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ABSTRACT

Weaves are complex entangled objects that mainly differ from general
links because they contain no closed components. Although weaves have
been investigated for so many years, we still do not have a universal study
to describe them. Several interesting attempts have been made to approach
them from a mathematical point of view and this thesis contributes to it by
introducing a new way to define, construct, and classify topological weaves.

In Chapter 2, based on our paper [21], we state a new definition of weaves
as the lift to the thickened Euclidean plane X3 of a quadrivalent graph Γ in
E2 made of colored straight lines, such that each vertex is specified by an
over or under information given by a set of crossing sequences Σ.

Definition 0.1. [21] We call untwisted weave the lift to X3 of a pair (Γ,Σ)
of E2. Moreover, two threads are said to be in the same set of threads, if they
are the lift of straight lines belonging to the same color group.

More complex weaves, called twisted weaves, can be defined from these
untwisted ones by introducing twists between neighboring threads of the
same color, via some local surgeries, called ±k-moves in knot theory.

Definition 0.2. [21] A twisted weave is the lift to X3 of a pair (Γ,Σ) embed-
ded on E2 admitting at least a twisted region. Moreover, if two threads twist
their total number of twists is even and they cannot twist with other threads.

We also define diagrammatic representations to study their properties.

Definition 0.3. [21] The planar projection W0 of a weave W by π : X3 → E2,
(x, y, z) 7→ (x, y, 0) is called a regular projection. When all its vertices are
specified by an over or under information, it is called a weaving diagram DW0.
And if DW0 is periodic, then any generating cell is called a weaving motif.
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In Chapter 3, we introduce a systematic way to construct weaving motifs
[22], based on the concept of polyhedral link defined by W.Y. Qiu et al. [47].
The strategy consists in covering the edges and vertices of a generating cell
UT of a periodic tiling T of E2 by crossed strands with respect to the polyg-
onal link methods, denoted by (Λ, L). However, we have noticed that these
methods can generate closed curves and have developed a way to predict the
construction of weaving motifs using algebraic and combinatorial arguments.

Theorem 0.4. [22] (Construction of Weaving Motifs) A weaving motif
is created from a pair

(
UT , (Λ, L)

)
if and only if all the characteristic loops

in UT are nontrivial polygonal chains with at least two non-equivalent ones.

In Chapter 4, we take a first step towards the classification of alternating
weaving motifs [48], via the extension of two famous theorems of knot theory.
By alternating, we mean that the crossings alternate cyclically between under
and over. To achieve this goal, we generalize the concept of reduced diagram
to periodic weaves and extend the Kauffman bracket polynomial [39], defined
for weaving motifs on a torus in [25], to higher genus surfaces Σg.

Theorem 0.5. [48] (Tait’s First and Second Conjectures for Weaves)
The crossing number and the writhe of a Σg-reduced alternating minimal di-
agram of its periodic alternating weaving diagram are weaving invariants.

Chapter 5 ends this manuscript with a strong result in terms of classifi-
cation of the class of doubly periodic untwisted (p, q)-weaves, based on our
paper [21]. First, we construct a new weaving invariant defined as a set of
crossing matrices, whose elements are symbols ±1 characterizing the organi-
zation of crossings in a generating cell. Then, we prove our main theorem.

Theorem 0.6. [21] (Equivalence Classes of Doubly Periodic Un-
twisted (p, q)-Weaves) Let W1 and W2 be two doubly periodic untwisted
(p, q)-weaves with N ≥ 2 sets of threads, such that their corresponding regu-
lar projections are equivalent, up to isotopy of E2, and with the same set of
crossing sequences. Let DW1 and DW2 be two weaving motifs of same area of
W1 and W2, respectively. Then, DW1 and DW2 are equivalent if and only if
their crossing matrices are pairwise equivalent.

Then, in a logic of classification in terms of crossings, we state a solution
to the open problem of finding the crossing number of weaving motifs for
doubly periodic untwisted (p, q)-weaves. The idea is to use combinatorial
arguments on the torus to obtain a formula which depends on (Γ,Σ).
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Chapter 1

INTRODUCTION

Objects whose structure can be represented by open or closed intertwined
strings are studied and used since ancient times for many purposes in the
fields of art, science, labor, and engineering among others. In mathematics,
we mainly find some of these entangled objects in the area of knot theory
which emerged around the 19th century as a branch of topology [1], while in
materials science, they appear at different scales from old traditional textiles
to recent nanomolecules. Our modern society faces many important prob-
lems, and one of our main challenges is to create innovative multifunctional
materials that could contribute to the solution of some of them. Materials
with an entangled structure are in particular very complex, multi-scale and
multi-sciences systems, with hidden mechanisms that characterize functions.
When studying such materials, there are many trials and errors based on ex-
perience and intuition, which end up being very costly, both in terms of time
and money. However, we can now benefit from using big data to explore new
materials using computers for simulation and prediction. For this purpose,
it is essential to translate this material knowledge into a language under-
standable by computers, which justifies the interest in creating mathematical
models to encode the entangled objects. Indeed many mechanical functions
come from the structure of a material that can be described using geometry
and topology, which therefore inspire new mathematical developments [36].
On the other hand, materials science is also a great source of inspiration
for developing new mathematical theories, such as the early interest in knot
theory which came from chemistry. For this thesis, polymer science [63] and
textile design [46], [62] have also been driving forces to develop this new
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topological theory of weaving, and to study weaves as mathematical objects
in knot theory, as also suggested by S.A. Grishanov et al. [23], [24].

Weaves are structures that can intuitively be described by multiple threads,
more or less thick or curved, interlaced into each other in our three-dimensional
physical space. They differ from general links in knot theory mainly because
they do not contain any closed components. In this thesis, we will be more
particularly interested in weaves that can be described as ‘flat’, in the sense
that they can be embedded in the thickened plane, see Figure 1.1 for exam-
ples. Woven objects include traditional and innovative woven fabrics, which
were first handmade with a design process that seemed to be already known
27,000 years ago. At the molecular scale, they appear for example in metal
organic frameworks (MOFs) and covalent organic frameworks (COFs), which
are porous crystalline solids used for gas and energy storage, drug delivery
systems, or even semiconductors, among many applications [45], [34]. How-
ever, although such structures have been investigated for so many years all
over the world and by different groups of people, the scientific community
has not yet agreed on a formal description of weaves, so that they can be dis-
tinguished from other complex entangled structures exhibiting different func-
tionalities. Moreover, we still do not have a universal study about weaves to
identify and classify them. Many inspiring attempts, which will be described
below, have been made to study woven structures from a mathematical point
of view and many questions still remain open. This thesis contributes to this
challenge by proposing a new systematic approach, based on low-dimensional
topology, to define, construct, and classify weaves as topological objects.

1.1 Mathematical description of weaves

To define entangled structures from a mathematical point of view, different
strategies have been considered. One of the first that caught our attention
is the research of B. Grünbaum and G.C. Shephard, which introduced an
ideal geometric model of existing weaves in the textile industry. They are
among the first groups of mathematicians who worked on the mathematics
of textiles [28], [29], [30], [32], apart from E. Lucas who targeted a specific
subclass of weaves called satins [14]. They defined a weave as an unbounded
and rigid structure made from strands, which are doubly infinite open strips
of constant width without thickness, organized into layers. By layer is meant
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Figure 1.1: Two examples of weaves.

here a set of congruent and disjoint parallel strands such that each point of
the plane either belongs to the interior of exactly one of the strands or lies
on the boundary of two adjacent strands. In particular, a weave consists
of at least two layers of congruent strands on the same plane such that the
strands of the different ones are not parallel and intertwine over and under
each other respecting a ranking, and such that it is impossible to partition
the set of all strands into two nonempty subsets, where each strand of the
first subset would pass over every strand of the second subset.

Grishanov et al. [23], [24], [25], [26], [27], [54], chose knot theory to
study textiles, including weavings as well as other different types of entan-
gled structures. They described them topologically in a single class of doubly
periodic structures embedded in the thickened Euclidean plane and consist-
ing of interwoven threads. These threads are assumed to be smooth spatial
curves that can be continuously deformed without breaking or crossing each
other or themselves. As pointed out in their study, even if doubly periodic
structures seem similar to general knots and links, they cannot contain closed
components or knots tied on their threads nor non-interlaced threads, dis-
connected strips, or layers. This description was formalized and generalized
by V. Kurlin et al. with the mathematical definition of a textile structure
as a set of continuous open or also closed curves embedded without intersec-
tions in the thickened Euclidean plane, preserved under translations by two
linearly independent directions [6]. The periodicity allows a description of
the complete structure in a generating cell, which is defined as an embedding
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of a finite number of closed curves in a thickened torus, and thus as a specific
type of link which depends on the choice of the periodic cell.

Other scientists with various scientific backgrounds have chosen a differ-
ent strategy for describing weavings using graphs and tilings. B. Thompson
and S.T. Hyde described a weave as any decomposition of a connected graph,
called a parent net, into multiple subgraph components, and specified the en-
tanglement of the different components with a color sequence characterizing
the over or under information at the split vertices [67]. They use tilings of the
Euclidean and hyperbolic planes, as well as tilings of the two-sphere to obtain
their results. In particular, they constructed entangled networks from two
dual regular nets of the two-dimensional spaces. The first step is to choose
the topology of one of the components and then, enumerate all the ways to
color the edges of these nets with two colors, using the Dress-Delaney symbol
from the combinatorial tiling theory. More generally and for many years,
S.T. Hyde, M. Evans, and their coauthors have not limited themselves to the
study of weaving of threads-like components but have also considered the
entanglements of closed components and nets in different surfaces, including
doubly and triply periodic structures, as discussed in [8], [16], [17], [18], [34],
[35], [67]. Another example is that of E.D. Miro et al. who also considered
the theory of hyperbolic tilings to study weaving networks in [52], [53], [72].
The idea is to first build a tiling from the repeating of one triangle, which
is then colored using subgroups of the triangle group. Furthermore, new col-
ored vertices and edges are constructed to form two different nets, and thus,
a woven structure is defined as the union of these two nets together with a
weaving map describing the position of the two nets at each crossing point.

M. O’Keeffe, O.M. Yaghi et al. gave a different description of the weaving
of threads, loops, and two-periodic nets [45]. In their work, such structures
are considered piecewise linear, which means that they consist of linear seg-
ments that meet at divalent vertices, which is a characterization that inspired
us. In the case of traditional weavings in the textile industry, they noticed
that if the threads are pulled straight they intersect on the lattice plane and
the points of intersection appear as the vertices of a two-periodic net. In
particular, for weaves with threads organized in two directions, the net is
that of the square lattice, and for three directions, the net is either that of
the kagome pattern or the hexagonal lattice. They also identified other types
of interwoven structures made of threads, such that their projection is not
linear, which are defined so that if these threads are stretched and allowed
to go accross each other, they become parallel lines. This type of network is
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called a chain-link weaving and the conventional knitting is a special case of
this class. A different kind of entangled objects consists in the interlacing of
n loops, which are called [n]-catenanes, or polycatenanes, while another class
described in their work is that of entangled structures consisting of the union
of at least two nets, also mentioned in the studies of Hyde et al.

Finally, T. Kechadi et al. found a way to describe textile structures that
include weaves, knits, and braids, using the notion of hypergraph which do
not limit to periodic and infinite patterns [58]. Here a textile graph is defined
as a hypergraph consisting of a set of vertices belonging to crossings, a set of
hyperedges of degree four that connect these vertices, a set of terminal nodes
that end the threads, a set of regular edges of degree two with information
describing which thread is on the top at each crossing, and lastly a set of
edges connecting vertices to vertices of other crossings or terminal nodes.

All these studies are very interesting and provide complementary points
of view that allow a better comprehension of the hidden structure of complex
entangled objects. However, they often do not distinguish weaves from other
complex entangled structures such as links, (poly)catenanes, or knits, which
seems essential from our point of view. Indeed, as explained by Grishanov
et al. [23], entanglement has a direct influence on the physical and mechan-
ical properties of materials. We believe that a weave should be a structure
containing components that are neither closed curves, nets, nor threads that
become ‘parallel’ once pulled straight. Moreover, we also note that even if
the notion of weaving with more than two directions has been mentioned
in the literature, the examples studied in depth mainly consist of threads
organized in two or three directions. We think that more complex weaves
deserve further investigation, which inspired our work. Indeed, so far the
results mentioned in the literature cited above which satisfy our definition
of weaves seem relevant for existing materials, but might be limited if one
wants to consider more complex patterns.

1.2 Mathematical construction of weaves

Different approaches have been considered to create a mathematical algo-
rithm that can generate a weave, as well as other entangled structures. We
will only state the methods found in the literature which make it possible to
construct a weave within the meaning of our definition.
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In [67], Hyde et al. constructed a weave in the thickened Euclidean or
hyperbolic plane from a periodic connected graph embedded in an oriented
surface, the previously called parent net. Then, they color the edges so that
distinct components of the weaves are distinguished by colors. Therefore,
two different types of vertices emerge from a parent net, which are either
monochromatic vertices if all incident edges have the same color, or poly-
chromatic vertices otherwise. Then, these latter are separated into at least
two disjoint vertices displaced from each other along the surface normal. We
observed from their work that if the distinct colored components satisfy the
definition of a thread and that each polychromatic vertex splits into exactly
two vertices, then the structure generated by their method is a weave.

Grünbaum and Shephard have chosen to formalize a classic and well-
known approach used in the textile industry. This consists in associating each
doubly periodic weave built from two sets of threads, namely a biaxial weave,
with a chessboard of black and white squares describing the entanglement
in a periodic cell [28], [29], [30], [32]. Such a chessboard is called the design
of a weave, and by repeating this design by translations in horizontal and
vertical directions, the biaxial weave can be reconstructed. They focused on
the construction of a particular class of biaxial doubly periodic weaves, called
isonemal fabrics, which are characterized such that for any pair of strands
(s, s′), there exist a symmetry of the structure that maps s to s′. Regarding
the design of an isonemal fabric, this implies that any row or column of
black and white squares can be mapped into any other row or column by
either a symmetry of the design or by such a symmetry combined with the
exchange of black and white colors. Different types of biaxial weaves have
been constructed from a design. They considered isonemal fabrics associated
with designs constructed in am n × n square block such that each row is
deduced from the one above by a shift of a units to the left, for different
fixed value of the integer a. The case a = 1 generates a class of weaves called
twills, while the case s2 = ±1mod(n) generates different weaves called satins.
More precisely, it is possible to assign to each square of a design integer
coordinates (x, y), where x denotes the column and y denotes the row of the
given square. For the case of twills, consider an infinite sequence A = (ai)

+∞
−∞

of 0 and 1, then the design of an A-twill is given such that the (x, y)-square
is colored black if ay−x = 1 and white if ay−x = 0, or alternatively such that
these relations hold after the design has been turned through an angle of π

2
.

However, to construct a satin, the design must contain a single black square
in each row, and the position of that square is moved from one row to the
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next over a step of a units to the right. This can be defined so that the
(x, y)-box of the design is colored black if and only if sy = xmod(n). They
attempted a generalization to more directions using a tiling defined by sets of
parallel and equidistant straight lines with a symbol to describe the ranking
of the crossings, as a generalization of the bicolored design.

More recently, Kurlin et al. extended the concept of the Gauss codes de-
fined in knot theory, to textile structures including weaves [6]. The idea is to
describe the order of over and undercrossings in a doubly periodic structure
using a cyclic word, called an abstract textile code. Then, from this code, a
textile graph is built starting from the vertices which represent the crossings.
The next step is the construction of non-oriented edges of the textile graph
from pairs of successive symbols in the abstract code, and to find oriented
cycle in the graph following given rules. One must verify that each oriented
edge is passed once in each of two opposite directions and if any contradic-
tions appear, then the code is said to be unrealizable. Finally, by attaching
a topological disk to the resulting oriented cycle along its boundary, the Eu-
ler characteristic of the structure is computed. If this compact surface is
orientable, has an empty boundary, and a Euler characteristic equal to zero,
then this algorithm generates a doubly periodic structure, which can possibly
be a weave.

Finally, another recent and interesting mathematical approach has been
considered by chemists, who have constructed two classes of periodic and
symmetric structures, the previously mentioned biaxial and triaxial weaves
[45]. An infinite family of regular and symmetric biaxial weaves can be con-
structed starting with two parallel square lattices of points on top of each
other, defined by perpendicular vectors a and b. The next step is to connect
two points related by a symmetry without belonging to the same lattice and
which are separated by vector ua+ vb, u and v being integers. Then, an em-
bedding of the structure in a generating cell with an appropriate origin and
axis of symmetry will create a weave for which the over and undercrossings
will alternate for certain values of u and v. Other subclasses of biaxial weaves
were constructed with the same method by replacing each thread either by
a set of multiple parallel threads or by a helical pair of entwined threads.
For the case of triaxial weaves, similar strategies have been considered by
replacing the square lattices with trihexagonal lattices, also called kagome.

7



1.3 Structure of the manuscript

Inspired by the connections between weaving, knot theory, and tiling theory
mentioned above, we will introduce in this thesis a new topological model
for particular classes of weaves to define, construct and classify them. This
thesis is based on our results in [21], [22], and [48].

In Chapter two, which is based on our work in [21], [48], we enter the
core of this thesis by introducing our new topological definition of weaves
to distinguish them from other complex entangled structures. Note that
we will not consider geometrical characteristics such as lengths, angles, and
curvatures in this thesis. In summary, we will define a weave as the lift to
the thickened Euclidean plane of a particular type of planar quadrivalent
connected graph consisting of infinite open curves organized in at least two
‘directions’, together with a crossing information at each vertex. These curves
are straight lines in the case of an untwisted weave and we will define a twisted
weave from an untwisted one to which we apply surgery to include twists.
The main challenge and contribution of this first step were to describe the
crossing information in a pairwise fashion. Indeed, for any weave W with
N ≥ 2 disjoint sets of threads T1, · · · , TN , we will define the notion of crossing
sequence, which is considered for each pair of sets. The simplest cases that
illustrate this consideration are weaves with crossings sequences that can be
described by two integers, as defined below.

Definition 1.1. [21] Let i, j, and k be strictly positive integers. A (p, q)-
weave W is defined such that all its crossing sequences, possibly distinct, can
be described by two positive integers pk and qk. In other words, if Ci,j =
(+pk,−qk) is the crossing sequence of minimal length associated with the
disjoint sets of threads Ti and Tj of W, then, each thread of Ti is cyclically
pk consecutive times over the threads of Tj, followed by qk consecutive times
under.

A more complete and general definition of crossing sequences will also be
given in this chapter. Note that the pairwise condition will be a key ele-
ment to construct and compute interesting topological parameters to classify
weaves in the next chapters. Then, as in knot theory, we will show that there
exists a direct correspondence between a weave in the thickened Euclidean
plane and its planar representation that covers E2, called an infinite diagram.
Moreover, if such an infinite diagram is periodic, we will call any generating
cell a weaving motif. We will discuss some properties of weaving diagrams
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and will also introduce the notion of hyperbolic weaving diagrams, with the
aim of formalizing the description of such structures used by the community
as mentioned in the sections above.

Chapter three will focus on the construction of doubly periodic untwisted
and twisted weaving diagrams. Inspired by the construction of links from
Platonic and Archimedean polyhedra using the concept of polyhedral link
defined by W.Y. Qiu et al. in [33], [47], [60], we applied the same strategy
to periodic planar tilings. In this chapter, which is based on our results in
[22], we will indeed start with the mathematical formalization of the three
construction methods that they defined using illustrations for polyhedra, and
we will call them polygonal link methods when applied to the plane. Note
that given the interest in weaving using hyperbolic tilings of the plane by
other scientists as mentioned above, we can state that these methods can be
generalized to any surface tiled by edge-to-edge polygons. The main idea is
to cover each edge of a polygon with one or two strands, that can possibly
twist, and glue them at a neighborhood of each vertex respecting a specific
pattern which will be described in detail in this chapter. We observed that
this generalization to the plane defines a new systematic way of constructing
weaving diagrams, but also diagrams of other types of entangled structures
such as the polycatenanes mentioned earlier, as well as mixed structures
made of both open and closed components. These methods can be applied
to any edge-to-edge tiling by polygons and our main contribution concerns
the characterization of doubly periodic structures. More specifically, we will
show that one can predict the type of entangled structure that can generate
a given polygonal link method applied to a chosen doubly periodic tiling of
the plane, namely a weaving motif, a polycatenane motif, or a mixed motif.
Indeed, each curve created by of the polygonal method (Λ, L) will cover a
closed path in the original skeleton of any periodic cell of a tiling T , called
a characteristic loop and denoted by δ(Λ,L).

Theorem 1.2. [22] Let UT be a periodic cell of T . Then, a pair
(
UT , (Λ, L)

)
will generate,

• a polycatenane motif if and only if all the characteristic loops δ(Λ,L) in
UT are trivial polygonal chains.

• a mixed motif if and only if the set of all the characteristic loops δ(Λ,L)

in UT contains at least a trivial polygonal chain and a nontrivial one.
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• a weaving motif if and only if all the characteristic loops δ(Λ,L) in UT
are nontrivial polygonal chains, and such that at least two of them are
non-parallel.

