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Abstract

We study the structure of the category of modules over the triplet W -algebras Wp+,p−

and SW(m), where the former was defined by Feigin, Gainutdinov, Semikhatov and
Tipunin [22], and the latter by Adamović and Milas [2]. Since Wp+,p− and SW(m)
satisfy the C2-cofinite condition, by a series of papers by Huang, Lepowsky and Zhang
[36, 37, 38, 39, 40, 41, 42, 43, 44], every simple module has the projective cover and
the module categories have the structure of a braided tensor category. In the case of
the triplet W -algebra Wp+,p− , we determine the structure of the projective covers of all
simpleWp+,p−-modules and determine certain non-semisimple fusion rules conjectured by
Rasmussen [60] and Gaberdiel, Runkel and Wood [32]. In the case of the tripletW -algebra
SW(m), we determine the structure of the projective covers of all simple SW(m)-modules
and prove that, as a tensor category, SW(m) is rigid. Furthermore we show that a certain
non-semisimple fusion ring of SW(m) can be derived from the non-semisimple fusion ring
of the triplet W -algebra Wp [64].
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Chapter 1

Introduction

We have studied the structure of the category of modules of the family of vertex operator
algebras called tripletW -algebras. In this thesis, we mainly discuss the tripletW -algebras
Wp+,p− constructed by Feigin, Gainutdinov, Semikhatov and Tipunin and the super triplet
W -algebras SW(m) constructed by Adamović and Milas. These triplet W -algebras are
one of the few examples of non-rational vertex operator algebras satisfying the C2-cofinite
condition. In general, for any rational vertex operator algebra, the abelian category of
modules is semisimple, but for any non-rational vertex operator algebra, the abelian cate-
gory of modules of the vertex operator algebra is not semisimple and contains logarithmic
modules whose L0 nilpotent rank n ≥ 2, where L0 is the zero mode of the Virasoro alge-
bra. Furthermore, if the C2-cofinite condition is satisfied, the number of simple modules
is finite, and the category of modules has braided tensor category structure as developed
in the series of papers by Huang, Lepowsky and Zhang [37, 38, 39, 40, 41, 42, 43, 44].
Thus, the triplet W -algebras are mathematically tractable among the non-rational vertex
operator algebras, but specific aspects such as the structure of logarithmic modules and
tensor products among logarithmic modules are still not fully understood.

In the following, we will give a brief description of the research background and prob-
lems related to triplet W -algebras.

First let us review triplet W -algebras associated to Virasoro minimal models. Let
p ∈ Z≥1 and let p− > p+ ≥ 2 be coprime integers. Let

cp = 1− 6
(1− p)2

p
, cp+,p− = 1− 6

(p+ − p−)2

p+p−

be the minimal central charges for the Virasoro algebra. A well-known example of a
irrational C2-cofinite vertex operator algebra with these central charges cp and cp+,p− are
the triplet W -algebras Wp and Wp+,p− , respectively. The former was defined by Kausch
[52] (see also [1],[24],[25], [58]), and the latter by Feigin, Gainutdinov, Semikhatov and
Tipunin [22]. Let Cp and Cp+,p− be the category of modules ofWp andWp+,p− , respectively.
The structure of the category Cp has been studied in detail in recent studies [3], [56], [58],
[64] and is known to be rigid as tensor category. Furthermore Wp-mod is shown to
be ribbon tensor equivalent to the category of modules of the restricted quantum group
U q(sl2) [34]. On the other hand, mathematical studies on the category Cp+,p− were limited
to basic results such as the classification of simple modules [4],[5],[65]. From the physics
side, Rasmussen [60] and Gaberdiel, Runkel, Wood [32],[33] used the methods of lattice
models and Nahm-Gaberdiel-Kausch algorithm [35],[51], respectively, to conjecture the
structure of the projective covers of simple modules and certain non-semisimple fusion
rules.

Next let us review N = 1 super triplet W -algebras associated to super Virasoro
minimal models. In the papers [2] and [3], Adamović and Milas introduced the N = 1
super tripletW -algebras SW(p, q), where p and q are positive integers such that q > p and
(q, q−p

2
) = 1. The vertex operator superalgebras SW(p, q) are extensions of the minimal
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super Virasoro models

Lns(cN=1
p,q , 0) ⊂ SW(p, q)

where Lns(cN=1
p,q , 0) is the Neveu-Schwarz vertex operator superalgebra of central charge

cN=1
p,q =

3

2

(
1− 2

(p− q)2

pq

)
,

and are natural super analogs of the triplet W -algebras Wp and Wp+,p− . Let SW(m) =
SW(1, 2m + 1). Adamović and Milas showed that SW(m) satisfies C2-cofinite condi-
tion, classified all simple SW(m)-modules and conjectured that the category of SW(m)-
modules are equivalent to the category of modules of the small quantum group U small

q (sl2),

q = e
2πi

2m+1 . Furthermore they showed that the characters of the simple SW(m)-modules
can be expressed in the characters of the simple Wp-modules. Thus, the super triplet W -
algebra SW(m) was expected to have the same interesting properties as Wp, but study
on the structure of the projective modules and tensor category remained as problems.

The main results of this thesis are as follows:

• We determine the structure of the projective covers of all simple Wp+,p−-modules.

• We prove that the projective covers of all simpleWp+,p−-modules except for minimal
simple modules L(hr,s) are self-dual, and determine certain non-semisimple fusion
rules conjectured and computed in [32],[60],[66].

• We show the rigidity of the quotient category C0
p+,p− , where C

0
p+,p− is the quotient

of Cp+,p− by the Serre subcategory consisting of all minimal simple Wp+,p−-modules
L(hr,s).

• We determine the tensor structure of the SW(m)-module category and show that
this tensor category is rigid.

• We determine the structure of a certain non-semisimple fusion ring of SW(m) which
is a commutative ring defined on the set of all simple and projective SW(m)-
modules, and show that this non-semisimple fusion ring can be derived from the
non-semisimple fusion ring of the triplet W -algebra Wp [64] by specializing one
variable.

From the last result, we can expect a deep relationship between the tripletW -algebras
and the N = 1 super triplet W -algebras.

This thesis is organized as follows, where Chapters 3 through 9 are about the triplet
W -algebra Wp+,p− and Chapters 10 through 12 are about the super triplet W -algebra
SW(m).

In Chapter 2, we review the definitions of vertex operator (super)algebras and concepts
such as vertex algebra modules and intertwining operators used in later chapters.

In Chapter 3, we review the structure of Fock modules and the Felder complex in
accordance with [65]. The basic facts in this chapter are frequently used in later chapters.

In Chapter 4, we introduce the vertex operator algebraWp+,p− and review some results
in [4],[5],[65] briefly. In Section 4.3, we introduce the block decomposition of Cp+,p− .
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Each block of Cp+,p− is assigned to one of three groups: (p+−1)(p−−1)
2

thick blocks Cthick
r,s ,

p++ p−− 2 thin blocks Cthin
r,p− , C

thin
p+,s and two semisimple blocks C±

p+,p− . The most complex

groups are the thick blocks and each thick block Cthick
r,s contains five simple modules

X+
r,s,X+

r∨,s∨ ,X
−
r∨,s,X

−
r,s∨ and L(hr,s), where L(hr,s) is the minimal simple module module of

the Virasoro algebra. The thick blocks and the thin blocks contain logarithmic Wp+,p−-
modules on which the Virasoro zero-mode L0 acts non-semisimply.

In Chapter 5, by gluing lattice irreducible modules V±
r,s using the logarithmic deforma-

tion by J. Fjeistad et al.[27], we construct logarithmicWp+,p−-modules P±
r,s and Q(X±

r,s)•,•
whose L0 nilpotent rank three and two, respectively.

In Chapter 6, we determine the structure of certain logarithmic Virasoro modules,
which have L0 nilpotent rank two, and certain Ext1-groups, by using the results for
logarithmic Virasoro modules in [55] and certain logarithmic modules F (τ) which can be
constructed by gluing Fock modules.

In Chapter 7, we determine the projective covers of allWp+,p−-simple modules. In this
chapter, we study mainly the thick blocks Cthick

r,s . Based on the structure of the logarithmic

Virasoro modules determined in Chapter 6, we compute Ext1 groups between certain
indecomposable Wp+,p−-modules and the simple modules, and show that the logarithmic
modules P+

r,s, P+
r∨,s∨ , P

−
r∨,s and P

−
r,s∨ are the projective covers of the simple modules X+

r,s,

X+
r∨,s∨ , X

−
r∨,s and X−

r,s∨ , respectively. In Section 7.4, we determine the structure of the
projective covers of the minimal simple modules by using the structure of the center of
the Zhu-algebra A(Wp+,p−) determined in [4],[5],[65].

In Chapter 8, we study the structure of the braided tensor category on Cp+,p− . We
introduce indocomposable modules Kr,s and, using methods in [15] and [56], prove the
rigidity of K1,2 and K2,1 in Theorems 8.3.7 and 8.3.15. Using the rigidity of K1,2 and K2,1,
we show that the indecomposable modules Kr,s, Q(X±

r,s)•,• and P±
r,s can be obtained by

repeatedly multiplying K1,2 and K2,1. As a result we see that all indecomposable modules
of Kr,s, Q(X±

r,s)•,• and P±
r,s are rigid objects. We also determine the tensor product between

all simple modules in the process of these proofs.
In Chapter 9, we introduce two commutative rings P 0(Cp+,p−) and K

0(Cp+,p−) in ac-
cordance with [64], and study the structure of these rings. The latter commutative ring
K0(Cp+,p−) is the quotient ring of the Grothendieck ring of Cp+,p− quotiented by all mini-
mal simple modules. The structure of the quotient ring K0(Cp+,p−) is determined in [61]
(cf. [22],[60],[66]). The former commutative ring P 0(Cp+,p−) is defined on the set of all
simple modules and all indecomposable modules Q(X±

r,s)•,• and P±
r,s. Using the structure

of P 0(Cp+,p−), we can compute the tensor product between indecomposable modules Xr,s,
Q(X±

r,s)•,• and P±
r,s. For the simple modules in the thick blocks, however, we need to

multiply by a factor K∗
1,1, as shown in Proposition 8.4.4. In Section 9.3, we introduce a

certain quotient category C0p+,p− of Cp+,p− and show that two categories Cp+ and Cp− are
embedded in C0p+,p− .

In Chapter 10, we review facts of the representation theory of N = 1 Neveu-Schwarz
algebra in accordance with [11],[46],[47].

In Chapter 11, we review some basic results on the super triplet W -algebra SW(m)
by Admović and Milas in [2] briefly. Let SCm be the abelian category of the super triplet
W -algebra SW(m). Similar to Wp+,p− , SCm has the block decomposition. Each block
of SCm is assigned to m non-semisimple blocks and one semisimple block. In Section
11.3, we will construct logarithmic SW(m)-modules SP±

• in the non-semisimple blocks
by using the logarithmic deformation by J. Fjeistad et al.[27].
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In Chapter 12, we determine the non-semisimple fusion rules between all simple and
projective modules. By using self-duality of SX−

1 , we show that the simple modules and
the indecomposable modules SP±

• can be obtained by repeatedly multiplying X−
1 . As a

result, we can determine the structure of all projective modules and show that SCm is
rigid as a tensor category and equivalent to U small

q (sl2) as abelian categories. In Section
12.5, we introduce a commutative ring P (SCm) and determine the structure of P (SCm).
Furthermore we show that P (SCm) can be obtained from the non-semisimple fusion ring
P (C2m+1) of the triplet W -algebra W2m+1 by specializing one variable.

Acknowledgement
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Chapter 2

Basic definitions and notations of ver-
tex operator algebras

In this chapter we briefly review the definitions of vertex operator (super)algebras and
concepts such as vertex algebra modules and intertwining operators used in later chapters.
See [14],[29],[30],[49], [50] for details.

2.1 Vertex operator algebras

Definition 2.1.1. A tuple (V, |0⟩ , T, Y ) is called a vertex operator algebra where

1. V is a Z≥0-graded C-vector space

V =
∞⊕
n=0

V [n].

2. |0⟩ ∈ V [0] is called the vacuum vector.

3. T ∈ V [2] is called the conformal vector.

4. Y is a C-linear map

Y : V → EndC(V )[[z, z−1]].

These data are subject to the following axioms:

1. dimCV [0] = 1 and 0 < dimCV [n] <∞ for any n ∈ Z≥0.

2. For each A ∈ V [h] there exists a field

Y (A; z) =
∑
n∈Z

A[n]z−n−h

and each field satisfies

Y (A; z) |0⟩ − A ∈ V [[z]]z, Y (|0⟩ ; z) = idV .

3. The field

Y (T ; z) = T (z) =
∑
n∈Z

Lnz
−n−2

of modes define the commutation relations of the Virasoro algebra with fixed central
charge c = cV

[Lm, Ln] = (m− n)Lm+n +
cV
12

(m3 −m)δm+n,0.

The field T (z) is called the energy-momentum tensor.
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4. The zero mode L0 of T (z) acts semisimply on V and

V [h] = { A ∈ V | L0A = hA }.

5. For all A ∈ V

Y (L−1A; z) =
d

dz
Y (A; z).

6. For any fields are local, i.e., there exists N ≥ 0 (depending on A,B) such that

(z − w)N [Y (A; z), Y (B;w)] = 0.

7. For homogeneous elements A ∈ V [hA] and B ∈ V [hB], the fields Y (A; z) and
Y (B;w) satisfy the operator product expansion

Y (A; z)Y (B;w) = Y (Y (A; z − w)B;w)

=
∑
n∈Z

Y (A[n]B;w)(z − w)−n−hA .

Definition 2.1.2. Let V be a vertex operator algebra and let A ∈ V [hA] and B ∈ V [hB]
be homogeneous elements. The holomorphic part of Y (A; z)Y (B;w) at z = w is given by
the following the normal ordered product

: Y (A; z)Y (B;w) :

:=
∑
n∈Z

{ ∑
p+hA−1<0

A[p]z−p−hAB[n]z−p−hA +
∑

p+hA−1≥0

B[n]A[p]z−p−hA

}
w−n−hB .

We abbreviate the holomorphic part : Y (A; z)Y (B;w) : of the operator product expansion
of Y (A; z)Y (B;w) as · · · .

Remark 2.1.3. The operator product expansion and the normal ordered product can be
defined similarly for field not belonging to vertex operator algebras. See [29] and [50] for
more details.

Definition 2.1.4. Given a vertex operator algebra (V, |0⟩ , T, Y ), a weak V -module is a
pair (M,YM) of a vector spaceM and a linear map YM from V to EndM [[z, z−1]] satisfying
the following conditions

1. YM(|0⟩ ; z) = IdM and the Fourier modes of YM(T ; z) =
∑

n∈Z L
M
n z

−n−2 satisfy the
commutation relations of the Virasoro algebra with the central charge cV .

2. For all A ∈ V ,

YM(L−1A; z) =
d

dz
YM(A; z).

3. For A,B ∈ V , the following Jacobi identity holds

z−1
0 δ
(z1 − z2

z0

)
YM(A; z1)YM(B; z2)− z−1

0 δ
(z2 − z1
−z0

)
YM(B; z2)YM(A; z1)

= z−1
2 δ
(z1 − z0

z2

)
YM(Y (A; z0)B; z2),

where δ(z) is the formal delta function δ(z) =
∑

n∈Z z
n.
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4. M has the following decomposition M =
∑

h∈H(M)M [h]:

• For some finite subset H0(M) of C, H(M) = H0(M) + Z≥0.

• For h ∈ H(M), M [h] = {ψ ∈M : ∃n ≥ 0 s.t. (L0 − h)nψ = 0}.
• 0 < dimCM [h] <∞.

• For all A ∈ V , A[h]M [h′] ⊂M [h+ h′].

Definition 2.1.5. Given a vertex operator algebra (V, |0⟩ , T, Y ) and a V -module M , we
call M ordinary or non-logarithmic V -module if L0 acts semisimply on M , and call M
logarithmic V -module if M has L0-nilpotent rank n ≥ 2.

Let us define contragredient modules.

Definition 2.1.6. Let V be a vertex operator algebra and M be a weak V -module. Let

M∗ =
⊕

h∈H(M)

M∗[h]

be the graded dual space of M , where M∗[h] = HomC(M [h],C), and let ⟨ , ⟩ be the
natural dual pairing between M∗ and M . Then we can define the V -module structure YM∗

as follows

⟨YM∗(A; z)ψ∗, ψ⟩ := ⟨ψ∗, YM(ezL1(−z−2)L0A; z−1)ψ⟩,

where ψ∗ ∈M∗, ψ ∈M and A ∈ V .

In the following let us introduce the Zhu-algebra.

Definition 2.1.7. Let (V, |0⟩ , T, Y ) be a vertex operator algebra.

1. For a homogeneous vectors A,B ∈ V whose L0 weights hA and hB, set

A ∗B := Resz

(
Y (A; z)

(1 + z)hA

z
B
)
.

2. Let O(V ) ⊂ V be the vector subspace spanned by

Resz

(
Y (A; z)

(1 + z)hA

z2
B
)

for homogeneous vectors A,B ∈ V , and set A(V ) = V/O(V ). Let [A] ∈ A(V )
denote the classes represented by A ∈ V .

Theorem 2.1.8 ([68]). Let (V, |0⟩ , T, Y ) be a vertex operator algebra. O(V ) ⊂ V is a
two-sided ideal with respect to the multiplication ∗, and thus ∗ defines a multiplication on
A(V ). Moreover, the following holds:

1. ∗ is associative on A(V )

2. [|0⟩] ∈ A(V ) is the unit element

3. [T ] ∈ A(V ) belongs to the center.
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4. For any weak V -module M , let M be the highest weight space of M . Then one can
introduce an A(V )-module structure on M as follows:

[A]|M := A[0].

In this thesis, we study the category of modules over the triplet W -algebras. The
triplet W -algebras satisfies strong finiteness, which is called the C2-cofinite condition.
Let us review the definition of the C2-cofinite condition and the theorem that follows
from it.

Definition 2.1.9. Given a vertex operator algebra V . Let C2(V ) be the subspace of V
given by

C2(V ) := span{ A[−hA − n]B| A ∈ V [hA], B ∈ V, n ≥ 1 }.

The vertex operator algebra V is said to satisfy the Zhu’s C2-cofinite condition if the
quotient vector space

V/C2(V )

is finite dimensional.

The following theorem is due to Huang-Lepowsky-Zhang [36, 37, 38, 39, 40, 41, 42,
43, 44].

Theorem 2.1.10. Given a vertex operator algebra V satisfying the C2-cofinite condition.
Then the following holds:

1. The number of simple V -modules is finite.

2. Any V -module has finite length.

3. All simple modules have projective covers.

4. The category of V -modules has the structure of a braided tensor category.

The following notation is used frequently in this thesis.

Definition 2.1.11. Let V be a vertex operator algebra and let M be a finite length V -
module. Let Soc(M) be the socle of M , that is Soc(M) is the maximal semisimple sub-
module of M . Since M is finite length, we have the sequence of the submodule

0 ≤ Soc1(M) ≤ Soc2(M) ≤ · · · ≤ Socn(M) =M

such that Soc1(M) = Soc(M) and Soci+1(M)/Soci(M) = Soc(M/Soci(M)). We call such
a sequence of the submodules of M the socle series of M .

In this thesis, we do not go into the detailed theory of logarithmic intertwining oper-
ators, however review the definition because it is important concept. See [38],[39] for a
more detailed definition and properties of logarithmic intertwining operators.

12



Definition 2.1.12. Let V be a vertex operator algebra and M1, M2 and M3 a triple of
V -module. Denote by M3{z}[logz] the space of formal power series in z and logz with
coefficient in M3, where the exponents of z can be arbitrary complex numbers and with
only finitely many logz terms. An intertwining operator Y(·, z) of type

(
M3

M1 M2

)
is a linear

map

Y :M1 → End(M2,M3){z}[logz],

ψ1 7→ Y(ψ1, z) =
∑
t∈C

∑
s≥0

(ψ1)t,sz
−t−1(logz)s,

satisfying the following conditions for ψi ∈Mi, i = 1, 2 and A ∈ V :

1. Y(L−1ψ1, z) =
d
dz
Y(ψ1, z).

2. (ψ1)t,sψ2 = 0 for Re(t) sufficiently large.

3. The following Jacobi identity holds

z−1
0 δ
(z1 − z2

z0

)
YM3(A; z1)Y(ψ1, z2)− z−1

0 δ
(z2 − z1
−z0

)
Y(ψ1, z2)YM2(A; z1)

= z−1
2 δ
(z1 − z0

z2

)
Y(YM1(A; z0)ψ1, z2).

We call intertwining operators without a logz term ordinary or non-logarithmic inter-
twining operators.

2.2 N = 1 vertex operator superalgebras

The notions introduced in this section will be used from Chapter 10.

Definition 2.2.1. A five pairs (V, |0⟩ , T,G, Y ) is called a N = 1 vertex operator super-
algebra where

1. V is a 1
2
Z≥0-graded C-vector space

V =
⊕

n∈ 1
2
Z≥0

V [n].

For 0̄, 1̄ ∈ Z/2Z, let

V 0̄ :=
⊕
n∈Z≥0

V [n], V 1̄ :=
⊕

n∈Z≥0+
1
2

V [n].

V 0̄ is called the even part of V and V 1̄ is called the odd part of V .

2. |0⟩ ∈ V [0] is called the vacuum vector.

3. T ∈ V [2] is called the conformal vector.

4. G ∈ V [3
2
] is called the super partner of T .
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5. Y is a C-linear map

Y : V → EndC(V )[[z, z−1]].

These data are subject to the following axioms:

1. dimCV [0] = 1 and 0 < dimCV [n] <∞ for any n ∈ 1
2
Z≥0.

2. For each A ∈ V ī[h] there exists a field

Y (A; z) =
∑

n∈Z+ i
2

A[n]z−n−h.

3. Y (|0⟩ ; z) = idV and

Y (A; z) |0⟩ − A ∈ V [[z]]z

for all A ∈ V .

4. The fields

Y (T ; z) = T (z) =
∑
n∈Z

Lnz
−n−2, Y (G; z) = G(z) =

∑
r∈Z+ 1

2

Grz
−r− 3

2 ,

of modes define the commutation relations of the Neveu-Schwarz algebra with fixed
central charge c = cV

[Lm, Ln] = (m− n)Lm+n + δm+n,0
m3 −m

12
cV ,

[Lm, Gr] = (
1

2
m− r)Gm+r,

{Gr, Gs} = 2Lr+s +
1

3
(r2 − 1

4
)δr+s,0cV ,

where {, } is the anti-commutator.

5. The zero mode L0 of T (z) acts semisimply on V and

V [h] = { A ∈ V | L0A = hA }.

6. For all A ∈ V

Y (L−1A; z) =
d

dz
Y (A; z).

7. For A ∈ V ī and B ∈ V j̄, the following super Jacobi identity holds

z−1
0 δ
(z1 − z2

z0

)
Y (A; z1)Y (B; z2)− (−1)ijz−1

0 δ
(z2 − z1
−z0

)
Y (B; z2)Y (A; z1)

= z−1
2 δ
(z1 − z0

z2

)
Y (Y (A; z0)B; z2).
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Definition 2.2.2. Given a vertex operator superalgebra (V, |0⟩ , T,G, Y ), a weak V -module
is a pair (M,YM) of a vector space M and a linear map YM from V to EndM [[z, z−1]]
satisfying the following conditions

1. YM(|0⟩ ; z) = IdM and the Fourier modes of

YM(T ; z) =
∑
n∈Z

LM
n z

−n−2, YM(G; z) =
∑

r∈Z+ 1
2

GM
r z

−r− 3
2

satisfy the commutation relations of the Neveu-Schwarz algebra with the central
charge cV .

2. For all A ∈ V ,

YM(L−1A; z) =
d

dz
YM(A; z).

3. For A ∈ V ī and B ∈ V j̄, the following super Jacobi identity holds

z−1
0 δ
(z1 − z2

z0

)
YM(A; z1)YM(B; z2)− (−1)ijz−1

0 δ
(z2 − z1
−z0

)
YM(B; z2)YM(A; z1)

= z−1
2 δ
(z1 − z0

z2

)
YM(Y (A; z0)B; z2),

where δ(z) is the formal delta function δ(z) =
∑

n∈Z z
n.

4. M is a C-graded superspace

M =
⊕

ī∈Z/2Z

M ī =
⊕

h∈H(M)

M [h]

such that

• For some finite subset H0(M) of C, H(M) = H0(M) + 1
2
Z≥0.

• For h ∈ H(M), M [h] = {ψ ∈M : ∃n ≥ 0 s.t. (L0 − h)nψ = 0}.

• 0 < dimCM [h] <∞.

• For all A ∈ V , A[h]M [h′] ⊂M [h+ h′].

• For ī = 0̄, 1̄, M ī =
⊕

h∈H(M)M
ī, where M ī[h] =M ī ∩M [h].

• For any A ∈ V ī and ψ ∈M ī, ī, j̄ ∈ Z/2Z, YM(A; z)ψ ∈M ī+j̄[[z, z−1]].

Definition 2.2.3. Given a N = 1 vertex operator superalgebra (V, |0⟩ , T,G, Y ) and a
V -module M , we call M ordinary or non-logarithmic V -module if L0 acts semisimply on
M , and call M logarithmic V -module if M has L0-nilpotent rank n ≥ 2.

Let us define contragredient modules for vertex operator superalgebras.
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Definition 2.2.4. Let V be a vertex operator superalgebra and M be a weak V -module.
Let

M∗ =
⊕

h∈H(M)

M∗[h]

be the graded dual space of M , where M∗[h] = HomC(M [h],C) with parity decomposition

(M∗)ī =
⊕

h∈H(M)

(M∗[h])ī, (M∗[h])ī = HomC(M
ī[h],C).

Let ⟨ , ⟩ be the natural dual pairing between M∗ and M . Then we can define the V -module
structure YM∗ as follows

⟨YM∗(A; z)ψ∗, ψ⟩ := (−1)ij⟨ψ∗, YM(ezL1(−z−2)L0A; z−1)ψ⟩,

where ψ∗ ∈ (M∗)ī, ψ ∈M and A ∈ V j̄, for ī, j̄ ∈ Z/2Z.

Definition 2.2.5. Let V be a N = 1 vertex operator superalgebra and M1, M2 and M3

a triple of ordinary V -module. Denote by M3{z}[logz] the space of formal power series
in z and logz with coefficient in M3, where the exponents of z can be arbitrary complex
numbers and with only finitely many logz terms. An intertwining operator Y(·, z) of type(

M3

M1 M2

)
is a linear map

Y :M1 → End(M2,M3){z}[logz],

ψ1 7→ Y(ψ1, z) =
∑
t∈C

∑
s≥0

(ψ1)t,sz
−t−1(logz)s,

satisfying the following conditions for ψ1 ∈ M ī
1, ψ2 ∈ M2, ī ∈ Z/2Z and A ∈ V j̄,

j̄ ∈ Z/2Z:

1. Y(L−1ψ1, z) =
d
dz
Y(ψ1, z).

2. (ψ1)t,sψ2 = 0 for Re(t) sufficiently large.

3. The following super Jacobi identity holds

z−1
0 δ
(z1 − z2

z0

)
YM3(A; z1)Y(ψ1, z2)− (−1)ijz−1

0 δ
(z2 − z1
−z0

)
Y(ψ1, z2)YM2(A; z1)

= z−1
2 δ
(z1 − z0

z2

)
Y(YM1(A; z0)ψ1, z2).

4. For ψ1 ∈M ī
1, ψ2 ∈M j̄

2 , ī, j̄ ∈ Z/2Z,

Y(ψ1, z)ψ2 ∈M ī+j̄
3 {z}[logz].

Remark 2.2.6. The Zhu algebra and the C2-cofinite condition as in Definitions 2.1.7,
2.1.9 can be defined in the case of vertex operator superalgebras, in simlar ways (see
[2],[49]). Furthermore Theorem 2.1.10 holds in the case of C2-cofinite vertex operator
superalgebras. We omit details in this thesis.
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Chapter 3

Bosonic Fock modules

Fix two coprime integers p+, p− such that p− > p+ ≥ 2. In this chapter, we briefly review
theories of Fock modules whose central charges are

cp+,p− := 1− 6
(p+ − p−)2

p+p−

in accordance with [65]. As for the representation theory of the Virasoro algebra, see [21]
and [48]. For the terminology of vertex operator algebras such as operator expansions
and normal order products, refer to [29].

3.1 Free field theory

The Heisenberg Lie algebra

H =
⊕
n∈Z

Can ⊕ CKH

is the Lie algebra whose commutation is given by

[am, an] = mδm+n,0KH, [KH,H] = 0.

