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Abstract

Gait assessment is the study of a person’s walking pattern. Walking is a primary

function required to perform daily life activities. Although it may appear simple,

walking requires precise coordination between several motor, sensory, and cognitive

processes. Any alterations in motor, sensory, or cognitive functions induced by dis-

ease, trauma, or idiopathic nature may affect the gait pattern of a person. This

highlights the importance of performing gait analysis to detect the presence of un-

derlying conditions at an early stage. The current gold standard of gait analysis

is performed in a laboratory environment based on gold standard measurements

obtained using motion capture and force plate systems. However, the privilege of

using specialized instruments is limited to a handful of clinics or research centers.

Further, research facilities with space constraints may not be able to capture the

natural gait of a person effectively. Recently, flexible, efficient, and inexpensive

wearable sensors have been popularized as effective alternatives that can be used to

perform gait analysis during daily activities. In this context, this thesis addresses

the specific domain of multimodal quantitative gait analysis using wearable sensors.

Chapter 2 of this thesis details the identification and summarizing of the current

advances in wearable sensors for gait analysis from various perspectives, such as the

application of wearable sensor-based gait analysis, sensor systems and their attach-

ment locations, and the algorithms used. The PRISMA guideline was adopted to

find relevant studies from several scientific databases published between 2011 and

2020. In aggregate, 76 articles were selected based on the inclusion and exclusion

criteria. The wearable inertial measurement unit (IMU) attached to the lower-limb

region was found to be the most commonly utilized sensor–location pair. Temporal,

spatial, and spatiotemporal features are the most common quantitative gait features

extracted from wearable sensors. Varying performances were observed for each pro-
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posed framework, where an increased number of sensors did not necessarily improve

the estimation performance metrics. A few studies have integrated various machine

learning techniques for classification problems, correction algorithms, cross-checking

functions, and scoring functions.

Chapter 3 of the thesis describes the proposed framework for quantitative gait

assessment using only two IMU sensors while extracting the maximum number of

features. Decreasing the number of sensors negatively affects the gait assessment

performance. Based on comparisons with a motion capture setup and previous stud-

ies, we verified the potential of the proposed framework to provide a compact sensing

system with feature-rich diversity for gait assessment and identified its limitations.

The results revealed that the temporal differences were 4.22 ± 15.48 ms (mean ±
S.D.) and -8.31 ± 21.02 ms (mean ± S.D.) in the initial contact and toe-off events,

respectively. Additionally, with respect to the spatial features, the stride length and

heel vertical displacement were overestimated by 7.72 cm and 2.22 cm, respectively,

on average. We successfully extracted 17 gait features from two IMUs located on

the foot. We also demonstrated that the symmetry index feature can be used to

distinguish healthy subjects from subjects with a recent history of lower-limb injury,

which is a significant observation for clinical research.

Chapter 4 of the thesis further demonstrates the potential of the proposed frame-

work, we present the following three case studies. The first case study demonstrates

an application of the proposed framework to analyze a different type of gait. Detailed

gait phases during walking and running were successfully extracted by employing

finite state machine (FSM) transition rules. The second case study demonstrates the

use of the proposed framework to distinguish cognitive dual-task gait from single-

task gait. While visual observation may not objectively identify the differences

between single-task and dual-task gait, the proposed framework facilitated the ex-

traction of temporal gait patterns that were later derived into gait indices. Lower

motion intensity, a slight increase in double support time, higher gait temporal vari-

ability, and worse gait symmetry were observed in the subjects performing dual-task

gait in this study. The third case study demonstrates the utilization of the proposed

framework in prolonged and outdoor gait experiments. The extraction of various

gait index features enabled the objective comparison of the stages of walking as well

as the derivation of inter-subject comparisons. In conclusion, all of the presented

case studies revealed promising results and established the viability of using the

proposed system in the respective applications.

Chapter 5 of this thesis details the integration of several machine learning algo-

rithms to solve various gait-related problems, including gait phase classification, gait
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activity prediction, and control of the swing phase for prosthetic knees. Three ma-

chine learning models, consisting of support vector machines (SVM), AdaBoost, and

XGBoost, were trained for gait phase classification. The results indicate that the

mean accuracy of XGBoost (84.54%) was higher than those of AdaBoost (82.26%)

and SVM (78.31%) models, and the former also exhibited a notably faster pro-

cessing time compared with SVM. On the other hand, temporal convolutional net-

works (TCN), recurrent neural networks, and long short-term memory networks

were trained for gait activity prediction. The results demonstrate that TCN’s pre-

dictions were the best corresponding to 50, 100, and 150-time steps, with an overall

best performance of 4.94% mean absolute percentage error (MAPE) on the 100-time

step prediction. To control the swing phase, we adopted a model-free reinforcement

Q-learning control with a designed reward function as the controller of a semi-active

prosthetic knee. The results indicate that the proposed control strategy converges

within the desired performance index and is capable of adapting to several walking

speeds. Further, the proposed control structure exhibited better overall performance

compared to user-adaptive control, while at some walking speeds it outperformed

the neural network-based predictive control method.
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Chapter 1

General Introduction

1.1 Background

Gait is often translated into how the person is walking. Quantitative gait anal-

ysis is an in-depth analysis of how a person walks as seen by various quantifiable

parameters. A broad range of gait analysis applications is found from sport appli-

cation to clinical application. In sports applications, gait analysis is often utilized

to assess the performance of athletes, prevent injuries, and provide a training guide

[1], [2]. Meanwhile, in clinical application gait analysis is performed to characterize

certain gait pathology, track rehabilitation progresses, evaluate certain treatment

effectiveness [3]–[5]. Other than those applications, gait analysis could also be used

to predict the risk of falling in the elderly subject group [6], [7]. Therefore, by

studying the way a person walks or runs, we can determine normal gait patterns,

diagnose issues that cause pain, identify a person’s unique movements, while also

implementing and evaluating certain given treatments to correct abnormalities.

There are several approaches that can be used to perform gait analysis. In

most clinical settings, a combination between observation and qualitative assessment

is usually performed by means of clinicians observation and patient self-reported

assessment [8], [9]. Observation performed by clinicians such as doctors or physical

therapist may give some quantitative gait features such as distance covered, total

time spent walking, gait speed, and cadence. Nevertheless, these are subjected to

inter-observer variability and human error. Gait parameters or gait features such

as walking speed has been considered as the sixth vital sign [10]. It can be used as

a functional vital sign combined with other measures to determine health outcome

from the subjects.

1
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IMUs on shoes Pre-processed
accelerometer signals

Temporal Gait Index
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Figure 1.1: The concept of wearable-based quantitative gait analysis. Various kind
of small and light weight wearable sensors such as IMU, force-sensitive sensors,
flexible sensors, and others have been used to extract gait features by means of both
conventional and machine-learning based algorithms. For example, data from IMU
attached on the shoes is processed to give temporal gait index.

Presently, it is very common to perform quantitative gait analysis in a labora-

tory environment using a gold standard measurement such as the combination of

motion capture and force plate systems. Motion capture enables a precise tracking

of spatial information of human motion in 3D, while force plates gives the dynamic

features such as ground reaction forces and moments. However, using those special-

ized instruments are limited to only a few clinics or research facilities with limited

capture volume, thus may not necessarily capture the natural gait of the subject[11].

Another concern is the long time spent preparing for the experiment such as marker

placements and anthropometric measurement that may not be convenient for par-

ticipants such as patients.

On the other hand, a vast and recent development in both sensor systems and

computational methods have made it possible to assess gait outside of laboratory by

means of wearable sensor system. Other than gait analysis, wearable sensors have

also been investigated to predict several clinical conditions [12], [13].The number

of sensors used may be dependant on the subject of interest. For examples, in a

highly impaired gait, sensors attached in both legs are preferred [14]. Wearable

inertial sensors-based gait analysis has also become a supplementary assessment of

the physical function of patients undergoing a total hip arthroplasty [15], and on
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clinical analysis of idiopathic normal pressure hydrocephalus [16]. There have been

several studies discussing the long-term assessment of gait by using wearable sensors

[17]. On clinical application, it has been reported that there was a good correlation

between accelerometer-based motor fluctuation measurement to the gait item in

UPDRS-III (Unified Parkinson’s Disease Rating Scale - Part III) [18], which suggest

that accelerometer may be a useful tool to monitor PD patients. Wearable inertial

sensors have also been used in a biofeedback system for gait and balance training in

PD subjects [19], [20]. Gait quality metrics were found to be robust in assessing the

gait of two matched groups of MS patients in two separate locations with different

experiment protocols [21]. On assessing gait ataxia in people with spinocerebellar

degeneration (SCD), accelerometer-based assessment is more responsive compared

to the standard clinical scale for the assessment and rating of ataxia (SARA) [22].

A few existing applications of gait analysis using wearable sensors described in

the previous paragraph were only a tip of the iceberg on the full scale of gait analysis

application. For rehabilitation purposes alone, the use of gait analysis may aid the

physical rehabilitation of stroke survivors, since 90 % of the cases show that stroke

survivor suffers from motor impairment that is reflected by their gait pattern [23].

The broad applications of wearable-based gait analysis have made a positive trend

in terms of the number of existing research and the quality of the study in this

field. Therefore, this thesis firstly aimed to summarize the current state of the arts

on gait analysis using wearable sensors as well as to find the current challenges.

Further, this thesis aimed to construct a framework for performing quantitative gait

analysis using a minimum number of wearable sensors and demonstrate it to various

applications. Finally, this thesis is going to investigate the use of machine learning

models and algorithms for wearable-based gait analysis.

1.2 Research Objectives

The objectives of this research are divided into general objectives and specific

objectives, which are explained as the following.

1.2.1 General Objective

• To review and summarize the state of the art of quantitative gait analysis

using wearable sensors,

• To construct a framework on extracting feature-rich diversity on quantitative

gait analysis using minimum wearable sensors,
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Chapter 1. General Introduction

• To integrate machine-learning algorithms to the proposed framework for an

extended quantitative gait analysis.

1.2.2 Specific Objectives

• Filter the relevant papers related to wearable sensors for gait analysis by follow-

ing PRISMA guideline for reporting systematic review based on the formulated

keywords.

• Summarize the eligible studies and discuss the current challenges on this re-

search area.

• Develop experiment protocols for benchmark experiments on using wearable

sensors for quantitative gait assessment.

• Develop a proper informed consent for subjects as well as the accompanied

questionnaire about subject perception for later analysis.

• Propose a quantitative gait assessment framework using wearable sensors to

extract feature-rich gait assessment.

• Perform benchmark experiments with able-bodied subjects in a laboratory

environment.

• Compare the performance of the proposed framework to the gold-standard

measurement of motion capture and force plates.

• Compare the performance of the proposed framework to various existing stud-

ies.

• Demonstrate that the proposed framework can also be used for running gait

analysis.

• Demonstrate that the gait indices can distinguished single-task and cognitive

dual-task gait.

• Demonstrate that the proposed framework is robust for a prolonged use in

outdoor environment.

• Design and compare several machine-learning algorithms for gait phase clas-

sification.

• Design and compare several advanced machine-learning algorithms for gait

activity prediction.
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• Propose a reinforcement learning-based control for swing phase control of a

prosthetic knee.

• Define conclusions, main contributions, as well as future works according to

the results.

1.3 Outline

This thesis is divided into six chapters and described as follows.

Chapter 1: Introduction

This chapter presents the general introduction to this study. The background

as to why this study was conducted is briefly explained in this chapter, followed

by research objectives and outline of this thesis. The subsequent chapters can be

summarized as follows.

Chapter 2: Overview on wearable-based gait analysis

This chapter presents an overview of the current state of the arts on quantitative

gait analysis using wearable sensors. Types of wearable sensors, location attachment

on the body, and algorithm used as well as the performance are extensively discussed

in this chapter.

Chapter 3: Proposed framework: Two IMUs approach for rich gait

features

This chapter addresses the proposed framework for feature-rich quantitative gait

assessment. Two IMU sensors attached on foot as sensors and its location was bench-

marked to gold standard measurement and various existing study. This chapter can

be considered the basis contribution of this thesis.

Chapter 4: Case studies using the proposed framework

This chapter further demonstrates the potential application of the main proposed

idea of this thesis. Three case studies are presented which incorporate mixed walking

and running gait analysis, cognitive dual-task gait, and a prolonged outdoor gait

experiment.

Chapter 5: Machine learning for gait analysis

This chapter further extends the developed framework to include machine learn-
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Chapter 1. General Introduction

ing (ML)-based algorithms for gait phase classification and gait activity prediction.

Additionally, an advanced use of machine learning for control algorithm of a specific

gait phase in prosthetic knee is presented in this chapter.

Chapter 6: Concluding remarks

This chapter summarizes the overall presented study, provides clear contribu-

tions, and gives research direction for future works related to the area of this study.
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Chapter 2

Overview of wearable-based gait

analysis

2.1 Introduction

This chapter discusses the recent state of the art of quantitative gait analysis

using wearable sensors. A vast and recent development in both sensor systems and

computational methods have made it possible to assess gait outside of laboratory by

means of wearable sensor system. Nevertheless, the performance accuracy and the

types of analysis are dependent on many factors such as types of sensors, number of

sensors and its location attachment to the body, and methods and algorithms used.

Therefore, this chapter aimed to address the recent advances on wearable-based gait

analysis based on the above mentioned factors. The overall scientific contributions

of this chapter are to:

• present an overview of the recent state of the arts of quantitative gait analysis

using wearable sensors that have been validated to gold standard measurement

or other measurement systems.

• provide key insights of the existing wearable-based gait analysis as seen from

the number and types of sensors and gait features, location attachment of

sensors to the body, as well as method and algorithms used on each literature.

• highlight the current applications of wearable-based gait analysis for both gen-

eral purposes such as in sports, and clinical purposes on various pathological

conditions.

• discuss the issues, challenges, and future research direction for researchers and
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clinicians working in this field.

2.2 Methods

The method used for finding relevant references for making this state of the

arts was following the Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) guideline [24], which is commonly used for reporting systematic

reviews. The search was done in several databases including PubMed, IEEE Xplore,

Scopus, and ISI Web of Science with a time constraint starting from 2011 until 2020,

thus consisted of a ten year reported studies. The time constraint was added to

account only the recent advances on this topic. Search keywords and combination

were formulated as depicted in Fig. 2.1. We limit the search only on the title of

the articles with a time constraint from 2011 to 2020. Gait is the must have term

on the document title, followed by any combination of keywords as depicted in Fig.

2.1.

Database searching was done on February 8, 2021. A total of 1550 records from

all of the databases were found as included for further selection process. These

results were then imported to Mendeley® Desktop reference management software

(version 1.19.4, Elsevier). Duplicate records were automatically removed by the

software if an exact match was detected. A total of 860 duplicates were found, thus

resulting in 690 records left to be screened.

The screening stage is the exclusion of certain study based on title and abstract

which main field of study is depicted on Fig. 2.1. Assistive walking technologies

were not included on this study as most of it were putting sensors on the walking

device itself such as on the cane or the walker. Non wearable sensors such as camera-

based analysis including Kinect or any combination to those system were excluded.

Smartphone was excluded as it is not a fully dedicated system and mostly used for

activity recognition or human authentication as opposed to a detailed gait analysis

as this review aims. Other non related study such as sensors development, sensor to

body alignment, gait underwater, and person/ gender recognition were also found

on the screening stage and excluded. At the end of screening stage, a total of 344

records were excluded based on the set criterion and thus leaving 356 articles for

the next stage.

On eligibility stage, full-text articles were accessed for finding relevant study to

make this state of the arts. Inclusion criterion for full-text screening is also depicted

in Fig. 2.1. We highly regard studies that show some sort of benchmark or validation
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2.2. Methods

Figure 2.1: Formulated search keywords on several scientific databases with time
constraint, followed by the PRISMA flowchart for inclusion process and exclusion
criterion of the articles selected in this study. Asterisk (*) indicates wildcard for the
search term.
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Figure 2.2: Distribution of the eligible articles based on year (bar chart) and publi-
cation types (pie chart).

of their proposed framework/ system to a gold standard system or other existing

studies and only include studies that have those discussion. Moreover, each of the

studies should address various gait features as depicted in Fig. 2.1. On the other

hand, we still found some studies that use sensors with cables tethered to data

processing unit such as computer. Another criteria is that the studies must address

more than one gait feature in their study. At the very end of this stage, a total of 76

articles were eligible for making systematic review. The overall flowchart of article

selection is depicted in Fig. 2.1, while distribution of eligible articles is depicted in

Fig. 2.2.
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2.2.1 Existing review

While doing these process, a total of 21 review papers were also identified regard-

ing this topic. Among them, there are six review papers published in 2020, which

are described briefly as the following. Kobsar et al. on [25] addressed a specific

application of wearable inertial sensors for adults with osteoarthritis. Gondim et

al. [26] discussed the use of portable accelerometer to evaluate gait of people with

Parkinson’s disease. Junior et al. [27] was focused on reviewing gait assessment

in children. However, all of the above papers discussed a very specific subject and

conditions. Dı́az et al. [28] discussed a wider scope of gait that includes balance and

range of motion analysis using wearable sensors. Dasgupta et al. [29] was focused

on acceleration gait measure for motor skill assessment. Hence, it was specific on

to motor skill instead of gait. Saboor et al. [30] discussed about the latest trend on

gait analysis using wearable sensors combined with machine learning based meth-

ods. However, the study selected was constrained from 2015 onwards with limitation

only to machine learning methods. Other notable review papers are from Weijun

et al. [31] in 2012 that discussed basic human gait analysis and sensors system,

Lopez-Nava et al. [32] in 2017 that focused on wearable inertial sensors for motion

analysis, and Caldas et al. [33] that specifically discussed about inertial sensors and

adaptive algorithms for gait analysis.

The differences of this review to the above works are this review aim to provide

a comprehensive review of quantitative gait analysis using wearable sensors with no

constraint on specific subject groups nor the method of analysis. Thus, it covers a

wider range of gait analysis that includes various application such in general walking

gait, running gait, and different kinds of pathological gait. In addition to that, this

review is intended to summarize the last decade advancement of this topic, identify

challenges in recent studies, and give future directions on research on this topic.
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Table 2.1: State of the arts of quantitative gait assessment (QGA) using wearable
sensors.

Ref. Subjects

(n)

Sensors

(Location)

Experiments/

Benchmark

Algorithms/

Data Pro-

cessing

Gait features [Per-

formances metrics]

[34]

Healthy

(3)

7 IMUs

(lumbar,

thighs,

shanks,

feet)

Overground

indoor walk,

variable-speed

treadmill/

Motion cap-

ture

Non-ML/

Online (joint

angles), Of-

fline (stride

length)

Stride length, joint

angles (hip, knee,

ankle) [RMSE < 4

deg]

[35] Healthy

(5)

1 IMU

(left heel)

20 m corridor

walk with

various speed/

Camera

Non-ML

(thresh-

old based,

sliding

window)/

Real-time

Stride count,

cadence, gait

speed, ratio of

swing/stance,

stride regularity,

stride length [err.

< 3%], walking

distance [err. <

2%]

[36] Healthy

(5)

2 IMUs

(shanks)

Treadmill

walk at [2,4]

kph and

run [8,12]

kph/ Motion

capture

Non-ML

(threshold

based)/

Offline

Gait events (HS

and TO [err. <

1%], MSw) , stride

time [err. < 1.6%] ,

swing, stance time.

[37] Healthy

(22)

1 acc.

(L4-L5)

Level walk,

10m, bare-

foot/ Motion

capture

Non-ML

(peak de-

tection, in-

tegration)/

Offline

Step length, stride

length [p > 0.05],

{stride, step,

stance, swing, DS,

SS} time, gait

speed [p > 0.05],

cadence, foot

symmetry

continued on next page
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Table2.1 (continued) State of the arts of QGA using wearable sensors

Ref. Subjects

(n)

Sensors

(Location)

Experiments/

Benchmark

Algorithms/

Data Pro-

cessing

Gait features [Per-

formances metrics]

[38] Healthy

(10),

OA(12)

4 IMUs

(shanks

and foot)

50 m corridor

walk/ Motion

capture

Non-ML/

Offline

Joint angles (multi-

segment foot an-

gles) [RMSE < 2

deg, Mean RoM

diff. < 4 deg]

[39] Healthy

(10),

pre-HD

(10), HD

(14)

1 acc (tho-

rax level)

4.8 m

level walk/

GAITRite®

Non-ML (In-

verted pen-

dulum)/ Of-

fline

Gait speed

[ICC(CI)

0.95(0.75,0.97)],

cadence [ICC(CI)

0.95(0.75,0.97)],

stride length

[ICC(CI)

0.89(0.77,0.95)],

step length, step

time, step time

asymmetry, step-

stride regularity

[40] Healthy

(8)

Textile

socks

2 min walk on

treadmill at 4

kph/ F-scan

Non-ML

(direct use

of sensors

data)/

Offline

Gait events (HS

[0.08 ± 0.08 s],

TO), stride time

[err. < 3.5%],

stance time

[41] Children

(1),

Children

with CP

(6)

7 IMUs

(lumbar,

thighs,

shanks,

feet)

10m walk pre-

ferred speed/

Motion cap-

ture

Non-ML

(’Outwalk’

protocol)/

Offline

Joint angles

[RMSE < 4 deg]

[42] Older

(10), PD

(10)

2 IMUs

(upper

shoes)

2x20 m and

4x50 m walk

with 180 deg

turn/ Motion

capture

Non-ML/

Offline

Gait speed [2.8 ±
2.4 cm/s], stride

length [1.3 ± 3.0

cm], swing width,

path length

continued on next page
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Table2.1 (continued) State of the arts of QGA using wearable sensors

Ref. Subjects

(n)

Sensors

(Location)

Experiments/

Benchmark

Algorithms/

Data Pro-

cessing

Gait features [Per-

formances metrics]

[43] Healthy

(5)

7 IMUs

(pelvis,

thighs,

shanks,

feet)

5m indoor

level walk/

Motion cap-

ture and force

plates

Non-ML/

Offline

Joint angles

[RMSE < 10.14

deg] and 2D joint

trajectories

[44] Healthy

(10)

Instrumented

insoles

5m indoor

level walk/

F-scan

Non-ML/

Real-time

(Data

streaming)

Step time, stance

time, swing time

[45] Healthy

(10)

e-AR Treadmill

walk with

variable speed

and inclina-

tion/ Instru-

mented tread-

mill, High

speed camera

(250Hz)

Non-ML (re-

cursive)/ Of-

fline

Stride time [err. <

1.47%], stance time

[err. < 4.84%],

swing time [err. <

8.03%]

[46] Children

(15),

Children

with CP

(14)

2 IMUs

(feet)

6 m straight

walk and fig-

ure 8 walk for

benchmark;

200 m walk

in clinical

setting with

self selected

speed for test-

ing/ Motion

capture

Non-ML/

Offline

Gait speed [4.3 ±
4.2 cm/s], stride

length [3.4 ± 4.6

cm] , % {stance,
swing, DS}, ca-

dence, heel-toe

clearance, strike

[0.5 ± 2.9 deg] and

lift off [3.9 ± 5.8

deg] angles

continued on next page
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Table2.1 (continued) State of the arts of QGA using wearable sensors

Ref. Subjects

(n)

Sensors

(Location)

Experiments/

Benchmark

Algorithms/

Data Pro-

cessing

Gait features [Per-

formances metrics]

[47] Healthy

(12),

Older

(12)

1 IMUs

(L5)

5x25 m

route on pre-

ferred and

fast speed/

GAITRite®,

camera

Non-ML

(continu-

ous wavelet

transform)/

Offline

Step time and

count, stride time

[ICC 0.994-0.999],

step length [ICC

0.756-0.929], step

velocity [ICC

0.853-0.942]

[48] Healthy

(4)

3 IMUs

(thigh

[right],

shank,

foot)

and force

sensors

3 m walking

straight in-

door/ Motion

capture and

force plates

Non-ML/

Offline

Joint moments [3.5

% < NRMSE < 21

%]

[49] Healthy

(3)

Soft sens-

ing suit

Instrumented

split-belt

treadmill with

5 speeds (3

walk and 2

run)/ Motion

capture

Non-ML/

Offline

Joint angles (hip,

knee, ankle)

[RMSE < 15 deg]

[50]c Healthy

(10)

2 acc.