In Chapter four, we will state our first results [48] concerning the classi-
fication of a particular class of weaves, called alternating, that is to say that
the crossings of such weaves alternate cyclically between undercrossings and
overcrossings, as one travels along each of its components. Classical tools
and results of knot theory can be generalized to weaving theory in order to
describe and classify them. As for general knots and links, one of the main
criteria in which we are interested to study the classification of weaves is the
number of crossings, since it is a useful parameter to describe the complex-
ity of entangled objects [24]. In particular, we will show that we can extend
Tait’s first and second conjectures on alternating links to our periodic weaves.
These conjectures, proven a century later, state that the crossing number and
the writhe of an alternating reduced link diagram are topological invariants,
meaning properties that hold for all different diagrams of the same link. A
reduced diagram is a diagram that does not contain any isthmus, which is a
crossing that does not separate its neighborhood into four distinct regions.
By crossing number, we mean the minimal number of crossings that can pos-
sibly be found in any projection to the plane, while the writhe is defined as
the sum of the signs of all the crossings, where each crossing is given a sign
±1. Since any generating cell of a periodic weave can be seen as a particular
type of link, our proofs are a generalization of existing ones in classic knot
theory, from L.H. Kauffman [39] and R. Stong [64] respectively. However,
considering that such a link results from the ‘closure’ of strands embedded
in a periodic cell, which are in fact segments of infinite open curves, they
will be treated differently. Moreover, to make sense to the notion of weaving
invariant applied to motifs, such as the minimal number of crossing, this
must apply to a minimal periodic cell, called minimal motif, and not to any
generating cell made of copies of a smaller one. In this study, our contribu-
tion lies in the definition of a reduced weaving motif. Besides, depending on
the choice of generating cell in the infinite diagram, a weaving motif might
contain an isthmus that would disappear if one considers a ‘bigger’ cell made
of copies of this first. Thus, by iteration, we will say that a weaving motif
is reduced if its corresponding infinite diagram is reduced. Regarding the
second conjecture, the main difference with the case of general links is that
in a weaving diagram a thread component never crosses itself unless it makes
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a simple sequence of twists that can be easily undone. Then, we also gener-
alized the Kauffman bracket polynomial invariant defined for weaving motifs
on the torus by Grishanov et al. [25] to motifs on higher genus surfaces.

Theorem 1.3. (Tait’s First and Second Conjectures for Alternat-
ing Periodic Weaves) [48]

(1) A reduced alternating minimal motif is a minimum diagram of its al-
ternating periodic weave.

(2) Two reduced alternating minimal motifs of an oriented periodic weave
have the same writhe.

At this point, it must be emphasized that weaving motifs represent pe-
riodic structures consisting of open curves, which is why they are treated
differently from general link diagrams embedded on compact surfaces, even
though weaving motifs are also link diagrams on similar surfaces. These two
Tait’s conjectures have been proved by T. Fleming et al. [20], or more re-
cently by H.U. Boden and H. Karimi [5] for general link diagrams on compact
surfaces with a different approach.

In Chapter five, we will focus on the classification of doubly periodic un-
twisted (p, q)-weaves of the Euclidean thickened plane, which is based on our
paper [21]. Such a weave can be characterized on E2 by a planar graph Γ
composed of straight lines that cross in double points, with respect to a set of
crossing sequences Σ as defined in Definition 1.1. However, the way to assign
the over or under information to each crossing given by Σ not unique, as we
will see in this chapter. This motivated the characterization of equivalence
classes of weaves and the construction of a new topological invariant for this
class of weaves. This weaving invariant is a set of crossing matrices, denoted
Π and whose elements are symbols ±1, which characterize the organization
of the crossings on a periodic cell.

Theorem 1.4. (Equivalence Classes of doubly periodic untwisted
(p, q)-weaves) [21] Let W1 and W2 be two doubly periodic untwisted (p, q)-
weaves with N ≥ 2 sets of threads, such that their corresponding regular
projections Γ are equivalent, up to isotopy of E2, and with the same set of
crossing sequences Σ. Let DW1 and DW2 be two weaving motifs with the same
number of crossings of W1 and W2, respectively. Then, DW1 and DW2 are
equivalent if and only if their crossing matrices are pairwise equivalent.
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Then, in the continuity of the study of the number of crossings of weaves,
we will address the question of finding the crossing number of this class
of weaves, denoted by C. Proving that the crossing number is a weaving
invariant in Chapter four was an important first step. However, computing
this number has been a difficult open problem, since there exists an infinite
number of ways to choose a periodic cell for such weaves, possibly with a
different number of crossings, as stated in [25]. Nevertheless, an approach
using combinatorial arguments allowed us to find a total crossing number
formula [21], which depends on a pairwise crossing number formula that
relates itself to the pair (Γ,Σ). We also give a characterization of minimal
diagrams in terms of the slopes of the strands. Therefore, with the results
stated in this thesis, we are now able to classify doubly periodic untwisted
(p, q)-weaves using Γ,Σ,Π, C, as well as the bracket polynomial and other
classical knot invariants that easily generalize to doubly periodic structures,
which are listed in [24].

Finally, we will conclude this thesis with some future perspectives for the
mathematical study of weaves.
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Chapter 2

WEAVES, WEAVING
DIAGRAMS AND WEAVING
MOTIFS

The aim of this chapter, which is based on our work in [21], [48], is to
define a weave as a topological object in such a way that it can be easily
distinguished from another type of entangled structure consisting of one-
dimensional open curves, like a knit [68], [69], or a braid [42] for example,
which are constructed from a single set of threads.

First, define a set of straight lines embedded on the Euclidean plane E2

and belonging to at least two disjoint color groups. We will say that two
such lines belong to different color groups if they intersect. Moreover, we
only admit intersections corresponding to double points, which means ver-
tices of degree four. Note here that knits and braids would be characterized
by only one color group. Then, we specify each vertex with an over or un-
der information using arcs, called crossing, with respect to a set of crossing
sequences. By a crossing sequence, we mean a sequence of minimal length
consisting of integers that characterize in a pairwise fashion the number of
consecutive over or under information that appear while walking on a given
colored line. In other words, this means that each such crossing sequence is
associated with only two colors. Then, we will define an untwisted weave as
the lift to the Euclidean thickened plane of these curves, called threads, such
that they do not intersect in X3. This simple class of weaves will serve as
a basis to describe more complex structures. By introducing twists between
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nearest neighboring threads of the same color via some local surgeries, we
will indeed define the class of twisted weaves. We will also define the notion of
trivial weave, called unweave, by specifying the crossings such that the struc-
ture ‘fall apart’ or is not entangled. In the second part of this chapter, we
will discuss diagrammatic representations of weaving. Weaves being objects
embedded in the thickened Euclidean plane, a simpler way to approach them
is by studying their regular projections onto E2, which encode the crossing
information, as for general knots and links. Finally, in the last section, we
will study a particular class of weaves having the property of being periodic
and with simple cyclic crossing sequences, called (p, q)-weaves. The period-
icity allows a full description of these objects in a periodic cell, which can be
seen as particular links embedded in a thickened surface of genus g ≥ 1.

2.1 Preliminaries on general knots and links

In this section, we recall basic definitions and properties of general knots and
links that were essential to introduce weaves as topological objects. We refer
to the classic books on knot theory by C.Adams [1], K. Murasugi [57], and
R. Lickorish [44] for further details.

2.1.1 Knots and links

Intuitively, a knot is an entangled circle with no thickness nor self-intersection
in a three-dimensional ambient space, without any starting or endpoint. In
other words, it is a smooth embedding of S1 in E3 or S3. A link is defined as a
finite union of knots. From an aesthetic point of view, these objects are drawn
as smooth curves, as illustrated in Figure 2.1, however, each knot must be
considered as a polygonal closed curve. This piecewise linear condition implies
that each curve is made up of a finite number of straight line segments placed
end to end, which prevents a link from having any pathology such as a sharp
twist or a part of a knot converging to a point. Such a link isotopic to a
polygonal link is called tame. Otherwise, it is said to be wild.

Definition 2.1. A link L is a finite union of disjoint piecewise linear simple
closed curves embedded in S3 or R3. Moreover, a link consisting of a single
component is called a knot.
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Figure 2.1: Left: unknot. Center: trefoil knot. Right: boromean ring.

Definition 2.2. A knot is said to be trivial if it bounds an embedded piecewise
linear disk in S3 or R3. We also call such a trivial knot the unknot. Moreover,
a k-component link is said to be trivial if it consists of k disjoint trivial knots.

Then, we can easily assume that the shape of a knot or link, defined as
polygonal curves, can easily be changed by the following basic transforma-
tions described in [57], that do not alter its nature, see Figure 2.2.

Definition 2.3. [57] On a given knot K,

• (1) we may divide an edge, AB, in space of K into two edges, AC, CB,
by placing a point C on the edge AB.

• (1′) if AC and CB are two adjacent edges of K such that if C is erased
AB becomes a straight line, then we may remove the point C.

• (2) if C is a point in space that does not lie on K such that the triangle
ABC does not intersect K, with the exception of the edge AB, then we
may remove AB and add the two edges AC and CB.

• (2′) if there exists in space a triangle ABC that contains two adjacent
edges AC and CB of K, and this triangle does not intersect K, except
at the edges AC and CB, then we may delete the two edges AC, CB
and add the edge AB.

These four operations are called the elementary knot moves.
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Figure 2.2: Elementary knot moves [57].

Therefore, knots or links that are related by these elementary knot moves
are said to be equivalent.

Definition 2.4. Two knots K and K′ are called equivalent if we can obtain
K′ from K by applying a finite sequence of elementary knot moves. Moreover,
two links L = K1, · · · ,Km and L′ = K′1, · · · ,K′n are equivalent if m = n and
that we can transform L into L′ by applying a finite sequence of elementary
knot moves pairwise between Ki and K ′i, for all i ∈ {1, · · · ,m = n}.

However, these elementary moves can be seen as ‘local’ transformations
only applied to a small region of the knot or link, and one would prefer
a definition of equivalence more ‘global’. The idea is therefore to consider
transformations of the whole three-dimensional space in which the knot or
link exists. Let φ be a continuous bijective map from a topological space X to
a topological space Y , where X and Y are considered to be three-dimensional
Euclidean spaces or subspaces thereof here, and φ−1 be the continuous inverse
map. Then, we say that φ is a homeomorphism, and X and Y are said to
be homeomorphic, meaning that they are considered to be the same space
from an algebraic topology point of view. In the case where X = Y , we
call φ an auto-homeomorphism. Moreover, if an orientation is assigned to
the two topological spaces, then φ is said to be an orientation-preserving
homeomorphism if it maps the corresponding orientations to each other.

Therefore, Definition 2.4 can be reformulated globally as done by Lick-
orish in [44]. Two knots or links are indeed said to be equivalent if we
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can deform one continuously into the other without generating any self-
intersections, or including operations consisting of cutting and gluing the
curves. Such a continuous deformation that does not change the nature of
the transformed object is called an ambient isotopy.

Definition 2.5. [44] Two links are said to be equivalent if there exists an
orientation-preserving piecewise linear homeomorphism of the three-dimensional
ambient space that maps one onto the other.

2.1.2 Diagrammatic representation of knots and links

Considering the notion of equivalence stated in the previous subsection, any
link L can be transformed to be in general position in the three-dimensional
Euclidean space. Let π : E3 → E2 be the standard projection map. By
general position, we mean that when we project L onto the Euclidean plane,
its image must satisfy the three following conditions,

• each line segment of L projects to a line segment onto E2,

• the projection of two such segments intersect in at most one point,
different from an endpoint for disjoint segments,

• no point belongs to the projection of three or more segments.

The planar projection to E2 of a link L in general position in E3 (Fig-
ure 2.3, on the top) is called a regular projection and is a quadrivalent planar
connected graph (Figure 2.3, on the bottom left). Then, to encode the differ-
ent relative heights in E3 of the inverse images of two intersecting segments
of π(L), we assign to each such point of intersection an ‘over’ or ‘under’ in-
formation by breaking each under-passing segment into two arcs, and call
such a region a crossing. When the crossing information has been assigned
to every vertex of π(L), we call this planar representation a link diagram of
L (Figure 2.3, on the bottom right). It is important to notice at this point
that if a knot projection has only a single crossing, then it can be untwisted
and leads to an unknot. Therefore, a nontrivial knot must have more than
one crossing in a projection.
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Figure 2.3: On the top, a link in general position in E3. On the bottom
left, its regular projection to E2. On the bottom right, the corresponding
diagram.

It is also possible to assign an orientation to a knot or a link, by choosing
a direction to travel around the curves. The classic convention is to denote
such an orientation by placing directed arrows on the curves of a diagram in a
chosen direction among the two possibilities for each component. Finally, we
can define a sign for each crossing in a diagram of an oriented link according to
the standard convention illustrated in Figure 4.2, which uses the orientations
of the two strands implied in the crossing as well as the orientation of the
space. The crossing is said to be either positive or negative.

+1 -1

Figure 2.4: Sign convention.
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Finally, we end this subsection by recalling the work of K. Reidemeister,
who discovered three simple moves, illustrated in Figure 2.5, that can be
applied at the diagrammatic scale and that encode the notion of ambient
isotopy of links in the three-dimensional space. This approach, which pro-
vides a direct correspondence between links and their diagrams, is stated in
his famous theorem, whose proof can be found in [50]. The interest of this
theorem lies in the fact that it allows a complete combinatorial description
of the topology of links.

Theorem 2.6. (Reidemeister Theorem), Two links in S3 or E3 are am-
bient isotopic if their exists a sequence of Reidemeister moves Ω1, Ω2, and
Ω3 taking a diagram of one link to a diagram of the other.

Ω  1 Ω  1 Ω  2 Ω  3

Figure 2.5: Reidemeister moves.

2.1.3 Sum of knots and links

The set of all knots can be approached from a viewpoint of group theory by
defining an operation of sum of knots, which allows one to obtain a single
knot from two originally disjoint knots. Considering two knot diagrams DK1

and DK2 that do not overlap, it is possible to construct a new knot by deleting
a small arc from each diagram, then joining the four endpoints with two new
arcs as in Figure 2.6 to obtain a new diagram DK1 + DK2 and finally, apply
the inverse projection map π−1(DK1 +DK2). The generated knot K1 + K2 is
called the sum of the two knots. Note that the two arcs which are removed
are assumed to be ‘outside’ of each diagram in order to avoid any crossings
and that the two new arcs are chosen so they do not cross either the original
knot diagrams or each other, as illustrated in Figure 2.6. Conversely, one may
want to decompose a knot into two disjoint knots. Then, a knot is called
a composite knot if it can be expressed as the sum of two knots, neither of
which being isotopic to the unknot. The knot components used to create
the composite knot are called factor knots. In particular, if a non-trivial
decomposition cannot be found for a knot K, then K is said to be prime.
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Figure 2.6: Sum of two knots.

Definition 2.7. [44] A knot K is said to be prime if is not equivalent to the
unknot, and if K can be decomposed in a sum of two knots K = K1 + K2,
then it implies that K1 or K2 is the unknot.

Notice that the way to sum two knots is not unique. First, there is a
possibility to choose the regions on the diagrams where the small arcs are
deleted. Then, it is also possible to define the sum operation for oriented
knots and to construct therefore two different composite knots from the same
pair of knots K1 and K2. Indeed, either the orientation of K1 corresponds to
the orientation of K2 in K1 + K2, or does not match.

In a more general way, a knot K is either prime or is a composition of at
least two nontrivial knots, which are themselves either prime or composite,
and so forth finitely many times. This implies that a knot can be uniquely
decomposed into prime knots.

Theorem 2.8. (The uniqueness and existence of a decomposition
of knots) [57] Any knot can be decomposed into a finite number of prime
knots and this decomposition, excluding the order, is unique.

Finally, it is possible to conclude about the group structure of the set of
all knots for the sum operation.

Proposition 2.9. [57] The sum of knots defines an associative and commu-
tative law.
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However, this sum operation on knots cannot make the set of all oriented
knots a group, since even if the unknot can be considered as the identity
element, the existence of inverse elements is however compromised. It has
therefore only the property of a semi-group, called the semi-group formed
under the operation of the sum of knots.

2.2 Untwisted and Twisted Weaves

The introduction of weaves as mathematical objects has been motivated by
the study of weaving that can be found in materials science, like the early
interest in knot theory which came from chemistry. Since the theory aims to
correspond to the physical reality, initial definitions need to be both formal
and precise mathematically, while excluding unwanted pathology contradict-
ing existing structures.

2.2.1 Untwisted Weaves

In this subsection, we will define an untwisted weave W (Figure 2.7(C))
as the lift to the topological ambient space X3 = E2 × I, with I = [−1, 1],
namely the Euclidean thickened plane, of a particular quadrivalent connected
graph embedded on E2 with a crossing replacing each vertex. Such a graph
arises from a set of straight lines of the Euclidean plane E2 (Figure 2.7(A)),
and intersecting only in vertices of degree four in which we specify an over
or under information (Figure 2.7(B)). Let π be the natural projection map
from the Euclidean thickened plane to the Euclidean plane π : X3 → E2,
(x, y, z) 7→ (x, y, 0). The first step to define an untwisted weave is to organize
the graph components in different sets.

Definition 2.10. [21] Let Γi be a set of straight lines embedded on E2 with
color i ∈ {1, · · · , N}, where N is a positive integer. Then, Γ = (Γ1, · · · ,ΓN)
is a set of colored straight lines that belong to N ≥ 2 disjoint color groups such
that two lines either intersect in a vertex of degree four and are in different
color groups, or belong to the same color group.

Next, recall that to define a weave W, we will lift these colored lines to
X3 such that the infinite curve components do not intersect each other, as in
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(A) (B) (C)

Figure 2.7: (A) Sets of straight lines belonging to different color groups on
the Euclidean plane. (B) Crossing information to each intersection on the
Euclidean plane. (C) Untwisted weave in the thickened Euclidean plane [21].

general knot theory. Therefore, to represent this entanglement at the planar
scale, we use two intersecting arcs on E2, as illustrated in Figure 2.7(B). So,
if P is such an intersection on E2, then the inverse image π−1(P )∩W of this
point in X3 has exactly two distinct points, and P is called a double point.
Then, after specifying the over or under information using arcs, it is called a
crossing. We use a set of sequences consisting of positive integers to describe
the number of consecutive over and undercrossings for each curve on E2.

Definition 2.11. [21] Let i, j, k, l be strictly positive integers, and let Γi
and Γj be two disjoint sets of colored straight lines of Γ on E2. Then by
walking on an oriented line γki ∈ Γi, the crossing sequence Ck

i,j of γki with Γj
is defined either by,

(1) a sequence (+1, 0) (resp. (0,−1)) if γki is always over (resp. under) all
the components of Γj.

(2) a sequence (· · · ,+pl,−pl+1,+pl+2, · · · ) of minimal length, where pl are
strictly positive integers, such that there exists a crossing c between γki
and γkij ∈ Γj whose closest neighboring crossing in the opposite direc-

tion is an undercrossing, and from which γki will have pl consecutive
overcrossings with the colored lines of Γj, followed by pl+1 consecu-
tive undercrossings, followed by pl+2 consecutive overercrossings and so
forth.
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Moreover, we denote by Σi,j = (Ck
i,j)k>0, with i, j ∈ (1, ..., N), i < j, the set

of crossing sequences associated to the pair (Γi,Γj), k being the index of the
straight lines of Γi.

Remark 2.12. [21] The set of crossing sequences Σj,i = (Ck′
j,i)k′>0, with i, j ∈

(1, ..., N), i < j is deduced from Σi,j for any pair (Γi,Γj), and conversely.

We are now ready to lift our graph with crossings to the thickened Eu-
clidean plane to define one of the simplest classes of general weaves.

Definition 2.13. [21] Let Γ = (Γ1, · · · ,ΓN) be a set of colored straight
lines on E2, belonging to N ≥ 2 color groups, with a crossing information
at each vertex according to a set of crossing sequences Σ = (Σi,j)i>j with
i, j ∈ (1, ..., N). Then, we call untwisted weave the lift to X3 by π−1 of the
pair (Γ,Σ), which is an embedding of non-intersecting infinite curves in the
thickened Euclidean plane. Each lifted straight line is called a thread and two
threads are said to be in the same set of threads Ti if they are the lift of lines
belonging to the same color group Γi. Moreover, we call strand any compact
non-degenerate subset s ⊆ t of a thread t.

Remark 2.14. [21] The crossing sequence Ck
i,j of a straight line γki with the

set of colored lines Γj is also the crossing sequence of its lift tki = π−1(γki ) with
the set of threads Tj. We therefore use the same notation for both spaces.

2.2.2 Twisted Weaves

The definition of an untwisted weave naturally implies that we can define a
class of twisted weaves. To do so, we will use a pair (Γ,Σ) on E2 that can
originally be lifted in the three-dimensional space to become an untwisted
weave (Figure 2.8(A)), as described in the previous subsection. However,
before lifting to X3, we will transform such a planar representation of an
untwisted weave to create new crossings between two nearest neighboring
straight lines of the same color by a surgery operation (Figure 2.8(B)). This
transformation, called twist, happened locally and the lift of a pair (Γ,Σ)
on E2 admitting at least a twisted region such that the axis of direction of
the twisted lines are preserved will be called a twisted weave (Figure 2.8(C).
These local twisted regions can each be characterized by a ±k-move, meaning
that two untwisted strands are replaced by two strands that twist around
each other with k crossings, in a right (+k) or left-handed (−k) manner, as
defined in [1] for general knots.

23



(A) (B) (C)

Figure 2.8: (A) Set of straight lines with crossing information on the Eu-
clidean plane. (B) Introduction of twists on the Euclidean plane. (C) Twisted
weave in the thickened Euclidean plane [21].

Definition 2.15. [21] Let (Γ,Σ) be a graph with crossing information sat-
isfying Definition 2.13, and let Γi ∈ Γ be a set of lines with the same color
(· · · , γj−1

i , γji , γ
j+1
i , · · · ), indexed by a positive integer j in terms of closest

neighboring components, for any i = 1, · · · , N . Let D be a disk whose bound-
ary circle intersects (Γ,Σ) exactly four times, and containing only two closest
neighboring parallel segments of γji and γj+1

i of the color group Γi. Then, we
say that γji and γj+1

i twist k times if there exists a ±k-move in D, mean-
ing that they twist around each other with k crossings in a right-handed way
for a +k-move or in a left-handed manner for a −k-move. Such a disk D
containing twists is then called a twisted region.

The total number of twists between two curves that twist in n disjoint
disks D1, · · ·Dn is the sum of the local number of twists for each of these
disks. Thus, we can define a twisted weave from any pair (Γ,Σ) that admits
at least a twisted region, and such that the color groups associated with each
set of threads is preserved.