Let

H± =
⊕
n>0

Ca±n, H0 = Ca0 ⊕ CKH, H≥ = H+ ⊕H0.

For any α ∈ C, let C|α⟩ be the one dimensional H≥-module defined by

an|α⟩ = δn,0α|α⟩ (n ≥ 0), KH|α⟩ = |α⟩.

For any α ∈ C, the bosonic Fock module is defined by

Fα = IndH
H≥C|α⟩.

Let
a(z) =

∑
n∈Z

anz
−n−1

be the bosonic current. Then we have the following operator expansion

a(z)a(w) =
1

(z − w)2
+ · · · ,

where · · · denotes the regular part in z = w. We define the energy-momentum tensor

T (z) :=
1

2
: a(z)a(z) : +

α0

2
∂a(z), α0 :=

√
2p−
p+
−

√
2p+
p−

.
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where : : is the normal ordered product. The energy-momentum tensor satisfies the
following operator expansion

T (z)T (w) =
cp+,p−

2(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
+ · · · .

The Fourier modes of T (z) =
∑

n∈Z Lnz
−n−2 generate the Virasoro algebra whose central

charge is cp+,p− .
By the energy-momentum tensor T (z), each Fock module Fα has the structure of a

Virasoro module whose central charge is cp+,p− . Note that

L0|α⟩ =
1

2
α(α− α0)|α⟩.

Let us denote

hα :=
1

2
α(α− α0). (3.1.1)

We define the following conformal vector in F0

T =
1

2
(a2−1 + α0a−2) |0⟩ .

Definition 3.1.1. The Fock module F0 carries the structure of a Z≥0-graded vertex op-
erator algebra, with

Y (|0⟩ ; z) = id, Y (a−1 |0⟩ ; z) = a(z), Y (T ; z) = T (z).

We denote this vertex operator algebra by Fα0
.

3.2 The structure of Fock modules

We set

α+ =

√
2p−
p+

, α− = −

√
2p+
p−

.

For r, s, n ∈ Z we introduce the following symbols

αr,s;n =
1− r
2

α+ +
1− s
2

α− +

√
2p+p−
2

n, αr,s = αr,s;0. (3.2.1)

For r, s, n ∈ Z, let

Fr,s;n = Fαr,s;n , Fr,s = Fαr,s

For r, s, n ∈ Z, we set

hr,s;n :=
1

2
αr,s;n(αr,s;n − α0), hr,s :=

1

2
αr,s(αr,s − α0).
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Note that

hr,s;n = hr−np+,s = hr,s+np−

and

hr,s;n = h−r,−s;−n

for r, s, n ∈ Z. For each r, s, n ∈ Z, let L(hr,s;n) be the irreducible Virasoro module whose
highest weight is hr,s;n and the central charge C = cp+,p− · id. be the maximal semisimple
Virasoro submodules of Fr,s;n. The following proposition is due to Feigin and Fuchs [21].

Proposition 3.2.1 ([21]). As the Virasoro module, there are four cases of socle series
for the Fock modules Fr,s;n ∈ Fα0-Mod:

1. For each 1 ≤ r ≤ p+ − 1, 1 ≤ s ≤ p− − 1, n ∈ Z, we have

0 ≤ Soc1(Fr,s;n) ≤ Soc2(Fr,s;n) ≤ Soc3(Fr,s;n) = Fr,s;n

with

Soc1(Fr,s;n) = Soc(Fr,s;n) =
⊕
k≥0

L(hr,p−−s;|n|+2k+1),

Soc2(Fr,s;n)/Soc1(Fr,s;n) = Soc(Fr,s;n/Soc1(Fr,s;n))

=
⊕
k≥a

L(hr,s;|n|+2k)⊕
⊕

k≥1−a

L(hp+−r,p−−s;|n|+2k),

Soc3(Fr,s;n)/Soc2(Fr,s;n) = Soc(Fr,s;n/Soc2(Fr,s;n)) =
⊕
k≥0

L(hp+−r,s;|n|+2k+1),

where a = 0 if n ≥ 0 and a = 1 if n < 0.

2. For each 1 ≤ s ≤ p− − 1, n ∈ Z, we have

0 ≤ Soc1(Fp+,s;n) ≤ Soc2(Fp+,s;n) = Fp+,s;n

with

Soc1(Fp+,s;n) = Soc(Fp+,s;n) =
⊕
k≥0

L(hp+,p−−s;|n|+2k+1),

Soc2(Fp+,s;n)/Soc1(Fp+,s;n) =
⊕
k≥a

L(hp+,s;|n|+2k)

where a = 0 if n ≥ 1 and a = 1 if n < 1.

3. For each 1 ≤ r ≤ p+ − 1, n ∈, we have

0 ≤ Soc1(Fr,p−;n) ≤ Soc2(Fr,p−;n) = Fr,p−;n

with

Soc1(Fr,p−;n) = Soc(Fr,p−;n) =
⊕
k≥0

L(hr,p−;|n|+2k),

Soc2(Fr,p−;n)/Soc1(Fr,p−;n) =
⊕
k≥a

L(hp+−r,p−;|n|+2k−1)

where a = 1 if n ≥ 0 and a = 0 if n < 0.
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4. For each n ∈ Z, the Fock module Fp+,p−;n is semi-simple as a Virasoro module:

Fp+,p−;n = Soc(Fp+,p−;n) =
⊕
k≥0

L(hp+,p−;|n|+2k).

Let the Fock modules, whose socle length are three, be denoted by braided type, and
let the Fock modules, whose length are two, be denoted by chain type.

3.3 Screening currents and Felder complex

We introduce a free scalar field ϕ(z), which is a formal primitive of a(z)

ϕ(z) = â+ a0logz −
∑
n ̸=0

an
n
z−n

where â is defined by

[am, â] = δm,0id. (3.3.1)

The scalar field ϕ(z) satisfies the operator product expansion

ϕ(z)ϕ(w) = log(z − w) + · · · .

For any α ∈ C we introduce the field Vα(z)

Vα(z) =: eαϕ(z) := eαâzαa0V α(z), z
αa0 = eαa0logz ,

V α(z) = eα
∑

n≥1

a−n
n

zne−α
∑

n≥1
an
n

z−n

.

The fields Vα(z) satisfy the following operator product expansion

Vα(z)Vβ(w) = (z − w)αβ : Vα(z)Vβ(w) : .

We introduce the following two screening currents Q+(z), Q−(z)

Q±(z) = Vα±(z)

whose conformal weights are hα± = 1 :

T (z)Q±(w) =
Q±(w)

(z − w)2
+
∂wQ±(w)

z − w
+ · · ·

= ∂w
(Q±(w)

z − w
)
+ · · · .

Therefore the zero modes of the fields Q±(z)

Resz=0Q+(z)dz = Q+ : F1,k → F−1,k, k ∈ Z
Resz=0Q−(z)dz = Q− : Fk,1 → Fk,−1, k ∈ Z

commute with every Virasoro mode.
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For r, s ≥ 1, we introduce more complicated screening currents

Q
[r]
+ (z) ∈ HomC(Fr,k, F−r,k)[[z, z

−1]], r ≥ 1, k ∈ Z,

Q
[s]
− (z) ∈ HomC(Fk,s, Fk,−s)[[z, z

−1]], s ≥ 1, k ∈ Z,

constructed by Tsuchiya-Kanie ([63],[48]) as follows

Q
[r]
+ (z) =

∫
Γr(κ+)

Q+(z)Q+(zx1)Q+(zx2) · · ·Q+(zxr−1)z
r−1dx1 · · · dxr−1,

Q
[s]
− (z) =

∫
Γs(κ−)

Q−(z)Q−(zx1)Q−(zx2) · · ·Q−(zxs−1)z
s−1dx1 · · · dxs−1,

(3.3.2)

where Γn(κ±) is a certain regularized cycle constructed from the simplex

∆n−1 = { (x1, . . . , xn−1) ∈ Rn−1 | 1 > x1 > · · · > xn−1 > 0 }.

These fields satisfy the following operator product expansion

T (z)Q
[r]
+ (w) =

Q
[r]
+ (w)

(z − w)2
+
∂wQ

[r]
+ (w)

z − w
+ · · ·

T (z)Q
[s]
− (w) =

Q
[s]
− (w)

(z − w)2
+
∂wQ

[s]
− (w)

z − w
+ · · · .

In particular the following proposition holds

Proposition 3.3.1. The zero modes

Resz=0Q
[r]
+ (z)dz = Q

[r]
+ ∈ HomC(Fr,k, F−r,k), r ≥ 1, k ∈ Z,

Resz=0Q
[s]
− (z)dz = Q

[s]
− ∈ HomC(Fk,s, Fk,−s), s ≥ 1, k ∈ Z

commute with every Virasoro mode of Fα0-Mod. These zero modes are called screening
operators.

For 1 ≤ r ≤ p+ − 1, 1 ≤ s ≤ p− − 1, we set

r∨ := p+ − r, s∨ := p− − s.

For 1 ≤ r ≤ p+, 1 ≤ s ≤ p− and n ∈ Z, we define the following Virasoro modules :

1. For 1 ≤ r < p+, 1 ≤ s ≤ p−, n ∈ Z

Kr,s;n;+ = kerQ
[r]
+ : Fr,s;n → Fr∨,s;n+1

Xr∨,s;n+1;+ = imQ
[r]
+ : Fr,s;n → Fr∨,s;n+1.

2. For 1 ≤ r ≤ p+, 1 ≤ s < p−, n ∈ Z

Kr,s;n;− = kerQ
[s]
− : Fr,s;n → Fr,s∨;n−1

Xr,s∨;n−1;− = imQ
[s]
− : Fr,s;n → Fr,s∨;n−1.
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The following propositions are due to Felder [26].

Proposition 3.3.2 ([26]). The socle series of Kr,s;n;± and Xr,s;n;± are given by :

1. For 1 ≤ r ≤ p+ − 1, 1 ≤ s ≤ p− − 1, we have

0 ≤ S1(Kr,s;n;±) = Soc(Kr,s;n;±) ≤ Kr,s;n;±

0 ≤ S1(Xr,s;n;±) = Soc(Xr,s;n;±) ≤ Xr,s;n;±

such that

n ≥ 0 n ≤ −1

S1(Kr,s;n;+) =
⊕
k≥1

L(hr,s∨;n+2k−1), S1(Kr,s;n;+) =
⊕
k≥1

L(hr,s∨;−n+2k−1),

Kr,s;n;+/S1 =
⊕
k≥1

L(hr,s;n+2(k−1)), Kr,s;n;+/S1 =
⊕
k≥1

L(hr,s;−n+2k),

S1(Xr,s;n+1;+) =
⊕
k≥1

L(hr,s∨;n+2k), S1(Xr,s;n+1;+) =
⊕
k≥1

L(hr,s∨;−n+2(k−1)),

Xr,s;n+1;+/S1 =
⊕
k≥1

L(hr,s;n+2k−1), Xr,s;n+1;+/S1 =
⊕
k≥1

L(hr,s;−n+2k−1).

n ≥ 1 n ≤ 0

S1(Kr,s;n;−) =
⊕
k≥1

L(hr,s∨;n+2k−1), S1(Kr,s;n;−) =
⊕
k≥1

L(hr,s∨;−n+2k−1),

Kr,s;n;−/S1 =
⊕
k≥1

L(hr,s;n+2(k−1)), Kr,s;n;−/S1 =
⊕
k≥1

L(hr,s;−n+2k),

S1(Xr,s;n+1;−) =
⊕
k≥1

L(hr,s∨;n+2(k−1)), S1(Xr,s;n+1;−) =
⊕
k≥1

L(hr,s∨;−n+2k),

Xr,s;n+1;−/S1 =
⊕
k≥1

L(hr∨,s∨;n+2k−1), Xr,s;n+1;−/S1 =
⊕
k≥1

L(hr∨,s∨;−n+2k−1).

2. For 1 ≤ r ≤ p+ − 1, s = p−, n ∈ Z, we have

Xr,p−;n = Soc(Fr,p−;n).

3. For r = p+, 1 ≤ s ≤ p− − 1, n ∈ Z, we have

Xp+,s;n = Soc(Fp+,s;n).

Proposition 3.3.3 ([26]).

1. For 1 ≤ r < p+, 1 ≤ s < p− and n ∈ Z the screening operators Q
[r]
+ and Q

[r∨]
+ define

the Felder complex

· · ·
Q

[r]
+−−→ Fr∨,s;n−1

Q
[r∨]
+−−−→ Fr,s;n

Q
[r]
+−−→ Fr∨,s;n+1

Q
[r∨]
+−−−→ · · · .

This complex is exact everywhere except in Fr,s = Fr,s;0 where the cohomology is
given by

kerQ
[r]
+ /imQ

[r∨]
+ ≃ L(hr,s;0).
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2. For 1 ≤ r < p+, 1 ≤ s < p− and n ∈ Z the screening operators Q
[s]
− and Q

[s∨]
− define

the Felder complex

· · ·
Q

[s]
−−−→ Fr,s∨;n+1

Q
[s∨]
−−−−→ Fr,s;n

Q
[s]
−−−→ Fr,s∨;n−1

Q
[s∨]
−−−−→ · · · .

This complex is exact everywhere except in Fr,s = Fr,s;0 where the cohomology is
given by

kerQ
[s]
− /imQ

[s∨]
− ≃ L(hr,s;0).

3. For 1 ≤ r < p+ and n ∈ Z the screening operators Q
[r]
+ and Q

[r∨]
+ define the Felder

complex

· · ·
Q

[r]
+−−→ Fr∨,p−;n−1

Q
[r∨]
+−−−→ Fr,p−;n

Q
[r]
+−−→ Fr∨,p−;n+1

Q
[r∨]
+−−−→ · · ·

and this complex is exact.

4. For 1 ≤ s < p− and n ∈ Z the screening operators Q
[s]
− and Q

[s∨]
− define the Felder

complex

· · ·
Q

[s]
−−−→ Fp+,s∨;n+1

Q
[s∨]
−−−−→ Fp+,s;n

Q
[s]
−−−→ Fp+,s∨;n−1

Q
[s∨]
−−−−→ · · · .

and this complex is exact.
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Chapter 4

The triplet W -algebra Wp+,p−

In this chapter, we introduce a vertex operator algebra Wp+,p− which is called the triplet
W -algebra of type (p+, p−) and review some results in [4],[5],[65] briefly. In Section 4.3,
we introduce the abelian category ofWp+,p−-modules and the block decomposition of this
abelian category.

4.1 The lattice vertex operator algebra and the ver-

tex operator algebra Wp+,p−

Definition 4.1.1.
The lattice vertex operator algebra V[p+,p−] is the tuple

(V+
1,1, |0⟩ ,

1

2
(a2−1 − α0a−2) |0⟩ , Y ),

where underlying vector space of V[p+,p−] is given by

V+
1,1 =

⊕
n∈Z

F1,1;2n =
⊕
n∈Z

Fn
√
2p+p− ,

and Y (|α1,1;2n⟩ ; z) = Vα1,1;2n(z) for n ∈ Z.

It is a known fact that simple V[p+,p−]-modules are given by the following 2p+p− direct
sum of Fock modules

V+
r,s =

⊕
n∈Z

Fr,s;2n, V−
r,s =

⊕
n∈Z

Fr,s;2n+1,

where 1 ≤ r ≤ p+, 1 ≤ s ≤ p−.
Note that the two screening operators Q+ and Q− act on V+

1,1. We define the following
vector subspace of V+

1,1:

K1,1 = kerQ+ ∩ kerQ− ⊂ V+
1,1.

Definition 4.1.2. The triplet W -algebra

Wp+,p− = (K1,1, |0⟩ , T, Y )

is a sub vertex operator algebra of V[p+,p−], where the vacuum vector, conformal vector and
vertex operator map are those of V[p+,p−].

Definition 4.1.3. Let W±,W 0 be the following singular vectors

W+ = Q
[p−−1]
− |α1,p−−1;3⟩ , W− = Q

[p+−1]
+ |αp+−1,1;−3⟩ , W 0 = Q

[2p+−1]
+ |αp+−1,1;−3⟩ .

Proposition 4.1.4. Wp+,p− is strongly generated by the fields T (z), Y (W±; z), Y (W 0; z).

Theorem 4.1.5 ([4, 5, 65]). Wp+,p− is C2-cofinite.
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4.2 Simple Wp+,p−-modules

For each 1 ≤ r ≤ p+, 1 ≤ s ≤ p−, let X±
r,s be the following vector subspace of V±

r,s:

1. For 1 ≤ r ≤ p+ − 1, 1 ≤ s ≤ p− − 1,

X+
r,s = Q

[r∨]
+ (V−

r∨,s) ∩Q
[s∨]
− (V−

r,s∨), X−
r,s = Q

[r∨]
+ (V+

r∨,s) ∩Q
[s∨]
− (V+

r,s∨).

2. For 1 ≤ r ≤ p+ − 1, s = p−,

X+
r,p− = Q

[r∨]
+ (V−

r∨,p−
), X−

r,p− = Q
[r∨]
+ (V+

r∨,p−
).

3. For r = p+, 1 ≤ s ≤ p− − 1,

X+
p+,s = Q

[s∨]
− (V−

p+,s∨), X−
p+,s = Q

[s∨]
− (V+

p+,s∨).

4. r = p+, s = p−,

X+
p+,p− = V+

p+,p− , X−
p+,p− = V−

p+,p− .

Definition 4.2.1.

1. We define the interior Kac table T as the following quotient set

T = {(r, s)| 1 ≤ r < p+, 1 ≤ s < p−}/ ∼

where (r, s) ∼ (r′, s′) if and only if r′ = p+ − r, s′ = p− − s. Note that #T =
(p+−1)(p−−1)

2
.

2. For each 1 ≤ r ≤ p+, 1 ≤ s ≤ p−, n ≥ 0, we define the following symbols

∆+
r,s;n =


hr∨,s;−2n−1 r ̸= p+, s ̸= p−

hp+,s;−2n r = p+, s ̸= p−

hr,p−;2n r ̸= p+, s = p−

hp+,p−;−2n r = p+, s = p−

, ∆−
r,s;n =


hr∨,s;−2n−2 r ̸= p+, s ̸= p−

hp+,s;−2n−1 r = p+, s ̸= p−

hr,p−;2n+1 r ̸= p+, s = p−

hp+,p−;−2n−1 r = p+, s = p−.

.

Proposition 4.2.2 ([4, 5, 65]). For each X±
r,s(1 ≤ r ≤ p+, 1 ≤ s ≤ p−), we have the

following decompositions as the Virasoro modules

X+
r,s =

⊕
n≥0

(2n+ 1)L(∆+
r,s;n), X−

r,s =
⊕
n≥0

(2n+ 2)L(∆−
r,s;n).

Theorem 4.2.3 ([4, 5, 65]). The (p+−1)(p−−1)
2

+ 2p+p− vector spaces

L(hr,s), (r, s) ∈ T , X±
r,s, 1 ≤ r ≤ p+, 1 ≤ s ≤ p−

become simple Wp+,p−-modules and give all simple Wp+,p−-modules.
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Proposition 4.2.4 ([4, 5, 65]). Each 2p+p− simple V[p+,p−]-module becomes Wp+,p−-
module and has the following socle series:

1. For each 1 ≤ r < p+, 1 ≤ s < p−, V+
r,s has the following socle series

0 ≤ Soc1(V+
r,s) ≤ Soc2(V+

r,s) ≤ Soc3(V+
r,s) = V+

r,s

with

Soc1(V+
r,s) = Soc(V+

r,s) = X+
r,s,

Soc(V+
r,s/Soc1(V+

r,s)) = X−
r∨,s ⊕X

−
r,s∨ ⊕ L(hr,s),

Soc(V+
r,s/Soc2(V+

r,s)) = X+
r∨,s∨ .

2. For each 1 ≤ r < p+, 1 ≤ s < p−, V−
r,s has the following socle series

0 ≤ Soc1(V−
r,s) ≤ Soc2(V−

r,s) ≤ Soc3(V−
r,s) = V−

r,s

with

Soc1(V−
r,s) = Soc(V−

r,s) = X−
r,s,

Soc(V−
r,s/Soc1(V−

r,s)) = X+
r∨,s ⊕X

+
r,s∨ ,

Soc(V−
r,s/Soc2(V−

r,s)) = X−
r∨,s∨ .

3. For each 1 ≤ r < p+, V+
r,p− and V−

r∨,p−
have the following socle series

V+
r,p−/X

+
r,p− ≃ X

−
r∨,p−

, V−
r∨,p−

/X−
r∨,p−

≃ X+
r,p− .

4. For each 1 ≤ s < p−, V+
p+,s and V−

p−,s∨ have the following socle series

V+
p+,s/X+

p+,s ≃ X−
p+,s∨ , V−

p+,s∨/X
−
p+,s∨ ≃ X

+
p+,s.

5. For r = p+, s = p−,

V+
p+,p− = X+

p+,p− , V−
p+,p− = X−

p+,p− .

Let A(Wp+,p−) be the Zhu-algebra [68] of Wp+,p− .

Proposition 4.2.5 ([4, 5, 65]). In A(Wp+,p−), the following relations hold

[W 0] ∗ [W−]− [W−] ∗ [W 0] = −2f([T ])[W−],

[W 0] ∗ [W+]− [W+] ∗ [W 0] = 2f([T ])[W+],

[W+] ∗ [W−]− [W−] ∗ [W+] = 2f([T ])[W 0],

[W 0] ∗ [W 0] = g([T ]),

[W+] ∗ [W+] = 0,

[W−] ∗ [W−] = 0,

where f([T ]) and g([T ]) are non-trivial polynomials of [T ].

27



Proposition 4.2.6 ([4, 5, 65]).

1. X+
1,1 acts trivially on L(hr,s), (1 ≤ r ≤ p+ − 1, 1 ≤ s ≤ p− − 1).

2. For each 1 ≤ r ≤ p+, 1 ≤ s ≤ p−, the highest weight space of X+
r,s is a one

dimensional A(Wp+,p−)-module.

3. For each 1 ≤ r ≤ p+, 1 ≤ s ≤ p−, the highest weight space of X−
r,s is a two

dimensional irreducible A(Wp+,p−)-module.

Proposition 4.2.7 ([4, 5, 65]). For any 1 ≤ r ≤ p+, 1 ≤ s ≤ p−,

f(∆−
r,s;0) ̸= 0.

In particular, the highest weight space of X−
r,s has the structure of a two dimensional

irreducible sl2-module with respect to the following elements

E =
1√

2f(∆−
r,s;0)

[W+], F = − 1√
2f(∆−

r,s;0)
[W−], H =

1

f(∆−
r,s;0)

[W 0].

For 1 ≤ r ≤ p+, 1 ≤ s ≤ p−, we define

G(∆+
r,s;n) :=

{⊕
n−1≥i≥0(2i+ 1)L(∆+

r,s;i) n ≥ 1

0 n = 0,

G(∆−
r,s;n) :=

{⊕
n−1≥i≥0(2i+ 2)L(∆−

r,s;i) n ≥ 1

0 n = 0.

As an extension of Proposition 4.2.6, the following propositions holds (see the proof
of Proposition 5.6 in [65]).

Proposition 4.2.8 ([4, 5, 65]).

1. With respect to the actions of the zero-modes of the fields Y (W+; z), Y (W−; z) and
Y (W 0; z), the Virasoro highest weight space of the vector subspace (2n+1)L(∆+

r,s;n) ⊂
X+

r,s becomes a (2n+ 1)-dimensional irreducible sl2-module modulo G(∆+
r,s;n).

2. With respect to the actions of the zero-modes of the fields Y (W+; z), Y (W−; z) and
Y (W 0; z), the Virasoro highest weight space of the vector subspace (2n+2)L(∆−

r,s;n) ⊂
X−

r,s becomes a (2n+ 2)-dimensional irreducible sl2-module modulo G(∆−
r,s;n).

For W = W±,W 0, let W [n] be the n-th mode of the field Y (W ; z) defined by

W [n] =

∮
z=0

Y (W ; z)zh4p+−1,1+n−1dz.

Proposition 4.2.9 ([4, 5, 65]).
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1. For n ≥ 0, let {w(n)
i }ni=−n be the basis of the Virasoro highest weight space of the

vector subspace (2n+ 1)L(∆+
r,s;n) ⊂ X+

r,s such that

W±[0]w
(n)
i ∈ C×w

(n)
i±1 +G(∆+

r,s;n), for − n ≤ i ≤ n,

where w
(n)
−n−1 = w

(n)
n+1 = 0 and W±[0] is the zero mode of the field Y (W±; z). Then

we have

W±[∆+
r,s;n −∆+

r,s;n−1]w
(n)
i ∈ C×w

(n−1)
i±1 +G(∆+

r,s;n−1),

W±[∆+
r,s;n −∆+

r,s;n+1]w
(n)
i ∈ C×w

(n+1)
i±1 +G(∆+

r,s;n+1),

W 0[∆+
r,s;n −∆+

r,s;n−1]w
(n)
i ∈ C×w

(n−1)
i +G(∆+

r,s;n−1),

W 0[∆+
r,s;n −∆+

r,s;n+1]w
(n)
i ∈ C×w

(n+1)
i +G(∆+

r,s;n+1),

where w
(−1)
i = 0.

2. For n ≥ 0, let
{
v
(n)
i
2

, v
(n)
−i
2

}n+1

i=1
be the basis of the Virasoro highest weight space of the

vector subspace (2n+ 2)L(∆−
r,s;n) ⊂ X−

r,s such that

W±[0]v
(n)
i
2

∈ C×v
(n)
i
2
±1

+G(∆−
r,s;n), for − n− 1 ≤ i ≤ n+ 1 ∧ i ̸= 0,

where v
(n)
−n−2

2

= v
(n)
n+2
2

= 0. Then we have

W±[∆−
r,s;n −∆−

r,s;n−1]v
(n)
i
2

∈ C×v
(n−1)
i
2
±1

+G(∆−
r,s;n−1),

W±[∆−
r,s;n −∆−

r,s;n+1]v
(n)
i
2

∈ C×v
(n+1)
i
2
±1

+G(∆−
r,s;n+1),

W 0[∆−
r,s;n −∆−

r,s;n−1]v
(n)
i
2

∈ C×v
(n−1)
i
2

+G(∆−
r,s;n−1),

W 0[∆−
r,s;n −∆−

r,s;n+1]v
(n)
i
2

∈ C×v
(n+1)
i
2

+G(∆−
r,s;n+1),

where v
(−1)
i = 0.

The following results for the Zhu-algebra A(Wp+,p−) will be used to determine the
structure of the projective covers of the minimal simple modules in Section 7.4.

Theorem 4.2.10 ([4, 5, 65]). The center of the Zhu-algebra A(Wp+,p−) is generated by
[T ] and isomorphic to

C[x]/fp+,p−(x),
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where

fp+,p−(x) =
∏

(i,j)∈T

(x− hr,s)3

×
p+−1∏
i=1

p−−1∏
j=1

(x−∆+
i,j;0)

2

p+−1∏
i=1

p−−1∏
j=1

(x−∆−
i,j;0)

×
p+−1∏
i=1

(x−∆+
i,p−;0)

2

p+−1∏
i=1

(x−∆−
i,p−;0)

×
p−−1∏
j=1

(x−∆+
p+,j;0)

2

p−−1∏
j=1

(x−∆−
p+,j;0)

× (x−∆+
p+,p−;0)(x−∆−

p+,p−;0).

Corollary 4.2.11. The Zhu algebra A(Wp+,p−) has three dimensional indecomposable
modules on which [T ] acts as hr,s 1 0

0 hr,s 1
0 0 hr,s

 ,

where (r, s) ∈ T .

4.3 The block decomposition of Cp+,p−
Definition 4.3.1. Let Cp+,p− be the abelian category of weak Wp+,p−-modules.

Since Wp+,p− is C2-cofinite, any M in Cp+,p− has finite length. For any M in Cp+,p− ,
let M∗ be the contragredient of M . Note that Cp+,p− is closed under contragredient.

Definition 4.3.2. In the following, we define (p+−1)(p−−1)
2

thick blocks, p+ + p− − 2 thin
blocks and two semi-simple blocks.

1. For each (r, s) ∈ T , we denote by Cthick
r,s = Cthick

p+−r,p−−s the full abelian subcategory of
Cp+,p− such that

M ∈ Cthick
r,s

⇔ all composition factors of M are given by X+
r,s,X+

r∨,s∨ ,

X−
r∨,s,X

−
r,s∨ and L(hr,s).

2. For each 1 ≤ s ≤ p− − 1, we denote by Cthin
p+,s the full abelian subcategory of Cp+,p−

such that

M ∈ Cthin
p+,s

⇔ all composition factors of M are given by X+
p+,s and X−

p+,s∨ .
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3. For each 1 ≤ r ≤ p+ − 1, we denote by Cthin
r,p− the full abelian subcategory of Cp+,p−

such that

M ∈ Cthin
r,p−

⇔ all composition factors of M are given by X+
r,p− and X−

r∨,p−
.

