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Abstract

We study the structure of the category of modules over the triplet W-algebras W,, ,_
and SW(m), where the former was defined by Feigin, Gainutdinov, Semikhatov and
Tipunin [PZ], and the latter by Adamovi¢ and Milas [2]. Since W, , and SW(m)
satisfy the Cs-cofinite condition, by a series of papers by Huang, Lepowsky and Zhang
(36, B7, BR, BY, 40, 41, 42, 43, 44], every simple module has the projective cover and
the module categories have the structure of a braided tensor category. In the case of
the triplet W-algebra W, , , we determine the structure of the projective covers of all
simple W,, ,_-modules and determine certain non-semisimple fusion rules conjectured by
Rasmussen [60] and Gaberdiel, Runkel and Wood [37]. In the case of the triplet W-algebra
SW(m), we determine the structure of the projective covers of all simple SW(m)-modules
and prove that, as a tensor category, SW(m) is rigid. Furthermore we show that a certain
non-semisimple fusion ring of SW(m) can be derived from the non-semisimple fusion ring
of the triplet W-algebra W, [64].
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Chapter 1

Introduction

We have studied the structure of the category of modules of the family of vertex operator
algebras called triplet IW-algebras. In this thesis, we mainly discuss the triplet W-algebras
W, p_ constructed by Feigin, Gainutdinov, Semikhatov and Tipunin and the super triplet
W-algebras SW(m) constructed by Adamovié¢ and Milas. These triplet W-algebras are
one of the few examples of non-rational vertex operator algebras satisfying the Cs-cofinite
condition. In general, for any rational vertex operator algebra, the abelian category of
modules is semisimple, but for any non-rational vertex operator algebra, the abelian cate-
gory of modules of the vertex operator algebra is not semisimple and contains logarithmic
modules whose Lj nilpotent rank n > 2, where L is the zero mode of the Virasoro alge-
bra. Furthermore, if the Cs-cofinite condition is satisfied, the number of simple modules
is finite, and the category of modules has braided tensor category structure as developed
in the series of papers by Huang, Lepowsky and Zhang [37, B8, B39, 40, 41, @2, 43, 44)].
Thus, the triplet W-algebras are mathematically tractable among the non-rational vertex
operator algebras, but specific aspects such as the structure of logarithmic modules and
tensor products among logarithmic modules are still not fully understood.

In the following, we will give a brief description of the research background and prob-
lems related to triplet W -algebras.

First let us review triplet W-algebras associated to Virasoro minimal models. Let
p € Z>; and let p_ > py > 2 be coprime integers. Let

1_ 2 _ _2
¢ —1-6L=P e =1 G P)

p P+pP-

be the minimal central charges for the Virasoro algebra. A well-known example of a
irrational Cs-cofinite vertex operator algebra with these central charges ¢, and ¢, , are
the triplet W-algebras W, and W,, ,_, respectively. The former was defined by Kausch
[62] (see also [l],[24],[25], [68]), and the latter by Feigin, Gainutdinov, Semikhatov and
Tipunin [22]. Let C, and C,, ,, be the category of modules of W, and W, ,,_, respectively.
The structure of the category C, has been studied in detail in recent studies [3], [66], [568],
[64] and is known to be rigid as tensor category. Furthermore W,-mod is shown to
be ribbon tensor equivalent to the category of modules of the restricted quantum group
U, (sly) [33]. On the other hand, mathematical studies on the category C,, , were limited
to basic results such as the classification of simple modules [@],[5],[65]. From the physics
side, Rasmussen [60] and Gaberdiel, Runkel, Wood [37],[83] used the methods of lattice
models and Nahm-Gaberdiel-Kausch algorithm [35],[61], respectively, to conjecture the
structure of the projective covers of simple modules and certain non-semisimple fusion
rules.

Next let us review N = 1 super triplet W-algebras associated to super Virasoro
minimal models. In the papers [2] and [3], Adamovi¢ and Milas introduced the N = 1
super triplet W-algebras SW(p, q¢), where p and ¢ are positive integers such that ¢ > p and
(¢, 552) = 1. The vertex operator superalgebras SW(p, q) are extensions of the minimal
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super Virasoro models

L¥(c) =", 0) € SW(p, q)

p.q

where L“s(cg 7 1.0) is the Neveu-Schwarz vertex operator superalgebra of central charge

N=1 __

c _20—2@:ﬁﬁ)

pq

p.q )

and are natural super analogs of the triplet W-algebras W, and W,, ,_. Let SW(m) =
SW(1,2m + 1). Adamovi¢ and Milas showed that SW(m) satisfies Cy-cofinite condi-
tion, classified all simple SW(m)-modules and conjectured that the category of SW(m)-
modules are equivalent to the category of modules of the small quantum group U, qsm“” (sly),

q= e7n+1. Furthermore they showed that the characters of the simple SW(m)-modules

can be expressed in the characters of the simple W,-modules. Thus, the super triplet -

algebra SW(m) was expected to have the same interesting properties as W, but study

on the structure of the projective modules and tensor category remained as problems.
The main results of this thesis are as follows:

e We determine the structure of the projective covers of all simple W, ,,_-modules.

e We prove that the projective covers of all simple W, , -modules except for minimal
simple modules L(h, ) are self-dual, and determine certain non-semisimple fusion
rules conjectured and computed in [32],[60],[66].

e We show the rigidity of the quotient category C"Shp_, where C’g . p_ is the quotient
of Cp, ,_ by the Serre subcategory consisting of all minimal simple W, , -modules

L(hy.s).

e We determine the tensor structure of the SW(m)-module category and show that
this tensor category is rigid.

e We determine the structure of a certain non-semisimple fusion ring of SYW(m) which
is a commutative ring defined on the set of all simple and projective SW(m)-
modules, and show that this non-semisimple fusion ring can be derived from the
non-semisimple fusion ring of the triplet W-algebra W, [64] by specializing one
variable.

From the last result, we can expect a deep relationship between the triplet W-algebras
and the N = 1 super triplet W-algebras.

This thesis is organized as follows, where Chapters B through 8 are about the triplet
W-algebra W, ,  and Chapters [0 through 02 are about the super triplet TW-algebra
SW(m).

In Chapter B, we review the definitions of vertex operator (super)algebras and concepts
such as vertex algebra modules and intertwining operators used in later chapters.

In Chapter B, we review the structure of Fock modules and the Felder complex in
accordance with [65]. The basic facts in this chapter are frequently used in later chapters.

In Chapter B, we introduce the vertex operator algebra W, ,,  and review some results
in [4],[6],[65] briefly. In Section B33, we introduce the block decomposition of C,, , .
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Each block of Cp,_ ,,_ is assigned to one of three groups: w thick blocks Cthick,

p+ +p_ — 2 thin blocks Cﬁgff, Cgﬁ’; and two semisimple blocks Cpﬂi - The most complex
groups are the thick blocks and each thick block CﬁZiCk contains five simple modules
XL, X0 o, XL, X7 and L(h,), where L(h,.,) is the minimal simple module module of
the Virasoro algebra. The thick blocks and the thin blocks contain logarithmic W, ,_-
modules on which the Virasoro zero-mode Ly acts non-semisimply.

In Chapter B, by gluing lattice irreducible modules st using the logarithmic deforma-
tion by J. Fjeistad et al.[27], we construct logarithmic W, ,_-modules P, and Q(X.5)s.
whose L( nilpotent rank three and two, respectively.

In Chapter B, we determine the structure of certain logarithmic Virasoro modules,
which have Lo nilpotent rank two, and certain Ext'-groups, by using the results for
logarithmic Virasoro modules in [65] and certain logarithmic modules F(7) which can be
constructed by gluing Fock modules.

In Chapter @, we determine the projective covers of all W, ,_-simple modules. In this
chapter, we study mainly the thick blocks C’ﬁff“. Based on the structure of the logarithmic
Virasoro modules determined in Chapter B, we compute Ext! groups between certain
indecomposable W, ,, -modules and the simple modules, and show that the logarithmic
modules P, P;T,’SV, P, and P, are the projective covers of the simple modules XL,
X:@ﬁv, X, and X, respectively. In Section [, we determine the structure of the
projective covers of the minimal simple modules by using the structure of the center of
the Zhu-algebra AW, ,_) determined in [4],[5],[64].

In Chapter B, we study the structure of the braided tensor category on C,, , . We
introduce indocomposable modules K, s and, using methods in [I5] and [56], prove the
rigidity of Ky 2 and Ky in Theorems B=371 and BZ3T4. Using the rigidity of K; 2 and Ky 1,
we show that the indecomposable modules £, ;, Q(Xﬁfs).,. and P,fs can be obtained by
repeatedly multiplying Ky 2 and Ko 1. As a result we see that all indecomposable modules
of Ky s, Q(er,[s)o,- and Pfs are rigid objects. We also determine the tensor product between
all simple modules in the process of these proofs.

In Chapter 8, we introduce two commutative rings P°(Cp, , ) and K°(C,, , ) in ac-
cordance with [64], and study the structure of these rings. The latter commutative ring
K°C,, p_) is the quotient ring of the Grothendieck ring of C,, , quotiented by all mini-
mal simple modules. The structure of the quotient ring K°(C,, , ) is determined in [51]
(cf. [22],[60],[66]). The former commutative ring P(C,, , ) is defined on the set of all
simple modules and all indecomposable modules Q(Xrﬂ:s).’. and P;fs. Using the structure
of P°(C,, ), we can compute the tensor product between indecomposable modules X,
Q(é\jfs)., and P,fs. For the simple modules in the thick blocks, however, we need to

multiply by a factor Kj ;, as shown in Proposition BZ4. In Section B3, we introduce a

certain quotient category C) , of Cp, ,_ and show that two categories C,, and C,_ are
embedded in C) .

In Chapter [, we review facts of the representation theory of N = 1 Neveu-Schwarz
algebra in accordance with [I1],[26],[47].

In Chapter [, we review some basic results on the super triplet W-algebra SW(m)
by Admovi¢ and Milas in [2] briefly. Let SC,,, be the abelian category of the super triplet
W-algebra SW(m). Similar to W,, ,_, SC,, has the block decomposition. Each block
of 8C,, is assigned to m non-semisimple blocks and one semisimple block. In Section
13, we will construct logarithmic SW(m)-modules SPF in the non-semisimple blocks
by using the logarithmic deformation by J. Fjeistad et al.[X7].
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In Chapter 2, we determine the non-semisimple fusion rules between all simple and
projective modules. By using self-duality of S|, we show that the simple modules and
the indecomposable modules SPF can be obtained by repeatedly multiplying X;. As a
result, we can determine the structure of all projective modules and show that SC,, is
rigid as a tensor category and equivalent to U;m“”(slg) as abelian categories. In Section
23, we introduce a commutative ring P(SC,,) and determine the structure of P(SC,,).
Furthermore we show that P(SC,,) can be obtained from the non-semisimple fusion ring
P(Comy1) of the triplet W-algebra W, 11 by specializing one variable.
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Chapter 2

Basic definitions and notations of ver-
tex operator algebras

In this chapter we briefly review the definitions of vertex operator (super)algebras and
concepts such as vertex algebra modules and intertwining operators used in later chapters.
See [14],[29],[30],[29], [60] for details.

2.1 Vertex operator algebras

Definition 2.1.1. A tuple (V,]0),T,Y) is called a vertex operator algebra where
1.V is a Z>o-graded C-vector space

V=Vin]

2. 10) € V[0] is called the vacuum vector.
3. T € V[2] is called the conformal vector.

4. Y is a C-linear map

Y :V = Endc(V)|[[z,271]].

These data are subject to the following axioms:
1. dimcV[0] =1 and 0 < dimcV[n] < oo for any n € Z>.

2. For each A € V'|h| there exists a field
Y(A;2) = Z Aln)z—" "
nez

and each field satisfies
Y(4;2)[0) — A € V][:]J2. V([0 2) = idy.
3. The field
Y(T;2)=T(2) = Z Lz "2
nez

of modes define the commutation relations of the Virasoro algebra with fixed central
charge ¢ = cy

c .
[Lin, Lp) = (m —n)Lyn + 1—‘;(m5 — M) 0400

The field T'(z) is called the energy-momentum tensor.
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4. The zero mode Ly of T'(z) acts semisimply on V' and
VI ={AeV | LyA=hA}.

5. Forall AecV
Y(L 1A;2) = diY(A; z).

z
6. For any fields are local, i.e., there exists N > 0 (depending on A, B) such that
(z —w)N[Y(A;2),Y(B;w)] = 0.

7. For homogeneous elements A € V]ha] and B € V]hg], the fields Y(A;z) and
Y (B;w) satisfy the operator product expansion

Y (A;2)Y(B;w) =Y (Y(A; 2 — w)B; w)
- Z Y(A[n]B’ w)(z — w)*"*hA.

nel

Definition 2.1.2. Let V' be a vertex operator algebra and let A € V[ha] and B € V]hg|
be homogeneous elements. The holomorphic part of Y (A; 2)Y (B;w) at z = w is given by
the following the normal ordered product

(Y (A;2)Y(B;w) :
= Z{ Z Alplz7P~haBn)zP7a 4 Z B[n]A[p]z_p_hA}w_”_hB.
n€Z p+ha—1<0 p+ha—1>0
We abbreviate the holomorphic part : Y (A; 2)Y (B;w) : of the operator product expansion
of Y(A;2)Y(B;w) as ---

Remark 2.1.3. The operator product expansion and the normal ordered product can be
defined similarly for field not belonging to vertex operator algebras. See [29] and [50] for
more details.

Definition 2.1.4. Given a vertex operator algebra (V,|0),T,Y), a weak V-module is a
pair (M, Yyr) of a vector space M and a linear map Yy fromV to EndM|[z, 27| satisfying
the following conditions

1. Yy (]0) 5 2) = Iy and the Fourier modes of Y (T z) = Y.,.cp LM 27772 satisfy the
commutation relations of the Virasoro algebra with the central charge cy .
2. ForallAeV,
d
z

3. For A, B €V, the following Jacobi identity holds

27—z 29— 2
2615< ! 2)YM(A; zl)YM(B;ZQ)—zalé( 2_ 1>YM(B;Z2)YM(A; 21)
20 <0
21— 2
:z;15< 122 0>YM(Y(A;ZO)B;22),

where 6(z) is the formal delta function 6(z) =, ., 2"
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4. M has the following decomposition M = ZheH(M) MIh):

e For some finite subset Hy(M) of C, H(M) = Ho(M) + Z>o.
For he H(M), M[h| ={¢ € M : 3n > 0 s.t. (Ly — h)" = 0}.
0 < dimcM[h] < 0.

For all A€V, A[h]M[h'] C M[h+ h].

Definition 2.1.5. Given a vertex operator algebra (V,|0),T,Y) and a V-module M, we
call M ordinary or non-logarithmic V-module if Ly acts semisimply on M, and call M
logarithmic V' -module if M has Ly-nilpotent rank n > 2.

Let us define contragredient modules.
Definition 2.1.6. Let V' be a vertex operator algebra and M be a weak V -module. Let
M = @ M}
heH(M)

be the graded dual space of M, where M*[h] = Homc(M[h],C), and let { , ) be the
natural dual pairing between M* and M. Then we can define the V-module structure Yy«
as follows

(Yar: (A; 2)0", 0) o= (7, Yo (e (=270 As 271 )p),
where Yv* € M*, ¢ € M and A€ V.
In the following let us introduce the Zhu-algebra.
Definition 2.1.7. Let (V,[0),T,Y) be a vertex operator algebra.

1. For a homogeneous vectors A, B € V whose Ly weights ha and hp, set

ha
A x B := Res, (Y(A; Z)MB)
2

2. Let O(V)) C V be the vector subspace spanned by
(14 2)ta
Res, <Y(A; z)TB>

for homogeneous vectors A,B € V, and set A(V) = V/O(V). Let [A] € A(V)
denote the classes represented by A € V.

Theorem 2.1.8 ([68]). Let (V,]0),T,Y) be a vertex operator algebra. O(V) C V is a
two-sided ideal with respect to the multiplication x, and thus x defines a multiplication on
A(V). Moreover, the following holds:

1. * is associative on A(V)
2. 110)] € A(V) is the unit element
3. [T] € A(V) belongs to the center.

11



4. For any weak V-module M, let M be the highest weight space of M. Then one can
introduce an A(V')-module structure on M as follows:

[Alls7 = A[0]

In this thesis, we study the category of modules over the triplet W-algebras. The
triplet W-algebras satisfies strong finiteness, which is called the Cs-cofinite condition.
Let us review the definition of the Cy-cofinite condition and the theorem that follows
from it.

Definition 2.1.9. Given a vertex operator algebra V. Let Co(V') be the subspace of V
given by

Co(V) :=span{ A[—ha —n|B| A€ V]ha], BEV, n>1}.

The vertex operator algebra V is said to satisfy the Zhu’s Cy-cofinite condition if the
quotient vector space

V/Ca(V)

1s finite dimensional.

(]
[{a]}
=
ND

The following theorem is due to Huang-Lepowsky-Zhang (36, B4, B, [
13, 0]

Theorem 2.1.10. Given a vertex operator algebra V' satisfying the Cy-cofinite condition.
Then the following holds:

1. The number of simple V -modules is finite.

2. Any V -module has finite length.

3. All simple modules have projective covers.

4. The category of V-modules has the structure of a braided tensor category.
The following notation is used frequently in this thesis.

Definition 2.1.11. Let V' be a vertex operator algebra and let M be a finite length V -
module. Let Soc(M) be the socle of M, that is Soc(M) is the mazimal semisimple sub-
module of M. Since M is finite length, we have the sequence of the submodule

0 < Socy (M) < Socy(M) < --- < Soc, (M) =M

such that Socy (M) = Soc(M) and Soc;1(M)/Soc;(M) = Soc(M/Soc;(M)). We call such
a sequence of the submodules of M the socle series of M.

In this thesis, we do not go into the detailed theory of logarithmic intertwining oper-
ators, however review the definition because it is important concept. See [38],[39] for a
more detailed definition and properties of logarithmic intertwining operators.

12



Definition 2.1.12. Let V be a vertex operator algebra and My, My and Ms a triple of
V-module. Denote by Ms{z}[logz| the space of formal power series in z and logz with
coefficient in Ms, where the exponents of z can be arbitrary complexr numbers and with
only finitely many logz terms. An intertwining operator (-, z) of type (Mjl\/[j’\b) 1S a linear
map

Y :M; — End(Ms, M3){z}[logz],
1 = Y(¢1, 2) ZZ (YV1)rs2” “!(logz)*,

teC >0
satisfying the following conditions for ¥; € M;, i =1,2 and A € V:
1. Y(L_yipy, z) = V(41 2).
2. (1)es¢2 = 0 for Re(t) sufficiently large.
3. The following Jacobi identity holds

20_15<Zl ;) 22>YM3(A; 2)Y (¥, z2) — 15( _ZOZ >y(¢1= 22) Y, (4; 21)

— 56 (220 V(Van (A5 20}, 22)

Z9

We call intertwining operators without a logz term ordinary or non-logarithmic inter-
twining operators.

2.2 N =1 vertex operator superalgebras

The notions introduced in this section will be used from Chapter IT.

Definition 2.2.1. A five pairs (V,|0),T,G,Y) is called a N = 1 vertex operator super-
algebra where

1. Visa %Zzo-gmded C-vector space
@ Vn].
HG%ZZD

For 0,1 € Z/27Z, let

"= P vin, Vi= & Vinl

n€lxo n€Zso+3%

VO is called the even part of V and V' is called the odd part of V.
2. 10) € V[0] is called the vacuum vector.
3. T € V[2] is called the conformal vector.

4. G € V[3] is called the super partner of 7.

13



5.

Y is a C-linear map

Y :V — Ende(V)][[z, 271]].

These data are subject to the following axioms:

1.

2.

dimcV[0] = 1 and 0 < dimcV[n] < 0o for any n € 5Zs.

For each A € V[R] there exists a field

Y(Aiz)= Y Az
AR
Y (|0);2) = idy and
Y(4;2)]0) — A € V[]]z
forall A€ V.
The fields

Y(T32) =T() =Y L= Y(G2)=G(x) = Y Gt

nez T€Z+%

of modes define the commutation relations of the Neveu-Schwarz algebra with fized
central charge ¢ = cy

3

m- —m
[Lm, Ln] = (m - n)Lm+n + 5m+n,0 192 Cv,
1
[Lm7 Gr] = (_m - T)Gm—l-ra
2
1 1
{GT, Gs} = 2L7«+5 + 5(7"2 — 4_1)6T+57OCV7

where {, } is the anti-commutator.
The zero mode Ly of T(z) acts semisimply on V and

VIh|={ AeV | LyA=hA }.
ForallAcV

Y(L 1A;2) = diY(A; z).

z

For Ae V' and B € V7, the following super Jacobi identity holds

Z2 — 21

20—15(‘21 - Z2>Y(A; )Y (B 2) — (—1)”‘%—15(

20

)Y(B; %)Y (A; 21)

= 25 (22 Y (V (45 20)B: ).

22
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Definition 2.2.2. Given a vertez operator superalgebra (V. |0) , T, G,Y), a weak V -module
is a pair (M,Yyr) of a vector space M and a linear map Yy from V to EndM|[z, 27|
satisfying the following conditions

1. Y (]0);2) = Idps and the Fourier modes of

Yar(Ty2) =Y LY, Yar(Giz)= > GMz2

nez T€Z+%

satisfy the commutation relations of the Neveu-Schwarz algebra with the central
charge cy .

2. Forall A€V,

d
Yu(L 14;z) = &YM(A; ).

3. For Ae Vi and B € VI, the following super Jacobi identity holds

22— 2

20 0 (P ) Yar (A 2)Yan(B: 22) — (—1)72 5

) )YM(B; 22) Y (A; 21)

- z2_15<21 2_2 ZO)YM(Y(A; 20)B; 22),

where §(z) is the formal delta function §(z) =5, , 2"

4. M is a C-graded superspace

M= M= P M
)

1€Z/27 heH (M
such that

e For some finite subset Ho(M) of C, H(M) = Ho(M) + $Z>.
Forhe H(M), M[h] = {¢ € M : 3n > 0 s.t. (Lo — h)™) = 0}.
0 < dimcM[h] < 0.

For all A eV, A[h)M[h'] C M[h+ K].

o Fori=0,1, M' =@,y M', where M'[h] = M 1 M{h].

o Forany A€V and € M', 0,5 € Z)27, Yar(A; 2)¢p € M|z, 271]].
Definition 2.2.3. Given a N = 1 vertex operator superalgebra (V,]0),T,G,Y) and a
V-module M, we call M ordinary or non-logarithmic V-module if Lo acts semisimply on

M, and call M logarithmic V -module if M has Lg-nilpotent rank n > 2.

Let us define contragredient modules for vertex operator superalgebras.
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Definition 2.2.4. Let V be a vertex operator superalgebra and M be a weak V-module.
Let

M = @ M}
heH (M)
be the graded dual space of M, where M*[h] = Hom¢(M][h], C) with parity decomposition
(M) = @ (M), (M*[h))" = Home(M'[h], C).
heH (M)

Let (, ) be the natural dual pairing between M* and M. Then we can define the V-module
structure Yy« as follows

(Yar (A; 2)00%, ) i= (= 1) (9", Yar (e (=270 A; 27 H),
where p* € (M*)', € M and A € V7, fori,j € 7.)27.

Definition 2.2.5. Let V' be a N = 1 vertex operator superalgebra and My, My and Ms;
a triple of ordinary V-module. Denote by Ms{z}[logz] the space of formal power series
in z and logz with coefficient in M3, where the exponents of z can be arbitrary complex
numbers and with only finitely many logz terms. An intertwining operator Y(-, z) of type

M3 . .
(M1 MQ) 1S a linear map

Y :M; — End(Ms, M3){z}[logz],
Y1 = V(1 2) ZZ U1)s2 H(logz)?,

teC s>0

satisfying the following conditions for ¢, € Mf, ty € My, i € ZJ2Z and A € Vi,
JEL)2L:

1. Y(Loahr, 2) = LY (4, 2).
2. (1)est2 = 0 for Re(t) sufficiently large.

3. The following super Jacobi identity holds

zalé(zl

Z2>YM3(A;Z1)3}(¢1,22) (—1)7z 715( 4
_ 2515(21 ;2 Zo)y(yMl(A; 20)1, 22).

)y(%, 22) Y, (A; 21)

4. Forapy € Mi, oy € MJ, 7, € Z)2Z,
Y (W, 2)s € My {2} [logz].

Remark 2.2.6. The Zhu algebra and the Cs-cofinite condition as in Definitions 211,
2T can be defined in the case of vertex operator superalgebras, in simlar ways (see
[2],[49]). Furthermore Theorem ZZIIQ holds in the case of Cy-cofinite vertex operator
superalgebras. We omit details in this thesis.
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Chapter 3

Bosonic Fock modules

Fix two coprime integers p,, p_ such that p_ > p, > 2. In this chapter, we briefly review
theories of Fock modules whose central charges are

(p+ —p-)°

Cpyp. i =1—06 o

in accordance with [65]. As for the representation theory of the Virasoro algebra, see [21]
and [48]. For the terminology of vertex operator algebras such as operator expansions
and normal order products, refer to [29].

3.1 Free field theory
The Heisenberg Lie algebra

M =P Ca, @ CKy,

neZ

is the Lie algebra whose commutation is given by
[amu an] = méern,OKH’ [KH7 H] = 0.
Let

"t =P Casn, H =Cay®CEy, H =H"0H"

For any a € C, let C|a) be the one dimensional H=-module defined by
anla) = ngala) (n > 0), Knla) = |a).
For any a € C, the bosonic Fock module is defined by
F, = Ind}. Cla).

a(z) = Z anz "

nel

Let

be the bosonic current. Then we have the following operator expansion

1
a2)au) = G+

where - -- denotes the regular part in z = w. We define the energy-momentum tensor

T(z):= % ca(z)a(z) —1—%8@(,2), ap = 1/21% — 4/ 2;&
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where : : is the normal ordered product. The energy-momentum tensor satisfies the
following operator expansion

TETW) = 5 (Z?Z;’F3T23+

The Fourier modes of T'(z) = >~ _, L,z "2 generate the Virasoro algebra whose central
charge is ¢, 5_.

By the energy-momentum tensor 7'(z), each Fock module F, has the structure of a
Virasoro module whose central charge is ¢,, , . Note that

wazéma—%mw

Let us denote

he = %oz(oz — ). (3.1.1)

We define the following conformal vector in Fj

1
T= §(a2_1 + apa—_sz) |0) .

Definition 3.1.1. The Fock module Iy carries the structure of a Z>o-graded vertex op-
erator algebra, with

Y (]0);2) = id, Y(a_1|0);2) = a(z), Y(T;2) =T(2).

We denote this vertex operator algebra by F, .

3.2 The structure of Fock modules

_|2p- __ %+
Gy = N A_ = — [ —.
P+ o

For r,s,n € Z we introduce the following symbols

1—r 1—s5 V2pip_
n

We set

Qrsin = —5— 0+ + 5o + 5 , Qp s = Qg0 (3.2.1)
For r,s,n € Z, let
Fr,s;n = Far,s;m Frs= Far,s
For r,s,n € Z, we set
1 1
rsn = 505 (@n — ) s = 5s(tns — a0).

18



Note that
Porsin = hy—pp s = P sinp_
and
O

for r,s,n € Z. For each r,s,n € Z, let L(h,s.,) be the irreducible Virasoro module whose
highest weight is A, s, and the central charge C' = ¢,, ,_-id. be the maximal semisimple
Virasoro submodules of F} ;... The following proposition is due to Feigin and Fuchs [21].

Proposition 3.2.1 ([Z1]). As the Virasoro module, there are four cases of socle series
for the Fock modules F, s, € Fa,-Mod:

1. Foreach1 <r<p,—1, 1<s<p_—1, n €Z, we have
0 < Socy(Frsn) < Soca(Frsn) < Socs(Frsn) = Frsm
with
Socy(Fysn) = Soc(Frsin) @L rp —si|n|+2k+1)

k>0

Soco(Fy ) /S0¢1 (Fy sn) = Soc(Fy 50 /S0¢1 (Fr sn))

= @ L r,s;\n\+2k @ p+ T,p——S; \n|+2k)

k>a

E>1—
SOCB(Fr,s;n)/SOC2(Fr,s;n) - SOC( T,8; n/SOCQ ) @ L p+ T,8; |n\+2k+1)

k>0
where a =0 1fn>0anda=11if n <O0.
2. For each1 <s<p_—1, née€Z, we have

0 < SOCl( Pi, sn) < SOCQ(Fp+7s;n) = Fer’S;n

with
SOCI(Fp+,5;n) SOC D ,S; n @ L D4, P——S; |n\+2k+1)
k>0
SOCQ(F D+ ,S; n)/Socl D+,S; n @ L p+ S; \n|+2k
k>a

wherea =0 1ifn>1anda=11ifn < 1.

3. Foreach1 <r <p, —1, n €, we have

0< SOCI( r,p— n) < SOCQ(FT,P%W) = FT,P*%”

with
SOCl(Fr,p_;n)_SOC Tp— TL @L ™pP— |n|+2k
k>0
Soca(Erp ) /Soci(Frp ) @L po—rpsln|+2k—1)
k>a

wherea =1 1fn>0and a=0 if n <O0.
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4. For each n € Z, the Fock module F},, ), ., is semi-simple as a Virasoro module:

+7p7

Fppom = S0C(Fp, p_m) = @L(hp+7p—;\n\+2k)'

k>0

Let the Fock modules, whose socle length are three, be denoted by braided type, and
let the Fock modules, whose length are two, be denoted by chain type.

3.3 Screening currents and Felder complex

We introduce a free scalar field ¢(z), which is a formal primitive of a(z)

¢(z) = a+ aglogz — Z C;—nz_"
n#0

where a is defined by
[, @] = G oid. (3.3.1)

The scalar field ¢(z) satisfies the operator product expansion
¢(2)p(w) =log(z —w) +--- .
For any a € C we introduce the field V,,(z)

Va(Z) —- ea¢(z) = eadzaaova<z)7 L0 eaaologz :

Valz) = ¥ Znz T g s B2
The fields V,(z) satisfy the following operator product expansion
Va(2)Va(w) = (2 —w)* : Vo (2)Va(w) : .
We introduce the following two screening currents @ (z), Q—(2)

Qx(2) = Vo (2)

whose conformal weights are h,, =1 :

T()Qa(u) = 220 4 )
= aw(cji_(?:j))) 4.

Therefore the zero modes of the fields Q+(z)

Res,—0Q(2)dz = Q4 : Fip — Fqy, k€EZ
RGSZ:()Q_<Z)dZ = Q_ : Fk,l — Fk,—h kel

commute with every Virasoro mode.
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For r,s > 1, we introduce more complicated screening currents

Ul(2) € Home(Fpp, Fyi)lz,27Y], 7> 1,k € Z,
Q(2) € Home(Fs, Fr o)z 27 ']), s> Lk €Z,
constructed by Tsuchiya-Kanie ([63],[48]) as follows
QV(z) = / Q+(2)Q4(221) Q4 (222) - - Qy (zap—1) 2" Hday - - Ay,
) (3.3.2)
Q) = / Q-(2)Q-(z01)Q—(zr2) -+ Q(2r51)2" -+ day,
Ds(k-)
where T, (k) is a certain regularized cycle constructed from the simplex

Apr={(21,...,2p ) ER" 1>z > >2, 1 >0}

These fields satisfy the following operator product expansion

[7] [7]
T(2)Qw) = = (Z)L yRelw)

[s] [s]
T(2)Q" (w) 8_(5))2 + 8?_5”) +

In particular the following proposition holds

Proposition 3.3.1. The zero modes
Reszon[ﬂ(z)dz = [ﬁ € Home(Fop, Flyvi), 7> 1k €Z,
Reszon[_S](z)dz = Q[_S] € Home(Fy 5, Fy—s), s> 1,k€Z

commute with every Virasoro mode of F,,-Mod. These zero modes are called screening
operators.