Definition 2.16. [21] A twisted weave is the lift to X3 of a pair (Γ,Σ) sat-
isfying Definition 2.13 admitting at least a twisted region. Moreover, if two
threads twist their total number of twists is even and they cannot twist with
any other threads.
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2.2.3 Unweave and entanglement

The next step to consider regarding the definition of untwisted or twisted
weaves, which we will from now call weaves if there is no ambiguity, is to study
the continuous deformation of these objects in X3. Note that we consider the
existence of other classes of weaves, which are neither untwisted nor twisted.
Examples could be weaves admitting crossings between threads of the same
set that are more complex than twists between two threads, such as braided
threads of the same color, as in braid theory. However, these objects go
beyond the scope of this manuscript and will not be studied here. The same
notion of ambient isotopy defined above for knot theory is applied here for the
case of weaves. Considering that one of the essential properties of a weave is
that it ‘hangs together’, which in other words we call entangled. This implies
one cannot partition the set of all strands into nonempty subsets so that each
strand of the first subset passes over every strands of a second subset, and
so forth, which defines the trivial weave, also called the unweave illustrated
in Figure 2.9, as described in [32] for the case of two sets of threads. We will
say that a weave is entangled if it is not equivalent to the unweave.

Definition 2.17. [21] A weave with N sets of threads is said to be the un-
weave if there exists an isotopy of X3 that separates the thickened Euclidean
plane into N disjoint layer planes, each of them containing a single set of
threads at a height coordinate z ∈ [−1, 1].

Figure 2.9: An example of unweave with two sets of threads.
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The definition of entangled weave follows directly from the definition of
the unweave, as mentioned above.

Definition 2.18. [21] An untwisted weave W is said to be entangled, if it is
not isotopic to the unweave.

2.3 Diagrammatic Representation of Weaves

As in knot theory, we are interested in studying the properties of weaves
on the plane instead of X3. The notion of a diagrammatic representation of
weaves follows immediately from that of general links, and we will see that if
a weave is periodic, then any diagrammatic translational generating cell can
be seen as a particular type of link diagram embedded in a surface.

2.3.1 Regular projection and weaving diagrams

Ambient isotopy allows deforming a weave in X3 such that it becomes in
a general position, that we can then project onto the Euclidean plane by
the map π : X3 → E2, (x, y, z) 7→ (x, y, 0). A weave is said to be in general
position if the projection of two threads by π to E2 are distinct and such that
all the crossings are double points. The projection of a weave to the plane
is therefore a quadrivalent connected graph isotopic to the original building
graph Γ, meaning that an edge does not have to be a straight line as long as
it does not intersect itself. In the particular case of a doubly periodic weave,
that will be discussed below, any planar periodic cell can be seen as a link
diagram in the torus as described in Figure 2.10.

Definition 2.19. [21] The projection W0 of a weave W in general position
onto E2 by the map π : X3 → E2, (x, y, z) 7→ (x, y, 0) is called a regular
projection, and once an over or under information is given at each vertex of
W0, we say that this structure is an infinite weaving diagram DW0. Moreover,
if DW0 is periodic, then a generating cell in only contains essential simple
closed curve components on a torus T2 and is called a weaving motif.

As in knot theory, it is also possible to describe the notion of ambient
isotopy at the diagrammatic scale using the Reidemeister moves (Figure 2.5).
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Weaving motif  
DW on 𝕋2

Infinite weaving 
diagram DW0 on 𝔼2

Doubly periodic 
weave W in 𝕏3

Figure 2.10: Weave, weaving diagram and weaving motif.

Recal that since our weaves lie on the thickened plane X3, then the ambient
isotopy for weaves only allows continuous deformations in X3.

Definition 2.20. [21] Two weaves in X3 are said to be equivalent if their
weaving diagrams can be obtained from each other by a sequence of Reide-
meister moves Ω1, Ω2, Ω3 and planar isotopies. Moreover, an equivalence
class of weaves is also called a weave.

2.3.2 Diagrammatic representation of entanglement

It is now also possible to characterize the entangled property of a weave at
the diagrammatic scale. To do so, we must define the notion of blocking
crossings (see Figure 2.11), which can be described in terms of Reidemeister
moves of type Ω3 illustrated in Figure 2.5. Such a move is applied to a region
of a given weave containing three strands crossing each other in a pairwise
way. Thus, it contains three crossings such that one of the strands involved
is either over or under the two other strands.

Definition 2.21. [21] Let ti ∈ Ti, tj ∈ Tj, and tk ∈ Tk be three threads of a
weave W, with N ≥ 2 sets of threads (T1, · · · , TN), for all j, k ∈ (1, · · · , N)
distinct. Then, if there exists a crossing c = π(tj) ∩ π(tk) on a weaving
diagram of W, such that a Reidemeister move Ω3 is not admissible for π(ti)
at the neighborhood of c, we say that c is a blocking crossing.
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Figure 2.11: Blocking crossing [21]

Next, observe that any projection of a thread divides E2 in two disjoint
regions, namely its right and its left, which can be arbitrarily labeled depend-
ing on the orientation of the plane and the threads. Therefore, it is possible
to characterize the entangled property of a weave W in terms of the existence
of blocking crossings at the diagrammatic scale by the following statement,
whose proof follows directly from the definition of the unweave and of the
blocking crossing, since each thread must at least admit an overcrossing and
an undercrossing at the diagrammatic scale to be entangled.

Proposition 2.22. [21] A weave with N ≥ 2 sets of threads T1, · · · , TN is
entangled if and only if for all i ∈ (1, ..., N), each thread ti ∈ Ti projected
on E2 admits a blocking crossing c = π(tj) ∩ π(tk) on its left, and a blocking
crossing c′ = π(t′j) ∩ π(t′k) on its right, where tj, t

′
j ∈ Tj and tk, t

′
k ∈ Tk are

disjoint threads, for all j, k ∈ (1, · · · , N) distinct.

2.3.3 Weaving motifs

Many weaves that physically exist as material structures show the property of
being doubly periodic. Thus, as mentioned earlier, by taking a diagrammatic
periodic cell, namely a weaving motif, which can be described as a set of
crossed strands embedded on a parallelogram, and by gluing the endpoints
of the strands lying on its opposite sides, we end up with a link diagram
embedded in a torus. It is therefore natural to approach these structures
using knot theory, as done by S. Grishanov, H. Morton et al. in [23], [24],
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[25], [26], [27], [54], as well as A. Kawauchi in [40]. Then, being inspired
by the use of graphs of the hyperbolic plane in the study of other types of
entangled structures, as mentioned in the introduction, we also consider a
generalization of weaving motifs to higher genus surfaces, which encodes the
properties of a periodic weaving diagram on the hyperbolic plane. In this
hyperbolic case, since the notion of parallel lines that we used to define the
sets of threads in the Euclidean case cannot be extended, we will restrict
our definition to the case of a hyperbolic diagram whose associated regular
projection is isotopic to a kaleidoscopic tiling of the hyperbolic plane by
convex regular polygons. This means that such a periodic tiling can be
reconstructed starting from a single hyperbolic convex polygon P with n
sides, that is mirrored along its sides recursively to tile the entire plane, as
illustrated in Figure 2.12.

Figure 2.12: Example of kaleidoscopic tiling of the hyperbolic plane.

If the number of sides n of P is odd, then each side will be assigned
a different color, which leads to a set of n color groups. However, if n is
even, then each pair of opposite sides, meaning parallel sides in the abstract
Euclidean sense, will be assigned the same color, which leads to a set of n

2

color groups. The mirror symmetry preserves the color, which defines the
color groups in a coherent fashion that generalizes the definition of sets of
threads in the Euclidean case, see Figure 2.13 for an illustration.

This defines the class of hyperbolic untwisted weaving diagrams (Fig-
ure 2.13, left) and since the notion of twists also applies here, the definition
of hyperbolic twisted weaving diagrams follows directly (Figure 2.13, right).

29



Figure 2.13: Example of color groups for a weaving diagram of the hyperbolic
plane [48]

In this section, we will therefore consider the topological ambient space
X3 = X2 × I, with I = [−1, 1], where X2 = E2 or X2 = H2, and we will use
the Poincare disk model as a representation of the hyperbolic plane.

Weaving motifs on a torus and extension to higher genus surfaces

In the case of periodic weaves, instead of analyzing a planar diagram con-
taining an infinite number of crossings, we prefer to study a weaving motif
DW containing a finite number of crossings, and that can also be seen as a
link diagram embedded on a surface Σg of genus g ≥ 1. Such a link results
from the pairwise identification of the sides of a periodic cell of the planar di-
agram considered. More precisely, a weaving motif is a set of crossed strands
embedded on a polygon, and there is an infinite way to choose the shape of
such a polygon, the easiest being a regular 4g-gons of X2. The particular case
for g = 1 corresponds to doubly periodic weaving diagrams embedded on the
Euclidean plane and is detailed in the work of Grishanov and his coauthors
[23], [24], [25]. Here we generalize the results to a closed orientable surface
of any genus. The diagram DW obtained on the surface Σg of genus g ≥ 1 is
still called a weaving motif. Such a diagram consists of several simple closed
polygonal curves drawn on Σg, as for classic link diagrams on a similar sur-
face, and each curve is a component of the diagram. Moreover, we will also
assume that Σg −DW consists of open discs.
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As mentioned previously, regular polygons of the plane are not the unique
possibility, when selecting a generating cell of an infinite periodic weaving
diagram DW0 on X2. For example, if X2 = E2, then any parallelogram of
unit area which has for sides integer vectors can be chosen as a unit cell, as
explained by Grishanov et al [25]. Moreover, if X2 = H2, it is not necessary
to consider the area since two hyperbolic surfaces with the same topology
always have the same area. To extend the results of Euclidean weaving motifs
on a torus to hyperbolic weaving motifs on higher genus surfaces, we need
to take into account the Teichmüller space of a surface Σg of genus g ≥ 2,
and its Mapping Class Group. For more details, we refer to [19]. First, we
need to consider a geodesic hyperbolic 4g-gon on H2, meaning a polygon such
that the sum of its interior angles is equal to 2π. Then, we label its edges
such that they can be identified pairwise, which results in a closed marked
hyperbolic surface of genus g, as illustrated in Figure 2.14.

𝛾

Figure 2.14: A regular Σ2-tile and its corresponding marked hyperbolic sur-
face [48].

We call such a polygon a Σg-tile and the Teichmüller space of the corre-
sponding surface Σg can be seen as the space of marked surfaces homeomor-
phic to it. Moreover, it is well-known that this space is in bijection with the
set of equivalence classes of hyperbolic Σg-tiles. Note that two Σg-tiles are
said to be equivalent if they differ by a marked, orientation-preserving isom-
etry and by ‘pushing the basepoint’, which is the point on the surface where
all the vertices of a Σg-tile meet after gluing. The details of this bijection are
given in [19].
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We will now prove the existence of an infinite number of Σg-tiles, which
implies the existence an infinite number of possibilities to choose a generating
cell for any periodic weaving diagrams. We have seen that an element of the
Teichmüller space of Σg, denoted by Teich(Σg), represents the equivalence
class of a marked surface Σg of genus g. In other words, such an element
corresponds to equivalent Σg-tiles that can generate isometric tilings as pe-
riodic cells. However, recall that any chosen Σg-tile, which corresponds to a
unique element in Teich(Σg) up to equivalence, can be taken as a generat-
ing cell of a hyperbolic weaving diagram, namely a hyperbolic weaving motif.
This means that different weaving motifs correspond to different marked sur-
faces, and are thus not isometric to the chosen Σg-tile. Moreover, let Σg be
a marked surface of genus g in Teich(Σg) and let MCG(Σg) be its mapping
class group. The simplest infinite-order elements of MCG(Σg) are known to
be the Dehn twists of Σg, and their action on Σg will change the marking of
the surface. Therefore, by applying an infinite number of times to a given
marked surface Σg of Teich(Σg) the same Dehn twist, we never obtain equiv-
alent marked surfaces, nor isometric Σg-tiles. This justifies the existence of
an infinite number of weaving motifs in X2 corresponding to the same weave.
Moreover, any pair of weaving motifs of the same fixed periodic weaving di-
agram of X2, which only differ by their marking, can be obtained from each
other by a sequence of Dehn twists of Σg along their generating curves [19],
[43], denoted by αi, βi, and γi in Figure 2.14.

As mentioned in [25] for the Euclidean case, an ambient isotopy of a peri-
odic weave is any continuous deformation that must also preserve its periodic
property. Moreover, for the diagrammatic representations, the equivalence
concerns all the different weaving motifs with the same topology correspond-
ing to a single weave. Since we have seen that there exists an infinite number
of them, the continuous deformation and the Dehn twists of the surface Σg

must also be considered here. Therefore, the Reidemeister theorem for weav-
ing motifs on a torus stated in [25] generalizes immediately to higher genus
surfaces, with a proof similar to the original one using the arguments on the
Teichmüller space and Mapping Class Groups.

Theorem 2.23. (Reidemeister Theorem for Weaves) [25], [48] Two
periodic weaves in X3 are ambient isotopic if and only if their weaving motifs
be obtained from each other by a sequence of Reidemeister moves Ω1, Ω2, Ω3,
isotopies on the surface Σg of genus g, and Σg-twists.
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Ω  1 Ω  1 Ω  2 Ω  3

Figure 2.15: Reidemeister moves.

Particular properties of weaving diagrams

Interesting properties of classical links can often be generalized to weaves.

Definition 2.24. [48] A weave, a weaving diagram, or a weaving motif is
said to be alternating, if all its crossing sequences are equal to (+1,−1).

The notion of alternating weaving diagrams is a fundamental point that
will be used in Chapter 4. It indeed characterizes an interesting class of
weaves that can be classified by generalizing famous theorems for alternating
knots and links. Next, we will say that a weaving motif DW is prime if any
simple closed curve γ in Σg bound a disk that intersects DW exactly twice
transversely away from crossings and without crossings in its interior. This
intuitively means that a prime weaving motif cannot be decomposed into a
‘connected sum’ of weaving motifs. However, this notion of sum operation on
weaving motifs is not trivial since it depends on specific boundary conditions.
This is currently a work in progress.

Finally, for the purpose of studying the classification of periodic weaves,
we need to define the notion of reduced motifs. Here this notion differs
slightly from the definition of a reduced link in classic knot theory, since
one need to take into consideration that a weaving motif is a link diagram
on a surface that encodes an infinite and periodic planar diagram whose
component are simple open curves.

Definition 2.25. [48] A reduced weaving motif DW in Σg ⊂ X2 is one that
does not contain an isthmus in its corresponding infinite planar diagram. An
isthmus is a crossing in the diagram that does not separate its neighborhood
into four distinct regions in the associated infinite diagram. We say that DW

is Σg-reduced.

Moreover, we will call a crossing c proper if the four regions around c in
DW, delimited by the projection of the strands, are all distinct. When every
crossing of DW is proper, DW is said to be proper.
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We illustrate these notions of reduced and proper in Figure 2.16.
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Figure 2.16: Distinction between proper and unproper Σg-reduced weaving
motifs. On the left, an infinite reduced (without isthmus) planar diagram
(a). On the center, a Σg-reduced unproper weaving motif (b), On the right,
a Σg-reduced proper weaving motif (c) [48].
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Chapter 3

CONSTRUCTION OF
WEAVING MOTIFS FROM
PERIODIC TILINGS OF THE
PLANE

Being inspired by the construction of polyhedral links from Platonic and
Archimedean polyhedron, using the concept of polyhedral link defined by
W.Y. Qiu et al. in [33], [47], [60], we tried to apply the same strategy to
periodic planar tilings, as presented in our paper [22]. The polyhedral link
methods consist in transforming a polyhedron into a link by replacing each
edge with a single or double line, possibly with twists, and each vertex by a set
of branched curves or crossed curves. We will call these three methods applied
in E2 polygonal link methods. By applying these methods to different types
of tessellations of the plane, we observed that not only weaving diagrams can
be constructed, but also diagrams that contain closed curve components.

The first main purpose of this chapter is to describe a methodology to
construct untwisted and twisted weaving motifs using the polygonal link
methods. Note that we will construct alternating weaving motifs by conven-
tion, meaning that each crossing sequence is equal to (+1,−1), and consider
that an overcrossing can be turned into an undercrossing afterward, and
conversely. Then, our second objective is to define a systematic way to pre-
dict whether the motif constructed from a given periodic tiling and a chosen
polygonal link method will be a weaving motif or not.
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3.1 Background: construction of polyhedral

links

Motivated by the study of new molecular structures in chemistry through
knot theory, and in particular by linked structures called catenanes, W.Y.
Qiu et al. developed a new methodology to understand the construction of
such links on the basis of the Platonic and Archimedean polyhedra, used
as scaffold for molecular design. The resulting object defined an interlocked
cage called a polyhedral link [33], [47], [60]. Note that by a polyhedron,
we mean an embedded connected graph in the three-dimensional Euclidean
space, consisting of a finite number of faces, vertices, and edges. The first
methodology created to build such polyhedral links is called n-cross-curve
and m-twisted double-lines covering and is illustrated in Figure 3.1. In this
case an n-crossed curve building block (Figure 3.1(a)) covers a vertex, while
either a 2n or 2n + 1 m-twisted double-lines building block covers an edge,
with n and m positive integers (Figure 3.1 (b), (c), and (d)).

(a)

(b)

(c)

(d)

{2n+1}

{2n}

Figure 3.1: 5-cross-curve and m-twisted double-lines covering.

Then, these two types of blocks are glued together, and the operation is
repeated until all the vertices and edges of the polyhedron are covered, as in
Figure 3.2.
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Figure 3.2: Example of polyhedral links constructed from a n-cross-curve
and m-twisted double-lines covering.

In a second paper, they introduced another methodology called n-branched
curves and m-twisted double-lines covering. Here, the n-cross-curve block is
replaced by a n-branched curves building block that covers the vertices of a
given polyhedron. See Figure 3.3 for an illustration.

(a)

(b)

(c)

(d)

{2n+1}

{2n}

Figure 3.3: 5-branched curves and m-twisted double-lines covering.

Finally, in a later study, they presented their last methodology called
cross-curve and single-line covering for polyhedra with vertices of degree
four. In this case, each vertex and edge are covered by a cross-curve or
single-line building block, respectively, as shown in Figure 3.4.
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Figure 3.4: Cross-curve and single-line covering.

3.2 Polygonal link methods

In the previous chapter, we have seen that a weaving diagram can be de-
scribed from a particular type of planar connected quadrivalent graph with
crossing information at each vertex. Using a graph-theoretic approach to
study the properties of entangled structures has indeed shown to be very
useful in many cases, such as in [9], [10], [15], [35], [41]. From now, we will
extend and formalize the construction methods described above to planar
tilings by polygons, which can be illustrated in a similar way as in Figure 3.5,
and called them the polygonal link methods [22].

Crossed curves & 
single line covering

Crossed curves & m-twisted 
double line covering

Branched curves & m-twisted 
double line covering

for vertices of degree ≥ 3for vertices of degree ≥ 3for vertices of degree 4

vertex vertex vertex

edge edge edge

Figure 3.5: Polygonal link methods: transformation of the vertex and the
edges of a building block [22].
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We indeed noticed that the transformations applied to polyhedra to con-
struct polyhedral links were an efficient way to construct weaving motifs
from doubly periodic planar tilings. However, we observed cases where closed
curve components were created in the universal cover, which do not satisfy
our definition of weaves. This motivates the introduction and characteriza-
tion of two other types of doubly periodic entangled structures, the polyca-
tenanes and the mixed motifs.

In chemistry, polycatenanes are described as multiple linked rings [45],
[70], where each such ring can be seen as an unknot. We can thus formally
define a polycatenane as a particular type of link whose components are all
trivial knots. Let Ω = {R1, R2, · · · } be a set of infinitely many intersecting
simple closed curves that covers all E2. Here the rings do not need to be
organized in different sets, so the notion of color groups used for weaves is
not applied here. However, we will assign to each pair of such loops Ri and
Rj a crossing sequence Ci,j, where i and j are distinct positive integers. The
definition of a crossing sequence follows from the one from weaves.

Definition 3.1. [22] Let i, j, k, l be strictly positive integers, and let Ri and
Rj be two distinct oriented simple closed curves of Ω = {R1, R2, · · · } on E2,
intersecting exactly k times. Then by walking on Ri, the crossing sequence
Ci,j of Ri with Rj is defined either by,

(1) a sequence (+1, 0) (resp. (0,−1)) if all the k intersections are assigned
an over (resp. under) information for Ri.

(2) a finite sequence (+p1,−p2, · · · ,+pl−1,−pl) of minimal length, where pl
are strictly positive integers, such that there exists a crossing c between
Ri and Rj whose closest neighboring crossing in the opposite direction
is an undercrossing, and from which Ri will have p1 consecutive over-
crossings with Rj, followed by p2 consecutive undercrossings, followed
by p3 consecutive overercrossings and so forth.

Moreover, we denote by Σ = (Ci,j)i<j, with i, j distinct, the set of crossing
sequences associated to the pair (Ri, Rj).

Remark 3.2. [22] As for weaves, the crossing sequence Cj,i is naturally
deduced from Ci,j for any pair (Ri, Rj), and conversely.

Then a polycatenane can also be defined as the lift to the thickened Eu-
clidean plane of these planar linked rings, respecting a set of crossing se-
quences, as illustrated in Figure 3.6.
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(A) (B) (C)

Figure 3.6: (A) Sets of intersecting simple closed curves on the Euclidean
plane. (B) Crossing information to each intersection on the Euclidean plane.
(C) Polycatenane in the thickened Euclidean plane view from the top [22].

Definition 3.3. [22] Let Ω = {R1, R2, · · · } be a set of infinitely many simple
closed curves embedded on E2, with a crossing information at each vertex
given by a set of crossing sequences Σ = (Ci,j)i<j, with i, j distinct positive
integers. Then, we call polycatenane the lift to X3 by π−1 of the pair (Ω,Σ),
which is an embedding of non-intersecting simple closed curves in X3, called
rings.