4. We denote by C±
p+,p− the full abelian subcategory of Cp+,p− such that

M ∈ C±
p+,p−

⇔ all composition factors of M are given by X±
p+,p− .

By using Theorem 6.1.6 in Section 6, we can prove the block decomposition of Cp+,p−

in the same way as Theorem 4.4 in [1]. We omit the proof and state only the result.

Theorem 4.3.3. The abelian category Cp+,p− has the following block decomposition

Cp+,p− =
⊕

(r,s)∈T

Cthick
r,s ⊕

p+−1⊕
r=1

Cthin
r,p− ⊕

p−−1⊕
s=1

Cthin
p+,s ⊕ C+

p+,p− ⊕ C
−
p+,p− .
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Chapter 5

Logarithmic Wp+,p− modules

In this chapter, by using the logarithmic deformation by J. Fjeistad et al.[27], we con-
struct certain logarithmic Wp+,p−-modules which correspond to the projective covers of
all simple Wp+,p−-modules X±

•,• in the thick blocks and the thin blocks, and we introduce
indecomposable modules Q(X±

•,•)•,• which become important after this chapter. These
logarithmic modules are closely related to certain indecomposable modules of the quan-
tum group gp+,p− at roots of unity [9],[23].

5.1 Logarithmic deformation

Proposition 5.1.1. For r, s ≥ 1, we have the following relation

α−[Q
[r]
+ , Q

[s]
− (z)] = α+[Q

[s]
− , Q

[r]
+ (z)].

Proof. Recall the definition of the screening currents Q
[•]
± of (3.3.2).

Resz=wQ
[r]
+ (z)Q

[s]
− (w)

= Resz=w

∫
Γr(κ+)

dx1 · · · dxr−1

∫
Γs(κ−)

dy1 · · · dys−1

× 1

(z − w)2
: eα+ϕ(z)+α−ϕ(w) : Q(zx1) · · ·Q+(zxr−1)Q−(wy1) · · ·Q−(wys−1)z

r−1ws−1

=

∫
Γr(κ+)

dx1 · · · dxr−1

∫
Γs(κ−)

dy1 · · · dys−1

α+

α+ + α−

( ∂

∂w
Vα++α−(w)

)
Q(wx1) · · ·Q+(wxr−1)Q−(wy1) · · ·Q−(wys−1)w

r+s−2

+

∫
Γr(κ+)

dx1 · · · dxr−1

∫
Γs(κ−)

dy1 · · · dys−1z
r−1Vα++α−(z)

× ∂

∂z

(
Q+(zx1) · · ·Q+(zxr−1)

)
Q−(wy1) · · ·Q−(wys−1)w

s−1

∣∣∣∣
z=w

+ (r − 1)

∫
Γr(κ+)

dx1 · · · dxr−1

∫
Γs(κ−)

dy1 · · · dys−1

Vα++α−(w)Q+(wx1) · · ·Q+(wxr−1)Q−(wy1) · · ·Q−(wys−1)w
r+s−3. (5.1.1)
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Since

∂

∂z

(
Q+(zx1) · · ·Q+(zxr−1)

=
r−1∑
i=1

Q+(zx1) · · ·
∂

∂z
Q+(zxi) · · ·Q+(zxr−1)

=
r−1∑
i=1

Q+(zx1) · · ·
(1
z
xi

∂

∂xi
Q+(zxi)

)
· · ·Q+(zxr−1)

=
1

z

r−1∑
i=1

Q+(zx1) · · ·
( ∂

∂xi
xiQ+(zxi)

)
· · ·Q+(zxr−1)−

r − 1

z
Q+(zx1) · · ·Q+(zxr−1),

the second term of (5.1.1) becomes

− (r − 1)

∫
Γr(κ+)

dx1 · · · dxr−1

∫
Γs(κ−)

dy1 · · · dys−1

Vα++α−(w)Q+(wx1) · · ·Q+(wxr−1)Q−(wy1) · · ·Q−(wys−1)w
r+s−3

+

∫
Γs(κ−)

dy1 · · · dys−1

∫
Γr(κ+)

Vα++α−(w)

× dx

( r−1∑
i=1

xiQ+(wx1) · · ·Q+(wxr−1)dx1 · · · d̂xi · · · dxr−1

)
Q−(wy1) · · ·Q−(wys−1)

(5.1.2)

The first term of (5.1.2) cancels with the third term of (5.1.1) and the second term of this

equation becomes zero because Γr(κ+) is the twisted cycle. Thus [Q
[r]
+ , Q

[s]
− (w)] becomes∫

Γr(κ+)

dx1 · · · dxr−1

∫
Γs(κ−)

dy1 · · · dys−1

α+

α+ + α−

( ∂

∂w
Vα++α−(w)

)
Q(wx1) · · ·Q+(wxr−1)Q−(wy1) · · ·Q−(wys−1)w

r+s−2.

In the same way, we have

[Q
[s]
− , Q

[r]
+ (w)]

=

∫
Γr(κ+)

dx1 · · · dxr−1

∫
Γs(κ−)

dy1 · · · dys−1

α−

α+ + α−

( ∂

∂w
Vα++α−(w)

)
Q(wx1) · · ·Q+(wxr−1)Q−(wy1) · · ·Q−(wys−1)w

r+s−2.

Therefore we obtain

α−[Q
[r]
+ , Q

[s]
− (z)] = α+[Q

[s]
− , Q

[r]
+ (z)].

Proposition 5.1.2. For r, s ≥ 1 the screening operators Q
[r]
+ and Q

[s]
− are Wp+,p−-

homomorphism, that is, for A ∈ Wp+,p− we have

[Q[r], Y (A; z)] = 0, [Q
[s]
− , Y (A; z)] = 0.
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Proof. For each generator of Wp+,p− , we have the following two expressions

W+ = Q
[p−−1]
− |α1,p−−1;3⟩ = Q

[3p+−1]
+ |αp+−1,1;−3⟩ ,

W− = Q
[p+−1]
+ |αp+−1,1;−3⟩ = Q

[3p−−1]
− |α1,p−−1;3⟩ ,

W 0 = Q
[2p+−1]
+ |αp+−1,1;−3⟩ = Q

[2p−−1]
− |α1,p−−1;3⟩ ,

up to non-zero constants. Thus, by the proof of Proposition 5.1.1, we obtain

[Q[r], Y (A; z)] = [Q
[s]
− , Y (A; z)] = 0.

We introduce the following logarithmic deformation introduced by J. Fjeistad et al.

Definition 5.1.3 ([27]). 1. Let E(z) and A(z) be any mutually local fields. We define
the logarithmic deformation of A(z) by E(z) as follows

∆E(A(z)) = logz(E[0]A)(z) +
∑
n≥1

(−1)n+1

n

(E[n]A)(z)

zn
,

where

(E[n]A)(w) =

∮
z=w

(z − w)nE(z)A(w)dz.

2. Let E(z), A(z) and B(z) be any mutually local fields. We define

∆E(A(z)B(w)) =
∑
n∈Z

∆E((A[n]B)(w))

(z − w)n+1
.

Theorem 5.1.4 ([27]). Let E(z), A(z) and B(z) be any mutually local fields. Then the
operator ∆E satisfies the following derivation property

∆E(A(z)B(w)) = ∆E(A(z))B(w) + µA(z)∆E(B(w)),

where µ is the mutual locality index of E with A.

In our case, we define the logarithmic deformations by the screening currents Q
[•]
± (z)

and set

∆
[r]
+ := ∆

Q
[r]
+
, ∆

[s]
− := ∆

Q
[s]
−
.

Note that, for the energy-momentum tensor, we have

∆
[r]
+ (T (z)) = T (z) +

Q
[r]
+ (z)

z
, ∆

[s]
− (T (z)) = T (z) +

Q
[s]
− (z)

z
. (5.1.3)

By Proposition 5.1.2, each ∆
[•]
± (Y (A; z)), A ∈ Wp+,p− do not contain log terms in z.
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5.2 Logarithmic modules in the thick block

For each 1 ≤ r ≤ p+ − 1, 1 ≤ s ≤ p− − 1 we set

Pr,s = V+
r,s ⊕ V+

r∨,s∨ ⊕ V
−
r,s∨ ⊕ V

−
r∨,s,

where r∨ = p+ − r and s∨ = p− − s. Note that V+
r,s,V+

r∨,s∨ ,V
−
r,s∨ ,V

−
r∨,s ∈ Cthick

r,s . Let
(Pr,s, YPr,s) be the ordinary Wp+,p−-module. Fix any element τ = (a, b, ϵ) in

{(a, b, ϵ)} = {(r, s,+), (r∨, s∨,+), (r∨, s,−), (r, s∨,−)}.

For A ∈ Wp+,p− , we define the following operators on Pr,s :

∆[a,b]
τ (YPr,s(A; z))

=


(α− − α+)

(
∆

[a]
+ +∆

[b]
−
)
(YPr,s(A; z))

+
(
−α+∆

[b]
− ◦∆

[a]
+ + α−∆

[a]
+ ◦∆

[b]
−
)
(YPr,s(A; z)) on Vϵ

a,b

0 on Pr,s \ Vϵ
a,b,

∆[b]
τ (YPr,s(A; z)) =

{
∆

[b]
− (YPr,s(A; z)) on V−ϵ

a∨,b

0 on Pr,s \ V−ϵ
a∨,b,

∆[a]
τ (YPr,s(A; z)) =

{
∆

[a]
+ (YPr,s(A; z)) on V−ϵ

a,b∨

0 on Pr,s \ V−ϵ
a,b∨ .

By the following lemma, we can see that above operators does not contain a logz
terms.

Lemma 5.2.1. For each 1 ≤ r ≤ p+ − 1, 1 ≤ s ≤ p− − 1 and A ∈ Wp+,p−,

−α+∆
[s]
−
(
∆

[r]
+ (Y (A; z))

)
+ α−∆

[r]
+

(
∆

[s]
− (Y (A; z))

)
does not contain log terms in z.

Proof. The logz terms of ∆
[s]
−
(
∆

[r]
+ (Y (A; z))

)
and ∆

[r]
+

(
∆

[s]
− (Y (A; z)) are given by

[Q
[s]
− ,∆

[r]
+ (Y (A; z))]logz, [Q

[r]
+ ,∆

[s]
− (Y (A; z))]logz.

By using Proposition 5.1.1 we have

[Q
[s]
− ,∆

[r]
+ (Y (A; z))]

= [Q
[s]
− ,
∑
n≥1

(−1)n+1

n

∮
w=z

(w − z)n

zn
Q

[r]
+ (w)Y (A; z)]

=
α−

α+

[Q
[r]
+ ,
∑
n≥1

(−1)n+1

n

∮
w=z

(w − z)n

zn
Q

[s]
− (w)Y (A; z)]

=
α−

α+

[Q
[r]
+ ,∆

[s]
− (Y (A; z))].

Therefore

−α+∆
[s]
−
(
∆

[r]
+ (Y (A; z))

)
+ α−∆

[r]
+

(
∆

[s]
− (Y (A; z))

)
does not contain log terms in z.
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Using Theorem 5.1.4, we can define logarithmic defomations of the ordinary Wp+,p−-
module (Pr,s, YPr,s) as follows.

Theorem 5.2.2. Fix any τ = (a, b, ϵ) in

{(a, b, ϵ)} = {(r, s,+), (r∨, s∨,+), (r∨, s,−), (r, s∨,−)}.

We can define the logarithmic Wp+,p−-module (Pϵ
a∨,b∨ , J

ϵ
a∨,b∨) that have L0 nilpotent rank

three as follows. As the vector space Pϵ
a∨,b∨ = Pr,s and the module actions is defined by

J ϵ
a∨,b∨(A; z) = YPr,s(A; z) +

(
∆[a,b]

τ +∆[a]
τ +∆[b]

τ

)
(YPr,s(A; z)),

for any A ∈ Wp+,p−.

Proof. By Lemma 5.2.1, we have J ϵ
a∨,b∨ : Wp+,p− → EndPϵ

a∨,b∨ [[z, z
−1]]. J ϵ

a∨,b∨(|0⟩ ; z) =
idPϵ

a∨,b∨
is trivial from the definition of logarithmic deformation. In the following we prove

the compatibility condition

J ϵ
a∨,b∨(A; z)J

ϵ
a∨,b∨(B;w) = J ϵ

a∨,b∨(Y (A; z − w)B;w)

for A,B ∈ Wp+,p− . Fix any non-zero vector v ∈ Pr,s and write v be as follows

v = vϵa,b + v−ϵ
a∨,b + v−ϵ

a,b∨ + vϵa∨,b∨ ,

where vϵa,b ∈ Vϵ
a,b, v

−ϵ
a∨,b ∈ V

−ϵ
a∨,b, v

−ϵ
a,b∨ ∈ V

−ϵ
a,b∨ , v

ϵ
a∨,b∨ ∈ Vϵ

a∨,b∨ . By using Theorem 5.1.4 we
have

J ϵ
a∨,b∨(A; z)J

ϵ
a∨,b∨(B; z)vϵa,b

= Y (A; z)Y (B;w)vϵa,b

+ (α− − α+)
[
∆

[a]
+ (Y (A; z)) + ∆

[b]
− (Y (A; z))

]
Y (B;w)vϵa,b

+
[
−α+∆

[b]
− (∆

[a]
+ (Y (A; z))) + α−∆

[a]
+ (∆

[b]
− (Y (A; z)))

]
Y (B;w)vϵa,b

+ (α− − α+)Y (A; z)
[
∆

[a]
+ (Y (B;w)) + ∆

[b]
− (Y (B;w))

]
vϵa,b

+ (α− − α+)
[
∆

[b]
− (Y (A; z))∆

[a]
+ (Y (B;w)) + ∆

[a]
+ (Y (A; z))∆

[b]
− (Y (B;w))

]
vϵa,b

+ Y (A; z)
[
−α+∆

[b]
− (∆

[a]
+ (Y (B;w))) + α−∆

[a]
+ (∆

[b]
− (Y (B;w)))

]
vϵa,b

= Y (A; z)Y (B;w)vϵa,b

+ (α− − α+)
[
∆

[a]
+ (Y (A; z)Y (B;w)) + ∆

[b]
− (Y (A; z)Y (B;w))

]
vϵa,b

− α+∆
[b]
− ◦∆

[a]
+ (Y (A; z)Y (B;w))vϵa,b + α−∆

[a]
+ ◦∆

[b]
− (Y (A; z)Y (B;w))vϵa,b

= Y (Y (A; z − w)B;w)vϵa,b +
[(
∆[a,b]

τ +∆[a]
τ +∆[b]

τ

)
(Y (Y (A; z − w)B;w))

]
vϵa,b

= J ϵ
a∨,b∨(Y (A; z − w)B;w)vϵa,b.

In the same way, we can prove

J ϵ
a∨,b∨(A; z)J

ϵ
a∨,b∨(B; z)v−ϵ

a∨,b = J ϵ
a∨,b∨(Y (A; z − w)B;w)v−ϵ

a∨,b,

J ϵ
a∨,b∨(A; z)J

ϵ
a∨,b∨(B; z)v−ϵ

a,b∨ = J ϵ
a∨,b∨(Y (A; z − w)B;w)v−ϵ

a,b∨ ,

J ϵ
a∨,b∨(A; z)J

ϵ
a∨,b∨(B; z)vϵa∨,b∨ = J ϵ

a∨,b∨(Y (A; z − w)B;w)vϵa∨,b∨ .

Therefore we obtain

J ϵ
a∨,b∨(A; z)J

ϵ
a∨,b∨(B; z)v = J ϵ

a∨,b∨(Y (A; z − w)B;w)v.
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By (5.1.3), we can see that the four logarithmic modules P±
•,• ∈ Cthick

r,s have L0 nilpotent
rank three.

Remark 5.2.3. These logarithmic modules P+
r,s, P+

r∨,s∨, P
−
r∨,s and P

−
r,s∨ correspond to the

projective covers of X+
r,s, X+

r∨,s∨, X
−
r∨,s and X−

r,s∨, respectively (see Subsection 7.3).

Remark 5.2.4. The structure of these logarithmic modules were conjectured in [32],[33]
in the case (p+, p−) = (2, 3) and explicit realizations were given by [7] in the case of Cthick

1,1

by using lattice constructions (cf. [3]). In their notation

P(1) = P+
1,2, P(2) = P+

1,1, P(5) = P−
1,2, P(7) = P−

1,1.

Figure 5.1: The embedding structure of logarithmic Wp+,p−-modules P±
•,•. The triangle

△ corresponds to the simple module L(hr,s), ♡ to X+
r,s, ♢ to X+

r∨,s∨ , ♠ to X−
r,s∨ and ♣ to

X−
r∨,s.

Remark 5.2.5. Figure 5.1 is the embedding structure of the logarithmic Wp+,p−-modules
defined in Theorem 5.2.2.

Theorem 5.2.6. By taking quotients of P+
r,s, P+

r∨,s∨, P
−
r∨,s and P−

r,s∨, we obtain eight
logarithmic modules Q(X ϵ

a,b)b,c where

{(ϵ, a, b, c, d)} =
{
(+, r, s, r∨, s), (+, r, s, r, s∨), (+, r∨, s∨, r∨, s), (+, r∨, s∨, r, s∨),

(−, r∨, s, r, s), (−, r∨, s, r∨, s∨), (−, r, s∨, r, s), (−, r, s∨, r∨, s∨)
}
,

and each composition series is given by:
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1. For Q(X+
a,b)c,d,

G1 = X+
a,b,

G2/G1 ⊕G3/G2 = X−
c,d ⊕ L(ha,b)⊕X

−
c,d,

Q(X+
a,b)c,d/G3 = X+

a,b.

2. For Q(X−
a,b)c,d,

G1 = X−
a,b,

G2/G1 ⊕G3/G2 = X+
c,d ⊕X

+
c,d,

Q(X−
a,b)c,d/G3 = X−

a,b.

Remark 5.2.7. Figure 5.2 is the embedding structure of the logarithmic Wp+,p−-modules
defined in Theorem 5.2.6.

Figure 5.2: The embedding structure of logarithmic Wp+,p−-modules Q(•)•,•.

5.3 Logarithmic modules in the thin blocks

For each 1 ≤ r ≤ p+ − 1, 1 ≤ s ≤ p− − 1, we set

Pr,p− = V+
r,p− ⊕ V

−
r∨,p−

∈ Cthin
r,p− , Pp+,s = V+

p+,s ⊕ V−
p+,s∨ ∈ C

thin
p+,s.

Let (Pr,p− , YPr,p−
) and (Pp+,s, YPp+,s) be the ordinaryWp+,p−-module. Similar to Theorem

5.2.2, we can construct the following logarithmic modules.
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Theorem 5.3.1.

1. For 1 ≤ r ≤ p+−1, we can define the logarithmic modules (Q(X+
r,p−)r∨,p− , J

+
r,p−) and

(Q(X−
r∨,p−

)r,p− , J
−
r∨,p−

) as follows. As the vector spaces

Q(X+
r,p−)r∨,p− = Q(X−

r∨,p−
)r,p− = Pr,p−

and the module actions are defined by

J+
r,p−(A; z) =

{
YPr,p−

(A; z) + ∆
[r∨]
+ (YPr,p−

(A; z)) on V−
r∨,p−

YPr,p−
(A; z) on V+

r,p− ,

J−
r∨,p−

(A; z) =

{
YPr,p−

(A; z) + ∆
[r]
+ (YPr,p−

(A; z)) on V+
r,p−

YPr,p−
(A; z) on V−

r∨,p−
,

for A ∈ Wp+,p−.

2. For 1 ≤ s ≤ p−−1, we can define the logarithmic modules (Q(X+
p+,s)p+,s∨ , J

+
p+,s) and

(Q(X−
p+,s∨)p+,s, J

−
p+,s∨) as follows. As the vector spaces

Q(X+
p+,s)p+,s∨ = Q(X−

p+,s∨)p+,s = Pp+,s

and the module actions are defined by

J+
p+,s(A; z) =

{
YPp+,s(A; z) + ∆

[s∨]
− (YPp+,s(A; z)) on V−

p+,s∨

YPp+,s(A; z) on V+
p+,s,

J−
p+,s∨(A; z) =

{
YPp+,s(A; z) + ∆

[s]
− (YPp+,s(A; z)) on V+

p+,s

YPp+,s(A; z) on V−
p+,s∨ .

for A ∈ Wp+,p−.

Proposition 5.3.2.

1. The composition series of Q(X+
r,p−)r∨,p− is given by

G1 = X+
r,p− ,

G2/G1 ⊕G3/G2 = X−
r∨,p−

⊕X−
r∨,p−

,

Q(X+
r,p−)r∨,p−/G3 = X+

r,p− .

2. The composition series of Q(X−
r∨,p−

)r,p− is given by

G1 = X−
r∨,p−

,

G2/G1 ⊕G3/G2 = X+
r,p− ⊕X

+
r,p− ,

Q(X−
r∨,p−

)r,p−/G3 = X−
r∨,p−

.
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3. The composition series of Q(X+
p+,s)p+,s∨ is given by

G1 = X+
p+,s,

G2/G1 ⊕G3/G2 = X−
p+,s∨ ⊕X

−
p+,s∨ ,

Q(X+
p+,s)p+,s∨/G3 = X+

p+,s.

4. The composition series of Q(X−
p+,s∨)p+,s is given by

G1 = X−
p+,s∨ ,

G2/G1 ⊕G3/G2 = X+
p+,s ⊕X+

p+,s,

Q(X−
p+,s∨)p+,s/G3 = X−

p+,s∨ .

Remark 5.3.3. These logarithmic modules Q(X+
r,p−)r∨,p−, Q(X

−
r∨,p−

)r,p−, Q(X+
p+,s)p+,s∨

and Q(X−
p+,s∨)p+,s correspond to the projective covers of X+

r,p−, X
−
r∨,p−

, X+
p+,s and X−

p+,s∨,
respectively (see Subsection 7.5).
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Chapter 6

Logarithmic extension of Virasoro mod-
ules

In this chapter, we determine Ext1-groups between simple Virasoro modules and certain
indecomposable modules in the abelian category of generalized Virasoro modules, by
using the results in [55] and the structure of Fock modules. The results of this chapter
will be crucial in analyzing the complex structure of logarithmic Wp+,p−-modules. From
this chapter, we identify any Virasoro modules that are isomorphic to each other, unless
otherwise stated.

6.1 Ext1-groups between simple Virasoro modules

We set

Ap+,p− := { αr,s;n | r, s, n ∈ Z },

Hp+,p− :=
{
hα

∣∣∣ α ∈ Ap+,p−

}
(for the definition of symbols αr,s;n and hα, see (3.2.1) and (3.1.1), respectively). Let U(L)
be the universal enveloping algebra of the Virasoro algebra.

Definition 6.1.1. Let Lcp+,p−
-Mod be the abelian category of left generalized U(L)-modules

whose morphisms are Virasoro-homomorphisms and whose objects are left U(L)-modules
that satisfy the following conditions:

1. For the central charge, C = cp+,p− · id on M .

2. Every object M has the following decomposition M =
∑

h∈H(M)M [h]:

• For some finite subset H0(M) of C, H(M) = H0(M) + Z≥0.

• For h ∈ H(M), M [h] = {m ∈M : ∃n ≥ 0 s.t. (L0 − h)nm = 0}.
• 0 < dimCM [h] <∞.

3. For every object M ∈ Lcp+,p−
-Mod, there exists the contragredient object M∗ ∈

Lcp+,p−
-Mod on which the anti-involution σ(Ln) = L−n induces the structure of a

left U(L)-module by

⟨Lnϕ, u⟩ = ⟨ϕ, σ(Ln)u⟩, ϕ ∈M∗, u ∈M.

Definition 6.1.2. We define Lcp+,p−
-mod to be the full subcategory of Lcp+,p−

-Mod such
that all objects in Lcp+,p−

-mod satisfy the following conditions:

1. The socle series of M has finite length.
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2. The highest weights h of the simple modules L(h), appearing in the composition
factors of M , are elements of Hp+,p−.

We denote the n-th Ext-groups in Lcp+,p−
-mod as ExtnL(•, •).

For each a, b ≥ 1, let M(ha,b, cp+,p−) be the Verma module of the Virasoro algebra
whose highest weight is ha,b and the central charge C = cp+,p− ·id. Note thatM(ha,b, cp+,p−)
has the singular vector whose L0-weight is ha,b + ab. Let Sa,b ∈ U(L) be the Shapovalov
element corresponding to this singular vector, normalized as

Sa,b |ha,b⟩ = (Lab
−1 + · · · ) |ha,b⟩ , (6.1.1)

and let S∗
a,b = σ(Sa,b) be the anti-involution of Sa,b where σ(Ln) = L−n, n ∈ Z.

The following theorem is due to [67].

Theorem 6.1.3. For r, s ≥ 1, let us consider S∗
r,sSr,s in U(L) transformed as

S∗
r,sSr,s − f(L0, C) ∈ L−U(L−)⊗C U(L0)⊗C U(L+)L+,

where f(X,Y ) is a non-zero polynomial of X,Y , L± :=
⊕

±n>0CLn and L0 := CC⊕CL0.
Then, for the polynomial f(X,Y ), we have

f(h, cp+,p−) = Rr,s(h− hr,s) +O((h− hr,s)2),

where Rr,s is given by

Rr,s = 2
∏

(k,l)∈Z2,
1−r≤k≤r,1−s≤l≤s,

(k,l)̸=(0,0),(r,s)

(
k
(p+
p−

)− 1
2 + l

(p+
p−

) 1
2

)
.

Remark 6.1.4. In this thesis, it is important that Rr,s be non-zero, specific value is not
necessary. In fact, the non-triviality of Rr,s can be shown using the Jantzen-filtration of
the Fock module Fr,s.

By using Theorem 6.1.3, we obtain the following theorem (cf.[35]).

Theorem 6.1.5. For h ∈ Hp+,p−, we have

Ext1L(L(h), L(h)) = 0.

Proof. We prove only for case h = hr,s, (r, s) ∈ T . The other cases can be proved in the
same way.

Assume Ext1L(L(hr,s), L(hr,s)) ̸= 0. Fix a non-trivial extension

0→ L(hr,s)
ι−→ E

π−→ L(hr,s)→ 0.

Let {u0, u1} be a basis of the highest weight space of E such that

π(u0) = |hr,s⟩ , ι(|hr,s⟩) = u1,

(L0 − hr,s)u0 = cu1,
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where c is a non-zero constant and |hr,s⟩ is the highest weight vector of L(hr,s). Then, by
Theorem 6.1.3, we have

S∗
r,sSr,su0 = f(c)u1,

f(c)

c

∣∣∣
c=0
̸= 0,

where f(c) is a polynomial of c. Thus, we see that Sr,su0 is non-zero and

Sr,su0 ∈ ι(L(hr,s)).
On the other hand, by the irreducibility of L(hr,s), we have

S∗
r,sSr,su0 = 0.

But this is a contradiction.

For h, h′ ∈ Hp+,p− , h ̸= h′, let us consider a extension [E] ∈ Ext1L(L(h), L(h
′)). Since

h ̸= h′, we see that the Virasoro zero mode L0 acts semisimply on E. Thus, according
to [12],[48], and by Theorem 6.1.5, we have the following theorem for the Ext1-groups
between the irreducible modules for the different highest weights.

Theorem 6.1.6. For Ext1L(L(hr,s;n), L(h)), hr,s;n ̸= h, h ∈ Hp+,p−, we have:

1. For 1 ≤ r < p+, 1 ≤ s < p− and n = 0, we have

Ext1L(L(hr,s), L(h)) =

{
C for h = hr∨,s;−1 or hr∨,s;1

0 otherwise
.

2. For 1 ≤ r < p+, 1 ≤ s < p− and n ≥ 1, we have

Ext1L(L(hr,s;n), L(h)) =

{
C for h = hr∨,s;n−1, hr,s∨;n−1, hr∨,s;n+1 or hr,s∨;n+1

0 otherwise
.

3. For 1 ≤ r < p+, s = p− and n = 0, we have

Ext1L(L(hr,p−), L(h)) =

{
C for h = hr∨,p−;1

0 otherwise
.

4. For 1 ≤ r < p+, s = p− and n ≥ 1, we have

Ext1L(L(hr,p−;n), L(h)) =

{
C for h = hr∨,p−;n+1 or hr∨,p−;n−1

0 otherwise
.

5. For r = p+, 1 ≤ s < p− and n = 0, we have

Ext1L(L(hp+,s), L(h)) =

{
C for h = hp+,s∨;−1

0 otherwise
.