(L3-

L4 and

shank)

and 1 gyro

(shank)

Instrumented

split-belt

treadmill with

5 speeds (all

walk)/ Motion

capture

Non-ML/

Offline

Gait events (IC,

TC), stride time

[RMSE < 1.6%],

step time [RMSE

< 4.3%], DS time

[RMSE < 25.7%],

stance and swing

time

continued on next page

15



Chapter 2. Overview of wearable-based gait analysis

Table2.1 (continued) State of the arts of QGA using wearable sensors

Ref. Subjects

(n)

Sensors

(Location)

Experiments/

Benchmark

Algorithms/

Data Pro-

cessing

Gait features [Per-

formances metrics]

[51] Young

(9),

Mid-age

(5), Old

(6)

2 IMUs

(ankles)

Self-selected

speed walking

with varia-

tion on stride

velocity and

stride length/

Motion cap-

ture

Non-ML/

Offline

Heel [3.22 ± 1.50

cm] and toe [1.69 ±
0.70 cm] clearances,

foot angle [2.49 ±
1.21 deg]

[52]f Healthy

(10)

Sensorized

insoles

Treadmill

walk at 2

km/h/ Not

needed

Non-ML/

Real-time

Gait phases

[53] Healthy

(25),

SCD

(25), PD

(25)

2 IMUs

(lower

back,

upper

back)

6 min walk-

ing/ Not

needed

Non-ML/

Offline

Statistical (Mean

amplitude and

Coefficient of

Variation)

[54] Older

(19), PD

(13)

3 IMUs

(C7, L5,

back of

head)

2 min walk-

ing on 25

m circuit/

GAITRite®

Non-ML/

Offline

Statistical (Magni-

tude, attenuation,

harmonic ratio)

[55] Healthy

(15),

PD (5),

Stroke

(4)

2 IMUs

(feet)

10 m straight

walk normal

speed/ FSR

sensors

Non-ML/

Online

Gait events (HS

[0.125 ± 0.01 s],

TO [0.089 ± 0.015

s]), {stride, stance,
swing, walking}
time, stride count,

stride length, gait

speed, cadence

continued on next page
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Table2.1 (continued) State of the arts of QGA using wearable sensors

Ref. Subjects

(n)

Sensors

(Location)

Experiments/

Benchmark

Algorithms/

Data Pro-

cessing

Gait features [Per-

formances metrics]

[56] Older

(82)

1 acc.

(L3-L4)

2x40 m round

walkway

at comfort-

able walk-

ing speed/

GAITRite®

Non-ML/

Offline

(Cadence, gait

speed, step length,

step time) [ICC

0.91-0.96], variabil-

ity and asymmetry

indices

[57] ACL

(23),

TKR

(31)

e-AR 6 min walking

on the corri-

dor/ Pressure

insoles

Non-ML/

Offline

Asymmetry(|acc|)
[MSE=0.044]

[58] Healthy

(10), OA

(14)

Smart

shoes

15 m walk-

ing straight/

Force plates

ML (SVM)/

Real-time

Gait phases (IC,

FF, HO, TO,

swing) [Accuracy

94.08 %]

[59] Healthy

(10),

Older

(21)

1 acc.

(waist)

10 m walking/

Video camera

ML (K-

means

clustering)/

Offline

Gait event (IC),

step detection [Sen-

sitivity 99.33 %],

frail classification

[60] Older

(24)

2 IMUs

(shoes

lateral)

5 min walking

on treadmill

with variable

slope/ In-

strumented

treadmill

Non-ML/

Offline

Gait speed [RMSE

< 0.089 m/s],

stride length

[RMSE < 0.336 m],

stride time [RMSE

< 0.004 s], cadence

[RMSE < 0.098

steps/min]

[61]f PD (3) Sensorized

insoles,

6 IMUs

(hips,

shanks,

feet)

18 m walk-

ing straight

with variable

pace/ Motion

capture

Non-ML/

Offline

Gait phases (IC,

FF, TC, swing),

step length [Mean

diff. 0.9 cm]

continued on next page
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Table2.1 (continued) State of the arts of QGA using wearable sensors

Ref. Subjects

(n)

Sensors

(Location)

Experiments/

Benchmark

Algorithms/

Data Pro-

cessing

Gait features [Per-

formances metrics]

[62] Healthy

(10)

Smart

shoes

Free walking

and 4x5 m

walk/ Motion

capture

Non-ML/

Real-time

(Data

streaming)

Gait phases (HS,

stance, HO, swing)

[Error range be-

tween 0.036-0.110

s]

[63] Healthy

(16),

Neu-

rologic

patients

(6)

2 IMUs

(feet)

Walking with

preferred

pace/ Kinect

Non-ML/

Real-time

(Data

streaming)

Stride length

[RMSE 0.05 m],

step length, ca-

dence, gait speed,

{stride, stance,

swing [RMSE

0.02 s]} time, foot

clearance, turning

rate

[64] Healthy

(12),

Obese

(10)

7 IMUs

(pelvis,

thighs,

shanks,

feet)

14 m walk

straight/

STEP32

Non-ML/

Offline

Cadence, % gait

phases, ROM (an-

kle, knee, hip)

[Range of ICC

0.43-0.72]

[65] Healthy

(16),

PD with

FoG

(26) non

FoG

(16)

2 IMUs

(shins)

TUG (3 m

walk)/ Motion

capture and

video camera

(for FoG)

Non-ML/

Offline

Step velocity, stride

length, stride time,

cadence, FoG de-

tection [Accuracy

98.51 %]

[66] Healthy

(6)

1 IMU

(foot)

Level ground

walking, stairs

climbing/ Mo-

tion capture

Non-ML/

Offline

Step count, walk-

ing distance [Err.

0.81 %], % gait

phases, 3D trajec-

tory [RMSE 0.28

m]

continued on next page
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Table2.1 (continued) State of the arts of QGA using wearable sensors

Ref. Subjects

(n)

Sensors

(Location)

Experiments/

Benchmark

Algorithms/

Data Pro-

cessing

Gait features [Per-

formances metrics]

[67] Healthy

(7)

2 acc.

(heels)

12 m walk/

Motion cap-

ture and video

camera

Non-ML/

Offline

Gait events (HS

[7.2 ± 22.1 ms], TS

[0.7 ± 19.0 ms],

HO [3.4 ± 27.4

ms], TO [2.2 ±
15.7 ms]), {stride,
stance, swing}
time [Range of ICC

0.87-0.98], heel

clearance

[68] Healthy

(15), MS

(45)

2 IMUs

(shanks)

Various walk-

ing tasks/

Activity mon-

itor, Inertial

sensors

Non-ML/

Offline

Step count, {stride
[6 ± 9 ms], step [6

± 7 ms], swing [25

± 19 ms]} time

[69] Healthy

(25)

4 IMUs

(ankles,

mid of

superior

iliac spine,

C2)

15 m walk

normal

speed/ Mo-

tion capture,

GAITRite®

Non-ML/

Offline

Cadence [SEM

5.24 steps/min],

gait speed [SEM

0.14 m/s], stride

length [SEM 0.21

m], {stride [SEM

0.04 s], stance

[SEM 0.04 s], swing

[SEM 0.02 s]} time,

{strike [SEM 2.11

deg], lift-off [SEM

3.33 deg], pelvis,

spine} angle
continued on next page
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Table2.1 (continued) State of the arts of QGA using wearable sensors

Ref. Subjects

(n)

Sensors

(Location)

Experiments/

Benchmark

Algorithms/

Data Pro-

cessing

Gait features [Per-

formances metrics]

[70] Stroke

(25)

1 IMU

(L5)

Laboratory

and real-life

longitudi-

nal study/

GAITRite®,

OPAL, video

camera

Non-ML/

Offline

Step velocity [ICC

0.744 m/s], step

length [ICC -0.411

m], {step [ICC

0.797 s], swing

[ICC 0.431 s],

stance [ICC 0.759

s]} time, step

width, asymmetry

and variability

indices

[71] Healthy

(14),

children

(10), CP

(22)

3 IMUs

(L2-L3,

thighs)

30 strides at

various speed/

FSR sensors

Non-ML/

Offline

Statistical (Pear-

son’s r, variance

ratio, harmonic ra-

tio), Gait segmen-

tation [Sensitivity

83.34 % (CP),

96.67 % (Healthy)]

[72] Older

(23)

2 IMUs

(feet)

Combination

of normal

and fast

speed with

added cog-

nitive task/

GAITRite®

Non-ML/

Offline

Cadence, gait

speed [ICC 0.34-

0.96], step time

[ICC 0.22-0.27],

step length [ICC

0.45-0.84]

[73] Children

(10)

6 IMUs

(sternum,

wrists,

L4-L5,

shanks

frontal)

7 m walk

straight at

self-selected

and fast

speeds/ Mo-

tion capture

Non-ML/

Offline

Stride length

[RMSE 6.43 % of

subject’s height],

gait speed [RMSE

7.80 % of subject’s

height], {stride
[RMSE 0.014 s],

stance [RMSE

0.026 s]} time

continued on next page
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Table2.1 (continued) State of the arts of QGA using wearable sensors

Ref. Subjects

(n)

Sensors

(Location)

Experiments/

Benchmark

Algorithms/

Data Pro-

cessing

Gait features [Per-

formances metrics]

[74]c Healthy

(20)

4 acc.

(left wrist,

waist,

ankles)

Indoor, Out-

door, Tread-

mill walk and

run/ FSRs

sensors

Non-ML/

Offline

Gait events:

(HS,TO) [F1

Scores (0.98,0.94)

indoor, (0.82,0.53)

outdoor]

[75]c Healthy

(35)

5 IMUs

(L5,

shanks,

dorsal

shoes)

2 min walk

at 10 m path

back and

forth/ Force

plates

Non-ML/

Offline

Gait events (HS,

TO), {step, stance}
time

[76] AD (16) 1 acc.

(L5)

Lab-based

and free-

living/ Prev.

paper [5]

Non-ML/

Offline

Step velocity, step

length, {step,
swing, stance}
time, step width,

asymmetry and

variability indices

[77] Knee

artho-

plasty

patients

(16)

2 IMUs

(below

knees)

6 m walk

straight at

self-selected/

Motion cap-

ture

Non-ML/

Offline

Gait events (IC,

TO), {stride
[RMSE 0.036 s],

stance [RMSE

0.041 s], swing

[RMSE 0.049 s]}
time

[78]c Healthy

(27), PD

(27)

8 IMUs

(chest,

lumbar,

thighs,

shanks,

feet)

15 m walk

straight at

self-selected

and fast

speeds/ Not

needed

ML (SVM)/

Offline

Step length, gait

speed, {step,
stride} time, {hip,
knee, ankle} ROM,

Patient vs. con-

trol classification

[Highest accuracy

79.96 %]

continued on next page
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Table2.1 (continued) State of the arts of QGA using wearable sensors

Ref. Subjects

(n)

Sensors

(Location)

Experiments/

Benchmark

Algorithms/

Data Pro-

cessing

Gait features [Per-

formances metrics]

[79] Healthy

(30),

Stroke

(20),

Joint

disease

(20)

7 IMUs

(waist,

thighs,

shanks,

feet)

Walk straight

>15m on cor-

ridor/ Motion

capture

Non-ML/

Offline

Stride length, gait

speed, stride freq.,

{stride, stance,

swing} time, foot

clearance, knee

ROM [Position err.

<0.015 m]

[80] Healthy

(24)

7 IMUs

(waist,

thighs,

shanks,

feet)

6 min walk

test/ Motion

capture

Non-ML/

Real-time

Step [RMSE

0.04 m] and

stride length, step

and swing width

[RMSE 0.03 m],

cadence [RMSE 3.1

steps/min], {step,
stride, stance, SS,

DS, swing} time

[RMSE 0.02 s], gait

speed [RMSE 0.03

m/s]

[81] Healthy

(10)

1 IMU

(CoM)

Walking at

self-selected

speed/ Motion

capture

Non-ML/

Offline

Step length [Abs.

Err. 5.6 %], gait

speed [Abs. Err.

13.5 %], walking

time [Abs. Err.

14.9 %], walking

distance

[82] MS (4),

HSP (9)

IMUs,

FSRs

10 m walk,

may use

walking aid/

GAITRite®

Non-ML/

Offline

Gait events (IC,

TC), % DS [3.89 ±
2.61 %], DS time

[0.064 ± 0.060 s]

[83] Healthy

(16)

Flexible

sensors

6 m walk

at preferred

speed/ Motion

capture

Non-ML/

Real-time

(Data

streaming)

Knee angle [RMSE

1.2 ± 0.4 deg]

continued on next page
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Table2.1 (continued) State of the arts of QGA using wearable sensors

Ref. Subjects

(n)

Sensors

(Location)

Experiments/

Benchmark

Algorithms/

Data Pro-

cessing

Gait features [Per-

formances metrics]

[84]c Healthy

(15)

1 IMU

(foot)

50 strides

walk/ Motion

capture

Non-ML/

Real-time

(Data

streaming)

Walking distance

[Accuracy 95.24

%], stride count

[Accuracy 95.47

%], {stride, stance,
swing} time

[85] Older

(20)

1 acc.

(waist)

Real-world

setting/ Video

camera

Non-ML/

Offline

Step detection, gait

speed [Mean diff.

-0.206 m/s (for

speed < 1 m/s),

and -0.045 (for

speed 1-1.5 m/s]

[86] Healthy

(20),

Neuro-

logical

(20)

2 IMUs

(ankles)

10 m corridor

walk at pre-

ferred speed/

Prev. paper

Non-ML/

Offline

Cadence, gait

speed, stride

length, stride time,

% stance and

swing, ankle ROM,

gait symmetry and

regularity [Position

Error < 1%]

[87] Healthy

(20),

Stroke

(20),

Joint

disease

(20)

6 IMUs

(thighs,

shanks,

feet)

15 m obstacle-

free corridor

walk/ Motion

capture

Non-ML/

Real-time

(Data

streaming)

Cadence, gait

speed, stride

length, stride time,

% stance and

swing, foot clear-

ance, knee ROM

and dorsiflexion-

plantar angles [Err.

< 3 deg]

continued on next page
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Table2.1 (continued) State of the arts of QGA using wearable sensors

Ref. Subjects

(n)

Sensors

(Location)

Experiments/

Benchmark

Algorithms/

Data Pro-

cessing

Gait features [Per-

formances metrics]

[88] Healthy

(5)

2 IMUs

(feet)

11 m walk in-

door/ Motion

capture

Non-ML/

Offline

Gait events (HS,

TO), gait speed

[Rel. Err. 6.3 ± 2.2

%], stride length

[Rel. Err. 5.9 ±
3.3 %], % DS phase

[Rel. Err. 4.3 ±
3.3 %]

[89] Healthy

(49)

2 IMUs

(feet)

Treadmill run

at comfortable

speed/ High

speed camera

Non-ML/

Real-time

Step length [ICC

0.968-0.975], step

frequency, stance

[ICC 0.813-0.896]

and swing [ICC

0.807-0.857] time

[90]f Healthy

(10)

4 IMUs

(shanks,

feet)

Treadmill

walk with

variable

speeds/ Mo-

tion capture

Non-ML/

Real-time

Gait events (HS,

TO), Gait phases

(stance [Accuracy

97.9 %], swing [Ac-

curacy 96.3 %]),

ankle angle [RMSE

3.24 ± 0.67 deg]

[91] Stroke

(25)

2 IMUs

(feet)

Walking with

total distance

of 120 m/ Mo-

tion capture

Non-ML/

Offline

Stride time [Err.

0.003(0.020) s],

stride length,

cadence [Err.

-0.341(0.467)

steps/min],

gait speed [Err.

0.002(0.003) m/s],

% gait phases ;

Note=[Err.=Non-

paretic(Paretic)]

continued on next page
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Table2.1 (continued) State of the arts of QGA using wearable sensors

Ref. Subjects

(n)

Sensors

(Location)

Experiments/

Benchmark

Algorithms/

Data Pro-

cessing

Gait features [Per-

formances metrics]

[92]f Healthy

(17),

hemi-

paretic

(18)

Textile in-

soles

20 m corridor

walk back and

forth at self-

selected/ Not

needed

Non-ML/

Real-time

(Data

streaming)

Plantar pressure,

stride time, stride

count

[93] Healthy

(30)

1 IMU

(L5)

6 m indoor

walk at pre-

ferred speed/

GAITRite®

Non-ML/

Offline

Gait speed [ICC

0.92], cadence [ICC

0.96], stride length

[ICC 0.88], stride

time [ICC 0.93],

% gait phases (SS,

DS, Swing, Stance)

[ICC 0.18, 0.12,

0.47, 0.47]

[94] Healthy

(3)

3 IMUs

(waist,

thigh,

shank)

Walk and

run on tread-

mill, up and

down stairs

walking/

Footswitch

insoles

ML (Ran-

dom For-

est)/ Offline

Gait phases (SS,

DS, swing) [Ac-

curacy 98.94 %

(walk), 98.45 %

(run)]

[95] Healthy

(22),

cere-

bellar

ataxia

(29)

3 IMUs

(chest,

ankles)

5 m walk

back and

forth/ Motion

capture

ML (Ran-

dom For-

est)/ Offline

Gait speed, ca-

dence, gait ataxia

quantification.

[RMSE 0.18]

[96] Healthy

(10)

3 IMUs

(chest,

wrist,

thigh), 4

FSRs

7 min tread-

mill walk at

various speed/

Instrumented

treadmill

Non-ML/

Real-time

(Data

streaming)

Gait events (HS,

TO), stride time

[RMSE 5.027 ms],

stride count [Accu-

racy 99.6 %]

continued on next page
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Table2.1 (continued) State of the arts of QGA using wearable sensors

Ref. Subjects

(n)

Sensors

(Location)

Experiments/

Benchmark

Algorithms/

Data Pro-

cessing

Gait features [Per-

formances metrics]

[97] Healthy

(9), PD

(6)

2 IMUs

(feet)

Walk at self-

preferred

speed/

GAITRite®

Non-ML/

Offline

Step length [Mean

Err. 4.50 ± 2.54 %]

, step time [Mean

Err. 2.97 ± 2.51 %]

[98] Healthy

(5)

4 Ultra-

sonics

sensors

8.5 m walking

back and

forth at nor-

mal speed/

Video camera

Non-ML/

Offline

Gait events, an-

kle angle [Mean

diff. 0.19 ± 1.19

deg], toe clearance

[Mean diff. 0.02 ±
0.84 cm]

[99] Healthy

(30),

stroke

(30)

8 IMUs

(waist [left

and right],

knees,

ankles,

feet)

More than

15 m level

ground cor-

ridor walk/

Motion cap-

ture

Non-ML/

Offline

Stride length,

cadence, gait

speed, ankle ROM,

gait symmetry,

stance/swing ra-

tio, foot clearance

[Position Err. 0.02

m]

[100] Healthy

(6)

2 IMUs

(shoes

posterior)

4.5 m and

11 m indoor

walk back

and forth at

self-preferred

speed/ Mo-

tion capture,

force plates

Non-ML/

Offline

Gait events (IC

[4.22 ± 15.48 ms],

TO [-8.31 ± 21.02

ms], % gait phases,

gait speed, stride

length [Accuracy

93.23 %], heel

clearance [2.22 ±
5.28 cm], {stride,
stance, swing}
time, variability

and asymmetry

indices

continued on next page
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Table2.1 (continued) State of the arts of QGA using wearable sensors

Ref. Subjects

(n)

Sensors

(Location)

Experiments/

Benchmark

Algorithms/

Data Pro-

cessing

Gait features [Per-

formances metrics]

[101] Healthy

(3)

E-textile

socks

11 m indoor

walk at var-

ious speeds/

Motion cap-

ture

Non-ML/

Real-time

(Data

streaming)

% Gait phases,

cadence, stride

length [Pearson’s

r = 0.283], gait

speed

[102] Healthy

(11)

7 IMUs

(CoM,

thighs,

shanks,

feet)

Walking on

various terrain

(level ground,

stairs, ramp)/

Inertial sen-

sors

ML (Neural

Network)/

Real-time

Joint angles

[NRMSE < 0.092

(knee joint)]

[103] Healthy

(20),

older

(20)

5 IMUs

(chest,

wrists,

ankles)

Figure eight

walk at nor-

mal speed on

laboratory

environment/

Motion cap-

ture

Non-ML/

Offline

Stide length [Abs.