As for weaves, a polycatenane W in a general position in X3 can be
projected onto the Euclidean plane by the map π, and for doubly periodic
structure, a generating cell is called a polycatenane motif. Moreover, since a
motif is a periodic cell of a doubly periodic diagram of E2, it is thus a diagram
embedded on a torus T2. We can therefore characterize the different types
of structures in terms of trivial and nontrivial simple closed curves on T2.

Proposition 3.4. (Link diagram of a doubly periodic entangled
structure) [22]

• a weaving motif is a link diagram whose components are essential closed
curves which lift to simple open curves in the universal cover.

• a polycatenane motif is a link diagram whose components are null-
homotopic curves which lift to simple closed curves in the universal
cover.

Moreover, we call mixed motif a link diagram containing both types of com-
ponents.
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Now that we have defined our new objects, we are ready to describe
the methodology to construct weaving, polycatenane, and mixed motifs, by
transforming simultaneously all the vertices and edges of an arbitrary gen-
erating cell of a given doubly periodic topological polygonal tessellation of
the Euclidean plane with the same polygonal link method. Here a polygonal
tessellation is defined as a covering of E2 by polygons such that their interior
points are pairwise disjoint. We restrict to tilings which are also edge-to-edge,
meaning that the vertices are corners of all the incident polygons. However,
we do not consider geometric properties such as lengths and angles, but only
the degree of the vertices and the number of sides of its adjacent polygons,
meaning that tilings by squares or parallelograms are considered topologi-
cally equivalent here, as described in [31]. We will call a doubly periodic
tessellation satisfying all these conditions a T -tiling, and any periodic cell is
called a T -cell. Our first step is to translate mathematically the polygonal
methods illustrated in Figure 3.5, starting with the transformation of edges.

Definition 3.5. [22] Let ev,v′ be the edge of a given T -cell connecting the
vertices v and v′. Then ev,v′ is said to be transformed by,

• a single line covering, if each is replaced by a unique strand sv,v′;

• an m-twisted double line covering, if each is replaced by a pair of strands
sv,v′ and s′v,v′ crossing m times in an alternating fashion, with m a
positive integer.

Remark 3.6. [22] In the case of an m-twisted double line covering, we will
decompose the strands into three parts, as illustrated in Figure 3.7,

sv,v′ = svµ,v′ ∪ Sv,v′ ∪ sv,v′µ ,

s′v,v′ = s′vµ,v′ ∪ S
′
v,v′ ∪ s′v,v′µ ,

with µ ∈ {l, r}, where l stand for left and r for right. Consider the Euclidean
plane with a right-handed orientation. To assign the value µ, we consider
that at a neighborhood D of a vertex v, we give an orientation to ev,v′ toward
the vertex v, which implies that at a neighborhood D′ of v′, the orientation
of ev,v′ is opposite, since it is toward the vertex v′. Such an edge segment
separates these neighborhoods into a left and right region, with respect to its
orientation. Therefore, once an edge is transformed by an m-twisted double
line covering, for each neighborhood, one of the strand is said to be on the
left and the other on the right.
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We will use the following convention.

• If m = 0 or m is even,

sv,v′ = svr,v′ ∪ Sv,v′ ∪ sv,v′l ,

s′v,v′ = svl,v′ ∪ Sv,v′ ∪ sv,v′r .

• If m is odd,
sv,v′ = svr,v′ ∪ Sv,v′ ∪ sv,v′r ,

s′v,v′ = svl,v′ ∪ Sv,v′ ∪ sv,v′l .

v

v'

Dv

Dv’ev,v’

v

v'

Dv

Dv’
ev,v’m-twisted

double line 
covering of 
ev,v’

…
…

v
Dv v' Dv’

sv ,v’

sv ,v’

r

l

r   sv,v’

sv,v’l  

Figure 3.7: Strand labelling for an m-twisted double line covering [22].

Now we formalize the covering of the vertices. In Figure 3.5, we observe
that each vertex v of degree n ≥ 3 belonging to the given T -cell can be trans-
formed into an entangled or trivial region in three ways. At the neighborhood
Dv of v, we label its adjacent edge segments starting from an arbitrary edge
(ev)0. Then, its first counterclockwise adjacent edge is (ev)1, the second ad-
jacent edge is (ev)2, and so forth such that (ev)0 = (ev)n. Conversely, by
reading clockwise, its first adjacent edge is (ev)−1, the second adjacent edge
is (ev)−2, and so forth such that (ev)0 = (ev)−n, as illustrated in Figure 3.8.

For the edges, in the case of a single line covering, the strands can only
connect at a vertex in a crossed curves pattern. This method can only be
applied if all the vertices of the tiling have degree four. In that case, each pair
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v (ev)1

(ev)0

(ev)n = (ev)-1 

(ev)2

(ev)k

Dv

Figure 3.8: Edge labelling at a neighborhood of a vertex v of degree n [22].

of opposite strands are connected into a single strand, and we will use the
convention that the strand being the union of (sv)1 and (sv)3 will be over the
second strand, where a strand (sv)i replaced the edge segment (ev)i in Dv,
for i = 0, 1, 2, 3. Such crossing information can be reverse to possibly obtain
non-equivalent structures. However, if an edge is covered by an m-twisted
double line then we have two possibilities. We can either connect each right
strand (svr,v′)i in Dv to its closest neighboring left strand (svl,v′′)i+1, con-
structed from the edge adjacent to the vertices v and v′′ 6= v′, by a branched
curves transformation. Otherwise, we can use a crossed curves transforma-
tion by connected each right strand (svr,v′)i to its second counterclockwise
adjacent left strand (svl,v′′)i+2. For these two transformations, we will use
the convention that at the resulting crossings, the left strand is always over,
and the right strand under, with once again the possibility to reverse the
crossing information afterward.

Definition 3.7. [22] Each vertex v of degree nv ≥ 3 of a given T -cell is said
to be transformed by,

• crossed curves, if nv = 4 and if each strand (sv,v′)i is glued to the strand
(sv,v′′)i+2 to become a single strand, where each edge adjacent to v has
been replaced by a single line covering, and v, v′, v′′ are distinct adjacent
vertices;

• crossed curves, if each strand (svr,v′)i connects with the strand (svl,v′′)i+1
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to become a single strand, where each edge adjacent to v has been re-
placed by an m-twisted double line covering, m ≥ 0, and v, v′, v′′ are
distinct adjacent vertices;

• branched curves, if each strand (svr,v′)i connects with the strand (svl,v′′)i+2

to become a single strand, where each edge adjacent to v has been re-
placed by an m-twisted double line covering, m ≥ 0, and v, v′, v′′ are
distinct adjacent vertices.

We can summarize the transformation of the vertices and edges of our
given T -cell by one of the three methods, and use the following notation.

Definition 3.8. [22] A T -cell is said to be transformed by the polygonal link
method (Λ, L), L ∈ {s,m}, m being a positive integer, and Λ ∈ {Cr,Br}, if
all its vertices and all its edges are transformed by the same method with,

(Λ, L) =


(Cr, s) : crossed curves and single line covering,
(Cr,m) : crossed curves and m-twisted double line covering,
(Br,m) : branched curves and m-twisted double line covering.

We show examples in Figure 3.9 (top) of weaving and polycatenane dia-
grams constructed by applying the polygonal methods to a square tiling.

Remark 3.9. In this chapter, we discussed the transformation of doubly
periodic tilings of the Euclidean plane. However, we can also apply the same
polygonal link methods to hyperbolic periodic tilings to construct hyperbolic
motifs and diagrams, as mentioned in the introduction and illustrated in in
Figure 3.9 (bottom). Moreover, such transformations can also be applied to
non-periodic planar tilings or graphs.
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crossed curves and 
single line covering

crossed curves and 
1-twisted double line covering

crossed curves and 
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crossed curves and 
double line covering

branched curves and 
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branched curves and 
2-twisted double line covering

crossed curves and 
single line covering

crossed curves and 
1-twisted double line covering

crossed curves and 
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branched curves and 
1-twisted double line covering

branched curves and 
2-twisted double line covering

Weave Weave Weave

PolycatenanesWeaveWeave

Weave Weave Weave

PolycatenanesWeave Weave

Figure 3.9: Examples of weaves and polycatenanes constructed from a Eu-
clidean tiling and a hyperbolic tiling [22], [48].
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3.3 Characteristic loops of polygonal links

In the second part of this chapter, we want to define a systematic way to
construct, in particular, weaving motifs from tilings using the polygonal link
methods. This means that we need a way to predict whether a (Λ, L) method
applied to a chosen T -cell will generate a weaving motif, a polycatenane motif
or a mixed motif.

To do so, we notice that the curve components of the motifs created by the
polygonal link methods cover paths in the tiling periodic cell, called polygonal
chains [19]. After identifying the opposite sides of the boundary of a T -cell,
each polygonal chain becomes homotopic to a closed curve on a torus by
definition, and is therefore either null-homotopic or essential. We call such
a closed polygonal chain a characteristic loop of (Λ, L) and we introduce a
combinatorial description of this object.

Definition 3.10. [22] Let UT be an arbitrary T -cell and (Λ, L) be a chosen
polygonal link method. A characteristic loop of (Λ, L) is an oriented curve
isotopic to a polygonal chain in UT defined by an ordered and reduced sequence
of edges arbitrary oriented,

∆(Λ,L) = (δ±0 , δ
±
1 , · · · , δ±k ),

where δ+
k and δ−k denote the same edge with opposite orientation, and δ0 and

δk being edges of UT sharing a common vertex, with k a positive integer.

We must now identify the characteristic loops for each of the three dis-
tinct (Λ, L) methods independently, see Figure 3.10 and Figure 3.11 for two
examples of characteristic loops on a triangular tiling.

3.3.1 Crossed curves and single line covering: (Λ, L) =
(Cr, s)

Let UT be an arbitrary T -cell satisfying the above conditions. First, we
choose an arbitrary vertex v of UT that will be the start and endpoint of
a characteristic polygonal chain ∆(Cr,s). From the definition of the crossed
curves and single line covering method, and using the above notations, we
know that the strand covering the edge adjacent to the arbitrary vertices
v and v′ must be glued to the strand covering its second counterclockwise
adjacent edge in v′, also adjacent to another vertex v′′.
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e1

e2 e3

Figure 3.10: Triangular tiling. Left: A simple closed polygonal chain that
would be covered by applying (Λ, L) = (Cr, 2m). Top: A (part of a) simple
open polygonal chain that would be covered by applying (Λ, L) = (Br, 2m+
1). Right: A periodic cell with the vertex and edges labeled [22].

This second edge has itself to be glued to the strand covering its second
counterclockwise adjacent edge in v′′, and so forth. This means that each
element of ∆(Cr,s) is therefore the second clockwise adjacent edge to the
previous one at their common vertex, Therefore, for all i ∈ (1, ..., k, k+1 = 0),
we have in Definition 3.10

δi = (δi−1)2,

where each δi is an edge that would be covered by a single line when applying
the polygonal link method (Cr, s) to UT [22].

3.3.2 Crossed curves and m-twisted double line cover-
ing: (Λ, L) = (Cr,m)

The approach for the crossed curves and m-twisted double line covering
method is similar to that of a single covering and we will use the same
notations. Here, the main difference concerns the covering of each edge by
an m-twisted double line. For this method, we observed that the parity of
the positive integer m representing the number of twists between the two
strands that replace each edge of UT , can influence the construction of closed
curve components.
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𝛥(Cr, 2m) = (e1
+,e3

+,e2
+,e1

-,e3
-,e2

-)  𝛥(Br, 2m+1) = (e3
+,e2

-)

Figure 3.11: Periodic cell of a triangular tiling. Left: Characteristic loop
corresponding to Figure 3.10 (left). Right: Characteristic loop corresponding
to Figure 3.10 (top) [22].

Therefore, we can state that [22],

• if m is even, each curve created by (Cr,m) is an alternating union of a
right strand, followed by a left strand, and so forth which cover edges
which are consecutive second counterclockwise adjacent ones, at each
vertex they cross.

This means that for all i ∈ (1, ..., k, k + 1 = 0), we have in Defini-
tion 3.10,

δi = (δi−1)2,

• if m is odd, each curve created by (Cr,m) is an alternating union of
two consecutive right strands, followed by two consecutive left strands,
and so forth. In this case, the consecutive edges forming the polygonal
chain alternate between the second counterclockwise adjacent edge and
the second clockwise adjacent edge from the previous one. This means
that there exists a positive integer i such that in Definition 3.10, for all
i ∈ (1, ..., k, k + 1 = 0),

δ 2i = (δ 2i−1)2 and δ 2i+1 = (δ 2i)−2.
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3.3.3 Branched curves and m-twisted double line cov-
ering: (Λ, L) = (Br,m)

Finally, to study the characteristic loops for the branched curves and m-
twisted double line covering method, we apply a similar strategy as done
for (Λ, L) = (Cr,m). The only difference consists in replacing the second
clockwise or counterclockwise adjacent edge with the first one. The polygonal
loop can therefore be written in the same fashion [22],

• if m is even, then in Definition 3.10, for all i ∈ (1, ..., k, k + 1 = 0),

δi = (δi−1)1,

• if m is odd, then there exists a positive integer i such that in Defini-
tion 3.10, for all i ∈ (1, ..., k, k + 1 = 0),

δ 2i = (δ 2i−1)1 and δ 2i+1 = (δ 2i)−1.

3.4 Weaving motifs, polycatenanes motifs or

mixed motifs

Let T be an edge-to-edge doubly periodic tiling of E2 and denote by UT
a generating cell of T , namely a T -cell. Then, as seen previously, a pair(
UT , (Λ, L)

)
define an entangled motif. In particular, to characterize a weav-

ing motif, none of the characteristic loops ∆(Λ,L) associated with the chosen
polygonal link method (Λ, L) must be null-homotopic in the torus graph.
Moreover, recall that we need to identify in the set of these polygonal loops
at least two distinct sets of threads. More generally, we can characterize a
polycatenanes motif and a mixed motif by the type of their components.

Proposition 3.11. [22] A pair
(
UT , (Λ, L)

)
will generate

• a polycatenane motif if and only if all the characteristic loops δ(Λ,L) in
UT are null-homotopic.

• a mixed motif if and only if the set of all the characteristic loops δ(Λ,L)

in UT contains at least a null-homotopic closed component and an es-
sential closed curve.
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• a weaving motif if and only if all the characteristic loops δ(Λ,L) in UT
are homotopic to essential closed curves, and such that at least two of
them are non-parallel, up to isotopy.

Proof. The proof of this proposition can be done without specific difficulties.
By isotopy, any weaving, polycatenane, or mixed motif can have its compo-
nents covering the edges of UT , and can therefore be decomposed into a set
of essential, null-homotopic closed curves or both types, respectively. The
particularity of a weaving motif is that its components are organized in at
least two disjoint sets of threads by definition. Conversely, if one characteris-
tic loop is null-homotopic, then the curve component created by the method
(Λ, L) that covers it on the torus will lift as a closed component in the uni-
versal covering E2 and the result cannot be a weaving motif. It is therefore
either a polycatenanes motif if all the characteristic loops are null-homotopic,
or a mixed motif otherwise. Finally, if all the components are essential closed
curves on the torus, then there are isotopic to geodesic curves, each of them
characterized by a set of straight line segments on a flat torus. Therefore,
it suffices to verify the existence of at least two such segments with different
slopes, which implies the existence of at least two distinct axes of direction,
and confirm the case of a weaving motif.

Then, the polygonal description of characteristic loops defined previously
will be useful now to predict if a characteristic loop will be null-homotopic or
essential on a torus, which leads to our main theorem. Indeed, a characteristic
loop, being a closed curve on a torus, can be characterized by a reduced cyclic
word using the fundamental group of the torus π1((T )2), [19]. Let α and β
be the two generators of π1((T )2), representing respectively a meridian and
a longitude of the torus along which we cut to obtain a flat torus. The
identity element is therefore given by the word αβα−1β−1, by commutativity
of π1((T )2), which also characterizes a null-homotopic curve.

Theorem 3.12. [22] Let UT be a T -cell. Then, a pair
(
UT , (Λ, L)

)
will

generate,

• a polycatenane motif if and only if all the characteristic loops δ(Λ,L) in
UT are trivial polygonal chains.

• a mixed motif if and only if the set of all the characteristic loops δ(Λ,L)

in UT contains at least a trivial polygonal chain and a nontrivial one.
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• a weaving motif if and only if all the characteristic loops δ(Λ,L) in UT
are nontrivial polygonal chains, and such that at least two of them are
non-parallel.

Proof. Let UT be an arbitrary T -cell embedded on a flat torus. First, label all
the edges and vertices of UT , and assign to each edge an arbitrary orientation.
For a chosen method (Λ, L), define a first characteristic loop as described in
Definition 3.10 and below, denoted by ∆(Λ,L), such that the polygonal loop
encodes the orientation of the edges with a sign + or −, if the orientation of
the loop follows the given orientation of the edge or not, respectively,

∆(Λ,L) = (δ±0 , δ
±
1 , · · · , δ±k ).

Therefore, given the presentation of the torus considered above, it becomes
possible to associate to each characteristic loop a word w(∆(Λ,L)), and deduce
that it represents an essential closed curve, if and only if its reduced word
represents a nontrivial element of π1((T )2). Let αβα−1β−1 be the oriented
flat torus, with opposite sides characterized by the same symbol and oriented
in opposite direction, in which the given labelled T -cell is embedded. Let i
and j be two positive integers used to label the edges. Then, if an edge δ±i of
∆(Λ,L) intersects a boundary of the flat torus denoted by α, and such that the
orientation of the edge matches with (resp. is opposite to) the orientation
given to β, then δ±i will be assigned the value β (resp. β−1) in the word
w(∆(Λ,L)). The same holds conversely, by exchanging the roles of α and β.
However, an edge δ±j of ∆(Λ,L) that does not intersect any boundary of the
flat torus will not contribute to w(∆(Λ,L)). More generally, if between two
oriented edges of ∆(Λ,L) that intersect a boundary of the flat torus, there
exists a finite subsequence of edges that do not intersect any such boundary
and such that the vertices of this subsequence are also all distinct, then its
word is the identity I. In other words, if there is a simple arc in ∆(Λ,L)

that does not intersect the boundary of UT , then this arc is contractible and
therefore does not contribute to the word of the characteristic loop. The last
case to consider is when none of the edges of the characteristic loop ∆(Λ,L)

intersect a boundary of the flat torus, which characterizes immediately a
null-homotopic component. Notice that a word containing as many elements
α as elements α−1, as well as as many elements β as elements β−1 is trivial.
This implies that in a characteristic loop, if for all indices i, the number of
edges δ+

i is equal to the number of edges δ−i , then this loop is null-homotopic.
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We say in this case that the polygonal chain is trivial, or nontrivial other-
wise. Therefore, the polygonal chain of a characteristic loop, described by
an ordered sequence of vertices and oriented edges as described above, char-
acterizes the type of the closed component of the motif that will cover it.
By defining the polygonal chains of all the characteristic loops of the T -cell,
it is thus possible to predict the type of motif that can be generated by a
pair

(
UT , (Λ, L)

)
. Note that in the case of a set of essential components, the

additional argument that there must exist at least two characteristic loops
with distinct words is necessary to conclude about a weaving motif, where
two such loops are said to be non-parallel. Finally, recall that even if the
words of the characteristic loops depend on the choice of the generators of
π1((T )2) and the orientation and label of the elements UT , the fact that these
words are trivial or not is independent of such a choice, by definition of the
mapping class group of the torus [19], and therefore does not affect our result,
which ends the proof of the theorem.

We end this chapter with an example of application of our theorem with
a tiling by hexagons.

Example 3.13. [22] Let UT be a periodic cell of a hexagonal lattice. Label
and orient its edges in an arbitrary way, as shown in Figure 3.12.

e1

e2e3
v1

v2

𝜶
𝜷𝜷

𝜶

Figure 3.12: Periodic cell of an hexagonal tiling [22].
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• If we want to predict the type of motif that would be created by apply-
ing (Λ, L) = (Cr, 2) to UT , then we must list the characteristic loops
that would be covered for each strand after transformation, using the
polygonal chain description given above. In this case, all the charac-
teristic loops are equivalent, up to cyclic permutation and reversing of
all orientations, to the following polygonal chain,

∆(Cr,2) = (e+
1 , e

−
3 , e

−
2 , e

−
1 , e

+
3 , e

+
2 )

Here the symbols ± relate to the orientation of the edges given in
Figure 3.12, with a sign + for the natural direction and − for the
reversed one. For simpler notations, we can also borrow from homotopy
theory the notation of loop composition,

∆(Cr,2) = e+
1 .e
−
3 .e
−
2 .e
−
1 .e

+
3 .e

+
2

We can read that this loop is null-homotopic by Theorem 3.12. There-
fore, the crossed curves and 2-twisted double line covering method ap-
plied to any hexagonal tiling will always generate a polycatenane. The
same conclusion actually for any even number of twists.

• for (Λ, L) = (Br, 3), we can describe all the characteristic loops by the
polygonal chains, up to cyclic permutation and reversing all orienta-
tions,

∆1
(Br,3) = e+

1 .e
−
3 ,

∆2
(Br,3) = e+

1 .e
+
2 ,

∆3
(Br,3) = e+

3 .e
+
2 ,

We can read that these loops are essential by Theorem 3.12. Their
words are also all distinct. Therefore, the branched curves and 3-
twisted double line covering method applied to any hexagonal tiling
will always generate a twisted weave. The same conclusion actually
holds for any odd number of twists.
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Finally, we can end this section with some properties that can be proved
immediately [22] .

• For any T -cell, (Λ, L) = (Br, 2m) always generates a polycatenane,
with the particular case of a trivial structure without crossing if m =
0. This result generalizes to non-periodic tilings. Indeed, each tile
boundary is isotopic to a characteristic loop itself.

• Similarly, for any T -cell such that all the vertices have degree 3, (Λ, L) =
(Cr, 2m) always generates a polycatenane by definition. This result
generalizes to non-periodic tilings. Indeed, once again, each tile bound-
ary is isotopic to a characteristic loop itself.