6. For r = p+, 1 ≤ s < p− and n ≤ −1, we have

Ext1L(L(hp+,s;n), L(h)) =

{
C for h = hp+,s∨;n−1 or hp+,s∨;n+1

0 otherwise
.

7. For r = p+, s = p−, n ∈ Z, we have

Ext1L(L(hp+,p−;n), L(h)) = 0.
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6.2 Logarithmic extensions

Let us define the following indecomposable modules in Lp+,p−-mod as quotient modules
of certain Virasoro Verma modules.

Definition 6.2.1. For h, h′ ∈ Hp+,p− such that Ext1L(L(h), L(h
′)) ≃ C and h < h′, we

define the following indecomposable module

[L(h, h′)] ∈ Ext1L(L(h), L(h
′)) \ {0}.

Definition 6.2.2. For h, h′, h′′ ∈ Hp+,p− such that Ext1L(L(h), L(h
′)) ≃ C, Ext1L(L(h), L(h′′)) ≃

C and h > h′, h > h′′, we define Ld(h) ∈ Lp+,p−-mod as a unique indecomposable module
satisfying the following exact sequence

0→ L(h′, h)→ Ld(h)→ L(h′′)→ 0.

Definition 6.2.3. For h, h′, h′′ ∈ Hp+,p− such that Ext1L(L(h), L(h
′)) ≃ C, Ext1L(L(h), L(h′′)) ≃

C and h < h′, h < h′′, we define Lu(h) ∈ Lp+,p−-mod as a unique indecomposable module
satisfying the following exact sequence

0→ L(h′′)→ Lu(h)→ L(h, h′)→ 0.

The following theorems are due to [55] (see also [16]).

Theorem 6.2.4 ([55]). For any h1, h2, h3 ∈ Hp+,p− such that h1 < h2 < h3, Ext
1
L(L(h1), L(h2)) ̸=

0 and Ext1L(L(h2), L(h3)) ̸= 0, let E be any logarithmic module satisfying the following
exact sequence

0→ L(h1, h2) −→ E −→ L(h2, h3)→ 0.

Then the quotient module E/L(h2) is indecomposable.

Theorem 6.2.5 ([55]). For any indecomposable modules Ld(h) and Lu(h), let E be any
logarithmic module satisfying the following exact sequence

0→ Ld(h) −→ E −→ Lu(h)→ 0.

Then there is no injection from Lu(h) to E/L(h).

Remark 6.2.6. The non-vanishingness of certain logarithmic Virasoro modules was proved
in [55]. The two theorems above are their consequences.

In the following, we introduce indecomposable modules K(τ) and K(∆r,s;n), and de-
termine the Ext1-groups of types

Ext1L(K(τ), L(hα2)), Ext1L(K(∆r,s;n), L(∆r,s;n)).

Definition 6.2.7. We define Tp+,p− to be the subset of A3
p+,p− such that every element

(α1, α2, α3) ∈ A3
p+,p− satisfies the following conditions:

1. hα1 ≤ hα2 < hα3.
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2. The three Fock modules Fα1, Fα2 and Fα3 are contained in the same Felder complex
in Proposition 3.3.3 and are adjacent to each other:

· · · −→ Fα1

Q
[•]
ϵ−−→ Fα2

Q
[•]
ϵ−−→ Fα3 −→ · · · .

For example, we have

τ = (αp+,s∨;1, αp+,s;0, αp+,s∨;−1) ∈ Tp+,p− , hαp+,s∨;1
= hαp+,s;0 .

Definition 6.2.8.

1. For any τ = (α1, α2, α3) ∈ Tp+,p− such that hα1 = hα2, we define K(τ) = L(hα2 , hα3).

2. For any τ = (α1, α2, α3) ∈ Tp+,p− such that hα1 ̸= hα2, we define K(τ) ∈ Lp+,p−-mod
as a unique indecomposable module satisfying the following exact sequence

0→ L(hα1)→ K(τ)→ L(hα2 , hα3)→ 0.

Theorem 6.2.9. For any τ = (α1, α2, α3) ∈ Tp+,p−, we have

Ext1L(K(τ), L(hα2)) = C.

Proof. Fix any τ = (α1, α2, α3) ∈ Tp+,p− . From the Virasoro module structure of the
logarithmic Wp+,p−-modules Q(X±

r,s)•,• defined in Chapter 5 (see also Remark 6.2.14), we
have a non-trivial logarithmic Virasoro module in

Ext1L(K(τ), L(hα2)) \ {0}.

Fix any logarithmic Virasoro module in this Ext1-group and denote it by P (τ). If hα1 =
hα2 , then we obtain the claim of theorem claim by Theorems 6.1.5 and 6.1.6, and thus let
hα1 ̸= hα2 . It is sufficient to show that Ext1L(P (τ), L(hα2)) = 0. Let us assume that

Ext1L(P (τ), L(hα2)) ̸= 0. (6.2.1)

Note that, by Theorem 6.2.4, P (τ) has L(hα1 , hα2) as a submodule. Then, by the exact
sequence

0→ L(hα1 , hα2)→ P (τ)→ L(hα2 , hα3)→ 0

and by the assumption (6.2.1), we have

Ext1L(L(hα2 , hα3), L(hα2)) ̸= 0.

Let E any non-trivial extension of Ext1L(L(hα2 , hα3), L(hα2)). Then, by Theorem 6.1.5, E
must have L(hα2 , hα3)

∗ as a submodule. By the exact sequence

0→ L(hα2 , hα3)
∗ → E → L(hα2)→ 0,

we have the following exact sequence

0→ C→ Ext1L(E,L(hα1)).
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Thus we have Ext1L(E,L(hα1)) ̸= 0. Let F be the non-trivial extension of Ext1L(L(hα1), E
∗).

By Theorem 6.1.3, we see that F is logarithmic, that is, F has L0 nilpotent rank two.
Note that

F/L(hα2) = L(hα1)⊕ L(hα2 , hα3).

But this contradicts Theorem 6.2.4.

Remark 6.2.10. Fix any (α1, α2, α3) ∈ Tp+,p− such that hα1 = hα2. Then, by Theorem
6.1.5, the logarithmic module P (τ) (defined in Theorem 6.2.9) is self-contragredient.

Definition 6.2.11. For 1 ≤ r ≤ p+ − 1, 1 ≤ s ≤ p− − 1, n ≥ 1, we define K(∆−
r,s;n−1)

and K(∆+
r,s;n) as unique indecomposable modules satisfying the following exact sequences

0→ L(∆+
r,s∨;n)⊕ L(∆

+
r,s∨;n−1)⊕ L(∆

+
r∨,s;n)⊕ L(∆

+
r∨,s;n−1)

→ K(∆−
r,s;n−1)→ L(∆−

r,s;n−1)→ 0,

0→ L(∆−
r,s∨;n)⊕ L(∆

−
r,s∨;n−1)⊕ L(∆

−
r∨,s;n)⊕ L(∆

−
r∨,s;n−1)

→ K(∆+
r,s;n)→ L(∆+

r,s;n)→ 0.

Theorem 6.2.12. For 1 ≤ r ≤ p+ − 1, 1 ≤ s ≤ p− − 1, n ≥ 1, ϵ = ±, we have

Ext1L(K(∆ϵ
r,s;n−δϵ,−), L(∆

ϵ
r,s;n−δϵ,−)) = C2,

where δ−,− = 1 and δ+,− = 0.
Fix any non-trivial extension [E] ∈ Ext1L(K(∆ϵ

r,s;n−δϵ,−
), L(∆ϵ

r,s;n−δϵ,−
)) and let v be a

generator of E such that v ∈ E[∆ϵ
r,s;n−δϵ,−

]. Then we have

Sr∨,s∨+(2n−δϵ,−)p−S
∗
r∨,s∨+(2n−δϵ,−)p−v ̸= 0,

or

Sr∨+(2n−δϵ,−)p+,s∨S
∗
r∨+(2n−δϵ,−)p+,s∨v ̸= 0.

Proof. By the Virasoro module structure of the logarithmic Wp+,p−-module Pϵ
r,s, we have

a indecomposable module in

Ext1L(K(∆ϵ
r,s;n−δϵ,−), L(∆

ϵ
r,s;n−δϵ,−)⊕ L(∆

ϵ
r,s;n−δϵ,−))

(see the structure of Wp+,p−-modules P+u
r,s and P−u

r,s in Definitions 7.3.17 and 7.3.22).

We denote by P̃ (∆ϵ
r,s;n−δϵ,−

) this indecomposable module. Note that, by Theorem 6.2.9,

P̃ (∆ϵ
r,s;n−δϵ,−

) has P (τ1) and P (τ2) as subquotients, where

τ1 = (αr∨,s∨;−2n+δϵ,− , αr∨,s;−2n−1+δϵ,− , αr∨,s∨;−2n−2+δϵ,−),

τ2 = (αr∨,s∨;2n−δϵ,− , αr,s∨;2n+1−δϵ,− , αr∨,s∨;2n+2−δϵ,−).

Similar to the proof of Theorem 6.2.9, we can show

Ext1L(P̃ (∆
ϵ
r,s;n−δϵ,−), L(∆

ϵ
r,s;n−δϵ,−)) = 0

by using Theorem 6.2.5.
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Definition 6.2.13. Let T Min
p+,p− be the subset of Tp+,p− defined by

T Min
p+,p− = { (α1, α2, α3) ∈ Tp+,p− | α1 = αr,s, 1 ≤ r < p+, 1 ≤ s < p−}.

Recall that P (τ) (τ = (α1, α2, α3) ∈ Tp+,p−) is the logarithmic module defined by the
following exact sequence

0→ L(hα2)→ P (τ)→ K(τ)→ 0.

In the following, we will prove the following theorem.

Theorem 6.2.14. For any τ = (α1, α2, α3) ∈ T Min
p+,p−, we have

Socle(P (τ)) = L(hα2).

Before the proof of Theorem 6.2.14, we will introduce some definitions and propositions
as follows.

Definition 6.2.15. For any r, s ∈ Z≥1, k, n ∈ Z, we define the following C-linear opera-
tors:

1. Let Λ
[r]
+;k;n : U(L)→ HomC(Fr,k;n, Fr∨,k;n+1) be as follows

Λ
[r]
+;k;n(A) = lim

t→0

1

t
[Q

[r]
+ , e

−tâAetâ], for A ∈ U(L),

where Fαr,k;n+t, Fαr∨,k;n+1+t ∈ Lp+,p−-Mod for all t ∈ C.

2. Let Λ
[s]
−;k;n : U(L)→ HomC(Fk,s;n, Fk,s∨;n−1) be as follows

Λ
[s]
−;k;n(A) = lim

t→0

1

t
[Q

[s]
− , e

−tâAetâ], for A ∈ U(L).

where Fαk,s;n+t, Fαk,s∨;n−1+t ∈ Lp+,p−-Mod for all t ∈ C.

From now on, we omit k, n and denote

Λ
[r]
+ = Λ

[r]
+;k;n, Λ

[s]
− = Λ

[s]
−;k;n.

Proposition 6.2.16. The two operators Λ
[r]
+ and Λ

[s]
− satisfiy the following derivation

property

Λ
[r]
+ (AB) = Λ

[r]
+ (A)B + AΛ

[r]
+ (B), A,B ∈ U(L),

Λ
[s]
− (AB) = Λ

[s]
− (A)B + AΛ

[s]
− (B), A,B ∈ U(L).

Proof. For any A,B ∈ U(L), we have

[Q
[r]
+ , e

−tâABetâ]

= [Q
[r]
+ , e

−tâAetâ · e−tâBetâ]

= [Q
[r]
+ , e

−tâAetâ]e−tâBetâ + e−tâAetâ[Q
[r]
+ , e

−tâBetâ]

= [Q
[r]
+ , e

−tâAetâ]B + A[Q
[r]
+ , e

−tâBetâ]

+ [Q
[r]
+ , e

−tâAetâ](e−tâBetâ −B) + (e−tâAetâ − A)[Q[r]
+ , e

−tâBetâ].

Dividing both sides by t and taking the limit, we have the derivation property.
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Fix any τ = (α1, α2, α3) ∈ Tp+,p− such that Fα1 is of braided type. Let (kτ , lτ ) ∈ Z2 be
a unique integer pair such that

(1 ≤ kτ < p+ ∧ 1 ≤ lτ < p−) ∧ (Q
[kτ ]
+ and Q

[lτ ]
− are screening operators on F (τ)).

Note that Fα2 = Fα1+kτα+ or Fα1+lτα− . We set

F (τ) = Fα1 ⊕ Fα1+kτα+ ⊕ Fα1+lτα− .

For A ∈ U(L), we define the following operator Jτ (A) on F (τ):

Jτ (A) =

{
A+ Λ

[kτ ]
+ (A) + Λ

[lτ ]
− (A) on Fα1 ,

A on Fα1+kτα+ ⊕ Fα1+lτα− .

Then, by Proposition 6.2.16, we have

Jτ (AB) = Jτ (A)Jτ (B), for any A,B ∈ U(L).

Thus we see that Jτ defines a structure of Virasoro module on F (τ). In the following,
we omit the action Jτ of the logarithmic module (F (τ), Jτ ), and simply denoted as F (τ).
F (τ) has L0-nilpotent rank two. In fact we have the following proposition.

Proposition 6.2.17. Fix any τ = (α1, α2, α3) ∈ Tp+,p− such that Fα1 is of braided type.
Let v be any non-zero vector of Fα1 and let hv be the L0 weight of v. Then we have

(Jτ (L0)− hv)v = −kτα+Q
[kτ ]
+ (v)− lτα−Q

[lτ ]
− (v).

Proof. Note that the ordinary action of L0 on the Fock modules is given by

L0 =
1

2

∑
m∈Z

: ama−m : −1

2
α0a0. (6.2.2)

Then, by (3.3.1), (6.2.2) and [Q
[k]
ϵ , L0] = 0, we have

(Jτ (L0)− L0)v

= Λ
[kτ ]
+ (L0)v + Λ

[lτ ]
− (L0)v

= lim
t→0

1

t
(Q

[kτ ]
+ +Q

[lτ ]
− )e−tâL0e

tâv − lim
t→0

1

t
e−tâL0e

tâ(Q
[kτ ]
+ +Q

[lτ ]
− )v

= lim
t→0

1

t
(Q

[kτ ]
+ +Q

[lτ ]
− )ta0v − lim

t→0

1

t
ta0(Q

[kτ ]
+ +Q

[lτ ]
− )v

= (α1 − α1 − kτα+)Q
[kτ ]
+ (v) + (α1 − α1 − lτα−)Q

[lτ ]
− (v)

= −kτα+Q
[kτ ]
+ (v)− lτα−Q

[lτ ]
− (v).

Proof of Theorem 6.2.14. For τ = (αr∨,s∨ , αr,s∨;1, αr∨,s∨;2) ∈ T Min
p+,p− , let us consider the

logarithmic module F (τ). Let v be a cosingular vector in Fr∨,s∨ [r
∨s∨] defined by

v = lim
t→0

1

t
Sr∨,s∨ |αr∨,s∨ + t⟩ .
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By Proposition 6.2.17, we have

(Jτ (L0)− hr,s∨;1)v = (αr∨,s∨ − αr,s∨;1)Q
[r∨]
+ (v) + (αr∨,s∨ − αr∨,s;−1)Q

[s∨]
− (v). (6.2.3)

in F (τ). By using Theorem 6.1.3 we have

Jτ (Sr∨,s∨S
∗
r∨,s∨)v =

1

2
(2αr∨,s∨ − α0)Rr∨,s∨(Q

[r∨]
+ (v) +Q

[s∨]
− (v)) (6.2.4)

in F (τ).
For 1 ≤ r < p+, 1 ≤ s < p−, let K(∆+

r,s;0) be the indecomposable Virasoro module
defined by the following exact sequence

0→ L(∆−
r,s∨;0)→ K(∆+

r,s;0)→ K(τ)→ 0.

By (6.2.3) and (6.2.4), as the quotient of F (τ), we can define the indecomposable module

P̃ (∆+
r,s;0) satisfying the following exact sequence

0→ L(∆+
r,s;0)⊕ L(∆+

r,s;0)→ P̃ (∆+
r,s;0)→ K(∆+

r,s;0)→ 0.

Note that, by Theorem 6.2.9, Ext1L(P̃ (∆
+
r,s;0), L(∆

+
r,s;0)) = 0 and P̃ (∆+

r,s;0) has P (τ) and
P (τ ′), τ ′ = (αr∨,s∨ , αr∨,s;−1, αr∨,s∨;−2), as subquotients. Let us consider the indecompos-

able module R(∆+
r,s;0) = P̃ (∆+

r,s;0)/L(hr,s,∆
+
r,s;0). By Theorems 6.1.5 and 6.2.9, we see

that

Socle(R(∆+
r,s;0)) = L(∆+

r,s;0).

In particular we have

Socle(P (τ)) = Socle(P (τ ′)) = L(∆+
r,s;0).

Corollary 6.2.18. Fix any element τ = (α1, α2, α3) ∈ T Min
p+,p−. Then we have

Ext1L(K(τ), L(hα2 , hα3)
∗) = C.

We fix any L0-homogeneous vector uτ ∈ K(τ)[hα2 ] such that K(τ) = U(L).uτ . Let
vτ ∈ K(τ) be the highest weight vector of the submodule L(hα3) ⊂ K(τ). Fix any non-
zero L0-homogeneous vectors u′τ ∈ L(hα2 , hα3)

∗[hα2 ] and v
′
τ ∈ L(hα2 , hα3)

∗[hα3 ] such that
u′τ ∈ U(L).v′τ . Let S ∈ U(L) be the Shapovalov element such that σ(S)v′τ ∈ C×u′τ . Let

K̃(τ) be the non-trivial extension

0→ L(hα2 , hα3)
∗ ι−→ K̃(τ)

p−→ K(τ)→ 0,

and let ũτ and ṽτ be any L0-homogeneous vectors of K̃(τ) such that

p(ũτ ) = uτ , p(ṽτ ) = vτ .

Then we have

Sũτ ∈ C×ṽτ + C×ι(v′τ ) + U(L).ι(u′τ ),

and

σ(S)ṽτ ∈ C×ι(u′τ ).
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Figure 6.1: The embedding structure of the logarithmic module K̃(τ).

Remark 6.2.19. Figure 6.1 represents the embedding structure of the logarithmic module
K̃(τ) defined in Corollary 6.2.18. The black circle represents the highest weight vector of

K̃(τ).
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Chapter 7

The projective covers of simple mod-
ules X±r,s
Since Wp+,p− is C2-cofinite, so by [36], every simple Wp+,p−-module has the projective
cover. In this chapter, we determine some Ext1-groups between certain indecomposable
modules and simple modules. Based on these Ext1 groups, we determine the structure of
the projective covers of the simple modules in each thick block and thin block. From this
chapter, we denote the n-th Ext-groups in Cp+,p− as Extn(•, •) simply and identify any
Wp+,p−-modules that are isomorphic to each other, unless otherwise stated.

7.1 The structure of the logarithmic modules Q(X±•,•)•,•
in the thick blocks Cthick

r,s

We fix any thick block Cthick
r,s . In this subsection we consider the structure of the inde-

composable modules Q(X ϵ
a,b)c,d, where

{(ϵ, a, b, c, d)} =
{
(+, r, s, r∨, s), (+, r, s, r, s∨), (+, r∨, s∨, r∨, s), (+, r∨, s∨, r, s∨),

(−, r∨, s, r, s), (−, r∨, s, r∨, s∨), (−, r, s∨, r, s), (−, r, s∨, r∨, s∨)
}
.

First let us consider the structure of the logarithmic module Q(X+
r,s)r∨,s. Recall that

Q(X+
r,s)r∨,s is defined as the quotient of P+

r,s and, as the vector space, P+
r,s = V+

r∨,s∨⊕V
−
r,s∨⊕

V−
r∨,s ⊕ V+

r,s. Let u0 and v+1 be cosingular vectors in Fr∨,s∨ [r
∨s∨] and Fr,s∨;1[r(s

∨ + p−)],

respectively. We define the following vectors in the ordinary Wp+,p−-modules V+
r∨,s∨ and

V−
r,s∨ :

u1 = |αr,s∨;1⟩ ∈ V−
r,s∨ ,

v−1 = W−[0]v+1 ∈ Fr,s∨;−1[(r + p+)s
∨] ⊂ V−

r,s∨ ,

v−2 = Sr,s∨+p−u0 ∈ V+
r∨,s∨ ,

v+2 = W+[0]v−2 ∈ C× |αr∨,s∨;2⟩ ∈ V+
r∨,s∨ .

By the definition of P+
r,s, these vectors become highest weight vectors of the composition

factors of the quotient module Q(X+
r,s)r∨,s. The vector u0 become the highest weight

vector of the top composition factor X+
r,s of Q(X+

r,s)r∨,s. The sets {v+1 , v−1 } and {v+2 , v−2 }
become basis of the highest weight space of the composition factors 2X−

r∨,s of Q(X+
r,s)r∨,s.

The vector u1 become the highest weight vector of the submodule X+
r,s ⊂ Q(X+

r,s)r∨,s. For
these vectors, we use the same symbols in the quotient module Q(X+

r,s)r∨,s. Note that we
have

(L0 −∆+
r,s;0)u0 ∈ C×u1 (7.1.1)
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in Q(X+
r,s)r∨,s. From the Virasoro module structure of Q(X+

r,s)r∨,s, we define the following
logarithmic Virasoro module

K = U(L).u0 + U(L).v+1 ∈ Lp+,p−-mod.

Note that K has the submodule L(∆+
r,s;1). Then, by (7.1.1), we have

K/L(∆+
r,s;1) ∈ Ext1L(K(τ), L(∆+

r,s;0,∆
−
r∨,s;0)

∗) \ {0},

where τ = (αr∨,s∨ , αr,s∨;1, αr∨,s∨;2). Thus, by Corollary 6.2.18, we have

Sr,s∨+p−u0 ∈ C×v+1 + C×v−2 mod Wp+,p− .u1,

S∗
r,s∨+p−v

−
2 ∈ C×u1,

(7.1.2)

in Q(X+
r,s)r∨,s. By (7.1.2) we see that Q(X+

r,s)r∨,s has two submodules

Wp+,p− .v
+
1 ∈ Ext1(X−

r∨,s,X
+
r,s) \ {0},

Wp+,p− .v
−
2 ∈ Ext1(X−

r∨,s,X
+
r,s) \ {0}.

(7.1.3)

By (7.1.3), we see that Q(X+
r,s)r∨,s is generated from the top composition factor X+

r,s and
Socle(Q(X+

r,s)r∨,s) = X+
r,s.

We have similar results for the other indecomposable modules of type Q(X+
•,•)•,• in

Cthick
r,s . Thus we obtain the following theorem.

Theorem 7.1.1. Let (a, b, c, d) be any element in

{(a, b, c, d)} =
{
(r, s, r∨, s), (r, s, r, s∨), (r∨, s∨, r∨, s), (r∨, s∨, r, s∨)}.

Then the socle series of Q(X+
a,b)c,d is given by

Soc1 = Socle = X+
a,b,

Soc2/Soc1 = X−
c,d ⊕ L(ha,b)⊕X

−
c,d,

Q(X+
a,b)c,d/Soc2 = X

+
a,b.

Moreover, Q(X+
a,b)c,d is generated from the top composition factor X+

a,b.

Remark 7.1.2. Figure 7.1 represents the schematic diagram of the indecomposable mod-
ule Q(X+

r,s)r∨,s.

Next let us consider the logarithmic module Q(X−
r∨,s)r,s. Let {v+, v−} be a basis of the

highest weight space of X−
r∨,s such that

W±[0]v± = 0, W±[0]v∓ ∈ C×v±.

For the surjection π : Q(X−
r∨,s)r,s → X

−
r∨,s, we fix L0-homogeneous vectors ṽ± ∈ Q(X−

r∨,s)r,s
such that π(ṽ±) = v±. Note that

(L0 −∆−
r∨,s;0)ṽ± ∈ C×v±,
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Figure 7.1: The schematic diagram of the indecomposable module Q(X+
r,s)r∨,s, where t is

the highest weight vector whose L0 weight is hr,s;0.

in Q(X−
r∨,s)r,s(see the proof of Proposition 7.3.4). Then, by Theorem 6.2.9, we obtain

Sr,s∨+p−S
∗
r,s∨+p− ṽ± ∈ C×v±. (7.1.4)

By (7.1.4) we see that Q(X−
r∨,s)r,s has two submodules

Wp+,p− .S
∗
r,s∨+p− ṽ± ∈ Ext1(X+

r,s,X−
r∨,s) \ {0}.

In particular we see that Q(X−
r∨,s)r,s is generated from the top composition factor X−

r∨,s.

We have similar results for the other indecomposable modules of type Q(X−
•,•)•,• in C

thick
r,s .

Thus we obtain the following theorem.

Theorem 7.1.3. Let (a, b, c, d) be any element in

{(a, b, c, d)} =
{
(r∨, s, r, s), (r∨, s, r∨, s∨), (r, s∨, r, s), (r, s∨, r∨, s∨)}.

Then the socle series of Q(X−
a,b)c,d is given by

Soc1 = Socle = X−
a,b,

Soc2/Soc1 = X+
c,d ⊕X

+
c,d,

Q(X−
a,b)c,d/Soc2 = X

−
a,b.

Moreover, Q(X−
a,b)c,d is generated from the top composition factor X−

a,b.

Remark 7.1.4. Figure 7.2 represents the schematic diagram of Q(X−
r∨,s)r,s.

7.2 The Ext1-groups between all simple modules in

the thick block Cthick
r,s

We fix any thick block Cthick
r,s . In this section, we determine the Ext1-groups between

all simple modules in the thick block Cthick
r,s . From this section, we identify any Wp+,p−-

modules that are isomorphic to each other.
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Figure 7.2: The schematic diagram of the structure of the indecomposable module
Q(X−

r∨,s)r,s.

Definition 7.2.1. Let us fix (a, b, c, d) in

{(a, b, c, d)} =
{
(r∨, s, r, s), (r∨, s, r∨, s∨), (r, s∨, r, s), (r, s∨, r∨, s∨)}.

1. For Q(X−
a,b)c,d, let {v+, v−} be a basis of the highest weight space of the submodule

X−
a,b ⊂ Q(X

−
a,b)c,d such that

W±[0]v± = 0, W±[0]v∓ ∈ C×v±.

and let u± be the highest weight vectors of Q(X−
a,b)c,d such that v± ∈ U(L).u±. Then

we define

E+(X+
c,d)a,b :=Wp+,p− .u+, E−(X+

c,d)a,b :=Wp+,p− .u−,

which give different extensions in Ext1(X+
c,d,X

−
a,b) \ {0}.

2. As the quotient of Q(X+
c,d)a,b, we have a non-trivial extension in

Ext1(E+(X+
c,d)a,b,X

−
a,b).

We denote this quotient module by E(X+
c,d)a,b.

Remark 7.2.2. Figure 7.3 represents the schematic diagrams of the structure of the
indecomposable modules E−(X+

r,s)r∨,s and E+(X+
r,s)r∨,s.

Definition 7.2.3. We define

Kr,s :=Wp+,p− . |αr,s⟩ Kr∨,s∨ :=Wp+,p− . |αr∨,s∨⟩

which are the non-trivial extensions of Ext1(L(hr,s),X+
r,s) ≃ C and Ext1(L(hr,s),X+

r∨,s∨) ≃
C, respectively.
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Figure 7.3: The schematic diagram of the structure of the indecomposable modules
E−(X+

r,s)r∨,s and E+(X+
r,s)r∨,s.

Definition 7.2.4. Given a non-logarithmic Virasoro module M , any non-zeo vector v ∈
M is called primary vector when the following satisfied

Lnv = 0, n ≥ 1.

Similar to the arguments in Section 9.3 of [48], we can prove the following proposition
(see also [57],[59]). We omit the proofs.

Proposition 7.2.5 ([21],[48]). Let M1, M2 and M∗
3 be non-logarithmic Virasoro modules

which have primary vectors v1 ∈ M1, v2 ∈ M2 and v∗3 ∈ M∗
3 whose L0 weights are hr1,s1,

hr2,s2 and hr3,s3, respectively, where ri ≥ 1 and si ≥ 1 (i = 1, 2, 3). Assume that there

exists a non-logarithmic intertwining operator Y of type
(

M3

M1 M2

)
. Then we have

⟨v∗3,Y(v1, z)Sr2,s2v2⟩ =
r2∏
i=1

s2∏
j=1

(hr1,s1 − hr2+r3−2i+1,s2+s3−2j+1)⟨v∗3,Y(v1, z)v2⟩,

⟨v∗3, S∗
r3,s3
Y(v1, z)v2⟩ =

r3∏
i=1

s3∏
j=1

(hr1,s1 − hr2+r3−2i+1,s2+s3−2j+1)⟨v∗3,Y(v1, z)v2⟩.