For1<r<p,—-1,1<s<p_—1, weset

r i=py—r, s\ i=p_—s.

For 1 <r<p;,1<s<p_andn € Z, we define the following Virasoro modules :
l.For1<r<py, 1<s<p_,neZ
Ky sint = kerQ[J:] C B s = Fovosin
XV st 134 = im@[ﬂ DB = By s
2. For1<r<p,, 1<s<p_,nez
K gn— = kerQ[f] s = Frgvina

: [s] .
Xr,sv;n—l;— =imQ : FT,SW - Frvs\/%”_l'
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The following propositions are due to Felder [26].
Proposition 3.3.2 ([26]). The socle series of K, gn.x and X, sn.+ are given by :
1. For1<r<p,—1, 1<s<p_—1, we have

0 < Sl( rsn:i:) — SOC( rsn:l:) < Krsn:l:
0< Sl( T,S;n;i) - SOC( r,s;n;i) < Xr,s;n;i

such that
n>0
ranr @L r,sVin+2k— 1) rsn+ @L r,sV;—n+2k— 1)
k>1 k>1
Kr,s;n;—l-/sl - @ L(hr,s;n+2(k—1))a K’r,s;n;-{—/sl - @ L(hr,s;—n—l-Qk)u
k>1 k>1
Sl rsn-‘,—l-l— @L r,sV; n+2k Sl r,s;n+1;+ @L r,sV;—n+2(k— 1))
k>1 k>1

Xr,s;nJrl;Jr/Sl = @ L<hr,s;n+2k71)> Xr,s;n+1;+/sl = @ L(hr,s;fnJerfl)-

E>1 E>1
n>1 n<0
rsn— @L r,sVin+2k— 1) rsn— @L r,sV;—n+2k— 1)

k>1 k>1

Tsn /Sl @L r,s;n+2(k— 1) rsn—/Sl @L T,8; n+2k
k>1 k>1

Sl r5n+1— @L r,sVin+2(k— 1))a Sl rsn—i—l— @L r,sV; —n+2k
k>1 k>1

Xr,s;n+1;7/Sl = @ L(hrv,sv;n+2k71)7 Xr,s;nJrl;f/Sl = @ L(hrv,sv;fnJerfl)-

k>1 k>1
2. For1<r<p,—1, s=p_, n€Z, we have

Xip = S0c(F, ).
3. Forr=p,, 1<s<p_—1, n€Z, we have

Xp, sin = S0c(Fp sn)-
Proposition 3.3.3 ([26]).

1. For1<r<py, 1 <s<p_ andn € Z the screening operators Q[ﬂ and Q[J:v} define
the Felder complex

V1 V1
QY Ql QY Ql
—_>Frvsn 1___>Fv’r‘sn—_>P’r\/sn—|—1___>

This complex is exact everywhere except in F, s = I, .o where the cohomology is
given by

kerQ[J:]/imQ[lv} ~ L(hys0).
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2. For1 <r<py, 1 <s<p_ andn € Z the screening operators Q[_S] and Q[fv} define
the Felder complex

QY Qi QY Qi
e Fr,sv;n—‘rl — F’/‘,s;n — Fr,sv;n—l —

This complex is exact everywhere except in F, s = F, .o where the cohomology is
given by

kerQ /imQE"! ~ L(h,.,0).

3. For1 <r < p, andn € Z the screening operators QK] and Q[lv} define the Felder
complex

ol Q! ol Q!
e Fvp i ——= Frp o = Bvp i ——

and this complex is exact.

4. For 1 < s <p_ andn € Z the screening operators Q[f} and Q[fv] define the Felder
complex

Q! Qi) Q! Q!
e Ep i — By s = By s —— o

and this complex is exact.

23






Chapter 4
The triplet W-algebra W), ,_

In this chapter, we introduce a vertex operator algebra W, , which is called the triplet
W-algebra of type (p4,p-) and review some results in [4],[5],[65] briefly. In Section =3,
we introduce the abelian category of W, ,_-modules and the block decomposition of this
abelian category.

4.1 The lattice vertex operator algebra and the ver-
tex operator algebra W,, ,

Definition 4.1.1.
The lattice vertex operator algebra Vy,. ,, 1 is the tuple

1
(Lq;7’0>7§(agi _'@0a42>‘0>7}/%
where underlying vector space of Vi, ,_1 1s given by

fol = @FLI;Qn = @Fn\/W7

nez nez
and Y (|on100) 5 2) = Vg1, (2) forn € Z.

It is a known fact that simple Vj,, ;, ]-modules are given by the following 2p, p_ direct
sum of Fock modules

+ -
V= @ Fuuon Vo= @ o

nez neL

where 1 <r <p,, 1<s<p_.
Note that the two screening operators (), and ()_ act on Vlf 1- We define the following
vector subspace of Vi

’Cl,l = kGI‘Q+ N kerQ_ C Vi_l
Definition 4.1.2. The triplet W-algebra
Wpﬁpf = (’Cl,lﬁ ‘O> A Y)

is a sub vertex operator algebra of Vi, ,_1, where the vacuum vector, conformal vector and
vertex operator map are those of Vipsp_]-

Definition 4.1.3. Let W*, W?° be the following singular vectors

Wt =Q" o, 1), W =QP Vay, 118, WO =@ Va,, 113).
Proposition 4.1.4. W, ,, s strongly generated by the fields T(z),Y (W=; 2),Y (WY, 2).
Theorem 4.1.5 ([4, B, 65)). W,, ,,_ is Ca-cofinite.
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4.2 Simple W, , -modules

Foreach 1 <r <p,, 1 <s<p_, let Xﬂ; be the following vector subspace of st:

l. For1<r<p, -1, 1<s<p_—1,
L= Ve )NV, A=l v )Nl v
2. For1<r<p,—1, s=p_,

xho=Qv v, ), X, =Qv v, ).

3. Forr=p;, 1<s<p_—1,
+  _ Y- - AN+
Xp+78 = Q- (Vp+7sv)’ XPJHS = Q- (VPJ“SV)'

4. r=Dp+, S=pP-,

x:, =V X, =V

P+:P— P+,p-? P+,P— P+,0-"

Definition 4.2.1.

1. We define the interior Kac table T as the following quotient set
T={rs)|1<r<p1<s<p}/~
where (r,s) ~ (r',8") if and only if ' = p, —r,s’ = p_ —s. Note that #T =

P+—D(--1)
5 .

2. Foreach1 <r<p,, 1<s<p_,n>0, we define the following symbols

hrv,s;anfl r 7é P+,s 7& p- hrv,s;72n72 r 7é P+,s 7é p-

At — hp+,s;—2n r=Dp4,S 7A p- A~ — hp+,s;—2n—1 r=p4,S 7£ p-
rsm h _ ’ O h = '

r,p—;2n r 7é P+,8=D- T,p—;2n+1 r 7é P+, =DP-

hp+,p7;_2n r=Dp+,s =Dp- hp+,p7;—2n—1 r=p+,8s=p—.

Proposition 4.2.2 ([@, &, 65]). For each Xﬁ;(l <r<py, 1 <s<p), we have the
following decompositions as the Virasoro modules

x5 = @Pn+ VLA, X =P +2)LA,,).

n>0 n>0

Theorem 4.2.3 ([4, 5, 65]). The w + 2p,p_ wvector spaces
L(hys), (r,s) €T, X5, 1<r<p, 1<s<p_

r,8)

become simple W, ,_-modules and give all simple W, ,_-modules.
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Proposition 4.2.4 ([3, B, 63]). Each 2p,p_ simple Vi, , j-module becomes W, ,_-
module and has the following socle series:

1. Foreach1<r<p,, 1<s<p_, V;fs has the following socle series
0 < Soci (V) < Soca(V),) < Socs(V,,) = Vi,
with
Soci (V) = Soc(V},) = X,
SOC(V:s/Socl (Vis)) = Xr;,s ® XTTS\/ ® L(h’T,S)7
Soc(V,/Soca (V) = X1 .
2. Foreach1 <r <py, 1 <s<p_, V. has the following socle series
0 < Socy(V,,) < Soca(V,,) < Socs(V,,) =V,
with
Soc1(V,,) = Soc(V, ) = X,
SOC(Vv:s/Socl (V;s)) = Xrt,s 2 Xr—j_sv’
Soc(V,,/Soca(V,,)) = Xv v

3. For each 1 <r <py, V;fpf and V., ,  have the following socle series

+ + o~ VY- - - ~ Y+
Vnpf /Xr,pf - XTV Vrv,pf /er,pf - Xr,p#

7p77

4. Foreach 1 <s<p_, th,s and V, . have the following socle series

+ + o~ -
V59X =&

D+ ,S P,V

- - o oyt
Vo, /4, X

p+,8Y T Tpy,s
5. Forr=p,, s=p_,

Vi =Xt VR

P+5p— P+,p-" P+p— P+,p-"

Let A(W,, ,_) be the Zhu-algebra [68] of W, ,, .
Proposition 4.2.5 ([@, B, 63]). In A(W,, , ), the following relations hold
(WO (W] = W] (W]

(WO W] — W] (W] = 2

W+ V] — (W] o (W] = 2
(W] W] = g([T)),

]=0

]=0

where f([T]) and g([T]) are non-trivial polynomials of [T).
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Proposition 4.2.6 ([4, B, 65]).
1. X' acts trivially on L(hys), (1 <r<py—1, 1<s<p_—1).

2. For each 1 < r < py, 1 < s < p_, the highest weight space of ers 18 a one
dimensional AOW,, ,_)-module.

3. For each 1 < r < py, 1 < s < p_, the highest weight space of X is a two
dimensional irreducible A(W,, ,_)-module.

Proposition 4.2.7 ([4, 8, 65]). Forany 1 <r<p,,1<s<p_,
f(Ar_,s;O) 7é 0.

In particular, the highest weight space of X, has the structure of a two dimensional
wrreducible slo-module with respect to the following elements

S S SR
E= oW F W = ra

For 1 <r<p;,1<s<p_, we define

G(A;’:sm) = {@n—lzizo(% * 1)L(A:8;i) n=l

0 n=0,
- D 152020 +2)L(A ;) n>1
G(A n) = {0 == T

As an extension of Proposition =24, the following propositions holds (see the proof
of Proposition 5.6 in [63]).

Proposition 4.2.8 ([4, B, 65]).

1. With respect to the actions of the zero-modes of the fields Y(W™;2), Y(W™;2) and
Y(W?; 2), the Virasoro highest weight space of the vector subspace (2n+1)L(A} ) C
X becomes a (2n 4 1)-dimensional irreducible sly-module modulo G(A[ ).

2. With respect to the actions of the zero-modes of the fields Y (W™;z), Y(W™;2) and

Y(W? 2), the Virasoro highest weight space of the vector subspace (2n+2)L(A; ) C
X, becomes a (2n + 2)-dimensional irreducible sly-module modulo G(A; .,,).

For W = W= W?° let W|n] be the n-th mode of the field Y (W; z2) defined by
W(n| :]{ Y (W 2) e -1 .
z2=0

Proposition 4.2.9 ([4, B, 65]).
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be the basis of the Virasoro highest weight space of the
) C XF, such that

1. Forn >0, let {wz(n A
vector subspace (2n + 1) L(A;

r,8n

WE[0jw!™ € C*w), + G(A],,), for —n<i<mn,

where w(n) 4= w,(ﬁzl = 0 and W*[0] is the zero mode of the field Y (W*;2). Then

we have
Wi[A:_sn_A:_sn 1] z(n € C*w 'Lil +G(A:_sn 1)
W:t [Aj_s mn A:rs n+1] z(n S (CX z:Tli—li_l) + G(A:—S'n+1)’
W [Ajsn Ajsn 1] z( GCX zn Y +G<Arsn 1)
W [A;j_sn A:_s n—i—l] ’L( € CX z(n+1 + G<Arsn+1)

where wg_l) = 0.
2. Forn >0, let {v }7?“ be the basis of the Virasoro highest weight space of the
2
vector subspace (2n +2)L(A,,.,) C &, such that

Wi[](% c C*v thl+G(Am) for —n—1<i<n+1Ai#0,

where v( n) Ty = v(n+)2 = 0. Then we have

2

WHA = A o) € T Z;f +G(A 1),
WEAL = Aol € CUVEY + GA ),
WA = Aol € Co ;" Y G(AL ).
WOAL s — D]V (5 € C*v (%n+1)+G(A;sn+1)

where vl(_l) = 0.
The following results for the Zhu-algebra A(W,, , ) will be used to determine the

structure of the projective covers of the minimal simple modules in Section 4.

Theorem 4.2.10 (4, 5, 63]). The center of the Zhu-algebra AOWV,, ,_) is generated by
[T) and isomorphic to

C[x]/fp%pf (z),
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where

(4,9)eT
p+—1lp——1 p+—1lp_—1

< [T ] -2 1T 1] @250
i=1 j=1 i=1 j=1
p+—1 p—1

X H (:E Aj_p_;U)Q H (1" Ai_,p_;O)
=1 =1
p——1 p——1

x L@ =25,0° 11 @ -4, 50
j=1 j=1

X (x - A;+7p7;0)(33 B AI;HP*;O)'

Corollary 4.2.11. The Zhu algebra AOW,, p_) has three dimensional indecomposable
modules on which [T] acts as

hey 10
0 h 1],
0 0 hy,

where (r,s) € T.

4.3 The block decomposition of C,, ,_

Definition 4.3.1. Let C,, ,_ be the abelian category of weak W, ,_-modules.

Since W, ,_ is Cy-cofinite, any M in Cp_ 5
let M* be the contragredient of M. Note that C,

has finite length. For any M in C,, ,_,

. p_ 1s closed under contragredient.

Definition 4.3.2. In the following, we define w thick blocks, py + p— — 2 thin
blocks and two semi-simple blocks.

1. For each (r,s) € T, we denote by C’ﬁﬁ,’bk = C’;Tf’j,pf_s the full abelian subcategory of
Cp, p_ such that

M e Cthick
< all composition factors of M are given by )(:8, Xrt7s\/7
X o X and L(h, ).

rV,s) “tr

2. For each 1 < s < p_ — 1, we denote by C;Tf; the full abelian subcategory of Cp,. p_
such that

M € C«thm

P+,8

& all composition factors of M are given by Xpis and XL v
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3. For each 1 <r < p, — 1, we denote by C’ﬁfgf the full abelian subcategory of Cp, ,_
such that

M e Cilm

& all composition factors of M are given by &, and X .

4. We denote by Czi,pf the full abelian subcategory of C,, ,_ such that
+
MedC,, ,

& all composition factors of M are given by Xpi,p_.

By using Theorem ET8 in Section B, we can prove the block decomposition of C,, ,_
in the same way as Theorem 4.4 in [1]. We omit the proof and state only the result.

Theorem 4.3.3. The abelian category Cp, ,_ has the following block decomposition
p+—1 p——1

. thick thin thin + —
Cp+’p_ - @ CTVS @ @ Crvp— @ @ Cp+75 @ Cp+7p— @ Cp+7p— '
(r,s)eT r=1 s=1
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Chapter 5

Logarithmic W,, ,_ modules

In this chapter, by using the logarithmic deformation by J. Fjeistad et al.[X7], we con-
struct certain logarithmic W, ,_-modules which correspond to the projective covers of
all simple W, ,_-modules Xf, in the thick blocks and the thin blocks, and we introduce
indecomposable modules Q(Xf,).,. which become important after this chapter. These
logarithmic modules are closely related to certain indecomposable modules of the quan-
tum group g,, ,_ at roots of unity [9],[23].

5.1 Logarithmic deformation

Proposition 5.1.1. For r,s > 1, we have the following relation

o [QF, Q7)) = (@Y, QT ()]
Proof. Recall the definition of the screening currents Qg:] of (B3372).

Res.—_, Q7 (2)Q" (w)

= Res.—y / dry---dw,y / dyr -+ dys—
T (k4) (ko)
1

X (2’——11})2 . et (2)ta—op(w) Qzxy) - Qy(za,—1)Q_(wyr) - Q— (wy571>zr—1ws—1

= / dzy - --dx,— / dy; -+ - dys1
(k) Ds(k-)

e <2Va++a— ('LU)>Q(IU$1) . QJr(w:CT,l)Qf (wyl) . Qi(wy871>wr+3,2

oy +a_ \Ow
+ / dl'l e dxr—l / dyl e dys—lzr_lvoc++a, (Z)
T (1) Ts(s-)
0 _
@(QJF(ZIO Qi (2mrm1)) Q- (wyn) -+ - Q (wys—1)w® !
+(r—1) / dzq - -dx,_1 / dyp - - - dys_1
r(k4) s(k-)
Vi v (0)Qs (w1) -+~ Q. (wr 1)@ (w3n) -+ Q_ (a1 )", (5.1.1)
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Since

0

E(Q+(2x1) o Qy(z1)

r—1
=Y Q) Qi)+ Q)
=1

r—1 o
= Qi (zm) - (%%%Q#Z%)) Qi (zaro1)
i=1 !
1 ) r—1
= Z Qy(221) -+ (8_x$zQ+(sz)> Qi (zwp—) — Qi (221) -+ - Q4 (2mr-1),
i=1 ¢

the second term of (BIl) becomes

—(r—1>/ dxl---dazrq/ dyy - dy_,
T (5s) Ta(s_)

Voo v (0)Q (w1) -+ Qs (way 1) Q- (wyn) -+ @ (wy, )™
+ /FS(K) dy; -+ - dys1 /FT(M) Vas+a_ (w)

r—1
% de (D wiQ () -+ Qi (wy )dwy -+ A+ et ) Q- (wyn) -+ Q- (wy, )
=1

(5.1.2)

The first term of (A1) cancels with the third term of (A1) and the second term of this
equation becomes zero because T',(k ) is the twisted cycle. Thus | [ﬁ, Q" (w)] becomes

/ dy---dx,— / dy; -+ - dys1
Tr(k4) Ds(k-)

% (iVaJr-s-a (w))Q(wxl) - Qu(wre—)Q_(wyy) - - - Q_(wys_ﬁwm-s_z‘

oy +a_ \Ow

In the same way, we have

[Q", QY (w)]

= / day---da,y / dy; -+ -dys1
Dr(k) Ds(rk-)

oz—,< 9 Vaita_ (w))Q(wxl) Qi (wz,_)Q_(wyy) - - - Qi(wy571>wr+s—2'

Qo + o_ %
Therefore we obtain
o [QY, QY (2)] = e, [QY, QY (2)].
O]

Proposition 5.1.2. For r,s > 1 the screening operators Q[ﬂ and Q[f} are Wy, p_-
homomorphism, that is, for A € W, ,  we have
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Proof. For each generator of W, , , we have the following two expressions

Wt = Q[f_il] |a1,p——1;3> = Q[j:)mil] ‘O‘p+—1,1§—3> )
W~ = Q%Jﬁl} lap, —1,1,-3) = Q[E)p_il] iy —13)

W = QEPJFH ‘Oép+—1,l;—3> = Q[—Zp_il] |al,p——l;3> )
up to non-zero constants. Thus, by the proof of Proposition b1, we obtain
QY (4;:2)] = [@Y, Y (4;2)] = 0.

]

We introduce the following logarithmic deformation introduced by J. Fjeistad et al.

Definition 5.1.3 ([27]). 1. Let E(z) and A(z) be any mutually local fields. We define
the logarithmic deformation of A(z) by E(z) as follows

" (En]A)(2)

Zn

Ap(A(2)) = logz(E[0]A)(2) + > (—1T)L

n>1

Y

where

(Eln] A)(w) = 7{: (> — w)"E(2) A(w)dz.

2. Let E(z), A(z) and B(z) be any mutually local fields. We define

Ap((An)B)(w))
(z —w)rtt

Ap(A(z)Bw) = Y

ne”L

Theorem 5.1.4 ([27]). Let E(z), A(z) and B(z) be any mutually local fields. Then the
operator Ag satisfies the following derivation property

Ap(A(z)B(w)) = Ap(A(2))B(w) + pA(2)Ap(B(w)),
where 1 1s the mutual locality index of E with A.

In our case, we define the logarithmic deformations by the screening currents Q[j:](z)
and set

A[J:] = AQT’ A[f] = AQ[,S]'

Note that, for the energy-momentum tensor, we have

[r] [s]
AT () = T(2) + @) AM(T(2)) = T(2) + 2= &) (5.1.3)

z z

By Proposition BT, each AE;](Y(A; z)), A€W, ,_ donot contain log terms in z.
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5.2 Logarithmic modules in the thick block

Foreach 1 <r<p,—1, 1<s<p_—1 weset

Prs=V5, ©Vi 0V w0V,

r,s) T S\/, V_ < Cﬁﬁick' Let
(Prs, Yp,,) be the ordinary W, ,_-module. Fix any element 7 = (a,b, e) in

{(CL, b7 6)} = {(Tv S, +)> (TV’ Sv7 +)7 (TV’ S, _)7 (T’ SV7 _)}

For A € W,, ,_, we define the following operators on P, :

Al(Yp, (4;2))
(o —ay) (A + A" (v, (4;2))
= +(—04+A[_b] o A[f:] + oc_A[j_l] o A[_b})(YpT’S(A; z)) on Vs,
0 on Prs\ Vabs

where ¥ = p, —r and sV = p_ —s. Note that VI VI o,

AV (Yp, (Ai2) on Vs,

All(Yp, (A;2)) = {0 on P\ Vs
7,8 a\/,b7

o , .
Ag'a] (Y'P,. s (A, Z)) = A+ (Ypr,s (A; Z)) on bV
, 0 on P \ - <.

By the following lemma, we can see that above operators does not contain a logz
terms.

Lemma 5.2.1. Foreach1 <r <p, —1, 1<s<p_—landAcW,, ,_,
—a  AF (AT (Y (4;2))) + a_ A (AP (Y (4 2)))
does not contain log terms in z.
Proof. The logz terms of Al (A (Y(4;2))) and A[ﬂ (A[_S](Y(A; z)) are given by
(@ AT (Y (A 2)logz,  [Q, AZ(Y(4; 2))loge.
By using Proposition b1 we have

@, A (4;2))
=@ U e gy a2
-

=
- Sen SO Py )
= j—] ALy (4;2))).
Therefore
—a, AM(AT (v (4;2) + a Al (AF(v(4; 2))
does not contain log terms in z. O
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Using Theorem b14, we can define logarithmic defomations of the ordinary W, ,,_-
module (P, Yp, ) as follows.

Theorem 5.2.2. Fiz any 7 = (a,b,€) in

{(a,b,6)} = {(r,s,+),(r",s",+),(r",s,—), (r,s’, =)}

We can define the logarithmic W, , -module (Pgy yv, Jov yv) that have Lo nilpotent rank

three as follows. As the vector space Py v = Py s and the module actions is defined by

Jov (A 2) = Y, (4 2) + (A + Al + AP (vp, (45 2)),

forany Ae W, p_.
Proof. By Lemma 52T, we have Jiv v @ Wy, p. — EndPSy [z, 27 Y] Jov 0 (10)52) =

a
1d7>e v is trivial from the definition of logarithmic deformation. In the following we prove

the compatibility condition

JE v bV (A, Z)Jevjb\/ (B, w) = ;\/J)v (Y(A, Z — 'LU)B, U})

a a

for A, B e W

by p_- Fix any non-zero vector v € P, and write v be as follows
€ —€ —€ €
V= Ugp 1 Upv T Ugpv 1 Ugv pvs

—€ Ve —€ .
where v, € Vi, 0,0, € Vol Uppv € Vapvs Vv pv € Vv v By using Theorem BT we
have

Jav pv (4; Z)J;V,b\/ (B; Z)”Z,b
=Y (4; z)Y(B'w) b
+(am —ag) [Al(Y <A,z>>+AE"]< Y (4;2))]Y (B;w)us,
+ [~a A [“1( Y (A4;2))) + a_ A AP (v (4, 2))] Y (B w)es
+(as — ap)Y (A 2) [AY (Y (B w) + AV (Y (Byw))] g,
+(az —ay) [AP (Y (45 2)) A (Y (B; >> + APy (4 2) A (Y (B w))] v,
+ V(A 2) [~ AM A (Y (Byw))) + a_ Al (AP (Y (B; w)))] v,
=Y (4;2)Y(B;w)vg,,
+(az — ay) [AP(Y (A 2)Y (Byw)) + AY(Y (45 2)Y (B; w))] o,
ar Ao A[f](Y(A; 2)Y(B;w))vg,, + a_A[f] o Al (Y (A;2)Y(B;w))vg,,
= V(Y (A; 2 — w) By w)vs, + [(APY + Al + APY(V (Y (4; 2 — w) By w))] o,
= Jo (Y (A; 2 — w) B; w) vy
In the same way, we can prove
Jov v (A5 2) oy po (B 2)v,8y, = Jov o (Y (As 2 — w) Biw)v, <y,
Jov v (A; 2) Jov v (B3 2)vg v = Jov v (Y (A; 2 — w) Byw)v, v,

Jov oo (A 2) Jgv pv (B; 2)vgy pv = Jgv v (Y (A; 2 — w) B w)vgu -

a

Therefore we obtain

J€\/7b\/ (A, Z)Je

a a

\/’bv(B; Z)U = J;vbv (Y(A, z — ’LU)B, w)v.
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By (B133), we can see that the four logarithmic modules Pf, € C’ﬁfg’bk have Ly nilpotent
rank three.

Remark 5.2.3. These logarithmic modules Prfs, P;QSV, P g and P correspond to the

rV.s
. . _j’_ Jr — — . .
projective covers of X7, XL v, X g and X7, respectively (see Subsection [7.3).

Remark 5.2.4. The structure of these logarithmic modules were conjectured in [32],[33]
in the case (py,p-) = (2,3) and explicit realizations were given by (] in the case of C{*
by using lattice constructions (cf. [3]). In their notation

A AT
/&4A¢4\ /QQA&&\
@\Q QQAO&O&/Q O\&Q?&@A [ ¢/<>

N\ N

Figure 5.1: The embedding structure of logarithmic W, , -modules Pf,. The triangle
A corresponds to the simple module L(h,.;), © to Xt  to XTJQSV, ® to X, and & to

7,87
X5,

Remark 5.2.5. Figure i1 is the embedding structure of the logarithmic W, ,_-modules
defined in Theorem 2.

Theorem 5.2.6. By taking quotients of 73;?8, P P

sy Pvgoand Pl we obtain eight
logarithmic modules Q(X, )y where

{(67 a? b7 C? d)} :{<+7 T? 87 Tv’ 8)7 (+7 T’ S? T? SV)? (+7 Tv? SV? T\/J 8)7 <+7 TV? Sv? r? Sv)?

(_77,,\/7 s, 8)7 (_7TV757T\/7 8v)7 (_7T7 S\/,T,S), (_7T7 SV7TV75V)}7

and each composition series is given by:
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1. For Q(X;b)qd,

Gl = X;rb?
G2/G1 D Gs/G2 = de D L(ha,b) D chd?

c

QX )ea/Gs = X,
2. For Q(X,})c.a,

Gi =X,
Go /G @ G3/Gr = X[ @ X,
X, )ed/Gs = X,

Remark 5.2.7. Figure 22 is the embedding structure of the logarithmic W, ,_-modules
defined in Theorem BZAQ.

a Q(XJS)T\GS Ca= X::w b= XT_V,S
/ . \ Q(Xrts)msv - a= Xﬁs, b= ers\/
b.  L(hws) b
\ / QXL WIrvs s =0 o, b= X0,
a Q(X:\—/,sv)ﬁsv Loa= Xr_‘\—/,sv7 b= XTTSV
C QXL Jrs: c=X5,, d= X,

\ Q(X;/’S)Tvysv : C:X;vﬁ, d:‘)(rt,sv
/ QX st c=X ., d= X,
QX )rvav s =X, d=X1

Figure 5.2: The embedding structure of logarithmic W,, , -modules Q(e),.,.

5.3 Logarithmic modules in the thin blocks

Foreach 1 <r<p, —1, 1 <s<p_—1, weset
pr,p, - VT—'i,_p_ @ Vrv,p_ - Ot o PpJ”s = V+ @ Vp_;,_,sv (= Ot wm

Tp-" P+,S P+,8°

Let (Prp_,Yp,, ) and (P, s, Yp,, ) be the ordinary W,, , -module. Similar to Theorem
b2, we can construct the following logarithmic modules.
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Theorem 5.3.1.

1. For 1 <r <py—1, we can define the logarithmic modules (Q(X,5, )rvp_, J.}
QXS , )rp_sJv ) as follows. As the vector spaces

Q(Xr—j_p*)’"vvp* - Q(Xr_v,w)r,pf =Prp_

and the module actions are defined by

: (] , -
Jh (A = { PP (A2 T AL O, (42) o Vi,
Yp,, (A;z) on Vi, |
: ] ,
I (Az) = Yp,, (A;2) + AL (Yp,, (4;2) on v;;p_
. Y,PT’p— (A’ Z> on Vr\/,p77

for Ae W, ,_.

2. For1l <s <p_—1, we can define the logarithmic modules (Q(X" [)p. sv, .

P+,S [ T
(Q(Xplsv)m,s, J;;,SV) as follows. As the vector spaces

Q(Xpt_,s)P-&-vSv = Q(Xi )P+a5 = Pp+:5

p+7sv

and the module actions are defined by

p+,5\/

Yp,, (A;2) on VI

P+,8?

. [sV] . -
lﬁ<&@_{n@AAa+A_a@WmJ»cmv

P+,s

Yp,, (A;2) on V.

P+ 78\/ :

. s .
I (A = {YPM,S(A,ZHA_ (Yp,, .(A;2)) on V),

for Ae W, ,_.

Proposition 5.3.2.
1. The composition series of QX )pv ,_ is given by

Gi=X], |
Go/GL D G3/Ga =X, ®XL
QXL Jrvp /Gs =X, .

rp—

717_7

2. The composition series of (X, )rp_ is given by

Gi=X5, .
Go/Gr ® Gs/Gy = X ® XF

Q(Xr_\/,p_)T’vpf/G?) = Xr_v,p_ :
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8. The composition series of QXS ), v is given by

Gy = p+ 8
Gg/GlEBGg/GQI 75\/@‘)(1)15\/’
Q(Xpt s) P+, S\//G3 p+ s*

4. The composition series of Q(X . o )py,s 05 given by
Gir=4&,, v,
GG ® Gs3/Gy = W@th,
Q(X:_ Y )P+ S/G3 + sV

Remark 5.3.3. These logarithmic modules Q(X;

+ )Tvp ’ Q(Xr_v,p,)r,p ’ Q(Xpt s)p+ sV
and Q(X, v )p,,s correspond to the projective covers of X%, , X5 . A o and X o,
respectively (see Subsection [7.3).
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Chapter 6

Logarithmic extension of Virasoro mod-
ules

In this chapter, we determine Ext!'-groups between simple Virasoro modules and certain
indecomposable modules in the abelian category of generalized Virasoro modules, by
using the results in [565] and the structure of Fock modules. The results of this chapter
will be crucial in analyzing the complex structure of logarithmic W, , -modules. From
this chapter, we identify any Virasoro modules that are isomorphic to each other, unless
otherwise stated.

6.1 Ext'-groups between simple Virasoro modules

We set

Appp = {apsn|r,s,nel}l,

Hywpi={ ha |0 € Apy }

(for the definition of symbols ;. ., and h,, see (B221) and (BT), respectively). Let U(L)
be the universal enveloping algebra of the Virasoro algebra.