Err. 0.02 ± 0.03

m], gait speed [Abs.

Err. -0.01 ± 0.02

m/s], step width,

% gait phases,

cadence, stride

time, foot clear-

ance, arm-related

metrics

[104] Healthy

(5)

2 IMUs

(top of

shoes)

60 m total

walking dis-

tance with

variable stride

length/ Opto-

gait system

Non-ML/

Offline

Stride count, stride

length [RMSE 5.0

cm], stride time

[RMSE 0.04 s]

[105] Healthy

(8)

6 IMUs

(thighs,

shanks,

feet)

4.5 m straight

walk with

variable

speeds and

tasks/ Motion

capture

ML (kNN)/

Real-time

Stride time, stride

length [RMSE 3.33

cm]

continued on next page
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Table2.1 (continued) State of the arts of QGA using wearable sensors

Ref. Subjects

(n)

Sensors

(Location)

Experiments/

Benchmark

Algorithms/

Data Pro-

cessing

Gait features [Per-

formances metrics]

[106] Healthy

(9)

2 IMUs

(lateral

shoes)

20 m straight

walk at pre-

ferred speed/

Motion cap-

ture

ML (Neural

Network)/

Offline

Gait phases clas-

sification [Accuracy

92.63 %]

[107] Healthy

(40), PD

(24)

1 IMU

(L5)

10 m in-

door straight

walk at pre-

ferred speed/

GAITRite®

Non-ML/

Offline

Cadence [MSE

Healthy(PD)

4.78(15.28)

steps/min], gait

speed [MSE

Healthy(PD)

0.02(<0.01) m/s],

stride time, stride

length, % gait

phases [MSE 17.40

% (for double

support on PD)

[108] Healthy

(40)

Pressure

insoles

10 m indoor

walk with var-

ious speeds/

GAITRite®

Non-ML/

Offline

Cadence [ICC

0.99], {stride, step,
swing, stance, SS

[ICC 0.65-0.96], DS

[ICC 0.55-0.79]}
time

[109] Healthy

(20)

1 IMU

(ankle)

Walking on

various ter-

rain/ Not

needed

ML (Ran-

dom For-

est)/ Offline

Gait activity clas-

sification [Accuracy

98.2 %]

2.3 Synthesis of Search Results

We ensure that all the included papers have some sort of validation to the

gold standard measurement of motion capture and/or force plate systems or other

widely accepted measurement methods such as using an instrumented treadmill or

GAITRite® system. There was some exceptions to this, such if the authors used
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Figure 2.3: Identified application of wearable-based gait analysis. Twenty three
studies discussed the application to both healthy control and patients with certain
pathological conditions.

a force-based sensors [52], [92] on foot which directly estimate the initial/terminal

contact of foot, analyzed only statistical features from raw data [53], or performed

machine-learning based algorithm for classification [78], [109]. On other case, some

authors may also cited their previous validated framework[76], [86].

We compiled all important information such as application and subject of gait

analysis, number of sensors and locations, types of features extracted, experiment

performed, algorithms used, data processing, and validation method on Table 3.1.

2.3.1 General Application of Wearable Gait Analysis

Based on the results of literature search, we identify that 46 (61%) of the eligible

studies tested their framework only to general healthy control subjects, while 23

(30%) of the studies included both healthy control group and patients group. We

did not discriminate the healthy subject group by age, thus children or elderly

groups were also counted in this general application. Elderly specific analysis [56],

[60], children [73], and comparison between age groups such as normal mid-age

subject to elderly [47], [51], [59], [103] were the examples of general application by

age differences.

On terms of assessing different gait types, we identified a few studies discussing

about both walking and running gait [36], [49], [89], [94]. Analysis of walking on

different terrain such as ramp walkway, up and down stairs, or outdoor were dis-

cussed on [66], [74], [94], [102], [109]. Temporal, spatial, and spatio-temporal gait
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features were found to be the most included analysis within the studies. Those fea-

tures could be further derived into a certain gait indices or gait metrics such as gait

regularity and symmetry index [35], [100], which were mostly used in clinical-related

application. Estimation of lower limb joint angles [43], [49], and joint moment [48]

were also made available using wearable sensors.

2.3.2 Clinical Application of Wearable Gait Analysis

In addition to the general application of gait analysis, we identified several clin-

ical applications such as on Parkinson’s Disease (PD), Huntington’s Disease (HD),

Celebral Palsy (CP), Multiple Sclerosis (MS), Osteoarthritis (OA), post-stroke pa-

tients among many more clinical application within the literature. We found that

most of the studies discussed the comparison from one disease group to healthy

control group or other disease group. Other application for each disease group are

discussed as the following.

2.3.2.1 Parkinson’s Disease

Parkinson’s Disease (PD) is one of the brain disorder that leads to difficulty walking,

balance, coordination as well as talking. Gait analysis performed in PD patients

could give several insights such as the difference between OFF and ON state of

medications [42] and detecting freezing of gait (FoG) [65]. Quantitative gait analysis

could further give a clear quantifiable features that could track the progress of the

patients.

We found nine studies [42], [53]–[55], [61], [65], [78], [97], [107] implemented

wearable sensors approach for gait analysis in PD patients. All of the studies used

IMU sensor with a combination between 2 to 8 IMU units. We found one study

[61] proposed a combination between sensorized insoles and 6 IMUs to estimate gait

phases and step length while also giving rhythmical auditory feedback to the user.

PD group has also been used as disease control group to distinguished another

neurological condition such as spinocerebellar degeneration [53]. Other application

such as analysis of upper body and postural control was discussed on [54], while

comparison of several machine-learning based classification of PD patient was ex-

tensively discussed in [78].
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2.3.2.2 Stroke

Stroke is caused by an interruption of blood supply to the brain, usually in the

form of blood clot. Stroke can be differentiated into two major categories, that

are ischemic stroke and hemorrhagic stroke. On the case of stroke or post-stroke

patients, gait analysis is usually performed to track the rehabilitation progress. We

found a total of six studies discussing about the application of wearable gait analysis

for stroke patients [55], [70], [79], [87], [91], [99]. A study using six IMUs on lower

limb [87] provided a solution on tracking the rehabilitation progress of different

group of patients including stroke, by estimating the knee ROM of patients pre- and

post treatment.

All of the studies used IMU with a varying combination between 1 to 8 units.

A study using two units of IMU on feet [55] showed a significant difference on

several spatio-temporal features between stroke patients and healthy control groups.

Another study [79], [99] also reported a clear differences on gait features between

the compared subject groups.

An extensive reliability and validation study of a single trunk-attached (L5) IMU

[70] showed a moderate to good agreement to a GAITRite® system on estimating

stance time and several step-based features. Another validation study of using foot-

worn IMU [91] showed a good to excellent agreement on various spatio-temporal

gait features for both paretic and non-paretic sides, and moderate agreement for

stance and swing phases.

2.3.2.3 Huntington’s Disease

Huntington’s Disease (HD) is a neurodegenerative condition with a symptom of

progressive movement disorder. We found one study [39] discussing about this ap-

plication. This study [39] used one accelerometer on thorax level to extract various

spatio-temporal features based on inverted pendulum model [110]. A comparison

between three distinct group of healthy control, pre-manifest Huntington’s disease

(HD) and manifest HD were presented. Results show that there was a strong agree-

ment between the sensor and GAITRite® system, and the gait features extracted

from the accelerometer proved to be effective on differentiating between groups,

especially the pre-manifest and manifest HD groups.
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2.3.2.4 Cerebral Palsy

Cerebral Palsy (CP) is the most common motor disability found in childhood. CP is

classified into three types namely ataxia (poor balance and coordination), dyskinesia

(uncontrollable movement), and spasticity (stiff muscles). Three studies [41], [46],

[71] discussed the application of wearable sensors for gait analysis in CP.

This study [41] developed a specific protocol for children with CP called ’Out-

walk’ protocol to estimate joint angles using seven IMUs. This study [46] pointed

out a significant differences between children with CP and typically developing chil-

dren as seen by various spatio-temporal and kinematics features. On the other

hand, another study [71] show that their unique statistical features analysis could

distinguished the three sub-classes of CP subjects based on their motor function.

2.3.2.5 Multiple Sclerosis

Multiple Sclerosis (MS) is a disease that affects the central nervous system (brain

and spinal cord) that causes communication problems between the brain and other

body functions. Two studies [68], [82] were found discussing wearable sensors for

MS gait analysis and discussed as the following. Both of the studies employed IMU

sensing units, where [68] used two units on shanks and [82] combined an IMU with

three FSR sensors inside an insole as the wearable system.

This study [68] designed various walking protocols with variable walking speeds

to assess the MS group. Gait event detection algorithm was adapted from [111] and

further derived into temporal features. Their proposed framework was validated

against an activity monitoring system (GT3X) and commercially available inertial

sensor (MTx). Results show that there were 2 ± 2 steps, 6 ± 9 ms, and 25 ± 19 ms

errors for step count, stride time, and swing time, respectively. On the comparison of

MS group with healthy control group, it was found that using the system described

could detect a significant (p < 0.01) distinct gait characteristics between the two

compared groups. On the other hand, this study [82] proposed to use sensorized

insoles consisted of three FSRs sensor and an IMU to extract temporal gait features

on patient with gait disorders such as MS and hereditary spastic paraplegia (HSP).

IC and TC events were labelled manually based on the heel FSR and lateral FSR,

respectively. Results show that there was a mean error of 64 ± 60 ms of DS time,

or translated into 3.89 ± 2.61% of DS phase from 1321 analyzed strides from all

participated subjects.

From both of the studies, we found that temporal features were the main gait
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feature used to characterized MS patients. Several temporal features such as stride

time and step time were found to be effective in differentiating between healthy and

MS subject groups. Moreover, it was demonstrated that temporal features could

also distinguish MS subjects by their severity level [68].

2.3.2.6 Joint Diseases

Various joint-related diseases such as osteoarthritis were found within the search

pool. Osteoarthritis is a degenerative joint disease that occurs when the protective

cartilage on the ends of bones are worn down. On this case, gait analysis was per-

formed to assess the effectiveness of treatment plan. We found six studies discussing

about various joint-related diseases, such as osteoarthritis [38], [58], anterior cruci-

ate ligament reconstruction [57], knee arthroplasty [77], and other joint diseases [79],

[87]. A brief explanation of those studies are summarized in 3.1.

Kinematic features estimation such as foot angles was found to be effective in

differentiating healthy control and ankle osteoarthritis groups [38]. A study using

an ear-worn accelerometer [57] provided various asymmetry metrics to monitor the

recovery gait of patients undergone ACL reconstruction or total knee replacement

(TKR). An integrated FSRs and IMU sensors on smart shoes was used to extract

gait phases on osteoarthritis patients using SVM algorithm in real-time with 94 % of

accuracy [58]. Two IMUs below knees to extract temporal features were proposed

by [77] for analysis of knee arthroplasty patients post knee replacement surgery.

These studies [79], [87] used 7 and 6 IMUs respectively and extracted the most gait

features comprised of temporal, spatial, spatio-temporal, and kinematics features.

Knee ROM was chosen as one of the primary feature to track the prior and post-

treatment gait of the patients.

2.3.3 Sensors and Location

In this review, we simplify sensor categorization to IMU-based, non IMU, and

combination of IMU and other sensors (IMU+). IMU-based sensors was found to be

the most common wearable sensors used on this topic. An IMU is generally consisted

of accelerometer, gyroscope, and magnetometer. Using all three components could

give orientation and relative position information by means of sensor fusion method.

Nevertheless, in this review we found that those three components were not always

used altogether. Some study only used the accelerometer part [37], [53], [54], while

other may only use the gyroscope unit [36]. Other than that, we also found unique

sensor systems such as textile-based [40], [101], ultrasonic-based [101], and flexible
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(a)

(b)

Figure 2.4: (a) Distribution of wearable sensors used, where IMU-based sensors
account for 80%, and IMU+ which is combination of IMU and other sensors account
for 5% of the total eligible studies [left]. Location of sensor attachment to the body,
where the most was found at lower limbs (42 studies) followed by lower limbs and
trunk attachment (17 studies) [right]. (b) The detailed view of attachment of sensors
in different region of human body as summarized from the eligible papers.
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Figure 2.5: Classification of gait features that are extracted from wearable sensors,
which comprised of gait event/gait phases, spatial, temporal, spatio-temporal, gait
index/metrics, biomechanical features, statistical features. In this review, biome-
chanical features means any kinematic or kinetic-based gait features such as joint
angles and joint moment.

[83] sensors.

Location-wise, we found that most of the studies proposed a lower limb sensor

attachment which accounts for 42 papers, followed by both trunk and lower limb

attachment which accounts for 17 papers and trunk-only attachment which totaled

in 12 papers. Only two papers proposed a head-attached sensor which both of the

papers were from the same authors which proposed an ear-attached sensor [45],

[57]. Interestingly, two papers proposed upper limb, trunk, and lower limb sensor

attachment, where [73] focused on gait assessment on children while [74] focused on

the comparison of several algorithms and tested on various terrain/environments.

One paper proposed a combination of trunk and head sensor attachment [54] for

assessment of gait in elderly and PD patients.
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2.3.4 Gait features

In this review, gait features are any quantifiable parameters or characteristics

of gait that are measured directly from wearable sensors or estimated through sets

of algorithms. We divide gait features into seven categories as depicted in Fig.

2.5. The first is gait events or gait phases. Gait events indicate the instantaneous

any event occur based on the set detection algorithm, while gait phases marked

the time of which the identified phase occurred from start to end of that phase.

The most important gait events are initial contact (IC) and terminal contact (TC),

where they represent the point where stance phase and swing phase is about to

start, respectively. IC and TC may also be known as heel-strike (HS) and toe-

off (TO). HS, TO, IC, TC, midswing (MSw), toe-strike (TS), heel-off (HO) were

types of gait event identified on this review. On the other hand, the two primary

phases of gait are stance phase and swing phase. Under the new terms of gait

phase classification, we could further detailed it into eight distinct phases, i.e. initial

contact, loading response, mid-stance, terminal stance, pre-swing, initial swing, mid-

swing, and terminal swing. Other than stance and swing phase, we identified single

support (SS), double support (DS), IC, foot-flat (FF), HO and TC phases in the

eligible studies.

The second is temporal features which are any features containing time-based

information. Stride time, step time, stance time, swing time, single support (SS)

time, double support (DS), and cadence time are the widely known temporal gait

features. Usually these features are computed with the information from gait event

detection. For example, stride time which defined as time taken to complete a gait

cycle, could either estimated from the consequent of HS or TO events. Stance time

is estimated from the point of IC or HS to the point of TC or TO. SS and DS

time are estimated from the information of both sides of the foot, where SS time is

equivalent to time elapsed when only one foot contact with the ground. DS time

is time elapsed when both of the feet are in contact with the ground. Cadence is

the rate of how many steps does one walks per minute of time. Other than those

features, some studies also computed total walking time which is the sum of stride

time per walking trial.

The third is spatial features which are features containing length-based informa-

tion such as stride length and step length. Other than that we also identified several

other spatial features such as swing width, path length, walking distance, travelled

arm distance, and clearance (heel, toe, foot).

The fourth is spatiotemporal features that are derived based on the both spatial
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and temporal features. In this case, gait speed and step velocity are defined as the

spatio-temporal gait features.

The fifth is the biomechanical features that are consisted of kinematic features

and dynamic features. On kinematic features, joint angles such as hip, knee, and

ankle angles are the most commonly derived kinematic gait features. In addition

to that, we also identified strike and lift-off angles which are the angle of which

the foot are about to contact the ground and lifted from the ground, respectively.

In some clinical gait analysis, we found a study extracted and used pelvis and

spine angles in all axes [69] for their analysis. In other study, we identified the use

of turning rate feature to assess the turning movement performed by the subject.

On dynamic features, we identified some studies estimate the joint moments and

extracted plantar pressures from pressure-based insoles.

The sixth is statistical features that are derived from raw sensor data. We

identified magnitude, RMS value, harmonic ratio, mean amplitude, coefficient of

variation, Pearson coefficient, and variance ratio were extracted and classified as

statistical features found within the eligible studies.

The seventh is gait index or gait metrics that are unique features derived from

any major gait features mentioned previously. For example, we identified variability,

symmetry, and asymmetry indices that are based on step length, stance time or

swing time. Another gait metrics commonly reported are stride or step count which

totals the number or stride or step in particular walking trial. Stride and step

regularity, ratio of swing and stance, joint trajectory, stride frequency were also

found within the eligible studies. For clinical gait metrics, we found a study discussed

about frailty classification in elderly [59], and FoG metric in PD patients [65].

2.3.5 Data processing

Raw data from sensors can be processed in either offline, online, or real-time

manner. We found that most of the studies in this review were adapting the offline

data processing. This may be due to the need for proper experimental procedures

that were designed carefully to validate the proposed framework to the gold stan-

dard system such as motion capture and force plates. Online data processing was

presented in two studies [34], [55]. The first study [34] used 7 IMUs attached on

the lumbar, thighs, shanks, and foot to estimate joint angles in an online manner.

The integral differences between angular velocities between two sensors location cou-

pled with Kalman filter was proposed to estimate joint angles. Results show that

RMSE on joint angle estimation vary depending on walking speed, where slowest
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walking speed leads to lowest RMSE. On the other hand, the second study [55]

used a threshold-based algorithm to estimate HS and TO events from foot mounted

IMU. Several spatio-temporal features were derived and compared between subject

groups on the 10 m walking experiment, where data processing was done online.

Their method was validated to FSR sensors and also compared to some of exist-

ing study. Results show that the presented method had good agreement with the

FSR sensors and comparable to the existing method. Moreover, some of the ex-

tracted spatio-temporal features show a significant difference (p < 0.05) between

the compared groups of stroke to healthy control and PD to healthy control.

Real-time data streaming has become more common on last few years [44], [62],

[63], [83], [84], [87], [92], [96], [101], where it has contributed on preparation to

processing time efficiency. On the other hand, real-time data processing was im-

plemented on [35], [52], [58], [80], [89], [90], [102], [105], where on [102] it could

accommodate up to 7 IMU units for lower limb joint angles estimation. The fol-

lowing briefly discuss each of the studies implementing real-time data processing.

This study [35] used 1 IMU attached on the left heel to extract spatio-temporal gait

features such as cadence, velocity, stride length and walking distance. A threshold-

based algorithm and sliding window techniques enables a real-time implementation.

A real-time data processing was employed to estimate gait phases from the insole

equipped with 64 pressure sensitive elements, where GRF and CoP were simultane-

ously recorded [52].

Smart shoes equipped with 7 FSRs and 1 accelerometer on each of the shoe was

proposed to estimate gait phases in real-time using machine-learning based algo-

rithm [58]. Investigation of the validity and test-retest reliability of real-time event

detection and further spatio-temporal gait features estimation using 7 IMUs was

presented in [80]. Investigation of validity of two commercial wearables, i.e. Stryd™
and RunScribe™, for running gait analysis was presented in [89] and benchmarked

to a high speed video analysis recorded at 1000 Hz. The use of 4 IMUs attached

on shank and foot of both legs for gait phase recognition and ankle angle estima-

tion in real time was studied in [90]. Another study [102] used 7 IMUs placed near

CoM, and both of thighs, shanks, and feet to estimate joint angles in a real-time

manner. Finally, this study [105] proposed an open-source application on Python

for gait analysis using 6 IMUs attached on thighs, shanks, and feet. KNN followed

by correction using foot acceleration were used as gait segmentation algorithm that

estimate TO event. GUI was also developed for both commands and visualization

tools.
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2.3.6 Algorithms

Treatment of raw data or often called data pre-processing is usually consisted

of applying some filtering techniques to remove unnecessary data or noise from the

raw data. For example, Butterworth low-pass filter with various order and cut-off

frequency was commonly applied within the studies. The sliding window technique

was found implemented in studies proposing a real-time processing approach [35] or

in data preparation for threshold-based algorithm [74], [106].

We identified a various sets of algorithms implemented to process the raw data

from wearable sensors to provide quantitative gait analysis. To simplify, we classify

the main algorithm into two classes, ML-based algorithm, and non-ML-based (con-

ventional) algorithm. The majority of the eligible studies employed the conventional

algorithm to extract gait features. On gait event/ gait phases detection, we iden-

tified several algorithms such as peak detection, threshold-based, state machines,

heuristics rule-based, and finding local minima/ local maxima, which are more or

less have the same principles. Fast Fourier transform (FFT) was implemented to

extract gait frequency and cadence in few studies [55], [95]. Another method such as

continuous wavelet transform (CWT) was found implemented to extract gait events

[47], [70], [76], and for stride segmentation [67].

Since the majority of the eligible papers used IMU-based sensors, several sen-

sor fusion algorithms were applied to estimate the orientation of the sensor position.

Kalman filter (KF) and complementary filter (CF) were the two most adapted orien-

tation estimation methods. This orientation position combined with the knowledge

of gait events or gait phases could give the spatial features such as stride length and

step length among many other spatial features. Double-integration combined with

zero velocity update method was implemented in several studies to estimate stride

length. A model based approach such as inverted pendulum [39], [47], [70], [76],

[81], [101] was also found in a few studies to estimate gait features such as stride

length.

Several studies have implemented ML-based algorithms to their proposed frame-

work of quantitative gait analysis using wearable sensors. SVM [58], [78], [102], RF

[94], [95], [109], NN [94], [102], [106], kNN [78], [105], k-means clustering [59], deci-

sion tree [78], [102], logistic regression [94], Naive-Bayes and LDA [78]. Most of the

studies used ML-based algorithms for classification problems such as gait events/

gait phases classification [58], [78], [94], [106] and classification of gait in different

terrains [109]. On the other hand, we identified four studies employed ML-based

algorithm as a supporting algorithm such as cross-checking [59], correction [102],
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and detecting false phase [105]. Lastly, only one study shows its usage as a scoring

function in gait ataxia [95].

