the existence
of bifurcating solutions from the the mono-centric distribution λFA = (1, 0, . . . , 0).

B.1. Bifurcation Point with Type αi Orbit
We investigate critical points associated with Type αi orbit.

B.1.1. Derivation of Bifurcation Equations
We focus on a critical point associated with Type α1 orbit. We can investigate critical points

associated with Type αi (i = 2, . . . , n1) orbits in a similar manner. Note that n1 is dependent on the
number of places K (cf., Fig. 5.3 for K = 25).

Let (λFA, ϕα1
c ) be a critical point associated with Type α1 orbit:

α1 = {2, 3, 4, 5}. (B.2)

By the definition of ϕα1
c , we assume that vα1 − v1 = 0. Hence, the Jacobian matrix Jc ≡ J(λFA, ϕα1

c )
takes the following form:

Jc =©«

−v1 −v114 −vα214 · · · −vαn1
14 −vβ118 · · · −vβn2

18
0 × I4

(vα2 − v1)I4
. . .

(vαn1
− v1)I4

(vβ1 − v1)I8
. . .

(vβn2
− v1)I8

ª®®®®®®®®®®®®®¬
, (B.3)

where I j is the j × j identity matrix, and 1 j is the j-dimensional all-one row vector.
We decompose the increment λ − λFA into two components as

λ = λFA + w + w̄, (B.4)

where w ∈ ker(Jc) and w̄ ∈ ker(Jc)⊥. Note that ker(Jc) represents the kernel space of Jc, which is
generated by a basis satisfying Jcη = 0:

ker(Jc) = {η ∈ RK | η1 + η2 + η3 + η4 + η5 = 0, η j = 0, j = 6, . . . ,K}, (B.5)

where η j denotes the jth component of η. We take a basis {η j | j = 1, . . . , 4} of ker(Jc) as

η1 = (−1, 1, 0, 0, 0, 0, . . . , 0), (B.6)
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η2 = (−1, 0, 1, 0, 0, 0, . . . , 0), (B.7)
η3 = (−1, 0, 0, 1, 0, 0, . . . , 0), (B.8)
η4 = (−1, 0, 0, 0, 1, 0, . . . , 0). (B.9)

Then, we can represent w as

w = x1η1 + x2η2 + x3η3 + x4η4. (B.10)

We take a basis {η̄ j | j = 1, . . . ,K − 4} of ker(Jc)⊥ as

η̄1 = (1, 1, 1, 1, 1, . . . , 1), (B.11)
η̄ j = (0, 0, 0, 0, 0, 0, . . . , 0︸  ︷︷  ︸

j−2 times

, 1, 0, . . . , 0︸  ︷︷  ︸
K−( j+4) times

), j = 2, . . . ,K − 4. (B.12)

Then, we can represent w̄ as

w̄ = x̄1η̄1 +

K−4∑
k=2

x̄k η̄k . (B.13)

Combining (B.4), (B.10), and (B.13), we can represent λ as

λ = (1 + x̄1 − x1 − x2 − x3 − x4, x̄1 + x1, . . . , x̄1 + x4, x̄1 + x̄2, . . . , x̄1 + x̄K−4). (B.14)

Substituting (B.14) into the governing equation (5.5) with (5.4), we have

(x̄1 + x̄ j)(v j+4 − v̄) = 0, j = 2, . . . ,K − 4. (B.15)

Note that by the definition of the critical point (λFA, ϕα1
c ), we have v j − v̄ , 0 ( j < α1) at (λFA, ϕα1

c ),
which means v j+4 − v̄ , 0 ( j = 2, . . . ,K − 4). Then, the continuity of the payoff function ensures
v j+4 − v̄ , 0 in a neighborhood of (λFA, ϕα1

c ). Hence, we have

x̄1 + x̄ j = 0, j = 2, . . . ,K − 4. (B.16)

Substituting (B.14) and (B.16) into the condition (5.2), we have

1 + 5x̄1 = 1. (B.17)

Hence, we have
x̄1 = 0. (B.18)

By the conditions (B.16) and (B.18), we can represent v j as a function of x1, x2, x3, x4, and ψ:

v j = v j(1 − x1 − x2 − x3 − x4, x1, x2, x3, x4, 0K−5, ψ). (B.19)

We take a set of vectors {ξ j | j = 1, . . . , 4} that satisfies ξ⊤j Jc = 0⊤:

ξ1 = (0, 1, 0, 0, 0, 0, . . . , 0)⊤, (B.20)
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ξ2 = (0, 0, 1, 0, 0, 0, . . . , 0)⊤, (B.21)
ξ3 = (0, 0, 0, 1, 0, 0, . . . , 0)⊤, (B.22)
ξ4 = (0, 0, 0, 0, 1, 0, . . . , 0)⊤. (B.23)

We can obtain the bifurcation equation for Type α1 orbit as the inner product between F and ξ j :

F̃1(x1, x2, x3, x4, ψ) = x1(v2 − v̄) = x1(v2 − v1), (B.24)
F̃2(x1, x2, x3, x4, ψ) = x2(v3 − v̄) = x2(v3 − v1), (B.25)
F̃3(x1, x2, x3, x4, ψ) = x3(v4 − v̄) = x3(v4 − v1), (B.26)
F̃4(x1, x2, x3, x4, ψ) = x4(v5 − v̄) = x4(v5 − v1), (B.27)

where ψ = ϕ − ϕα1
c represents the increment of ϕ. Therein, we used v̄ = v1 since

F1 = (1 − x1 − x2 − x3 − x4)(v1 − v̄) = 0. (B.28)

The bifurcation equation inherits the equivariance in (5.8) as

T̃(g)F̃(x, ψ) = F̃(T̃(g)x, ψ), g ∈ G, (B.29)

where T̃ is a subrepresentation of T on ker(Jc). The equivariance condition for T̃(r) imposes

F̃2(x1, x2, x3, x4) = F̃1(x2, x3, x4, x1), (B.30)
F̃3(x1, x2, x3, x4) = F̃2(x2, x3, x4, x1), (B.31)
F̃4(x1, x2, x3, x4) = F̃3(x2, x3, x4, x1), (B.32)
F̃1(x1, x2, x3, x4) = F̃4(x2, x3, x4, x1). (B.33)

Combining (B.30) and (B.31), we have

F̃3(x1, x2, x3, x4) = F̃1(x3, x4, x1, x2). (B.34)

Combining (B.34) and (B.32), we have

F̃4(x1, x2, x3, x4) = F̃1(x4, x1, x2, x3). (B.35)

The remaining condition (B.33) is equivalent to (B.35). To sum up, we have the conditions (5.23)
and (5.24) in Lemma 4.

Let R be a function as
R(x, ψ) ≡ v2 − v1. (B.36)

We expand R into a power series as

R(x, ψ) =
∞∑

a=0

∞∑
b=0

∞∑
c=0

∞∑
d=0

Aabcd(ψ)x1
a x2

bx3
c x4

d (B.37)
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with coefficients Aabcd(ψ) ∈ R. Then, we can represent F̃1 as

F̃1(x, ψ) = x1R(x, ψ) = x1

∞∑
a=0

∞∑
b=0

∞∑
c=0

∞∑
d=0

Aabcd(ψ)x1
a x2

bx3
c x4

d . (B.38)

We conclude

F̃2(x, ψ) = x2

∞∑
a=0

∞∑
b=0

∞∑
c=0

∞∑
d=0

Aabcd(ψ)x2
a x3

bx4
c x1

d, (B.39)

F̃3(x, ψ) = x3

∞∑
a=0

∞∑
b=0

∞∑
c=0

∞∑
d=0

Aabcd(ψ)x3
a x4

bx1
c x2

d, (B.40)

F̃4(x, ψ) = x4

∞∑
a=0

∞∑
b=0

∞∑
c=0

∞∑
d=0

Aabcd(ψ)x4
a x1

bx2
c x3

d . (B.41)

On the other hand, the equivariance condition for T̃(s) imposes

F̃1(x1, x2, x3, x4) = F̃1(x1, x4, x3, x2), (B.42)
F̃4(x1, x2, x3, x4) = F̃2(x1, x4, x3, x2), (B.43)
F̃3(x1, x2, x3, x4) = F̃3(x1, x4, x3, x2), (B.44)
F̃2(x1, x2, x3, x4) = F̃4(x1, x4, x3, x2). (B.45)

Combining (B.38) and (B.42), we have

∞∑
a=0

∞∑
b=0

∞∑
c=0

∞∑
d=0

Aabcd(ψ)x1
a x2

bx3
c x4

d =

∞∑
a=0

∞∑
b=0

∞∑
c=0

∞∑
d=0

Aabcd(ψ)x1
a x4

bx2
c x3

d, (B.46)

which means Aabcd = Aadcb. The remaining conditions (B.43)–(B.45) lead to the same result as
(B.46).