Proposition 7.2.6 ([21],[48]). For h ∈ C, 1 ≤ r1, r2 < p+, 1 ≤ s1, s2 < p− and n1, n2 ∈
Z≥0, we have

N L(h)
L(hr1,s1;n1 ),L(hr2,s2;n2 )

≤ 1,

where N L(h3)
L(h2),L(h1)

is the dimension of the space of Virasoro intertwining operators of type(
L(h3)

L(h2) L(h1)

)
. If N L(h)

L(hr1,s1;n1 ),L(hr2,s2;n2 )
̸= 0, then h is the common solution of the following
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equations

r1∏
i=1

s1+n1p−∏
j=1

(h− hr1+r2−2i+1,s1+s2−2j+1;n1+n2) = 0,

(n1+1)p+−r1∏
i=1

p−−s1∏
j=1

(h− h2p+−r1−r2−2i+1,2p−−s1−s2−2j+1;−n1−n2) = 0,

r2∏
i=1

s2+n2p−∏
j=1

(h− hr1+r2−2i+1,s1+s2−2j+1;n1+n2) = 0,

(n2+1)p+−r2∏
i=1

p−−s2∏
j=1

(h− h2p+−r1−r2−2i+1,2p−−s1−s2−2j+1;−n1−n2) = 0.

Lemma 7.2.7. Let n ≥ 1. Any extension in

Ext1(X+
r,s, nX−

r∨,s)

splits if it decomposes as simple Virasoro modules.

Proof. We only prove in the case n = 1. The n ≥ 2 cases can be proved in the same way.
Let E be any non-trivial extension

0→ X−
r∨,s

ι−→ E −→ X+
r,s → 0.

Let u be the highest weight vector in E[∆+
r,s;0]. Assume that

Sr,s∨+p−u = 0. (7.2.1)

Let {v+, v−} be a basis of the highest weight space of X−
r∨,s such that

W±[0]v± = 0, W±[0]v∓ ∈ C×v±.

Let v∗+ and v∗− be L0-homogeneous vectors of E∗ such that ⟨v∗±, ι(v±)⟩ ̸= 0, and Lkv
∗
± = 0

for k ≥ 1. Assume that for any W = W±,W 0

W [k]v∗± = 0, k ≥ 1.

Then the vector space Cv∗+ + Cv∗− becomes a A(Wp+,p−)-module and this vector space is
isomorphic to the highest weight space of X−

r∨,s as a A(Wp+,p−)-module. Thus E∗ has the

submodule Wp+,p− .(Cv∗+ +Cv∗−) ≃ X−
r∨,s and thus E∗ = X+

r,s⊕X−
r∨,s. But this contradicts

the assumption that E is non-trivial. Therefore we have

⟨v∗±, YE(W •; z)u⟩ ̸= 0,

where W • is one of W+, W 0 or W−. On the other hand, using Proposition 7.2.5, we have

⟨v∗±, YE(W •; z)Sr,s∨+p−u⟩

=
r∏

i=1

s∨+p−∏
j=1

(h4p+−1,1 − hr+r+2p+−2i+1,s∨+p−+s−2j+1)⟨v∗±, YE(W •; z)u⟩

̸= 0.

But this contradicts (7.2.1).
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Proposition 7.2.8. In the thick block Cthick
r,s , we have

Ext1(X±,X∓) = C2, Ext1(L(hr,s),X+) = Ext1(X+, L(hr,s)) = C,

where X+ = X+
r,s or X+

r∨,s∨ and X− = X−
r∨,s or X−

r,s∨. The other extensions between the

simple modules in Cthick
r,s are trivial.

Proof. We will only prove

Ext1(L(hr,s),X−
r∨,s) = 0, Ext1(L(hr,s),X+

r,s) = C,
Ext1(X−

r∨,s,X
−
r∨,s) = 0, Ext1(X+

r,s,X−
r∨,s) = C2,

Ext1(X+
r,s,X+

r,s) = 0.

The other Ext1-groups can be proved in a similar way, so we omit the proofs.
First, let us prove Ext1(L(hr,s),X−

r∨,s) = 0. Assume Ext1(L(hr,s),X−
r∨,s) ̸= 0 and fix

any non-trivial extension E0 in this Ext1-group. Note that E0 is a direct sum of Virasoro
simple modules. Then, from the Wp+,p−-module action on E0, we must have a non-trivial
Virasoro intertwining operator of type(

L(∆−
r∨,s;n)

L(h4p+−1,1) L(hr,s)

)
for some n ≥ 0. But, by using Proposition 7.2.6, we can see the contradiction.

Next, we prove Ext1(L(hr,s),X+
r,s) = C. Fix any extension

[E1] ∈ Ext1(L(hr,s),X+
r,s).

Let t be the highest weight vector of E1 and assume Sr∨,s∨t ̸= 0. Then, as a Virasoro
module

E1 = L(hr,s,∆
+
r,s;0)⊕

⊕
n≥1

(2n+ 1)L(∆+
r,s;n).

Since

Ext1L(L(hr,s), L(∆
+
r,s;0)) = C,

as the Baer sum of extensions obtained from E1 and Kr,s, we have a extension [E ′
1] ∈

Ext1(L(hr,s),X+
r,s) such that Sr∨,s∨t

′ = 0, where t′ is the highest weight vector of E ′
1.

Thus, by Theorem 6.1.6, we have the following decomposition as the Virasoro module

E ′
1 = L(hr,s)⊕

⊕
n≥0

(2n+ 1)L(∆+
r,s;n).

Assume [E ′
1] ̸= 0. Then, from theWp+,p−-module action on E ′

1, we must have a non-trivial
Virasoro intertwining operator of type(

L(∆+
r,s;n)

L(h4p+−1,1) L(hr,s)

)
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for some n ≥ 0. But, by using Proposition 7.2.6, we can see the contradiction. In case
Sr∨,s∨t = 0, we see that [E1] = 0 as shown above.

Next, we prove Ext1(X−
r∨,s,X

−
r∨,s) = 0. Fix any extension [E2] ∈ Ext1(X−

r∨,s,X
−
r∨,s). By

Theorem 6.1.5, we see that L0 acts semisimply on E2. Let E2 be the highest weight space
of E2. Note that E2 is generated from E2. Let Ẽ2 be the Wp+,p−-module induced from

E2. Then we have Ẽ2 = E2. By Proposition 4.2.7, we see that as a A(Wp+,p−)-module

E2 ≃ X−
r∨,s ⊕X

−
r∨,s,

where X−
r∨,s is the highest weight space of X−

r∨,s. Note that the Wp+,p−-module induced

from X−
r∨,s is isomorphic to X−

r∨,s. Thus we have Ẽ2 ≃ X−
r∨,s ⊕X

−
r∨,s.

Next, we prove Ext1(X+
r,s,X−

r∨,s) = C2. Let us show

Ext1(E±(X+
r,s)

∗
r∨,s,X−

r∨,s) = 0. (7.2.2)

We will only prove Ext1(E+(X+
r,s)

∗
r∨,s,X−

r∨,s) = 0. The other case can be proved in the
same way. Assume that

Ext1(E+(X+
r,s)

∗
r∨,s,X−

r∨,s) ̸= 0

and fix any non-trivial extension

0→ X−
r∨,s

ι−→ F −→ E+(X+
r,s)

∗
r∨,s → 0.

Let {v+, v−} be the basis of the highest weight space of X−
r∨,s such that

W±[0]v± = 0, W±[0]v∓ ∈ C×v±.

For the surjection π : F → X−
r∨,s, let ṽ± be any L0 homogeneous vectors of F such that

π(ṽ±) = v±. Then, by Theorem 6.2.9 and Ext1(X−
r∨,s,X

−
r∨,s) = 0, we must have

(L0 −∆−
r∨,s;0)ṽ+ = k+ι(v+) + k−ι(v−), (7.2.3)

(L0 −∆−
r∨,s;0)ṽ− = 0, (7.2.4)

where (k+, k−) ̸= (0, 0). Assume k+ ̸= 0. Then, multiplying both sides of (7.2.3) by
W−[0], we have

(L0 −∆−
r∨,s;0)W

−[0]ṽ+ ∈ C×ι(v−).

But this contradicts (7.2.4). Next assume k− ̸= 0. Then, multiplying both sides of (7.2.3)
by W+[0], we have

(L0 −∆−
r∨,s;0)W

+[0]ṽ+ ∈ C×ι(v+).

On the other hand, by the definition of ṽ+, we have (L0 −∆−
r∨,s;0)W

+[0]ṽ+ = 0. Thus we
have a contradiction. Thus we obtain (7.2.2). Next let us show

Ext1(Q(X+
r,s)r∨,s,X−

r∨,s) = 0. (7.2.5)
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Assume that Ext1(Q(X+
r,s)r∨,s,X−

r∨,s) ≠ 0 and fix any non-trivial extension G in this Ext1-

group. Assume that Socle(G) = X−
r∨,s. Then, by Lemma 7.2.7, we see that G has a

indecomposable submodule in

Ext1(E±(X+
r,s)

∗
r∨,s,X−

r∨,s).

But this contradicts (7.2.2). Thus, by Ext1(L(hr,s),X−
r∨,s) = 0, we see that G has the

submodule Kr,s and G/Kr,s is indecomposable. Let E3 = G/Kr,s. Then we have

[E3] ∈ Ext1(E(X+
r,s)r∨,s,X−

r∨,s) \ {0}.

By Ext1(X−
r∨,s,X

−
r∨,s) = 0, we see that

Socle(E3) = X−
r∨,s ⊕X

−
r∨,s ⊕X

−
r∨,s. (7.2.6)

Let u be the highest weight vector of E3 and let us consider the submoduleWp+,p− .Sr,s∨+p−u
of E3. By Theorems 4.2.5 and 4.2.6, we can see that

Wp+,p− .Sr,s∨+p−u = X−
r∨,s or X

−
r∨,s ⊕X

−
r∨,s. (7.2.7)

Thus by (7.2.6) and (7.2.7), we have

[E3/Wp+,p− .Sr,s∨+p−u] ∈ Ext1(X+
r,s, nX−

r∨) \ {0},

where n is 1 or 2. But this contradicts Lemma 7.2.7. Thus we obtain (7.2.5). Therefore
by (7.2.2), (7.2.5) and Ext1(X−

r∨,s,X
−
r∨,s) = 0, we obtain

Ext1(X+
r,s,X−

r∨,s) = C2.

Finally let us prove Ext1(X+
r,s,X+

r,s) = 0. Let X+
r,s be the highest weight space of X+

r,s

and let E(X+
r,s) be the induced Wp+,p−-module from X+

r,s. Since

Ext1(X+
r,s,X−

r∨,s) = C2, Ext1(X+
r,s,X−

r,s∨) = C2,

Ext1(X−
r∨,s,X

−
r∨,s) = 0, Ext1(X−

r,s∨ ,X
−
r,s∨) = 0,

we can see that the indecomposable module E(X+
r,s) satisfies the following exact sequence

0→ 2X−
r∨,s ⊕ 2X−

r,s∨ → E(X
+
r,s)→ X+

r,s → 0.

Let E4 be any extension in Ext1(X+
r,s,X+

r,s). By Theorem 6.1.5, we see that L0 acts

semisimply on E4. Let E4 be the highest weight space of E4. Let us assume E4 ≇ X+
r,s⊕X+

r,s

as a A(Wp+,p−)-module. Then, from the Wp+,p−-module action on E4, we have a non-
trivial non-logarithmic Virasoro intertwining operator of type(

L(∆+
r,s;0)

L(h4p+−1,1) L(∆+
r,s;0)

)
.

But we can see the contradiction by using Proposition 7.2.6. Thus, as a A(Wp+,p−)-

module, E4 ≃ X+
r,s ⊕X+

r,s. Let Ẽ4 be the induced module from E4. Then we have

Ẽ4 ≃ E(X+
r,s)⊕ E(X+

r,s).

Therefore we obtain

E4 ≃ X+
r,s ⊕X+

r,s.
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7.3 The projective covers of the simple modules X±•,•
in the thick blocks

In this section, we fix any thick block Cthick
r,s and compute Ext1 groups between certain

indecomposable Wp+,p−-modules and the simple modules in this block. Based on these
Ext1 groups, we prove that the logarithmic modules P±

•,• are projective Wp+,p−-modules.

First we will determine all trivial Ext1-groups between the indecomposable modules
Q(X±

•,•)•,• ∈ Cthick
r,s and simple modules L(hr,s), X±

•,• ∈ Cthick
r,s .

Proposition 7.3.1. Let (a, b) be (r, s) or (r∨, s∨). Then we have

Ext1(Q(X+
a,b)a∨,b,X

+
a,b) = Ext1(Q(X+

a,b)a,b∨ ,X
+
a,b) = 0.

Proof. We will only prove Ext1(Q(X+
a,b)a∨,b,X

+
a,b) = 0 in the case (a, b) = (r, s). The other

cases can be proved in the same way, so we omit the proofs.
Assume Ext1(Q(X+

r,s)r∨,s,X+
r,s) ̸= 0. Then, by Theorem 7.2.8, we have

Ext1(Q(X+
r,s)r∨,s/Kr,s,X+

r,s) ̸= 0.

Fix any non-trivial extension [E] ∈ Ext1(Q(X+
r,s)r∨,s/Kr,s,X+

r,s). By Theorem 6.2.9, we see
that L0 acts semisimply on the highest weight space of E. Thus, by Propositions 4.2.8 and
4.2.9, we see that L0 acts semisimply on E. We fix any L0-homogeneous vector u0 ∈ E
such that, for the surjection π : E → X+

r,s, π(u0) gives the highest weight vector of X+
r,s.

Let u1 be the highest weight vector of the submodule X+
r,s ⊂ E and fix any homogeneous

vector u∗1 ∈ E∗ such that ⟨u∗1, u1⟩ ̸= 0. Since [E] ̸= 0, E has at least one of E+(X+
r,s)

∗
r∨,s or

E−(X+
r,s)

∗
r∨,s, as a submodule. Thus, by the structure of Q(X+

r,s)r∨,s/Kr,s and E±(X+
r,s)r∨,s,

we see that

⟨u∗1, S∗
r,s∨+p−YE(W

•; z)Sr,s∨+p−u0⟩ ̸= 0,

where W • is one of W+, W 0 or W−. In particular, we have

⟨u∗1, YE(W •; z)u0⟩ ̸= 0. (7.3.1)

Note that Sr∨+p+,su0 = 0. Thus, by Proposition 7.2.5, we have

0 = ⟨u∗1, YE(W •; z)Sr∨+p+,su0⟩

=

r∨+p+∏
i=1

s∏
j=1

(h4p+−1,1 − h2r∨+2p+−2i+1,2s−2j+1)⟨u∗1, YE(W •; z)u0⟩.

The coefficient in the above equation is nonzero, so we have ⟨u∗1, YE(W •; z)u0⟩ = 0. But
this contradicts (7.3.1).

Proposition 7.3.2. Let (a, b) be (r∨, s) or (r, s∨). Then we have

Ext1(Q(X−
a,b)a∨,b,X

+
a∨,b) = Ext1(Q(X−

a,b)a,b∨ ,X
+
a,b∨) = 0.
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Proof. We will only prove Ext1(Q(X−
a,b)a∨,b,X

+
a∨,b) = 0 in the case (a, b) = (r∨, s). The

other cases can be proved in the same way, so we omit the proofs.
By Proposition 7.3.1, we have

Ext1(E+(X+
r,s)r∨,s,X+

r,s) = 0. (7.3.2)

From the structure of Q(X−
r∨,s)r,s, we have the following exact sequence

0→ E+(X+
r,s)r∨,s −→ Q(X−

r∨,s)r,s → E
+(X+

r,s)
∗
r∨,s → 0.

By this exact sequence and (7.3.2), we have the following exact sequence

0→ C→ Ext1(E+(X+
r,s)

∗
r∨,s,X+

r,s) −→ Ext1(Q(X−
r∨,s)r,s,X

+
r,s)→ 0.

By Proposition 7.2.8, we have Ext1(E+(X+
r,s)

∗
r∨,s,X+

r,s) ≃ C. Therefore we obtain

Ext1(Q(X−
r∨,s)r,s,X

+
r,s) = 0.

Lemma 7.3.3. Let (a, b) be (r∨, s) or (r, s∨). Then we have

Ext1(E±(X+
a∨,b)

∗
a,b,X−

a,b) = Ext1(E±(X+
a,b∨)

∗
a,b,X−

a,b) = 0.

Proof. It can be proved in the same way as (7.2.2) in Proposition 7.2.8.

Proposition 7.3.4. Let (a, b) be (r∨, s) or (r, s∨). Then we have

Ext1(Q(X−
a,b)a∨,b,X

−
a,b) = Ext1(Q(X−

a,b)a,b∨ ,X
−
a,b) = 0.

Proof. We will only prove Ext1(Q(X−
a,b)a∨,b,X

−
a,b) = 0 in the case (a, b) = (r∨, s). The

other cases can be proved in the same way, so we omit the proofs. Assume that

Ext1(Q(X−
r∨,s)r,s,X

−
r∨,s) ̸= 0

and fix any non-trivial extension

0→ X−
r∨,s

ι−→ E
p−→ Q(X−

r∨,s)r,s → 0.

By Proposition 7.2.8 and Lemma 7.3.3, we see that the following sequence of submodules
holds

ι(X+
r,s) ⊂ E(X+

r,s)r∨,s ⊂ E. (7.3.3)

Let {v+, v−} be the basis of the highest weight space of X−
r∨,s such that

W±[0]v± = 0, W±[0]v∓ ∈ C×v±.

Let {v0+, v0−} be the basis of the highest weight space of the submodule X−
r∨,s ⊂ E such

that p(v0±) ̸= 0. For the canonical surjection π : E → X−
r∨,s, we fix any L0-homogeneous

vectors ṽ−, ṽ+ ∈ E such that π(ṽ±) = v±. Note that, as a quotient module of U(L).ṽ±,
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we have the logarithmic Virasoro module P (τ), where τ = (αr,s∨;1, αr∨,s∨;2, αr,s∨;3) (for
the definition of the logarithmic modules P (τ), see the proof of Theorem 6.2.9). Then,
by Theorem 6.2.9, Proposition 7.2.8 and (7.3.3), we see that one of the followings holds

(L0 −∆−
r∨,s;0)ṽ− = k+ι(v+) + k−ι(v−) + C×v0−, k+ ̸= 0,

(L0 −∆−
r∨,s;0)ṽ+ = l−ι(v−) + l+ι(v+) + C×v0+, l− ̸= 0.

Assume that the first statement is true. Multiplying the first equation by W−[0], we have

(L0 −∆−
r∨,s;0)W

−[0]ṽ− = k+ι(v−).

By the definition of ṽ−, the left hand side becomes zero. But this is a contradiction.
Similarly, assuming the second statement, we can show the contradiction.

Proposition 7.3.5. Let (a, b) be (r, s) or (r∨, s∨). Then we have

Ext1(Q(X+
a,b)a∨,b,X

−
a∨,b) = Ext1(Q(X+

a,b)a,b∨ ,X
−
a,b∨) = 0.

Proof. We proved this proposition in the proof of Proposition 7.2.8, but we prove it again.
We will only prove Ext1(Q(X+

a,b)a∨,b,X
−
a∨,b) = 0 in the case (a, b) = (r, s). The other cases

can be proved in the same way, so we omit the proofs.
By the exact sequence

0→ E+(X+
r,s)r∨,s −→ Q(X−

r∨,s)r∨,s → E
+(X+

r,s)
∗
r∨,s → 0,

and Proposition 7.3.4, we have

Ext1(E+(X+
r,s)

∗
r∨,s,X−

r∨,s) = 0.

Thus, by the exact sequence

0→ E+(X+
r,s)

∗
r∨,s −→ Q(X+

r,s)r∨,s → Q(X+
r,s)r∨,s/E+(X+

r,s)
∗
r∨,s → 0,

we have the following exact sequence

0→ C→ Ext1(Q(X+
r,s)r∨,s/E+(X+

r,s)
∗
r∨,s,X−

r∨,s) −→ Ext1(Q(X+
r,s)r∨,s,X−

r∨,s)→ 0.

By Proposition 7.2.8 we have Ext1(Q(X+
r,s)r∨,s/E+(X+

r,s)
∗
r∨,s,X−

r∨,s) ≃ C. Therefore we

obtain Ext1(Q(X+
r,s)r∨,s,X−

r∨,s) = 0.

Proposition 7.3.6. Let (a, b, ϵ) be any element in

{(r, s,+), (r∨, s∨,+), (r∨, s,−), (r, s∨,−)}.

Then we have

Ext1(Q(X ϵ
a,b)a∨,b,X ϵ

a∨,b∨) = Ext1(Q(X ϵ
a,b)a,b∨ ,X ϵ

a∨,b∨) = 0.
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Proof. We will prove only

Ext1(Q(X+
r,s)r∨,s,X+

r∨,s∨) = 0, Ext1(Q(X−
r∨,s)r,s,X

−
r,s∨) = 0.

The other equations can be proved in the same way, so we omit the proofs.
First we prove Ext1(Q(X+

r,s)r∨,s,X+
r∨,s∨) = 0. Let K(∆+

r,s;0) be the indecomposable
Virasoro module defined by the following exact sequence

0→ L(∆−
r,s∨;0)→ K(∆+

r,s;0)→ K(τ)→ 0,

where τ = (αr∨,s∨ , αr,s∨;1, αr∨,s∨;2). By the structure of Virasoro Verma modules ([12],[21],[48]),
we see that

Ext1L(K(∆+
r,s;0)/L(hr,s), L(∆

+
r∨,s∨;0)) = 0.

Thus, by the structure of the Fock module Fr∨,s∨ , we have

Ext1L(K(∆+
r,s;0), L(∆

+
r∨,s∨;0)) ≃ C. (7.3.4)

Let V (∆+
r,s;0) be the non-trivial extension of this Ext1-group. By (7.3.4), we have

Ext1L(V (∆+
r,s;0), L(∆

+
r∨,s∨;0)) = 0.

Then, by the exact sequence

0→ L(∆+
r∨,s∨;0,∆

−
r,s∨;0)

∗ −→ V (∆+
r,s;0)→ K(τ)→ 0,

we obtain

Ext1L(K(τ), L(∆+
r∨,s∨;0)) = 0. (7.3.5)

Assume Ext1(Q(X+
r,s)r∨,s,X+

r∨,s∨) ̸= 0. Then, by Proposition 7.2.8, we have

Ext1(Q(X+
r,s)r∨,s/X+

r,s,X+
r∨,s∨) ̸= 0.

Fix a non-trivial extension [E] ∈ Ext1(Q(X+
r,s)r∨,s/X+

r,s,X+
r∨,s∨). Note that the Virasoro

zero-mode L0 acts semisimply on E. Let u1 be the highest weight vector of the submodule
X+

r∨,s∨ ⊂ E. We fix any L0-homogeneous vector u0 ∈ E such that, for the surjection
π : E → X+

r,s, π(u0) gives the highest weight vector of X+
r,s and fix a homogeneous vector

u∗1 ∈ E∗ such that ⟨u∗1, u1⟩ ̸= 0. Then, by (7.3.5), we have U(L).u0 ≃ K(τ), and thus

Lnu
∗
1 = 0, for n ≥ 1. (7.3.6)

Since [E] ̸= 0, by the structure of Q(X+
r,s)r∨,s/X+

r,s, E±(X+
r,s)r∨,s and E±(X+

r∨,s∨)r∨,s, we
have

⟨u∗1, YE(W •; z)u0⟩ ̸= 0, (7.3.7)

where W • is one of W± or W 0. Note that

Sr∨+p+,su0 ∈ L(hr,s).
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Then by Proposition 7.2.5 and (7.3.6), we have

0 = ⟨u∗1, YE(W •; z)Sr∨+p+,su0⟩

=

r∨+p+∏
i=1

s∏
j=1

(h4p+−1,1 − hr∨+r+2p+−2i+1,s+s∨−2j+1)⟨u∗1, YE(W •; z)u0⟩.

The coefficient in the above equation is nonzero, so we have ⟨u∗1, YE(W •; z)u0⟩ = 0. But
this contradicts (7.3.7).

Next we prove Ext1(Q(X−
r∨,s)r,s,X

−
r,s∨) = 0. Note that, by the structure of Virasoro

Verma modules and by the structure of the Fock module Fr,s∨;1,

Ext1L(K(∆−
r∨,s;0)/L(∆

+
r∨,s∨;0), L(∆

−
r,s∨;0)) ≃ C (7.3.8)

(see Definitions 6.2.11 for the definitions of Virasoro module K(∆−
r∨,s;0)). Let V (∆−

r∨,s;0)

be the non-trivial extension of this Ext1-group. By (7.3.8), we have

Ext1L(V (∆−
r∨,s;0), L(∆

−
r,s∨;0)) = 0.

Then, by the exact sequence

0→ L(∆−
r,s∨;0,∆

+
r∨,s∨;1)

∗ −→ V (∆−
r∨,s;0)→ K(τ ′)→ 0,

we obtain

Ext1L(K(τ ′), L(∆−
r,s∨;0)) = 0, (7.3.9)

where τ ′ = (αr,s∨;1, αr∨,s∨;2, αr,s∨;3). Let us assume that

Ext1(Q(X−
r∨,s)r,s,X

−
r,s∨) ̸= 0.

Then, since Ext1(X−
r∨,s,X

−
r,s∨) = 0, we have

Ext1(Q(X−
r∨,s)r,s/X

−
r∨,s,X

−
r,s∨) ̸= 0.

Note that L0 acts semisimply on any extensions of this Ext1-group. Fix any non-trivial
extension [E] ∈ Ext1(Q(X−

r∨,s)r,s/X
−
r∨,s,X

−
r,s∨). Then, noting Proposition 7.2.8, by the

Virasoro module structure of E we have

Ext1L(K(τ ′), L(∆−
r,s∨;0)) ̸= 0.

But this contradicts (7.3.9).

Proposition 7.3.7. Let (a, b) be (r, s) or (r∨, s∨). Then we have

Ext1(Q(X+
a,b)a∨,b, L(ha,b)) = Ext1(Q(X+

a,b)a,b∨ , L(ha,b)) = 0.

Proof. By the exact sequence

0→ Kr,s −→ Q(X+
r,s)r∨,s → Q(X+

r,s)r∨,s/Kr,s → 0,
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we have the exact sequence

0→ C −→ C→ Ext(Q(X+
r,s)r∨,s, L(hr,s))→ Ext1(Kr,s, L(hr,s))→ 0.

Thus we have Ext(Q(X+
r,s)r∨,s, L(hr,s)) ≃ Ext1(Kr,s, L(hr,s)). Assume

Ext1(Kr,s, L(hr,s)) ̸= 0,

and fix a non-trivial extension [E] ∈ Ext1(Kr,s, L(hr,s)). Since

Ext1(L(hr,s), L(hr,s)) = 0,

E has a submodule which is isomorphic to K∗
r,s. Thus, by Theorem 6.1.3, we see that E

has L0-nilpotent rank two. Let {u0, u1} be a basis of the highest weight space of E such
that

(L0 − hr,s)u0 ∈ C×u1. (7.3.10)

Then, by Theorem 6.1.3 and (7.3.10), we have

S∗
r,sSr,su0 ∈ C×u1.

In particular we have Sr,su0 ̸= 0. Thus E has X+
r∨,s∨ as a composition factor. But this is

a contradiction. Thus we obtain Ext1(Q(X+
r,s)r∨,s, L(hr,s)) = 0. The other equations can

be proved in the same way, so we omit the proofs.

Proposition 7.3.8. Let (a, b) be (r∨, s) or (r, s∨). Then we have

Ext1(Q(X−
a,b)a∨,b, L(ha∨,b)) = Ext1(Q(X−

a,b)a,b∨ , L(ha,b∨)) = 0.

Proof. By Proposition 7.2.8, we have

Ext1(Q(X−
r∨,s)r,s, L(hr,s)) ≃ Ext1(Q(X−

r∨,s)r,s/X
−
r∨,s, L(hr,s)).

Assume Ext1(Q(X−
r∨,s)r,s/X

−
r∨,s, L(hr,s)) ̸= 0. Then, by considering the contragredient of

any non-trivial extension of Ext1(Q(X−
r∨,s)r,s/X

−
r∨,s, L(hr,s)), we see that

Ext1(Kr,s,X−
r∨,s) ̸= 0.

Since Ext1(L(hr,s),X−
r∨,s) = 0, any non-trivial extension of Ext1(Kr,s,X−

r∨,s) has a sub-

module in Ext1(X+
r,s,X−

r∨,s) \ {0}. In particular, we have

Ext1L(L(hr,s,∆
+
r,s;0), L(∆

−
r∨,s;0)) ̸= 0.