2.3.7 Experiments and validation

Experiments performed to capture gait could be done in various ways. Most of

the time, experiment protocols were designed accordingly to be suited best for the

objective of gait analysis. Therefore, there are no single experiment protocols that

are better than the other. In this review, we found various experiment protocols

developed in each study and summarized in Table 3.1. Indoor level ground walking

was found to be the most adapted protocol. Other experiments such as treadmill

at various speeds, outdoor walk, figure-eight walk, timed up and go (TUG), ramp

and stairs walk were also identified with different distance covered or repetitions

done. We found that the design of experiment protocols was highly dependent on

the environment constraint, subjects in the study, and types of wearable sensors.

We found several validation systems that are considered gold-standard in assess-

ing gait such as motion capture system, GAITRite®, instrumented treadmill, and

force plates. Other than those systems, some studies validate their proposed wear-

able gait analysis framework to the camera-based system, pressure-sensor system,

and other inertial sensors. Each of the studies has its own method on how to report

the benchmark or validation results. We identified several validation metrics such

as absolute error, relative error, accuracy and precision, root mean squared error

(RMSE), mean differences, student t-test (p-values), intra-class correlation (ICC),

confidence interval (CI), the limit of agreement (LoA), and Bland-Altman plot, sen-

sitivity and specificity, F1 score, false-positive rate (FPR), and standard error of

mean (SEM) among many other validation metrics. The range of choice of valida-

tion metrics has made reporting meta-analysis of benchmark studies impractical.

2.4 Discussion

What types of assessment can be drawn from wearable-based gait

analysis for general application ?

As discussed previously in section 2.3, a total of 91 % of the eligible papers im-

plemented their proposed approach to a healthy group or general application. We

found that healthy group is mostly served as the control variable to be compared to

some other pathological groups. Temporal, spatial, and spatiotemporal gait features
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were found to be the most common assessment that can be done for general appli-

cation. These features were not only reported as it was but could also be derived to

give gait indices features such as gait regularity or gait symmetry [86]. A few papers

discussed the difference between age groups, i.e. healthy adult subjects and elderly

subjects [47], [59], [103]. On sport application, running studies were discussed in

[36], [49], [89], [94]. Gyroscope-based temporal gait analysis with a peaked running

speed of 12 km/h was validated in [36]. Commercial wearables such as RunScribe

and Stryd were concluded valid wearables to measure spatiotemporal gait features

on running at comfortable speed [89]. In another study, spatiotemporal features such

as gait speed was associated with survival in older adults [112]. The importance of

foot clearance assessment for the elderly subject has also been shown in [113].

Types of features that give the most impact on clinical application and

challenges on applying wearable-based gait analysis for clinical applica-

tions.

There is no single gait features that are superior than the others in explaining

certain gait conditions in a subject. Every gait condition have its own unique feature

or markers that are distinguishable from other condition. On some occasion, visual

inspection can be enough to assess certain pathological markers such as on hemi-

paresis where one side of the body is weakened. On the other hand, a quantifiable

parameter is needed to report the factual condition of the subject. Temporal gait

features such as stride time or step time were found to be effective in differentiating

three types of MS patients based on their severity level [68]. Detection of FoG in as

discussed in [65] was found to be helpful in the assessment of PD patients. Statistical

features as described in [71] were found to be successful in detecting gait impair-

ment in CP subject groups. Other studies show that the knee ROM feature can be

used to track rehabilitation progress of both arthropathy and stroke patients [87].

Further, combining gait and other motion may give more comprehensive assessment

on motor performance [114].

We have identified a variety of clinical applications such as Parkinson’s Disease,

Multiple Sclerosis, and post-stroke among other applications listed in Figure. 2.3.

The performance, validity, and reliability of each proposed wearable approach have

been extensively investigated. Since each of clinical conditions may produce a unique

gait pattern disorder, we presume that it will affect the performance of any of the

wearable-based approach in this review if applied to new clinical application. This

issue highlighted the importance of benchmark experiments before adapting the

proposed approach to a new applications.
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Challenges on wearable sensors and the importance of sensor place-

ment

We found that gyro-drift is a major concern of using IMU-based sensors. There

are several methods on how to reduce or remove the drift such as using Kalman

filter [34], [63], [66], [102] and zero velocity update [63], [79], [88], [99] as imple-

mented widely on the studies in this review. Environmental interference that affect

magnetometer was also one of the problem found in this review. A simple calibra-

tion procedure that are easy to implement was proposed by [79] to compensate the

interference issue. Concern about secure attachment to the body was also raised in

several studies. Soft-tissue artifacts have found to be one of the source of noise in

data processing [41], [64]. Some studies that used multiple IMUs needed to perform

sensor to segment alignment and calibration [43], [90] to achieve better performance.

This may add more preparation time but comparatively still faster than preparation

time if using marker-based systems.

In terms of location of sensor attachment, most of the studies placed the sensors

on lower limbs, followed by lower trunk on lumbar vertebrae region. These positions

was found to be well suited for wearable-based gait analysis in terms of number of

features that can be extracted and also the accuracy of gait features estimation,

where foot-based attachment performed better than the shank or trunk-based ones

for gait events detection [75]. The number and location of sensors were found to be

a higher factor than the algorithm used in the case of discriminating severity stages

of PD patients [78]. On foot-based sensors, the search for optimum location was

investigated in [84], where medial aspect of foot followed by the posterior side of

foot were the optimal location for stride-related feature extractions.

Contribution of machine learning algorithms in wearable sensor gait

analysis and current challenges.

Machine learning algorithms have been integrated into several studies. The over-

all contributions of machine learning algorithm were mostly for classification prob-

lem such as gait event or gait phase classifications [58], [78], [94], [106], and gait

activity/terrain classification [109]. Other than those, we also identified a few other

application such as cross checking frailty discrimination [59], joint angle correction

[102], detecting false swing phase [105], and for scoring algorithm in gait ataxia

[95]. Based on our search strategy, we did not found any paper discussing ma-

chine learning algorithms to extract gait features. However, outside of the eligible

studies, we found a study [115] implementing deep learning approach to estimate

spatio-temporal gait features. The dataset for deep learning and ground truth were
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collected from seven IMUs and motion capture and force plate systems, respectively,

with multiple 5 m walk protocols at various speeds. Another challenge related to

machine learning is the availability of dataset.

Online and real-time data processing for wearable-based quantitative

gait analysis. We found several studies that implemented online or real-time data

processing as discussed in Section 2.3-E. The vast development in computing power

has enabled an easier implementation of online and real-time data processing. This

gives several advantages for both the general wearable users or for patients and

clinicians if it is implemented in clinical settings. For example in sports applications,

real-time data processing enables the user to directly reflect and possibly correct

their action in real-time for motion improvement based on the provided real-time

insights. In the clinical setting, a real-time visualization is favored as real-time

insights for both patients and clinicians. Real-time data processing also enables

real-time feedback to the user that may act as an intervention in the case of the

occurrence of freezing of gait (FoG) in PD patients. Nevertheless, implementation

of online or real-time data processing may face a problem such as data package loss

while transmitting data to the processing unit and thus have to be validated first to

ensure the accuracy of the extracted gait features.

Slow walking speed and its effect to performance of algorithms

In some of the studies, we observed that the performance of stride detection

was decreased in a slow walking speed. For example this study reported a 97.8 %

mean accuracy on 1.0 km/h speed, while 99.9 % detection was observed from speed

1.5 - 4.0 km/h [96]. Another example is shown by ICC metric, where slow walk-

ing speed produced the lowest ICC value compared to comfortable and maximum

walking speed [108]. A further design and evaluation of algorithms are needed to

accommodate slower walking speed for gait analysis in elderly group.

Issues related to experiment protocols.

Each of the studies proposed a variety of experimental protocols. Most of it

can be simplified and referred to a ’level ground walking’ either performed in a

laboratory, long corridor, or outdoor setting. Pragmatically, a longer walkway is

more suitable to capture the natural gait of a subject as it gives a proper time and

distance for the subject to adjust their walking as they preferred. This study [116]

has concluded that a minimum of 25 and 33 strides are needed to properly compute

step symmetry and stride regularity in healthy control subjects. On different exper-

iment protocols, a study on [117] suggested that curved walking instead of straight

walking is more proper to assess people with gait disorder. On the other hand, the
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treadmill-based experiment may affect the natural gait of the subject. However,

this study [118], [119] suggested that self-paced instead of fixed-speed allows more

natural stride variability.

Integration of wearable sensor gait analysis and feedback system

In this review, we identified several studies that utilized certain data analysis

from wearable sensors as feedback to the user in various modalities such as audio,

visual, and haptic feedback [52], [61], [90], [92]. Feedback strategies are needed for

gait retraining or real-time assessment to correct certain parameters in rehabilitation

or sports applications. Outside the studies in this review, several progress have been

made in wearable-based gait feedback system. An auditory feedback investigated in

[120] was found to be effective in short-term rehabilitation for stroke patients with

hemiparesis. These studies [19], [20] proposed a biofeedback system for gait and

balance training in PD subjects. Another study [121] proposed a sensing sock device

with smartphone-based feedback with various modalities such as combined several

feedback strategies such as auditory, visual, and haptic feedback. On the comparison

of different feedback modalities, a study concluded that real-time haptic feedback

was found to be effective and less expensive compared to visual feedback [122] for

gait retraining in runners with high tibial load. Nevertheless, the effectiveness and

correctness of feedback strategies needed to be investigated further.

2.5 Conclusion

This chapter investigates the use of wearable sensors for quantitative gait anal-

ysis. Each of the proposed framework of wearable gait analysis identified in this

review must be validated to gold standard measurement or other established sen-

sor system to ensure the performance of measurements taken. The links between

number and types of sensors along with the attachment to the body, method and

algorithms used, and number and types of quantitative gait features that can be

extracted, are discussed comprehensively in this review. Future directions are to ex-

plore the integration between wearable-based gait assessment and feedback system

to give a real-time feedback to the users/patients. Other area is to investigate the

performance and validity of wearable-based gait analysis in other clinical applica-

tions. The use of machine learning algorithms to both quantify gait features and

giving certain performance scores for clinical application is also a challenge and vital

needs for researchers pursuing this research field.
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Chapter 3

Proposed framework: Two IMUs

for rich gait features

3.1 Introduction

This chapter discussed the thesis proposition of using two IMUs for quantitative

gait analysis with rich gait features.

Several gait assessment studies have been conducted considering the use of wear-

able sensors. We identified several state of the art on this field as summarized in

Table 3.1. The first study [123] extracted step length, stride length, and gait speed

using four inertial measurement unit (IMU) attached on both shanks and thighs

based on inverted pendulum model, as well as three gait events, i.e. initial con-

tact (IC), toe-off (TO), and mid-stance (MSt). Using the same number of sensors

and placement, the second study [124] estimated step length while also identified

three gait events, i.e. IC, MSt, and leg straightening (LS), as well as gait asym-

metry feature based on double pendulum model. Model based algorithm has a set

of assumptions and all parameters/ inputs must be available to perform the algo-

rithm. Comparison of using one IMU attached on waist and two IMUs on shanks

were presented in [125]. It was concluded that using two IMUs on shanks leads to

better accuracy in IC, stride time and step time features. The fourth paper [126]

utilized only one IMU placed on foot and successfully detect heel-strike (HS), heel-

off (HO) and TO events, and derived a number of spatial/temporal features (Table

3.1). However, the experiment was done in treadmill which may disturb natural gait

of participants [118], [119]. Other study [5] also investigated the use of one IMU

placed on the lower back/ fifth lumbar vertebrae (L5) and derived spatial/temporal

features based on step activity instead of stride. Moreover, they also derived in-

45



Chapter 3. Proposed framework: Two IMUs for rich gait features

Table 3.1: Comparison of several wearable-based gait assessment

Ref. Sensor and
Location

Gait
event/
Gait phase

Spatial/Temporal
features

Other gait fea-
tures

Benchmark

[123] Four gyro-
scopes on
shanks and
thighs

IC, TO,
MSt

Step length, Stride
length, Gait speed

- Instrumented
mat

[124] Four gyro-
scopes on
shanks and
thighs

IC, MSt,
LS

Step length Gait Asymme-
try

Motion cam-
era & tape
measurement

[125] One IMU
on waist &
Two IMUs on
shanks

IC, FC Step time, stance
time, stride time

Coefficient of
Variation

Pressure sens-
ing insole

[126] One IMU on
foot

HS, HO,
TO

Stride time, stance
time, swing time,
stride length,
walking speed,
incline

- Footswitches
and cal-
ibrated
treadmill

[5] One IMU on
lower back

IC, FC Step time, stance
time, swing time,
step length, step
velocity

Asymmetry
and Variability
Indices

Instrumented
walkway

Proposed
frame-
work

Two IMUs on
feet

IC, TO,
MSw,
double
support
(DS)

Stride time, stance
time, swing time,
stride length, heel
vertical displace-
ment, gait speed,
%gait phase, walk-
ing distance

Symmetry
Index, Asym-
metry Indices,
Variability In-
dices, Activity
class, Motion
Intensity

Motion cap-
ture and force
plates

dices (asymmetry and variability) that can be used for clinical purpose such as in

Parkinson’s disease.

Research on gait assessment has widely been conducted. Nevertheless, many

studies only focused on specific features rather than presenting a rich and diverse

features that potentially could be extracted. In this study, we propose a framework

to assess gait comprehensively with high-range of feature diversity using wearable

sensors. Comprehensive here means extracting as many gait features as it possibly

can, which includes gait event and/or phases detection, spatial and or temporal

parameter extraction, and other related gait features. Table 3.1 represents the

difference of feature diversity between our present study and the previous state-of-

art works using portable sensors on gait assessment.
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Table 3.2: Characteristics of participated subjects

Subject Age
(years)

Height
(cm)

Weight
(kg)

Injury Participation

S01 24 176 75 No benchmark,
walkway

S02 23 178 70 No benchmark,
walkway

S03 26 167 78 No benchmark,
walkway

S04 23 166 57 No benchmark,
walkway

S05 25 170 71 No benchmark

S06 42 177 78 Yes benchmark

The rest of this chapter is organized as follows. Section 3.2 discussed about our

proposed framework, experiments, and methods used in this study. Results and dis-

cussions are presented in Section 3.3, which covers agreement between our proposed

framework and lab-based measurement, overall quantitative gait assessment results,

and comparison to several related study. Finally, Section 3.4 concludes the study

and provides direction of future research regarding this topic.

3.2 Methods

3.2.1 Subjects

Six subjects participated in the study with a mean age of 27.2±7.4 years and

mean height of 172.3±5.3 cm and mean weight of 71.5±7.9 kg. Five of subjects

reported that they have no severe lower limb related injuries in the past year, while

one subject reported that he had injury on left foot and had performed a surgery

regarding the injury five months prior to the experiment. Details of participated

subjects are depicted in Table 3.2. All subjects had given informed consent prior to

participation to this experiments.

3.2.2 Data collections

All subjects wore two IMU (Trigno Research+, Delsys, MA, USA) wireless sys-

tems on the back of the shoes as presented in Fig. 3.1. We selected this location
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Chapter 3. Proposed framework: Two IMUs for rich gait features

as it was found to be the second best position in terms of accuracy for detecting

the stride number [84]. We picked this location mainly for the purpose of practi-

cality and convenience for the subjects, while also considering the accuracy results

from the reference study. On the preliminary experiment of the reference study,

the second best position outperformed all of other locations with 100% accuracy on

detecting stride number based on accelerometer (compared to 96% accuracy from

the best position). When tested to larger datasets (15 subjects) the accuracy was

comparable to the best position, i.e. 93.60% for the best position vs. 93.20% for the

2nd best. In terms of convenience and practical issue, we think that placing it on

the back of the shoes is the best option because we could reduce relative movement

of the sensors without sacrificing the convenience of the subject that could alter

their gait. If we were attaching it on the best position, we would need to make sure

we attached the sensors securely with a Velcro belt that could be inconvenience to

the subject and may alter their gait. In this study, the 3-axis accelerometer and

3-axis gyroscope data alone from each foot were considered. Motion capture system

(Optitrack, NaturalPoint, OR, USA) and force plates (AMTI, MA, USA) were also

used for benchmark experiment to assess the performance of the proposed system.

The sampling rate of the IMU sensors was set at 148 Hz, whereas the motion capture

system and force plate were sampled at 100 Hz and 1,000 Hz, respectively. IMU and

force plate were down-sampled to 100 Hz for consistency of data analysis. All the

collected data were processed for analysis using MATLAB (Mathworks Inc., Natick,

MA, USA).

3.2.3 Experiment protocols

We developed two experiment protocols to assess the performance of our pro-

posed methods. Experiments were divided into two stages, namely, benchmark and

walkway experiments. The protocols and objectives for each experiment are de-

scribed as follows.

3.2.3.1 Benchmark experiment

Subjects were instructed to walk back and forth in a confined space defined by the

area of motion capture system for 10 repetitions. Subject were instructed to adjust

their walking speed to their own convenience and were encouraged to step their

foot onto the force plate. These instructions were chosen owing to the fact that

the capture area of the motion capture system was small thus the longest straight

walking could only be 4.5 m. For this reason, to perform slow, normal, and fast

walking would be ineffective. Heel markers were attached on the lateral side of each
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(a)

(b)

Figure 3.1: (a) Experiment setup of our proposed framework, where IMU unit is
attached on the back of the shoe. Two markers attached on heel and toe, and two
force plates (FP-1 and FP-2) were used for benchmark experiment. IMU frame
is transformed to world coordinates that consisted of vertical direction (Ver) and
antero-posterior direction (A-P) for spatial features calculation. (b) Graphical pre-
sentation of IMU sensor placement (green box), marker placement (gray dot), and
gait events and phases representation on both L(Left) and R(Right) foot.
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shoe, while toe markers were attached on the upper-front side of each shoe. The

purpose of this experiment was to compare the performance of proposed framework

in terms of gait event detection, as well as spatial/temporal parameters, with the

ground truth, using a gold standard measurement from the motion capture and force

plate system.

3.2.3.2 Walkway experiment

Subjects were instructed to walk back and forth in a longer distance of 12 m for six

repetitions at their own self-selected speed. The purpose of this experiment was to

allow the subjects to walk more naturally, thereby providing an accurate assessment

of each subject’s natural gait.

3.2.4 Quantitative gait assessment

This section explains the overall procedure of the quantitative gait assessment

(QGA) proposed in this study. As mentioned earlier, we used only two IMUs at-

tached on the back of the shoes of each subject. Raw data from the IMU sensors

were filtered using a 4th order Butterworth low pass filter with a cut-off frequency

of 6 Hz. Following the filtering process, the data were processed according to the

extracted gait features. The list of extracted features is presented in Table 4.1.

3.2.4.1 Gait Event Detection

Gyroscope data were used to estimate three major gait events, i.e. initial contact

(IC), toe-off (TO), and mid-swing (MSw). A heuristic-threshold based algorithm

was constructed to detect these gait events. IC and TO were defined as the local

maxima, whereas MSw was defined as the local minima detected from the gyro data.

We set threshold of angular velocity, ωn, 30 deg /s and -120 deg /s as the starting

point to search for local maxima and local minima for IC, TO and MSw events

detection, respectively. These values were based on the observational study during

benchmark experiment. Flowchart of event detection is depicted in Fig. 3.2.

We computed angular acceleration, αn, based on ωn difference. When a local

minimum is detected, marked by the change of sign in αn, and ωn is under the

specified threshold of -120 deg /s, we marked the data sample as MSw and hold the

value of 1 in msw variable. Meanwhile, when a local maximum is detected, also

marked by the change of sign in αn, and αn is greater than the specified threshold

of 30 deg /s and msw value is 1, then we marked the data sample as IC and reset
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Table 3.3: Overall extracted features

Features (f) Unit Description

Stride time s Time needed to complete one gait cycle
(IC to IC)

Stance time s Time elapsed when foot is in contact
with the ground

Swing time s Time elapsed when foot is not in contact
with ground

Stride length m Distance of one gait cycle

Heel vertical dis-
placement

m Estimated maximum height of heel dur-
ing swing phase

Gait speed m/s Averaged walking speed of the subject

Walking dis-
tance

m Total distance covered by subject

Gait phase % Percentage of average gait phase con-
sisted of iDS, SS, tDS, SW

Symmetry Index dimensionless Symmetry feature based on stance time

Asymmetry In-
dices

multi Various indices based on the absolute
mean difference between sides (L&R)

Variability In-
dices

multi Various indices based on standard devi-
ation of certain features

Activity class dimensionless 0 for other activities, 1 for walking, 2 for
turning

Motion intensity g Intensity of motion based on magnitude
of acceleration
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the msw value as well as hold the value of 1 in ic variable. Otherwise, if there is

another local maximum detected and ic value is 1, then we marked it as TO and

reset the ic value and hold the value of 1 in to variable.

3.2.4.2 Activity class

In this part of the study, we introduced three activity classes named walking, turn-

ing, and others class, to easily distinguish certain movements performed by the

subjects. Certain thresholds were defined to construct a finite state machine (FSM)

transition rule between the activity classes, as depicted in Fig. 3.3 (a). The move-

ment performed will fall under ’walking’ class if there are sequences of IC event

detected. As two IMUs were used, the inner-class states could detect separately be-

tween left and right events, thus could lead to more detailed double support analysis

in walking class. Terminology of inner-class states is represented in Fig. 3.3 (b),

whereas the inner-class transition rules are presented in flowchart in Fig. 3.2. On

the other hand, if there is a significant change, defined as a threshold of 250 deg /s,

in longitudinal angular velocity in both of feet, movement will be categorized to

’turning’ class. In this study, we classify turning as a class to record the changing

of direction of the subjects and also to avoid inaccurate gait event detection and

further spatio/temporal features calculation during transition to non-gait activity.

Any movement performed that did not satisfy any of the above described states was

classified as the ’others’ class.

3.2.4.3 Temporal features

Temporal features were derived based on gait event detection. Stride time was

calculated by the time difference between detected ICs. Stance time was calculated

by the time difference between detected TO and detected IC before the respected TO

event, while swing time was calculated by the time difference between the detected

IC after TO event and the respective TO event itself. Double support was estimated

from the detection of IC of left side to the detection of TO of right side and vice

versa. Initial and terminal double support, iDS and tDS, are interchangeable terms

depending on the reference side. These descriptions are interpreted in Equation 3.2.1

to 3.2.5, where subscripts i, L and R are index of detected event, Left, and Right,

respectively.