Definition 6.1.1. Let £6p+,p_ -Mod be the abelian category of left generalized U (L)-modules
whose morphisms are Virasoro-homomorphisms and whose objects are left U(L)-modules
that satisfy the following conditions:

1. For the central charge, C = c,, ,_ -id on M.
2. Every object M has the following decomposition M =3,y M[h]:
e For some finite subset Hy(M) of C, H(M) = Ho(M) + Z>o.

e Forhe H(M), M[h| ={m e M :3n >0 s.t. (Lo — h)"m = 0}.
e 0 < dimcMIh] < occ.
3. For every object M € L., , -Mod, there exists the contragredient object M* €

L., , -Mod on which the anti-involution o(Ly,) = L_, induces the structure of a

left U(L)-module by

(Lod,u) = (¢, 0(Ly)u), ¢ € M*, ue M.

Definition 6.1.2. We define Ecm,p, -mod to be the full subcategory of L -Mod such

that all objects in Ecm,pi-mod satisfy the following conditions:

Cpyp_

1. The socle series of M has finite length.
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2. The highest weights h of the simple modules L(h), appearing in the composition

factors of M, are elements of Hy, , .

We denote the n-th Ext-groups in L., , -mod as Extj(e,e).

For each a,b > 1, let M(hap,cp, ,_) be the Verma module of the Virasoro algebra
whose highest weight is h,; and the central charge C' = ¢, ,,_-id. Note that M (hqy, cp, p_)
has the singular vector whose Lo-weight is h,yp + ab. Let S, € U(L) be the Shapovalov
element corresponding to this singular vector, normalized as

Sab |ha,b> = (Llib1 +--0) \ha,b> ) (6.1.1)

and let Sj;, = 0(S,) be the anti-involution of S,; where o(L,) = L_,, n € Z.

The following theorem is due to [67].

Theorem 6.1.3. Forr,s > 1, let us consider S} S, s in U(L) transformed as
Sy oSrs — (Lo, C) € LU(L-) ®c U(Ly) @c U(Ly)Ly,

where f(X,Y) is a non-zero polynomial of X, Y, Ly = @, .o CLy, and Ly := CCHCLy.
Then, for the polynomial f(X,Y), we have

F(hycpyp-) = Rrs(h = hus) + O((h = hu)?),
where R, 5 is given by

R,=2 ] (k(&)uz(p_*)%).

(k,1)ez?, P- P-

1—-r<k<r,1-s<I<s,

(k.1)#(0,0),(r,s)

Remark 6.1.4. In this thesis, it is important that R, s be non-zero, specific value is not

necessary. In fact, the non-triviality of R, s can be shown using the Jantzen-filtration of
the Fock module F, .

By using Theorem B3, we obtain the following theorem (cf.[35]).
Theorem 6.1.5. For h € H,_,,_, we have
Exty.(L(h), L(h)) = 0.

Proof. We prove only for case h = h,.,, (r,s) € T. The other cases can be proved in the
same way.
Assume Exty(L(h,.s), L(h,,)) # 0. Fix a non-trivial extension

0— L(h,s) = E 5 L(h,s) — 0.
Let {ug,u1} be a basis of the highest weight space of E such that
m(uo) = |hrs) tlhrs)) =,

(Lo - hr,s)uo = Cuq,
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where ¢ is a non-zero constant and |k, ) is the highest weight vector of L(h, ;). Then, by
Theorem G173, we have

S:,SST,SUO = f(c)ula
9| 4o,

C lc=0
where f(c) is a polynomial of c. Thus, we see that S, sug is non-zero and

Sr.sto € t(L(hys)).
On the other hand, by the irreducibility of L(h, ), we have
Sy ¢Srsuo = 0.
But this is a contradiction. O

For h,h' € H,, , , h # I/, let us consider a extension [E] € Exty(L(h), L(R')). Since
h # ', we see that the Virasoro zero mode L, acts semisimply on E. Thus, according
to [12],[28], and by Theorem EIH, we have the following theorem for the Ext'-groups
between the irreducible modules for the different highest weights.

Theorem 6.1.6. For Exty(L(hy.s,), L(h)), hrsn # h, h € Hy, , , we have:
1. For1<r<py,1<s<p_ andn =0, we have
C for h="hw e_1 or hyv g1

ExtL(L(h,s), L(h)) =
xte(Lhrs), L(R)) {0 otherwise

2. For1<r<p,1<s<p_andn > 1, we have
C fOT' h = hr\/,s;n—h hr,sv;n—la hrv,s;n-i—l or hr,sv;n-i—l

EXt,IC(L(hr,s;n)vL(h)) = {

0 otherwise

3. For1 <r<py,s=p_ andn =0, we have

C forh=hw, g
0 otherwise '

EXt%(L(hr,p—)a L(h)) = {

4. For1 <r<py,s=p_ andn > 1, we have

C fOT’ h = hrv,p_;n—i—l or hr\/,p_;n—l

Exth(L(hyp_ ), L(h)) =
xto (L ’p_’) (h)) {O otherwise

5 Forr=p,,1<s<p_ andn =0, we have
C forh=h, .

Exty(L(hy, s), L(h)) =
xte(Llhp.o), (M) {0 otherwise
6. Forr=p., 1 <s<p_ andn < —1, we have

C for h=hy svp1 0or by st

0 otherwise

Ethﬁ(L(thmS;n)’L(h)) = {

7. Forr =p,,s =p_,n € Z, we have
Exty(L(hy, p ), L(h)) = 0.
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6.2 Logarithmic extensions

Let us define the following indecomposable modules in £, , -mod as quotient modules
of certain Virasoro Verma modules.

Definition 6.2.1. For h,h/ € H,, , such that Extz(L(h), L(k')) ~ C and h < I, we

define the following indecomposable module
[L(h, h')] € Extg(L(R), L(R')) \ {0}.

Definition 6.2.2. Forh, k', h" € H,, , such that Exty(L(h), L(k')) ~ C, Exty(L(h), L(h")) ~
C and h > I/, h > 1", we define L4(h) € L, , -mod as a unique indecomposable module
satisfying the following exact sequence

0 — L(W,h) = L4h) — L(K") — 0.

Definition 6.2.3. For h,h',h" € H,, , such that Exty(L(h), L(k')) ~ C, Exty(L(h), L(h")) ~
Cand h < I, h <h", we define L"*(h) € L,, ,_-mod as a unique indecomposable module
satisfying the following exact sequence

0— L(h") — L*(h) — L(h,h') — 0.
The following theorems are due to [b4] (see also [16]).

Theorem 6.2.4 ([65]). For any hy, ho, hs € H,, , such that hy < hy < hs, Exty(L(hy), L(hy)) #
0 and Ext:(L(hs), L(hs)) # 0, let E be any logarithmic module satisfying the following
exact sequence

0— L(hl, hg) — F — L(hg, hg) — 0.
Then the quotient module E/L(hs) is indecomposable.

Theorem 6.2.5 ([565]). For any indecomposable modules L4(h) and L*(h), let E be any
logarithmic module satisfying the following exact sequence

0— LYh) = E — L“(h) — 0.
Then there is no injection from L“(h) to E/L(h).

Remark 6.2.6. The non-vanishingness of certain logarithmic Virasoro modules was proved
in [53]. The two theorems above are their consequences.

In the following, we introduce indecomposable modules K (7) and K (A, s,;,), and de-
termine the Ext!-groups of types

Exty (K(7), L(ha,)), Exty (K (Arsin), L(Arin)).
Definition 6.2.7. We define T, ,_ to be the subset of A3 such that every element
(o, g, cr3) € Ag%p_ satisfies the following conditions:

1. hay < hay < hey.
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2. The three Fock modules F,, F,, and F,, are contained in the same Felder complex
in Proposition 3233 and are adjacent to each other:

QY Q¥
— Fyy — Foy — Flyy —
For example, we have
T = (Qpy ;15 Op 50, Opysvi—1) € Tpypo s hap+,SV;1 - hap+7s;0'

Definition 6.2.8.
1. Forany T = (0q, 09, a3) € Ty, »_ such that ha, = ha,, we define K(7) = L(hay, hay)-

2. Forany T = (a1, a9, 03) € Tp, p_ such that hg, # ha,, we define K(1) € L,,, ,_-mod
as a unique indecomposable module satisfying the following exact sequence

0 — L(ha,) = K(7) = L(hay, hay) — 0.

Theorem 6.2.9. For any 7 = (a1, a0, a3) € T, pp_, we have
Exty(K(7), L(ha,)) = C.

Proof. Fix any 7 = (o, a2,a3) € Tp, , . From the Virasoro module structure of the
logarithmic W,, ,_-modules Q(X%), . defined in Chapter B (see also Remark EZ14), we
have a non-trivial logarithmic Virasoro module in

Exty(K(7), L(ha,)) \ {0}.

Fix any logarithmic Virasoro module in this Ext'-group and denote it by P(7). If h,, =
ha,, then we obtain the claim of theorem claim by Theorems 6B173 and 618, and thus let
Bay # hay,- It is sufficient to show that Exty(P(7), L(ha,)) = 0. Let us assume that

Exty(P(7), L(ha,)) # 0. (6.2.1)

Note that, by Theorem 624, P(7) has L(hq,, ha,) as a submodule. Then, by the exact
sequence

0 — L(hays hay) = P(7) = L(hay, hay) = 0
and by the assumption (E2Z), we have
EXtE(L(hazv hay)s L(hay)) # 0.

Let E any non-trivial extension of Exty(L(hay, has), L(Ra,)). Then, by Theorem E13, £
must have L(ha,, has)* as a submodule. By the exact sequence

0 = L(hay, hay)" = E — L(ha,) — 0,
we have the following exact sequence

0 — C — Extp(E, L(ha,)).
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Thus we have Ext}(E, L(hq,)) # 0. Let F be the non-trivial extension of Ext}(L(hq, ), E*).
By Theorem B3, we see that F' is logarithmic, that is, F' has Ly nilpotent rank two.
Note that

F/L<ha2) = L(hm) ©® L<hoz27 has)-

But this contradicts Theorem G624.
O]

Remark 6.2.10. Fiz any (ou, a2, a3) € Tp, p_ such that he, = ha,. Then, by Theorem
613, the logarithmic module P(T) (defined in Theorem B-Z2) is self-contragredient.

Definition 6.2.11. For 1 <r <p, — 1,1 <s<p_—1,n > 1, we define K(A, ., )

and K(A;fsn) as unique indecomposable modules satisfying the followmg exact sequences

0= L(ATy,) ® LA ) & LIAL ) & LIAL 1)
— K(A, 1) = L(A, ) — 0,

0= L(A, o) @ LA 1) ® LIAL ) & LIAL 1)
— K(A,,) — L(Af,.) — 0.

T8 r,8;n

r,s;n—1

Theorem 6.2.12. For 1 <r<p, —-1,1<s<p_—1,n>1, e ==, we have

Extp(K(A s, ), LAY 4pos, ) = C,

r,8;n—0e, — 7,8;n—0¢, —

where 6_ _ =1 and 64 _ = 0.

Fix any non-trivial extension [E] € Exty (K (AS ), L(AS )) and let v be a

7,8;n—0¢ 7,81 —0¢, —
generator of E such that v € E[A] s ]. Then we have
STV75V+(27L*5 )P : ,8V4+(2n—4e, v 7é O

or

SV t(2n—3c, - )p+,s¥ O V4 (2n—bc,_ )p+,sV U # 0.

Proof. By the Virasoro module structure of the logarithmic W, , -module Py, we have

7,87
a indecomposable module in

EXtE(K( i,s;n—557,>’L( ;,s;n—ésy )EBL( r,8;n—0e, ))

(see the structure of W, , -modules P and P} in Definitions 317 and [327).
We denote by P(A;m 5. _) this indecomposable module. Note that, by Theorem 6229,
P(AS ) has P(m) and P(7y) as subquotients, where

r,8;n—0e,

= (Oérv7SV;,2n+5€,_, AV s 2n—146,, arv,sv;72n72+§e,_>;
Ty = (arv,sv;Qn—éeﬁ y OrsVion4+1—8e s O[r\/,sv;2n+2—6€7,)-

Similar to the proof of Theorem G249, we can show

Eth(]/S( s )’L(A;,s;n—ée,,)) =0

r,8;n—0e, —

by using Theorem B23.
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Definition 6.2.13. Let 7;114};7 be the subset of T,, ,_ defined by

7;1\1171;7 = { (Oél,OZQ,Ofg]) € 7;7+,p—| a1 = O, 1 S r < P+, 1 S S <p—}

Recall that P(7) (7 = (ou, a2, a3) € Tp, p_) is the logarithmic module defined by the
following exact sequence

0 — L(ha,) = P(1) = K(1) — 0.
In the following, we will prove the following theorem.

Theorem 6.2.14. For any 7 = (o, (g, v3) € 7;1%32_, we have

Socle(P(1)) = L(ha,).

Before the proof of Theorem 6214, we will introduce some definitions and propositions
as follows.

Definition 6.2.15. For any r,s € Z>1, k,n € Z, we define the following C-linear opera-
tors:

1. Let A[ﬁkm : U(L) — Homc(Fy gons Frv knt1) be as follows

A [7]

+ikin

1 . .
(A) = lim g[ [J:], e " Ae™,  for A€ U(L),
where Fo, vt Fa o+t € Ly p -Mod for allt € C.

2. Let A[_S];km . U(L) — Home(F s.n, Frsvin—1) be as follows

1 .
A[_S];km(A) = lim ;[Q[_S], e A, for A U(L).

where Fo, . t; Fo, .+t € Ly, p_-Mod for allt € C.
From now on, we omit k£, n and denote

A= Al AY M,

= Bkno
Proposition 6.2.16. The two operators A[j] and A" satisfiy the following derivation
property
A AB) = A () B + AN (B), A BeU(L),
A(AB) = A¥(A)B + AA(B), A BeU(L).
Proof. For any A, B € U(L), we have
[ [ﬁ, e " ABe'
= [QU), e0 Aet? . ¢ 10 Bt
= [J:], e Ae e Bel® e Aet| [ﬂ, e ' Be']
=[QY, e Ac"| B + A[QY, e Be'?]
+ [ [l], e Ae] (e Be' — B) + (e7 A — A)] [l], e " Bet?).

Dividing both sides by ¢ and taking the limit, we have the derivation property. O]
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Fix any 7 = (o, a2, a3) € T,, , such that F,,, is of braided type. Let (k;,l;) € Z? be
a unique integer pair such that

1<k <ps AN1<1 <p_)A (Q[J’:T} and Q") are screening operators on F(1)).
Note that F,,, = Fy 4k a, OF Foqi,0_. We set
F(T)=Fo, ® Forskra, © Fayttra -
For A € U(L), we define the following operator J.(A) on F(7):
J#®:{A+AT%®+AWM) on F,,,
A on Fuiikray ® Fatiya_-
Then, by Proposition 62218, we have
J(AB) = J.(A)J.(B), forany A,B € U(L).

Thus we see that J,. defines a structure of Virasoro module on F(7). In the following,
we omit the action J, of the logarithmic module (F(7), J;.), and simply denoted as F'(7).
F(7) has Lg-nilpotent rank two. In fact we have the following proposition.

Proposition 6.2.17. Fiz any 7 = (a4, a2, 03) € Tp, ,_ such that F,, is of braided type.
Let v be any non-zero vector of F,, and let h, be the Ly weight of v. Then we have

(J-(Lo) = ho)v = k-, QY7 (v) — La_ QY (v).
Proof. Note that the ordinary action of Ly on the Fock modules is given by

1
Hamm © =5 0000 (6.2.2)
meZ

Then, by (831), (522) and [Q™, Lo] = 0, we have

(J7(Lo) — Lo)v
:AWM o)v+ A Lo)w

= hm (Q[kf] +Q ZT]) —taroeliy — hm 1e " Loe (Q[f] + QET])U
_ hm (Q[kr] +Q T])ta v — hm tao( (k-] +Q T])
= (1 — o1 — kray) [f]< )+ (Oél T lTa’)Q[iT (v)
= k0, Q7 (0) = Lo QY (v).
]

Proof of Theorem [b For 7 = (v sv, Qpsv.l, v gvia) € TMm let us consider the
logarithmic module F( ) Let v be a cosingular vector in F,v 4 [r s'] defined by

1
v =lm =S o |, v + 1) .
t—0 t ’ ’
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By Proposition 62217, we have

(J-(Lo) = Pygva)v = (v ov — rgvi) QT (W) + (v ov — v 1)QF (0). (6.2.3)

in F(7). By using Theorem B1-3 we have
1 v Sv
T (S ,w085 )0 = 5 (200 v = a0) Ry o0 (Q 1 (0) + Q2 (0) (6.2.4)
in F(7).
For 1 <r <py, 1 <s<p_,let K(Al,,
defined by the following exact sequence

0= L(A o) = K(A]

7,5;0

) be the indecomposable Virasoro module

) — K(1) — 0.

By (6223) and (62Z4), as the quotient of F(7), we can define the indecomposable module
P(A},,) satisfying the following exact sequence

0— L(AL) @ L(A ) — P(AF

r,5;0

) — K(AS

r,5;0

) — 0.

Note that, by Theorem G249, Extz(]g(A;fs;o), L(A[,,)) = 0 and ﬁ(Aj,S;O) has P(7) and

P(7"), 7" = (v sv, apv 5.1, Qv gv. o), as subquotients. Let us consider the indecompos-
able module R(A} ) = P(A]0)/L(hys, A,). By Theorems B3 and 629, we see
that

Socle( R(AF

r,s;O)) = L(A’::S;O) :

In particular we have

Socle(P(7)) = Socle(P(7')) = L(A[ )

Corollary 6.2.18. Fiz any element 7 = (a1, g, a3) € TN . Then we have

Exty (K(7), L(hay, hay)*) = C.

We fix any Lo-homogeneous vector u, € K(T)[ha,] such that K(r) = U(L).u,. Let
v, € K(7) be the highest weight vector of the submodule L(ha,) C K(7). Fix any non-
zero Lo-homogeneous vectors u.. € L(hay, hag)*[hay] and vl € L(hay, hay)*[has] such that
u, € U(L).w.. Let S € U(L) be the Shapovalov element such that o(S)v. € C*u. Let

K(7) be the non-trivial extension

0 = L(hag, hag)* = K(7) & K(7) — 0,
and let i, and v, be any Lo-homogeneous vectors of k(T) such that
p(tr) = u,, p(0,) = v,
Then we have
St, € C*op + Cu(v)) + U(L).e(ul),
and

o(S)v, € C*u(ul).
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Ur L(u’)
A
S a(S)
R
ot (0))

Figure 6.1: The embedding structure of the logarithmic module K (7).

Remark 6.2.19. Figure represents the embedding structure of the logarithmic module
K(7) defined in Corollary B=ZI8. The black circle represents the highest weight vector of

K(T).
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Chapter 7

The projective covers of simple mod-
ules XQ)-LS

Since W,, ,  is Ch-cofinite, so by [36], every simple W, , -module has the projective
cover. In this chapter, we determine some Ext'-groups between certain indecomposable
modules and simple modules. Based on these Ext! groups, we determine the structure of
the projective covers of the simple modules in each thick block and thin block. From this
chapter, we denote the n-th Ext-groups in C,, , as Ext"(e,e) simply and identify any
W, p_-modules that are isomorphic to each other, unless otherwise stated.

7.1 The structure of the logarithmic modules Q(X,i’,).’.
in the thick blocks C//

We fix any thick block C/*. In this subsection we consider the structure of the inde-
composable modules Q(X ,)..4, where

{(67 a? b7 C’ d)} :{<+7 T? 87 Tv? s)? (+7 T? 87 T? SV)? (+7 rV? 8\/7 rV? 8)7 <+7 TV? Sv? T? Sv)’

(_7TV7 87T7S)7 (_7TV757TV7 8V)7 (—,T, SV7T7S)J (_7T7 S\/7TV7SV)}'

First let us consider the structure of the logarithmic module Q(X;f),v 5. Recall that
Q(XF,)rv s is defined as the quotient of P and, as the vector space, 77:; =V OV O
Vi, @V}, Let ug and v} be cosingular vectors in Fpv ov[r¥s"] and F, wvalr(s¥ +p_)],
respectively. We define the following vectors in the ordinary W, , -modules V, ,, and

V,sV:

T

uy = |ayva) €V, v,

vy = W 0Jof € Frvoa(r+ps)sY] C Vi,
vy = Spwvyp o €V v,

vy = WH0Jvy € C|apv ) € V5 .

By the definition of 73: 5, these vectors become highest weight vectors of the composition
factors of the quotient module Q(ers)rws- The vector uy become the highest weight
vector of the top composition factor X%, of Q(X%,),v . The sets {v], v} and {vy, vy }
become basis of the highest weight space of the composition factors 2&5 , of Q(X/%)v .
The vector u; become the highest weight vector of the submodule X7, C Q(X,),v . For
these vectors, we use the same symbols in the quotient module Q(&;F,),v ;. Note that we
have

(Lo — A

r,8;0

Jug € C uy (7.1.1)
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in Q(X%)rv s From the Virasoro module structure of Q(X;f,),v 5, we define the following
logarithmic Virasoro module

K=UL)u+UL)v €L, , -mod.

Note that K has the submodule L(A

r,s;1

). Then, by (1), we have
K/L(A:sJ) S EXtE(K(T)’ L(A:s;m A;V,S;O)*) \ {O}a
where 7 = (v sv, Qpgv.1, Qv gv.o). Thus, by Corollary B2ZI8, we have

Sysvip_tg € Cvf + C*vy mod W,, , .uy,

7.1.2
Sy ovip Uy € Cluy, ( )
in Q&) By (CI2) we see that Q(&,,),v s has two submodules
W, b€ Extl (X5, X5)\ {0},
ol € BN A0\ 0} -

Wo,p- Vg € Eth(Xr_v,s7 Xr—,’—s) \ {0}.

By (Z13), we see that Q(A,f,),v , is generated from the top composition factor &', and
Socle(Q(X,F,),v.s) = AL

We have similar results for the other indecomposable modules of type Q(X,f,).,. in
C’ﬁﬁ,“k . Thus we obtain the following theorem.

Theorem 7.1.1. Let (a,b,c,d) be any element in
{(a,b,c,d)} ={(r,s,7",s), (r,s,r,8"), (", s", 1", s), (r",s", 1, s")}.
Then the socle series of Q(X,,)ca is given by

Soc; = Socle = X,
Socy/Socy = X ;@ L(hap) © Xy,
Q(X;_b)c’d/SOCQ = Xl;fb.

Moreover, Q(X;fb)c’d 15 generated from the top composition factor XJb-

Remark 7.1.2. Figure [71 represents the schematic diagram of the indecomposable mod-
ule Q(X1,)v s

Next let us consider the logarithmic module Q(&X% ,).s. Let {vy,v_} be a basis of the
highest weight space of X5 | such that

WE[0]vx = 0, WE[0Jvy € C*vz.

For the surjection 7 : Q(XT_V’S)M — X, we fix Ly-homogeneous vectors 0y € Q(X [ )rs

such that 7(04) = vy. Note that

(LO — A;V,S;O)ﬁi € CX’Ui,
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Uuo Uy
Sr,sv—i-p_ S;“k,s\/+p_
/_‘_ \

Figure 7.1: The schematic diagram of the indecomposable module Q(&7,),v s, where ¢ is
the highest weight vector whose Ly weight is /. 4.

in Q(X,v ,)rs(see the proof of Proposition [Z34). Then, by Theorem 624, we obtain
Srsvap_Srovip Ux € Clug. (7.1.4)
By (CT4) we see that Q(Xy )¢ has two submodules
Wi p_-Srevip U € Eth(XrJ,rsa X ) \ {0}.

In particular we see that Q(X3 ), is generated from the top composition factor X7 ..
We have similar results for the other indecomposable modules of type Q(AX,,)s.s in C’ﬁf?d“.

Thus we obtain the following theorem.

Theorem 7.1.3. Let (a,b,c,d) be any element in
{(a,b,c,d)} ={(r¥,s,r,s), (", s,rY,s"), (r,s", 1, 8), (r,s", 1", s")}.
Then the socle series of Q(X,})ca is given by
Socy = Socle = X,
Socy /Socy = X;“d 69 X:d,
Q(X, )ea/Soca = X .

Moreover, Q(X,,)c.q is generated from the top composition factor X .

Remark 7.1.4. Figure [7.3 represents the schematic diagram of Q<Xr_\/7s)r,s-

7.2 The Ext'-groups between all simple modules in
the thick block C}ff?c’“

We fix any thick block C’ﬁﬁiCk. In this section, we determine the Ext'-groups between
all simple modules in the thick block C//*. From this section, we identify any W,, ,_-
modules that are isomorphic to each other.
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B /\ B
V_ V4
\_/

:,sv—f—p_ W_[O] :75v+p—
u— U4
Sp,sV4p> W*I0] /%—i—p

/\
vV_ V4
\_/

W0]

Figure 7.2: The schematic diagram of the structure of the indecomposable module
Q(XT_V 5)7“75'

Definition 7.2.1. Let us fiz (a,b,c,d) in
{(a7 b? C7 d)} :{(TV7 S? r? 8)7 (TV7 S’ 7"‘\/’ SV)? (r7 SV’ r’ 8)7 (T7 SV? 7"‘\/’ SV)}'

1. For Q(X,})ca, let {vy,v_} be a basis of the highest weight space of the submodule
X, C Q(X,})ea such that

WE[0]vs = 0, W*[0Jvy € C*vy.

and let uy be the highest weight vectors of Q(Xa_’b)qd such that vy € U(L).ux. Then
we define

c

5+(de)a,b = Wh i p Uy, 8_()(;1)&,1, =Wy po U
which give different extensions in Extl(chd, X,,) \ {0}
2. As the quotient of Q(Xc—f_d)!l,b? we have a non-trivial extension in
Eth (5+(Xc—,’—d)avb’ Xajb)'

We denote this quotient module by S(X:d)mb.

Remark 7.2.2. Figure [7.3 represents the schematic diagrams of the structure of the
indecomposable modules E~(X,F),v s and ET(XT),v .

Definition 7.2.3. We define
/Cns = Wp+7p7. |Oz7n78> /Crv78v = Wp+,p7. |Ozrv75v>

which are the non-trivial extensions of Ext'(L(h,), X,) ~ C and Ext'(L(hs.s), XL )~
C, respectively.
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E(XT)rv s ET(XT)rv s

T8 7,8
u— U4
Sr,s\/—i-p_ Sr,sv+p_
W0] WIo]
/\ /\
v_ V4 v_ (N
\_/ \_/
w=o] w=[o]

Figure 7.3: The schematic diagram of the structure of the indecomposable modules
ET(XL)v s and ET(XT)pv s

Definition 7.2.4. Given a non-logarithmic Virasoro module M, any non-zeo vector v €
M s called primary vector when the following satisfied

L,v=0, n>1.

Similar to the arguments in Section 9.3 of [48], we can prove the following proposition
(see also [67],[59]). We omit the proofs.

Proposition 7.2.5 ([21],[48]). Let My, My and M3 be non-logarithmic Virasoro modules
which have primary vectors vy € My, vo € My and v; € M35 whose Ly weights are h,, s, ,
Pyy sy and hy, s,, respectively, where r; > 1 and s; > 1 (i = 1,2,3). Assume that there

exists a non-logarithmic intertwining operator Y of type (Miw}“’%) Then we have

T S2

(v3, Y(v1,2) S, 5,02) H H rist — Prgtra—2i4 1,50+ s5—2j+1) (U3, V(V1, 2)v2),
=1 j=1
r3 S3

<U3, 5:3 s3 Ul, H H 1,81 r2+r3—2i+1,52+53—2j+1><U§7 y(Ul, Z)U2>‘
=1 j=1

Proposition 7.2.6 ([21],[48]). For h € C, 1 <ry,13 < py, 1 < 51,8 < p_ and ny,ng €
L=y, we have

L(h)
Llhrysoyimy 1Ly sying) = 1
where N h (h1) 8 the dimension of the space of Virasoro intertwining operators of type
hs) L(h : _ ,
(L(hQ) T ) [f/\/ th )Ly eyimg) # 0, then h is the common solution of the following
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equations

r1 S1tnip—

H (h — hm+r2—2i+1,s1+52—2j+1;n1+n2) =0,

i=1  j=1

(n1+1)p4—r1p——s1

H H (h - h2p+—7"1—T2—2i+172pf—81—82—2j+1;—n1—n2) =0,

i=1 j=1
Ty S2tn2p—
H H (h - hrl+7"2—2i+1,51+52—2j+1;n1+n2) =0,
i=1  j=1

(n2+1)p4—r2 p——s2

H H (h - h2p+—?"1—T2—2i+172p——51—52—2j+1;—n1—n2) =0.
i=1 j=1

Lemma 7.2.7. Let n > 1. Any extension in

Ext' (X, nX )

7,87

splits if it decomposes as simple Virasoro modules.

Proof. We only prove in the case n = 1. The n > 2 cases can be proved in the same way.
Let E be any non-trivial extension

0= XL, = E— X, -0

Let u be the highest weight vector in E[AT, ;]. Assume that

r,5;0
Sr75\/+p7U =0. (721)
Let {vy,v_} be a basis of the highest weight space of X , such that

W*[0Jvs = 0, WE[0Jvy € C*vz.

Let v% and v* be Ly-homogeneous vectors of E* such that (vi,:(vy)) # 0, and Lyvi =0
for k > 1. Assume that for any W = W=+ W?°

Wiklvl =0, k> 1.
Then the vector space Cv + Cv* becomes a A(W,, ,_)-module and this vector space is
isomorphic to the highest weight space of X, _ as a A(W,, »_)-module. Thus E* has the
submodule W, ,, .(Cv} +Cv*) =~ X5 and thus £* = X7 @ X5 . But this contradicts
the assumption that E is non-trivial. Therefore we have

(i, Ye(W?*2)u) #0,
where TW* is one of W*, W° or W~. On the other hand, using Proposition Z23, we have

(i, Ye(W*; 2)Srev4p_w)

r Sv+p_

= H H (h4p+—1,1 - hr+r+2p+—2i+1,sV+p,+s—2j+1)<UL YE<W.§ Z)U>

=1 j=1
# 0.
But this contradicts (=21). O

o8



Proposition 7.2.8. In the thick block CI"'*, we have
Ext' (X, xT) =C*  Ext'(L(hs), X7) = Ext' (X", L(h,)) = C,

where XT = X1 or XL . and X~ = X, or X_. The other extensions between the

rV.,s r,sV -
simple modules in CI* are trivial.

Proof. We will only prove

Ext!(L(hrs), X5 )
Ext' (X5 ,, A )

rV,s)

Ext'(X} X+)

7,87

0, Ext'(L(h,;), X,) = C,
0, Ext'(xf, x5 ) = C?,
0.

7,87

The other Ext'-groups can be proved in a similar way, so we omit the proofs.

First, let us prove Ext'(L(h,.), X~ s) = 0. Assume Ext'(L(h,.), X ,) # 0 and fix
any non-trivial extension Ey in this Ext'-group. Note that Ej is a direct sum of Virasoro
simple modules. Then, from the W, , -module action on £y, we must have a non-trivial
Virasoro intertwining operator of type

(L(mpi(-?f)v ’Sﬁhr,g)

for some n > 0. But, by using Proposition 28, we can see the contradiction.
Next, we prove Ext!(L(h,.), X7, %) = C. Fix any extension

[E)] € Ext!(L(h,.,), xh).