Since (x, ψ) = (0, 0, 0, 0, 0) corresponds to the critical point, we have

A0000(0) =
∂F̃1
∂x1

����
(x,ψ)=(0,0,0,0,0)

= 0. (B.47)

Since A′0000(0) is generically nonzero, we have A0000(ψ) ≈ a0ψ with

a0 = A′0000(0) =
∂R
∂ψ

����
(x,ψ)=(0,0,0,0,0)

. (B.48)

Then, the asymptotic form of the bifurcation equation becomes

F̃1(x, ψ) ≈ x1{a0ψ + a1x1 + a2x2 + a3x3 + a4x4}, (B.49)
F̃2(x, ψ) ≈ x2{a0ψ + a1x2 + a2x3 + a3x4 + a4x1}, (B.50)
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F̃3(x, ψ) ≈ x3{a0ψ + a1x3 + a2x4 + a3x1 + a4x2}, (B.51)
F̃4(x, ψ) ≈ x4{a0ψ + a1x4 + a2x1 + a3x2 + a4x3}, (B.52)

where

a1 = A1000(0) =
∂R
∂x1

����
(x,ψ)=(0,0,0,0,0)

, (B.53)

a2 = A0100(0) =
∂R
∂x2

����
(x,ψ)=(0,0,0,0,0)

, (B.54)

a3 = A0010(0) =
∂R
∂x3

����
(x,ψ)=(0,0,0,0,0)

, (B.55)

a4 = A0001(0) =
∂R
∂x4

����
(x,ψ)=(0,0,0,0,0)

. (B.56)

B.1.2. Existence of Bifurcating Solutions
We can predict the following bifurcating solutions (cf., Fig. 5.5):

xSquare-I = w(1, 1, 1, 1),
xDuo-I = w(1, 1, 0, 0),
xDuo-II = w(1, 0, 1, 0),
xMono-I = w(1, 0, 0, 0)

(B.57)

for some w > 0.
We first show the existence of Square-I solution. Substituting xSquare-I = w(1, 1, 1, 1) into F̃1,

we have

F̃1(xSquare-I, ψ) = w

∞∑
a=0

∞∑
b=0

∞∑
c=0

∞∑
d=0

Aabcd(ψ)wa+b+c+d ≈ w{a0ψ + (a1 + a2 + a3 + a4)w}.

We see that F̃1(xSquare-I, ψ) = 0 has the trivial solution (w = 0) and a bifurcating solution:

ψ = ψSquare-I ≈ −
a1 + a2 + a3 + a4

a0
w. (B.58)

Substituting xSquare-I into F̃2, F̃3, and F̃4 in (B.39), (B.40), and (B.41), we see that F̃2 = F̃3 = F̃4 =
F̃1 = 0. Hence, the bifurcation equation is satisfied for xSquare-I. The other solutions can be treated
similarly as explained below.

Substituting xDuo-I = w(1, 1, 0, 0) into F̃1, we have

F̃1(xDuo-I, ψ) = w

∞∑
a=0

∞∑
b=0

Aab00(ψ)wa+b ≈ w{a0ψ + (a1 + a2)w}.

We see that F̃1(xDuo-I, ψ) = 0 has the trivial solution (w = 0) and a bifurcating solution:

ψ = ψDuo-I ≈ −
a1 + a2

a0
w. (B.59)
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Substituting xDuo-I into F̃2 in (B.39), we see that F̃2 = F̃1 = 0. Hence, the bifurcation equation is
satisfied for xDuo-I.

Substituting xDuo-II = w(1, 0, 1, 0) into F̃1, we have

F̃1(xDuo-II, ψ) = w

∞∑
a=0

∞∑
c=0

Aa0c0(ψ)wa+c ≈ w{a0ψ + (a1 + a3)w}.

We see that F̃1(xDuo-II, ψ) = 0 has the trivial solution (w = 0) and a bifurcating solution:

ψ = ψDuo-II ≈ −
a1 + a3

a0
w. (B.60)

Substituting xDuo-II into F̃3 in (B.40), we see that F̃3 = F̃1 = 0. Hence, the bifurcation equation is
satisfied for xDuo-II.

Substituting xMono-I = w(1, 0, 0, 0) into F̃1, we have

F̃1(xMono-I, ψ) = w

∞∑
a=0

Aa000(ψ)wa ≈ w(a0ψ + a1w).

We see that F̃1(xMono-I, ψ) = 0 has the trivial solution (w = 0) and a bifurcating solution:

ψ = ψMono-I ≈ −
a1
a0

w. (B.61)

Hence, the bifurcation equation is satisfied for xMono-I.

B.1.3. Stability of Bifurcating Solutions
The asymptotic form of the Jacobian matrix J̃ = ∂F̃/∂x becomes

J̃(x, ψ) ≈ ψa0I4 + x1 J̃1 + x2 J̃2 + x3 J̃3 + x4 J̃4, (B.62)

where

J̃1 =


2a1 a2 a3 a4
0 a4 0 0
0 0 a3 0
0 0 0 a2

 , J̃2 =


a2 0 0 0
a4 2a1 a2 a3
0 0 a4 0
0 0 0 a3

 ,
J̃3 =


a3 0 0 0
0 a2 0 0
a3 a4 2a1 a2
0 0 0 a4

 , J̃4 =


a4 0 0 0
0 a3 0 0
0 0 a2 0
a2 a3 a4 2a1

 .
To begin with, we investigate the stability of Square-I solution. Evaluating the Jacobian matrix

at the point
(xSquare-I, ψSquare-I) = (w,w,w,w,−

a1 + a2 + a3 + a4
a0

w),
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Table B.1: Stability conditions of bifurcating solutions for critical points associated with Type αi orbit.

Solution Case Stability conditions
xSquare-I w > 0 a1 + a3 < −|a2 + a4 |

a1 − a3 < 0
w < 0 a1 + a3 > |a2 + a4 |

a1 − a3 > 0
xDuo-I w > 0 a1 − a2 < 0

a1 + a4 < 0
max(−a2 + a4, 0) < a1 − a3

w < 0 a1 − a2 > 0
a1 + a4 > 0
min(−a2 + a4, 0) > a1 − a3

xDuo-II w > 0 a1 − a3 < 0
a2 + a4 < a1 + a3 < 0

w < 0 a1 − a3 > 0
a2 + a4 > a1 + a3 > 0

xMono-I w > 0 max(a2, a3, a4) < a1 < 0
w < 0 min(a2, a3, a4) > a1 > 0

we have

J̃(xSquare-I, ψSquare-I) ≈ w


a1 a2 a3 a4
a4 a1 a2 a3
a3 a4 a1 a2
a2 a3 a4 a1

 . (B.63)

The eigenvalues of this matrix are given as follows:

λ1, λ2 ≈ w(a1 + a3) ± w(a2 + a4),
λ3, λ4 ≈ w(a1 − a3) ± iw(a2 − a4).