More over, we also present these temporal features in gait phase represented by

percentage of each phase. Here we divided gait into four phases, consisted of iDS, SS,

tDS, and SW, where SS and SW are single support and swing phase, respectively.
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(a)

(b)

Figure 3.2: (a) Flowchart of gait event detection based on gyroscope data on the
back of the shoes. (b) Example of gyro data used for gait event detection. Dashed
line indicates IC, TO, and MSw events. Shades indicate gait phases (yellow: double
support, green: single support, red: swing).
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stride time = ICi+1 − ICi (3.2.1)

stance time = TOi − ICi (3.2.2)

swing time = ICi+1 − TOi (3.2.3)

iDSL = tDSR = TOR − ICL (3.2.4)

iDSR = tDSL = TOL − ICR (3.2.5)

3.2.4.4 Spatial features

Spatial parameters were extracted from the combination of accelerometer and gy-

roscope data. We calculate stride length in quaternion system. Raw data from

IMU sensor that are recorded in Euler angles, were transformed into quaternion.

Accelerometer was rotated into Earth’s frame and gravity component was com-

pensated by subtracting transformed accelerometer data that is perpendicular with

ground with g, where g is gravitational acceleration equal to 9.8 m/s2. We followed

a gradient descent algorithm [127] to estimate position based on IMU on quaternion

system. This algorithm also include a magnetic distortion compensation algorithm

and proven to reduce computational load. Further, we used a similar double inte-

gration method with [126], [128] to estimate velocity and lastly derived position. In

this study, stride length is calculated per direction of walking to better estimate and

avoid non-walking class data. On the other hand, we also introduced an estimation

of heel vertical displacement (HVD) based on the transformed acceleration data to

earth frame on vertical direction.

3.2.4.5 Other gait features

We also derived other gait features based on the extracted spatial and/or tempo-

ral features. Symmetry Index (SI) is a derived feature from stance time of both

sides. We averaged total stance time of left side to right side for every walking class

per experiment performed. Minus sign in SI indicates an overall less stance time

on left side while positive sign indicates an overall less stance time on right side.

Motion Intensity (MI) [129], [130], is a derived feature from the magnitude of the

accelerometer data, which relates to the intensity of certain movement performed

by the subject. Furthermore, it could be used to assess the difference of intensity

between left and right side of the foot.

Additionally, we also extract Asymmetry Indices (AIs) and Variability indices

(VIs) as studied in [5]. AIs are various indices based on the comparison of absolute
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(a)

(b)

Figure 3.3: (a) Activity class transition rules (b) Notation of inner-class states that
could be recognized using the proposed framework.
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mean difference between left (L) and right (R) side. These AIs could potentially give

important information about subject specific tendency of using left and right foot

in gait. VIs are features derived based on standard deviation. These features can

provide an insight into the variability found on certain spatial/temporal features. SI,

AI, VI, and MI are formulated in Equation 3.2.6 to 3.2.9, where n and f are number

of gait cycle detected and spatial/temporal features, respectively. For example if f

is stance time, then AIf will be AIstance where we calculate mean absolute error of

stance time between left foot and right foot.

SI =

∑n
1 stancetimeL∑n
1 stancetimeR

− 1 (3.2.6)

AIf = |mean(fL)−mean(fR)| (3.2.7)

V If = S.D(f) (3.2.8)

MI = |a| =
√

ax2 + ay2 + az2 (3.2.9)

3.3 Results and Discussions

We asked each of the participants about their perception of their gait during

the experiment. Their responses have been summarized in Table 4.2. S02 and S05

stated that, during the benchmark experiment, they walked slower than normal,

while other subjects stated that they perceived their gait as normal. As we only

used two force plates, we encouraged all subjects to step on it every time they

walked by. Only one participant, S04, declared that they did not need to adjust

their steps on the force plate. Meanwhile on walkway experiment, all participated

subjects stated that they walked normally. These subjective perception could be

used as references to interpret the results that are discussed below.

3.3.1 Benchmark experiment

A total of six subjects participated in this experiment. To synchronize motion

capture, force plate system, and IMU sensors, all subjects performed jumping on the

force plate (time was synchronized at maximum vertical acceleration from IMU and

maximum vertical GRF from force plate). In addition to that, we introduced a bias

correction of 0.07 s for time synchronization to IMU data based on the experiment

trials. This correction factor is a lagging factor to compensate for the position

of IMUs on feet that are not reflecting the acceleration of the whole body which

correlates to the maximum GRF from the force plate. Further, we omitted the first
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Figure 3.4: Bland-Altman plot for spatial features. Red lines are mean and range of
limit of agreement (LoA). The comparison results show that the proposed framework
are within the LoA with mean of -7.72 cm and -2.2 cm for (a) stride length and (b)
heel vertical displacement, respectively.
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Table 3.4: Perception questionnaire

Subject
Benchmark Experiment Walkway Experiment

Perception Step Adjusting Perception

S01 Normal Maybe Normal

S02 Slower Yes Normal

S03 Normal Yes Normal

S04 Normal No Normal

S05 Slower Yes N/A*

S06 Normal Maybe N/A*

*N/A = Not Available (subject was not participated)

Table 3.5: Summary of benchmark experiment: quantitative gait assessment

Subject
Temporal features (s) Spatial features (m)

Gaitspeed (m/s)
Gait Phase (%)

SI
Stance time Swing time Stride time Stride length HVD iDS SS tDS SW

S01 0.66±0.09 0.45±0.09 1.12±0.11 1.25±0.05 0.21±0.03 0.98±0.22 6.46 45.71 6.11 41.72 -0.032

S02 0.66±0.12 0.50±0.08 1.19±0.13 1.26±0.05 0.24±0.06 1.00±0.10 6.48 43.33 7.38 42.81 0.053

S03 0.65±0.21 0.45±0.15 1.18±0.24 1.12±0.04 0.21±0.05 0.89±0.15 8.59 42.27 8.76 40.39 0.068

S04 0.71±0.19 0.48±0.12 1.22±0.20 1.19±0.06 0.20±0.06 0.93±0.06 8.11 44.10 8.37 39.42 -0.018

S05 0.87±0.04 0.60±0.03 1.47±0.04 1.09±0.06 0.20±0.02 0.63±0.17 12.75 40.48 8.39 38.38 -0.039

S06 0.67±0.22 0.48±0.15 1.25±0.23 1.11±0.05 0.21±0.03 0.85±0.13 9.14 39.77 8.41 42.77 0.104

continuous walking class until the first turning class and then started data analysis.

In terms of gait event detection reliability, the total of IC and TO events detected

by force plates was 456 for all subjects. This number agrees with that obtained by

our detection method based on IMU, exhibiting 100% detection rate. In total, we

recorded 2286 gait events consisted of IC, TO, and MSw from all subjects during

the benchmark experiment. We noticed there were a few missed or inaccurate event

detection during the transition from walking to turning class and vice versa. This

issue has been resolved automatically by introducing activity class, thus only IC,

TO, and MSw during actual gait was recorded for analysis.

Table 3.5 summarizes a detailed gait assessment for each subject. Temporal

features, spatial features, and gait speed are presented in mean ± S.D. Further

more, we quantified gait phases in percentage of gait cycle, that could detail the

iDS and tDS phases. Walking distance was not derived in this experiment as the

walkway was short by approximately 4.5 m, and we did not explicitly instruct the

subjects to follow a defined route or distance. Furthermore, for simplicity, we showed

only SI among other proposed gait indices in this experiment as we focused on

temporal/spatial agreement to the reference system and the comparison of our study
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to various existing studies. In term of stance time, S05 had the longest stance time

and also the shortest stride length compared to other subjects, which resulted in

the slowest speed among all subjects. Quantitative results from S05 showed an

agreement with subject perception, as depicted in Table 4.2. We confirmed that

the step adjusting effort by subject influenced the gait and resulted in slower speed

than normal, as observed in S05. Table 3.5 indicates that the largest deviation of

SI (SI=0.104 or 10.4%) was found in S06. This finding was also correlated with the

reported condition of S06 having lower limb injury.

Table 3.6 summarized the agreement of benchmark experiment results of each

participated subject to the reference system. Temporal and spatial differences be-

tween IMU and motion capture-based measurements are calculated in terms of mean

and standard deviation. The negative sign indicates an early detection of temporal

features and an overestimation of spatial features, while the positive sign indicates

a late detection of temporal parameters and an underestimation of spatial features.

Table 3.6 indicates that there was a 4.22±15.48 ms delay of IC detection and

8.31±21.02 ms early TO detection on average from all subjects. The lowest aver-

aged temporal difference for IC and TO events was 1.32 ms and -0.31 ms observed

from S02 and S05, respectively. On the other hand, we observed lowest temporal

difference variability of 6.23 ms and 6.42 ms for IC and TO event from S02 and S01,

respectively. Both lowest temporal differences and temporal differences variability

are within one sampling time interval (ts = 0.01s). We observed that the variability

of gait event timing for each subject is dependent on sensor placement and data

filtering as has been reported in [84].

For spatial features comparison with motion capture system, we observed that

our proposed method tends to overestimate by an average of 7.72±12.8 cm for stride

length and 2.22±5.28 cm for estimated HVD, as summarized in Table 3.6). We

observed the best overall agreement of spatial features in S05 where stride length and

HVD are -0.59±6.69 and 1.16±1.66, respectively. Fig. 3.4. showed bland-altman

plot on spatial features. It could be seen that mean level of all spatial features

from all participated subject showing a minus sign, thus our proposed method on

extracting spatial features showed a trend to overestimate spatial features.

Even using two IMU sensors, we confirm that temporal feature could be well

identified compared to motion capture system with minor temporal differences. The

spatial feature has some gaps due to the measurement accuracy difference compared

to the global measurement system, however IMU-based stride length estimation

can still capture the relative change of the gait, while having absolute spatial errors.
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However, in terms of HVD estimation, our proposed method suffered from inaccurate

estimation that could reach 30% in terms of absolute error, even though we have

implemented a linear correction algorithm based on all of the recorded gait data

from all of the subjects. In our proposed method, for computational efficiency

purposes, we estimated stride length and HVD in the same computation batch with

IC as starting point. We found this became one of the factor contributing to the

estimation error in HVD, as it should have been started from heel-off event instead

of IC.

Furthermore, we compared our detection results with those of various existing

studies in terms of temporal feature, as depicted in Table 3.7. Our results in IC de-

tection performed better than all of previous studies, while TO detection performed

better than [125], [126], [131], [132]. To conclude, we have demonstrated that our

proposed method provides an acceptable performance compared with those of vari-

ous existing studies.

Table 3.8 compares our spatial features result with those of existing studies. Us-

ing four gyroscope and inverted pendulum model (IPM), as studied in [123] resulted

in better estimation compared to reference system. In [84], the mean accuracy us-

ing the similar double-integration method as presented in this study was more than

90%, compared to our study which is 93.23 % of mean accuracy. A study on [133]

also used the double-integration method with better accuracy and precision of 2 cm

and 5 cm, respectively. The difference was sensor location (dorsum of foot) and the

integration method that started from foot-flat event to next foot-flat event. Even

though this location and method performed better in estimating stride length, it

may not be suitable for determining gait events or stride number as shown on this

study [84]. A study on [134] used a deep-learning algorithm to estimate stride length,

yet it took around 20 minutes per fold to train and a minimum of 4000 iterations

to reach a stable error with precision, as shown in Table 3.8.

3.3.2 Walkway experiment

A total of four subjects agreed to participate in the walkway experiment. This

experiment focused on presenting subject-specific gait features that had been ex-

tracted using our proposed framework. Table 3.9 shows an overall QGA based on

our proposed framework.

We observed that all subjects took shorter time to complete a gait cycle, as seen

from an overall less stride time in all subjects, compared to previous benchmark

experiment. We also observed a longer stride length from all subjects compared
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Figure 3.5: Results from walkway experiment from all participated subjects, pre-
sented with same scale of time and number of gait cycle (a) activity class (b) number
of gait cycles and detailed percentage of gait phases.
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Table 3.6: Benchmark experiment : Agreement to reference system

Subject
Temporal Differences (ms) Spatial Differences (cm)

IC TO Stride length HVD

S01 9.74±8.54 -4.21±6.42 -9.59±4.56 0.27±3.50
S02 1.32±6.23 -15.53±8.91 -11.66±4.69 -4.32±6.00
S03 9.25±15.09 -15.50±43.2 -8.24±26.5 -3.54±6.24
S04 13.16±6.62 -7.63±10.76 -2.90±6.44 -5.08±5.50
S05 22.12±12.18 -0.30±7.70 -0.59±6.69 1.16±1.66
S06 12.89±7.68 -14.21±6.83 -10.93±5.73 -0.59±3.59
Average 4.22±15.48 -8.31±21.02 -7.72±12.8 -2.22±5.28

data is presented in mean±S.D

Table 3.7: Benchmark experiment : Temporal differences comparison to existing
studies presented in mean±S.D.

Ref. Sensor/ Location Subjects IC (ms) TO (ms)

[125]
1 IMU (Gyro.)/ shank 10 12±11 51±21
1 IMU(Gyro.+Acc.)/ L5 10 46±20 76±21

[126] 1 IMU(Gyro.)/ foot 5 70±N/A 35±N/A
[131] 2 Acc./ below knee 15 34±25 19±36
[132] 1 Gyro./ shank 7 -8±9 50±14
[135] 1 Gyro./ shank 9 -16.6±11.9 3.7±26.5
Present
Study

1 IMU(Gyro)/foot 6 4.22±15.48 -8.31±21.02

N/A = Data not available ; Acc.=Accelerometer ; Gyro.=Gyroscope

to previous benchmark experiment. The walkway experiment was performed in a

longer and wider space than the benchmark experiment, thus the walking distance

was longer and the gait cycle time was shorter as subject tended to move in a more

dynamic walking style. This slight change in walking style was well observed in

our proposed method, which is a very important result as it demonstrates that the

proposed method can accurately quantify the change of the gait under different

environments. We can also note that both iDS and tDS time from all subjects were

decreased in this experiment. This indicates that the subjects walks faster than

during the benchmark experiment, which can be also observed in the gait speed

feature.

We calculated the total walking distance covered by the subject based on stride

length feature. We found that from 11 walking trials per subject in a 12 m walkway
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Table 3.8: Benchmark experiment : Stride length comparison to existing studies
presented in mean±S.D.[cm] (%Accuracy)

Ref. Sensor/Location/Method Subjects Stride Length

[123] 4 Gyro./ shanks&thighs/ IPM 11 -2.7±N/A (N/A)

[84] 1 IMU/ foot/ Double-integration 15 N/A (≥90.00)
[134] 1 IMU/ foot/ Deep-learning 15 4.11±3.57 (N/A)

[133] 1 IMU/ foot/ Double-integration 10 2±5 (N/A)

[136]

2 Gyro./ shanks/ SPM 15 -25.8±7.6 (N/A)

2 Gyro./ shanks/ DPM 15 3.8±6.6 (N/A)

3 Gyro./ shanks&thigh/ DPM 15 -0.2±8.4 (N/A)

Present
Study

1 IMU/foot/Double-integration 6 -7.72±12.8 (93.23)

N/A = Data not available ; Gyro.=Gyroscope

resulted in 11.92±1.07 m total distance covered per trial, with 95% confidence inter-

val (CI) of [11.61,12.24]. This confirmed that the accuracy of the proposed method

for estimating stride length is the actual distance of 12 m with a 95% CI. In terms of

SI, we observed a good symmetry from all subject, -0.03<SI<0.005, or not greater

than 3% deviation from perfect symmetry (SI=0). In Table 3.9, we also verified AI

and VI features based on all temporal features. Since two IMUs were used, we could

detail the analysis for both left and right side of the foot based on these indices.

Fig. 3.5 shows activity class and detailed percentage of gait phases during walk-

way experiment. We presented the same scale of time and detected gait cycle to

facilitate graphical comparison between subjects. Following the same protocols and

overall walking distance, we observed that S02 was the fastest to complete this

experiment, while S03 was the slowest. To further compare results between these

subjects, we looked at number of stride (Fig. 3.5), stride length, stride time, double

support phase, gait speed, and also MI (Table 3.9) to clearly see the differences.

In Fig. 3.5 (b), we could observed that sometimes SS and SW is not detected and

only show iDS and tDS. This occurrence happened not because of error in event de-

tection, but merely shows a brief moment after turning, when both legs are on the

ground, before the subject continue to walk. Furthermore, we could also correlate

these result further with physical characteristics of the subject as presented in Table

3.2, thus generating a detailed gait assessment.

In terms of speed coverage, range of speed are 0.63-1.00 m/s and 1.15-1.49 m/s for

benchmark experiment and walkway experiment, respectively. Average transition

speed from walking gait to running gait is around 2.00 m/s [137]. In that case
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Table 3.9: Summary of walkway experiment : Subject-specific QGA

QGA S01 S02 S03 S04

Stance time
(s)

0.56±0.09 0.54±0.07 0.65±0.26 0.61±0.19

Swing time
(s)

0.48±0.08 0.47±0.06 0.45±0.11 0.45±0.08

Stride time
(s)

1.05±0.09 1.02±0.07 1.13±0.25 1.08±0.19

Stride
length (m)

1.50±0.08 1.54±0.16 1.30±0.07 1.46±0.12

HVD (m) 0.13±0.09 0.35±0.29 0.18±0.13 0.25±0.19

Gait speed
(m/s)

1.42±0.08 1.49±0.17 1.15±0.08 1.36±0.15

Walking
dist. (m)

134.03 115.44 142.5 132.67

iDS (%) 3.58 3.86 8.06 6.63

SS (%) 45.04 46.61 43.07 45.71

tDS (%) 4.35 2.91 7.45 6.23

SW (%) 47.03 46.62 41.43 41.42

SI -0.029 -0.010 0.005 -0.018

AIstance (s) 0.016 0.005 0.007 0.005

AIswing (s) 0.014 0.000 0.005 0.001

AIstride (s) 0.003 0.003 0.001 0.009

V Istance (s) 0.016(L)
0.021(R)

0.011(L)
0.016(R)

0.017(L)
0.016(R)

0.020(L)
0.027(R)

V Iswing (s) 0.012(L)
0.011(R)

0.011(L)
0.012 (R)

0.009(L)
0.010(R)

0.009(L)
0.010(R)

V Iswing (s) 0.029(L)
0.029(R)

0.021(L)
0.027(R)

0.021(L)
0.020(R)

0.023(L)
0.034(R)

MIswing (g) 2.02±0.14(L)
2.03±0.18(R)

2.19±0.13(L)
2.12±0.16(R)

1.83±0.13(L)
1.72±0.13(R)

2.08±0.31(L)
1.98±0.26(R)

we have covered and tested our proposed framework for roughly 0.63-1.49 m/s of

walking speed and showed the accuracy and performance comparison to existing

studies.
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3.4 Conclusion

We have investigated our proposed framework of quantitative gait assessment

keeping a feature-rich diversity using only two IMU sensors. By decreasing num-

bers of sensors, we need to sacrifice the performance of gait assessment. Through

the comparison to motion capture system and existing studies, we have verified the

potential and the limitation of our proposed framework toward compact sensing

system but with feature-rich diversity on gait assessment. We have successfully

derived major gait events, IC, TO, and MSw, and gait phases that can provide

detailed double support analysis in initial and terminal phases. The agreement of

IC and TO events compared to lab-based motion capture and force plate system

were 4.22±15.48 ms delay on IC detection and -8.31±21.02 ms early on TO de-

tection, respectively. Meanwhile, for spatial features, our proposed approach tend

to overestimate by an average of 7.72±12.8 cm for stride length and 2.22±5.28 cm

for estimated HVD. We also discussed a detailed comparison to various existing

studies and found trade-offs in performance between number of sensors used, sensor

placement, and algorithms to extract spatial/temporal features. While our proposed

framework (number of sensor+sensor placement+algorithms) could not achieve bet-

ter performance in terms of all spatial/temporal features, we demonstrated that for

some features, it performed better than some existing studies and generally could

maintain a good accuracy. Moreover, we have successfully detailed iDS and tDS

phases that could be employed for gait research. We also showed that preliminary

validation presented in this study could clearly distinguished normal subjects and

subject with a recent history of lower limb injury based on the SI, therefore indicates

a potential use for clinical research. Detecting asymmetricity is an essential QGA

for stroke patients or patients who use prosthetic leg. Another factor to be noted

is the time spent for preparation, which can be significantly reduced using only two

sensors. This provides an advantage for clinical purposes as we can not spend much

time for patients in practical scenarios. Based on the results of the walkway exper-

iment, we are confident that this framework can be implemented to monitor gait in

a free-living environment, thus assessing the subject with their natural gait without

space limitation. However, HVD estimation error could reach 30%. An advanced

correction algorithm and/or different estimation method are needed to resolve this

error. Even though we have successfully tested our proposed framework for roughly

0.63-1.49 m/s of walking speed, there are some slower and faster walking speed that

we have not covered. For this reason, a better benchmark experiment that could

incorporate slow, normal, and fast walking instruction could be done in the future

to cover all possible walking speed. Another future works for this study would be

testing our proposed approach for online application as well as testing it for wider
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audiences and combining the approach with other computational frameworks [138]

to expand the range of application toward general motion assessment.
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Chapter 4

Case studies using the proposed

framework

This chapter further extends the application of the wearable-based quantitative

gait analysis framework proposed in this thesis. Three case studies of mixed gait

of treadmill walking and running, cognitive dual-task gait, and prolonged outdoor

subject-specific gait are presented within this chapter.

4.1 Mixed gait of walking and running

This section investigates the application of the proposed framework from the

previous chapter to include running gait analysis on a treadmill. A treadmill-based

gait analysis enables a controlled speed experiment that is useful for tracking the gait

performance of subjects across various speeds. Increased treadmill speed at some

point will influence the subject to change their gait from walking gait to running

gait. Some studies have argued that walk-run mixture at intermediate locomotion

speed leads to optimization of metabolic energy [139]. Most of the state of the arts

on wearable systems for gait analysis is developing a separate analysis between those

two gait modalities [11]. We found that this study [36] discussed the assessment of

temporal gait parameters using a gyroscope during treadmill walking and running.

But again, each of the tested speeds was captured and analyzed separately in a

different data recording session.