Let ¢ be the highest weight vector of E; and assume S,v vt # 0. Then, as a Virasoro
module

El (hrsaArso @@27’L+ (A;j—sn)

n>1
Since

as the Baer sum of extensions obtained from FE; and K, s, we have a extension [Ef]| €
Ext'(L(h,), Xf,) such that S,v ¢ = 0, where ¢ is the highest weight vector of EJ.
Thus, by Theorem 614, we have the following decomposition as the Virasoro module

= 7“5 ®@2n+ rsn)

Assume [E1] # 0. Then, from the W,, , -module action on E7, we must have a non-trivial
Virasoro intertwining operator of type

< L(h4p+_(ﬁ§8 nL)(hr,s)>
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for some n > 0. But, by using Proposition 28, we can see the contradiction. In case
Syv svt = 0, we see that [E;| = 0 as shown above.
Next, we prove Ext! (X X ) = 0. Fix any extension [Fy] € Ext! (X

rV,s) rV,s?

X .). By
Theorem B3, we see that Ly acts semisimply on Es. Let E, be the highest weight space
of Fy. Note that E, is generated from FE,. Let Ey be the W, , -module induced from
E5. Then we have Fy = F,. By Proposition 271, we see that as a A(W,, , )-module

By~ X, @ XL

787

where X7 _is the highest weight space of X .. Note that the W, , -module induced
from Xy , is isomorphic to & (. Thus we have EQ ~ X0 DXL
Next, we prove Ext! (X7, X)) = C?. Let us show

7,87

s

Ext!(EX(XL)5 . Xy ,) = 0. (7.2.2)

We will only prove Ext1(€+(?(rf;):vvs,é\?fv’s) = 0. The other case can be proved in the
same way. Assume that

Ext (€T (XL)0 0 X ) # 0
and fix any non-trivial extension
0= X0, = F—=E9XH)n, —0
Let {vy,v_} be the basis of the highest weight space of X, such that
W*[0Jvse = 0, WE0Jvs € C*vy.

For the surjection 7 : F' — X , let 03 be any Lo homogeneous vectors of F' such that
7(9+) = v+. Then, by Theorem EZ9 and Ext' (X

v g1 X o) = 0, we must have

(Lo — A;V,S;O)@-F = kye(vy) + koe(vo), (7.2.3)
(Lo = Af 40)5- =0,

where (ki,k-) # (0,0). Assume k; # 0. Then, multiplying both sides of (=23) by
W~=[0], we have

(Lo — ALy (o)W [0]o4 € C*ufv-).

But this contradicts (ZZ4). Next assume k_ # 0. Then, multiplying both sides of (=23)
by WT[0], we have

(Lo — Ap o)W 0], € CFu(vs).

On the other hand, by the definition of o, we have (Lo — Ay o)W T[0]7; = 0. Thus we
have a contradiction. Thus we obtain ("22). Next let us show

Ext'(Q(XF) s, X ) = 0. (7.2.5)
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Assume that Eth(Q(XTZ)Tv7S, X5 ) # 0 and fix any non-trivial extension G in this Ext!-
group. Assume that Socle(G) = Xy, Then, by Lemma [2Z72, we see that G has a
indecomposable submodule in

Ext'(EX(X )k . X5 ).

» Vs

But this contradicts (ZZ2). Thus, by Ext'(L(h,s), X~ ) = 0, we see that G has the

» “hrVis

submodule I, s and G/KC, s is indecomposable. Let E5 = G/K, ;. Then we have
[E5] € Ext' (E(X,)mv s, X ) \ {0}
By Extl(X;vﬁ, X ) =0, we see that
Socle(E3) = X & X0, © Xy, (7.2.6)

Let u be the highest weight vector of 3 and let us consider the submodule W, ,, .S, v 1p_u
of F3. By Theorems B-21 and B=Z8, we can see that

Woip_ Srsvap =Xy or Xy & XL, (7.2.7)
Thus by (=20) and ([ZX1), we have
[E3 /Wy, p_-Srsvip u] € Ext' (X1, nX3)\ {0},
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where n is 1 or 2. But this contradicts Lemma [Z272. Thus we obtain (ZZ3). Therefore
by (22), (Z3) and Ext'(X5 ,, X7 ) = 0, we obtain

rV,s’

s°

Ext! (X7, Xy, = Cc2.
Finally let us prove Extl(é\frtg, AF) = 0. Let ﬁ be the highest weight space of A%,
and let £(X/T,) be the induced W,, ,_-module from X¥. Since
Ext!(X’, x5 ,) = C? Ext'(X,, X ) =C?,
Ext'(X5 ,, X5 ,) =0, Ext'(X v, X ) =0,

we can see that the indecomposable module £(X;T,) satisfies the following exact sequence

0= 285, ®2X,, — S(X,j;) — X7, = 0.

r,sY

Let F, be any extension in Ext'(XF, XF). By Theorem EIH, we see that Lo acts

semisimply on E,. Let E, be the highest weight space of Ey. Let us assume E, 2 ﬁ@ﬁ
as a AW, +7p7)-module. Then, from the W,, ,_-module action on E,, we have a non-
trivial non-logarithmic Virasoro intertwining operator of type

< L<A;Es;0) >
L(h4p+—1,1) L(A::S;O) .

But we can see the contradiction by using Proposition 2Z8. Thus, as a AW, ,_)-
module, F, ~ ﬁ ® ﬁ Let F, be the induced module from E4. Then we have

By~ E(X) @ E(X).
Therefore we obtain

E4 ~ Xrts D X;;

61



7.3 The projective covers of the simple modules Xf,
in the thick blocks

In this section, we fix any thick block CﬁZiCk and compute Ext! groups between certain
indecomposable W, , -modules and the simple modules in this block. Based on these
Ext! groups, we prove that the logarithmic modules Pf. are projective W, , -modules.

First we will determine all trivial Ext'-groups between the indecomposable modules
Q(XE)ee € Ci% and simple modules L(h,.s), X, € CIhick,

Proposition 7.3.1. Let (a,b) be (r,s) or (rY,s"). Then we have
Ext'(Q(X))av s, X)) = Ext'(Q(X),)apv, X)) = 0.

Proof. We will only prove Extl(Q(Xib)avb, X;f,) = 0 in the case (a,b) = (r,s). The other
cases can be proved in the same way, so we omit the proofs.
Assume Ext'(Q(X,]),v s, X.f,) # 0. Then, by Theorem 2B, we have

Extl(Q(XT;)Tvﬁ/lCﬁ& X)) #0.

Fix any non-trivial extension [E] € Ext'(Q(X%,),v s/ Ky, X,F,). By Theorem 529, we see
that Lo acts semisimply on the highest weight space of E. Thus, by Propositions =28 and
B9, we see that Ly acts semisimply on E. We fix any Ly-homogeneous vector uy € E
such that, for the surjection 7 : 2 — XF,, m(uo) gives the highest weight vector of XY

7,87

Let u; be the highest weight vector of the submodule X%, C E and fix any homogeneous
vector uj € E* such that (uj,u;) # 0. Since [E] # 0, E has at least one of E7 (X)) , or

E7(XL)5v 4 as a submodule. Thus, by the structure of Q(X%),v /K, and Ei()(rf;)’rvﬁ,
we see that

(u, Sy svip YE(W? 2)Sr 0 4p_tio) # 0,
where W* is one of W+, W° or W~. In particular, we have
(uy, Ye(W*; 2)ug) # 0. (7.3.1)
Note that S,v,, suo = 0. Thus, by Proposition [ZH, we have

0= (uj,Ye(W?*2)Svip, suo)
™V4pyr s

= H H(h4p+71,1 - h2rv+2p+f2i+1,2572j+1><u>{7YE(W.;Z>UO>-

i=1 j=1

The coefficient in the above equation is nonzero, so we have (u}, Yg(W?*; 2)ug) = 0. But
this contradicts (IZZ3). O

Proposition 7.3.2. Let (a,b) be (rY,s) or (r,s"). Then we have
Eth(Q(Xa_,b)aV,bv X;\—/,b) = Eth(Q(Xa_,b)a,bW X;:lﬂ) =0.
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Proof. We will only prove Extl(Q(Xa_’b)avjb, X, ,) = 0 in the case (a,b) = (rY,s). The
other cases can be proved in the same way, so we omit the proofs.
By Proposition [Z31, we have

Ext' (EX(X],)v .6, X)) = 0. (7.3.2)
From the structure of Q(va,s)r,s, we have the following exact sequence

0— g+(Xr—j_s)7“v7S — Q(‘X;\/, )"’,S — g+(Xr—j_s):V,s — 0.

s

By this exact sequence and (Z32), we have the following exact sequence

0—>C— Ext1(5+(xgs)* x%) — Extl(g(xrqs)r,s, xT)—0.

rV,s)

By Proposition ZR, we have Ext'(£7(X,1)z. ,, XF,) ~ C. Therefore we obtain

rV.,s)“trs

Ext'(Q(X5 )rs, X)) = 0.

[
Lemma 7.3.3. Let (a,b) be (rY,s) or (r,s"). Then we have
Eth(g:t(Xat,b)Z,b? Xajb) = Eth(gi(X(;,rbV>Z,b7 Xajb) = 0.
Proof. It can be proved in the same way as ("22) in Proposition [CZ8. O

Proposition 7.3.4. Let (a,b) be (rY,s) or (r,s"). Then we have
Eth(Q(Xc:b)aV,ba Xa_,b) = Eth(Q(Xa_,b)%bv? Xa_,b) =0.

Proof. We will only prove Extl(Q(Xa_’b)avyb,Xa_’b) = 0 in the case (a,b) = (r¥,s). The
other cases can be proved in the same way, so we omit the proofs. Assume that

EXtI(Q(Xr_V,s)T'yS’ XT_V,S) 7& O
and fix any non-trivial extension
0= X, ES QXY )ns — 0.

By Proposition 28 and Lemma 2373, we see that the following sequence of submodules
holds

L(XT—;) - S(Xrts)rv7s CE. (733)
Let {vy,v_} be the basis of the highest weight space of X, _ such that
W*[0Jvse = 0, WE0jvs € C*vy.

Let {v9,v%} be the basis of the highest weight space of the submodule XL, C E such
that p(v]) # 0. For the canonical surjection 7 : £ — X o, we fix any Lo-homogeneous

vectors U_, 0, € F such that 7(91) = vy. Note that, as a quotient module of U(L).04,
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we have the logarithmic Virasoro module P(7), where 7 = (. sv.1, v sv.2, 0y 5v.3) (for
the definition of the logarithmic modules P(7), see the proof of Theorem 629). Then,
by Theorem B2, Proposition X8 and (=33), we see that one of the followings holds

(Lo = A 40)0- = kyt(vg) + k(v ) + C02,  ky #0,
(Lo — AL o)+ = Lt(v-) + Lie(vy) + C*vl, 1-#0.

Assume that the first statement is true. Multiplying the first equation by W~[0], we have
(Lo — AL o)W [0]0- = kye(vo).

By the definition of ©_, the left hand side becomes zero. But this is a contradiction.
Similarly, assuming the second statement, we can show the contradiction. O]

Proposition 7.3.5. Let (a,b) be (r,s) or (rY,s"). Then we have

Ext'(Q(X,))avp, Xpv ) = Ext (Q(X))apv, X ) = 0.
Proof. We proved this proposition in the proof of Proposition [[ZZR, but we prove it again.
We will only prove Extl(Q(X;fb)avvb, X, ,) = 0 in the case (a,b) = (r,s). The other cases

can be proved in the same way, so we omit the proofs.
By the exact sequence

0= ENXL) s = QXL )vs = EN(X)iv =0,
and Proposition [(Z34, we have
Ext! (£ ()5, i) = 0.
Thus, by the exact sequence
0= EX (XN, = QALY v = QX ) o JEHXE) T, — 0,
we have the following exact sequence
0 —= C — BExt' (Q(X,%)rv o/ EN (X )5 o, XD ) = Ext (Q(X))v s, XL ) = 0.
By Proposition Z8 we have Ext'(Q(X,f)mv /ET (X )r , XL ) ~ C. Therefore we

obtain Ext'(Q(X,f,)v s, X1 ) = 0. O

Proposition 7.3.6. Let (a,b,€) be any element in

{(r;s,4),(rY,sY,+), (rV,s,—), (r,s", =)}

Then we have
Ext'(Q(Xy p)av.s, Xgvyv) = Ext (Q(Xs ) )apv, Xgw ) = 0.
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Proof. We will prove only
Ext'(Q(X%)rv s XL ) =0, Ext'(Q(X0 )rs X v) = 0.

The other equations can be proved in the same way, so we omit the proofs.
First we prove Extl(Q(X;’rS)rv’s,X;Q’sv) = 0. Let K(Af,,) be the indecomposable
Virasoro module defined by the following exact sequence

0= L(A; ) — K(A)

r,5;0

) = K(1) — 0,

T

where 7 = (v sv, Q4 sv.1, Qv sv.2). By the structure of Virasoro Verma modules ([12], [21], [48]),
we see that

EXt,lC(K(A:S;O)/L(hT,S>7 L(A:_V,SV;O)) =0.

Thus, by the structure of the Fock module F,v ,v, we have

EXt}:(K<A;":s;O)7 L(A:V,SV;O)) ~ C. (734)
Let V(A},,,) be the non-trivial extension of this Ext'-group. By (Z34), we have
EXt,lC(V(A::s;O)’ L(A:—V,SV;O)) =0.

Then, by the exact sequence

0= LAY 0 Argvo) = V(AL = K(1) =0,
we obtain
Exty(K(7), LA 1)) = 0. (7.3.5)

Assume Extl(Q(/'\?;’;)rv,s, X1 ) # 0. Then, by Proposition 2R, we have

Extl(Q(Xr;)Tv,s /X, XL ) #0.

7,87

Fix a non-trivial extension [E] € Ext'(Q(X}),v /X, X1 ). Note that the Virasoro

7,87

zero-mode L acts semisimply on E. Let uq; be the highest weight vector of the submodule
X1 . C E. We fix any Lyp-homogeneous vector uy € E such that, for the surjection
B — XTI, m(up) gives the highest weight vector of Xf, and fix a homogeneous vector

r,8)

uj € E* such that (uj,u;) # 0. Then, by (=33), we have U(L).up ~ K(7), and thus
Loui =0, forn>1. (7.3.6)

Since [E] # 0, by the structure of Q&) /X%, Ei(XTf;)Tv75 and 5i(XTt,sv)TV,s, we
have

(uy, Ye(W*; 2)ug) # 0, (7.3.7)
where W* is one of W= or W°. Note that

Srv—i-er,suO € L(hr,s) .
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Then by Proposition =23 and ([Z=36), we have

0= (ui, Ye(W*;2)Svip, suo)
rv+p+ S

= H H(h4p+—1,1 - hrv+r+2p+—2i+1,8+sv—2j+1)<u>(1(aYE(W.;Z)u0>'

i=1 j=1

The coefficient in the above equation is nonzero, so we have (uf, Yr(W*;2)ug) = 0. But
this contradicts (I2377).

Next we prove Extl(Q(Xr_vﬁ)m, X, v) = 0. Note that, by the structure of Virasoro

Verma modules and by the structure of the Fock module F, ,v 1,
EXt,lC(K(A;\/,S;O)/L(Aj—\/,sv;(})7 L(A;sv;())) ~C (738)

(see Definitions EZTT for the definitions of Virasoro module K(A, ). Let V(AL o)
be the non-trivial extension of this Ext'-group. By (Z3R), we have

Extr(V(AL g0) LA v )) = 0.
Then, by the exact sequence
0= L(A, v A:—V,SV;I)* = V(AL 50) = K(r') =0,

we obtain

Exty(K(7'), L(A, ) =0, (7.3.9)
where 77 = (. sv.1, Qv sv.2, 0y 5v.3). Let us assume that

Ext'(Q(A,5 ) X ) £ 0.
Then, since Ext' (X5, Xy

Eth(Q(XTT/,S)":S/XTT/,S’ XTTSV) 7é 0

) = 0, we have

Note that Ly acts semisimply on any extensions of this Ext'-group. Fix any non-trivial
extension [F] € Extl(Q(XTTV’s)T’S/X’ X ). Then, noting Proposition X8, by the

rV,s) “rrsV

Virasoro module structure of F we have
Exty (K (1), L(A, ) # 0.
But this contradicts (=39). O
Proposition 7.3.7. Let (a,b) be (r,s) or (r¥,s"). Then we have
Ext'(Q(X;)av.p L(hap)) = Ext (Q(X )apv, L(hap)) = 0.
Proof. By the exact sequence

0= Ky = QX)) s = QAT ) v o/ Krs = 0,

66



we have the exact sequence
0— C — C — Ext(Q(X,)rvs, L(hys)) = Ext' (Kys, L(hys)) — 0.
Thus we have Ext(Q(X),v s, L(hrs)) = Ext'(K,,, L(h,)). Assume
Bxt! (s, L(hy.) £ 0,
and fix a non-trivial extension [E] € Ext'(K,, L(h,)). Since
Ext! (L(hrs), L(hrs)) = 0,

E has a submodule which is isomorphic to K7 .. Thus, by Theorem 6ET3, we see that F
has Lo-nilpotent rank two. Let {ug,u;} be a basis of the highest weight space of E such
that

(L() — hr,s)uo S Cxul. (7310)
Then, by Theorem 6123 and ([Z310), we have
Sy oSrsug € Cuy.

In particular we have S, sug # 0. Thus E has X1, v as a composition factor. But this is

a contradiction. Thus we obtain Ext'(Q(X.f,),v s, L(h,,)) = 0. The other equations can
be proved in the same way, so we omit the proofs. O]

Proposition 7.3.8. Let (a,b) be (rY,s) or (r,s"). Then we have
Ext'(Q(X,,)av.s, L(havp)) = Ext'(Q(X, ) apv, L(hapv)) = 0.
Proof. By Proposition X8, we have
Ext! QX0 s, L(hns)) = ExtH(QXT s/ X5, L(hrs))-

Assume Ext'(Q(X, v oIrs/ X o L(hrs)) # 0. Then, by considering the contragredient of
any non-trivial extension of Ext (Q ( v s/ X o L(hys)), we see that

Ext!(Kys, X7 ,) # 0.

Since Ext'(L(h,,), X~ ) = 0, any non-trivial extension of Ext! (I, , X,y ,) has a sub-
module in Ext! (X}, X )\ {0}. In particular, we have
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EXtL( (hTS7Ar50) ( 7‘\/50))%0

On the other hand, by the structure of Virasoro Verma modules, we see that
EXtE( (hT 8 Ars 0) (AT_V,S;O)) =0.

Thus we have a contradiction. The other equations can be proved in the same way, so we
omit the proofs. O
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The following is a summary of Proposition [(Z3, -3, 34, [-3F, 234, [370 and
[[3R.

Proposition 7.3.9. Let (¢,a,b,¢,d) be any element in
{(67 a? b7 C? d)} :{(+7 /r’ 87 T\/7 8)7 (+’ r? 87 /r" SV)? (+’ rV? SV? T’v’ 8)7 <+7 TV? Sv7 T? S\/)7
(_7 T,\/’ S, T, S)a (_7 TV) S, r\/’ SV)7 (_a T, Sva T, S)a (_7 T, Sv7 TV) Sv)}'
Then we have

Extl(Q(Xib)C,d,L(hr,s)) =0, Extl(Q(X beds Xay) =0,
EXt (Q<X b)Cda‘)C';\/,bV) = 07 EXt (Q(X b)cdw)c' ) 0

Next we will prove that the four indecomposable modules Pf, € C’ﬁf;’bk are projective.
By Propositions 28, [Z31 and 234, we have the following lemma.

Lemma 7.3.10. Fiz any (¢,a,b,c,d) in
{(e,a,b,c,d)} :{(+,T,s,rv,s), (+,7,8,7,8"), (+,r", 8, 7", s), (+,7",5", 7,8,
(—,’I"\/,S,T,S),(—,’T‘V,S,TV,SV),(—,T‘,S 7T78>7(_7T7S 7TV’S\/)}.

Then, any indecomposable module whose composition factors are the same as those of
Q(Xyp)ea is isomorphic to Q(Xs,)ca-

By Lemma [Z310 and the structure of 73, ., we have the following proposition.

Proposition 7.3.11. Fiz any (a,b,€) in
{(7’, S, _'_)7 (7,\/’ Sv7 _'_)7 (rvv S, _)7 (T, Sv7 _)}
Then the logarithmic module Py, has the following sequences of quotient modules:

0 < U1 (Psy) < Us(Psy) < Us(Pg,) < Us(Pg,) = Py,
0 < Vi(Ps,) < Va(P; b)<V3< )§V4< a,b): b

with

Uy = Q(X;)av by Ua/Ur = Us /Uy = Q(X, 1 )av sy, Us/Us = Q(X;})av
VYI = Q(Xgib)a,bva ‘/2/‘/1 - ‘/E%/Vé = Q(Xa_ve’b)av,bva V;L/VE’) - Q(Xae’b)a,bv'

Remark 7.3.12. Figure represents the sequence of the subquotients given in Propo-
sitton [7.3.11.

By Propositions [Z39 and [Z3T1, we obtain the following theorems.

Theorem 7.3.13.

EXt (’Pjs, ( )) = EXt (Prv sV (hr,S))
Ext' (P, L(hys)) = Ext' (P, L(hyy))

T

Y

0
0.
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/
Q?\‘ ?>/<>

Figure 7.4:  The sequence 0 < U (P},) < Ux(P,) < Us(P,) < Uu(PY,) =P,

Theorem 7.3.14. Let (a,b,€) be any element in

{(r;s,4),(rV,sY,+),(rV,s,—), (r,s", =)}

Then we have

Ext' (P abr Xav, pv) = Ext' (Pév bYs X;b) =0,
EXt ( ab?‘)c'av b) EXt ( ab7Xa bV) 0
EXt (Pav,bv7 Xa\/,b) = EXt (Pav b\/’ )

By Proposition [Z3T1, we obtain the following proposition.

Proposition 7.3.15. Each logarithmic module Pf, is generated from the top composition
factor and has the following socle series as a W, ,_-module:

1. For P/,

0< 51(73:5) < S5(P,) < Ss(P,) < Su(P,) < S5(P,) =P,
Sy =

52/51 e O X @ L(h ) @ XL, © XL,

S3/Sy = X* SXL L OXL LB XL e X,
Si/S3 =X  ®XL @ Lhes) ®X o OX .,

S5/S4 =

,S
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+
2. For P v,

0 < Sl<7)+\/,s\/) < S2(P+V7SV) < S3<7D+V,5V) < 54(,PJ(/75V) < S5<7D+V,sv) = Pjv,s\“

s T s T T

Si=X4 .,

Sy/S1=X3 DXL @ L(hs) X DXy,
S3/Sa=XL veX exleXioXxloXxt,,
S4/S3 =X ® X ©L(hs) XY, DX,

Ss/Si= X4 ..

S S

3. For 'P;Sv,
0< Sl(PT_,sv) < 52(7D;$v) < Sg(P;Sv) < 54(77;sv) < SS(P;SV) =P,
Sl - XTTSV7
Sa/S =X o X e Xl oXl .,
S3/Sa =X v O XL ®XL D L(hs) ® Lhs)® X0, OX0 DX v,

S1/S3 = vaﬁv > vaﬁv ® X, DXL,
S5/S4 - ers\/.
4. For P,

78’

0<S1(Pr,) < S (Pr,) < S3(Pr,) < Su(Pr,) < S5(Pr,) = P,
Sl = Xr;,s7
Sa/S1=X1 O XL O XL X,

S3/S2 = Xr_v7s D Xr_v,s 57 XTTSV D L<h7",8) @ L(hﬁs) ® XTTS

Si/Ss =X e X o Xl o XL .,
Ss/S1= Xy .

VRX XY

737

We define the following notation.

Definition 7.3.16. For any W, , -module M € C’]ﬁffjd“ with
0 < Socy (M) <--- < Soc,(M) =M,

we say that a simple module of the composition factors of M is at level i if it is contained
in Soc,—i(M)/Soc,—i—1 (M) (0 <i<n-—1).

Definition 7.3.17. Let (a,b) be (r,s) or (r¥,sY). We define the following indecomposable
modules:

1. Let P;,‘f be the indecomposable submodule of P;b which is generated from ZXJb at
level 2.

2. Let 73;;;‘ be the quotient module of P;b, which is quotiented by the submodule gen-
erated from 4X$,’bv at level 2.
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Figure 7.5: The embedding structure of the logarithmic W,, , -modules PS¢ and P,

The triangle A corresponds to the simple module L(h,s), @ to &, & to }(rt,sw & to
ers\/ and & to va,s-
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Remark 7.3.18. Figure[7.J represents the embedding structure of the logarithmic W, ,_-
modules given in Definition [7.3.17.

Proposition 7.3.19.

Ext'(P¢, X)) = Extl(Ptﬂfsv, X5 ) =0.

8 r

Proof. By Proposition 311, we see that P, d has Q(X)rsv as a submodule. Then by
the exact sequence

0— QX ) e = P = QX)) s/Krs = 0
and by the proof of Proposition [Z3T, we obtain

Ext' (P, X)) =o0.

r,8 9

The second equation can be proved in the same way, so we omit the proofs. O

Proposition 7.3.20.
EXt1<P7:~,-;L (2)(7:,:)7 Xr—,:) = Eth(P:J,LsV/(ZXTt,sV)? Xrt,sv) = Cz'

Proof. Let us prove the first equation. The second equation can be proved in the same
way, so we omit the proof. Then it is sufficient to show that

Ext! (P, ) =0.

r,s )

Assume Ext!'(PFe, At

s “vr,s

) # 0 and fix any non-trivial extension
0= XS EL P 0.

For (a,b) = (rV,s),(r,s"), let E(X, ;). be the indecomposable module defined by the
following exact sequence

0— Xj’s D XQ‘S — 5(Xa‘7b)r75 — X, — 0.

By Propositions [Z8 and [Z3, we see that at least one of the following sequences of
submodules holds

W&S) CEXL s CE, WX CE(X v )rs CE. (7.3.11)

For the Virasoro decomposition X, = @, -,(2n +1)L(A},,), let u € X, be the highest
weight vector of L(A]
L(A},,) such that

r,s;1

) and let w € Af, be the Virasoro highest weight vector of

WE[0]w # 0 mod L(A[ ).

For the surjection 7 : E — X, we fix any Lg-homogeneous vectors %, w € E such that

7,87

(@) = u and 7(w) = w. Define the following vectors

* ~ * ~
T = STV SSTV+P sU+ STV,SV-F?P—STV sV42p_ W,
+p+7 + ,$V+2p

* ~ * ~
Ty = Sr,sVer_ S’r,sv-‘,-p,u + S,qv+2p+,sv57,v+2p+,svw.

72



Let us consider the submodule Ey C E defined by Ey = W, , .21 + W, ,_ .w2. By
(Z31M) and by the structure of 5(Xr375)r,s7 E(ersv)r,s, S(X,f;)rv,s and 5()(#5)7»75% we see
that Ey ~ X%, @ A, and

p(FEo) ~ XTJ,; & ers.
Then, by Theorem BZ2T4, we have
EO = Wp+,p_ Xy + Wp+,p_ .Xro + Wp_,'_,p_.Sr,sS:’S’INL. (7312)

Let E' = E/Ey. Note that E’ is indecomposable. Then, by (Z312) and by Propositions
AR and B29, we see that Ly acts semisimply on E' and L(h, s) C E’ as the submodule.
Let B” = E'/L(h,). For the surjection 7" : E"” — X%, let uy € E” be any highest weight

vector such that 7”(up) = u and let u; be the highest weight vector of the submodule
Xf, C B By (IZ312), we see that

Srv75v+2p75’r7sv+p7’l£0 = 0. (7313)

By the structure of the indecomposable modules P, /2Xf, and E(X;,), 4 and by Propo-
sition [Z31, we must have

(uy, Yeun (W*®; 2)ug) # 0, (7.3.14)

where W* is one of W, W% or W~ and uj is any Ly-homogeneous vector of E”* such
that (uf,u;) # 0. Thus, by (Z313) and Proposition 23, we have

0= (uj, Yer(W?* 2)Sv oviop Srsvip Uo)

7‘\/ Sv+2p_
= H H (h4p+71,1 - h27’v+p+72i+173p_72j+1>
i=1 j=1
r sV4p_
* o,
X H H (h4p+71,1 - h27‘72k+1,25\/+2p_72l+1)<u17YE”(W ,Z)U0>~
k=1 I=1

The coefficient in the above equation is nonzero, so we have (uj, Yer (W*; 2)ug) = 0. But
this contradicts (ZZ314).
0

Theorem 7.3.21. For P!,

7,87

Pl o € O, we have

Ext!' (P}

r,s)

Xr—j_s) = Eth (P::/,sv7 Xr—’\_/,s\/) = 0.
Proof. From the exact sequence

0P =Pl = PL/PIE—0

and Proposition [Z3T9, we have the following exact sequence

0—C— C— C*— Ext' (P}, /P, X)) — Ext! (P

s 7,89

X)) —0.
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By Proposition 2320, we have

Ext (P, /P, xt,) = C.

7,87

Thus we have

Ext!' (P}

7,87

X)) =0,
The second equation can be proved in the same way. O]

Definition 7.3.22. Let (a,b) be (rY,s) or (r,s"). Let P,y be a quotient module of P,
quotiented by the submodule generated from 4X,, . and 2L(h,s) at level 2.

Proposition 7.3.23.
Extl(P;ffS, X5,) = Extl(PgS“v, X ) =0.

Proof. Assume Ext'(P", X5 ) # 0. Fix a non-trivial extension

_ L D —u
0=, E=>PJ —0.

Since Ext' (X,

rV,s’

X ,) =0, we see that
Socle(E) = «(Xy ) © 22X, ..

Let ¢; and ¢ be injections from Xy | to E such that p o ¢ (Xy ) and p o (A}, ) are
Socle(P,.,). Let {vy,v_} be the basis of the highest weight space of X, _ such that

W*[0]vg =0, WE[0Jvy € C*vs.

For the canonical surjection 7 : £ — X, _, we fix any Ly-homogeneous vectors v_,v, € E

such that 7(v1) = vy. Note that the Virasoro module U(L).v4 has ]S(A;V,s;o) as a
subquotient. By Proposition [Z34, we see that L(XT_\/7S) is contained in both submodules
of E generated from each of 2&f, and 2.96';575v at level one. Thus, by the structure of

]S(AT_V’s;O) and the structure of the non-trivial extensions in Ext!(£*(X,%),v,, X ) and
Eth(gi(Xrt7sv)rv75, X ), we have

(Lo — A3 o)ty € Cu(u-) + Cify) + Cur(uy) + Cin(uy),
(Lo — AL 40)0- € Cuvy) + Cu(v-) + C g (v-) + Cup(v).

From this, we can see the contradiction as in the proof of Proposition [Z34. The second
equation can be proved in the same way, so we omit the proof. O]

By this proposition, we have the following proposition.

Proposition 7.3.24.

Ext' (P /2K, X ,) = Bxt! (P4 2X5 X,

rV,s) rV,s) “trsV

) =C2
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Theorem 7.3.25.

Ext' (P ,, X5 ,) = Bxt' (P, X ) = 0.

T T

Proof. Py , has the indecomposable submodule generated from X7 | at level 2 and whose
components are the same as those of Q(X;v78)rv7sv. By Proposition 234, this submodule
is isomorphic to Q(Xr_\,’s)rv,sv. Then by the exact sequence

0— Q(Xr;,s%"vvsv - 73;/,5 - P&,S/Q(‘){riv,s)rvﬁv —0
and Proposition [Z34, we have the following exact sequence

0= C—C— C— Ext{(Pr /Q(X5 ), X ) = Ext! (P, X ) — 0. (7.3.15)

rVv,s?

Let M be the quotient module of P | defined by the following exact sequences
0— ’Cr,s D ’Cr,s — P;\/,S/Q(X;V,s)Tv,sv - M —=0.