On the other hand, by the structure of Virasoro Verma modules, we see that

Ext1L(L(hr,s,∆
+
r,s;0), L(∆

−
r∨,s;0)) = 0.

Thus we have a contradiction. The other equations can be proved in the same way, so we
omit the proofs.
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The following is a summary of Proposition 7.3.1, 7.3.2, 7.3.4, 7.3.5, 7.3.6, 7.3.7 and
7.3.8.

Proposition 7.3.9. Let (ϵ, a, b, c, d) be any element in

{(ϵ, a, b, c, d)} =
{
(+, r, s, r∨, s), (+, r, s, r, s∨), (+, r∨, s∨, r∨, s), (+, r∨, s∨, r, s∨),

(−, r∨, s, r, s), (−, r∨, s, r∨, s∨), (−, r, s∨, r, s), (−, r, s∨, r∨, s∨)
}
.

Then we have

Ext1(Q(X ϵ
a,b)c,d, L(hr,s)) = 0, Ext1(Q(X ϵ

a,b)c,d,X ϵ
a,b) = 0,

Ext1(Q(X ϵ
a,b)c,d,X ϵ

a∨,b∨) = 0, Ext1(Q(X ϵ
a,b)c,d,X−ϵ

c,d ) = 0.

Next we will prove that the four indecomposable modules P±
•,• ∈ Cthick

r,s are projective.
By Propositions 7.2.8, 7.3.1 and 7.3.4, we have the following lemma.

Lemma 7.3.10. Fix any (ϵ, a, b, c, d) in

{(ϵ, a, b, c, d)} =
{
(+, r, s, r∨, s), (+, r, s, r, s∨), (+, r∨, s∨, r∨, s), (+, r∨, s∨, r, s∨),

(−, r∨, s, r, s), (−, r∨, s, r∨, s∨), (−, r, s∨, r, s), (−, r, s∨, r∨, s∨)
}
.

Then, any indecomposable module whose composition factors are the same as those of
Q(X ϵ

a,b)c,d is isomorphic to Q(X ϵ
a,b)c,d.

By Lemma 7.3.10 and the structure of P±
•,•, we have the following proposition.

Proposition 7.3.11. Fix any (a, b, ϵ) in

{(r, s,+), (r∨, s∨,+), (r∨, s,−), (r, s∨,−)}.

Then the logarithmic module Pϵ
a,b has the following sequences of quotient modules:

0 ≤ U1(Pϵ
a,b) ≤ U2(Pϵ

a,b) ≤ U3(Pϵ
a,b) ≤ U4(Pϵ

a,b) = Pϵ
a,b

0 ≤ V1(Pϵ
a,b) ≤ V2(Pϵ

a,b) ≤ V3(Pϵ
a,b) ≤ V4(Pϵ

a,b) = Pϵ
a,b,

with

U1 = Q(X ϵ
a,b)a∨,b, U2/U1 = U3/U2 = Q(X−ϵ

a,b∨)a∨,b∨ , U4/U3 = Q(X ϵ
a,b)a∨,b

V1 = Q(X ϵ
a,b)a,b∨ , V2/V1 = V3/V2 = Q(X−ϵ

a∨,b)a∨,b∨ , V4/V3 = Q(X
ϵ
a,b)a,b∨ .

Remark 7.3.12. Figure 7.4 represents the sequence of the subquotients given in Propo-
sition 7.3.11.

By Propositions 7.3.9 and 7.3.11, we obtain the following theorems.

Theorem 7.3.13.

Ext1(P+
r,s, L(hr,s)) = Ext1(P+

r∨,s∨ , L(hr,s)) = 0,

Ext1(P−
r∨,s, L(hr,s)) = Ext1(P−

r,s∨ , L(hr,s)) = 0.
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Figure 7.4: The sequence 0 ≤ U1(P+
r,s) ≤ U2(P+

r,s) ≤ U3(P+
r,s) ≤ U4(P+

r,s) = P+
r,s.

Theorem 7.3.14. Let (a, b, ϵ) be any element in

{(r, s,+), (r∨, s∨,+), (r∨, s,−), (r, s∨,−)}.

Then we have

Ext1(Pϵ
a,b,X ϵ

a∨,b∨) = Ext1(Pϵ
a∨,b∨ ,X ϵ

a,b) = 0,

Ext1(Pϵ
a,b,X−ϵ

a∨,b) = Ext1(Pϵ
a,b,X−ϵ

a,b∨) = 0,

Ext1(Pϵ
a∨,b∨ ,X−ϵ

a∨,b) = Ext1(Pϵ
a∨,b∨ ,X−ϵ

a,b∨) = 0.

By Proposition 7.3.11, we obtain the following proposition.

Proposition 7.3.15. Each logarithmic module P±
•,• is generated from the top composition

factor and has the following socle series as a Wp+,p−-module:

1. For P+
r,s,

0 ≤ S1(P+
r,s) ≤ S2(P+

r,s) ≤ S3(P+
r,s) ≤ S4(P+

r,s) ≤ S5(P+
r,s) = P+

r,s,

S1 = X+
r,s,

S2/S1 = X−
r,s∨ ⊕X

−
r,s∨ ⊕ L(hr,s)⊕X

−
r∨,s ⊕X

−
r∨,s,

S3/S2 = X+
r,s ⊕X+

r∨,s∨ ⊕X
+
r∨,s∨ ⊕X

+
r∨,s∨ ⊕X

+
r∨,s∨ ⊕X

+
r,s,

S4/S3 = X−
r∨,s ⊕X

−
r∨,s ⊕ L(hr,s)⊕X

−
r,s∨ ⊕X

−
r,s∨ ,

S5/S4 = X+
r,s.
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2. For P+
r∨,s∨,

0 ≤ S1(P+
r∨,s∨) ≤ S2(P+

r∨,s∨) ≤ S3(P+
r∨,s∨) ≤ S4(P+

r∨,s∨) ≤ S5(P+
r∨,s∨) = P

+
r∨,s∨ ,

S1 = X+
r∨,s∨ ,

S2/S1 = X−
r∨,s ⊕X

−
r∨,s ⊕ L(hr,s)⊕X

−
r,s∨ ⊕X

−
r,s∨ ,

S3/S2 = X+
r∨,s∨ ⊕X

+
r,s ⊕X+

r,s ⊕X+
r,s ⊕X+

r,s ⊕X+
r∨,s∨ ,

S4/S3 = X−
r,s∨ ⊕X

−
r,s∨ ⊕ L(hr,s)⊕X

−
r∨,s ⊕X

−
r∨,s,

S5/S4 = X+
r∨,s∨ .

3. For P−
r,s∨,

0 ≤ S1(P−
r,s∨) ≤ S2(P−

r,s∨) ≤ S3(P−
r,s∨) ≤ S4(P−

r,s∨) ≤ S5(P−
r,s∨) = P

−
r,s∨ ,

S1 = X−
r,s∨ ,

S2/S1 = X+
r,s ⊕X+

r,s ⊕X+
r∨,s∨ ⊕X

+
r∨,s∨ ,

S3/S2 = X−
r,s∨ ⊕X

−
r∨,s ⊕X

−
r∨,s ⊕ L(hr,s)⊕ L(hr,s)⊕X

−
r∨,s ⊕X

−
r∨,s ⊕X

−
r,s∨ ,

S4/S3 = X+
r∨,s∨ ⊕X

+
r∨,s∨ ⊕X

+
r,s ⊕X+

r,s,

S5/S4 = X−
r,s∨ .

4. For P−
r∨,s,

0 ≤ S1(P−
r∨,s) ≤ S2(P−

r∨,s) ≤ S3(P−
r∨,s) ≤ S4(P−

r∨,s) ≤ S5(P−
r∨,s) = P

−
r∨,s,

S1 = X−
r∨,s,

S2/S1 = X+
r∨,s∨ ⊕X

+
r∨,s∨ ⊕X

+
r,s ⊕X+

r,s,

S3/S2 = X−
r∨,s ⊕X

−
r∨,s ⊕X

−
r,s∨ ⊕ L(hr,s)⊕ L(hr,s)⊕X

−
r,s∨ ⊕X

−
r,s∨ ⊕X

−
r∨,s,

S4/S3 = X+
r,s ⊕X+

r,s ⊕X+
r∨,s∨ ⊕X

+
r∨,s∨ ,

S5/S4 = X−
r∨,s.

We define the following notation.

Definition 7.3.16. For any Wp+,p−-module M ∈ Cthick
r,s with

0 ≤ Soc1(M) ≤ · · · ≤ Socn(M) =M,

we say that a simple module of the composition factors of M is at level i if it is contained
in Socn−i(M)/Socn−i−1(M) (0 ≤ i ≤ n− 1).

Definition 7.3.17. Let (a, b) be (r, s) or (r∨, s∨). We define the following indecomposable
modules:

1. Let P+d
a,b be the indecomposable submodule of P+

a,b which is generated from 2X+
a,b at

level 2.

2. Let P+u
a,b be the quotient module of P+

a,b, which is quotiented by the submodule gen-

erated from 4X+
a∨,b∨ at level 2.
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Figure 7.5: The embedding structure of the logarithmic Wp+,p−-modules P+u
•,• and P+d

•,• .
The triangle △ corresponds to the simple module L(hr,s), ♡ to X+

r,s, ♢ to X+
r∨,s∨ , ♠ to

X−
r,s∨ and ♣ to X−

r∨,s.
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Remark 7.3.18. Figure 7.5 represents the embedding structure of the logarithmicWp+,p−-
modules given in Definition 7.3.17.

Proposition 7.3.19.

Ext1(P+d
r,s ,X+

r,s) = Ext1(P+d
r∨,s∨ ,X

+
r∨,s∨) = 0.

Proof. By Proposition 7.3.11, we see that P+d
r,s has Q(X+

r,s)r,s∨ as a submodule. Then by
the exact sequence

0→ Q(X+
r,s)r,s∨ → P+d

r,s → Q(X+
r,s)r∨,s/Kr,s → 0

and by the proof of Proposition 7.3.1, we obtain

Ext1(P+d
r,s ,X+

r,s) = 0.

The second equation can be proved in the same way, so we omit the proofs.

Proposition 7.3.20.

Ext1(P+u
r,s /(2X+

r,s),X+
r,s) = Ext1(P+u

r∨,s∨/(2X
+
r∨,s∨),X

+
r∨,s∨) = C2.

Proof. Let us prove the first equation. The second equation can be proved in the same
way, so we omit the proof. Then it is sufficient to show that

Ext1(P+u
r,s ,X+

r,s) = 0.

Assume Ext1(P+u
r,s ,X+

r,s) ̸= 0 and fix any non-trivial extension

0→ X+
r,s

ι−→ E
p−→ P+u

r,s → 0.

For (a, b) = (r∨, s), (r, s∨), let E(X−
a,b)r,s be the indecomposable module defined by the

following exact sequence

0→ X+
r,s ⊕X+

r,s −→ E(X−
a,b)r,s −→ X

−
a,b → 0.

By Propositions 7.2.8 and 7.3.1, we see that at least one of the following sequences of
submodules holds

ι(X+
r,s) ⊂ E(X−

r∨,s)r,s ⊂ E, ι(X+
r,s) ⊂ E(X−

r,s∨)r,s ⊂ E. (7.3.11)

For the Virasoro decomposition X+
r,s =

⊕
n≥0(2n+1)L(∆+

r,s;n), let u ∈ X+
r,s be the highest

weight vector of L(∆+
r,s;0) and let w ∈ X+

r,s be the Virasoro highest weight vector of
L(∆+

r,s;1) such that

W±[0]w ̸= 0 mod L(∆+
r,s;0).

For the surjection π : E → X+
r,s, we fix any L0-homogeneous vectors ũ, w̃ ∈ E such that

π(ũ) = u and π(w̃) = w. Define the following vectors

x1 = S∗
r∨+p+,sSr∨+p+,sũ+ Sr∨,s∨+2p−S

∗
r∨,s∨+2p−w̃,

x2 = S∗
r,s∨+p−Sr,s∨+p−ũ+ Sr∨+2p+,s∨S

∗
r∨+2p+,s∨w̃.
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Let us consider the submodule E0 ⊂ E defined by E0 = Wp+,p− .x1 + Wp+,p− .x2. By
(7.3.11) and by the structure of E(X−

r∨,s)r,s, E(X
−
r,s∨)r,s, E(X+

r,s)r∨,s and E(X+
r,s)r,s∨ , we see

that E0 ≃ X+
r,s ⊕X+

r,s and

p(E0) ≃ X+
r,s ⊕X+

r,s.

Then, by Theorem 6.2.14, we have

E0 =Wp+,p− .x1 +Wp+,p− .x2 +Wp+,p− .Sr,sS
∗
r,sũ. (7.3.12)

Let E ′ = E/E0. Note that E ′ is indecomposable. Then, by (7.3.12) and by Propositions
4.2.8 and 4.2.9, we see that L0 acts semisimply on E ′ and L(hr,s) ⊂ E ′ as the submodule.
Let E ′′ = E ′/L(hr,s). For the surjection π

′′ : E ′′ → X+
r,s, let u0 ∈ E ′′ be any highest weight

vector such that π′′(u0) = u and let u1 be the highest weight vector of the submodule
X+

r,s ⊂ E ′′. By (7.3.12), we see that

Sr∨,s∨+2p−Sr,s∨+p−u0 = 0. (7.3.13)

By the structure of the indecomposable modules P+u
r,s /2X+

r,s and E±(X+
r,s)•,• and by Propo-

sition 7.3.1, we must have

⟨u∗1, YE′′(W •; z)u0⟩ ̸= 0, (7.3.14)

where W • is one of W+, W 0 or W− and u∗1 is any L0-homogeneous vector of E ′′∗ such
that ⟨u∗1, u1⟩ ̸= 0. Thus, by (7.3.13) and Proposition 7.2.5, we have

0 = ⟨u∗1, YE′′(W •; z)Sr∨,s∨+2p−Sr,s∨+p−u0⟩

=
r∨∏
i=1

s∨+2p−∏
j=1

(h4p+−1,1 − h2r∨+p+−2i+1,3p−−2j+1)

×
r∏

k=1

s∨+p−∏
l=1

(h4p+−1,1 − h2r−2k+1,2s∨+2p−−2l+1)⟨u∗1, YE′′(W •; z)u0⟩.

The coefficient in the above equation is nonzero, so we have ⟨u∗1, YE′′(W •; z)u0⟩ = 0. But
this contradicts (7.3.14).

Theorem 7.3.21. For P+
r,s, P+

r∨,s∨ ∈ Cthick
r,s , we have

Ext1(P+
r,s,X+

r,s) = Ext1(P+
r∨,s∨ ,X

+
r∨,s∨) = 0.

Proof. From the exact sequence

0→ P+d
r,s → P+

r,s → P+
r,s/P+d

r,s → 0

and Proposition 7.3.19, we have the following exact sequence

0→ C→ C→ C2 → Ext1(P+
r,s/P+d

r,s ,X+
r,s)→ Ext1(P+

r,s,X+
r,s)→ 0.
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By Proposition 7.3.20, we have

Ext1(P+
r,s/P+d

r,s ,X+
r,s) = C2.

Thus we have

Ext1(P+
r,s,X+

r,s) = 0.

The second equation can be proved in the same way.

Definition 7.3.22. Let (a, b) be (r∨, s) or (r, s∨). Let P−u
a,b be a quotient module of P−

a,b

quotiented by the submodule generated from 4X−
a∨,b∨ and 2L(hr,s) at level 2.

Proposition 7.3.23.

Ext1(P−u
r∨,s,X

−
r∨,s) = Ext1(P−u

r,s∨ ,X
−
r,s∨) = 0.

Proof. Assume Ext1(P−u
r∨,s,X

−
r∨,s) ̸= 0. Fix a non-trivial extension

0→ X−
r∨,s

ι−→ E
p−→ P−u

r∨,s → 0.

Since Ext1(X−
r∨,s,X

−
r∨,s) = 0, we see that

Socle(E) = ι(X−
r∨,s)⊕ 2X−

r∨,s.

Let ι1 and ι2 be injections from X−
r∨,s to E such that p ◦ ι1(X−

r∨,s) and p ◦ ι2(X−
r∨,s) are

Socle(P−u
r∨,s). Let {v+, v−} be the basis of the highest weight space of X−

r∨,s such that

W±[0]v± = 0, W±[0]v∓ ∈ C×v±.

For the canonical surjection π : E → X−
r∨,s, we fix any L0-homogeneous vectors ṽ−, ṽ+ ∈ E

such that π(ṽ±) = v±. Note that the Virasoro module U(L).ṽ± has P̃ (∆−
r∨,s;0) as a

subquotient. By Proposition 7.3.4, we see that ι(X−
r∨,s) is contained in both submodules

of E generated from each of 2X+
r,s and 2X+

r∨,s∨ at level one. Thus, by the structure of

P̃ (∆−
r∨,s;0) and the structure of the non-trivial extensions in Ext1(E±(X+

r,s)r∨,s,X−
r∨,s) and

Ext1(E±(X+
r∨,s∨)r∨,s,X

−
r∨,s), we have

(L0 −∆−
r∨,s;0)ṽ+ ∈ C×ι(v−) + Cι(v+) + C×ι1(v+) + C×ι2(v+),

(L0 −∆−
r∨,s;0)ṽ− ∈ C×ι(v+) + Cι(v−) + C×ι1(v−) + C×ι2(v−).

From this, we can see the contradiction as in the proof of Proposition 7.3.4. The second
equation can be proved in the same way, so we omit the proof.

By this proposition, we have the following proposition.

Proposition 7.3.24.

Ext1(P−u
r∨,s/2X

−
r∨,s,X

−
r∨,s) = Ext1(P−u

r,s∨/2X
−
r∨,s,X

−
r,s∨) = C2.
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Theorem 7.3.25.

Ext1(P−
r∨,s,X

−
r∨,s) = Ext1(P−

r,s∨ ,X
−
r,s∨) = 0.

Proof. P−
r∨,s has the indecomposable submodule generated from X−

r∨,s at level 2 and whose

components are the same as those of Q(X−
r∨,s)r∨,s∨ . By Proposition 7.3.4, this submodule

is isomorphic to Q(X−
r∨,s)r∨,s∨ . Then by the exact sequence

0→ Q(X−
r∨,s)r∨,s∨ → P

−
r∨,s → P

−
r∨,s/Q(X

−
r∨,s)r∨,s∨ → 0

and Proposition 7.3.4, we have the following exact sequence

0→ C→ C→ C→ Ext1(P−
r∨,s/Q(X

−
r∨,s)r∨,s∨ ,X

−
r∨,s)→ Ext1(P−

r∨,s,X
−
r∨,s)→ 0. (7.3.15)

LetM be the quotient module of P−
r∨,s defined by the following exact sequences

0→ Kr,s ⊕Kr,s → P−
r∨,s/Q(X

−
r∨,s)r∨,s∨ →M→ 0.

By this exact sequence and by Ext1(Kr,s,X−
r∨,s) = 0 (see the proof of Proposition 7.3.8),

we have

Ext1(M,X−
r∨,s) ≃ Ext1(P−

r∨,s/Q(X
−
r∨,s)r∨,s∨ ,X

−
r∨,s). (7.3.16)

Note thatM satisfies the exact sequence

0→ X−
r∨,s ⊕ 4X−

r,s∨ →M→ P
−u
r∨,s/2X

−
r∨,s → 0.

By this exact sequence and by Proposition 7.3.24, we have the following exact sequence

0→ C→ C→ C→ C2 → Ext1(M,X−
r∨,s)→ 0.

Thus we have Ext1(M,X−
r∨,s) ≃ C. Therefore, by (7.3.15) and (7.3.16), we obtain

Ext1(P−
r∨,s,X

−
r∨,s) = 0.

The second equation can be proved in the same way.

Since all logarithmic modules P±
•,• in Cthick

r,s are generated from the top composition
factors, by Theorems 7.3.13, 7.3.14, 7.3.21 and 7.3.25, we obtain the following theorem.

Theorem 7.3.26. P+
r,s,P+

r∨,s∨ ,P
−
r∨,s and P−

r,s∨ are the projective covers of X+
r,s, X+

r∨,s∨,

X−
r∨,s and X−

r,s∨, respectively.

Remark 7.3.27. Figure 7.6 represents the embedding structure of the series of quotient
modules given in the proof of Theorem 7.3.25.
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Figure 7.6: The embedding structure of theWp+,p−-modules given in the proof of Theorem
7.3.25. The triangle △ corresponds to the simple module L(hr,s), ♡ to X+

r,s, ♢ to X+
r∨,s∨ ,

♠ to X−
r,s∨ and ♣ to X−

r∨,s.

7.4 The projective covers of the minimal simple mod-

ules L(hr,s)

Fix any thick block Cthick
r,s . Let P(hr,s) be the projective cover of the minimal simple

module L(hr,s). By Corollary 4.2.11, we can see that P(hr,s) has L0 nilpotent rank three.
In the following, we determine the structure of P(hr,s).

Let Nr,s and Nr∨,s∨ be the submodules of P+
r,s and P+

r∨,s∨ generated from L(hr,s) at
level 1. Nr,s and Nr∨,s∨ are indecomposable and have the following socle series whose
socle lengths are four:

1. For Nr,s, we have

Soc1(Nr,s) = X+
r,s

Soc2(Nr,s)/Soc1(Nr,s) = 2X−
r∨,s ⊕ L(hr,s)⊕ 2X−

r,s∨

Soc3(Nr,s)/Soc2(Nr,s) = X+
r,s ⊕X+

r∨,s∨

Nr,s/Soc3(Nr,s) = L(hr,s).

2. For Nr∨,s∨ , we have

Soc1(Nr∨,s∨) = X+
r∨,s∨

Soc2(Nr∨,s∨)/Soc1(Nr∨,s∨) = 2X−
r∨,s ⊕ L(hr,s)⊕ 2X−

r,s∨

Soc3(Nr∨,s∨)/Soc2(Nr∨,s∨) = X+
r,s ⊕X+

r∨,s∨

Nr∨,s∨/Soc3(Nr∨,s∨) = L(hr,s).
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Figure 7.7: The embedding structure of the logarithmic Wp+,p−-modules Nr,s and Nr∨,s∨ .
The triangle △ corresponds to the simple module L(hr,s), ♡ to X+

r,s, ♢ to X+
r∨,s∨ , ♠ to

X−
r,s∨ and ♣ to X−

r∨,s.

Remark 7.4.1. Figure 7.7 represents the embedding structure of the logarithmic Wp+,p−-
modules Nr,s and Nr∨,s∨.

As the quotient of Nr,s, we define the indecomposable module Q(hr,s) which satisfies

[Q(hr,s)] ∈ Ext1(Kr,s,K∗
r∨,s∨) \ {0}.

By Propositions 7.2.8 and by the proof of Proposition 7.3.7, we have the following lemma.

Lemma 7.4.2.

Ext1(Q(hr,s), L(hr,s)) = 0.

Recall the indecomposable modules P+u
r,s and P+u

r∨,s∨ given in Definition 7.3.17. We
define the indecomposable modules

Rr,s := P+u
r,s /Kr,s, Rr∨,s∨ := P+u

r∨,s∨/Kr∨,s∨ .

Note that, by Theorem 6.1.3, Rr,s andRr∨,s∨ have L0 nilpotent rank two. By Propositions
7.2.8, 7.3.20, we obtain the following lemma.

Lemma 7.4.3.

Ext1(Rr,s,X+
r,s) = Ext1(Rr∨,s∨ ,X+

r∨,s∨) = 0.

Lemma 7.4.4.

Ext1(Nr,s/Kr,s,X+
r,s) = Ext1(Nr∨,s∨/Kr∨,s∨ ,X+

r∨,s∨) = 0.

Proof. We only prove Ext1(Nr,s/Kr,s,X+
r,s) = 0. The second equation can be proved in

the same way.
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Assume that Ext1(Nr,s/Kr,s,X+
r,s) ̸= 0 and fix any non-trivial extension E in this Ext1-

group. By Lemma 7.4.3, we see that E has the submodule Rr,s. Let t ∈ E be the highest
weight vector in E[hr,s]. and let {u0, u1} be a basis of the highest weight space of the
submodule Rr,s ⊂ E such that

(L0 −∆+
r,s;0)u0 ∈ C×u1.

On the other hand, by

(L0 − hr,s)t = 0, Sr∨,s∨t ∈ C×u0 + Cu1,

we have (L0 −∆+
r,s;0)u0 = 0. Thus we have a contradiction.

Note that there exists surjections from P(hr,s) to Nr,s and from P(hr,s) to Nr∨,s∨ .
Thus, by Corollary 4.2.11 and Lemma 7.4.4, as the quotient of P(hr,s) we have the inde-
composable module P ′(hr,s) whose socle series is given by

Soc1(P ′(hr,s)) = L(hr,s),

Soc2(P ′(hr,s))/Soc1(P ′(hr,s)) = X+
r,s ⊕X+

r∨,s∨ ,

Soc3(P ′(hr,s))/Soc2(P ′(hr,s)) = 2X−
r∨,s ⊕ L(hr,s)⊕ 2X−

r,s∨ ,

Soc4(P ′(hr,s))/Soc3(P ′(hr,s)) = X+
r,s ⊕X+

r∨,s∨ ,

P ′(hr,s)/Soc4(P ′(hr,s)) = L(hr,s).

Lemma 7.4.5.

Ext1(P ′(hr,s), L(hr,s)) = 0.

Proof. Note that P ′(hr,s) has the submodule isomorphic to Q(hr,s). Thus by Lemma 7.4.2
we have

Ext1(P ′(hr,s), L(hr,s)) = 0.

Lemma 7.4.6.

Ext1(P ′(hr,s),X+
r,s) = Ext1(P ′(hr,s),X+

r∨,s∨) = 0.

Proof. We only prove the first equation. The second equation can be proved in the same
way. By Proposition 7.3.1, we see that

Ext1(Q(hr,s),X+
r,s) = 0. (7.4.1)

Note that P ′(hr,s)/Q(hr,s) ≃ Nr,s/Kr,s. Thus, by Lemma 7.4.4 and by (7.4.1), we obtain
Ext1(P ′(hr,s),X+

r,s) = 0.

Lemma 7.4.7.

Ext1(P ′(hr,s),X−
r∨,s) = Ext1(P ′(hr,s),X−

r,s∨) = 0.
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Proof. We only prove the first equation. The second equation can be proved in the same
way. Assume

Ext1(P ′(hr,s),X−
r∨,s) ̸= 0

and fix any non-trivial extension E in this Ext1-group. Then we see that E has a sub-
module which has a indecomposable subquotient in

Ext1(E±(X+
r,s)

∗
r∨,s,X−

r∨,s) or Ext1(E±(X+
r∨,s∨)

∗
r∨,s,X−

r∨,s).

But this contradicts Proposition 7.3.4.

By Lemmas 7.4.5, 7.4.6 and 7.4.7, we have P(hr,s) ≃ P ′(hr,s). Therefore we obtain
the following theorem.

Theorem 7.4.8. The projective module P(hr,s) has the following socle series:

Soc1(P(hr,s)) = L(hr,s),

Soc2(P(hr,s))/Soc1(P(hr,s)) = X+
r,s ⊕X+

r∨,s∨ ,

Soc3(P(hr,s))/Soc2(P(hr,s)) = 2X−
r∨,s ⊕ L(hr,s)⊕ 2X−

r,s∨ ,

Soc4(P(hr,s))/Soc3(P(hr,s)) = X+
r,s ⊕X+

r∨,s∨ ,

P(hr,s)/Soc4(P(hr,s)) = L(hr,s).

Figure 7.8: The embedding structure of the logarithmic Wp+,p−-module P(hr,s). The
triangle △ corresponds to the simple module L(hr,s), ♡ to X+

r,s, ♢ to X+
r∨,s∨ , ♠ to X−

r,s∨

and ♣ to X−
r∨,s.

Remark 7.4.9. Figure 7.8 represents the embedding structure of the projective module
P(hr,s). This embedding structure is conjectured in [33], and it is shown that P (hr,s) has
no dual. In this thesis, we do not go any further into the properties of the projective
modules P(hr,s) on the tensor category of Wp+,p−-modules.
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7.5 The projective covers of simple modules in the

thin blocks

Fix any two thin blocks Cthin
r,p− , C

thin
p+,s (1 ≤ r < p+, 1 ≤ s < p−). Let us consider the log-

arithmic modules Q(X+
r,p−)r∨,p− ,Q(X

−
r∨,p−

)r,p− ∈ Cthin
r,p− and Q(X+

p+,s)p+,s∨ ,Q(X−
p+,s∨)p+,s ∈

Cthin
p+,s.
As in the case of the logarithmic modules Q(X±

•,•)•,• in the thick blocks, we can prove
the following propositions.