• A characteristic loop isotopic to a polygonal chain containing edges
of the same slope is essential by definition. Therefore, for any T -
cell such that all the vertices have degree 4, (Λ, L) = (Cr, 2m) always
generates a polycatenane by definition. This result generalizes to non-
periodic tilings. Indeed, once again, each tile boundary is isotopic to a
characteristic loop itself.
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Chapter 4

TAIT’S FIRST AND SECOND
CONJECTURES FOR
ALTERNATING WEAVING
MOTIFS

To study the classification of weaves, one must first consider focusing on
simple structures before targeting more complex objects. In the history of
knot theory, alternating links seem to have fascinated mathematicians and
still do. Even though they can simply be described by entanglements alter-
nating cyclically between undercrossing and overcrossing, as one travels along
each of its components, they are far from being trivial objects. This inspired
us to start approaching the classification of weaves which are both periodic
and alternating. One of the main criteria to classify entangled objects is the
number of crossings, which can describe their complexity. In the late nine-
teenth century, P.G. Tait [65] stated famous conjectures on alternating link
diagrams, and one of the main purposes of this chapter is to extend and prove
two of his main results for alternating weaving motifs of E2 or H2. We will
indeed prove that a reduced alternating minimal motif is a minimum diagram
of its alternating periodic weave and that two reduced alternating minimal
motifs of an oriented periodic weave have the same writhe. The writhe is
defined as the sum of the signs of all the crossings, where each crossing is
given a sign ±1. Then by minimal motif, we imply that the generating cell is
a unit cell, while the definition of reduced motif has been detailed at the end
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of the second chapter. The first result, well-known as Tait’s First Conjec-
ture has been proved independently by M.B Thistlethwaite [66], K. Murasugi
[55], and L.H. Kauffman [39] for general links. We will prove this theorem for
periodic weaves following the strategy used by Kauffman, which requires an
extension of the bracket polynomial to H2, since it has already been defined
for doubly periodic structures in E2 [25], [24]. Similarly, the second result,
known as Tait’s Second Conjecture, has also originally been demonstrated
independently by Thistlethwaite [66] and Murasugi [56] for links. We will
however follow the approach of R. Stong [64] for links, the main difference
being that the planar projection of any component of a weaving motif should
not cross itself unless it makes a simple twist that can be easily undone.
These results are based on our paper [48].

4.1 The Bracket Polynomial

One of the main challenges in weaving theory will be to detect equivalent
weaves. However, playing with the Reidemeister moves to identify if two
weaving motifs are equivalent has obvious limitations. Therefore, with simi-
lar reasoning as in knot theory, the strategy is to define weaving invariants,
which can be understood as ‘properties’ assigned to a weaving motif that
remain invariant under the Reidemeister moves. Indeed, we have seen in
the Reidemeister theorem for periodic weaves that if we can transform one
weaving motif into another weaving motif via the three Reidemeister moves,
then they are equivalent. Thus, to prove that such an object is a weaving in-
variant, one must verify independently that it remains unchanged under the
action of each Reidemeister move. At the beginning of the 1980s, the mathe-
matician V. Jones discovered a new invariant, which is a Laurent polynomial
that has been a key element to prove the two Tait’s conjectures for general
links. In this section, we will generalize the definition of a useful polynomial
associated to link diagrams, that has also been defined for weaving motifs
on a torus in [25], [24]. This polynomial is called the bracket polynomial and
has been discovered by Kauffman in 1987 to study the Jones polynomial [39].
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4.1.1 A Kauffman-type weaving invariant

The purpose of this subsection is to recall the results stated by Ghrishanov et
al. [25], [24] regarding the bracket polynomial of a doubly periodic weaving
diagram of E2 and to extend them to periodic hyperbolic weaving diagrams
of H2, so that we define a polynomial for any weaving motif of X2, lying on
a surface Σg of genus g ≥ 1. First, we impose the value 1 to this polynomial
for a null-homotopic simple closed curve. Moreover, if such a null-homotopic
curve is added in a ‘split’ weaving motif without crossing the other compo-
nents, we will just multiply the entire polynomial by a variable d. Finally,
to obtain the bracket polynomial of a weaving motif in terms of the bracket
polynomials of simpler motifs, we will split each crossing vertically and hori-
zontally to obtain two new motifs, each of which has one fewer crossing. This
makes it possible to write the bracket polynomial of a weaving motif as a
linear combination of the bracket polynomials of the two new motifs.

Definition 4.1. [39] Let DW be an unoriented weaving motif embedded on
a surface Σg of genus g ≥ 1, of a periodic weaving diagram of X2 = E2 or
H2. Let 〈DW〉 be the element of the ring Z[A,B, d] defined recursively by the
following identities,

(1) 〈O〉 = 1, with O a trivial simple closed curve on DW.

(2) 〈DW ∪ O〉 = d〈DW〉, when adding an isolated circle O to a diagram
DW.

(3) 〈 〉 = A〈 〉+ B〈 〉, for diagrams that differ locally around a
single crossing.

This last relation is called the skein relation and 〈DW〉 denotes the bracket
polynomial.

This Laurent polynomial is well defined on weaving motifs, but we will see
that, as for links, it is not invariant under the Reidemeister moves. The first
step is to find a relation between the variables A, B, and d. To any weaving
motif DW of a given weaving diagram of X2, we have seen previously that
we can assign an orientation to each crossing such that the upper thread
passes from bottom left to top right. When all the crossings are oriented,
we say that DW is oriented. The second step is to split each crossing of
an oriented DW via an operation of type A or B, also called smoothing, as
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illustrated in Figure 4.1. We can express the overall operations as a state S
of DW, consisting of symbols A and B, and which has for length the number
of crossings C in DW.

S = ABAABB. . . ABBA.

More specifically, let DW be a weaving motif with C crossings indexed
1, 2, 3, · · · ,C . Then, a state S for DW is a function S : {1, 2, 3, ...,C} 7→
{A,B}. Note that any weaving motif with C crossings admits therefore 2C

states. Then, given a motif DW and a state S for DW, we replace each cross-
ing with two arcs that do not cross. in one of the two ways illustrated on
Figure 4.1.

1

2

3
4

5
6

AABBBB

Figure 4.1: On the left, the two types of splitting. On the right, an example
of a state S = AABBBB of a weaving motif [48].

In knot theory, a general link diagram DS in a state S can be described as
a disjoint union of cS simple closed curves embedded in the Euclidean plane
without any crossing nor intersection,

DS = OOOO. . . O.

In other words, each component is isotopic to a circle O and is thus said
to be null-homotopic. Using Definition 4.1 (2), we can write the bracket
polynomial of DS as,

〈DS〉 = d cS−1 .

Next, let i be the number of splits of type A and j be the number of splits
of type B in DS, Then, if we apply the skein relation recursively, we obtain,

〈DS/S〉 = AiB j.

Therefore, the total contribution of a single given state S to the bracket
polynomial of a classic link diagram is given by,

PS = 〈DS/S〉〈DS〉 = AiB jd cS−1 .
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To apply similar reasoning to a periodic cell DW of a weaving diagram of
the Euclidean or the hyperbolic plane, we have to notice that a trivial weaving
motif in a given state may contain both essential and null homotopic simple
closed curves on Σg. Recall that by essential curves, we mean curves that
are wound up around the surface Σg. For any state of a diagram, the set of
essential simple closed curves has been called a winding in [25], [24], and it
is denoted by a pair of two positive integers (m′, n′) in the case of a torus,
where m′ and n′ are the number of intersections of the winding with a torus
meridian and longitude, respectively. For example, in the case of the diagram
on the right of Figure 4.1, we have for the state S = AABBBB a winding
given by the pair of integers (m′, n′) = (0, 2).

We can naturally extend the concept of winding to the general case of
higher genus surfaces Σg, with g ≥ 1, where the winding is denoted by a
sequence of positive integers,

(m1, . . . ,mg, n1, . . . , ng),

where m1, . . . ,mg, n1, . . . , ng represent the number of intersections of the
winding with the curves α1, . . . , αg, β1, . . . , βg of Σg respectively, see Fig-
ure 2.14 and [19], [43] for more details. Then, we can define the state S of a
weaving motif DW by,

DW,S = OOOO. . . O ∪ (m1
s, . . . ,m

g
s, n

1
s, . . . , n

g
s), for every g ≥ 1.

Recall that an essential simple closed curve in Σg is closed because it char-
acterizes the periodicity of the associated infinite weaving diagram, and is
therefore an open simple curve in X2, which is not the case for classic links,
as in [4], [5], [20]. It is thus necessary to define the bracket polynomial of a
winding, as an extension of the torus case,

〈(m1
s, . . . ,m

g
s, n

1
s, . . . , n

g
s)〉 = (m1

s, . . . ,m
g
s, n

1
s, . . . , n

g
s), for every g ≥ 1.

We are now ready to define the bracket polynomial of a weaving motif of
X2 = E2 or H2.

Proposition 4.2. [48] The bracket polynomial 〈DW〉 is uniquely determined
on weaving motifs of X2 by the identities (1), (2), (3) of Definition 4.1, and
is expressed by summation over all states of the diagram,

〈DW〉 =
∑
S

AiB jd cS−1(m1
s, . . . ,m

g
s, n

1
s, . . . , n

g
s), for every g ≥ 1. (4.1)
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The bracket polynomial is now well-defined for weaving motifs embedded
on any surface Σg of genus g ≥ 1. The next step to make it a weaving
invariant is to study its invariance for the Reidemeister moves.

Lemma 4.3. [48] If the three diagrams represent the same projection except
in the area indicated, we have 〈 〉 = AB〈 〉 + (ABd+ A2 +B2)〈 〉.

Thus, the bracket is invariant for the Reidemeister move Ω2 for all weaving
motifs if

AB = 1 and d = −A2 − A−2.

At this point, we obtain a Laurent polynomial of a single variable A, and
this lemma also implies its invariance for the Reidemeister moves of type Ω3,
which allows a partial conclusion about the invariance of the polynomial.

Lemma 4.4. [48] The invariance of the bracket polynomial for the Reide-
meister move Ω2 implies its invariance for Reidemeister move Ω3. Thus, the
bracket polynomial is an invariant of regular isotopy for unoriented weaving
motifs.

Here, Lemma 4.4 is a consequence of the generalization of Kauffman’s
observation for general link diagrams to weaving motifs: if we can obtain a
weaving motif D′W by applying these Reidemeister moves Ω2 and Ω3 a finite
number of times to a weaving motif DW of a given periodic weaving diagram,
then the two are regular equivalent. However, it is not possible to conclude
at this point, that the bracket polynomial is an invariant of ambient isotopy,
since we do not have the invariance for the Reidemeister move Ω1.

Proposition 4.5. [48] If AB = 1 and d = −A2 − A−2, then, for the Reide-
meister move Ω1, we have

〈 〉 = (−A3)〈 〉,

〈 〉 = (−A−3)〈 〉.

The idea used to define an ambient isotopy invariant from the bracket
polynomial is to consider the writhe wr(DW) of a weaving motif DW, which
is the sum of the signs of all the crossings where each crossing is given a sign
±1, as in Figure 4.2.
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+1 -1

Figure 4.2: Sign convention.

For any periodic weaving diagram, a weaving motif DW consists of cS
components, each denoted by ti, that can be oriented in an arbitrary way.
We call Di

W the part of diagram DW that corresponds to the component ti.
Then we have in DW,

wr(DW) =

cS∑
i=1

wr(D
i
W). (4.2)

By using the writhe, we are now able to define an extension of the bracket
polynomial for every g ≥ 1,

f [DW] = (−A)−3wr(DW)〈DW〉,

= (−A)−3wr(DW)
(∑

S

Ai−j(−A2–A−2)cS−1(m1
s, . . . ,m

g
s, n

1
s, . . . , n

g
s)
)
.

(4.3)

Theorem 4.6. [48] The polynomial f [DW] ∈ Z[A] defined above is an am-
bient isotopic invariant for oriented weaving motifs.

Proof. From Lemma 4.4, we already have the invariance of f [DW] for the
Reidemeister moves Ω2 and Ω3. Then, by combining the behavior of the
writhe defined above under the Reidemeister move Ω1 with the previous
relation of the bracket for Ω1 in Proposition 4.5, it follows that f [DW] is
invariant under Ω1 type moves. Thus, f [DW] is invariant under all three
moves, and is therefore an invariant of ambient isotopy.

However, the limits of this polynomial is that it still depends on the
choice of the generating cell since the multipliers (m1

s, . . . ,m
g
s, n

1
s, . . . , n

g
s),

associated with the windings, and thus on the Dehn twists. A Dehn twist
can indeed change the slope of an essential simple closed curve, which implies
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a change of these multipliers by definition of a winding. Moreover, we have
seen that for periodic weaving diagrams we must also consider the surface
deformation, which implies the independence of the polynomial for the Dehn
twists of Σg to have a weaving invariant. Once again, the particular case of
the torus is described in [24] and is extended below to g ≥ 1.

Theorem 4.7. [48] The polynomial f [DW], when (m1
s, . . . ,m

g
s, n

1
s, . . . , n

g
s) is

independent of the Dehn twists, or in canonical form, defines a Kauffman-
type weaving invariant.

Proof. To construct an invariant independent of the twists of Σg, it is nec-
essary to consider the set {vs} =

{
(m1

s, . . . ,m
g
s, n

1
s, . . . , n

g
s)
}

of windings for
every state S. Indeed, since this set {vs} depends on the twists of Σg, one
must transform it to the canonical form by using the Dehn twists, in order
to make it invariant. Dehn twists are known to be elements of the Mapping
Class Group of a surface of genus g and the Dehn-Lickorish theorem states
that it is sufficient to select a finite number of Dehn twists to generate the
Mapping Class Group MCG(Σg) of a surface Σg of genus g. Moreover, since
the symplectic representation ψ : MCG(Σg) → Sp(2g,Z) is surjective for
g ≥ 1 ([19]), then it means that the images of the Dehn twists generate
Sp(2g,Z). Besides, recall that the determinant of every symplectic matrix
A ∈ Sp(2g,Z) is one and that for g = 1, Sp(2g,Z) = SL2(Z). Thus, it is pos-
sible to use the same reasoning as in [24] and to represent the transformation
of any winding vs = (m1

s, . . . ,m
g
s, n

1
s, . . . , n

g
s) by a sequence of Dehn twists of

Σg as a product of vs by a matrix U ∈ Sp(2g,Z), vs′ = vsU , considering the
canonical matrix multiplication on Sp(2g,Z).

To define the canonical form of a set V = {vs}, we associate a quadratic
functional Q,

Q(V ) :=
N∑
s

|vs|2. (4.4)

A sequence of twists, defined by a symplectic matrix U , converts the set
V = {vs} to a set V ′ = {vs′}, with vs′ = vsU and the value of Q changes to:

Q(V ′) =
N∑
s

|vs′|2 =
N∑
s

vsUU
TvTs . (4.5)

So for a given set V = {vs}, the idea is to find a sequence of twists represented
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by a matrix U of determinant 1, that minimizes the value of Q,

Q(V ′) =
N∑
s

|vs′|2 =
N∑
s

vsUU
TvTs −→ min, U ∈ Sp(2g,Z). (4.6)

This equation always has a unique non-trivial solution U0, which can be
shown considering the following setting: let M = UUT , then M is a sym-
metric definite positive matrix, and let x = vs and let f(x) = xMxT , then
f(0) = 0 and for all x 6= 0, f(x) > 0. Thus, there is an orthonormal ba-
sis {e1, . . . ed} such that for all i in {1, ..., d}, ei is an eigenvector of M . We
denote the corresponding eigenvalue λi and we show that f is strictly convex.

Let 0 < µ < 1 and consider f
(
µx+ (1− µ)y

)
, with x 6= y. Then,

f
(
µx+ (1− µ)y

)
= 〈µx+ (1− µ)y,M(µx+ (1− µ)y)〉,

= 〈
d∑
i=1

µxiei + (1− µ)yiei,M
d∑
i=1

µxiei + (1− µ)yiei〉,

=
d∑
i=1

λi
(
µxi + (1− µ)yi

)2
.

(4.7)
Moreover, x2 is strictly convex and for some i, xi 6= yi, thus,

d∑
i=1

λi
(
µxi + (1− µ)yi

)2
<

d∑
i=1

λi
(
µx2

i + (1− µ)y2
i

)
. (4.8)

Therefore, since f is strictly convex and as a limit at infinity, it has a unique
minimizer, which concludes our proof. So, for every state S, the canonical
form of V = {vs}, with the winding as coordinates (m1

s, . . . ,m
g
s, n

1
s, . . . , n

g
s)

is an invariant and thus, f [DW] too.

4.1.2 The case of alternating weaving diagrams

As mentioned earlier, the definition of an alternating weaving motif, given in
Definition 2.24, does not seem complicated as we are dealing with crossings
that alternate between over and under as one travels around the components
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in a fixed direction. However such alternating structures are far from being
trivial objects. Moreover, as for a general reduced alternating link, a Σg-
reduced alternating weaving motif can be seen as a motif that cannot be
changed into one with a fewer number of crossings. Nevertheless, Tait’s
conjectures on alternating knots took more than a century to be proved, and
need some adjustments to include them in our weaving theory. To prove
these conjectures, we first need to study the bracket polynomial for the case
of alternating periodic weaving diagrams of X2 = E2 or H2. It is known
[57] that the degree of a polynomial is the most important aspect of the
polynomial as an invariant. The following proposition and its proof follow
the strategy of a similar result in classic knot theory, but depends strongly on
the definition of reduced and proper diagrams stated in the second chapter,
in order to count the number of disjoint regions around a crossing. Indeed,
the idea here is to think about the bracket polynomial as a tool to connect
or disconnect regions on a motif after the split of the crossings. In the skein
relation, four regions of a motif are adjacent to a crossing, two labelled A and
two labelled B. Therefore, to compute the bracket polynomial at the given
crossing, we split open a crossing in two different ways, connecting either the
two regions labeled A or the two regions labeled B, which is called an A-split
or a B-split, respectively.

Proposition 4.8. [48] Let DW be an alternating weaving motif X2 that is
connected and Σg-reduced. Let DW be colored so that all the regions labeled
A are white and all the regions labeled B are black. Let C be the number of
crossings, W be the number of white regions and B be the number of black
ones. Then,

max deg(〈DW〉) = C + 2W − 2,

min deg(〈DW〉) = −C − 2B + 2,
(4.9)

with max deg(P ) and min deg(P ) are respectively the maximal and the min-
imal degree of any polynomial P in Z[A,B, d].

Proof. Since DW is alternating, it has a canonical checkerboard coloring,
which means that two edge-adjacent regions always have different colors.
Let S = SA be the state obtained by splitting every crossing in the diagram
DW in the A-direction. Then, we have 〈DW/S〉 = AC , and since the number
of components cS is equal to W, thus as seen earlier, the total contribution
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of the state S to the bracket polynomial is given by,

PS = 〈DW/S〉d cS−1〈m1
s, . . . ,m

g
s, n

1
s, . . . , n

g
s〉

= ACdW−1(m1
s, . . . ,m

g
s, n

1
s, . . . , n

g
s), g ≥ 1.

(4.10)

And since d = −A2 − A−2, then max deg(PS) = C + 2W − 2, which is the
desired relation.

Now let S ′ 6= SA, be any another state and verify that deg(PS′) �
deg(PS). Then S ′ can be obtained from S = SA by switching some split-
tings of S. Thus, a sequence of states can be defined by S(0), S(1), . . . , S(n)
such that S = S(0), S ′ = S(1), and for every positive integer i, S(i + 1) is
obtained from S(i) by switching one splitting from type A to type B = A−1.
Then, since a splitting of type B = A−1 contributes a factor of A−1 in the
polynomial

〈DW/S(i+ 1)〉 = A−2〈DW/S(i)〉. (4.11)

We need now to distinguish two cases.
Firstly, the weaving motif DW is Σg-reduced and proper. Then, cS(i+1) ≤

cS(i)− 1, since switching one splitting can change the component number by
at most one. Thus, max deg(PS(i+1)) ≤ max deg(PS(i)). Moreover, let c be
the crossing point for which we change the A-splice into the B-splice from
S(0) to S(1). Since DW is proper, the crossing c is proper. Thus, we can
extend the following lemma, stated in [37].

Lemma 4.9. [48] Let DW be an alternating weaving motif, and let SA (or
SB, resp.) be the state of DW obtained from DW by doing an A-splice (resp.
B-splice) for every crossing. For a crossing c of DW, let R1(c) and R2(c)
be the closed regions of SA (or R′1(c) and R′2(c) be the closed regions of SB)
around c. If c is a proper crossing, then

R1(c) 6= R2(c) and R′1(c) 6= R′2(c).

Proof. Since c is a proper crossing, the four closed regions of DW appearing
around c are all distinct. Next, DW is alternating, so it admits a canonical
checkerboard coloring and there is a one-to-one correspondence,{

closed regions of SA
}
∪
{

closed regions of SB
}
→
{

closed regions of DW

}
Then R1(c), R2(c), R′1(c) and R′2(c) correspond to the four distinct closed re-
gions of DW around c. This concludes the proof.
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Thus, from this lemma, since S(1) is obtained from S(0) by changing an
A-splice to a B-splice at c, two distinct regions R1(c) and R2(c) become a
single region. Hence cS(1) = cS− 1. To conclude, the term of maximal degree
in the entire bracket polynomial is contributed by the state S = SA, and is
not canceled by terms from any other state, so we arrive at

max deg(〈DW〉) = C + 2W − 2.

The proof is similar for,

min deg(〈DW〉) = −C − 2B + 2.