By this exact sequence and by Ext'(/C,, Xy ,) = 0 (see the proof of Proposition 38),
we have

Ext' (M, X5 ) = Bxt (P o/ QXS ) svs X3 ). (7.3.16)
Note that M satisfies the exact sequence

0= XL, 04X v > M — P 2X5  — 0.

s r,sV

By this exact sequence and by Proposition 2324 we have the following exact sequence
0+C—C—C—C*— Ext'(M,X5,)—0.
Thus we have Ext' (M, X ,) =~ C. Therefore, by (Z313) and (Z318), we obtain

Ext'(P ,, X0,

V.8’

) = 0.

S

The second equation can be proved in the same way. O

Since all logarithmic modules Pf, in Cﬁf;ick are generated from the top composition
factors, by Theorems [3 T3, [[3 T4, [-321 and [374, we obtain the following theorem.

Theorem 7.3.26. P, PL v, Po

rs) ' or

- octi + vt
s and P, are the projective covers of X', X5 v,

X, and X ., respectively.

r

Remark 7.3.27. Figure [7.q9 represents the embedding structure of the series of quotient
modules given in the proof of Theorem [7.3.2].
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0 Q VIRV, R
NN

Figure 7.6: The embedding structure of the W, , -modules given in the proof of Theorem
[C373. The triangle A corresponds to the simple module L(h,.,), © to X, & to X;C’sv,

A to XT v and & to X’r_\/

S
A
> !
q<|

s*

7.4 The projective covers of the minimal simple mod-
ules L(h, ;)

Fix any thick block C*  Let P(h,s) be the projective cover of the minimal simple
module L(h, ). By Corollary BZ2TT, we can see that P(h, ) has Ly nilpotent rank three.
In the following, we determine the structure of P(h, ).

Let N, s and M,v 4v be the submodules of 777?; and Pﬁvsv generated from L(h, ) at
level 1. N, s and M,v e are indecomposable and have the following socle series whose
socle lengths are four:

1. For N, ,, we have

Soci(N,s) = XTJ’;

Soce(N,.5)/Soci(N,.5) = 2X5 . @ L(h,s) @ 24X,
Socs(Ne)/Soca(N;s) = Xh & &
N;.s/Socs3(N;s) = L(hys)

2. For N,v 4, we have

SOCl( rv s\/) = Xr\/ sV
Soca(Nov sv) /Soct(Nov ov) = 2X5 @ L(hys) © 24,
SOC3( v)/SOCQ( v sv) Xr—f_s éh XTJ\F/7S\/

N,

NV SV/SOC3 rv Sv) = (h,n,S).
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m m
BNV N/

Figure 7.7: The embedding structure of the logarithmic W, , -modules N, ; and Nv 4v.
The triangle A corresponds to the simple module L(h,), © to X, & to XL v, & to
ersv and & to X

Remark 7.4.1. Figure [T_] represents the embedding structure of the logarithmic W, p_-
modules N, s and Ny gv.

As the quotient of NV, s, we define the indecomposable module Q(h, ) which satisfies
[Q(hrs)] € Ext! (K, v v) \ {0}
By Propositions 28 and by the proof of Proposition [[Z37, we have the following lemma.
Lemma 7.4.2.
Ext'(Q(hys), L(hr,s)) = 0.

Recall the indecomposable modules P*" and P Ve given in Definition 317 We
define the indecomposable modules

. pDtu . Pptu
RT‘7S — P’I’,S /ICT',87 RTV,S\/ .— PTV’SV/ICTV,SV'

Note that, by Theorem B13, R, s and R,v sv have Ly nilpotent rank two. By Propositions
(2R, [[320, we obtain the following lemma.

Lemma 7.4.3.
Ext' (R, X%,) = Ext' (R, v, XL ) = 0.
Lemma 7.4.4.
Ext!(No/Krs, &) = Ext! (N o0 [Kpv v, XL ) = 0.

Proof. We only prove Ext'(N, /K, ., X.,) = 0. The second equation can be proved in
the same way.
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Assume that Extl(j\/'m /Ky s, X,,J,;) # 0 and fix any non-trivial extension F in this Ext'-
group. By Lemma [C273, we see that F has the submodule R, ;. Let t € E be the highest
weight vector in E[h,]. and let {ug,u;1} be a basis of the highest weight space of the
submodule R, s C E such that

(Lo — A o)uo € Cuy.
On the other hand, by
(Lo — hy5)t =0, Spv vt € Cug + Cuy,
we have (Lo — A:,fs;o)uo = 0. Thus we have a contradiction. ]

Note that there exists surjections from P(h,s) to N, s and from P(h,s) to N gv.
Thus, by Corollary E2ZT1 and Lemma 44, as the quotient of P(h, ) we have the inde-
composable module P’(h, ) whose socle series is given by

Socy (P’ (hes)) = L(hys),

Soca(P'(hys))/Soct (P (hys)) = X,js &) XrJ\r/,sV’
Socs (P (hy,s))/Soca(P'(hys)) = 28,5, & Llhy,s) & 24, v,
Soca(P'(hys))/Socs(P'(hrs)) = X & XL 0,

P'(hm)/Soczl(P’(hm)) = L(hys).
Lemma 7.4.5.
Extl(P’(hr,s), L(h,s)) =0.

Proof. Note that P’(h, ;) has the submodule isomorphic to Q(h, ;). Thus by Lemma 22
we have

Eth (’Pl(h’/‘,s)7 L(hT',S>> = 0

Lemma 7.4.6.
Ext! (P (hys), XF,) = Ext' (P'(hys), X1 ) = 0.

Proof. We only prove the first equation. The second equation can be proved in the same
way. By Proposition =31, we see that

Ext'(Q(hs), X,,) = 0. (7.4.1)
Note that P'(h,s)/Q(hrs) ~ N;s/K;s. Thus, by Lemma 44 and by (Z), we obtain
Ext'(P'(h,s), Xf,) = 0. O
Lemma 7.4.7.

Extl(P’(hrvs),Xr‘vﬁ) = Ext!(P'(h,s), X ) = 0.

» sV
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Proof. We only prove the first equation. The second equation can be proved in the same
way. Assume

Ext'(P'(hys), Xv ) # 0

and fix any non-trivial extension F in this Ext'-group. Then we see that E has a sub-
module which has a indecomposable subquotient in

Eth(gi(Xrts):v,y XT‘T/,S> or Eth(Si(‘){;’J\rﬂsVﬁv,s? X’/’T/,s)'
But this contradicts Proposition [(=34. O

By Lemmas 41, A8 and 272, we have P(h,s) ~ P'(h,s). Therefore we obtain
the following theorem.

Theorem 7.4.8. The projective module P(h,s) has the following socle series:

Soci(P(hrs)) = L(hys),

Soca(P(hys))/Soci(P(hys)) = X5 @ XL o,
Socs(P(hy,s))/Soca(P(hrs)) = 24 o @ L(hrs) © 24,
Socy(P(hrs))/Socs(P(hys)) = X[ & XL o,
P(hrs)/Soca(P(hys)) = L(hys)-

W

JAN

Figure 7.8: The embedding structure of the logarithmic W,, , -module P(h, ). The
triangle A corresponds to the simple module L(h,s), @ to X, & to XTJC’SV, o X
and & to Xr_v7

s

Remark 7.4.9. Figure [7.8 represents the embedding structure of the projective module
P(hys). This embedding structure is conjectured in [33], and it is shown that P(h,s) has
no dual. In this thesis, we do not go any further into the properties of the projective
modules P(h,s) on the tensor category of W, ,_-modules.
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7.5 The projective covers of simple modules in the
thin blocks

Fix any two thin blocks C*in Ctin (1 <p < p, 1< s < p_). Let us consider the log-

™p—7 TP+, )
arithmic modules QX ),v,_, Q(X[v’p_)npf € C’ﬁf;ff and Q(Xpt’s)p+,sv, Q(Xp17sv Jpi,s €
Cthin
P+,8°

As in the case of the logarithmic modules Q(Xf,).,. in the thick blocks, we can prove
the following propositions.

Proposition 7.5.1. The logarithmic modules Q(X,5, )e,_ and Q(X ), o are generated
from the top composition factors and the socle series are given by :

1. The socle series of QX )pv,_ is given by

Socy = X7, ,

Socy/Socy = X5, ® Xy, ,

Q(erpf)rvm_/Socg = X;};f.
2. The socle series of Q(X,y , )rp_ is given by

Soc; = Xr;,p,7

Socy/Socy = &, @ XL,

QX )rp [Soca = X5, .
3. The socle series of Q(X,] ), sv is given by

_ p+

Soc; = Xp+’s,

Socy /Socy = ij”sv P XI;SV,

Q(Xpt,s)P+asv/SOC2 = Xpt_,s'
4. The socle series of Q(Xp;sv Jpy.s 1S given by

Soc; = ij“sv,

Socy/Socy = Xp:s D Xpis,

Q(Xp:.,s\/)PJr:S/SOCQ = Xp:_,sv‘

Proposition 7.5.2.

1. In the thin block C*"™ we have

rp—7
Ext'(X}, XL ) =Ext'(X5, &l ) =C

T7p7,

The other extensions between the simple modules in this block are trivial.
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2. In the thin block Ct™" we have

P4,87

Ext'(X} ., A

P+:57 pg sV

) =Ext'(x ., AF ) =C%

P4,V TP,8

The other extensions between the simple modules in this block are trivial.

The proofs of these propositions are the same as in Theorems [T, [ T3 and Propo-
sition [ZR, so we omit them.

Proposition 7.5.3.

Ext (Q(X, )rvyp, X, ) = ExtH QA )pysv, Xy o) =0,
Ext! (Q(X, , Jrp_ X, ) = Extl(Q(Xp;sv)p+,sv?fpis) =0,
Ext! (Q(XT Drps Xy ) = BxtH QX piss Xy v) =0,
Ext! (Q(A, v X, ) = ExtH QA )p,sv, X, o) =0

Proof. We will only prove Extl(Q(X;fpf),_v’pf,X;’;i) = 0. The other equations can be
shown in the same way as Propositions [[Z332, [Z34 and [Z35, so we omit the proofs.
Since Ext' (X, X ) =0, it is sufficient to show that

Ext!(Q(X >p/r,,, t)=C.

Fix any extension [E] € Ext'(Q(X,L ), /X1, ) Assume that E has Ly- nllpotent

rank two. Let E be the highest Welght space of E. Note that the Virasoro module U(L).E
has Lg nilpotent rank two and

[U(L).E] € Extp(K(7), L(hrp_)) \ {0},

where 7 = (v, ._1,0p ,0pv, 7). Then, by Theorem 629, as the Baer sum of exten-
sions obtained from E and Q(X,, ),v,_, we have a extension

+ ¢ p + +
0 - Xr,pf - EI - Q(Xr,p,)Tvvpf/er

such that Ly acts semisimply on the highest weight space of E’. Then, by Propositions
EZR and 229, we see that Ly acts semisimply on E'.

Assume [E'] # 0. Fix any homogeneous vector ug € E’ such that p(ug) is the highest
weight vector of p(£') = Q(XF, ),v,_ /A, , and let u; be the highest weight vector of
the submodule X,*, C £, Smce [E'] # 0, we must have

(u, Y (W*; z)uo) # 0, (7.5.1)

where W* is one of W*, W or W~ and u} is a homogeneous vector of E™ such that
(uf,u1) # 0. Since Ly acts semisimply on E’, by Theorem 629, we have S,v 9, S,, ug =
0. Then, by Proposition 213, we have

0 = (ul, Yer (W*; Z)Srvﬁpf Srp_ o)

rV 2p_
= H H<h4p+71,1 - hT+T\/*2i+1,3p_72j+1)
=1 j—1
T pP—
X H H(h4p+—1,l — hor—okt1,2p_ —2141) (U7, Yer (W*; 2)ug).
k=1 i=1

81



The coefficient in the above equation is nonzero, so we have (u}, Y (W?*; 2)ug) = 0. But
this contradicts (). In the case where Ly acts semisimply on FE, we see that [E] = 0
as shown above. ]

Since the logarithmic modules Q(XJ5, )o,_ and Q(&" ), o are generated from the

top composition factors, by Proposition 533, we obtain the following theorem.
Theorem 7.5.4.

1. QXS )y and Q(X, )rp are the projective covers of Xf, and X re-

7p_ ’
spectively.
2. Q()\l,’pt’s)p+,sv and Q(X,. v )p, s are the projective covers of X\, and X, ., respec-
tively.
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Chapter 8

Non-semisimple fusion rules

Since the triplet W algebra W, , is Cs-cofinite, Theorem 4.13 in [36] show that C,, ,_
has braided tensor category structure as developed in the series of papers [37, B&, B3Y, A0,
A1, 942, &3, 44]. We denote (Cp, ,_,X) by the tensor category on Cp, , , where the unit
object is given by ICy 1 := W), ,_.|a11). Note that the tensor product X of (Cp, ,_,X) is
right exact (see Proposition 4.26 in [39]).

The tensor category (Cp, ,_, ) is not rigid. In fact, if we assume that (C,, , ,X) is
rigid, then by the exact sequence

0— L(hi1) = X KA — &7 =0
and
L(hl,l) IX Xfl - O

which will be proved in this section (see Proposition and Proposition B27), we have
the exact sequence

0— L(h11) ¥ L(h;1) - 0—0—0.

But, since L(hy1) X L(hy1) = L(hq,1), this is a contradiction.

This makes it more difficult to study the structure of the tensor category (C,, ,_,X)
compared to the triplet W-algebra W, (cf.[66],[64]). In this chapter, we will show the
rigidity of the indecomposable modules K; 2 and Ky in Theorems B=371 and B3 TH, using
the methods detailed in [I5] and [66]. Using the rigidity of Ko and Koy, we show
that all indecomposable modules K, , Q(Xﬂ;)., and PT{[S can be obtained by repeatedly
multiplying Xy 2 and Ky ;. As a result we see that all simple modules in the thin blocks,
all indecomposable modules K, s, Q(er;).,. and Pﬁs are rigid objects. The rigidity of
these indecomposable modules was conjectured in [37].

We also determine the tensor product between all simple modules. These results are

stated in Propositions B43, B4, K45, K477 and B4°8.

8.1 Tensor product X and P(w)-intertwining opera-
tors

In this section, we review the definition of the tensor product X and P(w)-intertwining
operators in accordance with [8],[39],[61] and derive some identities known as the Nahm-
Gaberdiel-Kausch fusion algorithm(cf. [B5]).

Definition 8.1.1. Let V' be a vertex operator (super)algebra and let C be a category of
grading-restricted generalized V-modules. A tensor product (or fusion product) of M;
and My in C is a pair (My X My, Vg), with My X My and Vg an intertwining operator
of type (Aﬁl&A%?), which satisfies the following universal property: For any Ms € C and
~ ” M

intertwining operator ) of type (M1 My

M X My, — M3 such thaty: foyg.

), there is a unique V-module homomorphism f :
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In the paper [8Y], Huang, Lepowsky and Zhang introduced the notion of P(w)-
intertwining operators and the P(w)-tensor product. The definitions are as follows.

Definition 8.1.2 ([3Y]). Fiz w € C*. Let V be a vertex operator (super)algebra and let
C be a category of grading-restricted generalized V -modules. Given My, My and M3 in C,

a P(w)-intertwining operator I of type (MlM]fJQ) 18 a bilinear map I : My ® My — Ms that

satisfies the following properties:

1. For any 11 € My and 1y € My, mp(I[Y)1 @ 102]) = 0 for all h < 0, where m, denotes
the projection onto the generalized eigenspace Mslh| of Lo-eigenvalue h.

2. For any yn € My, 19 € My, Y5 € M3 and A € V', the three point functions

(03, Ys(A; 2) I [ty @ o), (45, I[Y1(A; 2 — w)ihr @ 1ha]), (U3, It @ Ya(A; 2)1a])

are absolutely convergent in the regions |z| > |w| > 0, |w| > |z —w| > 0, |w| > |z] >
0, respectively, where Y; is the action of V-module.

3. Given any f(t) € Rpgy = C[t,t71, (t —w) "], we have the following identity

(2) 5, il A 2) oo @ 4]} o

0,w

= § T TV = = Wi © Val) g+ S5, Tl © Va2l 5

o’

where p is the mutual locality index of A with ;.

Definition 8.1.3 ([3Y]). Let V' be a vertex operator (super)algebra and let C be a category
of grading-restricted generalized V-modules. A P(w)-tensor product of My and My in C
is a pair (M Xpeyy My, Mp(y), with My Xpy Ma and Rp,y a P(w)-intertwining operator

of type (MIEIP(K)IQMQ), which satisfies the following universal property: For any Mz € C and
M3

P(w)-intertwining operator I of type (M1 "

n : My Wpwy My — M3 such that

), there is a unique V-module homomorphism

770 Mp(u) [P1 @ o] = I[th @ o]

for all ¥y € My and vy € My, where  denotes the extension of n to a map between the
completions of My Mp(,y My and Ms.

Remark 8.1.4. It is known that the definition P(w)-tensor product Mp, does not depend
on the choice of w € C*. See Remark 4.22 in [39].

The following proposition is due to [39].

Proposition 8.1.5. Let V' be a vertex operator (super)algebra and My, My and Mz be V -
modules. Then there exists a linear isomorphism from the space of intertwining operators
of type (M%CZQ) to the space of P(w)-intertwining operators of the same type.
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By this proposition, the structure of the space of intertwining operators can be de-
termined from the structure of P(w)-intertwining operators of the same type. In the
following, we will introduce some formulas derived from the P(w)-compatibility condi-
tions.

We define a translation map

T, :C(t) = C(t), by  [f(t)— f(t+1),
and a expansion map
vy 2 C(t) = C((1))

that expands a given rational function in ¢ as a power series around ¢t = 0. Given V-

modules M;, My, M3 and a P(1)-intertwining operator I of type (M%Z\Z), as detailed in

[8],[51], we can define the action of V @ C[t,t™ !, (t —1)"!] or V @ C((¢)) on M} as

(AfO)03, I @ ¢u]) = (A (f (D)3, L[ @ ¢hn])
= (3, Ity o Ty (AP F(t71)) 01 @ o) + pu(es, I @ 04 (APPF(E71))])  (8.1.1)

where ¢35 € My, ; € M;,
AOPP . et_lLl(—tQ)LoAtfz,
and (assuming A € V' has Ly weight h) At™); = Aln — h + 1]1);.
By (BT), we have the following lemma.

Lemma 8.1.6. Let V' be a vertex operator (super)algebra. Let A € V be a Virasoro
non-zero primary vector with Lo conformal weight h, that is

LoA = hA, L,A=0, n>1.

Given V-modules My, My, M3 and a P(1)-intertwining operator I of type (Mljv[J\B/Ig)’ we

have the following identities:
(Aln]ys, I @ o))
=5 (") AL = b 130n) @)+ T (AL-nle)

1=0

and

(AP (7 — 1) 205 Ty @ )
= (5. I[((Aln — 1] + Aln])th1) ® ¢a])

N MZ <n + h — 2) (—1)" =25 Iy @ (Al — b+ 2J12)]),

i
where Y3 € M3, v; € M.
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In particular, in the case of the conformal vector A = T' in Lemma B8, we have the
following lemma.

Lemma 8.1.7. Let V be a vertex operator (super)algebra. Given V-modules My, My, M;

and a P(1)-intertwining operator I of type (MIMJ%), we have the following identities:

oo

(Lt 1o @ al) = 3 (7 ) st )+ (05, 1 (L)

m=0

Z(_l)m<Lm—n¢§7 IWJI ® ¢2]>

m=0

= 3 (B + L)) @)+ 3 () (1005 1T @ (L)

where Y3 € M3, v; € M;.
Hereafter we omit P(1)-intertwining operators and use the abbreviation as
(3,191 @ 1h2) = (Y3, I[th @ ¢h])

unless otherwise noted.

From this chapter, we will use the following notation frequently.
Definition 8.1.8. Let V' be a vertex operator (super)algebra
1. For any M € V-Mod, we define the following vector space
Ag(M)={pe M | #0, AnJy =0, YA€V, n>0}.

2. For any M € V-Mod, we define the top composition factors of M as follows
top(M) = Socle(M™),
where M* is the contragredient of M.
3. Giwen V-modules My, My, M3, we define

M; . . M
1 (M2 Ml) = {mtertwmmg operators of type <M2 Ml) }

8.2 Tensor product L(h,,) X e

First we introduce the tensor products between any pair of minimal simple modules
L(hy). Since the maximal ideal X7 of W,, , acts on the minimal simple modules
L(h, ) trivially, we have the following minimal model fusion rules.

Proposition 8.2.1 ([I0]). For 1 <r ' <p, —1,1<s,s <p_—1, we have

min{r+r'—1,2p4 —r—r'—1} min{s+s'—1,2p_ —s—s'—1}

L(hys) B L(hy o) = &y ar L(hi;).

i=1+|r—7'| j=1+|s—s'|
i+r+7r'=1 mod 2 j+s+s'=1 mod 2
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Proposition 8.2.2.
Xé&L(hl,l) =0, 1<r<p,, 1<s<p_.

Proof. Assume X,F, X L(hy;) # 0. Fix any non-zero vector 15 € Ao((AX, X L(h11))*) and
let ¢ and v be the highest weight vectors of X;f, and L(hy ), respectively. Note that
the maximal ideal X of W, ,_ acts trivially on any minimal simple modules L(h,.s).
Then, by Lemmas 818 and BT, we can see that (¢35, X;", ® L(h1,)) is determined by
the numbers

W;? 7?1 ® L]i1¢2>>

for & > 0. Since L_y9py = 0, (¢35, X5, ® L(hyy)) is determined by (13,11 ® 12). In
particular, the intertwining operator Vg is non-logarithmic. Using Lemma B4, we have

(Lovs, Y1 @ 1)
= (Y3, L1 ® o) + (3, Lot @ 2) + (3,91 @ Loba)
= <¢§7 L0¢1 X 7»02)
Thus, the Ly-eigenvalue of 15 is the same as that of ;. Then, by restricting the action

of W,, »_ to the Virasoro action in the intertwining operator Vg, we have a non-trivial
non-logarithmic Virasoro intertwining operator of type

L<A;Es;0)
L(A;":S;O) L(hl7l) .
Note that S,, _1,_ —192 = 0. Then by using Proposition 23, we have

0= (45,01 ® Sy, —15 —102)

p+—1p_—1

= H H (hrv+p+,s - hp+*1+rv+p+f2i+1,p_71+572i+1)<¢§7 1 ® a).

i=1 j=1

We see that the coefficient of the above equation is non-zero. Thus we obtain (3, 1 ®
o) = 0. But this contradicts the assumption. Similarly, we can prove L(hy1) KA = 0.
[

By Propositions B2 and B2, we obtain the following proposition.

Proposition 8.2.3. For any simple module Xﬁ;, we have
Xos®L(hpwy)=0, 1<r <p,—11<s<p —1.
Corollary 8.2.4. For 1 <r,rv' <p, —1,1<s,s <p_ —1, we have
Ko & L(hyr.o) = Lihy ) 8 L(hyr ).

Corollary 8.2.5. For any (r,s) € T and M € W, ,,_, L(h, )X M becomes a direct sum
of minimal simple modules.
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8.3 Self-dual objects K, ;

Let us extend the definition of K, 5 given in Definition 273 as follows.

Definition 8.3.1. We define the following W, ,_-modules

1.

2.

For1<r<p;y—-1,1<s<p_ -1,

Krs =Wy, p_-|ars)

For1<r<py, 1<s<p.,

Krp = XT K =Xt

TP P+,S P+58°

In this section, we compute some tensor product ;o X e and Ky X e, and show that
the indecomposable modules K, ; are rigid and self-dual.

Proposition 8.3.2.

1.

For1 <r <p;, 2<s<p_, the dimension of the vector space Ao((K12 X K, )*)
is at most two dimensional. The Ly eigenvalues are contained in {hy.s—1,hy 541},
which corresponds to the highest weights of K, s—1 and K, 11, respectively.

For1 <r <p., the dimension of the vector space Ay((K12X I, 1)*) is at most one
dimensional. The Lo eigenvalues is given by h,o which corresponds to the highest
weight of K,.5.

For1<r <py, 2<s<p_, the dimension of the vector space Ao((K12 B XF,)*) is
at most two dimensional. The Ly eigenvalues are contained in {A:SQ;O, A:SJFI;O},
which corresponds to the highest weights of XT;_I and Xj"sﬂ, respectively.

For 1 <r <py, 2<s<p_, the dimension of the vector space Ao((K12 X X,7)*) is
at most four dimensional. The Lo eigenvalues are contained in {A_ 14,2, 110},
which corresponds to the highest weights of X, ;| and X, ., respectively.

For 1 <r <py, s=p_, the vector space Ao((K12 X X )*) is at most two dimen-
sional. The Lg eigenvalues are contained in {h,, _1, Aj,pf_l;o}, which corresponds
to the highest weights of L(h,, _1) and X} respectively.

rp——17

For 1 <r <p,, s=p_, the vector space Ag((K12X X, )*) is at most four dimen-
stonal. The Lq eigenvalues are contained in {A;fw, A, 1.0} which corresponds to
the highest weights of erl and X, _,, respectively.

Proof. Let p_ >3 and fixany 1 <r <p; —1,2<s<p_ —2. Assume 12X K, # 0.
Let ¥*, ¢1, ¢2 be arbitrary elements of Ay((K12 X K, 5)*), K12 and K, 5, respectively.
For n > 1, let w§”) (t = —n,—n+1...,n) be the Virasoro highest weight vectors of the
vector subspace (2n + 1)L(A},,) C K,s. Then, by Lemma BT, we see that the value

r,8mn

(V*, 1 ® @) is determined by the values

(W, U(L). |a12) ® |ar2)), W, U(L). a1 2) @ wi™),
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for some finite n > 1 and 7. By Lemma BT, we can see that the values (¢*, U(L). |a12) ®
la,s)) and (*, U(L). |on2) @ w;) are determined by the numbers

(W7, (L laa2)) @ Jaw,s)), (W, (L' Jar2) @ wi™),
for k,1 > 0, respectively. Note that the highest weight vector |a; o) satisfies

<L2_1 - %L_Q) |Oé172> =0.

Thus, the value (¢*, ¢1 ® ¢o) is determined by the numbers
(" o) @ lans)), (", (Lot |an2)) @ |ans)),
(W lang) @w™), (0" (Lo o)) @ w™).
Let us determine the eigenvalues of 1*. By Lemma 174, we have
(Lov", o) @ |ons)) = (hig + hes) (U7, |ar,2) @ [ans)) + (U7, (Lot Jou2)) @ [ans)),
(L™, o) ® wi™) = (hua + AL ) (W7 o) @ wf™) + (07, Loy o) @ w)™),
and
(Lot™, (Lot ]ou ) @ |os)) = (hag + hrs + 1)(07, (Lot |on,2) ® |aus))
W (Lo [ 2)) ® o))

D *
= p—+hm(¢ o 2) @ Jags))

wm+hm+1—%xw<h4mm»®mm»

(Low*, (L1 a12)) @ w™) = (g + A, + D)(W*, (L a10)) @ w™)
*?Wﬁ@zmu»®w%

p * n
;M@<ng®@b

mu+A;fHe§ﬁw,@4mm»®@%.

Then we have

((Logfﬂ?* ’?Tofi S)%r \saT s) )

( <L0¢ |061 2> ®w )
(Lov*, (L_1|a12)) ® w(”

A, — h1,2 + hr,s ;;Thr,s
e 1 h1,2+hr,s+1_£_t ’

h +A+ p+A+
A2:< 1,2 r,8;m p_ Tmsn )

z7|a12 ®|Ozm>> )

1 ]a1e)) ® |ans))

|Oé12 ®w( )> )

“1one)) ® wz(n)>

AA

where

1 h12+Arsn 1 -2+
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We see that A; and A, are diagonalizable and eigenvalues are given by {h; s_1,hy -1}
and {Af 1., Af, 1.}, respectively. Note that the eigenvalues of A, do not correspond
to any Ly eigenvalues of the highest weight space of the simple W, ;, -modules. Thus we

see that the value (*, @1 ® ¢9) is determined by the numbers

(W7, lar2) @ |ars)), (W, (Lot ]ane)) ® |ars)),

Ly acts semisimply on 9, and the L, eigenvalue of ¢* is given by A, ;11 or Ay s_1.
The other cases can be proved in the same way, so we omit the proofs.

Similar to Proposition B3, we obtain the following proposition.
Proposition 8.3.3.
e Forp, >3, we have

1. For 2 <r <p;, 1 <s <p_, the vector space Ay((KCo1 X K, 5)*) is at most
two dimensional. The Ly eigenvalues are contained in {h,_1 s, hrt1}, which
corresponds to the highest weights of IC,_1 5 and K,11 s, respectively.

2. For1 < s < p_, the dimension of the vector space Ay((Ko1 XK1 )*) is at most
one dimensional. The Ly eigenvalues is given by he s which corresponds to the
highest weight of ICq 5.

8. For2<r <py, 1<s<p_, the vector space Ao((K21 X AK)*) is at most two
dimensional. The Ly eigenvalues are contained in {A:“_LS;O,ALLS;O}, which
corresponds to the highest weights of XTJF_LS and Xr—:-l,sf respectively.

4. For2 <r < py, 1 <s <p_, the dimension of the vector space Ay((Ko1 X
X,)*) is at most four dimensional. The Lo eigenvalues are contained in

{A 1 s00 A1 50}, which corresponds to the highest weights of X, , and X, _,
respectively.

5. Forr =py, 1 <s < p_, the vector space Ag((Kon B X\ ()*) is at most two
dimensional. The Lo eigenvalues are contained in {hp+—1,S7A;_+fl,s;O}7 which

corresponds to the highest weights of L(hy, —1,5) and Xpt—l,m respectively.

6. Forr = py, 1 < s < p_, the vector space Ao((Koy X &, ()*) is at most
four dimensional. The Ly eigenvalues are contained in {Ais;o’ A, 150} which
corresponds to the highest weights of st and X~

b 1,60 TESpECtively.

o Forp, =2, we have

1. For1l < s <p_, the vector space Ay((Kq1 &X;;)*) s at most two dimensional.
The Ly eigenvalues are contained in {hl’s,Af’S;O}, which corresponds to the
highest weights of L(hy) and X', respectively.

2. For1 < s <p_, the vector space Ao((K21 XX, ,)*) is at most four dimensional.
The Lo eigenvalues are contained in {AIS;O,AI,S;O} which corresponds to the
highest weights of Xf; and Xy, respectively.
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Foranya € A,, , ={ s | 7,5,n € Z}, let

Vo = @ Fainymon

neL

be the simple V,, , ;-module. For any o,a’ € A,, , , it can be proved easily that
Va//
Va’ Va

a mod Z+/2p.p_, and dimcl (V‘:‘“{Z) = 1. Let Y be the V},, , j-module intertwining

Varta . .
operator of type (Vaz *{/a) Then, by restricting the action of Vj,, ,, j to W,, ,_, Y defines

there are no V,, ,_j-module intertwining operators of type ( > unless o = o +

a W,, p_-module intertwining operator of type (VZQVZ > We denote this W, ,_-module

intertwining operator by Y, 4.

Lemma 8.3.4. For 1 <r <p,,2<s<py; —1, we have

Xr—:—l X:_s-i—l
[(Klz x+>7ﬁ@’ J(Kw )20

Proof. Let us consider the W, , -module intertwining operator Y =Y, ,,, where oy =
a2 and g = ., 1. Then we have

(rp_—sr11] Y(Jar2) 5 2) larp_—s1) # 0.