In this section, we address this problem by introducing a framework that can

incorporate both walking and running gait analysis, seamlessly by means of con-

structing a finite state machine (FSM) followed by detailed inner-class states in a
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single data recording session. Therefore, in this section, we proposed a controlled

speed experiment on a treadmill to test our proposed framework. We have previ-

ously validated the performance of our algorithm to the gold standard measurement

of motion capture and force plate systems on [100]. Although it has covered a wide

range of self-selected speeds, it has not fully covered controlled slower and faster-

walking speeds. Therefore we also aim to see the effect of those speeds on the gait

of the subjects.

4.1.1 Methods

Subjects. Four subjects participated in the study with a mean age of 24±1.4
years, mean height of 171.8±6.1 cm and mean weight of 71.5±7.9 kg. All of the

subjects reported that they have no severe lower limb related injuries in the past

year prior to the experiment. All subjects had given informed consent prior to

participation in this experiment.

Data collections and preprocessing. In this study, all subjects wore two IMU

(Trigno Research+, Delsys, MA, USA) wireless systems on the back of the shoes as

presented in Fig. 4.1a. We selected this location as it was found to have 93 % in

terms of accuracy for detecting the stride number [84]. In this study, 3-axis gyroscope

and 3-axis accelerometer data from each foot were considered. The sampling rate of

the IMU sensors was set at 148 Hz. All the collected data were processed for analysis

using MATLAB (Mathworks Inc., Natick, MA, USA). A 4th order Butterworth low

pass filter was applied to all the collected data with a frequency cut-off of 6 Hz.

After the filtering process, the data is ready to be used further for our designed

algorithm to extract various temporal gait features.

Experiment protocols. Subjects were instructed to follow a pre-defined vari-

able speed plan on a treadmill, starting from 2 km/h to 10 km/h, where the overall

tested speed is v = 2, 4, 5, 6, 8, 10 km/h. During the experiment, subjects were also

told to stop anytime if they felt uncomfortable. The purpose of this experiment was

to see the effect of walking speed on temporal gait patterns for each subject. In

addition to that, a comparison between subject-specific walking and running gait

was also the interest of this experiment.

Temporal gait analysis. This section explains the overall procedure of the

quantitative gait assessment (QGA) proposed in this study. As mentioned earlier,

we used only two IMUs attached on the back of the shoes of each subject. Raw

data from the IMU sensors were filtered using a 4th order Butterworth low pass

filter with a cut-off frequency of 6 Hz. Following the filtering process, the data were
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4.1. Mixed gait of walking and running

(a) (b) 

(c) (d) 

(f) (e) 

Figure 4.1: Proposed framework of seamless temporal gait analysis during walking
and running on a treadmill. (a) Example of a subject following the experimental
protocols of various speed treadmill walking and running with two IMUs attached
on the back of the shoes. (b)The proposed FSM classes and transition rules are
applied in this study. (c) Recognized gait events and phases for walking gait. (d)
Recognized gait events and phases for running gait. (e) The corresponded inner
class states of walking gait. (f) The corresponded inner class states of running gait.
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Table 4.1: Overall extracted features

Features (f) Unit Description

Gait events - Consists of IC, TO, MSw, for walking
gait; and FC, FO, and MF, for running
gait

Stride time s Time needed to complete one gait cycle
from IC to IC (walking/running)

Single Support time s Time elapsed when one foot is in con-
tact with the ground (walking)

Double Support time s Time elapsed when both foot are in
contact with the ground (walking)

Swing time s Time elapsed when foot is not in con-
tact with ground (walking)

Contact time s Time elapsed when foot is in contact
with ground (running)

Double Flight time s Time elapsed when both foot are not in
contact with the ground (running)

Flight time s Time elapsed when one foot is not in
contact with ground (running)

Gait phase % Percentage of average gait phase con-
sisted of iDS, SS, tDS, SW for walking,
and CP, iDF, FP, tDF for running

Symmetry Index % Symmetry feature based on stance time

Asymmetry Indices s Absolute mean difference of temporal
features between sides (L&R)

Variability Indices s Various indices based on standard de-
viation of certain features

Activity class - 0 for other activities, 1 for walking, 2
for running

Motion intensity g Intensity of motion based on magnitude
of acceleration

processed according to the extracted gait features. The list of extracted features is

presented in Table 4.1.

Gait Event Detection. Gyroscope data were used to estimate three major gait

events, i.e. initial contact (IC), toe-off (TO), and mid-swing (MSw). A heuristic-

threshold based algorithm was constructed to detect these gait events. IC and TO

were defined as the local maxima, whereas MSw was defined as the local minima

detected from the gyro data. Our detailed heuristics algorithm is available on [100].

The same principles is applied to recognize running gait events, i.e. foot-contact
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4.1. Mixed gait of walking and running

(FC), foot-off (FO), and mid-flight (MF).

Activity class. In this part of the study, we introduced three activity classes

named walking, running, and others class, to easily distinguish certain movements

performed by the subjects. Certain thresholds were defined to construct a finite

state machine (FSM) transition rule between the activity classes, as depicted in Fig.

4.1a. The movement performed will fall under ’walking’ class if there are sequences

of IC event detected. As two IMUs were used, the inner-class states could detect

separately between left and right events, thus could lead to more detailed double

support analysis in walking class (Fig. 4.1b). On the other hand, if there is no

initial and terminal double support detected, the movement will fall under ’running’

class (Fig. 4.1c). Any movement performed that did not satisfy any of the above

described states was classified as the ’others’ class.

Temporal features. Temporal features were derived based on the extracted

gait events. Since we used two IMU sensors, in this study we calculated a more

detailed temporal features. Stride time was calculated by the time difference between

detected ICs. Stance time was calculated by the time difference between detected

TO and detected IC before the respected TO event, while swing time was calculated

by the time difference between the detected IC after TO event and the respective

TO event itself. Double support was estimated from the detection of IC of left side

to the detection of TO of right side and vice versa. Initial and terminal double

support, iDS and tDS, are interchangeable terms depending on the reference side.

Similar with walking gait, on the running gait, initial and terminal double flight,

iDF and tDF , are interchangeable terms depending on the reference side.

More over, we also present these temporal features in terms of the percentage of

each gait phase. Here we divided walking gait into four phases, consisted of iDS, SS,

tDS, and SW, where SS and SW are single support and swing phase, respectively.

Meanwhile for running gait, we divided also into four phases, consisted of iDF, CP,

tDF, FP, where CP and FP are contact phase and single flight phase, respectively.

Other gait features. We derived four kinds of gait indices based on the ex-

tracted temporal gait features. Symmetry Index (SI) is a derived feature from stance

time of both sides. To calculate this feature, we averaged the total stance time of

left side to right side for every walking or running class per experiment performed.

Minus sign in SI indicates an overall less stance time on left side while positive sign

indicates an overall less stance time on right side. Motion Intensity (MI) [129], [130]

is a derived feature from the magnitude of the accelerometer data, which relates to

the intensity of certain movement performed by the subject. Furthermore, it could
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Table 4.2: Perception questionnaire

Subjects Comfort walking
speed (km/h)

Transition speed
(km/h)

Comfort running
speed (km/h)

S01 5 6 to 8 10

S02 5 6 to 8 10

S03 4 6 to 8 10

S04 4 6 to 8 8

be used to assess the difference of intensity between left and right side of the foot.

Asymmetry Indices (AIs) are various indices based on absolute mean difference be-

tween left and right side. AIs could potentially give important information about

subject specific tendency of using left and right foot in gait. Variability Indices

(VIs) are derived based on standard deviation of temporal gait features. To give

more specific speed-based analysis, we can further detailed SI, MI, AIs, and VIs

based on speed to analyze how these indices changed over the increased speed of

walking or running gait.

Speed change detection. In order to do a precise speed-based analysis, we

introduce a speed change detection algorithm based on a simple moving average filter

applied to MI data. A 20-points moving average filter, MA20, was found sufficient to

capture the changing dynamic of MI data, which highly correlated with the changing

on gait speed, based on several preliminary experiment trials. We set a threshold

at 75th percentile of the difference in MA20 value to determine if speed is constant

or in transition. If MA20 crossed the threshold value, we marked it as ’transition’

state, while if it was under we marked it as ’constant’ speed state.

4.1.2 Results and Discussions

We asked each of the participants about their perception of their gait during the

experiment. Their responses have been summarized in Table 4.2. This will help

us to compare the perception of subjects and actual data-based results. In terms

of the agreement to gold standard measurement, our framework in this study has

been benchmarked to motion capture and force plate system as well as compared to

various existing studies. The detailed discussion on this issue is out of the scope of

this study but is extensively discussed on previous chapter [100]. In the benchmark

study, the temporal difference to force plate system were 4.22±15.48 ms (mean ±
S.D.) and -8.31±21.02 ms (mean ± S.D.) for initial/foot contact and toe/foot-off

events, respectively. Thus, in other words, we have verified that the accuracy of
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Figure 4.2: Result from S01: Percentage of gait phases from a single experiment
trial, where left and right phases can be quantified separately. Mid-figure depict the
recognized activity class and the changing of speed throughout the experiment trial.
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Figure 4.3: Summary of temporal gait features distinguished by treadmill speed.
Columns represent subjects, i.e. (a) S01, (b) S02, (c) S03, and (d) S04. Top row
to bottom represent percentage of gait shares, asymmetry index, variability index,
and symmetry index, respectively.
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Table 4.3: Quantitative gait assessment : A detailed report on temporal gait features
distinguished by treadmill speed.

Subject
Mean Temporal Features (s) Gait Indices

Treadmill Speed
iDS SS/CP tDS iDF SW/FP tDF Stride time SI (%) AI (s) VI (s)

S01

0.105 0.452 0.113 0.432 1.102 -2.3 0.015 0.170(L) 0.168(R) 2 km/h

0.047 0.432 0.052 0.443 0.973 -1.4 0.009 0.024(L) 0.023(R) 4 km/h

0.027 0.438 0.034 0.449 0.948 -1.9 0.010 0.016(L) 0.016(R) 5 km/h

0.011 0.422 0.019 0.430 0.882 -1.7 0.007 0.015(L) 0.012(R) 6 km/h

0.250 0.097 0.258 0.100 0.704 -2.3 0.006 0.010(L) 0.080(R) 8 km/h

0.215 0.126 0.220 0.127 0.688 -1.4 0.004 0.009(L) 0.009(R) 10 km/h

S02

0.134 0.636 0.178 0.615 1.564 2.9 0.019 0.138(L) 0.104(R) 2 km/h

0.060 0.508 0.058 0.502 1.128 1.2 0.007 0.020(L) 0.019(R) 4 km/h

0.038 0.478 0.039 0.479 1.034 0.3 0.001 0.015(L) 0.016(R) 5 km/h

0.025 0.468 0.023 0.469 0.983 0.2 <0.001 0.014(L) 0.015(R) 6 km/h

0.230 0.131 0.238 0.132 0.731 -3.9 0.009 0.008(L) 0.009(R) 8 km/h

0.212 0.135 0.220 0.132 0.699 -4.4 0.01 0.007(L) 0.008(R) 10 km/h

S03

0.213 0.576 0.179 0.555 1.523 1.4 0.015 0.050(L) 0.055(R) 2 km/h

0.085 0.479 0.780 0.466 1.108 1.8 0.011 0.013(L) 0.016(R) 4 km/h

0.063 0.458 0.560 0.449 1.026 1.6 0.009 0.006(L) 0.007(R) 5 km/h

0.041 0.413 0.320 0.444 0.930 0.7 0.004 0.054(L) 0.052(R) 6 km/h

0.270 0.116 0.266 0.122 0.774 0.8 0.002 0.007(L) 0.008(R) 8 km/h

0.236 0.136 0.234 0.142 0.747 0.2 <0.001 0.006(L) 0.007(R) 10 km/h

S04

0.186 0.601 0.159 0.577 1.522 1.4 0.012 0.095(L) 0.095(R) 2 km/h

0.081 0.455 0.075 0.450 1.060 0.8 0.005 0.013(L) 0.012(R) 4 km/h

0.056 0.423 0.048 0.419 0.946 0.9 0.005 0.017(L) 0.019(R) 5 km/h

0.029 0.395 0.022 0.403 0.850 1.1 0.003 0.027(L) 0.033(R) 6 km/h

0.245 0.104 0.251 0.106 0.706 1.9 0.005 0.013(L) 0.014(R) 8 km/h

0.224 0.123 0.211 0.141 0.699 7.5 0.015 0.007(L) 0.006(R) 10 km/h

events detection falls roughly between 1-4 data samples (6.8 - 27.2 ms) at 148 Hz

sampling rate.

Data preprocessing, processing, and analysis were all done using a commercial

PC with Intel Core i7-8750H 2.2 GHz CPU. All of the above processes were done in a

specialized MATLAB-based application that we developed to execute the proposed

framework. A demo software of this study is available on:

https://github.com/yonatancah/Temporal-Gait-Evaluation.

Figure 4.2 serves as an example of data analysis performed under the proposed

framework for a single experiment trial. Here, the percentage of gait phases from the

left and right side of S01 are presented. A total of 406 gait cycles were detected from

this experiment trial which lasted around 6 minutes and 20 seconds. The middle

figure is showing the activity class as well as the point where ’constant’ speed or in

’transition’ occurred.
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Table 4.3 presents a detailed report on temporal features distinguished by the

treadmill speed. Here we extracted iDS, SS, tDS, and SW time for walking gait and

CP, iDF, FP, and tDF time for running gait. Walking gait was observed for 2,4,5,

and 6 km/h treadmill speed, while running gait was observed for 8 and 10 km/h

treadmill speed consistently across all subjects. These results are in agreement with

self-reported assessment by the subjects as presented in Table 4.2, where all subjects

said that they changed from walk to run at 6 to 8 km/h transition. We observed that

double support time, single support time, and contact phase time was decreased as

treadmill speed increase across all subjects. On the other hand, even though we only

have two speed representing running gait, i.e. 8 km/h and 10 km/h, we observed

that double flight time was increased as treadmill speed increase. These results are

also presented in top row of Figure 4.3 for every subjects.

On gait indices, we presented SI, AI, and VI with respect to treadmill speed

on Table 4.3 and Figure 4.3. On the results of SI, we found that it was unique to

each subjects. S01 showed an overall negative SI with an average of -1.83% SI in

all tested treadmill speed. S02 showed a decrements trend in SI starting from 2.9%

SI on 2 km/h speed to -4.4 % SI on 10 km/h speed, with an average of 2.15 % SI.

To be more precise, on walking gait we observed an overall positive SI, while on

running gait we observed an overall negative SI. These means that on walking gait

S03 and S04 showed an overall positive SI with an average of 1.08 % and 2.27 % of

SI, respectively.

On the results of VI, we observed that the highest temporal variability on both

left and right sides occurred on the slowest treadmill speed, i.e. 2 km/h. Interest-

ingly, only S03 experienced another comparable high variability on 6 km/h treadmill

speed, where left side variability was 0.054 s compared to 0.050 s on 2 km/h, and

right side variability were 0.055 s on 2 km/h and 0.052 s on 6 km/h. One of the

importance of looking at VI is that we can distinguish the timing variability of

each side which can be useful to assess if there is impairment of one of the sides of

the subjects. It should be noted that gait index scores may not give an absolute

definitive condition of subjects, but it can be used as a relative measure to make

an intra-subject comparison such as tracking rehabilitation progress or to make an

inter-subject comparison between groups of interest [140].

On the computational time, we observed an average of 10.84 ± 0.59 s to finish

computation and extract all of the features depicted in Table 4.1, with average

experiment time across all trials of 417.95 ± 26.55 s. Note that this result was

achieved using the computational hardware mentioned early in this section and

executed in MATLAB environment. Other processing hardware or programming
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language may resulted in different computational cost. Looking at the computational

cost of around 11 seconds to complete a roughly 7 minutes of data analysis, has made

it highly possible for real-time or online system to be constructed using our proposed

framework.

4.1.3 Conclusions

We have investigated our proposed framework of seamless extraction of temporal

gait features for walking and running gait performed on a variable speed treadmill.

By using two IMU sensors on both sides of foot and introducing activity class with

detailed inner-class states, we can successfully extracted a detailed gait phases both

on walking and running gait that incorporate double support and double flight

phases, respectively. In this study we also introduced a moving-average based fil-

tering technique to filter out transition data between speed changing, thus a precise

speed-based analysis can be performed. In sport application, this approach will ben-

efit to see the consistency and performance of an athlete given a specific speed of

treadmill training, in addition to a video-based analysis [89]. To give a more in-depth

analysis, we extracted several gait indices based on temporal features. This features

is useful to be applied in clinical setting such as to track rehabilitation progress

and to compare data between subjects of interest [5]. To conclude, the developed

framework in this study may contribute to a more unobstructive gait analysis, where

speed change and gait change can be anticipated and recognized, which reduce the

amount of interruption to subjects during experiment. Future work for this study

is to test it in an outdoor setting and considering a larger cohort and prolonged

experiment time. Extending the framework to become an online process is also the

future interest of this study.

4.2 Cognitive Dual-Task Gait

Walking is considered an automatic rhythmic motor behavior. This implies that

gait can be performed without much attention. In daily life, the need to perform

multiple tasks simultaneously is very common. The term dual-task gait refers to

the condition where the secondary task is added into the walking or gait task. For

example, we often have a conversation with someone while walking. Under these

occasions, gait is considered as the primary task, while processing information and

replying to a conversation are considered the secondary task. The added cognitive

task load may influence the gait pattern of the subject, moreover on the elderly

population [141]–[143]. The influence may negatively affect the performance of the
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performed tasks as there is a competition between tasks for attentional resources

[144].

Laboratory-based assessment is considered the gold standard for gait experi-

ments. However, a recent study has suggested that the in-lab measure of gait does

not accurately reflect the daily-living gait [145]. For this reason, wearable-based

gait assessments have been proposed as an alternative solution to assess various

gait experiments in both in and out-of-lab settings, with varying performance de-

pending on the number of sensors used, location attachment to the body, and the

implemented algorithm [146]. There have been several studies discussing wearable

sensors for cognitive dual-task gait [147]–[149]. One accelerometer attached on low

back over L5 vertebrae was investigated to assess gait balance control based on the

analysis of acceleration data [147]. The use of six inertial sensors to assess dual-task

gait from the extracted spatiotemporal and kinematics features was investigated on

[148]. Meanwhile, another study [149] proposed the combination of pressure sens-

ing insoles and four accelerometer to assess the difference between single-task and

dual-task gait in fallers and non-fallers elderly population.

The increased number of sensors may give more ways to provide a detailed anal-

ysis as we can extract more gait information [148], [149], while using only one sensor

such as on [147] may only provide analysis in descriptive statistic manners. This

calls for an optimized number of sensors that can both be still practical and con-

venient to the wearer while also giving enough gait features to be analyzed for the

dual-task gait experiment. Therefore, this case study investigates the use of two

shoes-attached IMUs to distinguish single-task gait from cognitive dual-task gait

from the quantification of temporal gait features as well as various gait index fea-

tures.

4.2.1 Methods

Subjects. Two subjects, S01 (27 F) and S02 (27 M), with no history of severe

lower-limb related injuries participated in this specific case study. Informed consent

prior to participation in the experiment was given to the subject.

Data collections and preprocessing. Two IMUs (MetaMotionC, MbientLab,

San Fransisco, CA, USA) were attached on the back of the shoes. Accelerometer and

gyroscope data were logged during the time of the experiment, and later uploaded

to the computer for data processing. Sampling rate of the sensors was set at 100

Hz. All of the collected data were processed using Python (version 3.7.3). On the

pre-processing stage, 4th order Butterworth low-pass filter was applied to all the
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Figure 4.4: Data processing flow consisted of pre-process, auxiliary functions, main
process, and report blocks.

collected data with a cut-off frequency of 6 Hz.

Experiment protocols. The experiment protocols were adapting the walkway

protocol on Chapter 3. The first trial was subject performing single-task gait, where

the subject walks at their preferred speed with no invervention. The second trial

was subject performing dual-task gait, where the attention demanding task was the

subject must solve crossword puzzles on their smartphone.

Data processing. The overall data processing flow is illustrated in Figure 4.4.

Accelerometer and gyroscope data are fed to the pre-processing stage, where data

arrangement and filtering were done. The output of this stage are then forwarded

to various function such as for gait event detection algorithm and the estimation of

spatio-temporal events on the main process. The detection of gait events, estimation

of spatiotemporal features, and calculation of gait indices were following the same

algorithm as Chapter 3.2.4. Detection of speed change as well as estimation of double

flight phases were following the algorithm as discussed in Chapter 4.1.1. Finally,

reporting function was introduced to summarize the results and provide analytics.

4.2.2 Results and Discussion

The comparison between single-task and dual-task gait is presented in this sec-

tion. Graphical comparison between single-task and dual-task gait as seen from
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the phase ratio and gait indices are presented in Figure 4.5-4.6 for S01 and S02,

respectively.

For S01, stance phase, swing phase, and double-support phase ratio between

single and dual-task gait were 58.43 % and 59.44 %, 41.57 % and 40.56 %, and 16.89

% and 19.42 %, respectively. The stance phase ratio was increased by 1.01 % when

performing dual-task gait, and consequently swing phase ratio was decreased by the

same percentage value of 1.01 %. Interestingly, we observed that the double-support

phase was higher by 2.53 % on dual-task gait. In terms of gait indices, there was

a higher variability across all gait variability indices when performing dual task-

gait. A higher SI was also observed on dual-task (0.015) as compared to single-task

(0.001), which translated to 98.5 % and 99.9 % of symmetry, respectively. This

indicates that a worse gait symmetry was observed in dual-task gait as compared

to the single-task gait, even though it was still on a high range of symmetry value

Meanwhile, for S02, stance phase, swing phase, and double-support phase ratio

between single and dual-task gait were 51.19 % and 54.77 %, 48.81 % and 45.23

%, and 10.27 % and 15.56 %, respectively. The stance phase ratio was increased

by 3.58 % when performing dual-task gait, and consequently swing phase ratio was

decreased by the same percentage value of 3.58 %. Interestingly, we observed that

the double-support phase was higher by 5.29 % on dual-task gait. In terms of gait

indices, there was a decrease in variability, particularly on both swing and stance

phase of right side when performing dual-task gait. A similar SI was also observed

on dual-task (0.042) as compared to single-task (0.041), which translated to 95.8 %

and 95.9 % of symmetry, respectively. This indicates that gait symmetry was not

really affected when subject performing single-task or dual-task gait.