Proposition 7.5.1. The logarithmic modules Q(X±
•,p−)•,p− and Q(X±

p+,•)p+,• are generated
from the top composition factors and the socle series are given by :

1. The socle series of Q(X+
r,p−)r∨,p− is given by

Soc1 = X+
r,p− ,

Soc2/Soc1 = X−
r∨,p−

⊕X−
r∨,p−

,

Q(X+
r,p−)r∨,p−/Soc2 = X

+
r,p− .

2. The socle series of Q(X−
r∨,p−

)r,p− is given by

Soc1 = X−
r∨,p−

,

Soc2/Soc1 = X+
r,p− ⊕X

+
r,p− ,

Q(X−
r∨,p−

)r,p−/Soc2 = X−
r∨,p−

.

3. The socle series of Q(X+
p+,s)p+,s∨ is given by

Soc1 = X+
p+,s,

Soc2/Soc1 = X−
p+,s∨ ⊕X

−
p+,s∨ ,

Q(X+
p+,s)p+,s∨/Soc2 = X+

p+,s.

4. The socle series of Q(X−
p+,s∨)p+,s is given by

Soc1 = X−
p+,s∨ ,

Soc2/Soc1 = X+
p+,s ⊕X+

p+,s,

Q(X−
p+,s∨)p+,s/Soc2 = X−

p+,s∨ .

Proposition 7.5.2.

1. In the thin block Cthin
r,p− , we have

Ext1(X+
r,p− ,X

−
r∨,p−

) = Ext1(X−
r∨,p−

,X+
r,p−) = C2.

The other extensions between the simple modules in this block are trivial.
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2. In the thin block Cthin
p+,s, we have

Ext1(X+
p+,s,X−

p+,s∨) = Ext1(X−
p+,s∨ ,X

+
p+,s) = C2.

The other extensions between the simple modules in this block are trivial.

The proofs of these propositions are the same as in Theorems 7.1.1, 7.1.3 and Propo-
sition 7.2.8, so we omit them.

Proposition 7.5.3.

Ext1(Q(X+
r,p−)r∨,p− ,X

+
r,p−) = Ext1(Q(X+

p+,s)p+,s∨ ,X+
p+,s) = 0,

Ext1(Q(X−
r∨,p−

)r,p− ,X+
r,p−) = Ext1(Q(X−

p+,s∨)p+,s,X+
p+,s) = 0,

Ext1(Q(X−
r∨,p−

)r,p− ,X−
r∨,p−

) = Ext1(Q(X−
p+,s∨)p+,s,X−

p+,s∨) = 0,

Ext1(Q(X+
r,p−)r∨,p− ,X

−
r∨,p−

) = Ext1(Q(X+
p+,s)p+,s∨ ,X−

p+,s∨) = 0.

Proof. We will only prove Ext1(Q(X+
r,p−)r∨,p− ,X

+
r,p−) = 0. The other equations can be

shown in the same way as Propositions 7.3.2, 7.3.4 and 7.3.5, so we omit the proofs.
Since Ext1(X+

r,p− ,X
+
r,p−) = 0, it is sufficient to show that

Ext1(Q(X+
r,p−)r∨,p−/X

+
r,p− ,X

+
r,p−) = C.

Fix any extension [E] ∈ Ext1(Q(X+
r,p−)r∨,p−/X

+
r,p− ,X

+
r,p−). Assume that E has L0-nilpotent

rank two. Let E be the highest weight space of E. Note that the Virasoro module U(L).E
has L0 nilpotent rank two and

[U(L).E] ∈ Ext1L(K(τ), L(hr,p−)) \ {0},

where τ = (αr∨,p−;−1, αr,p− , αr∨,p−;1). Then, by Theorem 6.2.9, as the Baer sum of exten-
sions obtained from E and Q(X+

r,p−)r∨,p− , we have a extension

0→ X+
r,p−

ι−→ E ′ p−→ Q(X+
r,p−)r∨,p−/X

+
r,p− → 0

such that L0 acts semisimply on the highest weight space of E ′. Then, by Propositions
4.2.8 and 4.2.9, we see that L0 acts semisimply on E ′.

Assume [E ′] ̸= 0. Fix any homogeneous vector u0 ∈ E ′ such that p(u0) is the highest
weight vector of p(E ′) = Q(X+

r,p−)r∨,p−/X
+
r,p− , and let u1 be the highest weight vector of

the submodule X+
r,s ⊂ E ′. Since [E ′] ̸= 0, we must have

⟨u∗1, YE′(W •; z)u0⟩ ̸= 0, (7.5.1)

where W • is one of W+, W 0 or W− and u∗1 is a homogeneous vector of E ′∗ such that
⟨u∗1, u1⟩ ̸= 0. Since L0 acts semisimply on E ′, by Theorem 6.2.9, we have Sr∨,2p−Sr,p−u0 =
0. Then, by Proposition 7.2.5, we have

0 = ⟨u∗1, YE′(W •; z)Sr∨,2p−Sr,p−u0⟩

=
r∨∏
i=1

2p−∏
j=1

(h4p+−1,1 − hr+r∨−2i+1,3p−−2j+1)

×
r∏

k=1

p−∏
l=1

(h4p+−1,1 − h2r−2k+1,2p−−2l+1)⟨u∗1, YE′(W •; z)u0⟩.
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The coefficient in the above equation is nonzero, so we have ⟨u∗1, YE′(W •; z)u0⟩ = 0. But
this contradicts (7.5.1). In the case where L0 acts semisimply on E, we see that [E] = 0
as shown above.

Since the logarithmic modules Q(X±
•,p−)•,p− and Q(X±

p+,•)p+,• are generated from the
top composition factors, by Proposition 7.5.3, we obtain the following theorem.

Theorem 7.5.4.

1. Q(X+
r,p−)r∨,p− and Q(X−

r∨,p−
)r,p− are the projective covers of X+

r,p− and X−
r∨,p−

, re-
spectively.

2. Q(X+
p+,s)p+,s∨ and Q(X−

p+,s∨)p+,s are the projective covers of X+
p+,s and X−

p+,s∨, respec-
tively.
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Chapter 8

Non-semisimple fusion rules

Since the triplet W algebra Wp+,p− is C2-cofinite, Theorem 4.13 in [36] show that Cp+,p−

has braided tensor category structure as developed in the series of papers [37, 38, 39, 40,
41, 42, 43, 44]. We denote (Cp+,p− ,⊠) by the tensor category on Cp+,p− , where the unit
object is given by K1,1 :=Wp+,p− . |α1,1⟩. Note that the tensor product ⊠ of (Cp+,p− ,⊠) is
right exact (see Proposition 4.26 in [39]).

The tensor category (Cp+,p− ,⊠) is not rigid. In fact, if we assume that (Cp+,p− ,⊠) is
rigid, then by the exact sequence

0→ L(h1,1)→ X+
1,1 ⊠ X+

1,1 → X+
1,1 → 0

and

L(h1,1)⊠ X+
1,1 = 0

which will be proved in this section (see Proposition 8.4.3 and Proposition 8.2.2), we have
the exact sequence

0→ L(h1,1)⊠ L(h1,1)→ 0→ 0→ 0.

But, since L(h1,1)⊠ L(h1,1) = L(h1,1), this is a contradiction.
This makes it more difficult to study the structure of the tensor category (Cp+,p− ,⊠)

compared to the triplet W -algebra Wp (cf.[56],[64]). In this chapter, we will show the
rigidity of the indecomposable modules K1,2 and K2,1 in Theorems 8.3.7 and 8.3.15, using
the methods detailed in [15] and [56]. Using the rigidity of K1,2 and K2,1, we show
that all indecomposable modules Kr,s, Q(X±

r,s)•,• and P±
r,s can be obtained by repeatedly

multiplying K1,2 and K2,1. As a result we see that all simple modules in the thin blocks,
all indecomposable modules Kr,s, Q(X±

r,s)•,• and P±
r,s are rigid objects. The rigidity of

these indecomposable modules was conjectured in [32].
We also determine the tensor product between all simple modules. These results are

stated in Propositions 8.4.3, 8.4.4, 8.4.5, 8.4.7 and 8.4.8.

8.1 Tensor product ⊠ and P (w)-intertwining opera-

tors

In this section, we review the definition of the tensor product ⊠ and P (w)-intertwining
operators in accordance with [8],[39],[51] and derive some identities known as the Nahm-
Gaberdiel-Kausch fusion algorithm(cf. [35]).

Definition 8.1.1. Let V be a vertex operator (super)algebra and let C be a category of
grading-restricted generalized V -modules. A tensor product (or fusion product) of M1

and M2 in C is a pair (M1 ⊠M2,Y⊠), with M1 ⊠M2 and Y⊠ an intertwining operator

of type
(
M1 ⊠M2

M1 M2

)
, which satisfies the following universal property: For any M3 ∈ C and

intertwining operator Y of type
(

M3

M1 M2

)
, there is a unique V -module homomorphism f :

M1 ⊠M2 →M3 such that Y = f ◦ Y⊠.
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In the paper [39], Huang, Lepowsky and Zhang introduced the notion of P (w)-
intertwining operators and the P (w)-tensor product. The definitions are as follows.

Definition 8.1.2 ([39]). Fix w ∈ C×. Let V be a vertex operator (super)algebra and let
C be a category of grading-restricted generalized V -modules. Given M1, M2 and M3 in C,
a P (w)-intertwining operator I of type

(
M3

M1 M2

)
is a bilinear map I : M1⊗M2 →M3 that

satisfies the following properties:

1. For any ψ1 ∈M1 and ψ2 ∈M2, πh(I[ψ1 ⊗ ψ2]) = 0 for all h≪ 0, where πh denotes
the projection onto the generalized eigenspace M3[h] of L0-eigenvalue h.

2. For any ψ1 ∈M1, ψ2 ∈M2, ψ
∗
3 ∈M∗

3 and A ∈ V , the three point functions

⟨ψ∗
3, Y3(A; z)I[ψ1 ⊗ ψ2]⟩, ⟨ψ∗

3, I[Y1(A; z − w)ψ1 ⊗ ψ2]⟩, ⟨ψ∗
3, I[ψ1 ⊗ Y2(A; z)ψ2]⟩

are absolutely convergent in the regions |z| > |w| > 0, |w| > |z−w| > 0, |w| > |z| >
0, respectively, where Yi is the action of V -module.

3. Given any f(t) ∈ RP (w) := C[t, t−1, (t− w)−1], we have the following identity∮
0,w

f(z)⟨ψ∗
3, Y3(A; z)I[ψ1 ⊗ ψ2]⟩

dz

2πi

=

∮
w

f(z)⟨ψ∗
3, I[Y1(A; z − w)ψ1 ⊗ ψ2]⟩

dz

2πi
+ µ

∮
0

f(z)⟨ψ∗
3, I[ψ1 ⊗ Y2(A; z)ψ2]⟩

dz

2πi
,

where µ is the mutual locality index of A with ψ1.

Definition 8.1.3 ([39]). Let V be a vertex operator (super)algebra and let C be a category
of grading-restricted generalized V -modules. A P (w)-tensor product of M1 and M2 in C
is a pair (M1⊠P (w)M2,⊠P (w)), with M1⊠P (w)M2 and ⊠P (w) a P (w)-intertwining operator

of type
(
M1 ⊠P (w) M2

M1 M2

)
, which satisfies the following universal property: For any M3 ∈ C and

P (w)-intertwining operator I of type
(

M3

M1 M2

)
, there is a unique V -module homomorphism

η :M1 ⊠P (w) M2 →M3 such that

η ◦⊠P (w)[ψ1 ⊗ ψ2] = I[ψ1 ⊗ ψ2]

for all ψ1 ∈ M1 and ψ2 ∈ M2, where η denotes the extension of η to a map between the
completions of M1 ⊠P (w) M2 and M3.

Remark 8.1.4. It is known that the definition P (w)-tensor product ⊠P (w) does not depend
on the choice of w ∈ C×. See Remark 4.22 in [39].

The following proposition is due to [39].

Proposition 8.1.5. Let V be a vertex operator (super)algebra and M1, M2 and M3 be V -
modules. Then there exists a linear isomorphism from the space of intertwining operators
of type

(
M3

M1 M2

)
to the space of P (w)-intertwining operators of the same type.
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By this proposition, the structure of the space of intertwining operators can be de-
termined from the structure of P (w)-intertwining operators of the same type. In the
following, we will introduce some formulas derived from the P (w)-compatibility condi-
tions.

We define a translation map

T1 : C(t)→ C(t), by f(t) 7→ f(t+ 1),

and a expansion map

ι+ : C(t) ↪→ C((t))

that expands a given rational function in t as a power series around t = 0. Given V -
modules M1, M2, M3 and a P (1)-intertwining operator I of type

(
M3

M1 M2

)
, as detailed in

[8],[51], we can define the action of V ⊗ C[t, t−1, (t− 1)−1] or V ⊗ C((t)) on M∗
3 as

⟨Af(t)ψ∗
3, I[ψ1 ⊗ ψ1]⟩ = ⟨Aι+(f(t))ψ∗

3, I[ψ1 ⊗ ψ1]⟩
= ⟨ψ∗

3, I[ι+ ◦ T1
(
Aoppf(t−1)

)
ψ1 ⊗ ψ2]⟩+ µ⟨ψ∗

3, I[ψ1 ⊗ ι+
(
Aoppf(t−1)

)
ψ2]⟩ (8.1.1)

where ψ∗
3 ∈M∗

3 , ψi ∈Mi,

Aopp := et
−1L1(−t2)L0At−2,

and (assuming A ∈ V has L0 weight h) Atnψi = A[n− h+ 1]ψi.

By (8.1.1), we have the following lemma.

Lemma 8.1.6. Let V be a vertex operator (super)algebra. Let A ∈ V be a Virasoro
non-zero primary vector with L0 conformal weight h, that is

L0A = hA, LnA = 0, n ≥ 1.

Given V -modules M1, M2, M3 and a P (1)-intertwining operator I of type
(

M3

M1 M2

)
, we

have the following identities:

⟨A[n]ψ∗
3, I[ψ1 ⊗ ψ2]⟩

=
∞∑
i=0

(
h− n− 1

i

)
⟨ψ∗

3, I[
(
A[i− h+ 1]ψ1

)
⊗ ψ2]⟩+ µ⟨ψ∗

3, I[ψ1 ⊗
(
A[−n]ψ2

)
]⟩

and

⟨At2h−3(t−1 − 1)n+h−2ψ∗
3, I[ψ1 ⊗ ψ2]⟩

= ⟨ψ∗
3, I[

(
(A[n− 1] + A[n])ψ1

)
⊗ ψ2]⟩

+ µ
∞∑
i=0

(
n+ h− 2

i

)
(−1)n−i+h−2⟨ψ∗

3, I[ψ1 ⊗
(
A[i− h+ 2]ψ2

)
]⟩,

where ψ∗
3 ∈M∗

3 , ψi ∈Mi.

85



In particular, in the case of the conformal vector A = T in Lemma 8.1.6, we have the
following lemma.

Lemma 8.1.7. Let V be a vertex operator (super)algebra. Given V -modules M1, M2, M3

and a P (1)-intertwining operator I of type
(

M3

M1 M2

)
, we have the following identities:

⟨Lnψ
∗
3, I[ψ1 ⊗ ψ2]⟩ =

∞∑
m=0

(
−n+ 1

m

)
⟨ψ∗

3, I[(Lm−1ψ1)⊗ ψ2]⟩+ ⟨ψ∗
3, I[ψ1 ⊗ (L−nψ2)]⟩,

∞∑
m=0

(−1)m⟨Lm−nψ
∗
3, I[ψ1 ⊗ ψ2]⟩

= ⟨ψ∗
3, I[((Ln−1 + Ln)ψ1)⊗ ψ2]⟩+

∞∑
m=0

(
n

m

)
(−1)n−m⟨ψ∗

3, I[ψ1 ⊗ (Lmψ2)]⟩,

where ψ∗
3 ∈M∗

3 , ψi ∈Mi.

Hereafter we omit P (1)-intertwining operators and use the abbreviation as

⟨ψ∗
3, ψ1 ⊗ ψ2⟩ = ⟨ψ∗

3, I[ψ1 ⊗ ψ2]⟩

unless otherwise noted.

From this chapter, we will use the following notation frequently.

Definition 8.1.8. Let V be a vertex operator (super)algebra

1. For any M ∈ V -Mod, we define the following vector space

A0(M) = {ψ ∈M | ψ ̸= 0, A[n]ψ = 0, ∀A ∈ V, n > 0}.

2. For any M ∈ V -Mod, we define the top composition factors of M as follows

top(M) = Socle(M∗),

where M∗ is the contragredient of M .

3. Given V -modules M1,M2,M3, we define

I

(
M3

M2 M1

)
=
{
intertwining operators of type

(
M3

M2 M1

)}
.

8.2 Tensor product L(hr,s)⊠ •
First we introduce the tensor products between any pair of minimal simple modules
L(hr,s). Since the maximal ideal X+

1,1 of Wp+,p− acts on the minimal simple modules
L(hr,s) trivially, we have the following minimal model fusion rules.

Proposition 8.2.1 ([10]). For 1 ≤ r, r′ ≤ p+ − 1, 1 ≤ s, s′ ≤ p− − 1, we have

L(hr,s)⊠ L(hr′,s′) =

min{r+r′−1,2p+−r−r′−1}⊕
i=1+|r−r′|

i+r+r′=1 mod 2

min{s+s′−1,2p−−s−s′−1}⊕
j=1+|s−s′|

j+s+s′=1 mod 2

L(hi,j).
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Proposition 8.2.2.

X±
r,s ⊠ L(h1,1) = 0, 1 ≤ r ≤ p+, 1 ≤ s ≤ p−.

Proof. Assume X+
r,s⊠L(h1,1) ̸= 0. Fix any non-zero vector ψ∗

3 ∈ A0((X+
r,s⊠L(h1,1))

∗) and
let ψ1 and ψ2 be the highest weight vectors of X+

r,s and L(h1,1), respectively. Note that
the maximal ideal X+

1,1 of Wp+,p− acts trivially on any minimal simple modules L(hr,s).
Then, by Lemmas 8.1.6 and 8.1.7, we can see that ⟨ψ∗

3,X+
r,s ⊗ L(h1,1)⟩ is determined by

the numbers

⟨ψ∗
3, ψ1 ⊗ Lk

−1ψ2⟩,

for k ≥ 0. Since L−1ψ2 = 0, ⟨ψ∗
3,X+

r,s ⊗ L(h1,1)⟩ is determined by ⟨ψ∗
3, ψ1 ⊗ ψ2⟩. In

particular, the intertwining operator Y⊠ is non-logarithmic. Using Lemma 8.1.7, we have

⟨L0ψ
∗
3, ψ1 ⊗ ψ2⟩

= ⟨ψ∗
3, L−1ψ1 ⊗ ψ2⟩+ ⟨ψ∗

3, L0ψ1 ⊗ ψ2⟩+ ⟨ψ∗
3, ψ1 ⊗ L0ψ2⟩

= ⟨ψ∗
3, L0ψ1 ⊗ ψ2⟩.

Thus, the L0-eigenvalue of ψ∗
3 is the same as that of ψ1. Then, by restricting the action

of Wp+,p− to the Virasoro action in the intertwining operator Y⊠, we have a non-trivial
non-logarithmic Virasoro intertwining operator of type(

L(∆+
r,s;0)

L(∆+
r,s;0) L(h1,1)

)
.

Note that Sp+−1,p−−1ψ2 = 0. Then by using Proposition 7.2.5, we have

0 = ⟨ψ∗
3, ψ1 ⊗ Sp+−1,p−−1ψ2⟩

=

p+−1∏
i=1

p−−1∏
j=1

(hr∨+p+,s − hp+−1+r∨+p+−2i+1,p−−1+s−2i+1)⟨ψ∗
3, ψ1 ⊗ ψ2⟩.

We see that the coefficient of the above equation is non-zero. Thus we obtain ⟨ψ∗
3, ψ1 ⊗

ψ2⟩ = 0. But this contradicts the assumption. Similarly, we can prove L(h1,1)⊠X−
r,s = 0.

By Propositions 8.2.1 and 8.2.2, we obtain the following proposition.

Proposition 8.2.3. For any simple module X±
r,s, we have

Xr,s ⊠ L(hr′,s′) = 0, 1 ≤ r′ ≤ p+ − 1, 1 ≤ s′ ≤ p− − 1.

Corollary 8.2.4. For 1 ≤ r, r′ ≤ p+ − 1, 1 ≤ s, s′ ≤ p− − 1, we have

Kr,s ⊠ L(hr′,s′) ≃ L(hr,s)⊠ L(hr′,s′).

Corollary 8.2.5. For any (r, s) ∈ T and M ∈ Wp+,p−, L(hr,s)⊠M becomes a direct sum
of minimal simple modules.
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8.3 Self-dual objects Kr,s
Let us extend the definition of Kr,s given in Definition 7.2.3 as follows.

Definition 8.3.1. We define the following Wp+,p−-modules

1. For 1 ≤ r ≤ p+ − 1, 1 ≤ s ≤ p− − 1,

Kr,s :=Wp+,p− . |αr,s⟩ .

2. For 1 ≤ r ≤ p+, 1 ≤ s ≤ p−,

Kr,p− := X+
r,p− , Kp+,s := X+

p+,s.

In this section, we compute some tensor product K1,2 ⊠ • and K2,1 ⊠ •, and show that
the indecomposable modules Kr,s are rigid and self-dual.

Proposition 8.3.2.

1. For 1 ≤ r ≤ p+, 2 ≤ s < p−, the dimension of the vector space A0((K1,2 ⊠ Kr,s)
∗)

is at most two dimensional. The L0 eigenvalues are contained in {hr,s−1, hr,s+1},
which corresponds to the highest weights of Kr,s−1 and Kr,s+1, respectively.

2. For 1 ≤ r ≤ p+, the dimension of the vector space A0((K1,2 ⊠Kr,1)
∗) is at most one

dimensional. The L0 eigenvalues is given by hr,2 which corresponds to the highest
weight of Kr,2.

3. For 1 ≤ r ≤ p+, 2 ≤ s < p−, the dimension of the vector space A0((K1,2 ⊠X+
r,s)

∗) is
at most two dimensional. The L0 eigenvalues are contained in {∆+

r,s−1;0,∆
+
r,s+1;0},

which corresponds to the highest weights of X+
r,s−1 and X+

r,s+1, respectively.

4. For 1 ≤ r ≤ p+, 2 ≤ s < p−, the dimension of the vector space A0((K1,2 ⊠X−
r,s)

∗) is
at most four dimensional. The L0 eigenvalues are contained in {∆−

r,s−1;0,∆
−
r,s+1;0},

which corresponds to the highest weights of X−
r,s−1 and X−

r,s+1, respectively.

5. For 1 ≤ r ≤ p+, s = p−, the vector space A0((K1,2 ⊠X+
r,p−)

∗) is at most two dimen-

sional. The L0 eigenvalues are contained in {hr,p−−1,∆
+
r,p−−1;0}, which corresponds

to the highest weights of L(hr,p−−1) and X+
r,p−−1, respectively.

6. For 1 ≤ r ≤ p+, s = p−, the vector space A0((K1,2 ⊠X−
r,p−)

∗) is at most four dimen-

sional. The L0 eigenvalues are contained in {∆+
r,1;0,∆

−
r,p−−1;0} which corresponds to

the highest weights of X+
r,1 and X−

r,p−−1, respectively.

Proof. Let p− > 3 and fix any 1 ≤ r ≤ p+ − 1, 2 ≤ s < p− − 2. Assume K1,2 ⊠ Kr,s ̸= 0.
Let ψ∗, ϕ1, ϕ2 be arbitrary elements of A0((K1,2 ⊠ Kr,s)

∗), K1,2 and Kr,s, respectively.

For n ≥ 1, let w
(n)
i (i = −n,−n + 1 . . . , n) be the Virasoro highest weight vectors of the

vector subspace (2n + 1)L(∆+
r,s;n) ⊂ Kr,s. Then, by Lemma 8.1.6, we see that the value

⟨ψ∗, ϕ1 ⊗ ϕ2⟩ is determined by the values

⟨ψ∗, U(L). |α1,2⟩ ⊗ |α1,2⟩⟩, ⟨ψ∗, U(L). |α1,2⟩ ⊗ w(n)
i ⟩,
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for some finite n ≥ 1 and i. By Lemma 8.1.7, we can see that the values ⟨ψ∗, U(L). |α1,2⟩⊗
|αr,s⟩⟩ and ⟨ψ∗, U(L). |α1,2⟩ ⊗ wi⟩ are determined by the numbers

⟨ψ∗, (Lk
−1 |α1,2⟩)⊗ |αr,s⟩⟩, ⟨ψ∗, (Ll

−1 |α1,2⟩)⊗ w(n)
i ⟩,

for k, l ≥ 0, respectively. Note that the highest weight vector |α1,2⟩ satisfies(
L2
−1 −

p+
p−
L−2

)
|α1,2⟩ = 0.

Thus, the value ⟨ψ∗, ϕ1 ⊗ ϕ2⟩ is determined by the numbers

⟨ψ∗, |α1,2⟩ ⊗ |αr,s⟩⟩, ⟨ψ∗, (L−1 |α1,2⟩)⊗ |αr,s⟩⟩,
⟨ψ∗, |α1,2⟩ ⊗ w(n)

i ⟩, ⟨ψ∗, (L−1 |α1,2⟩)⊗ w(n)
i ⟩.

Let us determine the eigenvalues of ψ∗. By Lemma 8.1.7, we have

⟨L0ψ
∗, |α1,2⟩ ⊗ |αr,s⟩⟩ = (h1,2 + hr,s)⟨ψ∗, |α1,2⟩ ⊗ |αr,s⟩⟩+ ⟨ψ∗, (L−1 |α1,2⟩)⊗ |αr,s⟩⟩,

⟨L0ψ
∗, |α1,2⟩ ⊗ w(n)

i ⟩ = (h1,2 +∆+
r,s;n)⟨ψ∗, |α1,2⟩ ⊗ w(n)

i ⟩+ ⟨ψ∗, (L−1 |α1,2⟩)⊗ w(n)
i ⟩,

and

⟨L0ψ
∗, (L−1 |α1,2⟩)⊗ |αr,s⟩⟩ = (h1,2 + hr,s + 1)⟨ψ∗, (L−1 |α1,2⟩)⊗ |αr,s⟩⟩

+
p+
p−
⟨ψ∗, (L−2 |α1,2⟩)⊗ |αr,s⟩⟩

=
p+
p−
hr,s⟨ψ∗, |α1,2⟩ ⊗ |αr,s⟩⟩

+ (h1,2 + hr,s + 1− p+
p−

)⟨ψ∗, (L−1 |α1,2⟩)⊗ |αr,s⟩⟩,

⟨L0ψ
∗, (L−1 |α1,2⟩)⊗ w(n)

i ⟩ = (h1,2 +∆+
r,s;n + 1)⟨ψ∗, (L−1 |α1,2⟩)⊗ w(n)

i ⟩

+
p+
p−
⟨ψ∗, (L−2 |α1,2⟩)⊗ w(n)

i ⟩

=
p+
p−

∆+
r,s;n⟨ψ∗, |α1,2⟩ ⊗ w(n)

i ⟩

+ (h1,2 +∆+
r,s;n + 1− p+

p−
)⟨ψ∗, (L−1 |α1,2⟩)⊗ w(n)

i ⟩.

Then we have(
⟨L0ψ

∗, |α1,2⟩ ⊗ |αr,s⟩⟩
⟨L0ψ

∗, (L−1 |α1,2⟩)⊗ |αr,s⟩⟩

)
= A1

(
⟨ψ∗

i , |α1,2⟩ ⊗ |αr,s⟩⟩
⟨ψ∗

i , (L−1 |α1,2⟩)⊗ |αr,s⟩⟩

)
(

⟨L0ψ
∗, |α1,2⟩ ⊗ w(n)

i ⟩
⟨L0ψ

∗, (L−1 |α1,2⟩)⊗ w(n)
i ⟩

)
= A2

(
⟨ψ∗, |α1,2⟩ ⊗ w(n)

i ⟩
⟨ψ∗, (L−1 |α1,2⟩)⊗ w(n)

i ⟩

)
.

where

A1 =

(
h1,2 + hr,s

p+
p−
hr,s

1 h1,2 + hr,s + 1− p+
p−

)
,

A2 =

(
h1,2 +∆+

r,s;n
p+
p−
∆+

r,s;n

1 h1,2 +∆+
r,s;n + 1− p+

p−

)
.
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We see that A1 and A2 are diagonalizable and eigenvalues are given by {hr,s−1, hr,s−1}
and {∆+

r,s+1;n,∆
+
r,s−1;n}, respectively. Note that the eigenvalues of A2 do not correspond

to any L0 eigenvalues of the highest weight space of the simpleWp+,p−-modules. Thus we
see that the value ⟨ψ∗, ϕ1 ⊗ ϕ2⟩ is determined by the numbers

⟨ψ∗, |α1,2⟩ ⊗ |αr,s⟩⟩, ⟨ψ∗, (L−1 |α1,2⟩)⊗ |αr,s⟩⟩,

L0 acts semisimply on ψ∗, and the L0 eigenvalue of ψ∗ is given by hr,s+1 or hr,s−1.