Thus, we have a non-zero W, ,,_-module intertwining operator of type

Xr+sfl
I (K1,2 : >) £ 0. (8.3.1)

Wos - a2
Note that following exact sequence

0— X~

r,sV

=Wy, p - |rp_—s1) = X5, = 0.
Then, by the exact sequence

Kia®RX o = Kia®W,, oy —s1) = Kipo KA =0,
we have the following exact sequence

0— Homcp+,p_ (lCLQ X Xrts’ XTJ’FS_l) — Homcp+7p_ (lCLQ X WP+,p— . ’ar,p_fsﬂ) , X;;_l)

— Home, , (K12 XXy, X5 ) (8.3.2)

Thus, by Proposition B33 and (8=3), (8232), we obtain

Xr+sfl
! (ICLQ X;,:) ?é @

The second equation can be proved in the same way, so we omit the proof.
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Lemma 8.3.5. For 1 <r <p,, 1 <s<p, —1, we have

X,
g (ICT,S Xl—t_l) 7& (Z)

Proof. By the exact sequence
0—= X — Kig— L(hi1) = 0
and by Corollary 24, we have the following exact sequence
Krs®X5 — Ky s = L(hys) — 0.
Thus, by this exact sequence, we obtain the claim of the theorem. Il

Proposition 8.3.6.
1. We have

K:l,2 X K:r,s - K:r,s—l S¥ Fs,p,—l(lc'r,s—‘rl)?

where T's, _1(KC; 541) ts defined as K, s41 in the case of s < p_ — 2 and a certain
highest weight module with top(L's,_1(Ky 1)) = A5, in the case of s =p_ — 1.

2. Forp, >3,2<r<p,—1,1<s<p_—1, we have
’C2,1 X ’Cr,s = ’Crfl,s > Fr,p+71(lcr+1,s)a

where I'yp, 1(Kyi1,5) is defined as K115 in the case of r < py — 2 and a certain
highest weight module with top(L',.,, —1(KC,115)) = XF , in the case of r = py — 1.

P+,8
Proof. Let p_ >4, 1 <r <p, —1and 2 <s<p_ —2. By the exact sequence
0= & = K.s— L(hys) =0,
we have the following exact sequence
Ko RS, = Ko WKy g = L(hrs—1) @ L(hys41) = 0. (8.3.3)
By Lemma BZ3A, we have the following exact sequence

(ICLQ X ICT,5> X Xl—t_l — K:LQ X Xr—j_s — 0. (834)

Then, by two exact sequences (8233),(834) and by Lemma B34, we see that Iy o K IC,
has Xf,_, and X', ., as composition factors. Note that by Proposition 8372 we have

T, 7,5+
tOp(’CLQ X ,Cﬁs) = L(hnsfl) () L(hr’erl). (835)

Since

Ext! (Kap, Xv,) = Ext!(Kap, X0 ) =0, 1<a<py, 1<b<p_ (8.3.6)
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as shown in the proof of Proposition (238, it is sufficient to show that Ky, X K, s does
not contain either X;QSV 41 Or X;stv_l as a composition factor.

Assume that K5 X I, contains X = XTJQSVH or ersvfl as a composition factor.
Then, we see that the composition factor X of Ky 5 X K, s comes from that of Iy o X ers
in the exact sequence (82333). Note that by Proposition [CZ8

EXt1<er871 D X;;H, XTJC’SVH @ Xrt,sv—ﬁ =0,

and by Proposition B3 Ag((K12 ¥ XH)*) = X, & X, Thus, noting (833), as
a quotient module of IC; » X IC, ; we have a non-trivial extension in Extl(lCm,l, X;V,s—l)

or Ext' (K, s 1, X, v ,1). But this contradicts (838). The other cases can be proved in a
similar way, so we omit the proofs.

[
Theorem 8.3.7. Ky is rigid and self-dual in (C

P+,P—>

X).
Proof. We show the rigidity of Ky » using the methods detailed in [I5] and [56] (cf.[64]).
By Proposition BZ3@, we have homomorphisms

1 K = Kig WK o,

1 Ko K — Ky,

i3 Doy 1(Ki3) = Kip WK,

ps i Ko XK — F2,p,—1(’C1,3)

such that

Pp1© il — idlclyla P3 © Z.3 - idFQ,p__l(ICLg)

and

1 op; + i3 op3 = id’CLz@’Cl,Z'

To prove that Ko is rigid, it is sufficient to prove that the homomorphisms f, g :
K12 — Ky defined by the commutative diagrams

1idXiq

Ko Ky B K~ K0 B (Ko B KCys)

1| |4

p1Xid

Kip<—Kii B2 (K12 KKy ) KKy

and
i1 Rid

-1
Kip K B 25 (Ko KKy o) KK,

% lAl

idXp,

Kiz ~— Ko WK 1 =— K12 X (K12 WK 0)

are non-zero multiples of the identity, where A is the associativity isomorphism and [ and
r are the left and right unit isomorphisms. Since Hom(K; 5, K1 2) ~ C, it is sufficient to
show that f and g are non-zero. We only show f # 0. The proof of g # 0 is similar.
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Let YVow2, Viemo)xe and Vom(amz) be the non-zero intertwining operators of type

( KX /Cl,Q) ( (K12 XK 2) K /C1,2>
’ KipoRKEK12 K ’

( KioX (ICI,Z X IC1,2))
Kio Kia®WEKo

respectively.
To prove f # 0, it is sufficient to show that the intertwining operator

y221 = l/Cm © (pl X idK1,2) © A’Cl,z,’Cl,2,K1,2 © y2®(2@2) © (idK1,2 ® il)

is non-zero.
Define the following intertwining operator

Vi35 =l , 0 (p3 Widic,,) 0 Ay 1010 © Voo © (1di, , @ i3).

Then, for highest weight vectors v € Ky[h1], v* € Kfy[h1], and for some x € R such
that 1 > 2 >1— 2 > 0, we have

(0", Y31 (0; 1) (p1 © Vama) (v; 2)v) + (0", Vi3(v; 1) (p3 © Vawa) (v; 7)v)

= (0", Ik, 0 (p1 Widy, ,) 0 Ak, k0610 (Vomeme) (05 1) Voma (03 2)0) )
= (v*,lx,, © (p1 Wid, ,) (Voroyme (Voxa(v; 1 — )v; 2)0))

= (", lic, » (Vs ((p1 © Vo) (v; 1 — z)v; 2)0)),

= (0", Y, , (1 © Vama) (051 — @)v; 2)) ),

where Vixp is the intertwining operator of type (Klllcllgl ,
K11 7

Ki,2 K12

). Since p; o Vaxo is the non-zero

intertwining operator of type ( ), we have

(v*, Yie,, ((p1 0 Yawo) (031 — z)vs ) )v) € C(1 — ) "2 (1 + (1 — z)C[[1 — z]]). (8.3.7)
Set
$1(x) = (v", V31 (v 1) (pr © Vamo) (v 2)v),  P3(x) = (v°, Va3 (v 1) (p3 © Voo ) (v; 2)v).

Then as in [I5],[b6],[64], we see that ¢y(z) and ¢3(x) satisfy the following Fuchsian dif-
ferential equation (cf. [I0])

')+ 25 L+ 2)é)

p+h12{ 1 1 ( 1 1)}
et — 9 ~)b=0
P (x—1)2+x2 r—1 = ’

with the following Riemann scheme

0 1 oo 0 1 00
Ay py Vi| = 2%_ 21;,—+_ 0
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Let {uy,u_} be the fundamental system of solutions at z = 0 whose characteristic expo-
nents are Ay, A_, respectively, and {v,,v_} the fundamental system of solutions at = 1
whose characteristic exponents are ., u_, respectively. Then, the connection matrix
between x = 0 and x = 1 is given by

()= =) ()

D(—e(ur ~p )OO =A) 1Y)
F(/\E’ + e T+ V+>F(>‘6’ T e T V*>7 , '

where

Fee’ -

We can see that this connection matrix is regular. Note that the characteristic exponents
of ¢1(z) and ¢3(x) at the regular singular point = 0 are given by

3
hit —2hs=1— 2% his — 2hig = 5

2p_" 2p_

respectively. Therefore by the non-zero four point function (8372), we see that ¢;(x)
is non-zero. In particular )3, is non-zero. Thus K;, is rigid in the tensor category

(Cpyp s B).
L

Lemma 8.3.8. For 1 <r <p,,2<s<p_—1, we have
ers—l ers-i—l
) 2o (o) 2

Proof. We will only prove the first equation. The second equation can be proved in the
same way, so we omit the proofs. Let us consider the W, , -module intertwining operator
Y: = Y4, a0, Where a = a2, @y = v 5,_o. Note that

(@il Yillana) 1 2) [ap,sims) 7 0. (8.3.8)

Thus, we have a non-zero W, ,,_-module intertwining operator of type

ers—l
! (K1,2 Wy \a2>> #0. (8.3.9)

Note that W, Srap_—s |V 5_2) X;@ s Then, by the exact sequence

P+p—*
0= X0, = Wy p oy g0) = X, =0,
we have the following exact sequence
KioB®XL = Kig /W, oy g2) = Kip KA — 0.
Thus we obtain the exact sequence

0— HOmCP_‘_‘p_ (ICLQ XX, X"

r,s) “tr,s—1

— Home, (K12 ® X;@js, X, ) (8.3.10)

) = Home, Wos - |y s-2) , X 1)

» “hrs—1
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By Proposition BZ232, we see that

Homcm,p_ (’CLQ X X+ X

rY,s? “tr,s—1

)=0.
Thus, by (8239) and (8=310), we obtain

er87
I (/c1,2 xl—) 40,

7,8

By Proposition E32 and Lemma EZ38, we obtain the following proposition.
Proposition 8.3.9.
1. For1<r<p,,2<s<p_—1, we have

ICLQ X Xr,_s =& 1D Xr,_s—l-l'

78
2. For1 <r <p., we have

KiaRXS =X,

3. Forp, >3,2<r<p,—1,1<s<p_, we have

’C271 X XT,_S = XT‘_—I,S D XT_—H,S'

4. For1 <s<p_, we have

on RXL, = X,

For the following lemma, see, for example, [20].

Lemma 8.3.10. Let (C,®) be a braided tensor category and let V' be a rigid object in C.
Then there is a natural adjunction isomorphism

Home (U @ V, W) ~ Home(U,W @ V),
where U, W are any objects in C and V" is the dual object of V.
Lemma 8.3.11.
1. For1<r<p,,2<s<p_—1, we have

ICLZ IX XTJ; — Xr;_l @ X’r'J,rs—i-l'
2. For 1 <r <p,, we have
Ki2 X X;fl = X:,rz-
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Proof. We will only prove
Kio®RXL =7 X’

Ty

for 1 <r<p,—1,1<s <p, —2 The other cases can be proved in a similar way, so
we omit the proofs.
By Proposition BZ39, Lemma B=3T0 and the self-duality of Ky 2, we see that

Homcp%p_ (X, K1»2 IE XTJ;) = 0,

where X = X0 ., X v, Xy 11, A v_q. Thus, by Lemmas B3 and B=34, we obtain

+ _ + +
ICLQ X Xr,s - Xr,s—l D XT,S—H'

By Proposition B8 and Lemma BZ3T1, we obtain the following proposition.
Proposition 8.3.12.
1. For1<r<p,,2<s<p_—1, we have

ICI,Q X ICT,S = ’Cr,s—l D ’Cr,s+1~

2. For1 <r <p., we have
’C1,2 ’Cr,l - ’Cr,2-

The following Lemma is due to Proposition 3.46 in [3].

Lemma 8.3.13. For any U,V € Cp, , , we have a natural isomorphism.

Homg¢ U, V) ~Home, , (UKV",K])).

i

Lemma 8.3.14. For 1 <r<p, —1,1<s<p_—1, we have

IC* *
I p+—1,s @7 I rp——1 @
(’C2,1 Icp+,s) 7& (ICI,Q ICr,p, ?é
Proof. We only prove the first equation. The second equation can be proved in the same
way, so we omit the proof.

Let us consider W, ,_-module intertwining operator ¥ =Y, »,, where a; = ap; and
ay = ap, gv;1. Note that

(1,00 Y (J02.1) 1 2) [, 1) 7 0.
Then, by Proposition 23, we have
<ap+—17SV’ S;+—1,SY(‘O‘2,1> ;Z) |O‘p+78v;1> # 0.

Thus we have

I p+—Ls > 0, ]( p+—1Ls ) 0 8.3.11
(’CZI Wi p- |O‘p+7sv;1> 7 Koy Wpp |O‘p+,sv;1> 7 ( )
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Note that W

b p_ - |0, svi1) satisfies the following exact sequence

0= X =Wy lap, o) = & (=K, ) =0

Then we have the following exact sequence
0— K:271 X Xp:_,sv — K:271 X Wp-hp—' |C¥p+’s\/;1> — ICQ’l X ]Cp+,8 — 0.
By this exact sequence we obtain the following exact sequence

0— HOHICP_PP_ (ICQJ X ICp_,_,s, Kjil) — Homcer,p_ (ICQJ X Wp-hp—' ‘ap+’sv;1> ,’Cil)
— Home, , (Kot X\, KT ). (8.3.12)

By Proposition B33, we have
Home, , (Kon WA v, K7y) = 0. (8.3.13)

Since L(hy1) X KC,, s =0, by Lemma B3T3, we have

P+,S

Home,, , (K21 WK, s, L(h1,1)) = 0.

Thus, by (B=31), (R2312) and (B2313), we have a surjective module map from /Cy ; XK
to I

p+—1,s°

P+,S

]
Theorem 8.3.15. [y is rigid and self-dual in (C

P+,P—>

).

Proof. In the case py > 3, the rigidity can be proved in the same way as in Theorem
R37. Therefore let p; = 2. Note that in this case it is Ky = X;l from the definition.
First we prove

Koq M Koy = QAT )11
By Proposition 233 and by Lemma E=3T4, we have
top(Koq M Ks1) = &) € Cff’fbk.
By Lemma B=3T4, we can define the following module map
i Ko KKy — Ky

Let Vowg2, Viemo)xz and Vog(amz) be the non-zero intertwining operators of type

Ko1 X Ko (’C2,1 X /C2,1) X /C2,1>
Kox Kop )7 Koi R Ko1 Kan

Ko W (K1 X /C2,1)>
Kop Koy KKy, ’

respectively. We define the intertwining operator

2 _ . —1
me,Q =TKa1 © (1dIC2,1 Xpy)o AICz,l,ICz,l,ICz,l o V(om2)x2
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Ko,
of type (icz,l B Koy ica,l)'
Let us consider the four point function

(0%, Vs o (Vowa (v, 1 — x)v, x)0), (8.3.14)

where v and v* are the highest weight vectors of Ky and K3, respectively. Then, for
some r € R such that 1 > 2 > 1 — 2 > 0, we have

(0", Vimo o (Voma (v, 1 — x)v, 2)v)

= (0", 75, © (idky s Bp1)Ai, | iy ks (Vimme(Vama (v, 1 — 2)v, )v))
<U* TKa1 © (ldIC21 X’pl)(ym(zm ( ,1)372&2(71 $) )>
=
=

0¥, Tices (Vami (v, 1) (p1 © Voo ) (v, 2)v))
v*, Q (YK2,1)(U’ 1)(]71 © y2®2)(v7 I)U>>

where () represents the skew-symmetry operation on vertex operators defined by
Q(Yie,,) (v, 2)w = €Y, , (w, —2)v
for w € Ky ;. Note that

(07 Q(Yie, 1) (v, 1) (pr © Vo) (v, ©)v)

» 3p_
:cx4(1—x)42F1(p2 g —Lp_;x)
— ' T(1—a) LR (—%+1 p2 D)

where ¢ is a non-zero constant. Then using Equation 15.8.10 in [19], we can see that the

constant term of oy (—% + 1, %, p_;z) is given by (I'(%)I'(%= — 1))~'. Therefore, by

Lemma 2314, the coefficient of (1 — )72t = (1 — x)_spT_“ in (82314) is non-zero.

Note that Iy 1 Xy ; € C’“”Ck does not contain X X, 1€ C’“”Ck as composition
factors. In fact, assuming that Ko,1 X Ko, contains X1i,p,—1a then from the rigidity of ICy o
and from Proposition B39, ;5 K (g1 X Iy 1) contains Xfp = C’””” as a composition
factor, but since

KioR (Ko W) =Ko WKy € Othwk

by Propositions BZ373 and BZ3T2, so we have a contradiction. Thus, by Propositions 28
and [C39, assuming that Ko X Ky, is logarithmic, we have Ko KKy ~ Q(Xf’rl)m,
and assuming that Ky Xy is not logarithmic, we see that Koq X Koy has L(hy ) as a
submodule. Let us assume Cy ; X /Cy g is not logarithmic. Then Ko K /Cy; has L(hy ) as
a submodule. Since L(hy1) X Ky; = 0, the coefficient of (1 — z)~221 in (82314) must be
zero. But this is a contradiction. Therefore we obtain

Koy B Koy >~ QA )11
We define the following module map i,

il . IC171 — Q(Xl—t_l)lﬂ
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To prove that Ky is rigid, it is sufficient to prove that the homomorphisms f, g : Koy —
Ko, defined by the commutative diagrams

idXiq

Kot~ Koq B Ky 2 Ky ) (Ko B Ko )

| P

p1Xid

’C2,1 <l; ’Cl,l X ’C2,1 = (]C2,1 X K2,1> X ]CQ,l

and
i1Xid

Koy~ Kot B Koy 55 (Ko B K1) K Koy

% iAl

idXpy

Ko <~ Koa WK1 =—Kg1 X (’C2,1 X /C2,1)

are non-zero multiples of the identity. Since Hom(/Cy 1, Ko 1) =~ C, it is sufficient to show
that f and g are non-zero. We only show g # 0. The proof of f # 0 is similar.
Note that

(i Midk,,) o I, , (|a21))
= (11 Widic,, ) (V1=2(|0) , 1) [.1)) = Vamayma(i1(]0)), 1) [oa1)

where Vixp is the intertwining operator of type (icf% 1). Since 41(|0)) is the cofficient of
—2ho 1 7 Y

x in Vowo(|oz,1) , @) [az1), we can see that (i1 Midg,,) o [} (Jag1)) is the coefficient

of (1 —z)~2"21 in the expansion of
y(zm)m(yzm(’azﬁ ,1—x) ’&2,1> ,T) |042,1>
= Vemomz(Vexz(|a2,1) , 1 — ) |agy) , 1 — (1 —x)) [az,1)

as a series in 1 — x. Therefore, since the coefficient of (1 — x)~2"21 in (8314) is non-zero,
we obtain the rigidity of Ky ;.
[

Similar to Proposition B3T3, we can prove the following proposition.
Proposition 8.3.16.
1. Forp, >3,2<r<p;,—1,1<s<p_, we have
Koa R, s =Kr16 B Kyrpas.

2. For1<s<p_, we have
’C2,l X ’Cl,s = ICZ s-

)

The following standard lemma holds for the product of rigid objects in any tensor
category.

Lemma 8.3.17. Let (C,®) be a tensor category. Let Vi and Vy be rigid object in C. Then
Vi ® Vi is also rigid with dual V! @ V)Y, where V¥ be the dual of V;.

By Propositions BZ3 T2, B3TA, Theorems B3, B3T3 and Lemma BZ3T4, we obtain
the following theorem.

Theorem 8.3.18. For 1 < r < p;,1 < s < p_, the indecomposable modules K, s are
rigid and self-dual.
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8.4 Tensor product between simple modules Xﬁfs

In this section, we compute some tensor product between simple modules Xﬁ;, using the
rigidity of IC,v o
By Cororally BZ4 and by Theorem B3 T8, we obtain the following proposition.

Proposition 8.4.1. For 1 <r <p,, 1 <s<p_, we have

Xl—t_l IE ICT,S - X+

r,s"

Note that X} is self-contragredient and L(hy,1) ¥ X} = 0. Then, by Lemma B3T3,

we have
Home, (Xffl X Xf’rl, Ki.) =C, HOchM,L (Xf’rl X X1+,17 L(hy1)) =0.
Thus we obtain the following lemma.
Lemma 8.4.2. There exists a surjective module map from Xf’rl X Xfl to K7 ;.
Proposition 8.4.3. We have
A RA =K.

Proof. By Lemma B2 Xf,L1 X Xf,L1 # 0. Let us determine the top composition factors
of A7, KA. Let m be the surjection from X} K A to top(X,; K A[). Let ¢* be an

arbitrary element of Ag((top(X; KA))*). Let ¢1, ¢o be arbitrary elements of A7", and
let u be the highest weight vector of Xffl. For n > 1, let wgn) (i=-n,—n+1...,n) be
the Virasoro highest weight vectors of the vector subspace (2n + 1)L(AT,,,) C A}. Let
us consider the value

(", 61 ® o) = (¥*, ™0 V(1 @ b2)).
By Lemma BT, we see that the value (¢*, ¢ ® ¢s) is determined by the values
(4", U(L).u® u), (0, U(L)u @)

for some finite n > 1 and 7. Let h be the Ly weight of ¢*.
Let us assume that (¢*, u® w§">> # 0 for some n > 1. Then, by Proposition ["X8, we
see that h must satisfies the following equations

2p_—1 2p4—1
H (h = h12n+a)p_—2-2j41) = 0, H (h = hn+ayp,—2—2i+1,1) = 0.
e i=1

We see that h satisfying these equations is given by Afl;n = h@ton)p,—1,1. We see that
Ail;n does not correspond to any highest weight of the simple modules. Thus we have a
contradiction. Therefore (¢*, ¢1 ® ¢9) is determined by the values

(W U(L).u® u).
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Then, by Proposition 28, h must satisfies the following equations

2p_—1 2py—1
H (h - h1,4p,—2—2j+1) = 07 H (h - h4p+—2—2i+1,1) = 0.
j=1 =1

We see that h satisfying these equations is given by AL;O = hap, —1,1. Thus we have
top(Xffl X Xffl) = (m+ 1)Xff1

for some m > 0. By Theorem [2A, we see that m = 0. In particular we have Xffl &Xfl €
Ok

Note that, by Lemma BZ32, X[, X X[} has Kj, as a subquotient. Assume that
Xf’rl X Xffl 2 Ki;. Then, by Proposition [39, Xf,L1 X Xf’rl has a submodule whose
top composition factors are given by some direct sum of X", and Ay, _;. Then,
by the rigidity of K, and Ky 2 and by Proposition B3, either Ky, X (X1, X A7) or
Ko1 X (X, W AT) contains Ay, or &) | as composition factors, respectively. On the
other hand, by the associativity and Proposition B4 we have

Ki2 ™ (.)C'l—t_l X Xl-t_l) = (K12 X Xl—i_l) X Xl—t_l = Xﬂ_? X Xf:l,

Similar to the case of Xffl X Xff 1, by using Proposition 28, we can show that the top
composition factors of X7, B X[ and A X A are A, and X, respectively. In
particular, we have X7, A € CY and Xy, KX, € CF |, where a = thick for p, >3
and a = tﬁin for p, = 2. But since X, € O} and X, € CI" | we have a
contradiction.

]

By Propositions B471 and B2473, we obtain the following proposition.
Proposition 8.4.4. For 1 <r. v <p,, 1<s,s <p_, we have
XTJ’; XX, =K. KK g)X Kiy-

From Proposition BZ44 and the following proposition, we can compute the tensor
product between the simple modules XTZ by using the tensor product between the inde-
composable modules K.

Proposition 8.4.5. For 1 <r <p,, 1 <s<p_, we have
L RK,., =K,
Proof. By Proposition B473, we have
Xffl X Xffl =K1 (8.4.1)
Multiplying both sides by K, s and using Proposition B4, we have

+ + _ ;*
Xl,l X Xr,s — M1 X ICT,S'
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for 1 <r<p,—1,1<s<p_ —1. By the exact sequence
0— L(h11) = K, = X7 — 0
and the rigidity of K, 5, we have the following exact sequence
0— L(hys) = K] KK, = X, — 0. (8.4.2)
By Theorem B=3T8 and Lemma B=3T0, we have
Home,, (K11 XK, L(hys)) =~ Home,, (Kl L) XIC,.s) = 0.

Thus the exact sequence (8272) does not split. Therefore, since Extl(/'\f;;, L(h,s)) =C
by Proposition X8, we obtain

* ~ KX
]Cl,l X ]CTGS - ICT,S‘

Similar to Lemma B4, by using Lemma B=3T3, we obatin the following lemma.
Lemma 8.4.6. There exists a surjective module map from X3 X X7 to Kf ;.

Proposition 8.4.7. We have
Xf,l X Xf,l = ’q,p X17,1 X X1+,1 = X17,1~

Proof. First we prove X7} KX} = K7 ;. By Lemma B4, we see that A ; K x5 # 0.
Let us determine the top composition factors of A ; K& ;. Let 7 be the surjection from
X WA to top(X; KAT,). Let ¢* be an arbitrary element of Ag((top(X;; X A7;))*).
Let ¢ and ¢, be arbitrary elements of 7. Let {v;,v_} be a baisis of the highest weight

(".)}:rll be the basis of the Virasoro highest weight

space of X7}, For n > 1, let {'U(l-"),v
2
space of the vector subspace (2n 4 2)L(A7 ;) C &7 ;. Let us consider the value

(V" 01 ® ¢2) = (", 70 Va(d1 @ ¢2)).
By using Lemma B8 we see that (1", ¢1 ® ¢) is determined by the values
(4", U(L).ve ® ve), (4", U(L).ve ® 7))

for some n > 1 and ¢, where € = + or — and € = + or —. By Proposition 28, we can see
that there is no highest weight of simple modules that gives the Ly weight of ¢* such that
(V*, ve ® Ugi) ) is non-zero. Thus by using Lemma B8 again, we see that (1", ¢ ® ¢s) is

determined 2by the values
(W, U(L) e @ ver).

By Proposition [28, we see that the Lg-eigenvalue of ¢)* is the highest weight of Xffl.
Thus, noting W*[0]y* = 0, (¢*, v, ® USZ)> =0 and
2

WE[~hloe =0 for h < ATy, — Ao,
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we have (¢* vy ® v4) = 0. Therefore (¢*, ¢1 ® ¢) is determined by the values
(W U(L).vy @v_).
Then, by Proposition 28, we have
top(X; K A,) = &L (8.4.3)

Note that by Lemma BZ20 X} KX, has K7 | as a subquotient. Assume X7, XX, 2 K7 ;.
Then noting (8433) we see that X A7} has a submodule whose top composition factors
are given by some direct sum of X, and Ay, ;. Hence, by the rigidity of Ko
and KC; and by Proposition B339, we see that at least one of K0y X (X, X A7) and
Ko X (X1 K A7) contains Ay, or X, ; as composition factors, respectively. On the
other hand, by the associativity and Proposition B239, we have

’CL2 X (Xl_,l X Xl_,l) - (’Cl,2 X Xl_,l) D Xl_,l - Xl_,2 X Xl_,lv
’C2,1 I (X1_,1 X X1_,1> = (}CQ,l X Xl_,l) X Xl_,l = X2_,1 X X1_,1-

Similar to the case of X7} XA, we can see that the top composition factors of Xy, XA
and X;; KX are X)) and A5, respectively. In particular, we have X, K A, € C{4*
and X, KX, € CF,, where a = thick for p, > 3 and a = thin for p, = 2. But since
X, eClm , and X | € C;’T’Z—fl’ we have a contradiction.

Next we prove the second equation. By the exact sequence

0— X;’rl — ]Cl,l — L(hl,l) — O,
we have a surjection
XL RN S X —0.

As in the case of the proof of the first equation, by using the rigidities of Ky 2 and Ko 1,
we can show Kerm = 0. Thus we obtain &} ; X Xf’rl ~ X [

By Propositions B39, B4 1 and 471, we obtain the following proposition.

Proposition 8.4.8.
1. For1<r<p,—1,1<s5<p_—1, we have
Xltl X ers = IC:,37

Xl_,l & ,CT78 - X_

7,87

AL RXT =X
2. For1<s<p_, we have

XL RS =XT

P+5S P+,8°
3. For1 <r <p.,, we have

X X XT{;L = X7 .
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8.5 The self-duality of Q(X%),. and P,
In this section, we will compute the tensor product K X Q(X7,).. and K X PZ,, where
K = K2 or Ko1. Then we will show that all simple modules in the thin blocks and all
indecomposable modules Q(X7)s s and P, are self-dual. In the following Propositions
E50 and B52, we will determine the tensor product 1o K A7, and Koy K XF

D+,®°

Proposition 8.5.1.

ICLQ & Xp:i’p7 - Q(Xp:in,—l)pqul’
Ko X iji’pi = Q(Xpi_l,p,)lvp—'

Proof. Similar to Lemma BZ3T4, we can show that the tensor product ;o X Xfpf and

Ko X Xpﬁ,. are non-zero. Since Xpﬁ,p_ is projective, by the rigidity of K; o and Ky 1,
Ki2 X Xpip— and Ko X Xpﬁ’p_ become projective modules. Thus, by Propositions BZ372
and B33, we obtain the proposition. Il

Proposition 8.5.2.

1. For1 <r <p,—1, we have

Ko X X,ﬂfpi = Q(erpf_l)m.

2. For1 <s<p_—1, we have

]CQ’l X Xi = Q(Xp:i—l,s)lﬁ'

P+,S
Proof. We only prove K1, XX} = Q(Xr;_,l)r,1- The other equations can be proved in
the same way, so we omit the proofs.
By Proposition B3 and Lemma BZ3 T4, we have
+ 0y — pt
tOp(/CLQ X Xr,p,) =X

rp——1

(8.5.1)

*

and a surjection from Ko KM AT to KCr .
Let r = 1. Assume that ;o X Xf;,f has X", _; as a composition factor. Then

K:z,l (ICLQ X Xl_‘,—p_) ~ ICLQ X;’_p_

has X, , | € C;h”{ as a composition factor. But, by (851) and Proposition B51, we

P +> . .
have a contradiction because K12 R X,7 € CHer | for p, > 3 and K1, KA, € O3
for p, = 2. Inductively, we see that IC; o X erp, does not have X~ as a composition

factor.
By Lemma BZ3 10 and the self-duality of K 2, we see that

Home, (X

sz—_]-’

’CLZ Xl XTJ;)_) - C

Thus by Proposition 39 we obtain Ko X XH ~ Q(XF _)n1.
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Proposition 8.5.3. The tensor products of Kis 8 Q(XF)ee and Kyy K Q(X)ee are
given by :

1. For1<r<p,—1,2<s<p_ -1,
Ko R QX)) v s = QX5 ) s1 @ QAL 1) st
2. For1<r<p,,2<s<p_ —2
K12 X QA; )r sV = Q(Xrifl%“ svi1 @ Q( T5+1)7' sV—1-
3. Forp,>3,2<r<p,—1,1<s<p_ -1,
Kap X QX )r sV = Q(XiLS)r—l,sv D Q(Xim)rﬂ,sw
4. Forp, >23,2<r<p,—-2,1<s<p_,
Kon B QXL ) v s = QAT )rvins ® QAT ) 1s.
5. For1 <r<py; —1,
K12 B QX)) 1 = QA5)m 2.
6. For1<r<py,
Kio® QXL e =285, @ QX _o)re.
7. For1<s<p_—1,
Kaq W Q(A] )1 sV = Q(Xgi,s)zs%
8 For1<s<p_,
Kaa W O(X,y, ) Jrs = 2X, @ QX 5 o
9. For1<r<py,1<s<p_,

ICIQIXQ( )Tp -1 — QX:F @Q( )rp —2
ICQ 1 X Q( )p+ 1,s 2Xp:i s D Q( )p+—2 s*

Proof. We will only prove

’C172 X Q(Xr—ts)rv,s = Q(Xr—;—l) s—1 D Q( rs—l—l) V,s+1 (8-5-2)

for 1 <r <p,—1,2<s<p_—1. The other equations can be proved in a similar way,
so we omit the proofs. By the rigidity of Ky 2 the composition factors of Ky o X Q(XF )
is given by

+ — + —
an—la ’Cr,sfla 2‘)(71\/,5_17 Xr7s+17 ’Cr,erla 2er75+1'
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T, rs 1)_C7

By using Lemma BZ3T0 and the self-duality of K 2, we can see that
HOIIlcerJL (’Cl,g Q(X )
Homcm,p, (’CL? X Q(X )TV ED) X:_s-l-l) C,
)

7,8

Homcm’pi (ICLQ & Q(X+ rV,s) 2.)(;\/ s—1 @ QXT_\/ s+1) = 0

8

Thus by Proposition =39 we obtain (8552).