Both of S01 and S02 have higher double support phase when performing dual-

task gait. A higher double-support phase may indicate a slower walking speed. This

finding was further confirmed by looking at the total walking time depicted in Table.

4.4. Subject performing single-task gait complete the experiment faster compared to

performing dual-task gait. This may indicate that there is an allocation of attention

performing the secondary task that leads to a slight decrease in performance in

terms of time to complete the gait experiment. In terms of cadence, we observed a

decrease in cadence by an average of 2 steps/min for S01, and 11 steps/min for S02

when performing dual-task gait, with S02 having an overall higher cadence in both

experiments.

In terms of motion intensity, there was a statistically significant difference be-

tween single-task and dual-task MI on the right side (p < 0.1). A significant dif-
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Table 4.4: Gait report on single-task and dual-task gait experiment

Gait features
S01 S02

Single-task Dual-task Single-task Dual-task

Temporal gait features

Total walking time (s) 409.96 441.69 272.61 353.4

Cadence (steps/min) 78 76 99 88

Average stance time (s) [L,R] [0.90,0.90] [0.94,0.92] [0.61,0.63] [0.75, 0.76]

Average swing time (s) [L,R] [0.63,0.64] [0.64,0.64] [0.60,0.58] [0.62, 0.63]

Double-support time (s) 0.130 0.152 0.062 0.107

Gait events

Detected IC [L,R] [285,284] [302,298] [230,236] [264, 269]

Detected TO [L,R] [274,268] [293,278] [222, 225] [258, 261]

Detected MSw [L,R] [286,284] [302,299] [231, 237] [265, 269]

Gait indices

Symmetry Index (%) 99.9 98.5 95.9 95.8

Asymmetry Indices (%) [Stance, Swing] [0.09,1.1] [1.39,0.04] [2.63, 0.1] [3.26, 0.79]

Variability Indices (Stance) [L,R] [0.076,0.082] [0.092,0.124] [0.093, 0.087] [0.094, 0.053]

Variability Indices (Swing) [L,R] [0.081,0.027] [0.113,0.134] [0.013, 0.105] [0.02, 0.027]

Motion Intensity (g) [L,R] [1.207,1.283] [1.164,1.214] [1.261, 1.355] [1.171, 1.233]

ference (p < 0.01) between motion intensity on the left and the right side was also

observed during this experiment. These correlations are depicted in Figure. 4.7.

4.2.3 Conclusions

This case study further expands the potential use of the proposed wearable-based

quantitative gait analysis framework. While visual observation may not objectively

show the differences between single-task and dual-task gait, the proposed framework

could help in the extraction of temporal gait patterns that later can be derived into

gait indices. By looking at these features, we could objectively find the differences

between those two gait tasks. In this particular case study, a lesser motion intensity,

an increase of double support time, and a reduced cadence were observed from all

subjects participated in this study. For S01, we observed a higher gait temporal

variability, and a worse gait symmetry were observed on the subject performing

dual-task gait. Meanwhile for S02, we observed a decrease in swing and stance

variability of right side when performing dual-task gait and a similar symmetry

index on both experiments. These finding indicate that the gait pattern analyzed

from each subject is unique and it should be noted that these findings may only be
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(a)

(b)

Figure 4.5: Results from S01: Comparison between single-task and dual-task gait
(a) based on the phase ratio and (b) gait indices.
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(b)

(a)

Figure 4.6: Results from S02: Comparison between single-task and dual-task gait
(a) based on the phase ratio and (b) gait indices.
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p < 0.1

p < 0.01

Figure 4.7: Motion intensity during single-task (ST) and dual-task (DT) gait. L
and R denotes left and right side, respectively.

valid to the subject of this experiment. To draw a more general conclusion, this case

study should be expanded to include more subjects.

4.3 Prolonged outdoor gait experiment

In this section, the use of the proposed framework over a prolonged outdoor

experiment is investigated. A prolonged experiment is hypothesized to have a certain

effect on the gait pattern of the subject. It is expected to see the changing of certain

gait features during this experiment. Moreover, this study is intended to investigate

if there is any sensor-related problem due to longer data recording sessions. All of

these concerns are addressed within this section.

4.3.1 Methods

Subjects. Two subjects with no history of severe lower-limb related injuries or

neurological conditions participated in this particular case study. Informed consent

prior to participation in the experiment was given to the subject.

Data collections and preprocessing. Two IMUs (MetaMotionC, MbientLab,

San Fransisco, CA, USA) were attached to the back of the shoes. Accelerometer and
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gyroscope data were logged during the time of the experiment and later uploaded

to the computer for data processing. The sampling rate of the sensors was set at

100 Hz. All of the collected data were processed using Python (version 3.7.3). On

the pre-processing stage, 4th order Butterworth low-pass filter was applied to all the

collected data with a cut-off frequency of 20 Hz to accommodate running gait.

Experiment protocols. This specific case study was designed to see the per-

formance of the proposed framework under a prolonged experiment time. A total

time of more than 10 minutes was considered sufficient to test for this case study,

as the previous experiments were recorded less than 8 minutes per trial. There were

two trials included for this study. The first trial was adopting the protocol from

the walkway experiment on Section 3.2.3 which was modified to 18 repetitions in-

stead of 6 repetitions on the original protocol. Thus, the first trial accounts for the

controlled outdoor experiment with prolonged time. Contrary, in the second trial,

the subjects were told to perform walk and run freely as they see fit as long as it

lasted more than 10 minutes. Thus, the second trial accounts for the free outdoor

gait experiment with prolonged time.

Data processing. The overall data processing flow is illustrated in Figure 4.4.

Accelerometer and gyroscope data are fed to the pre-processing stage, where data

arrangement and filtering were done. The output of this stage is then forwarded to

various functions such as for gait event detection algorithm and the estimation of

spatio-temporal events on the main process. The detection of gait events, estimation

of spatiotemporal features, and calculation of gait indices were following the same

algorithm as Chapter 3.2.4. Detection of speed change, as well as estimation of

double flight phases, were following the algorithm as discussed in Chapter 4.1.1.

Finally, reporting function was introduced to summarize the results and provide

analytics.

4.3.2 Results and Discussions

Results on this case study are presented in this section. As mentioned on the

experiment protocols on Section 4.3.1, there are a total of two experiments performed

for this case study.

The first experiment lasted around 13 minutes. Walking and turning classes were

detected throughout the experiment as depicted in Figure 4.8(A). The proposed

turning detection algorithm resulted in 100 % detection accuracy in this trial. Since

this trial is a three times extension of the protocols in Section 3.2.3, analysis in terms

of gait indices was divided into three equivalent stages to see if there are significant
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A B

Figure 4.8: (A) Recorded activity class during the first trial, where walk and turn
were detected during the experiment. (B) Recorded activity class during the second
trial. Walk, Run, and Turn were detected during the experiment. Others class
represented any other activity that were not classified yet, which include standing
still.

changes on the subject performing the gait experiment.

Figure 4.9 (top) shows the changing of gait indices pattern during the first ex-

periment. The first stage showed the most variability particularly on swing time on

the left side. On to the second and third stages, all of the variability indices were

decreased. The higher variability on the first stage may indicate that the subject

was trying to adjust how they walk. Histogram plot on Figure 4.9 (top) has shown

a clear difference between stance and swing time in this experiment, where stance

time was higher than the swing time. The gait report regarding the first experiment

is depicted in Table 4.5. This first experiment serves as an example to track the

progress of the subject during the gait experiment. This could potentially be used

in a clinical setting for tracking rehabilitation progress, particularly on gait-related

progress as reflected by the extracted gait features.

The second experiment lasted around 23 minutes. Running followed by a shorter

walking session with some occasional turning movements were detected throughout

the experiment as depicted in Figure 4.8(B). From Figure 4.8(B), the turning class

was detected more often during the actual running movement due to a higher inten-

sity of foot movement, notably on the longitudinal axis of the sensors as we set a

threshold to recognize turning movement. This has led to several misclassifications

of turning class, which were supposed to be running class. Therefore, a more robust

classification algorithm is needed to solve this issue.

The distribution of stance time and swing time during the second experiment is

depicted in the histogram plot on Figure 4.9 (bottom). There were two concentrated

regions of stance time distribution, the lower range around 0.2-0.4 s represented
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Figure 4.9: Histogram plot of temporal features (left) and temporal gait indices
(right) analysis on this case study. The first experiment emphasise on a controlled
outdoor gait experiment to observe gait changing during three stages of walking.
The second experiment emphasise on a free outdoor gait experiment to observe the
differences between two gait types of walking and running.
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Table 4.5: Gait report on the first trial: the controlled outdoor gait experiment.

Gait features Overall

Temporal gait features

Total walking time (s) 755.25

Cadence (steps/min) 83

Average stance time (s) [L,R] [0.83,0.97]

Average swing time (s) [L,R] [0.61,0.61]

Double-support time (s) 0.134

Gait events

Detected IC [L,R] [516,488]

Detected TO [L,R] [492,479]

Detected MSw [L,R] [517,488]

Gait indices

Symmetry Index (%) 97.57

Asymmetry Indices (%) [Stance, Swing] [2.00,0.55]

Variability Indices (Stance) [L,R] [0.159,0.103]

Variability Indices (Swing) [L,R] [0.038,0.031]

Motion Intensity (g) [L,R] [1.26,1.31]

running activity and the upper range around 0.6-0.8 s represented walking activity.

Contrary, swing phase distribution was concentrated in one region around the 0.4-0.6

s range, with indistinguishable walking and running activities. This suggests that

the stance time feature is more robust to recognize walking and running activities.

Figure 4.9 (right) and Table 4.6 depicted the comparison of temporal gait in-

dices on subject performing the second experiment. A lower SI (SI = 96.99%) was

observed during running activity compared to walking (SI = 98.18%). This may

indicate that there was a slight gait inefficiency during the running session as com-

pared to the walking session. Table 4.6 showed that the VI stance on the right side

was three times more than the VI stance on the left side. Conversely, the VI swing

on the left side was three times the VI stance on the right side. Meanwhile, the

average stance time and swing time on both left and right sides were around the

same value. This indicates that VI may contribute to a deeper understanding of

the differences between sides, where the reported mean values were around similar

values.

Further, the VI swing on both sides was significantly greater in the walking ses-

sion compared to the running session. Since walking occurred after running, higher
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Table 4.6: Gait report on the second trial: the free outdoor gait experiment.

Gait features Overall Running Walking

Temporal gait features

Total walking time (s) 1482.02 1269.04 212.98

Cadence (steps/min) 157 165 104

Average stance time (s) [L,R] [0.31,0.31] [0.27,0.28] [0.65,0.64]

Average swing time (s) [L,R] [0.46,0.45] [0.45,0.44] [0.50,0.52]

Double-support time (s) 0.084 0 0.084

Gait indices

Symmetry Index (%) 98.11 96.99 98.18

Asymmetry Indices (%) [Stance, Swing] [0.60,1.13] [0.85,1.29] [1.16,0.59]

Variability Indices (Stance) [L,R] [0.124,0.167] [0.045,0.136] [0.134,0.086]

Variability Indices (Swing) [L,R] [0.172,0.116] [0.161,0.051] [0.251,0.344]

Motion Intensity (g) [L,R] [2.37,2.30] [2.38,2.46] [1.542,1.584]

variability may explain the cooling down activity where the subject is adjusting their

gait into a slower pace from the high intensity of running gait. In terms of MI, it

was expected that the MI on running session is always higher than MI on walking

session as depicted in Table 4.6.

In addition to subject-specific analysis, an inter-subject analysis could also be

performed using the proposed framework in this thesis. For example, Figure 4.10

depicted the inter-subject comparison as shown by gait index features and histogram

of temporal gait features on subjects performing the same protocols adopted from

Section 3.2.3. The result shows that there was a larger gap between the duration

of stance time and swing time in S02 as compared to S01, shown by the histogram.

This may indicate that S01 walk faster than S02 as the stance time was shorter.

This hypothesis was further proved in Table 4.7, where the detailed quantitative

comparisons are shown. The table shows that subject S01 completed the experiment

with a total walking time of 177.46 s and cadence of 83 steps/min which were

faster than S02 with 268.3 s and 75 steps/min of total walking time and cadence,

respectively.

The symmetry index was relatively low in S01 with 93.64 % SI compared to 96.57

% SI on S02. There may be a correlation between walking speed and SI, where faster

walking speed resulted in lower SI. Conversely, motion intensity was slightly lower

on S01 compared to S02 even though S01 was walking faster. These unique findings

are needed to be investigated further with a larger pool of participants.

89



Chapter 4. Case studies using the proposed framework

S01 S02

Figure 4.10: Inter-subject comparison between S01 and S02 as shown by the his-
togram of stance time and swing time, and the gait indices feature.

Table 4.7: Inter-subject comparison between S01 and S02

Gait features S01 S02

Temporal gait features

Total walking time (s) 177.5 268.3

Cadence (steps/min) 83 75

Average stance time (s) [L,R] [0.78,0.78] [0.94,1.02]

Average swing time (s) [L,R] [0.67,0.60] [0.65,0.66]

Double-support time (s) 0.043 0.143

Gait events

Detected IC [L,R] [125,128] [168,162]

Detected TO [L,R] [117,116] [163,160]

Detected MSw [L,R] [128,128] [169,162]

Gait indices

Symmetry Index (%) 93.64 96.57

Asymmetry Indices (%) [Stance, Swing] [4.04,0.21] [3.17,0.42]

Variability Indices (Stance) [L,R] [0.251,0.182] [0.162,0.082]

Variability Indices (Swing) [L,R] [0.053,0.045] [0.046,0.096]

Motion Intensity (g) [L,R] [1.15,1.21] [1.20,1.24]

4.3.3 Conclusions

Two experiment trials performed in this section have demonstrated the use of

the proposed framework in the previous chapter on a prolonged outdoor gait experi-

ment. Two trials were presented in this chapter which serves as an example to assess

gait for potential clinical application and sport application. The first trial empha-
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sized assessing gait over a prolonged time with specific instruction. By extracting

the gait index features, an objective comparison between walking stages could be

drawn. The second trial emphasized assessing gait in a free-living situation, where

the subject can do any activity as they see fit. Further, an inter-subject comparison

was demonstrated as an extension of what the proposed framework can achieve,

which may potentially be used in clinical applications.

4.4 General Conclusions

This chapter demonstrated the potential application of what the proposed frame-

work of wearable-based gait analysis in this thesis could do. The mixed gait of

walking and running with variable speeds, cognitive dual-task gait, and prolonged

outdoor use of the system was presented and discussed within this chapter. The

preliminary experiments have shown promising results and are deemed potential to

be used for the respected applications. Nevertheless, follow-up experiments with a

larger cohort should be done to ensure the robustness of the proposed framework in

a bigger population test.
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Chapter 5

Machine learning for gait analysis

5.1 Introduction

This chapter addresses the use of machine learning algorithms for gait analysis

purposes. By doing various gait experiments from previous studies in Chapter 3 and

Chapter 4, we have collected several gait databases performed by various subjects.

These gait database are used in this chapter to construct specific machine learn-

ing model. Several studies have implemented machine learning algorithms to their

proposed framework of wearable-based quantitative gait analysis. The overall con-

tributions of the machine learning algorithm were mostly for classification problems

such as gait event or gait phase classifications [58], [78], [94], [106], and gait activ-

ity/terrain classification [109], as concluded from the systematic review presented

in Chapter 2. With the positive trend and widespread implementation of big data

research, the trained machine learning models will become more robust and may

become an alternative algorithm for gait research.

In this chapter, several machine learning algorithms were proposed to be applied

in some gait-related applications. In the first section, machine learning algorithms

such as support vector machines (SVM) and boosting algorithms were designed to

classify gait phases. Further, temporal convolutional networks (TCN) were stud-

ied to predict the gait outcomes of a subject. Lastly, reinforcement learning was

proposed as a control algorithm for swing phase control in a prosthetic knee device.
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5.2 Gait phases classification

In this section, three candidates of machine learning algorithms were considered.

The first one was SVM, which is commonly used as classification algorithm in var-

ious applications [58], [78], [102]. The second and third algorithms were based on

ensemble meta algorithms or also called boosting algorithms, which are adaptive

boosting (AdaBoost) [150] and extreme gradient boosting (XGBoost) [151], respec-

tively. The problem addressed in this section is whether the proposed algorithms

could distinguish and classify gait phases of stance and swing phases, respectively

from a series of data obtained from two IMU sensors.

5.2.1 Methods

Data collection and preprocessing. Data were collected from seven subjects

who participated in the previous study in Chapter 4. All subjects wore two IMUs

(MetaMotionC, MbientLab, San Fransisco, CA, USA or Trigno Research+, Delsys,

MA, USA) on the back of their shoes. Several walking trials were performed in

either indoor or outdoor setting with level ground walking adopting the experimental

protocols in Section 3.2.3. Some of the experiments may contains running gait and

also included for this study. Data pre-processing and the extraction of gait events

were following the same method as depicted in Figure 4.4 from Chapter 4.

A total of ten datasets from seven subjects were considered. The datasets were

annotated according to subject number (S) and trial number (T), respectively, as

depicted in Table 5.1. Gait phases were classified into two distinct phases called the

stance phase and swing phase. Ground truth for these phases was extracted using

the validated method from Chapter 3. Since all data within a trial were fully used,

it may contain a non-gait phase such as fully standing or when performing turning

motion. For this reason, another class called ’other’ was introduced to accommodate

these data. Thus, a total of three classes (stance, swing, and other) were formulated

as the target for the proposed model.

Model training. Three machine learning models, i.e. SVM, AdaBoost, and

XGBoost were proposed and compared for gait phase classification. The same types

and number of features were used to train those algorithms in order to fairly compare

the performance from each model. Features extracted in this simulation were the

magnitude of both acceleration and angular velocity from both left and right sensors.

Hyper-parameters from each model were tweaked following grid search techniques

to find the optimum values from a given dataset.
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AdaBoost XGBoost

*
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AdaBoost

XGBoost
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Figure 5.1: (a) Confusion matrices of all models trained with all dataset, where val-
ues shown indicates the classification accuracy of each class, vertical and horizontal
axes are true class and predicted class, respectively. XGBoost leads on stance phase
classification with 95 % rate, while all models performed at the same level of 82 %
accuracy on swing phase classification. (b) 5-fold cross validation metrics from both
AdaBoost and XGBoost classifiers with respect to left and right sensors. ∗p < 0.001
shows a statistical differences between the two models as computed based on two-
tailed T-test.

5.2.2 Results and Discussions

In this study, a few simulation strategies were performed to see the effect of a

different combination of training datasets in constructing the classification model.

In the first simulation, only 70 % of S01.T01 dataset was used to train each of

the models. The full results are depicted in Table. 5.1. XGBoost outperform

other algorithms in four out of six datasets, where the best performance was on the

S01.T01 dataset with 91.65 % accuracy. On the other hand, SVM outperform in

two out of six datasets, where the best performance was on S02.T03 dataset with

79.24 % accuracy. As expected, the highest performance of each model was achieved

when tested in S01.T01 dataset, where the 70 % of the data were used to train the

model. On the contrary, the worst performance occurred when the trained model

was employed to S01.T02 dataset, where it contains running gait. This result is also
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expected as there are distinctions between gait phases during running and walking.

This first simulation was intended to see if a model trained from a specific subject

can also be used for another dataset and subjects. Here, we could see that the

classification accuracy decreases when the trained model is tested on other datasets.

Therefore, the next simulation will consider employing all datasets for training.

The second simulation was consisted of training the model with 70 % of all the

datasets from simulation I, which include several experiment trials from both S01

and S02. The full results are depicted in Table 5.2 and confusion matrices are shown

in Figure 5.1 (a). An overall best performance was obtained by the XGBoost model

with a mean classification accuracy of 86.45 % and the range of accuracy when

tested to individual dataset were 79.11 % - 92.23 %. Interestingly, we observed an

increase in performance of all the models on classifying gait in dataset S01.T02,

which contains running gait. This indicates that all the proposed models can also

accommodate running gait phases by introducing part of running gait data to be

trained.

Finally, on the third simulation we considered to increase more the size of dataset

which include all of the subjects from Chapter 3 and Chapter 4 (S01-S07). The full

results are depicted in Table 5.3. An overall best performance was also obtained by

the XGBoost model with a mean classification accuracy of 84.54 % with range of

75.64 % - 87.86 % accuracy when tested to individual dataset. On the other hand,

AdaBoost classifier achieved a mean classification accuracy of 82.26 % with range

of 75.27 % - 86.50 % accuracy when tested to individual dataset, and SVM classifier

achieved a mean classification accuracy of 78.31 % with range of 67.06 % - 84.79 %

when tested to individual dataset.

It can be observed that the performance dropped from simulation II to simulation

III, where there were 1.61 % and 1.91 % decrements in performance for AdaBoost

and XGBoost classifier, respectively. The decrease in performance of the boosting

models from simulation II to simulation III was partially due to the increase in the

dataset which contains gait patterns from new subjects. This was correlated with the

finding on [152] where the performance of classifiers depends on the extent to which

a dataset represents the original distribution rather than its size. In simulation III,

we introduced the dataset from five new subjects, where they may have different

gait speed profile and different gait pattern in general that leads to a change in the

original distribution from the previous simulation II.

One important point to be noted is the computational complexity when training

the data. As the training size increased, SVM needs a longer time to train with a
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Table 5.1: Simulation I: Training the machine learning model based only one dataset
(S01.T01). Value in bold represent the best performance on each dataset.

Dataset Training/Test (%)
Test Accuracy (%)

SVM AdaBoost XGBoost

S01.T01 70/30 89.48 82.38 91.65

S01.T02+ 0/100 54.67 36.15 43.13

S02.T01 0/100 85.52 74.25 85.83

S02.T02 0/100 77.24 72.03 80.37

S02.T03 0/100 79.24 69.57 77.36

S02.T04 0/100 74.60 71.27 78.34

+this dataset contains running gait

Table 5.2: Simulation II: Training the classification model based on all of the dataset
from previous simulation (S01-S02). Value in bold represent the best performance
on each dataset.