Secondly, the weaving motif is Σg-reduced but not proper. Then, there
exists at least one crossing which is not proper. If we change an A-splice to a
B-splice at a crossing c that is proper, then the conclusion is the same than
before. Now, if we change an A-splice to a B-splice at a crossing c′ that is not
proper, then some white regions would touch both sides of a crossing. In this
case, the number of split components does not decrease from S(0) to S(1):
cS(1) = cS(0). But, as seen before, 〈DW/S(1)〉 = A−2〈DW/S(0)〉 and there is
no isthmus in the diagram, so the number of components either decreases or
is constant. Therefore,

max deg(PS(1)) ≤ max deg(PS(0)). (4.12)

Thus, once again, the term of maximal degree in the entire bracket polyno-
mial is contributed by the state S = SA, and is not cancelled by terms from
any other state and thus,

max deg(〈DW〉) = C + 2W − 2.

The proof is similar for,

min deg(〈DW〉) = −C − 2B + 2.

We are now able to define a relation between the closed regions of DW and
the regions of the motif after splitting as in [37]. Let SA (resp. SB) be again
the state obtained by splitting every crossing of the weaving motif in the A
(resp. B)-direction, and DW be colored so that all the regions labeled “A”
are white (or grey) and all the regions labeled “B” are black, as illustrated
in Figure 4.3.
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Figure 4.3: Example of DW (left), SA = A...A (middle) and SB = B...B
(right) [48].

Therefore, we have the following correspondences,{
closed regions of SA

}
→
{

closed regions of DW in black regions B
}

,{
closed regions of SB

}
→
{

closed regions of DW in white regions W
}

.

This implies the following bijection,{
closed regions of SA

}
∪
{

closed regions of SB
}
→
{

closed regions of DW

}
.

And when considering a weaving motif on a surface of genus g, using the
Euler characteristic and the fact that such a diagram represents a quadriva-
lent graph, we conclude that for every g ≥ 1,

there is C + 2− 2g closed regions in DW.

We can now state that the number of crossings is also a topological invari-
ant for periodic weaves, under the condition that this number is compared
between motifs with the same topology.

Theorem 4.10. [48] The number of crossings C in a simple alternating
projection of a weaving motif DW of X2 is a topological weaving invariant
of its associated periodic weaving diagram. Therefore any two Σg-reduced
connected alternating weaving motifs of a given periodic weaving diagram
have the same number of crossings if they have the same topology.

Proof. Let span(DW) defined by

span(DW) = max deg(〈DW〉)−min deg(〈DW〉).

Then we have, span(DW) = 2C +2(W +B)−4 = 2C +2(C +2−2g)−4.
So finally, span(DW) = 4C − 4g, for every g ≥ 1.
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Remark 4.11. Recall that throughout this manuscript, we defined a weav-
ing motif as being a generating cell of an infinite periodic weaving diagram.
However depending of the choice of a scale, we can obtain periodic cells
with different number of crossings. Therefore, we assume such a scale be-
ing fixed so that we compare weaving motifs of the same scale. Finding the
scale such that a weaving motif has the minimum number of crossings will
be the object of the next chapter, and here, we will only assume its existence.

4.2 Tait’s First Conjecture for Periodic Al-

ternating Weaves

We are now ready to discuss the connections between the bracket polynomial
and the Jones polynomial, as well as their implication in the proof of Tait’s
first conjecture.

4.2.1 The Jones Polynomial

The Jones polynomial has been defined by the following identities in [39],

• VO = 1,

• t −1 V − t V = (
√
t− 1√

t
)V .

And it is related to the weaving invariant defined above with the bracket
polynomial by the following relation.

Theorem 4.12. [48] The Jones polynomial VW of a weaving motif is related
to its bracket-type polynomial, for every g ≥ 1, by the expression,

VW(t) = f [DW](t−1/4) =

(−1)−3wr(DW)t−(1/4)−3wr(DW)
(∑

S

t i−j(−t 2−t −2)cS−1〈m1
s, . . . ,m

g
s, n

1
s, . . . , n

g
s〉
)
.
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Proof. By the skein relation:{
〈 〉 = A〈 〉+ A−1〈 〉,
〈 〉 = A−1〈 〉+ A〈 〉.

Thus, we have A〈 〉 − A−1〈 〉 = (A2 − A−2)〈 〉.
If we consider the writhe wr(DW) of the weaving motif in the bracket

on the right side of the equation, then the other two motifs on the left
have writhes (wr(DW) + 1) and (wr(DW) − 1) respectively. Therefore, by
multiplying the previous equation by the appropriate writhe, we obtain

A4f [ ]− A−4f [ ] = (A−2 − A2)f [ ].

4.2.2 Tait’s First Conjecture

Before stating the first main theorem of this chapter, we must define the
notion of crossing number of periodic weaving diagram, which must be com-
puted on a weaving motif. However, since we saw that depending on the
choice of the topology or scale of the unit, we can obtain generating cells
with different number of crossings, which cannot change under the Reide-
meister theorem for periodic weaves. This particularity makes the definition
of crossing number different from that of general links.

Definition 4.13. [48] The crossing number of a weaving diagram is defined
as the minimum number of crossings that can possibly be found in an asso-
ciated minimal motif DW, for a fixed g ≥ 1,

C (W) = min
{

C (DW): DW is minimal
}
.

Any such weaving motif which has exactly C (W) crossings is said to be min-
imum.

It is important to recall at this point that any weaving motif DW must
encode all the crossing information of the different sets of threads and the
periodicity of its associated weaving diagram. For example, in Figure 4.4, the
picture on the right is a weaving motif of an alternating weaving diagram that
is different from the one on the left. Moreover, finding a minimal diagram
to apply Tait’s first and second conjectures to alternating periodic weaves is
a complex problem. We will introduce a solution for the particular case of
untwisted weaves in the next chapter.
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Figure 4.4: two weaving motifs representing distinct weaving diagrams [48].

Theorem 4.14. (Tait’s First Conjecture for periodic alternating
weaves) [48] A connected minimal Σg-reduced alternating weaving motif is a
minimum diagram of its alternating weaving diagram. Moreover, a minimum
weaving motif of a prime alternating weaving diagram can only be alternating.
Thus, a non-alternating weaving motif can never be the minimum diagram
of a prime alternating weaving diagram.

Proof. Since VW(t) = f [DW](t−1/4) and span(DW) = 4C − 4g, for every
g ≥ 1, thus,

span
(
VW(t)

)
= max deg

(
〈VW(t)〉

)
−min deg

(
〈VW(t)〉

)
.

= C − g.
(4.13)

Besides, the number of crossings is an invariant so it is fixed here for a
minimal Σg-reduced alternating weaving motif. Moreover, we have a general-
ization of the previous result for the general case, not necessary alternating,
that can be proven in a similar way than in the proof of the generalization
of Proposition 4.8 in [39],

span(DW) ≤ 4C − 4g, for every g ≥ 1. (4.14)

Thus, the number of crossings cannot decrease below span
(
VW(t)

)
. We

conclude that DW must be a minimum diagram. Then span
(
VW(t)

)
= C −g

is not true for a non-alternating weaving motif of a prime alternating weaving
diagram; this can be demonstrated in a similar way as done in [66]. Thus,
such a diagram cannot be a minimum diagram.
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4.3 Tait’s Second Conjecture for Periodic Al-

ternating Weaves

The natural following step is to prove Tait’s second conjecture, which pro-
vides a second invariant for alternating weaving motifs, namely the writhe.
Here our approach follows one of the proofs for general links [64], considering
that by definition a thread in a weave does not entangle with itself in the
sense of a knot. We will only admit self-crossing of a thread, which intu-
itively consists in a simple twist of a part of a thread, that can be done and
undone by a Reidemeister move Ω1.

4.3.1 Writhe, linking number and adequacy of weaving
diagrams

Earlier in this chapter, we have seen that the writhe is not invariant under
Reidemeister moves of type Ω1, which only concerns the cases of self-crossing
of a thread, as discussed above. Therefore, we will start with the study of
crossings between two distinct threads of a weaving motif.

Definition 4.15. [48] Let DW be a weaving motif of an oriented weaving
diagram and WU be the lift of DW to the thickened surface Σg × [−1, 1].
Select any two components of WU; denote them as ti and tj, and let Di

W and
Dj

W denote the pieces of DW to which they correspond. The linking number of
Di

W and Dj
W, denoted lk(Di

W, D
j
W), is the sum, taken over crossings involving

only threads from both Di
W and Dj

W, where each term is either +1 or −1,
depending on whether the crossing is of +1 type or −1 type.

We will now prove that the linking number, which is defined for a pair of
threads, is a weaving invariant.

Proposition 4.16. [48] Let DW1 and DW2 be two weaving motifs of a same
oriented weaving diagram which differ by a Reidemeister move Ω2, or Ω3.
Then, with the same notation as before, we have,

lk(Di
W1
, Dj

W1
) = lk(Di

W2
, Dj

W2
).

As for general links, the proof of this proposition follows immediately
from the invariance of the writhe under Reidemeister moves of type Ω2 and
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Ω3, as well as with the assumption that surface isotopies and Dehn twists
on Σg do not affect the linking number by definition. Moreover, note that
the linking number is defined independently from the choice of the periodic
generating cell and the continuous deformation of the weaving motifs, for a
given periodic scale. Therefore, we are able to extend the definition of the
linking number from X2 to X3 = X2 × [−1, 1].

Definition 4.17. [48] Let DW be a weaving motif of an oriented weaving
diagram. With the same notation as before, for any two components ti and
tj of WU, the linking number of Di

W and Dj
W , denoted lk(Di

W, D
j
W), is given

by
lk(ti, tj) := lk(Di

W, D
j
W).

Now the next step is to define the notion of adequacy of a weaving motif.
For this purpose, we will use once again the notion of states described for
the definition of the bracket polynomial earlier. However from now on, when
we mention the number of components of a weaving motif in a state S, we
will only consider null-homotopic curves.

Definition 4.18. [48] Let DW be a weaving motif of an oriented weaving
diagram. Let SA denote the state of DW in which all crossings are A split,
and SB if all crossings are B split. Let cS denote the number of components
in the state S of DW. If, for all states S that have exactly one B split, we
have that cSA > cS, then DW is said to be plus-adequate. If, for all states
S that have exactly one A split, we have that cSB > cS, then DW is said to
be minus-adequate. If DW is both plus-adequate and minus-adequate, DW is
said to be adequate.

Here, we will use a well-known approach to characterize the adequacy of
a weaving motif DW, and we refer to the proof of Proposition 4.8 and to
[64] for more details. Considering the state SA of DW, we start by selecting
an arbitrary crossing that we switch from an A split to a B split. Such an
operation will always decrease the number of components, unless if the cho-
sen crossing was a self-crossing of positive type since it would transform one
thread into two. So if each component of SA never forms such a self-crossing
at a former crossing of DW, then it is plus-adequate. Similarly, if each com-
ponent of SB never forms a negative self-crossing at a former crossing of DW,
then it is minus-adequate. The fact that a Σg-reduced weaving motif is al-
ways adequate follows directly from this observation since it never contains
any self-crossing by definition.
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In the proof of Tait’s second conjecture for classic links by Stong [64], one
of the most interesting point is the notion of parallels of a diagram to study
their adequacy.

Definition 4.19. [48] Let DW be a weaving motif of an oriented weaving
diagram and let r be a positive integer. The r-parallel of DW, denoted (DW)r,
is a weaving motif in which each thread of DW is replaced by r parallel copies
of that thread that follow the same crossing sequence as the original thread.

The notion of parallels is defined such that for a fixed weaving motif DW

of X2, each thread is replaced by a set of r copies of the thread, all related
by a translation of the plane.

Lemma 4.20. [48] Let DW be a weaving motif of an oriented weaving dia-
gram and (DW)r, the r-parallel of DW. If DW is plus-adequate (resp. minus-
adequate), then (DW)r is plus-adequate (resp. minus-adequate).

This lemma can be proved directly by observing that the state S ′A of
(DW)r consists of r parallel copies of each curve of the state SA of DW.
Therefore, if each component of SA never forms a self-crossing at a former
crossing of DW, then the same applies for S ′A.

4.3.2 Relation between the number of crossings and
the writhe

In this section, we start by generalizing Proposition 4.8 to study the degree
of the bracket polynomial for non-alternating structures.

Lemma 4.21. [48] Let max deg(〈DW〉 and min deg(〈DW〉) be respectively the
maximal and the minimal degree of any polynomial 〈DW〉. Let SA denote the
state of DW in which all crossings are A split, and let SB denote the state
of DW in which all crossings are B split. Let C be the number of crossings.
Then,

max deg(〈DW〉) ≤ C + 2cSA − 2, with equality if DW is plus-adequate,

min deg(〈DW〉) ≥ −C − 2cSB + 2, with equality if DW is minus-adequate.
(4.15)
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Then, we can also relate the number of crossings in a plus-adequate Σg-
diagram to its writhe, and connect together the concepts of linking numbers
and r-parallels.

Lemma 4.22. [48] Let DW1 and DW2 be two weaving motifs of a same ori-
ented weaving diagram. Suppose that DW1 is plus-adequate. Let C1 and C2

denote, respectively, the number of crossings in DW1 and DW2. Let wr(DW1)
and wr(DW2) denote, respectively, the writhes of DW1 and DW2. Then,

C1 − wr(DW1) ≤ C2 − wr(DW2).

Proof. We start by indexing each of the threads of the periodic cell WU as
ti, which corresponds to Di

W1
and Di

W2
in DW1 and DW2 respectively. Since

DW1 is plus-adequate, it does not admit a ‘self-crossing’. However, DW2

can contain finitely many self-crossings of type +1 or −1. If we consider
each thread individually, then we can choose an integer ki that cancels the
writhe of the component Di

W2
containing self-crossings. This means that, by

performing appropriate Reidemeister moves Ω1, we add ki twists of type +1
if the original writhe of Di

W2
is negative, or of type −1 if it is positive. So,

for all integer i, we have,

wr(D
i
W1

) = wr(D
i
W2

) + ki = 0.

By performing these deformations to each Di
W2

, we have added
∑

i≥1 ki
self-crossings to DW2 . We call this new motif D′W2

.
Now to compare wr(D

′W1) with wr(D
′
W2

), we need also to consider the
crossings which involved distinct threads, and thus their linking numbers.

Therefore, we have,

wr(DW1) =
∑
i≥j

lk(ti, tj)

wr(D
′
W2

) =
∑
i≥1

wr(D
i
W2

) +
∑
i≥1

ki +
∑
i≥j

lk(ti, tj) =
∑
i≥j

lk(ti, tj)
(4.16)

Indeed, since the linking numbers are invariant, we have,

wr(DW1) = wr(D
′
W2

).

We now consider the r-parallel (DW1)
r and (D′W2

)r. Clearly, they are both
projections of the same weaving motif (with r−1 parallel components added)
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and thus, are equivalent. Therefore, they have the same bracket polynomial.
Moreover, since every crossing of DW1 and D′W2

corresponds to r2 crossings
of (DW1)

r and (D′W2
)r, we see that

wr((DW1)
r) = r2wr(DW1) = r2wr(D

′
W2

) = wr((D
′
W2

)r).

By the definition of the bracket polynomial, it follows that,

〈(D′W1
)r〉 = 〈(D′W2

)r〉.

Let cS1
A

denote the number of connected components in an all-A splitting
of DW1 , and let cS2

A
denote the number of connected components in all-A

splitting of DW2 . Adding self-crossings to DW2 means that the number of
connected components in the all-A splitting of D′W2

becomes cS2
A

+
∑

i≥1 ki.
Then, when we pass to the r-parallels, we find that the number of connected
components in the all-A splitting of (DW1)

r and (D′W2
)r becomes r(cS1

A
) and

r(cS2
A

+
∑

i≥1 ki), respectively. Moreover, adding the sum of self-crossings in
DW2 means that we increase the number of crossings in D′W2

, which becomes
C2 +

∑
i≥1 ki. Furthermore, making r−parallels means that the number of

crossings in (DW1)
r and (D′W2

)r becomes r2C1 and r2(C2 +
∑

i≥1 ki) respec-
tively. Since DW1 is plus-adequate, we have, by Lemma 4.20, that (DW1)

r is
also plus-adequate. Thus, from Lemma 4.21, we conclude that,

max deg(〈(D′W1
)r〉) = r2C1 + 2rcS1

A
− 2

and,

max deg(〈(D′W2
)r〉) = r2(C2 +

∑
i≥1

ki) + 2r(cS2
A

+
∑
i≥1

ki)− 2

Since 〈(DW1)
r〉 = 〈(D′W2

)r〉, then, max deg(〈(DW1)
r〉) = max deg(〈(D′W2

)r〉),
and thus, for all positive integers r, we have

r C1 + 2cS1
A
≤ r(C2 +

∑
i≥1

ki) + 2(cS2
A

+
∑
i≥1

ki)

Therefore,

C1 ≤ C2 +
∑
i≥1

ki.

75



And since for all positive integer i, we have wr(D
i
W2

) + ki = 0, then,

C1 ≤ C2 −
∑
i≥1

wr(D
i
W2

).

Again, since the linking number is an invariant, we have

lk(Di
W1
, Dj

W1
) = lk(Di

W2
, Dj

W2
)

So as desired, we finally have from (5.2) that,

C1 − wr(DW1) ≤ C2 − wr(DW2).

4.3.3 Tait’s Second Conjecture

Let DW1 and DW2 be two minimal weaving motifs of the same oriented weav-
ing diagram, which are both alternating, Σg-reduced, and therefore adequate.
Let C1 and C2 denote, respectively, the number of crossings in DW1 and DW2 .
Then, by the previous Lemma, we have C1−wr(DW1) ≤ C2−wr(DW2), and
C2 − wr(DW2) ≤ C1 − wr(DW1), and thus, C1 − wr(DW1) = C2 − wr(DW2).
Moreover, these two weaving motifs have the same crossing number accord-
ing to Tait’s First Conjecture, so C1 = C2, and thus, wr(DW1) = wr(DW2).
This finally proves Tait’s Second Conjecture for periodic alternating weaves.

Theorem 4.23. (Tait’s Second Conjecture for weaves) [48] Any two
connected minimal Σg-reduced alternating weaving motifs of an oriented pe-
riodic alternating weave have the same writhe.
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Chapter 5

CLASSIFICATION OF
UNTWISTED (p, q)-WEAVING
MOTIFS

In this chapter, we will continue to explore the classification of weaves
according to their number of crossings and their spatial configuration at the
diagrammatic scale. In particular, we will investigate the particular class of
doubly periodic untwisted (p, q)-weaves and will define new results for weav-
ing motifs in the Euclidean plane for this class of weaves. Recall that such
a weaving diagram is isotopic to a graph Γ, that can be decomposed into at
least two disjoint sets of parallel lines characterized by different slopes, or
axes of direction, together with an over or under information at each vertex
encoded in a set of crossing sequences Σ. However, we observed situations
where two distinct infinite weaving diagrams could be reconstructed from the
same pair (Γ,Σ), which implies that the attribution of crossing information
is not unique. A very simple example that illustrates this fact is shown in
Figure 5.1, where we can compare weaving motifs of a basket weave (+2,−2)
and a twill weave (+2,−2). These two weaving motifs can be reconstructed
from a topological square tiling, that encodes the two sets of threads, to
which we assign for each thread two consecutive overcrossings followed by
two consecutive undercrossings, cyclically. By topological tiling, we mean
that we only consider the degree of the vertices and the number of adjacent
neighbors of each tile, and not geometric features. This notion is detailed
in [31]. Observing that a pair (Γ,Σ) could possibly encode two different
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weaves motivated the investigation of equivalence classes of weaves and the
construction of a new weaving invariant Π, such that any weaving diagram
generated from a triple (Γ,Σ,Π) would define a unique equivalence class.
This topological invariant Π, will be defined as a set of crossing matrices
whose elements are symbols ±1, and will characterize the organization of the
crossings on a weaving motif of a doubly periodic untwisted (p, q)-weaves.
This matrices generalizes the notion of ‘design’ described in [28], [29], [30],
[32], to the case of weaves with more than two sets of threads. Then, the
second main result of this chapter relates to the computation of the minimal
number of crossings for this class of weaves, which is an important parame-
ter characterizing the complexity of an entangled structure and a nontrivial
open problem, as discussed in the previous chapter. Here, we will use a com-
binatorial description of untwisted (p, q)-weaving motifs to define a formula
which depends on (Γ,Σ) and also gives a solution of a minimal periodic cell,
called a minimal motif. Therefore, using the results stated in this chapter,
which are based on our paper [21], we are now able to classify doubly periodic
untwisted (p, q)-weaves according to two new weaving invariants, namely the
set of crossing matrices and the crossing number. An interesting observation
is that two weaving diagrams characterized by the same pair (Γ,Σ) but that
differ from their parameter Π seem to have different crossing number.

5.1 Equivalence classes of doubly periodic un-

twisted (p, q)-weaves

We start this chapter with the study of the equivalence classes of doubly
periodic untwisted (p, q)-weaves. By a (p, q)-weave, we mean that given any
pair of sets of threads, all the threads of one set have the same crossing
sequence with the second set, and this sequence consists of only two positive
integers.

Definition 5.1. [21] Let i, j, and k be strictly positive integers. A (p, q)-
weave W is defined such that all its crossing sequences, possibly distinct, can
be described by two positive integers pk and qk. This means that if Ci,j =
(+pk,−qk) is the crossing sequence associated to the disjoint sets of threads
Ti and Tj of W, each thread of Ti is cyclically pk consecutive times over
the threads of Tj, followed by qk consecutive times under. Moreover, the
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complementary crossing sequence of Ci,j is given by Cj,i = (+qk,−pk).

In other words, the crossing sequence Ci,j = (+p,−q) of minimal length
associated with the disjoint sets of threads Ti and Tj is defined such that if
one walks along any thread ti ∈ Ti, there exists a crossing ci,j = π(ti)∩ π(tj)
having at least one of its two neighboring crossings c′i,j with a different over or
under information, where c′i,j is a crossing between ti and another thread of
Tj. Then, by walking on ti in the opposite direction of c′i,j, there are cyclically
p crossings for which ti is over the other threads of Tj, followed by q crossings
for which it is under. Moreover, by definition of the complementary crossing
sequence, we can encode all these crossing information with only one of these
two crossing sequences, including non-crossing sets of threads with crossing
sequences (+1, 0) or (0,−1) in an entangled weave with N > 2 sets of threads.