Thus, the stability of xSquare-I depends on the values of a1, a2, a3, and a4. The other solutions can
be treated similarly. Table B.1 summarizes the stability conditions of bifurcating solutions.

Evaluating the Jacobian matrix at the point

(xDuo-I, ψDuo-I) = (w,w, 0, 0,−
a1 + a2

a0
w),

we have

J̃(xDuo-I, ψDuo-I) ≈ w


a1 a2 a3 a4
a4 a1 − a2 + a4 a2 a3
0 0 −a1 − a2 + a3 + a4 0
0 0 0 −a1 + a3

 . (B.64)

The eigenvalues of this matrix are given as follows:

λ1 ≈ w(a1 − a2),
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λ2 ≈ w(a1 + a4),
λ3 ≈ w(−a1 + a3),
λ4 ≈ w(−a1 + a3 − a2 + a4).

Thus, the stability of xDuo-I depends on the values of a1, a2, a3, and a4.
Evaluating the Jacobian matrix at the point

(xDuo-II, ψDuo-II) = (w, 0,w, 0,−
a1 + a3

a0
w),

we have

J̃(xDuo-II, ψDuo-II) ≈ w


a1 a2 a3 a4
0 −a1 + a2 − a3 + a4 0 0
a3 a4 a1 a2
0 0 0 −a1 + a2 − a3 + a4

 . (B.65)

The eigenvalues of this matrix are given as follows:

λ1, λ2 ≈ w(a1 ± a3),
λ3 ≈ w(−a1 − a3 + a2 + a4) (repeated twice).

Thus, the stability of xDuo-II depends on the values of a1, a2, a3, and a4.
Evaluating the Jacobian matrix at the point

(xMono-I, ψMono-I) = (w, 0, 0, 0,−
a1
a0

w),

we have

J̃(xMono-I, ψMono-I) ≈ w


a1 a2 a3 a4
0 −a1 + a4 0 0
0 0 −a1 + a3 0
0 0 0 −a1 + a2

 . (B.66)

The eigenvalues of this matrix are given as follows:

λ1 ≈ wa1,

λ2 ≈ w(−a1 + a2),
λ3 ≈ w(−a1 + a3),
λ4 ≈ w(−a1 + a4).

Thus, the stability of xMono-I depends on the values of a1, a2, a3, and a4.

B.2. Bifurcation Point with Type βi Orbit
We investigate critical points associated with Type βi orbit.
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B.2.1. Derivation of Bifurcation Equations
We focus on a critical point associated with Type β1 orbit. We can investigate critical points

associated with Type βi (i = 2, . . . , n2) orbits in a similar manner. Note that n1 and n2 are dependent
on the number of places K (cf., Fig. 5.3 for K = 25).

Let (λFA, ϕ
β1
c ) be a critical point associated with Type β1 orbit:

β1 = {(4n1 + 1) + 1, . . . , (4n1 + 1) + 8}. (B.67)

Note that we can investigate critical points associated with Type βi (i = 2, . . . , n2) orbits in a
similar manner. By the definition of ϕβ1

c , we assume that vβ1 − v1 = 0. Hence, the Jacobian matrix
Jc ≡ J(λFA, ϕ

β1
c ) takes the following form:

Jc =©«

−v1 −vα114 · · · −vαn1
14 −v118 −vβ218 · · · −vβn2

18
(vα1 − v1)I4

. . .

(vαn1
− v1)I4

0 × I8
(vβ2 − v1)I8

. . .

(vβn2
− v1)I8

ª®®®®®®®®®®®®®¬
, (B.68)

where I j is the j × j identity matrix, and 1 j is the j-dimensional all-one row vector.
We decompose the increment λ − λFA into two components as

λ = λFA + w + w̄, (B.69)

where w ∈ ker(Jc) and w̄ ∈ ker(Jc)⊥. Note that ker(Jc) represents the kernel space of Jc, which is
generated by a basis satisfying Jcη = 0:

ker(Jc) = {η ∈ RK | η1 +
∑
k∈β1

ηk = 0, η j = 0, j < {1} ∪ β1}, (B.70)

where η j denotes the jth component of η. We take a basis {η j | j = 1, . . . , 8} of ker(Jc) as

η j = (−1, 0, . . . , 0︸  ︷︷  ︸
j+4n1−1 times

, 1, 0, . . . , 0︸  ︷︷  ︸
K−( j+4n1+1) times

). (B.71)

Note that η j is a vector whose component corresponding to jth place of the orbit β1 is 1. Then, we
can represent w as

w =
8∑

k=1
xkηk . (B.72)
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We take a basis {η̄ j | j = 1, . . . ,K − 8} of ker(Jc)⊥ as

η̄1 = (1, 1, . . . , 1), (B.73)
η̄ j = (0, 0, . . . , 0︸  ︷︷  ︸

j−2 times

, 1, 0, . . . , 0︸  ︷︷  ︸
K− j times

), j = 2, . . . , 4n1 + 1, (B.74)

η̄ j = (0, 0, . . . , 0︸  ︷︷  ︸
j+6 times

, 1, 0, . . . , 0︸  ︷︷  ︸
K−( j+8) times

), j = 4n1 + 2, . . . ,K − 8. (B.75)

Then, we can represent w̄ as

w̄ = x̄1η̄1 +

K−8∑
k=2

x̄k η̄k . (B.76)

Combining (B.69), (B.72), and (B.76), we can represent λ as

λ = (1+ x̄1−
8∑

k=1
xk, x̄1+ x̄2, . . . , x̄1+ x̄4n1+1, x̄1+ x1, . . . , x̄1+ x8, x̄1+ x̄4n1+2, . . . , x̄1+ x̄K−8). (B.77)

Substituting (B.77) into the governing equation (5.5), we have

(x̄1 + x̄ j)(v j − v̄) = 0, j = 2, . . . , 4n1 + 1. (B.78)
(x̄1 + x̄ j)(v j+8 − v̄) = 0, j = 4n1 + 2, . . . ,K − 8. (B.79)

Note that by the definition of the critical point (λFA, ϕ
β1
c ), we have v j − v̄ , 0 ( j < β1) at (λFA, ϕ

β1
c ).

Then, the continuity of the payoff function ensures v j − v̄ , 0 ( j < β1) in a neighborhood of
(λFA, ϕ

β1
c ), which means v j − v̄ , 0 ( j = 2, . . . , 4n1 + 1) and v j+8 − v̄ , 0 ( j = 4n1 + 2, . . . ,K − 8).

Hence, we have
x̄1 + x̄ j = 0, j = 2, . . . ,K − 8. (B.80)

Substituting (B.77) and (B.80) into the condition (5.2), we have

1 + 9x̄1 = 1. (B.81)

Hence, we have
x̄1 = 0. (B.82)

By the conditions (B.80) and (B.82), we can represent v j as a function of x1, x2, x3, x4, and ψ:

v j = v j(1 −
8∑

k=1
xk, x1, x2, x3, x4, x5, x6, x7, x8, 0K−9, ψ). (B.83)

We take a set of vectors {ξ j | j = 1, . . . , 8} that satisfies ξ⊤j Jc = 0⊤:

ξ j = (0, 0, . . . , 0︸  ︷︷  ︸
j+4n1−1 times

, 1, 0, . . . , 0︸  ︷︷  ︸
K−( j+4n1+1) times

). (B.84)
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We can obtain the bifurcation equation for Type β1 orbit as the inner product between F and ξ j :

F̃j(x1, x2, x3, x4, x5, x6, x7, x8, ψ) = x j(v j+4n1+1 − v̄) = x j(v j+4n1+1 − v1), (B.85)

where ψ = ϕ − ϕβ1
c represents the increment of ϕ. Therein, we used v̄ = v1 since

F1 = (1 −
8∑

k=1
xk)(v1 − v̄) = 0. (B.86)