Dataset Training / Test (%)
Test Accuracy (%)

SVM AdaBoost XGBoost

S01.T01 0/100 70.18 77.66 79.11

S01.T02+ 0/100 75.28 81.27 82.50

S02.T01 0/100 71.46 78.51 79.74

S02.T02 0/100 80.99 87.11 90.48

S02.T03 0/100 85.34 89.50 92.23

S02.T04 0/100 81.96 87.77 91.08

S01-S02 70/30 78.04 83.87 86.45

+this dataset contains running gait

theoretical complexity of O(n3), where n is equal to the number of training samples.

On the other hand, since AdaBoost and XGBoost were both a tree-based ensemble,

the time complexity is O(n). Thus, the time needed to both train and test was

significantly increased at the expense of n power of 3 for SVM. For this reason

alone, we did not continue to consider SVM for the classification model, moreover

if the dataset is getting larger.

Next, to properly validate the model performance of AdaBoost and XGBoost,

k -fold cross validation method was employed, with k equal to 5 and repeated for

three times. The result of this validation is depicted in Figure 5.1 (b). We seperate

the model trained for gait phase classification based on left and right sensors. The

mean cross validation of the XGBoost (left= 86.5% ± 0.2%, right= 86.2% ± 0.2%)
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Table 5.3: Simulation III: Training the classification model based on all of the dataset
available (S01-S07). Value in bold represent the best performance on each dataset.

Dataset Training / Test (%)
Test Accuracy (%)

SVM AdaBoost XGBoost

S01.T01 0/100 67.06 75.27 75.64

S01.T02+ 0/100 75.28 78.65 82.50

S02.T01 0/100 79.23 85.01 86.29

S02.T02 0/100 76.44 80.21 81.97

S02.T03 0/100 81.96 86.50 87.26

S03.T01 0/100 71.92 77.41 81.13

S04.T01+ 0/100 83.84 83.05 86.80

S05.T01+ 0/100 84.79 84.97 87.86

S06.T01+ 0/100 82.24 84.55 87.44

S07.T01+ 0/100 83.63 84.48 86.21

S01-S07 70/30 78.31 82.26 84.54

+this dataset contains running gait

outperformed the AdaBoost (left= 83.7%±0.1%, right= 83.5%±0.1%). It is worth

to note that both of the classifier models have high precision with only within 0.1 -

0.2 % from the mean.

To conclude, XGBoost with a mean accuracy of 84.54 % was suited the best

to classify stance and swing phases during both walking and running based on the

available dataset. It is important to note that the dataset used in this study was

not cleaned and thus we purposefully introduce the third class called ’other’ to

accommodate any other data that were not stance and swing. By following this

approach, we would like to demonstrate the performances of the selected classifiers

for a real-world condition that mostly contains ’dirty’ data. Therefore, based on the

lesser time complexity and overall higher accuracy despite the condition of the ’dirty’

dataset, it is highly likely that XGBoost can be used for real-time classification. To

improve the performance of the proposed classifier, future works must consider to

have several experiment trials from a subject.

5.3 Gait activity prediction

In this section, machine learning algorithms are trained to predict certain gait

activities from continuous gait data. Temporal convolutional networks (TCN), which
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was first proposed by S. Bai et. al. in 2018 [153], was considered for the main

algorithm in this study. Since its first introduction, there have been many studies

tried to implement this technique in various time-series or sequence model problems

[154]–[156]. There has been an attempt to combine CNN and TCN [157] applied

to process EEG dataset for mental workload assessment. The main advantages of

TCN are lower memory requirements, parallel processing of long sequences, and a

more stable training scheme [153].

5.3.1 Methods

In this case, gait can be considered a time series data as it has causality properties

where data in the past will be highly correlated with data in the future. The mathe-

matical expression for this principle is depicted in Equation 5.3.1, where yt depends

only on x0, ..., xT without any information from future inputs such as xt+1, ..., xt+n.

For instance, in normal gait, the stance phase will be followed by the swing phase

and so on. TCN consists of a fully convolutional network with causal convolution.

Since it is challenging to apply a simple causal convolution to a sequence modeling

task, a dilated convolution was introduced that enables a larger receptive field [153].

The mathematical expression of dilated convolution is depicted in Equation 5.3.2,

where F (s) is the dilated convolutional operation on sequence s, i is the index of

the sequence, d is the dilation factor, k is the filter size, and (s− d · i) accounts for
the direction of the past. Overall, the general architecture of a TCN is depicted in

Figure 5.2.

y0, ..., yT = f(x0, ..., xT ) (5.3.1)

F (s) = (x ∗d f)(s) =
k−1∑
i=0

f(i) · xs−d·i (5.3.2)

The research question of this study is whether TCN can predict the activity class

of a subject. Activity class here is defined as the same as the previous definition

on Section 3.2.4, where we have mainly walking and turning activities, apart from

the occasional ’other’ activity. Data used to train and test for this study are from

the collection of datasets gathered on several experiments in this thesis, which is

also part of the dataset used in Section 5.2. Several simulations were performed to

ensure the best performance possible from the trained algorithm.
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Figure 5.2: TCN architecture [153]. (a) Dilated causal convolution with dilation
factors d = 1, 2, 4, and filter size k = 3. (b) Residual block where a fully convolu-
tional network (1x1) is added to the output of dilated convolution. (c) Example of
residual connection in TCN, where blue lines are filters and green lines are identity
mappings.

TCN model parameters that can be tuned for model training are the number of

filters (layer depth), filter size, and dilation factor number. Apart from the model

parameter, there are a few general parameters that can be set to define the model

such as the predicted time steps and the ratio of input to output length, which are

the focus of this study.

5.3.2 Results and Discussions

In this study, a 50-time steps prediction was set as the goal or output for the

model to predict gait activity. In addition to that, an input-output ratio of 3 to 1

was considered to define the model, which means that 150 historical time steps data

is used to predict the next 50 time steps of gait activity. After a few simulations of

trial and error of TCN model parameters, we set the maximum depth of layer to 3,

dropout at 0.7, and kernel size at 3. In addition to TCN, other ML-based models

such as RNN and LSTM were also simulated to compare how the model perform to

this particular problem of gait activity prediction.

MAPE =
1

n

n∑
i=1

∣∣∣∣At − Ft

At

∣∣∣∣ (5.3.3)

Table 5.4 and Figure 5.3 depicted the overall comparison between the trained

ML models. Mean absolute percentage error (MAPE) metric was used to evaluate

the model performance as expressed in Equation 5.3.3, where At stands for actual

value at time t, Ft stands for forecasted value at time t, and n represent the number

of time steps calculated. The result shows that TCN outperforms both RNN and

LSTM at 50, 100, and 150-time steps prediction, while LSTM outperforms RNN
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Figure 5.3: TCN, RNN, and LSTM performances against the changing of time steps
prediction. TCN performs better in 50, 100, and 150 predicted time steps, while
LSTM was superior on a longer 200 time steps prediction. The performance of all
models were worsen as the prediction horizon increased.

and TCN at the 200-time steps prediction. Overall, the best performing model was

TCN with 4.94 % MAPE at 100-time steps prediction. Another thing to be noted

is that all of the models got worsened as the time steps prediction increased, where

the best performance was on 100-time steps prediction.

A simple prediction problem is presented in this section, where the model tries

to predict whether in the next t time steps the subject will turn. This study serves

as the preliminary test for the state of the art of TCN model for the gait-related

application. To the best of our knowledge, this is the first attempt at the TCN

model used in gait-related applications since it is first proposed in 2018. Therefore,

the future work for this study is to define a more sophisticated problem in the

gait-related application, such as the prediction of falls or the prediction of certain

conditions such as FoG in PD patients.

5.4 Swing phase control

In this section, a more advanced example of machine learning implementation

to gait-related applications is presented, where it is used as part of the control

algorithm. A reinforcement learning (RL) based control was implemented to control

a semi-active prosthetic knee during the swing phase [158]. Model-free reinforcement

Q-learning control (RQLC) with a reward shaping function was proposed as the

voltage controller of a magnetorheological damper-based prosthetic knee.
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Table 5.4: Performance of TCN, RNN, and LSTM in MAPE (%) with various
ratio input-output and predicted time steps (tF ). Value in bold represent the best
performance of each model.

tF

TCN RNN LSTM

Ratio of input/output length

3 6 10 3 6 10 3 6 10

50 8.66 33.93 100.76 10.68 15.48 14.28 8.91 8.95 15.85

100 4.94 17.65 65.54 10.36 14.90 18.02 6.35 6.37 10.56

150 7.54 12.86 56.08 19.57 26.66 23.00 11.26 10.00 16.35

200 20.47 10.53 61.51 27.97 37.63 28.00 15.21 13.01 22.41

5.4.1 Methods

The overall of the proposed method is depicted in Figure 5.4. Dataset were

obtained from real-world experiment of a subject performing treadmill walk with

variable speeds. These dataset were then fed to the simulated environment consisted

of system models and the proposed RQLC algorithm. System models are consisted

of the double pendulum model to simulate the swing phase, and the MR damper

dynamics to simulate the damping mechanism of the prosthetic knee.

RQLC algorithm, which adapting the Q-learning method, is consisted of the

Q-function and the reward function blocks. The mathematical description of Q-

function is depicted in Equation 5.4.1. The designed reward function is following

the formula from [158], which was designed as a function of the performance index

that accounts for the trajectory of the subject-specific knee angle (θK). The RL-

based control algorithm was trained to adapt to several walking speed datasets under

one control policy and subsequently compared its performance with that of other

control algorithms such as user-adaptive control [159] and neural network predictive

(NNPC) control [160].

Q(θK(t), ˙θK(t),at)
←− Q(θK(t), ˙θK(t),at)

+α

[
n∑

t=1

βtRt+γmaxQ(θK(t+1), ˙θK(t+1),at)
−Q(θK(t), ˙θK(t),at)

]
(5.4.1)
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Figure 5.4: The proposed RL-based control algorithm. Data collected from the real-
world experiment is fed to the simulated environment which consisted of the system
models and the RQLC algorithm. Systems model is consisted of double pendulum
model to simulate swing phase, and MR-damper dynamics model to simulate the
damping mechanism of prosthetic knee.

5.4.2 Results and Discussions

In this study, we investigated our proposed control algorithm for the swing phase

controller in the MR-damper-based prosthetic knee. The proposed controller was

designed with the structure of a tabular reinforcement Q-learning algorithm, a subset

in machine learning algorithms. The Q-learning control comprised a Q-function that

stores its value in a Q-matrix and a reward function following the reward shaping

function proposed in this study. The advantages of using this control structure are

that it can be trained online, and also it is a model-free control algorithm that does

not require prior knowledge of the system to be controlled. A variable reward as

a function of PI showed a faster convergence trend over that of a single reward

function and was concluded as the better reward mechanism [158].

The proposed controller is then compared to the user-adaptive controller [159]

and the NNPC algorithm [160]. The comparison of 2.4, 3.6, and 5.4 km/h walking

speed are depicted in Fig.5.5. and Table 5.5. The table depicts that for the walking

speed of 2.4 km/h, Q-learning method performed the best with 0.78 of NRMSE,

compared to NNPC (0.81) and User-adaptive (2.70). Further, for the walking speed

of 3.6 km/h, the best performance was achieved by NNPC with 0.61 of NRMSE,

compared with Q-learning (0.88) and User-adaptive (3.65). Lastly, for the walking

speed of 5.4 km/h, Q-learning performed the best with the lowest NRMSE of 0.52,

compared with NNPC (2.42) and User-adaptive (3.46). Overall, Q-learning method
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perform within 1% of NRMSE, which followed the designed common reward func-

tion for different walking speed.

This control structure also shows adaptability to various walking speeds. More-

over, we have successfully trained a unified control policy for every simulated walking

speed. PI verified with the experimental result indicates that this control structure

performs better than the user-adaptive control. Moreover, in some of the walking

speeds, this control structure performs better than the NNPC algorithm. The total

performance over different walking speeds showed promising results by using the

proposed approach.

In terms of cost function, knee trajectory is only one of the parameters to be

optimized among other correlated systems, such as ankle and foot prostheses, to

achieve better gait symmetry and reduce metabolic costs. Although there has not

been a detailed study about the acceptable criterion in terms of the NRMSE per-

formance index of the knee trajectory in a prosthetic knee, this study aims to mimic

the biological knee trajectory, which is shown by PI.

On the applicability point of view, our proposed Q-learning control had no prior

knowledge of the structure and characteristics of MR-damper. Signals observed

by Q-learning control were the states of knee angle and its derivatives, as well as

the reward signal Rt that was given based on the performance of the controller to

shape the control policy. Based on this facts, our proposed Q-learning control can

potentially be used for other structure of MR-damper or even other impedance-based

machine for semi-active prosthetic.

Although we cannot provide detailed comparison of our proposed method with

another RL-based method in [161], a brief comparison is discussed as follows. The

ADP-based RL algorithm resulted in 2.5 degrees of RMSE on the robotic knee

kinematics. The average performance of our proposed method was 0.73 of NRMSE

or was 1.59 degrees if converted to average RMSE. Conversely, in this study, we

employed the RL algorithm to control the output of the control voltage for the MR

damper, resulting in only one simple output variable. Meanwhile, this study [161]

used the RL algorithm to tune a total of 12 impedance parameters of the robotic

knee; thus, the output variables are 12. We also treated the swing phase as one

state, while in [161], the swing phase was divided into swing flexion and swing

extension where the ADP tuner would tune the impedance parameters accordingly

with respect to each state.

In this study, we focused on developing a unique control that can adapt and

accommodate a range of subject-specific walking speed. Unique means that it can
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Table 5.5: Comparison between user adaptive, NNPC, and RQLC control

Walking speed (km/h)
NRMSE(%)

User-adaptive NNPC RQLC

2.4 2.70 0.81 0.78*

3.6 3.65 0.61* 0.88

5.4 3.46 2.42 0.52*

Average 3.27 1.28 0.73*

*= best performance

only be valid for the subject. The reason was, like any other prosthetic, it is tuned

personally to the wearer. In this study, the control policy that we train is valid

only for the subject whose data we used. However, the idea of our proposed control

framework and algorithm can be applied to other subjects.

While it has shown a promising result, we also identified some of the limitations

of our study. Using the computational hardware mentioned at the previous sec-

tion and source code implemented in MATLAB, the overall calculation and online

update Q-function process consumed approximately 40.4 ms, while each evaluation

of NNPC with pre-trained swing phase model consumed approximately 13.2 ms

[160]. Changing the source code implementation in C language and using dedicated

processing hardware could shorten the calculation time to be within the proposed

control interval of 20 ms.

There are several areas that can be explored for future works. First, another

training strategy can be explored further to shorten the calculation time. Second,

this study proposed a tabular-discretized Q-function stored in a Q-matrix. A con-

tinuous Q-function could also be explored to better cover all the states and actions.

Third is to test our proposed control strategy to other subjects and possibly to test

a transfer learning approach from control policy that was learnt in this study for

dataset from other subjects.
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Figure 5.5: Comparison between user-adaptive control (green dashed line), NNPC
(red line), and q-learning control (black line) for the slowest and fastest walking
speed (a) 2.4 km/h, (b) 5.4 km/h.

106



Chapter 6

Concluding remarks

6.1 Summary

This thesis focused on the topic of wearable sensors for quantitative gait analysis.

It was motivated by the question of whether the current state-of-the-art wearable

sensors could address the challenge to provide a quantitative gait analysis. The-

oretical, experimental, and simulation approaches were simultaneously conducted

to investigate this grand question. Several principal outcomes have been obtained

from this thesis, such as the theoretical contribution in making the systematic re-

view which emphasized the recent advances on quantitative gait analysis through

wearable sensors, the proposition of using two IMUs attached on the back of shoes

to extract rich quantitative gait features in several applications, and the integra-

tion of machine learning algorithm to enrich the IMU-based gait analysis. Each

of the outcomes was addressed extensively in each chapter and summarized as the

following.

In chapter 2, a systematic review was conducted to gain a deeper perspective

on the recent advancement of wearable sensors for gait analysis topic. PRISMA

guidelines were adapted to find relevant studies using the formulated keywords. Over

the course of the last ten years, a total of 76 studies were extensively discussed in

this thesis regarding their impact on this research area. Wearable IMUs attached to

the lower limb region were found to be the most common approach for gait analysis.

Spatio-temporal features were the most common quantitative gait features extracted

from wearable sensors. The application of wearable-based gait analysis was found

ranging from clinical applications such as assessing gait of people with PD, stroke,

and other pathological conditions related to gait, to sports applications such as

running gait analysis. Several studies have also shown the interest in using machine

107



Chapter 6. Concluding remarks

learning algorithms for classification problems, correction algorithms, crosschecking

functions, and scoring functions. The importance of validation to a reference system

or gold standard measurements such as motion capture and force plate systems was

highlighted to ensure the performance accuracy and practicality of the proposed

wearable approach.

In chapter 3, responding to the systematic review done in chapter 2, the proposi-

tion of using two IMU sensors to extract rich quantitative gait features was discussed.

Reducing the number of sensors may compromise the accuracy of gait quantifica-

tion, nevertheless, it would improve the practicality and ease of use for the wearer.

In this thesis, two IMU sensors attached to the back of the shoes were proposed.

The proposed system was validated to the gold standard measurement of gait anal-

ysis consisting of motion capture system and force plate systems. Results of the

validation experiment show a good agreement to the reference system with 4.22 ms

and 8.31 ms of temporal differences in detecting initial contact and toe-off events,

respectively. On the other hand, stride length and heel vertical displacement were

overestimated by an average of 7.72 cm and 2.22 cm, respectively, which were still

in the range of the limit of agreement. A total of 17 features ranging from gait

events/ gait phases, spatio-temporal features, and other gait features were success-

fully extracted using the proposed framework. Moreover, the preliminary validation

presented in this chapter could clearly distinguish normal subjects from the subject

with pathological gait issues.

In chapter 4, several case studies were presented to extend the application of

the proposed framework. The first case study investigates the use of the proposed

framework to extract temporal gait features seamlessly on subjects performing both

walking and running gait in one session. The second case study expands the potential

use of the proposed framework to assess the quantitative differences between single-

task and dual-task gait performed by the subject. The third case study tested the

proposed framework on a prolonged time, where both controlled outdoor and free

outdoor experiments were performed. Although the results from all the case studies

have shown a potential implementation in both clinical and sports applications,

validation experiments that involve a larger pool of subjects are needed to ensure

the consistency of the proposed framework.

In chapter 5, machine learning algorithms were proposed to classify gait phases,

predict certain gait activity, and as swing phase control algorithm for the pros-

thetic knee. Three machine learning models consisting of SVM, AdaBoost, and

XGBoost were trained for the classification problem, while RNN, LSTM, and TCN

were trained for the prediction problem. Varying performances were observed from
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each of the trained models, where XGBoost performed the best with an overall mean

cross-validation accuracy of 84.54 % for gait phase classification and TCN performed

the best with an average MAPE of 4.95 % on predicting gait activity within 100

predicted time steps. On the swing phase control problem, our proposed model-free

reinforcement Q-learning control showed better performance on average compared

to user-adaptive and NNPC from existing studies.

6.2 Contributions

The main contributions of this thesis are the following.

• The systematic review of state of the arts on quantitative gait analysis using

wearable sensors.

• The proposition and validation of wearable-based gait analysis using two IMUs

on back of the shoes to extract a feature-rich gait features.

• The demonstration of the proposed framework in three case studies, i.e. mixed

walking and running gait, cognitive dual-task gait, and on a prolonged outdoor

gait experiment.

• The proposition and validation of machine learning algorithms for gait phase

classification, prediction of gait activity, and swing phase control of prosthetic

knee.

6.3 Future Work

There are several things that can be considered for further investigations and

improvements regarding the studies in this thesis. The following discussed the po-

tential future works.

First, this study has verified the use of two shoes-attached IMUs for a feature-

rich quantitative gait analysis on a control group of healthy subjects. Since there

are various pathological conditions that can affect the gait pattern, the performance

of the proposed framework in this thesis may be affected. Therefore, this calls for

further benchmark experiments of the framework proposed in this thesis for specific

clinical application. Another improvement that could be done regarding this matter

is to try another algorithms that could potentially improve the performance of the

system.
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Chapter 6. Concluding remarks

Figure 6.1: Future perspectice: a framework of real-world scenario of remote moni-
toring through shoes-attached sensors.

Second, this thesis has explored the possibility of using the proposed framework

for various gait analysis application. Nevertheless, due to the limitation in the num-

ber of the subjects, the findings in this thesis may be limited only to the participated

subjects. Therefore, the future work should consider a larger cohort to draw a more

general conclusion.

Third, the proposition of machine learning algorithm in this thesis need to be

explored further. In this thesis SVM and TCN were proposed for gait phase classifi-

cation and prediction of gait activity, respectively. Although a comparison to a few

other learning algorithms were presented, there still a need to further investigate

the performance of the algorithms to other methods. Another thing to consider is

to include more data to ensure the robustness of the model. On the swing phase

control problem, another RL-based algorithm could also be explored to better cover

all the states and actions.

6.3.1 Future Perspective

Since 2020 we have been asked to minimize physical contact to restrict the spread

of the COVID-19 virus. This issue has highlighted an urgent need for tools to fa-

cilitate remote monitoring for certain patients. The positive trend on digital health

and wearable sensors research may provide a solution to monitor physical activity

while also giving relevant clinical outcomes based on the real-world continuous mea-
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sure from body-worn sensors. By the time this thesis is written, there is an ongoing

consortium held by several institutions in the European Union with a purpose of

pushing widespread adaptation of digital measures of mobility to be used in both

clinical trials and health care in general [162]. Although the proposed sensor location

is different with what are proposed in this thesis, several gait features extracted such

as the measure of symmetry index and variability indices were also adapted on their

project [162]. Therefore, the proposition in this thesis may become an alternative

solution to facilitate remote monitoring as illustrated in Figure 6.1, where patients

wearing wearable IMUs on their foot to collect data of activity of daily life. The

data was sent through Bluetooth connection to their phone and then uploaded to

the dedicated cloud, where both doctors and researchers can download to analyze

the data.
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