Recall that from the Reidemeister Theorem for weaves, we can character-
ize the equivalence classes of doubly periodic untwisted (p, q)-weaves using
their diagrammatic representation. This means that the parameter Π that
we will construct in this section, which consists of a set of crossing matrices
must be invariant by the three Reidemeister moves, as well as the torus defor-
mation. We will construct these matrices as an extension of the well-known
concept of bicolored design existing only for the case of two sets of threads,
which can also be interpreted as binary matrices [32]. An example of designs
is given in Figure 5.1 for the basket and twill weaves mentioned above.

Figure 5.1: Twill and Basket (2, 2) square weaving diagram with their asso-
ciate design [21].
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5.1.1 Background on the case of weaves with two sets
of threads

Our new weaving invariant Π has been constructed as an extension of the
concept of design, also called armor in the literature, used for the classifica-
tion of weaves in the textile industry that considers only the case of doubly
periodic untwisted weave with N = 2 sets of threads [32]. A design charac-
terizes on a bicolored square grid the organization of crossings on a weaving
motif, and is associated with the crossing sequence of the given weave. In
this setting, these two sets of threads, called warp and weft, are seen as
perpendicular to each other, following existing weavers’ techniques, and are
represented in a design by the columns and by the rows, respectively. On
such a regular square tiling, each tile represents therefore the crossing be-
tween a weft thread and a warp strand, and by usual convention, a square is
colored white if the weft thread passes over the warp thread, or black con-
versely. Notice in Figure 5.1 that for the twill weave, the gray and black
squares have a diagonal organization, however, the basket weave they are
organized into blocks. This illustrates the different possibilities of specifying
the over or under information at each vertex of a graph Γ, given a set of
crossing sequences.

In 1867, the mathematician E. Lucas [14] used arithmetic arguments to
study the specific class of doubly periodic untwisted weaves, called regular
satins, containing two sets of threads. He noticed that the structure of the
design of a regular satin can be represented on a square chessboard, whose
dimension is a positive integer m called the module of the design. This
chessboard, assuming its invariance by translation in all directions, must
satisfy the condition that the black squares are arranged in a regular fashion
such that two of them are not in the same horizontal or vertical row, and so
that, with respect to any one of these black squares, the other black squares
are always placed in the same way. The distance between two such black
squares, which is counted vertically, is a multiple of an integer a, called shift,
such that, a < m and gcd(a,m) = 1, which allows the construction of two
sequences,

• the sequence of column indices of the matrix x = 0, 1, 2, · · · ,m− 1,

• the sequence of row indices of the matrix y = 0, a, 2a, · · · , (m − 1)a,
calculated in Zm.
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This situation relates to a classic theorem of Gauss, which characterizes a
systematic way to construct regular satins, as mentioned by Lucas. Indeed,
for a design of module m the black squares appear in each column depending
on the shift a modulo m, therefore if m and a are coprime, the condition
to build a regular satin is satisfied. In other words, the remainders (mod.
m) of the numbers y thus obtained constitute a permutation of the numbers
0, 1, 2, · · · ,m− 1. The twill (+2,−2) illustrated in Figure 5.1 is an example
of a weave belonging to the twill family, which is a particular class of regular
satin with module m ≥ 2 and shift a = ±1mod(m). The black boxes are
therefore colored on the chessboard at the intersection of the column x = k
and the row y = ka (modm). Note that for a given module m, there are
as many regular satin weaves, as there are integers a coprime with m, with
a < m. Lucas also proved that the regular satin weaves with shift a, m− a,
a′ and m− a′ are equivalent, with aa′ = 1 mod(m).

More generally, it is said that two weaves are essentially distinct if their
designs are not equivalent, up to rigid motions and an interchange of the
colors black and white.

Our purpose is to generalize this concept to the general case of N ≥ 2
sets of threads, so that we can encode the organization of crossings for each
pair of sets of threads on a periodic cell and distinguish non-equivalent weav-
ing motifs with such a topological invariant. Grünbaum and Shephard used
geometric restriction to consider such a generalization and made an attempt
using tilings by polygons, which are isotopic to a regular projection of a
weave, and labeled each vertex to indicate the crossing information [30].
However, they mentioned that such a pattern can become very complex and
unintelligible.

5.1.2 Our generalization

To generalize the notion of design considering more sets of threads, we choose
to define a set of crossing matrices associated with a weaving motif such that
it would become possible to distinguish doubly periodic untwisted (p, q)-
weaves characterized by the same pair (Γ,Σ). The key point of our strategy
relates to the fact that we defined the crossing sequences of a weave in a
pairwise fashion, in the sense that each matrix is associated with a pair
of distinct sets of threads of the diagrams. A crossing matrix is a square
matrix made of symbols +1 or or −1, representing an overcrossing or an
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undercrossing, respectively. More specifically, if a pair of sets of threads
(Ti, Tj) has for crossing sequence Ci,j = (+p,−q), then the crossing matrix
will have size m = p + q, which naturally generalized the results of Lucas.
At this point, it is important to also note that the size of a crossing matrix
is connected with the number of strand components in a weaving motif. It
particular, the crossing matrix of size m associated with a pair (Ti, Tj) of a
weave characterizes the crossing information of a weaving motif containing
m strands of Ti as well as m strands of Tj. Moreover, as observed for the
crossing sequences, we will see that only one crossing matrix for each pair
of sets of threads is enough to characterize the full structures. This means
that for a weave with N sets of threads, we can define N(N−1)

2
matrices for a

corresponding weaving motif DW , where each matrix describes the crossing
organization for a given sets of threads, as illustrated in Figure 5.2. In other
words, for each crossing between two strands si ∈ Ti and sj ∈ Tj, we say
that si is over (resp. under) sj, if we look at the position of the strands of Ti
according to the position of the strands of Tj, or conversely that sj is under
(resp. over) si, if we consider the position of the strands of Tj according to
the position of the strands of Ti.

Definition 5.2. [21] Let i, j ∈ {1, · · · , N} and Ci,j = (+p,−q) be the cross-
ing sequence of the two disjoint sets of threads Ti and Tj of a doubly periodic
untwisted (p, q)-weaving diagram DW0 with N ≥ 2. Let Mi,j be a square
m×m (−1,+1)-matrix, where m = p+ q is called the module of Mi,j. Then,
Mi,j is called the crossing matrix of DW0 associated with Ci,j if each row
and each column of Mi,j simultaneously contains p consecutive symbol +1
followed by q consecutive symbols −1, considering cyclic and countercyclical
permutations of rows and columns of the matrix.

Remark 5.3. [21] To construct the crossing matrices associated to a fixed
weaving motif DW of DW0 with N ≥ 2 sets of threads, one must consider
a flat torus cut from any preferred meridian-longitude pair, or equivalently
fix any square unit cell of DW0 containing m2 crossings and m strands of
each set. The strands sk,i of a set Ti are oriented and indexed by a strictly
positive integer k from left to right and top to bottom, starting from the
top left crossing. Then, for any crossing sequence Ci,j of DW0 , one must
use the following convention to fill the associated crossing matrix Mi,j =
(mx,y)0≤x,y≤m−1,
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(1) m1,1 = +1 (resp. m1,1 = −1) if the most top left crossing c1,1 = s1,i∩s1,j

of DW is such that the strand s1,i of Ti is over (resp. under) the strand
s1,j of Tj;

(2) fill the first row of the matrix by walking on s1,i such that the element
m1,k gives the information of the crossing c1,k = s1,i ∩ sk,j, with k the
index of the strand of Tj;

(3) fill the kth row of the matrix by walking on sk,i, starting with the
element mk,1 = m1,k given by the information of the crossing ck,1 =
sk,i ∩ s1,j. Note that the kth column of the matrix is equal to its kth

row.

Furthermore, a cyclic or countercyclical permutation of the rows (resp. the
columns) of such a crossing matrix, also called a translation of the design in
[32], corresponds to a vertical (resp. horizontal) translation of the unit cell
on DW0 .

Twill Kagome Weave (3,2)3 : module m = 5 with  parameter a = 1

M1,2 = M2,3 = M3,1
=

+1 +1 –1 –1 +1
+1 –1 –1 +1 +1
–1 –1 +1 +1 +1
–1 +1 +1 +1 –1
+1 +1 +1 –1 –1

• Number of disjoint sets of threads: 3 (T1: hor., T2: diag., T3: vert.)
• Set of crossing sequences: 𝛴 = {(+3, – 2), (+3, – 2), (+3, – 2)}

Figure 5.2: Kagome Matrices

Remark 5.4. [21] The over or under information at the crossing between
the threads si and sj must be opposite on the two crossing matrices Mi,j and
Mj,i, describing the position of the two sets of threads considered, since if si
is over sj at a crossing, then the corresponding element of the matrix from
the viewpoint of Ti will be +1, while it will be −1 from the point of view
of Tj. This justifies why only one of the two matrices associated with a pair
of sets of threads is enough to characterize this class of weaves. Moreover,
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one can deduce the crossing matrix Mj,i from Mi,j by transposition and by
exchanging the symbols +1 and −1. In other words, Mj,i = −(Mi,j)

T .

Following Lucas’ strategy on satins [14], we formalized construction rules
for crossing matrices for specific subclasses of doubly periodic untwisted
(p, q)-weaves in the following examples. Here we also reformulate with our
notations the case of satins, which is also considered in the case of a weave
with more than two sets of threads and such that one of its crossing se-
quences can be written as (+p,−1). An interesting challenge would be the
enumeration of all the possibilities to construct a crossing matrix for a given
crossing sequence of type (+p,−q) and then extending this enumeration to
more complex periodic weaves.

Example 5.5. [21] Consider the crossing matrix M = (mx,y)0≤x,y≤m−1 such
that x represents the column indices of the matrix and y its row indices.
Then, if M is associated with a crossing sequence (+p,−1) such that it satis-
fies Lucas’ condition on regular satin [14], the symbols −1 can be positioned
at the element mx,y satisfying the system,{

x = k, with k ∈ 0, 1, · · · , p+ q − 1
y = ak mod(m), with a < m fixed and gcd(a,m) = 1.

In this case, the elements that do not satisfy this system are symbols +1.

Example 5.6. [21] Consider the crossing matrix M = (mx,y)0≤x,y≤m−1 such
that x represents the column indices of the matrix and y its row indices.
Then, if M is associated with a crossing sequence (+p,−p) such that at least
two rows or two columns are equal, the symbols +1 can be positioned at the
element mx,y satisfying the system,

xk = k, with k ∈ {0, 1, ..., 2p− 1}
yk,l = yk,l−1 ± 1, if k 6= p mod(m), or
yk,j = yk,j−1 ± p, otherwise, j ∈ {1, · · · , p− 1}.

with the first column given by,{
x0 = 0
y0,0 = 0 and y0,j = y0,j−1 ± 1, j ∈ {1, · · · , p− 1}.

In this case, the elements that do not satisfy this system are symbols −1.

Example 5.7. [21] Consider the crossing matrix M = (mx,y)0≤x,y≤m−1 such
that x represents the column indices of the matrix and y its row indices.
Then, if M is associated with a crossing sequence (+p,−q), with p, q 6= 1
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and such that there are not two equal rows or columns, the symbols +1 can
be positioned at the element mx,y satisfying the system,{

x = k, with k ∈ 0, 1, · · · , p+ q − 1
y = ak ± i mod(m), with a = ±1 fixed, i ∈ {1, · · · , p− 1}.

In this case, the elements that do not satisfy this system are symbols −1.

Remark 5.8. [21] Note that the basket weave of Figure 5.1 has a crossing
matrix of rank 1, while the twill weave has a crossing matrix of rank 2, which
confirms the non-equivalence of the two structures. This result can be gener-
alize for any crossing matrix corresponding to a crossing sequence (+p,−p),
whose rank would be equal to 1 if it is constructed as in Example 5.6, or
equal to p if it is constructed as in Example 5.7.

We will now prove that the set of crossing matrices defined above is
a weaving invariant that allows one to distinguish two doubly periodic un-
twisted (p, q)-weaves characterized by the same pair (Γ,Σ). This set of cross-
ing matrices is denoted by Π = {Mi,j \ i, j ∈ {1, · · · , N}}, where each Mi,j

is a crossing matrix. Moreover, when comparing two such weaves, we should
consider identical regular projection, up to isotopy, and such that the sets of
threads are identically labeled to compare strands from the same set on the
two weaving motifs.

Theorem 5.9. (Equivalence Classes of doubly periodic untwisted
(p, q)-weaves) [21] Let W1 and W2 be two doubly periodic untwisted (p, q)-
weaves with N ≥ 2 sets of threads, such that their corresponding regular
projections are equivalent, up to isotopy of E2, and with the same set of
crossing sequences. Let DW1 and DW2 be two weaving motifs of same area of
W1 and W2, respectively. Then, DW1 and DW2 are equivalent if and only if
their crossing matrices are pairwise equivalent, meaning that all the matrices
of DW2 can simultaneously be obtained from the respective matrices of DW1

from at least one of two conditions,

• a same cyclic or countercyclical permutations of rows and columns,

• a same clockwise or counterclockwise rotation of π, or of π
2

together
with an inversion of all its symbols.

Proof. First, we prove that the equivalence of the weaving motifs implies
the equivalence of the crossing matrices, using the Reidemeister Theorem
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for weaves. We start by studying the invariance of the Reidemeister moves.
Without loss of generality, we assume that our weaving diagrams are geodesic.
Then, by definition, Reidemeister moves of types Ω1 and Ω2 do not occur.
For a Reidemeister move of type Ω3, we consider three threads from three
different sets. However, recall that each crossing matrix is obtained from
the crossing information of a pair of sets of threads only. This means that
an Ω3 move does not change any of the crossing matrices. Now, it suffice
to show the invariance of the matrices of a weaving motif DW for the torus
twists. We fix a lattice Z2 in E2 where the infinite weaving diagrams are
embedded. Let p be the intersection point of preferred meridian-longitude
pair (µ, λ) on DW , such that a flat weaving motif is obtained by cutting
along this pair. Notice at this point that if we reverse the meridian with the
longitude, meaning that we replace the pair (µ, λ) into (λ, µ), then the cut
along this reversed pair is realized by rotating the original weaving motif in
E2 by π

2
. Let p′ 6= p be a point on the longitude λ and p′′ 6= p be a point on

the meridian µ of DW . Then, we obtain new preferred meridian-longitude
pairs (µ, λ′) and (µ′, λ) on DW . Cutting DW along (µ′, λ) instead of (µ, λ)
corresponds to a cyclical or countercyclical permutations of the rows of the
crossing matrices of DW . Similarly, cutting DW along (µ, λ′) instead of (µ, λ)
corresponds to a cyclical or countercyclical permutations of the colums of the
crossing matrices of DW . In particular, these transformations correspond to
a vertical and horizontal translation of the unit cell in the infinite weaving
diagram respectively. Besides, recall that a torus twist represents a modular
transformation that preserves the fixed lattice [19], and that two periodic
cells with the same area of an infinite weaving diagram have the same number
of crossings, by Theorem 4.10. Therefore, two weaving motifs related by a
sequence of torus twists would correspond to two distinct parallelogram unit
cells of the same infinite diagram. We can conclude using Remark 5.3 and
the definition of the crossing sequence of a (p, q)-weaves, that the crossing
matrices of two such diagrams are equivalent up to a sequence of cyclical or
countercyclical permutations of the rows and columns, which conclude the
first part of our proof. Then, to prove the reverse implication, we start from
a set of crossing matrices to which we apply the same transformation. If
we apply a same cyclic or countercyclical permutation of the rows and the
columns applied simultaneously to all the crossing matrices associated to a
weaving motif, we have seen above that it corresponds to a translation of
the periodic unit cell in the infinite diagram, which implies the equivalence
of the corresponding weaving motifs. Furthermore, if we apply to the given
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set of crossing matrices the same clockwise or counterclockwise rotation of
π, or of π

2
together with an inversion of all its symbols, then we would obtain

pairwise equivalent matrices, up to cyclic or countercyclical permutations of
the rows and the columns, from which we can construct once again equivalent
weaving motifs.

Remark 5.10. [21] Observe that if one of the crossing matrices of DW2 has
a different permutation or rotation than the others matrices, then DW1 and
DW2 are not equivalent. Indeed, there would exist a thread ti of DW2 for
which the order of all its crossings will be different than its representative
in DW1 . This means that there would exist a crossing ci,j, in DW2 , with Ti
and Tj two sets of threads, such that by walking on the thread ti, one of the
nearest neighboring crossing ci,k, of ci,j,, with a different set of threads Tk
will have a different type than the corresponding one in DW1 . Therefore, the
two weaving motifs cannot be superimposed, which means in other words
that they are not equivalent, as in Figure 5.3.

M1,2 = M2,3 = M3,1
=

M1,2 = M2,3
=

M3,1
=

M2,3 = M3,1
=

M1,2
=

Twill Kagome Weave (3,2)3 : module m = 5

≠ ≠

Figure 5.3: Non Equivalent Kagome Matrices [21].

We can deduce from this main first theorem of this chapter an easy way
to construct new weaving diagrams. Indeed, starting with a triple (Γ,Σ,Π),
it is possible to obtain nonequivalent structures having the same pair (Γ,Σ)
just by doing a permutation or rotation of some of the matrices of Π, but
not all, with respect the related crossing sequences.
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5.2 The crossing number of a doubly periodic

untwisted (p, q)-weave

In knot theory, the main classification criterion is the number of crossings in
the diagram of a link, and more specifically the crossing number, which is
the minimum number of crossings in any diagram of the link. It is therefore
natural for us to orient our study towards the analysis of the number of
crossings in a weaving motif. However, there exist many different weaving
motifs of the same weave, so the idea is to identify and eliminate duplicates.
The other particularity for doubly periodic structures is that the crossing
number is define for a unit cell and not any periodic cell. Any such motif
is called minimal, and its construction is not a trivial problem. Indeed, the
weaving motifs corresponding to the crossing matrices (or the simpler case of
design for the case of two sets of threads) mentioned in the previous section
give traditional representations of the corresponding weave. Nevertheless,
these motifs are usually not minimal in terms of the number of crossings
because they contain several unit cells. Our final objective is the enumeration
of our class of weaves in order of increasing crossing number. However, it has
been noticed that there are no general methods for computing the crossing
number of a given weave.

In this section, we will introduce a solution to this problem of finding
the crossing number and the minimal weaving motif of a doubly periodic un-
twisted (p, q)-weave, using an approach based on combinatorial arguments.
We will also end this chapter with a note on the entanglement of our weaving
motifs, discussing the invariance of the number of A-triangles, related to the
notion of blocking crossing defined in Chapter 2 .

5.2.1 The crossing number

Let W be a doubly periodic untwisted (p, q)-weave in the Euclidean thickened
plane and consider its regular projection to the plane. We observed that this
projection can also be seen as the skeleton of a specific type of periodic
topological quadrivalent tiling by convex polygons. We call such a tiling a
thread-tiling.
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Definition 5.11. [21] A periodic thread-tiling, composed of N ≥ 2 sets of
threads, is a planar edge-to-edge quadrivalent topological tiling by convex poly-
gons, such that each edge of these polygons belongs to a single thread and two
adjacent edges belong to two threads of different sets.

The next step toward the computation of the crossing number is to de-
scribe such a thread-tiling in a combinatorial way. As for doubly periodic
weaves, any generating cell of a doubly periodic thread-tiling can be seen
as a graph embedded in a torus that can be decomposed into a set of finite
number of essential simple closed curves, denoted by Γ′. Recall that any
nontrivial simple closed embedded on a torus can be characterized by a pair
of coprime integers (a, b) [19], which encodes the slope of the axis of direction
of the corresponding thread in the Euclidean plane. Moreover, note that the
pairs (a, b) and (−a,−b) represent axes of the same slope, as well as the
pairs (−a, b) and (a,−b). We thus use by convention the pairs (a, b) and
(−a, b) for these two cases, respectively. Another important property of such
essential simple closed curves is their number of intersections on the torus.
More specifically, the number of intersections between two such curves (a, b)
and (a′, b′), denoted by |v|, is given by the geometric intersection number
[19], via the equation |a b′ − a′ b| = |v|. This number is well-defined for
free homotopy classes of simple closed curves as the minimum number of
intersections between a representative curve of each set of threads. However,
note that the same thread-tiling can be characterized by non-equivalent sets
of curves, and the challenge is to find a unit cell, meaning a generating cell
with the fewest vertices. This is the case of the basic square tiling which can
for example be recovered from a generating cell containing one curve (1, 0)
and one curve (0, 1) with only one vertex, and that also can be reconstructed
from a periodic cell containing one curve (1, 1) and one curve (−1, 1) with
this time two vertices. Moreover, by the Reidemeister theorem, a weave can
also admit different thread-tilings as regular projection. The classification
of doubly periodic thread-tilings in terms of sets of essential simple closed
curves on a unit cell is an interesting problem, and in this chapter, we assume
that for a given number of set of threads, a periodic cell containing curves
given by pairs of coprime minimized in absolute value will have the fewest
vertices.

The idea behind the computation of the crossing number of doubly pe-
riodic untwisted (p, q)-weave, is to use the argument of periodicity at each
step, both for encoding the thread-tiling unit cell Γ′ and the set of crossing
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sequence Σ. In other words, for each pair of disjoint sets of threads of such
weaves, we can deduce from the associated geometric intersection number of
two representative curves and their crossing sequence the minimum number
of crossings required to ensure the periodicity associated with these two sets.

Lemma 5.12. (Pairwise crossing number) [21] Let DW0 be a weaving
diagram with N sets of threads characterized by the pair (Γ′,Σ). Let i, j ∈
{1, · · · , N} be distinct integers and Ti, Tj be two sets of threads of DW0.
Then, to ensure the periodicity on a weaving motif of DW0, the minimum
number of necessary crossings ci,j on a thread ti ∈ Ti and tj ∈ Tj is given by,

Ci,j = lcm(ζ ii,j; ζ
j
i,j)

where ζ ii,j = |vi,j|× lcm({|Ci,k| / k ∈ {1, · · · , N}}), with |Ci,k| the sum of the
two positive integers of the crossing sequence Ci,k, for all k ∈ {1, · · · , N}.
We call Ci,j the (i, j)-pairwise crossing number.