The bifurcation equation inherits the equivariance in (5.8) as

T̃(g)F̃(x, ψ) = F̃(T̃(g)x, ψ), g ∈ G, (B.87)

where T̃ is a subrepresentation of T on ker(Jc). The equivariance condition for T̃(r) imposes

F̃3(x1, x2, x3, x4, x5, x6, x7, x8) = F̃1(x3, x4, x5, x6, x7, x8, x1, x2), (B.88)
F̃4(x1, x2, x3, x4, x5, x6, x7, x8) = F̃2(x3, x4, x5, x6, x7, x8, x1, x2), (B.89)
F̃5(x1, x2, x3, x4, x5, x6, x7, x8) = F̃3(x3, x4, x5, x6, x7, x8, x1, x2), (B.90)
F̃6(x1, x2, x3, x4, x5, x6, x7, x8) = F̃4(x3, x4, x5, x6, x7, x8, x1, x2), (B.91)
F̃7(x1, x2, x3, x4, x5, x6, x7, x8) = F̃5(x3, x4, x5, x6, x7, x8, x1, x2), (B.92)
F̃8(x1, x2, x3, x4, x5, x6, x7, x8) = F̃6(x3, x4, x5, x6, x7, x8, x1, x2), (B.93)
F̃1(x1, x2, x3, x4, x5, x6, x7, x8) = F̃7(x3, x4, x5, x6, x7, x8, x1, x2), (B.94)
F̃2(x1, x2, x3, x4, x5, x6, x7, x8) = F̃8(x3, x4, x5, x6, x7, x8, x1, x2). (B.95)

Using (B.88), we obtain F̃3 from F̃1. Combining (B.88) and (B.90), we have

F̃5(x1, x2, x3, x4, x5, x6, x7, x8) = F̃1(x5, x6, x7, x8, x1, x2, x3, x4). (B.96)

Combining (B.92) and (B.96), we have

F̃7(x1, x2, x3, x4, x5, x6, x7, x8) = F̃1(x7, x8, x1, x2, x3, x4, x5, x6). (B.97)

Using (B.89), we obtain F̃4 from F̃2. Combining (B.89) and (B.91), we have

F̃6(x1, x2, x3, x4, x5, x6, x7, x8) = F̃2(x5, x6, x7, x8, x1, x2, x3, x4). (B.98)

Combining (B.93) and (B.98), we have

F̃8(x1, x2, x3, x4, x5, x6, x7, x8) = F̃2(x7, x8, x1, x2, x3, x4, x5, x6). (B.99)

The conditions (B.94) and (B.95) are equivalent to (B.97) and (B.99). On the other hand, the
equivariance condition for T̃(s) imposes

F̃8(x1, x2, x3, x4, x5, x6, x7, x8) = F̃1(x8, x7, x6, x5, x4, x3, x2, x1), (B.100)
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F̃7(x1, x2, x3, x4, x5, x6, x7, x8) = F̃2(x8, x7, x6, x5, x4, x3, x2, x1), (B.101)
F̃6(x1, x2, x3, x4, x5, x6, x7, x8) = F̃3(x8, x7, x6, x5, x4, x3, x2, x1), (B.102)
F̃5(x1, x2, x3, x4, x5, x6, x7, x8) = F̃4(x8, x7, x6, x5, x4, x3, x2, x1), (B.103)
F̃4(x1, x2, x3, x4, x5, x6, x7, x8) = F̃5(x8, x7, x6, x5, x4, x3, x2, x1), (B.104)
F̃3(x1, x2, x3, x4, x5, x6, x7, x8) = F̃6(x8, x7, x6, x5, x4, x3, x2, x1), (B.105)
F̃2(x1, x2, x3, x4, x5, x6, x7, x8) = F̃7(x8, x7, x6, x5, x4, x3, x2, x1), (B.106)
F̃1(x1, x2, x3, x4, x5, x6, x7, x8) = F̃8(x8, x7, x6, x5, x4, x3, x2, x1). (B.107)

Using (B.100), we obtain F̃8 from F̃1. Combining (B.102) and (B.88), we have

F̃6(x1, x2, x3, x4, x5, x6, x7, x8) = F̃1(x6, x5, x4, x3, x2, x1, x8, x7). (B.108)

Combining (B.104) and (B.96), we have

F̃4(x1, x2, x3, x4, x5, x6, x7, x8) = F̃1(x4, x3, x2, x1, x8, x7, x6, x5). (B.109)

Combining (B.106) and (B.97), we have

F̃2(x1, x2, x3, x4, x5, x6, x7, x8) = F̃1(x2, x1, x8, x7, x6, x5, x4, x3). (B.110)

The conditions (B.101), (B.103), (B.105), and (B.107) are equivalent to (B.106), (B.104), (B.102),
and (B.100). The remaining conditions (B.89), (B.98), and (B.99) for T̃(r) are equivalent to
(B.109), (B.108), and (B.100) for T̃(s). To sum up, we have the condition (5.26) in Lemma 5.

Let R be a function as
R(x, ψ) ≡ v4n1+2 − v1. (B.111)

We expand R into a power series as

R(x, ψ) =
∞∑

a=0

∞∑
b=0

∞∑
c=0

∞∑
d=0

∞∑
e=0

∞∑
f=0

∞∑
g=0

∞∑
h=0

Aabcde f gh(ψ)x1
a x2

bx3
c x4

d x5
ex6

f x7
gx8

h (B.112)

with coefficients Aabcde f gh(ψ) ∈ R. Then, we can represent F̃1 as

F̃1(x, ψ) = x1R(x, ψ) = x1

∞∑
a=0

∞∑
b=0

∞∑
c=0

∞∑
d=0

∞∑
e=0

∞∑
f=0

∞∑
g=0

∞∑
h=0

Aabcde f gh(ψ)x1
a x2

bx3
c x4

d x5
ex6

f x7
gx8

h.

(B.113)
We conclude

F̃2(x, ψ) = x2

∞∑
a=0

∞∑
b=0

∞∑
c=0

∞∑
d=0

∞∑
e=0

∞∑
f=0

∞∑
g=0

∞∑
h=0

Aabcde f gh(ψ)x2
a x1

bx8
c x7

d x6
ex5

f x4
gx3

h, (B.114)

F̃3(x, ψ) = x3

∞∑
a=0

∞∑
b=0

∞∑
c=0

∞∑
d=0

∞∑
e=0

∞∑
f=0

∞∑
g=0

∞∑
h=0

Aabcde f gh(ψ)x3
a x4

bx5
c x6

d x7
ex8

f x1
gx2

h, (B.115)
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F̃4(x, ψ) = x4

∞∑
a=0

∞∑
b=0

∞∑
c=0

∞∑
d=0

∞∑
e=0

∞∑
f=0

∞∑
g=0

∞∑
h=0

Aabcde f gh(ψ)x4
a x3

bx2
c x1

d x8
ex7

f x6
gx5

h, (B.116)

F̃5(x, ψ) = x5

∞∑
a=0

∞∑
b=0

∞∑
c=0

∞∑
d=0

∞∑
e=0

∞∑
f=0

∞∑
g=0

∞∑
h=0

Aabcde f gh(ψ)x5
a x6

bx7
c x8

d x1
ex2

f x3
gx4

h, (B.117)

F̃6(x, ψ) = x6

∞∑
a=0

∞∑
b=0

∞∑
c=0

∞∑
d=0

∞∑
e=0

∞∑
f=0

∞∑
g=0

∞∑
h=0

Aabcde f gh(ψ)x6
a x5

bx4
c x3

d x2
ex1

f x8
gx7

h, (B.118)

F̃7(x, ψ) = x7

∞∑
a=0

∞∑
b=0

∞∑
c=0

∞∑
d=0

∞∑
e=0

∞∑
f=0

∞∑
g=0

∞∑
h=0

Aabcde f gh(ψ)x7
a x8

bx1
c x2

d x3
ex4

f x5
gx6

h, (B.119)