By Proposition B3, we obtain the following theorems.
Theorem 8.5.4. All indecomposable modules of type Q(Xe o)ee are rigid and self-dual.

Theorem 8.5.5. All simple modules in the thin blocks and the semi-simple blocks are
rigid and self-dual.

Since Xl X be be for any simple module X ib in the thin blocks and the semi-
simple blocks by Propositions B2, Bh 2 and B533, we obtain the following proposition.

Proposition 8.5.6. For any indecomposable module Q(X(fb)gd of type Q(Xeo)e.e, we have

XlJrl X Q( ab)Cd - Q(be)c,d

By Propositions B478, 51, B52 and B573, we obtain the following proposition.

Proposition 8.5.7. For any indecomposable module Q( ab)Cd of type Q(Xe e)e.e, we have
Xf,l X Q(Xaj,[b)c,d = Q(X;,Fb)c,d

Since all indecomposable modules of types Q(X,i’pi).y Q(x* )ps e and Pf, are

p+,®
projective and generated from the top composition factor, by using Lemma BZ3 10, we
obtain the following propositions.

Proposition 8.5.8.

1. For1 <r <p, —1, we have
Kio®O(XE )y =Pr, )
2. For1<s<p_—1, we have

Kot ®O(XSE )psv =P

D+,S p+—1Ls:

Proposition 8.5.9. The fusion products of Ky 2 X Pfs and Ky X Pfs are given by :
1. For1<r<p,—1,2<s<p_—2,
’CLQ X P;t Prs 1D Pvfl,:s—&—l’
2. Forp, >23,2<r<p,—2,1<s<p_—1,

Kot ®P, =P, & Pry,
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3. For1<r<p,—1,s=1,

KioRPo _ =20(X5 ), P

rpP— T7p*_2'
4. Forr=1,1<s<p_-—1,

Kan X 73pi =2Q(X; Jps.sv @ Py,

+_178 P+,8 p+—2,8'
5. For1<r<p, —1,1<s<p_—1,

K2 ™ ,P;t:l = 2Q(qu,ip_ )ID+—7’,P— ® ,P;‘,:27
K:2,1 X Pfs = 2Q(Xp$+,s)17+,107—5 @ ,Pg,:s

From the above propositions, we obtain the following theorem.

Theorem 8.5.10. All indecomposable modules Pfs are rigid and self-dual.

By Propositions B527 and B59, we obtain the following propositions.
Proposition 8.5.11. For 1 <r<p, —1,1<s<p_—1, we have
X RPL, =P
Proposition 8.5.12. For 1 <r<p, —1,1<s<p_—1, we have

X RPL =PF.

108



Chapter 9

Non-semisimple fusion rings

Let I, ,_ be the set consisting of all simple modules of type X and all indecomposable
modules Q(X £ e and Pfs, and let S, ,_ be the set consisting of all simple modules of
type Xﬂ; In this chapter, we consider the structure of commutative rings P°(C,, , ) and
K°(C,p, p ) defined on I, , and S,, , , respectively. We will also discuss the relation-
ship between these commutative rings and the non-semisimple fusion ring P(C,) and the
Grothendieck ring K (C,) of the triplet W-algebra W,.

In Section B33, we introduce a braided tensor category C[())+,p_7 which is defined by the
quotient of the abelian category C,, ,_ by the Serre subcategory Min, , consisting of
all minimal simple modules L(h, s). This category CSHL is expected to be equivalent to
gp. p_-mod, as the abelian category, and even ribbon tensor equivalent. See [9],[22],[23]

for the quantum group g,, ,_.

9.1 The ring structure of P°(C,, , )

As in the subsection 5.3 in [64], we introduce the free abelian group P°(Cp, , ) of rank
8pip_ — 4py — 4p_ + 2 generated by all simple modules, all projective modules and all
indecomposable modules Q(Xffs).,.

P+ P- p+—1p_—1
Croo-) =D DD 2N 0 D D DZIP

r=1 s=1 e=% r=1 s=1 e=+
p+—1p-—1 p+—1p-—1

@@@@Z[Q( @@@@Z 7‘5 7‘8\/
r=1 s=1 e==% r=1 s=1 e==%
p+—1 p_—1

o P Pziewx, ), lre @B PBZIOX, Dy s]p
r=1 e=+ s=1 e==%

For any M € C,, ,_ which have minimal simple modules in the Socle, let my(A/) be the
quotient module of M quotiented by all the minimal simple modules in the Socle. We

define the endfunctor m of C,, ,_ by the condition that for any M in Cp, ,_

(M) mo(M) M contains minimal simple modules in Soc(M)
T =
M otherwise

Then, from the results presented in the previous chapter, we can define the structure of
a commutative ring on P°(C,, , ) such that the product as a ring is given by

[Mi]p - [Ma]p = [r(M; X My)]p,

where My, M, € I, , and we extend the symbol [e]p as follows

D], - @iy

i>1 i>1
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for any N; € I,, ,_ and any n € Z>;.

Remark 9.1.1. By Propositions 8.4.3, B4.4, B-4.d, 4.7 and [54.8, we see that the
tensor product does not close on the set I, , . Therefore, to define the structure of a

commutative ring on P°(Cp, , ), we need to quotient by the minimal simple modules.
Note that

W(X&@M):X:S&M:ICT’S&M, 1<r<p,—1,1<s<p_ —1,
for any rigid indecomposable module M in I, .

The three operators
X = W(Xf,Lz X-), Y = W(X;,—l X-), Z =m(X; W-)

define Z-linear endomorphism of P*(C,, , ). Thus P°(C,, , ) is a module over Z[X,Y, Z].

We define the following Z[X, Y, Z]-module map
U LX,Y, Z) = PCp, ),
f(va) Z) = f(X7Y7 Z) : [Xl—i,_l]P

Before examining the action of Z[X, Y, Z] on P°(C,, , ), we introduce the following Cheby-
shev polynomials.

Definition 9.1.2. We define Chebyshev polynomials U,(A), n = 0,1, -- € Z[A] recur-
sively

Up(A) =1, Ui(A) = A,

Un+1(A) = AU, (A) — U,—1(A).

Note that the coefficient of the leading term of U, (A) is 1.
The goal of this section is to prove the following theorem.

Theorem 9.1.3. The Z[X,Y, Z]-module map 1 is surjective and the kernel of ¢ is given
by the following ideal

kerw = <Z2 — 1, ng_,1<X) — 2ZUp_,1(X), U2p+,1(Y) — 2ZUP+,1(Y>>.

We will show some propositions to prove this theorem.
By Propositions B4 and 478, all simple modules can be expressed using the Cheby-
shev polynomials as follows.

Proposition 9.1.4. For 1 <r <p,, 1 <s<p_, we have
XA = U OV (WA, [A)p = ZUea (OU, (V) A
By Proposition B2, we have the following proposition.
Proposition 9.1.5. For 1 <r <p, —1,1<s<p_—1, we have

QXS Dralp = XU 1 (Y)Up_ 1(X)[AX] ] P,
QX 1 )slp = YUy, 1(Y)Us 1 (X)X ]
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By Propositions B3 and 813, we obtain the following proposition.
Proposition 9.1.6.
1. For1<r<p,,1<s<p_—1, we have
QX )P = (Uzp —ac1(X) + Usra (X)) Upy (V) [ -
2. For1<r<p,—1,1<s5<p_, we have

[Q(Xr—ts)rv,s]P = (U2p+—7"—1(Y> + Ur—l(Y))US—l(X)[Xl—t—I]P‘

3. We have the following relations

(U 1(X) = 22U,,__4(X)) (1] = 0,

(Usp, 1Y) = 22U, 1(Y))[Xf]p = 0. (9.1.1)

By Proposition 58, we have the following proposition.

Proposition 9.1.7. For 1 <r <p, — 1, we have

[P;,rp—fl]P = (U2P+—T—1(Y) + Ur—l(Y)) (UP— (X) + Upf—2(X)) [Xf,rl]Pa
[P+ ]P - (Upr—S—l(X) + Us—l(X)) (UP+ (Y) + UP+—2<Y)) [Xl—t_l]P-

p+—1;s

By Propositions B9 and E174, we obtain the following proposition.

Proposition 9.1.8. fFor 1 <r <p, —1,1<s<p_—1, we have

[Pr_',_s]P = (U2p+—7’—1(y) + Ur—l(Y)) (U2p7—s—1(X) + Us—l(X)) [Xl—i,_l]P'

From the above propositions, we can prove Theorem B 123.

Proof of Theorem T1-3. By the above propositions and Propositions B4R, Bh1, KHh T2
we can see that 1) is surjective. We define the following ideal of Z[X, Y, Z]

1= (22 = 1,Usy 1(X) = 22U, 1(X),Upy, 1(Y) = 220, 1 (Y)).

Then, by the relations (1) and by Propositions B4R, Bh1, BA 12, we see that [ is
contained in keriy. It is easy to see that the dimension of the quotient ring Z[X,Y, Z]/I
is 8pyp_ — 4py — 4p_ + 2. Therefore we have kery = I. n

For p > 2 let C, be the abelian category of modules of the triplet W-algebra W,. As
in shown [1],[68], C, has 2p simple modules X* (s = 1,...,p) and 2(p — 1) projective
coves PE of simple modules X, where we use the notation in [68]. Since W, is Cy-

cofinite, C, has braided tensor category structure as developed in the series of papers
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(87, BR, B9, 40, 41, 42, A3, 44]. The structure of this braided tensor category is completely
determlned by [bh] and [64]. Let

— DDz DDZP

s=1 e=% s=1 e=%

be the free abelian group of rank 4p — 2. P(C,) has the structure of a commutative ring
where the product as a ring is given by [e|p - [o]p = [ X e]p and the unit is [X; ]p. As
shown in [64], P(C,) is generated by [X;"]p, [X;F]p and [X]]p, and is isomorphic to
ZIX, Z]
(Z%2 —1,Usp 1 (X) — 2ZU,_1(X))’

where
By Theorem H123, we obtain the following proposition.

Proposition 9.1.9. By setting X =0 orY =0 in P*(C,, ,_), we obtain two fusion rings
P(C,,) and P(C, ):

P+

P(Cy,) +—2— PY(Cp, p ) —

P+:P—

P(C, ).

9.2 The ring structure of K'(C,, , )

In this section, we introduce a certain Grothendieck ring K°(C ) and review the struc-

P+,p—
ture of this ring in our setting. The structure of the Grothendieck ring K°(C,, , ) is
determined by Ridout and Wood [61] (cf. [22],[60],[66]). They determine the structure of

K°C,, ,_) using the Verlinde ring of the singlet 1W-algebra consisting of the characters
of the singlet W-algebra.

Let us introduce the rank 2p,p_ + MTP_*I Grothendieck group of Cp, ,,_
P+ p-
Cron) = DDDZVIc e D Z
r=1 s=1 e==% (r,s)eT

K(C,, p_) has the structure of a commutative ring where the product as a ring is given
by

[o]ic - [0l = [o W o]
Note that K(C,, ,_) has the ideal generated by all minimal simple modules L(h, ). Let
K°(C ) be the quotient ring of K (C ) quotiented by this ideal. The three operators

P+,P— P+,P—

define Z-linear endomorphism of K°(C,, , ). Thus K°(C,, , ) is a module over Z[X,Y, Z].
We define the following Z[X, Y, Z]-module map

¢:ZIX,Y, Z] — KO(CP%ZL)y

As in the case of P°(C

b p_ ), We can prove the following theorem.
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Theorem 9.2.1. The Z[X,Y, Z]-module map ¢ is surjective and the kernel of ¢ is given
by the following ideal

kergp = (7% —1,U, (X) = U, 2(X)=22,U,, (Y) = U,, o(Y) —2Z).

Let us consider the relationship between K°(C,, , ) and the rank 2p Grothendieck
group

K(Cp) = EBEDZ[X;]K-
s=1 e==%

of the triplet W-algebra. K(C,) has the structure of a commutative rings and, as shown
in [64], is isomorphic to the ring

(77— 1,0,(X) — Uy 2(X) — 22)’
where
Xk 1 [(Nle— X, [Alk— Z
By Theorem B2, we obtain the following proposition.

Proposition 9.2.2. By setting [X[,)]x = 0 or [X; ]k = 0 in K°(Cp, ,_), we obtain two
Grothendieck rings K(Cp,) and K(C,_):

[sz]KZO [Xz-",_l]KZO

K(Cp,) K’ (Cppp) ———— K(Cp_).

Remark 9.2.3. By setting Uy, _1(X) = U, _1(Y) =11in P°(C,, ,_), we obtain K°(C,, ,_).

9.3 The braided tensor category Cg e

Let Min,, ,  be the full subcategory of C,, , consisting of the whole minimal simple
modules L(h, ). Since

EXt1<L(hr,s)7 L(hr’,s’>> - 07 1< T, r’ <P+, 1< S, s' <p-,
Min,,, ,,_ is a Serre subcategory. Let

C&,p, i=Cp, p_/Miny, ,
be the quotient of the abelian category C,, ,_ by the Serre subcategory Min,,, , . Since
by Corollary 23 L(h, ;) )M € Min,, , for any M € C, the abelian category Cp.
has the structure of a braided tensor category.

Before we examine the properties of CI?ML, let us review some properties of weakly
rigid tensor category according to [563],[64].

+P—)
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Definition 9.3.1. Let (C,®,1) be a tensor category. We say that an object M is weakly
rigid if the contravariant functor

Fy (=) = Home(— ® M, 1)
18 representable.
For the proof of the following proposition, see Appendix A in [53].

Proposition 9.3.2. Let C be a weakly rigid tensor category. Assume that C satisfies the
following properties

1. C has enough projective and injective objects.
2. All projective objects are injective and all injective objects are projective.
3. All projective objects are rigid.

Then if

O—L—M-—=N-=0

1s an exact sequence in C such that two of L, M, N are rigid, then the third object is also
rigid.

Note that, in the braided tensor category C°

. p_» the unit object is given by

,Cl,l ~ ICI,I ~ Xf’rl (931)
Thus, by (8231) and by Lemma B3T3, we obtain the following proposition.
Proposition 9.3.3. The braided tensor category C£+,p, 15 weakly rigid.

From the results in Chapters [ and B, we obtain the following propositions.

Proposition 9.3.4. In the abelian category C°

p4.P—7
Q(X;i .)p+,o and Pfs are projective.

the indecomposable modules Q(Xfp_ Jop s

Proposition 9.3.5. In the braided tensor category CO

P+,p-’
indecomposable modules Q(st)-,. and 7):,[5 are rigid.

all simple modules Xé and all

Proof. Since K, ~ &/f, in Cg+7p_, it is sufficient to show that all simple module X are
rigid. Note that
Xltl X XTJ,FS = XTTS

in CSML. Thus it is sufficient to show that &7 is rigid. Then we can see that the rigidity

of X follows by choosing the evaluation map and coevaluation map as

— . — - - + _ . + — —
eVlel — IdX;l . X171 & Xl,l % Xl,l’ COeVle’l — IXmil . X171 _> Xl,l & X171.
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Since the projective covers of all simple modules are rigid in C% by Proposition

937, we obtain the following theorem. e
Theorem 9.3.6. The braided tensor category Cg 1S riged.
Let us define the following full subcategories of C& o
Definition 9.3.7. Let 1 <r <p, —1,1<s<p_—1.
1. Let C, ; be the full abelian subcategory of CSHL defined by
MeC,

< all composition factors of M are given by Xf; and X .

2. Let C,  be the full abelian subcategory of CY defined by

P+,P—

MeC,,

< all composition factors of M are given by X;“l and X ;.

3. Let Cli% be the full abelian subcategory of CSHL defined by
M € Cf,
& all composition factors of M are given by Xli’pf
4. Let C’fw be the full abelian subcategory of Cg%p_ defined by
+
MedC,,
& all composition factors of M are given by X=*

p+,1

Definition 9.3.8. Let C1,,  and C,, 1 be the following full subcategories of CO  :

P+,p—
p——1 p+—1
C,. =P C.act, ey, Croni=EPCuac, oC,,
s=1 =

By the results in Chapters [@ we obtain the following proposition.
Proposition 9.3.9. Let 1 <r<p, —1,1<s<p_ —1.

1. In Cip , QX )1 and QX[ )1s are the projective covers of Xy'y and X,
respectively.

2. In Cp, 1, QX))o and Q(X5 )1 are the projective covers of X5 and X7 |,
respectively.

3. In Cyip_, the simple module Xfp_ € C’fp_ 1S projective.

4. InC,

.1, the simple module X C’ 1 1S projective.

Then, similar to the arguments in Section 6 of [68], we obtain the following proposition.
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Proposition 9.3.10. We have the following equivalences as the abelian categories
Cl,p7 = Cp—’ Cp+,1 = Cp+'

Theorem 9.3.11. C,,_ and C,_ ; are braided tensor subcategories ofC]?%pf. Furthermore,
we have the following equivalences as the braided tensor categories

Cip. ~=Cp, Cpoa=C

P+

Proof. The structure of the tensor product between all indecomposable modules of C,
is determined by [64]. Then, by Proposition B2310 and by the results in Section B,
we see that the tensor structures of C;,_ and C,, ; coincide with those of C,_ and C,, ,
respectively. O]

Let g,, ,_-mod be the category of finite dimensional g, , -modules, where g, , is
the quantum group constructed by Feigin et al.[22].

Conjecture 9.3.12. The braided tensor category Cg+’p_ s ribon tensor equivalent to
Op, p_-mod.

Remark 9.3.13. The equivalence of the ribbon tensor categories C, and Uq(SZQ)—mod 18

proved in [34], where Uy (sly) (q = e%) is the restricted quantum group.

Remark 9.3.14. g,, , is a Hopf algebra over C generated by ex, fi and K*' with
relations

KK =K'K=1, fff*=0, K" =1,

Ke:K™' = qles, KfiK ' =q % fy,

€+€_ = C_Cy, Y B e+ fr = frex,
KPs — K—PF

lex, f1] = —————,
Qf - C.Iiﬁ

w\/TI)
P+ -
In [23], it is shown that the restricted quantum groups quiq:(Slg) = (e, fy, K1) are

where ¢+ = ¢*PF = exp(

embedded in g, ,_ by
€4 — e4, fer— f+, Ky — KP7
and that
Opyp- = qu— (sl2) ® Uq§+ (slo) /(K ®1—1® KP'),

where (K%~ ®1—1® K”") is the Hopf ideal generated by (K%~ ®1—1® K"*). For more
detailed structure of g, ,_, see [9].
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Chapter 10

Representation theory of the Neveu-
Schwarz algebra

There are two minimal extensions of the Virasoro algebra with N = 1 supersymmetry:
the Neveu Schwarz algebra and the Ramond algebra. In this thesis, we only consider the
Neveu-chwarz algebra. The N = 1 Neveu-Schwarz algebra is the Lie superalgebra

ns=PCL, e P ce.ace

nez r€L+Z

with commutation relations (k,l € Z, r,s € Z + %)

2 — k
[Li, Li] = (b — 1) Lyt + 5k+l,0Tca
1
[Lka GT] - (§k - T)Gk+r7
1 1
{G,,Gs} =2L,, s+ 5(7‘2 _ Z)5T+S’OC’

(L, C] =0, [G,,C]=0.

We identify C' with a scalar multiple of the identity, C' = ¢ - id, when acting on modules
and refer to the number ¢ € C as the central charge. In this chapter we fix m € Z>; and
review basic facts of representation theory of the Neveu-Schwarz algebra whose central
charge is

10.1 Free field realisation of the Neveu-Schwarz al-

gebra
The fermion algebra f is the Lie superalgebra
i= P chect
TEZ""%

with anti-commutation relations:

{bra bs} = 5r+5,07 {b’ra 1} = 0.

The fermion algebra f has the triangular decomposition

i =@pch, §°=ci

r>0
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Let C|0)yg be the one dimensional representation of = = f* @ f°, which satisfy

1 ‘O>NS = ’O>NS? f+ ‘O>NS =0.

Definition 10.1.1. The Neveu-Schwarz fermionic Fock module FF is defined by

FI = Ind, C[0)ys -

Let b(2) = > ,cz +1 b,z"""2 and we define the following energy-momentum tensor

T(f)(z) = % 1 0b(2)b(z) := ZLg)z_”_2

neL
whose central charge is ¢ = %
We set
B 2m + =
= V2m %
0 2m +1

We define the following bosonic energy-momentum tensor

1
T®(2) = 5( a(z)? : +By0a(z)) = Z LB) ;=2
neZ
whose central charge is

_ 2 N=1
c=1-36) = Cl2m+1 — 9

We introduce an even field and an odd field:

T(z) = TP (2) + TO(2),
G(z) = a(2)b(z) + Poob(2).

Proposition 10.1.2. T'(z) and G(z) have the following operator product expansions

T(2)G(w) = éci(z; + zG_(lZ)) bl
G()G(w) = /3 2T(w)

z—w)p  z—w

_ 3 2 _ N=1 - -
where cg, := 5 — 35 = 1 5,41 For the Fourier mode expansions of fields

T(z):= Zan*"*Z, G(w) == Z Grz*"*%,

nez T€Z+%
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each mode satisfies the following commutation or anti-commutation relations

m3—m

[Lm, Ln] = (TTL — n)Lm+n + 5m+n7OTCﬂO7

1
[Lma GT] = (5777, - T)Gm—km

1 1
{GT, Gs} = 2L7~+5 + g(r2 _ 1)57'_"_8,0050.

Namely the each mode of the fields T'(z) and G(z) generates the Neveu-Schwarz algebra
whose central charge is cg, = 3 — 363 = g i1-
Definition 10.1.3. For € C, we set
Ff =Fs@F
and call this tensor product Fock module simply.

From this section, we omit |3) ®(0)yg as |f) for any 8 € C and omit the tensor product
symbols for brevity, identifying a,, with a, ® 1 and b, with 1 ® b,..

We define the following two vectors in Fj®

1
T =502, + foaa +b_3b3)[0),

G = (a_1b_s + Bob_3) [0).

3
2

Definition 10.1.4. The Fock module I carries the structure of a %Z—gmded vertex
operator superalgebra, with

Y(]0);2) =id, Y(a-1]0);2) = a(z), Y(b_% 0);2) = b(2),
Y(G;2)=G(z), Y(T;z)=T(z).
We denote this vertex operator superalgebra by Fg.

10.2 Structure of Fock modules

We set
15} 2m +1 6] L
= m = —
" ’ 2m + 1
For r,s,n € Z, we set
1—r 1—s n
5r,s;n O 9 ﬁ+ + 9 ﬁ, + §5+7 Br,s - ﬁr,s;(];
and we use the abbreviation as FI'5, = Fg* | FI = Fg® . For r,s,n € Z, let us set
1 1 1 1
Y = (= 1D)(2m+1) — —(rs — 1) + =(s* — 1
7,8 8(r )( m+ ) 4(7.8 >+8<8 )2m+17
h:,ss;n = h:s—n,s = h?ﬁs—i—(?m—i—l)n

and let L™(h) be the simple ns-module whose highest weight and central charge are h

N=1
and ¢y, 41
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Theorem 10.2.1 ([&47]). For each r,s € Z, r — s € 2Z, the Fock module F'; € Fj-Mod
has the following socle series as an ns-module:

1. For each F™

1,s;m

(I1<s<?2m+1,n€Z,s—nec2Z+1), we have

SOC(FFE;;TL) = @ Lng(h??2m+1—s;|n|+2k+l)a

k>0

ns ns ns
Flsn/SOC 15n @L hls|n|+2k

k>a
where a =0 1ifn>0,a=11ifn <0.

2. For each F1%,,  1.4,(n € Z), we have

mns _ ns Ilﬁ
SOC<F1,2m+1;2n) = F1,2m+1;2n @ L 1 2m+1 |2n|+2k)'

k>0
We introduce the following two fields
QF(2) = b(2)V3, (2), Q™(2) := b(2)Vs_(2).
The operator product expansions between these fields, T'(z) and G(z) are given by:
Q% (w) 1V (w)
T(2)Q™ (w) ~ By , G(2)Q™ (w) ~ —— 0y, 10.2.1
()QE(w) ~ 0, (@) ~ 50, (10.2.1

By (IZT), the following operators become commutative with U(ns)-action:

QY = fizo QY (2)dz : FT% 0 — FYopyy, kEZ,
Q= § QU Py~ Pt KEL
Similar to (B=33), we introduce the non-trivial field
Q" (2) : Fifar, = iyl 27, k€L
as follows

Q"V(z) = / Q™ (2)Q™ (221)Q (22) - - Q¥ (2wsm1) 2™ day -+~ dagy
Ts(k-)

for s > 2, where T'y(k_) is a certain regularized cycle constructed from the simplex
A ={(z1,...,26_ ) ER | 1> > >2,, >0}
The following proposition is due to [47].
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Proposition 10.2.2. For each s > 2, the zero-mode
@M= § Qs iy, ity K2
2=0
is non trivial and commutative with ns-action of Fg>-modules.

These fields Q’f['](z) are called screening currents and the zero-modes Qf['] are called
screening operators. The following theorem is due to [47].

Theorem 10.2.3 ([7]). For any 1 < s < 2m and n € Z such that s —n is odd, let us
define the ns-modules

K™ =kerQ™: Fpe s Fe

1,s;n 1,—sn-*

Then K22, = Soc(F}S,).

1,s5n
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Chapter 11

The N =1 triplet vertex operator su-
peralgebra SWW(m)

In Section [, we review some results on the super triplet W-algebra SWW(m) by Admovi¢
and Milas in [2] briefly. In Section M3, we will construct logarithmic SW(m)-modules
SPE by using the logarithmic deformation by J. Fjeistad et al.[27]. By using the structure
of the structure of the logarithmic modules SP{, in Section [T, we review the structure

of the Zhu-algebra A(SW(m)) determined in [G].

11.1 Vertex operator superalgebras V}* and SW(m)

Fix any m € Z>,. Let L = Z3; = Z+/2m + 1 be an integer lattice.

Definition 11.1.1. The lattice vertex operator superalgebra V}* associated with L is the
quadruple

(P Fs.10),7.G.Y)

BeL

where the fields corresponding to |0), a_q |0), b_y 0), T and G are those of F> and

Y(6);2) = Va(2), BelL.
For each ¢ € Z, we introduce the following symbol
o
S 2m+1

Vi By = —ip-.

It is a known fact that simple V}*-modules are given by

ns R ns _ ns s
Vi, = @Fﬂl,l;wm - EB Fiivoign, 1=0,...,2m.

nez nez

For each i € {0,...,m — 1}, we define

By Proposition 23, we have the following decomposition as ns-modules

SXf, ~ @ (2n + 1) L™ (h1% 1. on)

TZEZZO

S‘X;sz = @ (2n)Lm(hT,§2(m—i);—2n+l)7

nEZZl
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and
SX;rl L+72 /SX
SX,, L+’y /SXH-I

For i = m, we define

SX?’J;:L+1 = zi'ym & @ (2n+ 1)Lnﬁ<hlf2m+1;72n>'

TLEZEO

Define the following vertex superalgebra
SW(m) := ker Q%|yns.
Proposition 11.1.2 ([2]). SW(m) has the structure of a vertex operator superalgebra.
We call this vertex operator superalgebra the N = 1 triplet vertex operator superal-

gebra.

We define the following three elements in V;°
= |Bl71;—2> 5 WO = Q:_SW_’ W+ — Q:_S o QTW_

These elements have the same Ly-weight hy3 = 2m + % We define the following three
elements

W= i=by [Bria), WO=QEW™, Whi=QFoQy .
These elements have the same Ly-weight 2m + 1.

Theorem 11.1.3 ([Z]). The N =1 triplet vertex operator superalgebra SW(m) is gener-
ated by Y (W=, 2), Y (WY, 2),G(2). Furthermore SW(m) is strongly generated by

G(2), T(2), Y(Wh2), Y(W2), Y(IWH2), YW 2).
Theorem 11.1.4 ([2]). The N = 1 triplet vertex operator superalgebra SW(m) is Cs-
cofinite.
Let A(SW(m)) be the Zhu-algebra [68] of SW(m).

Proposition 11.1.5 ([?]). Zhu-algebra A(SW(m)) is generated by [/I/I?J“], [WO], [/W_] and
[T). The generators satisfy the following relations:

(W) 5 W] — W]+ [W°] = =2 ([T W,
(W) 5 [WH] = W] [W°] = 2 (IT])[W],
(W] W] — [W] o (W] = —2f([T) (W),
(W)« [W°] = g([T)),

(W]« W] =0,
(W]« [W-] =0,

where f([T]) and g([T]) are non-trivial polynomials of [T).
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Proposition 11.1.6 ([2]).

1. For each 0 <i <m, SX}, | becomes an simple SW(m)-module. The highest weight
space of SX} .| becomes a one dimensional simple A(SW(m))-module.

2. Foreach 0 < j <m—1, SX_ . becomes an simple SW(m)-module. The highest
weight space of SX ., becomes a two dimensional simple A(SW(m))-module.

Proposition 11.1.7 ([2]). For each 0 < i < m — 1, the simple Vi*-modules V}°_. and

Vi, become SW(m)-modules and satisfy the following eract sequences:

0—=8X5, =V, = SX, ., =0,
0—=8X, , =V, . —8Xi, —=0.

Theorem 11.1.8 ([2]). All simple SW(m)-modules are completed by 2m + 1 simple
SW(m)-modules

{Sx; : 1<i<m}uU{Sx : 1<i<m+1}.
For the dimension of Zhu-algebra A(SW(m)), the following theorem holds.
Theorem 11.1.9 ([2]).
dimcA(SW(m)) = 6m + 1.

Remark 11.1.10. In [6], the structure of A(SW(m)) was determined. We will review
this theorem in Subsection [T1.4.

11.2 The block decomposition of SC,,

Definition 11.2.1. Let S8C,, be the abelian category of weak SW(m)-modules.

For any M in 8C,,, let M* be the contragredient of M. Note that SC,, is closed under
contragredient.

We denote Extg. (e,e) by the n-th Ext groups in the abelian category SC,,. The
following theorem can be proved in the same way as Theorem 4.4. in [I].

Theorem 11.2.2. For all i # j
Extge (SXF, SXt,) = Extge (SX, _;SX,,_ ;) =0,
Extge, (SX/,, 8%, ;) =0.

For each 0 < i < m — 1 we denote by Cj;; the full abelian subcategory of SC,, such
that

M € C;;1 < every composition factors of M are given by SXLI, SX, ..
We denote by C), 1 the full abelian subcategory of SC,, such that
M € Cp11 < every composition factors of M are given by SX7 ;.
By Theorem 122, we have the following theorem.

Theorem 11.2.3. The abelian category SC,, has the following block decomposition
SC = P Cir.
=0
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11.3 Construction of logarithmic modules SPE

Similar to the arguments in Section b, we have the following proposition.

Proposition 11.3.1. For 0 < i < m — 1, the screening operators Q[_QHH,Q[_Q(m_i)] are
SW(m) homomorphisms, that is, for A € SW(m)

ULy Az =0, [T Y(42) =0

For each 0 <i <m — 1, we set
SPy = Vi, ® Vi, € Cin
and let (SP.,, Ysp., ) be the ordinary SW(m)-module. Let us consider the logarithmic de-

formation by the screening currents Q" 2Z+1]( ) and Q™2™ Note that, by Proposition
3T, for A € SW(m) two fields A juoeiri (Y (A; 2)) and A pusam-a1 (Y (4; 2)) does not

contain a logz term. By using Theorem EEIZI] we can define the structure of a logarithmic
module on SP.,.