Proof. Let si ∈ Ti and sj ∈ Tj be the two curves representative of a unit cell
of the thread-tiling corresponding to DW0 . Then, to ensure the periodicity of
the crossing sequence Ci,j in a weaving motif ofDW0 we must first consider the
minimum number of vertices vi,j which is necessary on si and sj to satisfy the
definition of the thread-tiling given by Γ′. This number |vi,j| is the geometric
intersection number between si and sj by definition. Then, we must multiply
this number by the minimum number of crossings necessary to read the
crossing sequence Ci,j = (+p,−q), which is its module m = |Ci,j| = p + q,
which is also minimal by definition. However, on a strand si (resp. sj)
there are not only crossings of type ci,j when N > 2, we must therefore also
consider the minimum number of necessary crossings of type ci,k on si (resp.
cj,k on sj) to read the other crossing sequences Ci,k (resp. Cj,k) and ensure
the periodicity. We must therefore consider the least common multiple of
their modules |Ci,k| (resp. |Cj,k|) as the multiplier of |vi,j|. Finally, the
global minimality is ensured by taking the least common multiple of these
two products, considering that we must obtain the same number of crossings
on each thread of Ti and Tj on the weaving motif.

At this stage, we however do not encode yet a weaving motif in its whole.
Each (i, j)-pairwise crossing number Ci,j represents the number of crossings
in each simple closed curve of both sets Ti and Tj, unless these sets do not
cross. However, this condition must be satisfied simultaneously for all pairs
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of sets of threads of the weaving motifs. Recall that each curve of a given
set of threads can be given by a pair of coprime integers, that not equivalent
to the pair of coprime representing another set of threads by definition of a
weave. Therefore, computing the crossing number equals solving a system of
equations, in which one can simultaneously satisfy the geometric intersection
number equations for each pair of sets of threads. Note that the possibilities
of choosing the integers are restricted and a minimal motif might be made
of more than one strand for each set of threads.

Theorem 5.13. (Total Crossing Number) [21] Let i, j ∈ {1, · · · , N}
distinct and Ci,j be the (i, j)-pairwise crossing numbers of a weaving diagram
DW0 with N sets of threads, characterized by the pair (Γ′,Σ). Let (Smin), be
the system of geometric intersection number equations, defined for integers
ai and bi, either coprime or such that one of them equals zero, satisfying for
each equation that we can multiply both parts by a same even number kl if
the two sets of threads implied on the equation cross (kl = 1 otherwise), with

l ∈ {1, · · · , N(N−1)
2
} being the index of the equation in the system.

(Smin)



k1 × |a1 b2 − a2 b1| = k1 × C1,2

.

.

.
kl × |ai bj − aj bi| = kl × Ci,j

.

.

.

Then, from the solution of (Smin) with smallest multipliers kl which min-
imizes each integers am and bm in absolute value, and such that every two
pairs (am, bm) are distinct, we can deduce the total crossing number of DW0

given by,

C =
N∑

i<j=1

C ′i,j

with each C ′i,j = kl Ci,j in (Smin).
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Proof. A unit cell of a periodic weaving diagram is an embedding of essential
simple closed curves crossing on the surface of a torus. Thus, the geometric
number of intersection between a simple closed curve of a set of thread Ti and
a simple closed curve of a set Tj defines the minimum number of crossings
between these two curves on a weaving motif, given by the (i, j)-pairwise
crossing number Ci,j. From Lemma 5.12, we therefore have to find two pairs
integers, either coprime or such that one of them equals zero, whose geometric
number of intersection is Ci,j, for each pair (i, j).

|ai bj − aj bi| = Ci,j

These four integers are chosen by convention such that their absolute value
is minimal. Moreover, since this condition must be satisfied simultaneously
for all distinct pairs of sets of threads (Ti, Tj), we conclude that to find the
minimal number of crossings on the weaving motif, we have to solve the
system of equations (Smin) of the theorem statement.

Remark 5.14. [21] Considering that two periodic weaving motifs with the
same scale or topology contain the same number of crossings, we can con-
struct a minimal diagram on a square unit cell given the fact that (|a|+ |b|)
parallel segments that do not intersect any corner of the square, correspond
to a (a, b)-simple closed curve on the torus after identification of the opposite
sides of the square. Indeed, by taking kl (or kl

2
if kl is an even number divided

to be distributed for the four integers of the geometric intersection number
equation) simple closed curves of the same slope for each set of threads Ti,
represented by the pairs (ai, bi) and satisfying Theorem 5.13, we can con-
struct a minimal diagram on a square unit cell, whose associated infinite
weaving diagrams can be built from the pair (Γ′,Σ), up to isotopy.

The classification tables of the last section of this chapter show examples
of minimal diagrams for some simple cases of weaving diagrams. However, as
discussed in the previous subsection, non-equivalent weaving diagrams can
be constructed from the same pair (Γ′,Σ). At this point, we can conclude
about their crossing number and their minimal diagram.
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Remark 5.15. [21] The total crossing number of a doubly periodic untwisted
(p, q)-weave is given by the following,

• if a set of crossing matrices, corresponding to a minimal diagram con-
structed by Remark 5.14 is unique up to equivalence, then the associ-
ated weaving diagram built from the pair (Γ′,Σ) is unique and has its
crossing number given by Theorem 5.13,

• if a non-equivalent set of crossing matrices is found, it means that there
exist at least two non-equivalent weaving diagrams generated from a
same couple (Γ′,Σ). One of these diagrams has its crossing number
given by Theorem 5.13 and a minimal (unit) cell constructed using Re-
mark 5.14. The crossing numbers of the other non-equivalent weaving
diagrams are given by solving the system (Smin) of Theorem 5.13 with
the next smallest solutions, such that the corresponding weaving dia-
grams generated by Remark 5.14 have associated crossing-matrices that
are not equivalent to the ones given for the previous smallest solutions
of (Smin).

We can illustrate this method with the same example of basket and twill
square (+2,−2) weaving diagrams of Figure 5.1.

Example 5.16. [21] The minimal diagram for the twill case is obtained
with one representative simple closed curve for each set of thread. Recall
that each of these curves must have four crossings, two over and two under,
so its crossing number is C = 4. This can be done with a (2, 1)-curve for
one set and a (−2, 1)-curve for the other set. For the basket case, we find
that k1,2 = 2 is the next smallest solution of (Smin), with the four integers
satisfying this relation and such that their absolute value is minimal, given by
two (1, 1)-curve for one set and two (−1, 1)-curve for the other set. Finally
since we can organize the crossings on an associated unit cell with eight
crossings, such that the corresponding crossing matrix is not equivalent to
the one of the twill case, we can confirm that the crossing number of the
plain square (+2,−2) weaving diagram is 8.

A sub-classification for each regular projection associated to a set of cross-
ing sequences can be done by solving the system (Smin) in Theorem 5.13, with
different values for the multipliers kl, starting from the smallest possible, and
by studying the equivalence class of the set of crossing matrices.
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5.2.2 The A-triangle number

Finally, we take the opportunity to introduce a last weaving invariant for
doubly periodic untwisted (p, q)-weave in this chapter. We have seen in the
second chapter that we can characterize the notion of entanglement at the
diagrammatic scale by considering the existence of blocking crossings. We
can therefore study the invariance of the number of such blocking crossings
in equivalent minimal diagrams. In the case of a weave with N ≥ 3 sets of
threads, we notice that it implies the existence of alternating triangles, which
we call A-triangle, in the weaving diagram. Such an A-triangle is locally
defined by three threads ti ∈ Ti, tj ∈ Tj and tk ∈ Tk, with i, j, k ∈ {1, · · · , N}
distinct, and three closest neighboring crossings of different types, such that
ti is over tj and under tk, and tj is over tk, or conversely up to the indexes.
Recall that two minimal diagrams of the same doubly periodic untwisted
(p, q)-weave have the same number of crossings. Therefore, we can prove the
following result with the same strategy used to prove Theorem 5.9.

Proposition 5.17 (The A-triangles Number). [21] Let DW1 and DW2 be two
minimal weaving motifs of doubly periodic untwisted (p, q)-weaves with N ≥ 3
sets of threads. Then, they have the same number of A-triangles if and only
if every Reidemeister moves of type Ω3 that occur at a crossing belonging to
a A-triangle cross the complete A-triangle.

Proof. The proof follows the same strategy used to prove Theorem 5.9. The
difference concerns Reidemeister moves of type Ω3. We denote by K the
number of A-triangles in DW1 . If an Ω3 move happens at a crossing that does
not belong to a A-triangle, then K is obviously not affected. However, if it
occurs at a crossing belonging to a A− triangle, there are two possibilities.
Firstly, the thread lies in the interior of the A-triangle after the Ω3 move. It
generates a new triangle that is not alternating, meaning that K decreases,
which is a contradiction. Secondly, the thread crosses the A-triangle after a
Ω3 move, meaning that it is in the exterior of the A-triangle. In this case, K
remains unchanged.
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5.3 Examples of Classification tables

We end this chapter with an illustration of our main results by constructing
and classifying some simple examples of square and kagome weaving motifs
by hand [21]. We hope that these tables could be filled with more complex
structures in the future with the help of a computer program.

CLASSIFICATION SQUARE WEAVING DIAGRAMS: N = 2
Set of 

Crossing 
Sequences

Crossing 
number
(Writhe)

Minimal 
Diagram Set of Crossing Matrices Matrices

Number of 
Crossings by 

S.C.C.

Number of S.C.C. for Each 
Set on the Minimal 

Diagram
Name

{(1,1)} 2
(0)

+1 −1
−1 +1 Rank = 1 2 1

Ex: (1,1) and (-1,1)
Plain Square 

Weaving (1,1)

{(2,1)} 3
(1)

+1 +1 −1
+1 −1 +1
−1 +1 +1

Rank = 3
“Diagonal 

configuration”
3 1

Ex: (2,1) and (-1,1)
Twill Square 

Weaving (1,1)

{(2,2)} 4
(0)

+1 +1 −1
−1 +1 +1
−1 −1 +1

−1
−1
+1

+1 −1 −1 +1

Rank = 2
“Diagonal 

configuration”
4 1

Ex: (2,1) and (-2,1)
Twill Square 

Weaving (2,2)

{(2,2)} 8
(0)

+1 +1 −1
+1 +1 −1
−1 −1 +1

−1
−1
+1

−1 −1 +1 +1
Rank = 1 4 2

Ex: (1,1) and (-1,1)
Plain Square 

Weaving (2,2)

{(3,1)} 4
(2)

+1 +1 +1
+1 +1 −1
+1 −1 +1

−1
+1
+1

−1 +1 +1 +1

Rank = 4
“Diagonal 

configuration”
4 1

Ex: (2,1) and (-2,1)
Twill Square 

Weaving (3,1)

{(3,1)} 16
(8)

+1 +1 −1
−1 +1 +1
+1 +1 +1

+1
+1
−1

+1 −1 +1 +1
Rank = 4 4 4

Ex: (1,1) and (-1,1)
Satin Square 

Weaving (3,1)

{(3,2)} 5
(1)

+1 +1 +1
+1 +1 −1

−1 −1
−1 +1

+1 −1 −1
−1 −1 +1

+1 +1
+1 +1

−1 +1 +1 +1 −1

Rank = 5
“Diagonal 

configuration”
5 1

Ex: (1,1) and (-3,2)
Twill Square 

Weaving (3,2)

{(3,3)} 6
(0)

+1 +1 +1
+1 +1 −1

−1 −1
−1 −1

−1
+1

+1 −1 −1
−1 −1 −1

−1 +1
+1 +1

+1
+1

−1 −1 +1
−1 +1 +1

+1 +1 −1
+1 −1 −1

Rank = 3
“Diagonal 

configuration”
6 1

Ex: (3,1) and (-3,1)
Twill Square 

Weaving (3,3)

{(3,3)} 18
(0)

+1 +1 +1
+1 +1 +1

−1 −1
−1 −1

−1
−1

+1 +1 +1
−1 −1 −1

−1 −1
+1 +1

−1
+1

−1 −1 −1
−1 −1 −1

+1 +1 +1
+1 +1 +1

Rank = 1 6 3
Ex: (1,1) and (-1,1)

Plain Square 
Weaving (3,3)

Figure 5.4: Classification table of square weaves (1/2) [21].
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CLASSIFICATION SQUARE WEAVING DIAGRAMS: N = 2

Set of 
Crossing 

Sequences

Crossing 
number
(Writhe)

Minimal 
Diagram Set of Crossing Matrices Matrices

Number of 
Crossings 
by S.C.C.

Number of S.C.C. for 
Each Set on the 

Minimal Diagram
Name

{(4,1)} 5
(3)

+1 +1 +1
+1 +1 +1

+1 −1
−1 +1

+1 +1 −1
+1 −1 +1

+1 +1
+1 +1

−1 +1 +1 +1 +1

Rank = 5
“Diagonal 

configuration”
5 1

Ex: (1,1) and (-3,2)
Twill Square 

Weaving (4,1)

{(4,1)} 25
(15)

+1 +1 +1
+1 −1 +1

+1 −1
+1 +1

+1 +1 +1
−1 +1 +1

−1 +1
+1 +1

+1 +1 −1 +1 −1

Rank = 5 5 5
Ex: (1,1) and (-1,1)

Satin Square 
Weaving (4,1)

{(4,2)} 6
(2)

+1 +1 +1
+1 +1 +1

+1 −1
−1 −1

−1
+1

+1 +1 −1
+1 −1 −1

−1 +1
+1 +1

+1
+1

−1 −1 +1
−1 +1 +1

+1 +1 +1
+1 +1 −1

Rank = 5
“Diagonal 

configuration”
6 1

Ex: (3,1) and (-3,1)
Twill Square 

Weaving (4,2)

{(4,3)} 7
(1)

+1 +1 +1
+1 +1 +1
+1 +1 −1

+1 −1 −1
−1 −1 −1
−1 −1 +1

−1
+1
+1

+1 −1 −1
−1 −1 −1
−1 −1 +1

−1 +1 +1
+1 +1 +1
+1 +1 +1

+1
+1
−1

−1 +1 +1 +1 +1 −1 −1

Rank = 7
“Diagonal 

configuration”
7 1

Ex: (4,1) and (-3,1)
Twill Square 

Weaving (4,3)

{(4,4)} 8
(0)

+1 +1
+1 +1

+1 +1
+1 −1

−1 −1
−1 −1

−1 −1
−1 +1

+1 +1
+1 −1

−1 −1
−1 −1

−1 −1
−1 +1

+1 +1
+1 +1

−1 −1
−1 −1

−1 −1
−1 +1

+1 +1
+1 +1

+1 +1
+1 −1

−1 −1
−1 +1

+1 +1
+1 +1

+1 +1
+1 −1

−1 −1
−1 −1

Rank = 4
“Diagonal 

configuration”
5 1

Ex: (2,1) and (-3,2)
Twill Square 

Weaving (4,4)

{(4,4)} 32
(0)

+1 +1
+1 +1

+1 +1
+1 +1

−1 −1
−1 −1

−1 −1
−1 −1

+1 +1
+1 +1

+1 +1
+1 +1

−1 −1
−1 −1

−1 −1
−1 −1

−1 −1
−1 −1

−1 −1
−1 −1

+1 +1
+1 +1

+1 +1
+1 −1

−1 −1
−1 −1

−1 −1
−1 −1

+1 +1
+1 +1

+1 +1
+1 +1

Rank = 1 5 4
Ex: (1,1) and (-1,1)

Plain Square 
Weaving (4,4)

Figure 5.5: Classification table of square weaves (2/2) [21].
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CLASSIFICATION KAGOME WEAVING DIAGRAMS: N = 3 (each set meet the 2 others)

Set of 
Crossing 

Sequences

Crossing 
number
(Writhe)

Minimal 
Diagram Set of Crossing Matrices Matrices

Number of 
Crossings by 
S.C.C. (pair)

Number of S.C.C. for Each 
Set on the Minimal Diagram Name

{(1,0) , (1,0) , 
(1,0)}

3
(1) 1 ; 1 ; [1]

Rank = 1
Rank = 1
Rank = 1

≥ 2
(1)

1
Ex: (1,0), (0,1) and (1,1)

Kagome
Weaving

(1,0)3

{(1,0) , (1,0) , 
(1,1)}

6
(0) [1] ; [1] ; +1 −1

−1 +1

Rank = 1
Rank = 1
Rank = 1

≥ 2 for (1,0) 
≥ 4 for (1,1)

(1 for (1,0) and 
2 for (1,1))

1 for 2 sets and 
2 for the last set

Ex: (1,0), (1,1) and (-1,1)

Kagome
Weaving 

(1,0)2 , (1,1)

{(1,0) , (1,1) , 
(1,1)}

12
(4) [1] ; +1 −1

−1 +1 ; +1 −1
−1 +1

Rank = 1
Rank = 1
Rank = 1

≥ 2 for (1,0) 
≥ 4 for (1,1)

(1 for (1,0) and 
2 for (1,1))

2
Ex: (1,0), (0,1) and (1,1)

Kagome
Weaving 

(1,0) , (1,1)2

{(1,1) , (1,1) , 
(1,1)}

12
(0)

+1 −1
−1 +1 ; +1 −1

−1 +1 ;

+1 +1
+1 +1

Rank = 1
Rank = 1
Rank = 1

≥ 4
(2)

2
Ex: (1,0), (0,1) and (1,1) Kagome

Weaving 
(1,1)3

{(1,0) , (1,0) , 
(2,1)}

9
(1) 1 ; 1 ;

+1 +1 −1
+1 −1 +1
−1 +1 +1

Rank = 1
Rank = 1
Rank = 3 

“Diagonal”

≥ 2 for (1,0) 
≥ 6 for 

(1,1)and(-2,1)
(1 for (1,0) 
and  3 for

(1,1)and(-2,1))

1 for 2 sets and 
3 for the last set

Ex: (1,0), (1,1) and (-2,1)

Kagome
Weaving

(1,0)2 , (2,1)

{(1,0) , (2,1) , 
(2,1)}

27
(9)

1 ;
+1 +1 −1
+1 −1 +1
−1 +1 +1

;
+1 −1 +1
+1 +1 −1
−1 +1 +1

Rank = 1
Rank = 3
Rank = 3

“Diagonal”

≥ 2 for (1,0) 
≥ 4 for (1,1)

(1 for (1,0) and 
2 for (1,1))

3
Ex: (1,0), (0,1) and (1,1)

Kagome
Weaving 

(1,0) , (2,1)2

{(2,1) , (2,1) , 
(2,1)}

27
(3)

+1 +1 −1
−1 +1 +1
+1 −1 +1

;
+1 +1 −1
+1 −1 +1
−1 +1 +1

;
+1 −1 +1
+1 +1 −1
−1 +1 +1

Rank = 3
Rank = 3
Rank = 3

“Diagonal”

≥ 4
(2)

3
Ex: (1,0), (0,1) and (1,1) Kagome

Weaving 
(2,1)3

Figure 5.6: Classification table of kagome weaves [21].
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Perspectives

In this thesis, we introduced an original topological description of weaves,
which are well-known complex entangled structures for materials scientists
but need further development in mathematics. We used arguments from
many fields such as knot theory, tiling theory, or combinatorics to describe,
construct and classify different families of weaves. In particular, we benefited
from diagrammatical representations in the plane of these three-dimensional
objects to facilitate their study.

First, we began this thesis with a new topological definition of a weave as
the lift to the thickened Euclidean plane of a quadrivalent planar connected
graph made of infinite colored straight lines, with an over or under informa-
tion at each vertex. This defines our first class of untwisted weaves. Then,
by applying local surgeries to make two closest neighboring curves twist, we
defined the class of twisted weaves. Continuous deformations of these struc-
tures are considered to study equivalence classes of weaves. However, we are
more interested in working with their planar version, called a weaving dia-
gram. In the particular case of doubly periodic weaves, a generating cell of a
corresponding weaving diagram is called a weaving motif and is a particular
type of link diagram embedded on a torus.

Further, we define a new systematic method to construct weaving motifs,
by applying polygonal link methods to periodic tilings of the plane, which
consist in covering the vertices and edges of a generating cell of a tiling by
polygons with strands that cross each according to specific rules. However,
since these methods do not always generate weaving motifs, we developed
a strategy to predict whether a polygonal link method applied on a given
tiling will generate a weaving motif or not, using algebraic and combinatorial
arguments.
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Next, we started to consider the classification of doubly periodic weaves
according to topological invariant. We began with the generalization of Tait’s
first and second conjectures for alternating periodic weaves, which gave us
two classic important invariants to classify not only weaving motifs on a torus
but also on higher genus surfaces, namely the crossing number and the writhe.
Then, we focused on the specific class of doubly periodic untwisted (p, q)-
weaves, which is characterized by the simplest type of crossing information.
We first noticed that the combinatorial description of a such a weave from a
graph with crossing information was not enough to define a weave uniquely,
which motivated the construction of a new weaving invariant using binary
crossing matrices to characterize the different equivalence classes. Then, we
challenged the open problem of computing the minimal number of crossings,
which is also called crossing number for this class of weaves, and found an
interesting formula. However, the computation by hand is still not trivial.

From now there are still many open questions that we already started to
consider, more or less deeply.

• Study the symmetries of doubly periodic weaves.

• Construct more complex weaves and study their algebraic structure
using braid theory.

• Defining a group structure on weaving motifs, under particular bound-
ary conditions, to construct more complex weaves.

• Generalize other knot invariants to weaves, such as the stick number,
and explore new invariants that have a physical meaning, such as the
linking number in [59].

• Extend the theory of doubly periodic weaves to triply periodic weaves.
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[30] B. Grünbaum and G.C. Shephard. Isonemal fabrics. The American Math. Monthly.
95 (1988), 5–30.
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