F̃8(x, ψ) = x8

∞∑
a=0

∞∑
b=0

∞∑
c=0

∞∑
d=0

∞∑
e=0

∞∑
f=0

∞∑
g=0

∞∑
h=0

Aabcde f gh(ψ)x8
a x7

bx6
c x5

d x4
ex3

f x2
gx1

h. (B.120)

Since (x, ψ) = (0, 0, 0, 0, 0, 0, 0, 0, 0) corresponds to the critical point, we have

A00000000(0) =
∂F̃1
∂x1

����
(x,ψ)=(0,0,0,0,0,0,0,0,0)

= 0. (B.121)

Since A′00000000(0) is generically nonzero, we have A00000000(ψ) ≈ a0ψ with

a0 = A′00000000(0) =
∂R
∂ψ

����
(x,ψ)=(0,0,0,0,0,0,0,0,0)

. (B.122)

Then, the asymptotic form of the bifurcation equation becomes

F̃1(x, ψ) ≈ x1{a0ψ + a1x1 + a2x2 + a3x3 + a4x4 + a5x5 + a6x6 + a7x7 + a8x8}, (B.123)
F̃2(x, ψ) ≈ x2{a0ψ + a1x2 + a2x1 + a3x8 + a4x7 + a5x6 + a6x5 + a7x4 + a8x3}, (B.124)
F̃3(x, ψ) ≈ x3{a0ψ + a1x3 + a2x4 + a3x5 + a4x6 + a5x7 + a6x8 + a7x1 + a8x2}, (B.125)
F̃4(x, ψ) ≈ x4{a0ψ + a1x4 + a2x3 + a3x2 + a4x1 + a5x8 + a6x7 + a7x6 + a8x5}, (B.126)
F̃5(x, ψ) ≈ x5{a0ψ + a1x5 + a2x6 + a3x7 + a4x8 + a5x1 + a6x2 + a7x3 + a8x4}, (B.127)
F̃6(x, ψ) ≈ x6{a0ψ + a1x6 + a2x5 + a3x4 + a4x3 + a5x2 + a6x1 + a7x8 + a8x7}, (B.128)
F̃7(x, ψ) ≈ x7{a0ψ + a1x7 + a2x8 + a3x1 + a4x2 + a5x3 + a6x4 + a7x5 + a8x6}, (B.129)
F̃8(x, ψ) ≈ x8{a0ψ + a1x8 + a2x7 + a3x6 + a4x5 + a5x4 + a6x3 + a7x2 + a8x1}, (B.130)

where

a1 = A10000000(0) =
∂R
∂x1

����
(x,ψ)=(0,0,0,0,0,0,0,0,0)

, (B.131)

a2 = A01000000(0) =
∂R
∂x2

����
(x,ψ)=(0,0,0,0,0,0,0,0,0)

, (B.132)
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a3 = A00100000(0) =
∂R
∂x3

����
(x,ψ)=(0,0,0,0,0,0,0,0,0)

, (B.133)

a4 = A00010000(0) =
∂R
∂x4

����
(x,ψ)=(0,0,0,0,0,0,0,0,0)

, (B.134)

a5 = A00001000(0) =
∂R
∂x5

����
(x,ψ)=(0,0,0,0,0,0,0,0,0)

, (B.135)

a6 = A00000100(0) =
∂R
∂x6

����
(x,ψ)=(0,0,0,0,0,0,0,0,0)

, (B.136)

a7 = A00000010(0) =
∂R
∂x7

����
(x,ψ)=(0,0,0,0,0,0,0,0,0)

, (B.137)

a8 = A00000001(0) =
∂R
∂x8

����
(x,ψ)=(0,0,0,0,0,0,0,0,0)

. (B.138)

B.2.2. Existence of Bifurcating Solutions
We can predict the following bifurcating solutions (cf., Fig. 5.6):

xSquare-II = w(1, 1, 1, 1, 1, 1, 1, 1),
xSquare-III = w(1, 0, 1, 0, 1, 0, 1, 0),
xQuad-I = w(1, 1, 0, 0, 1, 1, 0, 0),
xQuad-II = w(1, 0, 0, 1, 1, 0, 0, 1),
xDuo-III = w(1, 1, 0, 0, 0, 0, 0, 0),
xDuo-IV = w(1, 0, 0, 1, 0, 0, 0, 0),
xDuo-V = w(1, 0, 0, 0, 1, 0, 0, 0),
xDuo-VI = w(1, 0, 0, 0, 0, 1, 0, 0),
xDuo-VII = w(1, 0, 0, 0, 0, 0, 0, 1),
xMono-II = w(1, 0, 0, 0, 0, 0, 0, 0),

(B.139)

for some w > 0.
We first show the existence of Square-II solution. Substituting xSquare-II = w(1, 1, 1, 1, 1, 1, 1, 1)

into F̃1, we have

F̃1(xSquare-I, ψ) = w

∞∑
a=0

∞∑
b=0

∞∑
c=0

∞∑
d=0

∞∑
e=0

∞∑
f=0

∞∑
g=0

∞∑
h=0

Aabcde f gh(ψ)wa+b+c+d+e+ f+g+h

≈ w{a0ψ + (a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8)w}.

We see that F̃1(xSquare-II, ψ) = 0 has the trivial solution (w = 0) and a bifurcating solution:

ψ = ψSquare-II ≈ −
a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8

a0
w. (B.140)

Substituting xSquare-II into (B.114)–(B.120), we see that F̃2 = F̃3 = F̃4 = F̃5 = F̃6 = F̃7 = F̃8 =
F̃1 = 0. Hence, the bifurcation equation is satisfied for xSquare-II.
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Substituting xSquare-III = w(1, 0, 1, 0, 1, 0, 1, 0) into F̃1, we have

F̃1(xSquare-III, ψ) = w

∞∑
a=0

∞∑
c=0

∞∑
e=0

∞∑
g=0

Aa0c0e0g0(ψ)wa+c+e+g ≈ w{a0ψ + (a1 + a3 + a5 + a7)w}.

We see that F̃1(xSquare-III, ψ) = 0 has the trivial solution (w = 0) and a bifurcating solution:

ψ = ψSquare-III ≈ −
a1 + a3 + a5 + a7

a0
w. (B.141)

Substituting xSquare-III into F̃3, F̃5, and F̃7 in (B.115), (B.117), and (B.119), we see that F̃3 = F̃5 =
F̃7 = F̃1 = 0. Hence, the bifurcation equation is satisfied for xSquare-III.

Substituting xQuad-I = w(1, 1, 0, 0, 1, 1, 0, 0) into F̃1, we have

F̃1(xQuad-I, ψ) = w

∞∑
a=0

∞∑
b=0

∞∑
e=0

∞∑
f=0

Aab00e f 00(ψ)wa+b+e+ f ≈ w{a0ψ + (a1 + a2 + a5 + a6)w}.

We see that F̃1(xQuad-I, ψ) = 0 has the trivial solution (w = 0) and a bifurcating solution:

ψ = ψQuad-I ≈ −
a1 + a2 + a5 + a6

a0
w. (B.142)

Substituting xQuad-I into F̃2, F̃5, and F̃6 in (B.114), (B.117), and (B.118), we see that F̃2 = F̃5 =
F̃6 = F̃1 = 0. Hence, the bifurcation equation is satisfied for xQuad-I.

Substituting xQuad-II = w(1, 0, 0, 1, 1, 0, 0, 1) into F̃1, we have

F̃1(xQuad-II, ψ) = w

∞∑
a=0

∞∑
d=0

∞∑
e=0

∞∑
h=0

Aa00de00h(ψ)wa+d+e+h ≈ w{a0ψ + (a1 + a4 + a5 + a8)w}.

We see that F̃1(xQuad-II, ψ) = 0 has the trivial solution (w = 0) and a bifurcating solution:

ψ = ψQuad-II ≈ −
a1 + a4 + a5 + a8

a0
w. (B.143)

Substituting xQuad-II into F̃4, F̃5, and F̃8 in (B.116), (B.117), and (B.120), we see that F̃4 = F̃5 =
F̃8 = F̃1 = 0. Hence, the bifurcation equation is satisfied for xQuad-II.