Definition 11.3.2. For 1 < i < m — 1, we define SW(m)-modules (SP;., J;\,) and
(SP,,_;,J,. ;) as follows. As the vector spaces

sz-i-l =8P, = SP%‘
and the module actions are defined by

ngﬂ{ (A Z) + A 2z+1](Y:'373W (A Z)) on VLJF,Y

J’i+ 1 (Av Z) {
- YS'P% (A’ 2) on VL+'Y2m7z7

Jo (Asz) = {YSP%(A; z) + AQ,:s[z(nH)] (Ysp, (A;2)) on VP,
Ysp., (4;2) on Ve, .
for any A € SW(m).
For any A € SW(m), we use the following notation

J,:1(An) ::]{ Jl+1(A 2)z ntla-lq,,
z=0

J - J(A) ::]{ Jo (A 2)2" AT s,
z2=0

m—1

For the energy momentum tensor 7'(z) = Y (T’ z), we have the following proposition.
Proposition 11.3.3.

1. On the Vi, ., we have

ns[2(m—1i)]
Fo2) = 1)+ S,

J(Lo) = Lo + QB =,
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2. On the Vi, , we have

+7i?

ns[2i+1]
o (T2 =T() + &),

VA
J_i(Lo) = Lo + QP

By Propositions 223 and [1-33, we see that SW(m)-modules SP¥ are indecompos-
able.

11.4 The structure of the Zhu-algebra A(SW(m))

In the following, we review the structure theorem of Zhu-algebra A(SW(m)) which was
proved in [6], using the logarithmic modules 873;,, 0<i<m-—1.

We set R = A(SW(m)). For 0 < i < m —1, let Vi3y = H(SP; ;) be the highest
weight space of SW(m)-module SP, ;:

Vigr = H(SPZLH) = C|B12m-i)a) + C|B12i41) -

Vii1 becomes a left R-module. Then, by Proposition II=373, the action of Ly on V. is
given by

(J;il(LO) - hf’mﬂ) |ﬁ1,2(mfz');1> = ‘51,2i+1> :

Therefore, the image of the representation of R, ®y,,, : R — M,(C) contains

I

i+l T {(Z 2); a,be@}.

Let Wiy1 = H(SX,, ;) be the highest weight space of SX .. Since W;; is two dimen-
sional irreducible R-module, the image of the representation of R, ®w,,, : R — M;(C),
becomes

I, =Im®y,, = M(C).

m

Let Vi1 = H(SX) ) be the highest weight space of SX}. ;. Since Vj;; is the one
dimensional R-module, the image of the representation of R, ®y, ., : R — C, becomes

I}, =TImdy, , =C.
Therefore, by Theorem ITT9, we have the following theorem [f].
Theorem 11.4.1 ([6]). The Zhu algebra A(SW(m)) is isomorphic to

m m—1
I=Ppr,ePr, .
i=0 i=0

From Theorem [T, in particular we obtain the following proposition (see also
Proposition 7.7 in [66]).
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Proposition 11.4.2. For0 <i<m —1,

Extge (SXF,,SX ) =0, Extg, (SX,,

m—1)

SX; ) =0.

Let us consider the structure of the logarithmic modules SPE. By Proposition IT42,
we obtain the following proposition.

Proposition 11.4.3. Let 0 << m — 1.
1. At least one of SP;,,/SX}. | or SPL/SX ], is indecomposable.

2. At least one of SP,, ,/SX,,

m—i

or SP,*./SX, . .

; 15 indecomposable.
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Chapter 12

The structure of braided tensor cate-
gory on SCp,

Since the super triplet W algebra SW(m) is Cy-cofinite, Theorem 4.13 in [36] show
that SW(m) has braided tensor category structure as developed in the series of papers
(37, BR, BY, 40, 41, 42, 43, 44] (see also [14]). We denote (SC,,,X) by the tensor category
on 8C,,, where the unit object is given by SXT. In this chapter, we compute certain
non-semisimple fusion rules and determine the structure of the projective covers of all
simple modules.

12.1 The tensor product S¥| XS

In the following, we abbreviate h°.. as hy sp.

Lemma 12.1.1. Fori = 1,...,m, the vector space Ag((SX] RSX;)*) is at most two
dimensional. Lg acts semisimply on Aog((SX] R SX[)*) and any Ly eigenvalue of this
space is contained in {hy 21, h1 241}, where hy o1 and hy 941 are the Ly weights of the
highest weight space of SX; | and SX;SA, respectively.

Proof. We will only prove the first case. The other cases can proved in the same way, so
we omit the proofs.

Let ¢*, ¢ and ¢, be arbitrary elements of Ay((SX] X SX;)*), SX] and SX,
respectively. For 1 < j < m, let {vj, v; } be a basis of the highest weight space of S’
such that

/Wi[O]vji =0, Wi[O]vf € C*v;.
For n > 1, let w,(cn)(k: =1...,2n+ 2) be the U(ns)-highest weight vectors of the vector
subspace (2n + 2) L™ (hopt22;) C SX; . By Lemma BT8 and the relation
| t—1 L B
{t2 — 1G_% + :G_%G_% + t—l-—lG_%G_%}Ul =0, t=-2m-—1, (12.1.1)
we see that, depending on whether 1)* is even or odd, the value ()*, ¢1 ® ¢p9) is determined
by the values

(W, v§ @0 ), (W, Lt @),
(' vf © wi™), (W, Lywf ® wf™),
<w>k7 G_%Ui X wl(fnfl)% <¢*7 G?lévi ® wli2n71)>‘

or
(0, G_yof @), (W', G* i @),
(W @ w ), (W, L @ uf™D),
WL Gopieu™), LG euf™),
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for some finite n > 1 and k, where ¢ = & and € = +.
By using Lemma BT and (TZI), we have

(Lov*, vf @ wy)
(Lot (L-10) @ i)
hz 2+ hon+2,2i 1 (W, vs @ w'™)
o h hoo+h 41— (@2m+1)°+1 * (L (n)
2m+1 2n+2,21 2,2 2n+2,2¢ 2(2m+1) <"¢ > ( ,1’01) & wy, >

We see that the eigenvalues of this matrix do not correspond to Ly weight of the highest
weight of all simple SW(m)-modules. Thus we have

W v @) =0, (", (L)) @ w) =0
for any n > 1. Similary we can show that
(W, G_vf @) =0, (0, G%vf @ wy) = 0
for any n > 1.
Therefore the value (¢*, ¢ ® ¢5) is determined by the values
(", 0] ® vf), (W, Lyvf @ o)
or
(", G o @f), (W, G2 o @),

Let us assume that ¢* is odd. Then (*, ¢ ® ¢o) is determined by the values
(%, G_yvf @f), (W, G i @),

By using Lemma BT@ and ([ZI), we have
(Loy, G_1vf @ vf)
(Lo, G 0 0 0f)

_ h22+hw 5 1 ) [ Gopie)
N m h22¢ h22+h222+3 Zmtl) 1 W*aGi%Ui@Uﬂ '

2m+1 2m+1 2(2m+1)

We see that this matrix is diagonalizable and eigenvalues are given by {hj 2i+1, h32i-1}-
Note that the eigenvalue hs9;_; does not correspond to any Ly eigenvalues of the highest
weight space of the simple SW(m)-modules. Thus the Lo-weight of * is hy 9;41.

Next let us assume that ¢* is even. Then (¢*, ¢; ® ¢9) is determined by the values

(W, vf ®@f ), (", L_yv{ @5 ),

By using Lemma B8 and (TZI), we have

( (Lov", v @ vf) )
(Loy™, (Loavp) @ )

h22+h22z 1 , ( <¢*,U§®Uf/> >
= 2m—+1 1 * € ¢ :
2m+1 *hy 2i hog 4 hogi +1— Cuced) e 2(;;11;; (W%, (L_1vf) @ vf)
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We see that this matrix is diagonalizable and eigenvalues are given by {hj 2,1, h32i41}-
Note that the eigenvalue hs ;11 does not correspond to any Ly eigenvalues of the highest
weight space of the simple SW(m)-modules. Thus the Lo-weight of ¢* is hy 9;_1.

Note that W= 0] acts trivially on the highest weight spaces of SX;" | and SX/, ;. Then
we have

W=[0]y* = 0.
Thus, by Lemma BT, we see that (1", ¢ ® ¢) is determined by the values
("o @v;), (", Loyl @)
or
(" G_svf @), (", G2 yof @ v;).

Therefore, from the above results, we can see that the vector space Ag((SX] X SX;)*)
is at most two dimensional. Il

Remark 12.1.2. In the proof of Lemma IZI1 we see in particular that if 1 = 1 and
Lyy* = hi1¢* =0, then G_%Q/J* =0.

For any 8 € A, :=={ Brsn | 7,5, 0 € Z}, let

ns . @ Jas
B+L - B+n\/2m+1
neZ

be a simple V}*-module. For any (5,5 € A,,, it can be proved easily that there are

no Vi*-module intertwining operators of type n5V5//+ Lo ) unless 7 = '+ mod L,
Vi'in VBiL

ns
and dimc/ n&*'* AL ) = 1. Let Y be the V}*-module intertwining operator of type
Vel Vaic
( nl)ﬂ'wtﬁ. ) Then, by restricting the action of V}* to SW(m), Y defines a SW(m)-
VitiL ViiL
module intertwining operator of type ( nl}ﬁ'%ﬁﬁ ) We denote this SW(m)-module
Viiin VEiL
intertwining operator by Yy 3.

Lemma 12.1.3.

Sx; Sx;
! (32(1 §X1> 70 1 (le §X1) 7 0.

Proof. Let us consider SYW(m)-module intertwining operator Y = Yj, 5,, where 8, = (a5
and ﬁg = BLQm_l;Q. Then we have

</3172m;1| Y (|B22);2) |Bl,2m—1;2> £ 0.

Thus we have

+
I (32}91—)(11;5> # 0. (12.1.2)
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Note the following exact sequence
0—SX) = Vi —SX; = 0.
Then we have the following exact sequence
SXTRSX,) — SXT KV — SXT KSXT — 0.
From this exact sequence, we have the following exact sequence

0— HOIIlSW(m)(SX; X SXI,SXT) — Homgw(m)(SXf X E;,S.)CT)

By Lemma 2T, we have

Homgyy(m) (SXT KSX;,, SXT) = 0.
Therefore by (Z12) and (IZZ123), we obatin

Homgyym) (SXT KSXT,SXT) #0.

The second equation can be shown similarly by considering the intertwining operator
Y, 5y, where (81, 83) = (B2, Ba,2)- O

By Lemmas 211 and [213, we have the following proposition (see Remark IZZ172).

Proposition 12.1.4.
SX RSX] =Sxf el(8xy), (12.1.4)

where T'(SX7F) is a highest weight module such that top(T'(SX3)) = SX7.

12.2 Four point functions

In the next section, we will show the self-duality of the simple module SX;. Before
that, we introduce four point functions which satisfy a fourth order Fuchsian differen-
tial equation, and examine monodromy property of these four points function by using
Dotsenko-Fateev integrals [I7],[I8],[28],[62].

Let a,b,c,ad’, b, ¢ be generic complex numbers and let

Uu,v;2) = u®(u — 1)°(u — 2)%% (v — 1) (v — 2) (u — v) 72,

where z € R such that 0 < z < 1. Let us consider the following Dotsenko-Fateev integrals

Ii(z) = U(u,v; z)dudo, (1=1,2,3,4),
[A]

where [A;] are regularized cycles associated to the following regions
A= {1l <u < v}, Ay ={0<u<l11<uv},

A ={l<u0<v<z} Ay:={0<u<wvv<z}
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Remark 12.2.1. In [63], the meromorphic continuation of the Dotsenko-Fateev integral
/ uu— 1) — 2)% (v — 1) (v = 2) (u — v)*> F(u, v)dudv
[A]

is constructed, where F(u,v) is any symmetric polynomial of u and v. It is proved that
v = —1 18 an apparent singularity and is removable.

Using similar methods in [I7], we obtain the following relations:

__ s(a)s(a) s(c)s(a’)
hiz) = s(b+c)s(b + (:’)Il(1 —2) - s(b+c)s(b + c’)Iz(1 =2
s(a)s(<') s(¢)s(c)
(bt e)s(b + c’)I s(1—-2)+ s(b+c)s(b' + c’)I4(1 —2)
_ sla+b+)s(d) N s(b)s(a) .
I(z) = s(b+c)s(b/ + ) L1 ) s(b+c)s(b’+c’)]2(1 )
s(a+b+c)s(d) s(b)s(c)
s(b+c)s(b + c’)I?’<1 —a+ s(b+c)s(b + c’)14(1 —2);
~ s(a)s(a’ + b + ) s(c)s(a’ +b +¢)
ls(z) = = s(b+c)s(b + ¢) hil=2)+ s(b+c)s(b + ¢) L1 =2)
s(a)s(b') s(c)s(b)
s(b+c)s(b + )13(1 —a+ s(b+c)s(b’+c’)l4(1 —2)
_sla+b+c)s(a +0 + ) . s(b)s(a' +V +¢) .
Li(z) = s(b+c)s(b + ) L1 )+ s(b+c)s(b + ) (1 )
s(a+b+c)s(t) s(b)s(c)
s(b+c)s(b + c’)I?’(1 —a+ s(b+c)s(b + c’)14(1 —2)
where s(z) = sin(mz).
For r,s € Z and t € C*, we set
Brs = (1;T)6+ 4 5 11,

For ¢ = 1,2, 3,4, let us consider the following 4-point function
Bent) = [ (oo + 2 QUWQEV, DV, (2) o) dudo
[Aq]
— / u/B—BQ,Q (u _ 1)5—52,2 (u _ 2)5—52,2
[Ag] - - -
x pP+P2.2 (U _ 1)5+ﬂ2,2 (v _ Z)5+52,2 (u _ v)f2dudv.

By using the formulas of Dotsenko-Fateev integral [I8],[28], we see that ¥;(z) is finite and
non-trivial in the limit of ¢ = 0. Let

U,(z) = gr(l) U;(z,1)
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for i =1,2,3,4. Then, from the above four relations for /;(z), we obtain

_ 1 5(B-Pap) . 1 s(B-B2p) .
V(&) = 3508 gy ) T 350B By T2 A
C1sBBa) gy LB o
2520 ) T G 0p ) i)

15(35 522)\11 (1—z) 1 5(5 522) N (1—z)

Vo2 = =5 2 ) 2525 Fa)
15(35 Ba2) _ 1 s(B-B2p2) _ .
T @B ) U 9+ 25028 fag) 1 2)

3 s(B-Paz2) _ 3 s(B-fa2,2) .

Wy(z) = 3525 ﬁm)\h(l )+25(2ﬁ 522)%& )
1 $(B-Pa.2) 35(5 B2,2) _ .

25(28- 522)\11 =2+ 3 25(28- 522)%(1 )
§3(35 B2,2) B 3 s(B-f2,2) _ .

ST R SR L ST R R
15(38_f22) 1 s(B_Ba2) _ .

58(25_52 2)\Il3<1 Z) - 53(2/8—ﬂ2,2)\1j4(1 )

From these relations, we obtain

Uy (2) + Uy(z) = — 5(255%2’23) (Uy(1 = 2) + Uy(1 — 2))

s(8-Pa2) ., .
T 528 Ban) (W1 = 2) + Wa(l — 2)), (12.2.1)

ale)  Wa(2) =S5 (1 2) (1 )

$(B-Pa2) . .
+ m(\llg(l )+ Wyl — 2)). (12.2.2)

Similar to the arguments in [45], we can see that each ¥, satisfies the following Fuchsian

differential equation

d o) & m) E ) A pol?) _
(@ 2(z—1)dz3 ' 22(z—1)2d2? 23(2—1)3E+z4(z—1)4>q’i(2>_0 (12.2.3)
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where

3m* 3 2 2

+ (=16m® + 8m* + 16m + 4)z + (3m* + 12m® 4 2m* — 4m — 1))
2
pi(z) = Qe ((16m° + 48m* + 56m® 4 34m> + 12m + 2)2°
+ (—24m® — 72m* — 84m* — 51m? — 18m — 3)2*
4+ (=12m° — 8m® + 12m® + 13m? + 6m + 1)z
+ (6m°® + 8m° + 12m* 4 8m® + 2m?))

pa(2) = @1 ((8m* + 32m® 4 44m® + 28m + 7)2>

+ (=8m* — 32m® — 44m® — 28m — 7)z + (—m* + 2m® + 5m* + 4m + 1))
_ A(m+1)2(2z—1)
S

The Riemann scheme of the Fuchsian differential equation (I2Z=223) is given by

0 1 oo ]
_ 3m? _ 3m? 0
%@H 3717%+1 X
221?_1-&-1 22_&—1—1_’_1 2m—+1
L™ 2m+1 smrt 2m 1
Note that
3m?
hi1— 2hgo = —
1,1 2.2 om 1’
2
m
has — 2hoo =
3,3 2,2 m + 17
1 1—3m?
h — —2h99g = ———
1,3 1 5 2,2 om 1
1 m?+4m + 1
h — —2hgg = — o
3,11 5 2.2 om + 1

Let p; be the characteristic exponent of W;(z) around z = 0. Then we have
p1 = hsz — 2ha o,

1
p2 = hsg 1+ 5~ 2hg 9

1
p3 = hiz+ 5~ 2ha o

P4 = h1,1 - 2h2,2-

12.3 Self duality of the simple module SX’7

Theorem 12.3.1. SX; is rigid and self-dual.
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Proof. We show the rigidity of SA| using the methods detailed in [I5] and [b6] (cf.[64]).
By Proposition 214, we have homomorphisms

iy SXT — SATRSAT,
p1: SX KSX] — S&T,
iz : D(SXT) — SXT KSXT,
p3: SXT RSX] — I(SXY)

such that
proiv =ldsys,  psois=idpeuy)
and
i10p1+130ps = idgymsxr

To prove that SX| is rigid, it is sufficient to prove that the homomorphisms f,g :
SX| = SX| defined by the commutative diagrams

idXiq

SXT 1 SxTRSAT L ST K (SAT KSAT)

1| |4

— p1l¥id

ST < —SXTRSXT 5 (S KSXT)RSXT

and
_ 11 Xid

SxT L sxfRSAT M (SAT RSAT) R ST

o| |-

id&pl

SX] <—SX KSX| ——SX K (SX] KSX))

are non-zero. We only show f # 0. The proof of g # 0 is similar.
Let Voo, Viomo)me and Vam(amg) be the non-zero intertwining operators of type

SXT RS (SX] RSXT)RSA]
Sxy Sx; ) SXTRSX] Sx;7 )

SXT R (SXTKSA)
SX;] SxTKSAT ’
respectively.
To prove f # 0, it is sufficient to show that the intertwining operator

Vi = lsxr© (1 X idsx;) 0 Asxr sxrsxy © Vom(ame) © (idsx; ® 1)

1s non-zero.
Define the following intertwining operator

Vs = lsx; o (ps X idsx;) © Asx;,sx;,sx; © Vam(am2) © (idsxl— ® i3).
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Fix any highest weight vectors v € SX| [has], v* € SX|"[ho]. Then, for some z € R
such that 1 >z > 1 — 2 > 0, we have

(", Y51 (v 1) (p1 0 Voma) (v 2)v) + (07, V35 (05 1) (p3 © Vorma) (v; 2)0)
= (v", lsxr© (m X idsx;) o Asxr sxysay (Vos(amz) (v3 1) Voo (v )v) )

= (0", lsx- © (11 Ridgp-) (Viamayme(Vora (v; 1 — x)v; 2)v))
= (0", Isxr (Vi ((p1 0 Ysaz) (v 1 — w)v;.2)v)),
= (v7, YSXI ((pl o Vo) (v; 1 — x)v; x))v),

SxT

where Vg9 is the intertwining operator of type ( sxt sxr

). Since p; 0 Vogp is the non-zero

saf

intertwining operator of type ( s Sxr

), we have
(v", Y- ((p1 © Vo) (v;1 — 2)v;2))v) € C*(1 — 2)7*"2(1 + (1 — 2)C[[1 — ]]).
(12.3.1)

We define the following 4-point functions

$1(x) = (v*, V31 (1) (p1 © Voma) (v; 2)v) € Car=2022 (1 + 2C[]]),
¢s(x) = (v*, V35(v; 1) (p3 © Vomz) (v; 2)v) € Carhoa=222 (1 + 2C[[a]]).

Similar to the arguments in [45], we can show that ¢;(z) and ¢3(z) satisfy the Fuchsian
differential equation (Z=23) in Subsection 2. Therefore, by the relations (Z=21) and
(22) given in Subsection 22 and by the non-zero four point function (IZZ3l), we see
that ¢ () is non-zero. In particular V3 is non-zero. Thus SX7 is rigid and self-dual. [

12.4 Non-semisimple fusion rules
From this section we introduce the following symbols:
1. For0<i<m

XQZ'_H = SX:CH

2. For1 <:<m

XQi = SX_

3. For1 <i:<m

Py =8P i1
4. For0<:1<m-—1

Py =8P,

Lemma 12.4.1.
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1. Fori=1,...,m—1, the vector space Ayg((X2® Xo;11)*) is at most four dimensional.
Ly acts semisimply on Ag((Xo X Xo;41)*) and any Ly eigenvalue of this space is
contained in {hao;, hosita}, where ho; and he oo are the Ly weights of the highest
weight spaces of Xo; and Xo; 19, respectively.

2. The vector space Ao((Xa® Xopi1)*) is at most four dimensional. Any Ly eigenvalue
of this space is contained in {hi1, hoom} = {0, %}, where hy 1 and hs o, are the Ly
weights of the highest weight spaces of X1 and Xa,,, respectively.

Proof. We only prove the first claim. The second claim can be proved in the same way, so
we omit the proof. Let ¢*, ¢ and ¢y be arbitrary elements of Ag((Xs X X5;11)*), X5 and
Xai11, respectively. For 1 < j < m, let {v", v} be a basis of the highest weight space of
X5 such that

W=[0]v* =0, W[0]u* € C*v*.

For n > 1, let w,(gn)(k: = 1...,2n + 1) be the ns-highest weight vectors of the vector
subspace (2n + 1)L(hopt12i+1) C Xoi41. Similar to the arguments in Lemma T2, we
see that

(W*, Uns)* @ wi) =0

for any n > 2 and k, where U(ns) is the universal enveloping algebra of the Neveu-Schwarz
algebra. Note that

W [=h]v® € U(ns).v° + U(ns).v™, W*[—h)v¢ € U(ns).vf + U(ns).v™

for h < hgq = % + 2m, where € = £. Thus, by using Lemma BT8, we see that the value
(*, 1 ® o) is determined by the values

(y*, U(ns).v* @ u),

where u is the highest weight vector of Xy;,;. Then, similar to the arguments in Lemma
2171, we see that Ly acts semisimply on ¢* and the Ly eigenvalue of ¢* is contained in

{h12(m—i)+1, M1 20m—i)—1, h2,2i, Pagiva}.

Let us assume that the Ly eigenvalue of 9" is k1 g(m—i)+1 OF hi2(m—i)—1. Then, similar to
the arguments in Lemma 2171, we see that

W*, Uns).ot @ w) =0 (12.4.1)
for any k. Note that W= [0]* = 0. Then, by Lemma BTd and by ([ZZ4), we have
(y*,U(ns).v* @ u) = 0.

Thus we have a contradiction.
Next, let us assume that the Ly eigenvalue of * is hgg; or hgg;y2. Note that

W [—h]v* =0, WE[—hjv* =0 (12.4.2)
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for h < hsy. Then, by Lemma BT and by (CX43), we see that
(W*[0]y*,v* @ U(ns).u) = 0.
Thus (*, ¢1 @ ¢9) is determined by the values
(WHO0]y* + 4", U(ns).v™ @ u).

Therefore, by using the relation 211 and Lemma B8, we see that A((Xo X Xo;11)*) is
at most four dimensional. O

Proposition 12.4.2. For s =2,...,2m, we have
Xo X, =X, 1 @ Xy
Proof. Let us show that
Xo X Xoj = Xojm1 @ Xojya.

Similar to Lemma XT3, we can show that

I (szix}%) " I (X)j%}r(}m) £ (). (12.4.3)
By Lemmas 211, B=310 and by the self-duality of X5, we see that
Homsyy(m) (Xom—it1) © Xo(m—i), X2 B Xp;) = 0.
Thus, by (I2Z423), we obtain
Xo ™ Xo; = Xoi—1 ® Xojy.
Next let us show the formula
XoWK Xoi1 = Xo; ® Xojyo, ¢=0,...,m—1.

Similar to Lemma [ZT73, we can show that

I (X2 X)?ml) 0, I (Xj(QX*;H) # 0. (12.4.4)
By Lemmas 41, 2310 and by the self-duality of X5, we see that
Homsyy(m) (Xam—i)—1 © Xom—i)+1, X2 B Xoi41) = 0.
Thus, by (IZ44), we obtain
Xo X Xoj = Xo; @ Xaiqo.
[

Since SW(m) is Cs-cofinite, every simple module has projective cover [36]. For 0 <
t <m —1, let Pyyo and Pyyy be the projective covers of the simple modules Xo(n—i)4+1
and Xy(,—), respectively.
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Proposition 12.4.3.
Xo® Xopyr = Py = Py

Proof. Since Xo,,1 is projective, by the self-duality of X5, XoX X5, 11 must be projective.
By using Lemma BZ3T0 and Proposition 247, we have

(12.4.5)

Thus we obtain

By Proposition IT223, we can see that ﬁl has 2X; as composition factors. Note that Ly
weight of the highest weight spaces of X5, and X; are given by % and 0, respectively.

Thus, by Lemma [2Z21 and (I2ZZ471), we can see that P; has the socle series
Soc(Py) = Socy (Py) < Soca(Py) < Socs(Py) = P,

such that
Soci(Pr) = Xom, Socs(Py)/Soci(Py) ~ X, @ X,

SOCg(ﬁl)/SOCQ(ﬁl) ~ Xop,.

Since P; and ]31 have the same com composition factors, we see that
ﬁl ~ P1 ~ Pl*
O]

By Lemma B=3T0 and by Propositions X472 IZ473 we obtain the following proposi-
tions.

Proposition 12.4.4. For every s =1,...,2m,

The socle series of the projective covers of the simple modules are given by:
1. For1 <i:<m,
Soc(Py;) = Socy(Py;) < Soca(Py;) < Socs(Poy) = Py
such that

SOCl(P2i> = XQ(mfi)Jrla SOC2(P2i)/8001(P2i) ~ Xo; @ Xo,
SOCg(PQi)/SOCQ(PQZ‘) ~ X2(m—i)+l'
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2. For0 <i<m—1,
Soc(Pait1) = Socy(Pyi1) < Socy(Paiy1) < Socs(Pait1) = Poigr
such that

Soci(Pair1) =~ Xogm—iy, S0c2(Paiy1)/Soci(Pair1) =~ Xoip1 © Xoiy1,
SOC3(P2i+1)/SOC2(P2i+1) = XQ(m—i)-

Proposition 12.4.5.
XoR P =2X5,,11 D Ps.
Proposition 12.4.6. For2 <s<2m —1,
XoX Py =P, 1 ® Py,
Proposition 12.4.7.
Xo X Py = 2X 041 D Popp.
From these proposition, we obtain the following theorem.

Theorem 12.4.8. For 1 < s<2m+1 and 1 <t < 2m, the simple modules X and the
projective modules Py are rigid and self-dual.

Similar to the arguments in [64], we obtain the following theorem.

Theorem 12.4.9. The braided tensor category (SC,,,X) is rigid. For any M € SC,,, we
have MY = M*, where M" is the dual of M.

Let U;m“”(slg)—mod be the abelian category of finite dimensional modules over the

small quantum group qum“’”(slg), where ¢ = i1, Similar to the arguments in Section
6 of [68], by Proposition IZ44, we obtain the following theorem.

Theorem 12.4.10. Two abelian categories SC,, and U;m“ll(slg)—mod are equivalent as
abelian categories.

Remark 12.4.11. Let q = emni1. The small quantum group qum“”(slg) 1S an associa-
tive C-algebra which is generated by E,F, K, K~' satisfying the following fundamental
relations

KK '=K'K=1, KEK' =¢*E, KFK' = ¢ *F,
K- Kt

EF —FE="—"—"—_
q—dq

E2m+1 — F2m+1 =0 K2m+1 =1.

See [54] for details.
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12.5 Non-semisimple fusion rings

We introduce the free abelian group P(SC,,) of rank 4m + 1 generated by all simple
modules and all projective modules

2m—+1

P(SC,) = P ZIX]p & éZ[Ps]p.

s=1

From the results presented in the previous subsection, we see that P(SW(m)) has the
structure of a commutative ring where the product as a ring is given by

[o]p - [o]p = [ X o]p.
The operators
X=XoK -

define Z-linear endomorphism of P(SC,,). Thus P(SC,,) is a module over Z[X]. We
define the following Z[X]-module map

) : ZIX] — P(SC.),
f(X) = f(X) - [Xilp,

From the results of previous section, we obtain the following propositions.

Proposition 12.5.1. Fors=1,...,2m + 1,
[(Xs]p = Us1 (X)[Xi]p.
Proposition 12.5.2. For s =1,...,2m — 1,
[Ps]p = (Uzamis(X) 4 Uzm—s (X)) [Xa]p
Proposition 12.5.3.
Usin41(X)[X]p = 2Uzm (X)[X1]p.
From these proposition, we obtain the following theorem.

Theorem 12.5.4. The Z[X]-module map 1) is surjective and the kernel of 1 is given by
the following ideal

kert) = (Usns1(X) — 20z (X)).

Proof. By Proposition IZ51 and TZ5h3, we see that ¢ is surjective. We define the
following ideal of Z[X]

I'= (Usms1(X) — 2Upn(X)).

By Proposition 253, we see that [ is contained in kery. It is easy to see that the
dimension of Z[X]/I is 4m + 1. Therefore we obtain kery) = I.
O
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Let us show below that, from the non-semisimple fusion ring P(C,) (p = 2m + 1)
determined in [64], we obtain the non-semisimple fusion ring P(SC,,). Recall that the
rank 4p — 2 free abelian group

) - D@Dz o DD P,

s=1 e=% s=1 e=%
has the structure of a commutative ring and is isomorphic to

Z[X,Y]
(Y2 =1, Uz 1(X) — 2YU, (X))’

where
[Xfr]pl%l, [X;}p'—)X, [Xf]pHY.

Let p=2m+ 1 and set Y = 1 in P(C,), and then we obtain the non-semisimple fusion
ring P(SC,,):

X p=1

P(Com+1) P(SCy,).

In the paper [?], Adamovi¢ and Milas showed that the characters of the simple SW(m)-
modules are intimately related to the characters of the simple Ws,, ;1-modules. From their
results and ours, it is expected that there is a deep connection between SC,, and Coyy, 1.

Remark 12.5.5. In the paper [3], Adamovié¢ and Milas introduced a certain non-rational
vertex operator superalgebra SW(p, q), where p and q are positive integers such that g > p
and (q, %52) = 1. This vertex operator superalgebra SW(p, q) is a natural generalization
of SW(m) and is a extension of the super Virasoro minimal models:

L*(c)=10) € SW(p, q),

p.q

where L"ﬁ(cgjl, 0) is the Neveu-Schwarz vertex operator superalgebra of central charge

(r—q) )

3
At =(1-2
2 Pq

p,q

Just as SW(m) and Way,+1 are related, SW(p, q) is considered to be related to Whap i1 24+1-
We conjecture that the commutative ring PO(C2m1+l,2mz+l)|[X;1]P=1 ((my,mq) = 1) corre-

sponds to a non-semisimple fusion ring of SW(2my + 1,2my + 1).
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