Substituting xDuo-III = w(1, 1, 0, 0, 0, 0, 0, 0) into F̃1, we have

F̃1(xDuo-III, ψ) = w

∞∑
a=0

∞∑
b=0

Aab000000(ψ)wa+b ≈ w{a0ψ + (a1 + a2)w}.

We see that F̃1(xDuo-III, ψ) = 0 has the trivial solution (w = 0) and a bifurcating solution:

ψ = ψDuo-III ≈ −
a1 + a2

a0
w. (B.144)
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Substituting xDuo-III into F̃2 in (B.114), we see that F̃2 = F̃1 = 0. Hence, the bifurcation equation
is satisfied for xDuo-III.

Substituting xDuo-IV = w(1, 0, 0, 1, 0, 0, 0, 0) into F̃1, we have

F̃1(xDuo-IV, ψ) = w

∞∑
a=0

∞∑
d=0

Aa00d0000(ψ)wa+d ≈ w{a0ψ + (a1 + a4)w}.

We see that F̃1(xDuo-IV, ψ) = 0 has the trivial solution (w = 0) and a bifurcating solution:

ψ = ψDuo-IV ≈ −
a1 + a4

a0
w. (B.145)

Substituting xDuo-IV into F̃4 in (B.116), we see that F̃4 = F̃1 = 0. Hence, the bifurcation equation
is satisfied for xDuo-IV.

Substituting xDuo-V = w(1, 0, 0, 0, 1, 0, 0, 0) into F̃1, we have

F̃1(xDuo-V, ψ) = w

∞∑
a=0

∞∑
e=0

Aa000e000(ψ)wa+e ≈ w{a0ψ + (a1 + a5)w}.

We see that F̃1(xDuo-V, ψ) = 0 has the trivial solution (w = 0) and a bifurcating solution:

ψ = ψDuo-V ≈ −
a1 + a5

a0
w. (B.146)

Substituting xDuo-V into F̃5 in (B.117), we see that F̃5 = F̃1 = 0. Hence, the bifurcation equation is
satisfied for xDuo-V.

Substituting xDuo-VI = w(1, 0, 0, 0, 0, 1, 0, 0) into F̃1, we have

F̃1(xDuo-VI, ψ) = w

∞∑
a=0

∞∑
f=0

Aa0000 f 00(ψ)wa+ f ≈ w{a0ψ + (a1 + a6)w}.

We see that F̃1(xDuo-VI, ψ) = 0 has the trivial solution (w = 0) and a bifurcating solution:

ψ = ψDuo-VI ≈ −
a1 + a6

a0
w. (B.147)

Substituting xDuo-VI into F̃6 in (B.118), we see that F̃6 = F̃1 = 0. Hence, the bifurcation equation
is satisfied for xDuo-VI.

Substituting xDuo-VII = w(1, 0, 0, 0, 0, 0, 0, 1) into F̃1, we have

F̃1(xDuo-VII, ψ) = w

∞∑
a=0

∞∑
h=0

Aa000000h(ψ)wa+h ≈ w{a0ψ + (a1 + a8)w}.

We see that F̃1(xDuo-VII, ψ) = 0 has the trivial solution (w = 0) and a bifurcating solution:

ψ = ψDuo-VII ≈ −
a1 + a8

a0
w. (B.148)
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Substituting xDuo-VII into F̃8 in (B.120), we see that F̃8 = F̃1 = 0. Hence, the bifurcation equation
is satisfied for xDuo-VII.

Substituting xMono-II = w(1, 0, 0, 0, 0, 0, 0, 0) into F̃1, we have

F̃1(xMono-II, ψ) = w

∞∑
a=0

Aa0000000(ψ)wa ≈ w{a0ψ + a1w}.

We see that F̃1(xMono-II, ψ) = 0 has the trivial solution (w = 0) and a bifurcating solution:

ψ = ψMono-II ≈ −
a1
a0

w. (B.149)

Hence, the bifurcation equation is satisfied for xMono-II.

B.2.3. Stability of Bifurcating Solutions
The asymptotic form of the Jacobian matrix J̃ = ∂F̃/∂x becomes

J̃(x, ψ) ≈ ψa0I8 + x1 J̃1 + x2 J̃2 + x3 J̃3 + x4 J̃4 + x5 J̃5 + x6 J̃6 + x7 J̃7 + x8 J̃8, (B.150)

where

J̃1 =



2a1 a2 a3 a4 a5 a6 a7 a8
0 a2 0 0 0 0 0 0
0 0 a7 0 0 0 0 0
0 0 0 a4 0 0 0 0
0 0 0 0 a5 0 0 0
0 0 0 0 0 a6 0 0
0 0 0 0 0 0 a3 0
0 0 0 0 0 0 0 a8


, J̃2 =



a2 0 0 0 0 0 0 0
a2 2a1 a8 a7 a6 a5 a4 a3
0 0 a8 0 0 0 0 0
0 0 0 a3 0 0 0 0
0 0 0 0 a6 0 0 0
0 0 0 0 0 a5 0 0
0 0 0 0 0 0 a4 0
0 0 0 0 0 0 0 a7


,

J̃3 =



a3 0 0 0 0 0 0 0
0 a8 0 0 0 0 0 0
a7 a8 2a1 a2 a3 a4 a5 a6
0 0 0 a2 0 0 0 0
0 0 0 0 a7 0 0 0
0 0 0 0 0 a4 0 0
0 0 0 0 0 0 a5 0
0 0 0 0 0 0 0 a6


, J̃4 =



a4 0 0 0 0 0 0 0
0 a7 0 0 0 0 0 0
0 0 a2 0 0 0 0 0
a4 a3 a2 2a1 a8 a7 a6 a5
0 0 0 0 a8 0 0 0
0 0 0 0 0 a3 0 0
0 0 0 0 0 0 a6 0
0 0 0 0 0 0 0 a5


,

J̃5 =



a5 0 0 0 0 0 0 0
0 a6 0 0 0 0 0 0
0 0 a3 0 0 0 0 0
0 0 0 a8 0 0 0 0
a5 a6 a7 a8 2a1 a2 a3 a4
0 0 0 0 0 a2 0 0
0 0 0 0 0 0 a7 0
0 0 0 0 0 0 0 a4


, J̃6 =



a6 0 0 0 0 0 0 0
0 a5 0 0 0 0 0 0
0 0 a4 0 0 0 0 0
0 0 0 a7 0 0 0 0
0 0 0 0 a2 0 0 0
a6 a5 a4 a3 a2 2a1 a8 a7
0 0 0 0 0 0 a8 0
0 0 0 0 0 0 0 a3


,
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J̃7 =



a7 0 0 0 0 0 0 0
0 a4 0 0 0 0 0 0
0 0 a5 0 0 0 0 0
0 0 0 a6 0 0 0 0
0 0 0 0 a3 0 0 0
0 0 0 0 0 a8 0 0
a3 a4 a5 a6 a7 a8 2a1 a2
0 0 0 0 0 0 0 a2


, J̃8 =



a8 0 0 0 0 0 0 0
0 a3 0 0 0 0 0 0
0 0 a6 0 0 0 0 0
0 0 0 a5 0 0 0 0
0 0 0 0 a4 0 0 0
0 0 0 0 0 a7 0 0
0 0 0 0 0 0 a2 0
a8 a7 a6 a5 a4 a3 a2 2a1


.

To begin with, we investigate the stability of Square-II solution. Evaluating the Jacobian matrix
at the point

(xSquare-II, ψSquare-II) = (w,w,w,w,w,w,w,w,−
a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8

a0
w),

we have

J̃(xSquare-II, ψSquare-II) ≈ w



a1 a2 a3 a4 a5 a6 a7 a8
a2 a1 a8 a7 a6 a5 a4 a3
a7 a8 a1 a2 a3 a4 a5 a6
a4 a3 a2 a1 a8 a7 a6 a5
a5 a6 a7 a8 a1 a2 a3 a4
a6 a5 a4 a3 a2 a1 a8 a7
a3 a4 a5 a6 a7 a8 a1 a2
a8 a7 a6 a5 a4 a3 a2 a1


. (B.151)

The eigenvalues of this matrix are given as follows:

λ1, λ2 ≈ w(a1 + a2 + a5 + a6) ± w(a3 + a4 + a7 + a8),
λ3, λ4 ≈ w(a1 − a2 + a5 − a6) ± w(a3 − a4 + a7 − a8),
λ5, λ6 ≈ w(a1 − a5) ± w

√
(a2 − a6)2 − (a3 − a7)2 + (a4 − a8)2 (repeated twice).

Thus, the stability of xSquare-II depends on the values of a1, . . . , a8. The other solutions can be
treated similarly. Tables B.2 and B.3 summarize the stability conditions of bifurcating solutions.

Evaluating the Jacobian matrix at the point

(xSquare-III, ψSquare-III) = (w, 0,w, 0,w, 0,w, 0,−
a1 + a3 + a5 + a7

a0
w),

we have

J̃(xSquare-III, ψSquare-III) ≈ w



a1 a2 a3 a4 a5 a6 a7 a8
0 α 0 0 0 0 0 0
a7 a8 a1 a2 a3 a4 a5 a6
0 0 0 α 0 0 0 0
a5 a6 a7 a8 a1 a2 a3 a4
0 0 0 0 0 α 0 0
a3 a4 a5 a6 a7 a8 a1 a2
0 0 0 0 0 0 0 α


, (B.152)
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Table B.2: Stability conditions of bifurcating solutions for critical points associated with Type βi orbit.

Solution Case Stability conditions
xSquare-II w > 0, a1 + a2 + a5 + a6 < −|a3 + a4 + a7 + a8 |

(a2 − a6)2 − (a3 − a7)2 + (a4 − a8)2 ≥ 0 a1 − a2 + a5 − a6 < −|a3 − a4 + a7 − a8 |
a1 − a5 < −

√
(a2 − a6)2 − (a3 − a7)2 + (a4 − a8)2

w > 0, a1 + a2 + a5 + a6 < −|a3 + a4 + a7 + a8 |
(a2 − a6)2 − (a3 − a7)2 + (a4 − a8)2 < 0 a1 − a2 + a5 − a6 < −|a3 − a4 + a7 − a8 |

a1 − a5 < 0
w < 0, a1 + a2 + a5 + a6 > |a3 + a4 + a7 + a8 |
(a2 − a6)2 − (a3 − a7)2 + (a4 − a8)2 ≥ 0 a1 − a2 + a5 − a6 > |a3 − a4 + a7 − a8 |

a1 − a5 >
√
(a2 − a6)2 − (a3 − a7)2 + (a4 − a8)2

w < 0, a1 + a2 + a5 + a6 > |a3 + a4 + a7 + a8 |
(a2 − a6)2 − (a3 − a7)2 + (a4 − a8)2 < 0 a1 − a2 + a5 − a6 > |a3 − a4 + a7 − a8 |

a1 − a5 > 0
xSquare-III w > 0 −a1 + a2 − a3 + a4 − a5 + a6 − a7 + a8 < 0

a1 + a5 < −|a1 − a3 |
a1 − a5 < 0

w < 0 −a1 + a2 − a3 + a4 − a5 + a6 − a7 + a8 > 0
a1 + a5 > |a1 − a3 |
a1 − a5 > 0

xQuad-I w > 0 −a1 − a2 + a3 + a4 − a5 − a6 + a7 + a8 < 0
a1 + a6 < −|a2 + a5 |
a1 − a6 < −|a2 − a5 |

w < 0 −a1 − a2 + a3 + a4 − a5 − a6 + a7 + a8 > 0
a1 + a6 > |a2 + a5 |
a1 − a6 > |a2 − a5 |

xQuad-II w > 0 −a1 + a2 + a3 − a4 − a5 + a6 + a7 − a8 < 0
a1 + a5 < −|a4 + a8 |
a1 − a5 < −|a4 − a8 |

w < 0 −a1 + a2 + a3 − a4 − a5 + a6 + a7 − a8 > 0
a1 + a5 > |a4 + a8 |
a1 − a5 > |a4 − a8 |
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Table B.3: Stability conditions of bifurcating solutions for critical points associated with Type βi orbit.

Solution Case Stability conditions
xDuo-III w > 0 max(a3 + a4, a5 + a6, a7 + a8) < a1 + a2

a1 < −|a2 |
w < 0 min(a3 + a4, a5 + a6, a7 + a8) > a1 + a2

a1 > |a2 |
xDuo-IV w > 0 max(a2 + a7, a3 + a6, a5 + a8) < a1 + a4

a1 < −|a4 |
w < 0 min(a2 + a7, a3 + a6, a5 + a8) > a1 + a4

a1 > |a4 |
xDuo-V w > 0 max(a2 + a6, a3 + a7, a4 + a8) < a1 + a5

a1 < −|a5 |
w < 0 min(a2 + a6, a3 + a7, a4 + a8) > a1 + a5

a1 > |a5 |
xDuo-VI w > 0 max(a2 + a5, a3 + a8, a4 + a7) < a1 + a6

a1 < −|a6 |
w < 0 min(a2 + a5, a3 + a8, a4 + a7) > a1 + a6

a1 > |a6 |
xDuo-VII w > 0 max(a2 + a3, a4 + a5, a6 + a7) < a1 + a8

a1 < −|a8 |
w < 0 min(a2 + a3, a4 + a5, a6 + a7) > a1 + a8

a1 > |a8 |
xMono-II w > 0 max(a2, a3, a4, a5, a6, a7, a8) < a1 < 0

w < 0 min(a2, a3, a4, a5, a6, a7, a8) > a1 > 0
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where α = −a1 + a2 − a3 + a4 − a5 + a6 − a7 + a8. The eigenvalues of this matrix are given as
follows:

λ1, λ2 ≈ w(a1 + a5) ± w(a3 + a7),
λ3, λ4 ≈ w(a1 − a5) ± iw(a3 − a7),
λ5 ≈ w(−a1 + a2 − a3 + a4 − a5 + a6 − a7 + a8) (repeated 4 times).

Thus, the stability of xSquare-III depends on the values of a1, . . . , a8.
Evaluating the Jacobian matrix at the point

(xQuad-I, ψQuad-I) = (w,w, 0, 0,w,w, 0, 0,−
a1 + a2 + a5 + a6

a0
w),

we have

J̃(xQuad-I, ψQuad-I) ≈ w



a1 a2 a3 a4 a5 a6 a7 a8
a2 a1 a8 a7 a6 a5 a4 a3
0 0 α 0 0 0 0 0
0 0 0 α 0 0 0 0
a5 a6 a7 a8 a1 a2 a3 a4
a6 a5 a4 a3 a2 a1 a8 a7
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 α


, (B.153)

where α = −a1 − a2 + a3 + a4 − a5 − a6 + a7 + a8. The eigenvalues of this matrix are given as
follows:

λ1, λ2 ≈ w(a1 + a6) ± w(a2 + a5),
λ3, λ4 ≈ w(a1 − a6) ± w(a2 − a5),
λ5 ≈ w(−a1 − a2 + a3 + a4 − a5 − a6 + a7 + a8) (repeated 4 times).

Thus, the stability of xQuad-I depends on the values of a1, . . . , a8.
Evaluating the Jacobian matrix at the point

(xQuad-II, ψQuad-II) = (w, 0, 0,w,w, 0, 0,w,−
a1 + a4 + a5 + a8

a0
w),

we have

J̃(xQuad-II, ψQuad-II) ≈ w



a1 a2 a3 a4 a5 a6 a7 a8
0 α 0 0 0 0 0 0
0 0 α 0 0 0 0 0
a4 a3 a2 a1 a8 a7 a6 a5
a5 a6 a7 a8 a1 a2 a3 a4
0 0 0 0 0 α 0 0
0 0 0 0 0 0 α 0
a8 a7 a6 a5 a4 a3 a2 a1


, (B.154)
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where α = −a1 + a2 + a3 − a4 − a5 + a6 + a7 − a8. The eigenvalues of this matrix are given as
follows:

λ1, λ2 ≈ w(a1 + a5) ± w(a4 + a8),
λ3, λ4 ≈ w(a1 − a5) ± w(a4 − a8),
λ5 ≈ w(−a1 + a2 + a3 − a4 − a5 + a6 + a7 − a8) (repeated 4 times).

Thus, the stability of xQuad-II depends on the values of a1, . . . , a8.
Evaluating the Jacobian matrix at the point

(xDuo-III, ψDuo-III) = (w,w, 0, 0, 0, 0, 0, 0,−
a1 + a2

a0
w),

we have

J̃(xDuo-III, ψDuo-III) ≈ w



a1 a2 a3 a4 a5 a6 a7 a8
a2 a1 a8 a7 a6 a5 a4 a3
0 0 α 0 0 0 0 0
0 0 0 β 0 0 0 0
0 0 0 0 γ 0 0 0
0 0 0 0 0 α 0 0
0 0 0 0 0 0 β 0
0 0 0 0 0 0 0 γ


, (B.155)

where α = −a1− a2+ a7+ a8, β = −a1− a2+ a3+ a4, and γ = −a1− a2+ a5+ a6. The eigenvalues
of this matrix are given as follows:

λ1, λ2 ≈ w(a1 ± a2) (repeated twice),
λ3 ≈ w(−a1 − a2 + a3 + a4),
λ4 ≈ w(−a1 − a2 + a5 + a6),
λ5 ≈ w(−a1 − a2 + a7 + a8).

Thus, the stability of xDuo-III depends on the values of a1, . . . , a8.
Evaluating the Jacobian matrix at the point

(xDuo-IV, ψDuo-IV) = (w, 0, 0,w, 0, 0, 0, 0,−
a1 + a4

a0
w),

we have

J̃(xDuo-IV, ψDuo-IV) ≈ w



a1 a2 a3 a4 a5 a6 a7 a8
0 α 0 0 0 0 0 0
0 0 α 0 0 0 0 0
a4 a3 a2 a1 a8 a7 a6 a5
0 0 0 0 β 0 0 0
0 0 0 0 0 γ 0 0
0 0 0 0 0 0 γ 0
0 0 0 0 0 0 0 β


, (B.156)
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where α = −a1− a4+ a2+ a7, β = −a1− a4+ a5+ a8, and γ = −a1− a4+ a3+ a6. The eigenvalues
of this matrix are given as follows:

λ1, λ2 ≈ w(a1 ± a4) (repeated twice),
λ3 ≈ w(−a1 − a4 + a2 + a7),
λ4 ≈ w(−a1 − a4 + a3 + a6),
λ5 ≈ w(−a1 − a4 + a5 + a8).

Thus, the stability of xDuo-IV depends on the values of a1, . . . , a8.
Evaluating the Jacobian matrix at the point

(xDuo-V, ψDuo-V) = (w, 0, 0, 0,w, 0, 0, 0,−
a1 + a5

a0
w),

we have

J̃(xDuo-V, ψDuo-V) ≈ w



a1 a2 a3 a4 a5 a6 a7 a8
0 α 0 0 0 0 0 0
0 0 β 0 0 0 0 0
0 0 0 γ 0 0 0 0
a5 a6 a7 a8 a1 a2 a3 a4
0 0 0 0 0 α 0 0
0 0 0 0 0 0 β 0
0 0 0 0 0 0 0 γ


, (B.157)

where α = −a1− a5+ a2+ a6, β = −a1− a5+ a3+ a7, and γ = −a1− a5+ a4+ a8. The eigenvalues
of this matrix are given as follows:

λ1, λ2 ≈ w(a1 ± a5) (repeated twice),
λ3 ≈ w(−a1 − a5 + a2 + a6),
λ4 ≈ w(−a1 − a5 + a3 + a7),
λ5 ≈ w(−a1 − a5 + a4 + a8).

Thus, the stability of xDuo-V depends on the values of a1, . . . , a8.
Evaluating the Jacobian matrix at the point

(xDuo-V, ψDuo-VI) = (w, 0, 0, 0, 0,w, 0, 0,−
a1 + a6

a0
w),

we have

J̃(xDuo-VI, ψDuo-VI) ≈ w



a1 a2 a3 a4 a5 a6 a7 a8
0 α 0 0 0 0 0 0
0 0 β 0 0 0 0 0
0 0 0 β 0 0 0 0
0 0 0 0 α 0 0 0
a6 a5 a4 a3 a2 a1 a8 a7
0 0 0 0 0 0 γ 0
0 0 0 0 0 0 0 γ


, (B.158)
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where α = −a1− a6+ a2+ a5, β = −a1− a6+ a4+ a7, and γ = −a1− a6+ a3+ a8. The eigenvalues
of this matrix are given as follows:

λ1, λ2 ≈ w(a1 ± a6) (repeated twice),
λ3 ≈ w(−a1 − a6 + a2 + a5),
λ4 ≈ w(−a1 − a6 + a3 + a8),
λ5 ≈ w(−a1 − a6 + a4 + a7).

Thus, the stability of xDuo-VI depends on the values of a1, . . . , a8.
Evaluating the Jacobian matrix at the point

(xDuo-V, ψDuo-VII) = (w, 0, 0, 0, 0, 0, 0,w,−
a1 + a8

a0
w),

we have

J̃(xDuo-VII, ψDuo-VII) ≈ w



a1 a2 a3 a4 a5 a6 a7 a8
0 α 0 0 0 0 0 0
0 0 β 0 0 0 0 0
0 0 0 γ 0 0 0 0
0 0 0 0 γ 0 0 0
0 0 0 0 0 α 0 0
0 0 0 0 0 0 β 0
a8 a7 a6 a5 a4 a3 a2 a1


, (B.159)

where α = −a1− a8+ a2+ a3, β = −a1− a8+ a6+ a7, and γ = −a1− a6+ a4+ a5. The eigenvalues
of this matrix are given as follows:

λ1, λ2 ≈ w(a1 ± a8) (repeated twice),
λ3 ≈ w(−a1 − a8 + a2 + a3),
λ4 ≈ w(−a1 − a8 + a4 + a5),
λ5 ≈ w(−a1 − a8 + a6 + a7).

Thus, the stability of xDuo-VII depends on the values of a1, . . . , a8.
Evaluating the Jacobian matrix at the point

(xMono-II, ψMono-II) = (w, 0, 0, 0, 0, 0, 0, 0,−
a1
a0

w),

we have

J̃(xMono-II, ψMono-II) ≈ w



a1 a2 a3 a4 a5 a6 a7 a8
0 α 0 0 0 0 0 0
0 0 β 0 0 0 0 0
0 0 0 γ 0 0 0 0
0 0 0 0 γ 0 0 0
0 0 0 0 0 α 0 0
0 0 0 0 0 0 β 0
a8 a7 a6 a5 a4 a3 a2 a1


. (B.160)
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The eigenvalues of this matrix are given as follows:

λ1 ≈ wa1,

λ2 ≈ w(−a1 + a2),
λ3 ≈ w(−a1 + a3),
λ4 ≈ w(−a1 + a4),
λ5 ≈ w(−a1 + a5),
λ6 ≈ w(−a1 + a6),
λ7 ≈ w(−a1 + a7),
λ8 ≈ w(−a1 + a8).

Thus, the stability of xMono-II depends on the values of a1, . . . , a8.
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