The other cases can be proved in the same way, so we omit the proofs.

Similar to Proposition 8.3.2, we obtain the following proposition.

Proposition 8.3.3.

• For p+ ≥ 3, we have

1. For 2 ≤ r < p+, 1 ≤ s ≤ p−, the vector space A0((K2,1 ⊠ Kr,s)
∗) is at most

two dimensional. The L0 eigenvalues are contained in {hr−1,s, hr+1,s}, which
corresponds to the highest weights of Kr−1,s and Kr+1,s, respectively.

2. For 1 ≤ s ≤ p−, the dimension of the vector space A0((K2,1⊠K1,s)
∗) is at most

one dimensional. The L0 eigenvalues is given by h2,s which corresponds to the
highest weight of K2,s.

3. For 2 ≤ r < p+, 1 ≤ s ≤ p−, the vector space A0((K2,1 ⊠X+
r,s)

∗) is at most two
dimensional. The L0 eigenvalues are contained in {∆+

r−1,s;0,∆
+
r+1,s;0}, which

corresponds to the highest weights of X+
r−1,s and X+

r+1,s, respectively.

4. For 2 ≤ r < p+, 1 ≤ s ≤ p−, the dimension of the vector space A0((K2,1 ⊠
X−

r,s)
∗) is at most four dimensional. The L0 eigenvalues are contained in

{∆−
r−1,s;0,∆

−
r+1,s;0}, which corresponds to the highest weights of X−

r−1,s and X−
r+1,s,

respectively.

5. For r = p+, 1 ≤ s ≤ p−, the vector space A0((K2,1 ⊠ X+
p+,s)

∗) is at most two

dimensional. The L0 eigenvalues are contained in {hp+−1,s,∆
+
p+−1,s;0}, which

corresponds to the highest weights of L(hp+−1,s) and X+
p+−1,s, respectively.

6. For r = p+, 1 ≤ s ≤ p−, the vector space A0((K2,1 ⊠ X−
p+,s)

∗) is at most

four dimensional. The L0 eigenvalues are contained in {∆+
1,s;0,∆

−
p+−1,s;0} which

corresponds to the highest weights of X+
1,s and X−

p+−1,s, respectively.

• For p+ = 2, we have

1. For 1 ≤ s ≤ p−, the vector space A0((K2,1⊠X+
2,s)

∗) is at most two dimensional.
The L0 eigenvalues are contained in {h1,s,∆+

1,s;0}, which corresponds to the
highest weights of L(h1,s) and X+

1,s, respectively.

2. For 1 ≤ s ≤ p−, the vector space A0((K2,1⊠X−
2,s)

∗) is at most four dimensional.
The L0 eigenvalues are contained in {∆+

1,s;0,∆
−
1,s;0} which corresponds to the

highest weights of X+
1,s and X−

1,s, respectively.
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For any α ∈ Ap+,p− = { αr,s;n | r, s, n ∈ Z}, let

Vα =
⊕
n∈Z

Fα+n
√
2p+p−

be the simple V[p+,p−]-module. For any α, α′ ∈ Ap+,p− , it can be proved easily that

there are no V[p+,p−]-module intertwining operators of type
(

Vα′′

Vα′ Vα

)
unless α′′ ≡ α′ +

α mod Z
√
2p+p−, and dimCI

(
Vα′+α

Vα′ Vα

)
= 1. Let Y be the V[p+,p−]-module intertwining

operator of type
(

Vα′+α

Vα′ Vα

)
. Then, by restricting the action of V[p+,p−] toWp+,p− , Y defines

a Wp+,p−-module intertwining operator of type
(

Vα′+α

Vα′ Vα

)
. We denote this Wp+,p−-module

intertwining operator by Yα′,α.

Lemma 8.3.4. For 1 ≤ r ≤ p+, 2 ≤ s ≤ p+ − 1, we have

I

(
X+

r,s−1

K1,2 X+
r,s

)
̸= ∅, I

(
X+

r,s+1

K1,2 X+
r,s

)
̸= ∅.

Proof. Let us consider the Wp+,p−-module intertwining operator Y = Yα1,α2 , where α1 =
α1,2 and α2 = αr,p−−s;1. Then we have

⟨αr,p−−s+1;1|Y (|α1,2⟩ ; z) |αr,p−−s;1⟩ ̸= 0.

Thus, we have a non-zero Wp+,p−-module intertwining operator of type

I

(
X+

r,s−1

K1,2 Wp+,p− . |α2⟩

)
̸= ∅. (8.3.1)

Note that following exact sequence

0→ X−
r,s∨ →Wp+,p− . |αr,p−−s;1⟩ → X+

r,s → 0.

Then, by the exact sequence

K1,2 ⊠ X−
r,s∨ → K1,2 ⊠Wp+,p− . |αr,p−−s;1⟩ → K1,2 ⊠ X+

r,s → 0,

we have the following exact sequence

0→ HomCp+,p−
(K1,2 ⊠ X+

r,s,X+
r,s−1)→ HomCp+,p−

(K1,2 ⊠Wp+,p− . |αr,p−−s;1⟩ ,X+
r,s−1)

→ HomCp+,p−
(K1,2 ⊠ X−

r,s∨ ,X
+
r,s−1). (8.3.2)

Thus, by Proposition 8.3.2 and (8.3.1), (8.3.2), we obtain

I

(
X+

r,s−1

K1,2 X+
r,s

)
̸= ∅.

The second equation can be proved in the same way, so we omit the proof.

91



Lemma 8.3.5. For 1 ≤ r ≤ p+, 1 ≤ s ≤ p+ − 1, we have

I

(
X+

r,s

Kr,s X+
1,1

)
̸= ∅.

Proof. By the exact sequence

0→ X+
1,1 → K1,1 → L(h1,1)→ 0

and by Corollary 8.2.4, we have the following exact sequence

Kr,s ⊠ X+
1,1 → Kr,s → L(hr,s)→ 0.

Thus, by this exact sequence, we obtain the claim of the theorem.

Proposition 8.3.6.

1. We have

K1,2 ⊠Kr,s = Kr,s−1 ⊕ Γs,p−−1(Kr,s+1),

where Γs,p−−1(Kr,s+1) is defined as Kr,s+1 in the case of s ≤ p− − 2 and a certain
highest weight module with top(Γs,p−−1(Kr,s+1)) = X+

r,p− in the case of s = p− − 1.

2. For p+ ≥ 3, 2 ≤ r ≤ p+ − 1, 1 ≤ s ≤ p− − 1, we have

K2,1 ⊠Kr,s = Kr−1,s ⊕ Γr,p+−1(Kr+1,s),

where Γr,p+−1(Kr+1,s) is defined as Kr+1,s in the case of r ≤ p+ − 2 and a certain
highest weight module with top(Γr,p+−1(Kr+1,s)) = X+

p+,s in the case of r = p+ − 1.

Proof. Let p− ≥ 4, 1 ≤ r ≤ p+ − 1 and 2 ≤ s ≤ p− − 2. By the exact sequence

0→ X+
r,s → Kr,s → L(hr,s)→ 0,

we have the following exact sequence

K1,2 ⊠ X+
r,s → K1,2 ⊠Kr,s → L(hr,s−1)⊕ L(hr,s+1)→ 0. (8.3.3)

By Lemma 8.3.5, we have the following exact sequence

(K1,2 ⊠Kr,s)⊠ X+
1,1 → K1,2 ⊠ X+

r,s → 0. (8.3.4)

Then, by two exact sequences (8.3.3),(8.3.4) and by Lemma 8.3.4, we see that K1,2 ⊠Kr,s

has X+
r,s−1 and X+

r,s+1 as composition factors. Note that by Proposition 8.3.2 we have

top(K1,2 ⊠Kr,s) = L(hr,s−1)⊕ L(hr,s+1). (8.3.5)

Since

Ext1(Ka,b,X−
a∨,b) = Ext1(Ka,b,X−

a,b∨) = 0, 1 ≤ a < p+, 1 ≤ b < p− (8.3.6)
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as shown in the proof of Proposition 7.3.8, it is sufficient to show that K1,2 ⊠ Kr,s does
not contain either X+

r∨,s∨+1 or X+
r∨,s∨−1 as a composition factor.

Assume that K1,2 ⊠ Kr,s contains X = X+
r∨,s∨+1 or X+

r∨,s∨−1 as a composition factor.
Then, we see that the composition factor X of K1,2 ⊠Kr,s comes from that of K1,2 ⊠X+

r,s

in the exact sequence (8.3.3). Note that by Proposition 7.2.8

Ext1(X+
r,s−1 ⊕X+

r,s+1,X+
r∨,s∨+1 ⊕X

+
r∨,s∨−1) = 0,

and by Proposition 8.3.2 A0((K1,2 ⊠ X+
r,s)

∗) = X+
r,s−1 ⊕ X+

r,s+1. Thus, noting (8.3.5), as

a quotient module of K1,2 ⊠ Kr,s we have a non-trivial extension in Ext1(Kr,s−1,X−
r∨,s−1)

or Ext1(Kr,s−1,X−
r,s∨+1). But this contradicts (8.3.6). The other cases can be proved in a

similar way, so we omit the proofs.

Theorem 8.3.7. K1,2 is rigid and self-dual in (Cp+,p− ,⊠).

Proof. We show the rigidity of K1,2 using the methods detailed in [15] and [56] (cf.[64]).
By Proposition 8.3.6, we have homomorphisms

i1 : K1,1 → K1,2 ⊠K1,2,

p1 : K1,2 ⊠K1,2 → K1,1,

i3 : Γ2,p−−1(K1,3)→ K1,2 ⊠K1,2,

p3 : K1,2 ⊠K1,2 → Γ2,p−−1(K1,3)

such that

p1 ◦ i1 = idK1,1 , p3 ◦ i3 = idΓ2,p−−1(K1,3)

and

i1 ◦ p1 + i3 ◦ p3 = idK1,2⊠K1,2 .

To prove that K1,2 is rigid, it is sufficient to prove that the homomorphisms f, g :
K1,2 → K1,2 defined by the commutative diagrams

K1,2
r−1

//

f

��

K1,2 ⊠K1,1
id⊠i1 // K1,2 ⊠ (K1,2 ⊠K1,2)

A
��

K1,2 K1,1 ⊠K1,2
loo (K1,2 ⊠K1,2)⊠K1,2

p1⊠idoo

and

K1,2
l−1

//

g

��

K1,1 ⊠K1,2
i1⊠id // (K1,2 ⊠K1,2)⊠K1,2

A−1

��
K1,2 K1,2 ⊠K1,1

roo K1,2 ⊠ (K1,2 ⊠K1,2)
id⊠p1oo

are non-zero multiples of the identity, where A is the associativity isomorphism and l and
r are the left and right unit isomorphisms. Since Hom(K1,2,K1,2) ≃ C, it is sufficient to
show that f and g are non-zero. We only show f ̸= 0. The proof of g ̸= 0 is similar.
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Let Y2⊠2, Y(2⊠2)⊠2 and Y2⊠(2⊠2) be the non-zero intertwining operators of type(
K1,2 ⊠K1,2

K1,2 K1,2

)
,

(
(K1,2 ⊠K1,2)⊠K1,2

K1,2 ⊠K1,2 K1,2

)
,

(
K1,2 ⊠ (K1,2 ⊠K1,2)
K1,2 K1,2 ⊠K1,2

)
,

respectively.
To prove f ̸= 0, it is sufficient to show that the intertwining operator

Y2
21 = lK1,2 ◦ (p1 ⊠ idK1,2) ◦ AK1,2,K1,2,K1,2 ◦ Y2⊠(2⊠2) ◦ (idK1,2 ⊗ i1)

is non-zero.
Define the following intertwining operator

Y2
23 = lK1,2 ◦ (p3 ⊠ idK1,2) ◦ AK1,2,K1,2,K1,2 ◦ Y2⊠(2⊠2) ◦ (idK1,2 ⊗ i3).

Then, for highest weight vectors v ∈ K1,2[h1,2], v
∗ ∈ K∗

1,2[h1,2], and for some x ∈ R such
that 1 > x > 1− x > 0, we have

⟨v∗,Y2
21(v; 1)(p1 ◦ Y2⊠2)(v;x)v⟩+ ⟨v∗,Y2

23(v; 1)(p3 ◦ Y2⊠2)(v;x)v⟩
= ⟨v∗, lK1,2 ◦ (p1 ⊠ idK1,2) ◦ AK1,2,K1,2,K1,2

(
Y2⊠(2⊠2)(v; 1)Y2⊠2(v;x)v

)
⟩

= ⟨v∗, lK1,2 ◦ (p1 ⊠ idK1,2)
(
Y(2⊠2)⊠2(Y2⊠2(v; 1− x)v;x)v

)
⟩

= ⟨v∗, lK1,2

(
Y1⊠2((p1 ◦ Y2⊠2)(v; 1− x)v;x)v

)
⟩,

= ⟨v∗, YK1,2

(
(p1 ◦ Y2⊠2)(v; 1− x)v;x)

)
v⟩,

where Y1⊠2 is the intertwining operator of type
(

K1,2

K1,1 K1,2

)
. Since p1 ◦ Y2⊠2 is the non-zero

intertwining operator of type
(

K1,1

K1,2 K1,2

)
, we have

⟨v∗, YK1,2

(
(p1 ◦ Y2⊠2)(v; 1− x)v;x)

)
v⟩ ∈ C×(1− x)−2h1,2

(
1 + (1− x)C[[1− x]]

)
. (8.3.7)

Set

ϕ1(x) = ⟨v∗,Y2
21(v; 1)(p1 ◦ Y2⊠2)(v;x)v⟩, ϕ3(x) = ⟨v∗,Y2

23(v; 1)(p3 ◦ Y2⊠2)(v;x)v⟩.

Then as in [15],[56],[64], we see that ϕ1(x) and ϕ3(x) satisfy the following Fuchsian dif-
ferential equation (cf. [10])

ϕ′′(x) +
p+
p−

( 1

x− 1
+

1

x

)
ϕ′(x)

− p+h1,2
p−

{ 1

(x− 1)2
+

1

x2
− 2
( 1

x− 1
− 1

x

)}
= 0,

with the following Riemann scheme 0 1 ∞
λ+ µ+ ν+
λ− µ− ν−

 =

 0 1 ∞
p+
2p−

p+
2p−

0

1− 3p+
2p−

1− 3p+
2p−

2p+
p−
− 1

 .
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Let {u+, u−} be the fundamental system of solutions at x = 0 whose characteristic expo-
nents are λ+, λ−, respectively, and {v+, v−} the fundamental system of solutions at x = 1
whose characteristic exponents are µ+, µ−, respectively. Then, the connection matrix
between x = 0 and x = 1 is given by(

u+
u−

)
=

(
F++ F−+

F+− F−−

)(
v+
v−

)
,

where

Fϵϵ′ =
Γ(−ϵ(µ+ − µ−))Γ(ϵ

′(λ+ − λ−) + 1)

Γ(λϵ′ + µ−ϵ + ν+)Γ(λϵ′ + µ−ϵ + ν−)
, ϵ, ϵ′ = ±.

We can see that this connection matrix is regular. Note that the characteristic exponents
of ϕ1(x) and ϕ3(x) at the regular singular point x = 0 are given by

h1,1 − 2h1,2 = 1− 3p+
2p−

, h1,3 − 2h1,2 =
p+
2p−

,

respectively. Therefore by the non-zero four point function (8.3.7), we see that ϕ1(x)
is non-zero. In particular Y2

21 is non-zero. Thus K1,2 is rigid in the tensor category
(Cp+,p− ,⊠).

Lemma 8.3.8. For 1 ≤ r ≤ p+, 2 ≤ s ≤ p− − 1, we have

I

(
X−

r,s−1

K1,2 X−
r,s

)
̸= ∅, I

(
X−

r,s+1

K1,2 X−
r,s

)
̸= ∅.

Proof. We will only prove the first equation. The second equation can be proved in the
same way, so we omit the proofs. Let us consider theWp+,p−-module intertwining operator
Y1 = Yα1,α2 , where α1 = α1,2, α2 = αr∨,s;−2. Note that

⟨αr∨,s+1;−2|Y1(|α1,2⟩ ; z) |αr∨,s;−2⟩ ̸= 0. (8.3.8)

Thus, we have a non-zero Wp+,p−-module intertwining operator of type

I

(
X−

r,s−1

K1,2 Wp+,p− . |α2⟩

)
̸= ∅. (8.3.9)

Note that Wp+,p− .Sr,3p−−s |αr∨,s;−2⟩ ≃ X+
r∨,s. Then, by the exact sequence

0→ X+
r∨,s →Wp+,p− . |αr∨,s;−2⟩ → X−

r,s → 0,

we have the following exact sequence

K1,2 ⊠ X+
r∨,s → K1,2 ⊠Wp+,p− . |αr∨,s;−2⟩ → K1,2 ⊠ X−

r,s → 0.

Thus we obtain the exact sequence

0→ HomCp+,p−
(K1,2 ⊠ X−

r,s,X−
r,s−1)→ HomCp+,p−

(Wp+,p− . |αr∨,s;−2⟩ ,X−
r,s−1)

→ HomCp+,p−
(K1,2 ⊠ X+

r∨,s,X
−
r,s−1). (8.3.10)
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By Proposition 8.3.2, we see that

HomCp+,p−
(K1,2 ⊠ X+

r∨,s,X
−
r,s−1) = 0.

Thus, by (8.3.9) and (8.3.10), we obtain

I

(
X−

r,s−1

K1,2 X−
r,s

)
̸= ∅.

By Proposition 8.3.2 and Lemma 8.3.8, we obtain the following proposition.

Proposition 8.3.9.

1. For 1 ≤ r ≤ p+, 2 ≤ s ≤ p− − 1, we have

K1,2 ⊠ X−
r,s = X−

r,s−1 ⊕X−
r,s+1.

2. For 1 ≤ r ≤ p+, we have

K1,2 ⊠ X−
r,1 = X−

r,2.

3. For p+ ≥ 3, 2 ≤ r ≤ p+ − 1, 1 ≤ s ≤ p−, we have

K2,1 ⊠ X−
r,s = X−

r−1,s ⊕X−
r+1,s.

4. For 1 ≤ s ≤ p−, we have

K2,1 ⊠ X−
1,s = X−

2,s.

For the following lemma, see, for example, [20].

Lemma 8.3.10. Let (C,⊗) be a braided tensor category and let V be a rigid object in C.
Then there is a natural adjunction isomorphism

HomC(U ⊗ V,W ) ≃ HomC(U,W ⊗ V ∨),

where U,W are any objects in C and V ∨ is the dual object of V .

Lemma 8.3.11.

1. For 1 ≤ r ≤ p+, 2 ≤ s ≤ p− − 1, we have

K1,2 ⊠ X+
r,s = X+

r,s−1 ⊕X+
r,s+1.

2. For 1 ≤ r ≤ p+, we have

K1,2 ⊠ X+
r,1 = X+

r,2.
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Proof. We will only prove

K1,2 ⊠ X+
r,s = X+

r,s−1 ⊕X+
r,s+1

for 1 ≤ r ≤ p+ − 1, 1 ≤ s ≤ p+ − 2. The other cases can be proved in a similar way, so
we omit the proofs.

By Proposition 8.3.9, Lemma 8.3.10 and the self-duality of K1,2, we see that

HomCp+,p−
(X ,K1,2 ⊠ X+

r,s) = 0,

where X = X−
r∨,s−1,X

−
r,s∨+1,X

−
r∨,s+1,X

−
r,s∨−1. Thus, by Lemmas 8.3.2 and 8.3.4, we obtain

K1,2 ⊠ X+
r,s = X+

r,s−1 ⊕X+
r,s+1.

By Proposition 8.3.6 and Lemma 8.3.11, we obtain the following proposition.

Proposition 8.3.12.

1. For 1 ≤ r ≤ p+, 2 ≤ s ≤ p− − 1, we have

K1,2 ⊠Kr,s = Kr,s−1 ⊕Kr,s+1.

2. For 1 ≤ r ≤ p+, we have

K1,2 ⊠Kr,1 = Kr,2.

The following Lemma is due to Proposition 3.46 in [38].

Lemma 8.3.13. For any U, V ∈ Cp+,p−, we have a natural isomorphism.

HomCp+,p−
(U, V ) ≃ HomCp+,p−

(U ⊠ V ∗,K∗
1,1).

Lemma 8.3.14. For 1 ≤ r ≤ p+ − 1, 1 ≤ s ≤ p− − 1, we have

I

(
K∗

p+−1,s

K2,1 Kp+,s

)
̸= ∅, I

(
K∗

r,p−−1

K1,2 Kr,p−

)
̸= ∅.

Proof. We only prove the first equation. The second equation can be proved in the same
way, so we omit the proof.

Let us considerWp+,p−-module intertwining operator Y = Yα1,α2 , where α1 = α2,1 and
α2 = αp+,s∨;1. Note that

⟨αp+−1,s∨|Y (|α2,1⟩ ; z) |αp+,s∨;1⟩ ̸= 0.

Then, by Proposition 7.2.5, we have

⟨αp+−1,s∨|S∗
p+−1,sY (|α2,1⟩ ; z) |αp+,s∨;1⟩ ̸= 0.

Thus we have

I

(
K∗

p+−1,s

K2,1 Wp+,p− . |αp+,s∨;1⟩

)
̸= ∅, I

(
X+

p+−1,s

K2,1 Wp+,p− . |αp+,s∨;1⟩

)
̸= ∅ (8.3.11)
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Note that Wp+,p− . |αp+,s∨;1⟩ satisfies the following exact sequence

0→ X−
p+,s∨ →Wp+,p− . |αp+,s∨;1⟩ → X+

p+,s(= Kp+,s)→ 0.

Then we have the following exact sequence

0→ K2,1 ⊠ X−
p+,s∨ → K2,1 ⊠Wp+,p− . |αp+,s∨;1⟩ → K2,1 ⊠Kp+,s → 0.

By this exact sequence we obtain the following exact sequence

0→ HomCp+,p−
(K2,1 ⊠Kp+,s,K∗

1,1)→ HomCp+,p−
(K2,1 ⊠Wp+,p− . |αp+,s∨;1⟩ ,K∗

1,1)

→ HomCp+,p−
(K2,1 ⊠ X−

p+,s∨ ,K
∗
1,1). (8.3.12)

By Proposition 8.3.2, we have

HomCp+,p−
(K2,1 ⊠ X−

p+,s∨ ,K
∗
1,1) = 0. (8.3.13)

Since L(h1,1)⊠Kp+,s = 0, by Lemma 8.3.13, we have

HomCp+,p−
(K2,1 ⊠Kp+,s, L(h1,1)) = 0.

Thus, by (8.3.11), (8.3.12) and (8.3.13), we have a surjective module map from K2,1⊠Kp+,s

to K∗
p+−1,s.

Theorem 8.3.15. K2,1 is rigid and self-dual in (Cp+,p− ,⊠).

Proof. In the case p+ ≥ 3, the rigidity can be proved in the same way as in Theorem
8.3.7. Therefore let p+ = 2. Note that in this case it is K2,1 = X+

2,1 from the definition.
First we prove

K2,1 ⊠K2,1 = Q(X+
1,1)1,1.

By Proposition 8.3.3 and by Lemma 8.3.14, we have

top(K2,1 ⊠K2,1) = X+
1,1 ∈ Cthick

1,1 .

By Lemma 8.3.14, we can define the following module map

p1 : K2,1 ⊠K2,1 → K1,1.

Let Y2⊠2, Y(2⊠2)⊠2 and Y2⊠(2⊠2) be the non-zero intertwining operators of type(
K2,1 ⊠K2,1

K2,1 K2,1

)
,

(
(K2,1 ⊠K2,1)⊠K2,1

K2,1 ⊠K2,1 K2,1

)
,

(
K2,1 ⊠ (K2,1 ⊠K2,1)
K2,1 K2,1 ⊠K2,1

)
,

respectively. We define the intertwining operator

Y2
2⊠2,2 = rK2,1 ◦ (idK2,1 ⊠ p1) ◦ A−1

K2,1,K2,1,K2,1
◦ Y(2⊠2)⊠2
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of type
(

K2,1

K2,1 ⊠K2,1 K2,1

)
.

Let us consider the four point function

⟨v∗,Y2
2⊠2,2(Y2⊠2(v, 1− x)v, x)v⟩, (8.3.14)

where v and v∗ are the highest weight vectors of K2,1 and K∗
2,1, respectively. Then, for

some x ∈ R such that 1 > x > 1− x > 0, we have

⟨v∗,Y2
2⊠2,2(Y2⊠2(v, 1− x)v, x)v⟩

= ⟨v∗, rK2,1 ◦ (idK2,1 ⊠ p1)A−1
K2,1,K2,1,K2,1

(
Y(2⊠2)⊠2(Y2⊠2(v, 1− x)v, x)v

)
⟩

= ⟨v∗, rK2,1 ◦ (idK2,1 ⊠ p1)
(
Y2⊠(2⊠2)(v, 1)Y2⊠2(v, x)v

)
⟩

= ⟨v∗, rK2,1

(
Y2⊠1(v, 1)(p1 ◦ Y2⊠2)(v, x)v

)
⟩

= ⟨v∗,Ω(YK2,1)(v, 1)(p1 ◦ Y2⊠2)(v, x)v⟩,

where Ω represents the skew-symmetry operation on vertex operators defined by

Ω(YK2,1)(v, z)w = ezL−1YK2,1(w,−z)v

for w ∈ K1,1. Note that

⟨v∗,Ω(YK2,1)(v, 1)(p1 ◦ Y2⊠2)(v, x)v⟩

= cx
p−
4 (1− x)

p−
4 2F1

(p−
2
,
3p−
2
− 1, p−;x

)
= cx

p−
4 (1− x)−

3p−
4

+1
2F1

(
−p−

2
+ 1,

p−
2
, p−;x

)
where c is a non-zero constant. Then using Equation 15.8.10 in [19], we can see that the
constant term of 2F1

(
−p−

2
+ 1, p−

2
, p−;x

)
is given by (Γ(p−

2
)Γ(3p−

2
− 1))−1. Therefore, by

Lemma 8.3.14, the coefficient of (1− x)−2h2,1 = (1− x)−
3p−
4

+1 in (8.3.14) is non-zero.
Note that K2,1⊠K2,1 ∈ Cthick

1,1 does not contain X+
1,p−−1,X−

1,p−−1 ∈ Cthick
1,1 as composition

factors. In fact, assuming that K2,1 ⊠K2,1 contains X±
1,p−−1, then from the rigidity of K1,2

and from Proposition 8.3.9, K1,2 ⊠ (K2,1 ⊠ K2,1) contains X±
1,p− ∈ C

thin
1,p− as a composition

factor, but since

K1,2 ⊠ (K2,1 ⊠K2,1) = K2,2 ⊠K2,1 ∈ Cthick
1,2

by Propositions 8.3.3 and 8.3.12, so we have a contradiction. Thus, by Propositions 7.2.8
and 7.3.9, assuming that K2,1 ⊠ K2,1 is logarithmic, we have K2,1 ⊠ K2,1 ≃ Q(X+

1,1)1,1,
and assuming that K2,1 ⊠K2,1 is not logarithmic, we see that K2,1 ⊠K2,1 has L(h1,1) as a
submodule. Let us assume K2,1 ⊠K2,1 is not logarithmic. Then K2,1 ⊠K2,1 has L(h1,1) as
a submodule. Since L(h1,1)⊠K2,1 = 0, the coefficient of (1− x)−2h2,1 in (8.3.14) must be
zero. But this is a contradiction. Therefore we obtain

K2,1 ⊠K2,1 ≃ Q(X+
1,1)1,1.

We define the following module map i1

i1 : K1,1 → Q(X+
1,1)1,1.
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To prove that K2,1 is rigid, it is sufficient to prove that the homomorphisms f, g : K2,1 →
K2,1 defined by the commutative diagrams

K2,1
r−1

//

f

��

K2,1 ⊠K1,1
id⊠i1 // K2,1 ⊠ (K2,1 ⊠K2,1)

A
��

K2,1 K1,1 ⊠K2,1
loo (K2,1 ⊠K2,1)⊠K2,1

p1⊠idoo

and

K2,1
l−1

//

g

��

K1,1 ⊠K2,1
i1⊠id // (K2,1 ⊠K2,1)⊠K2,1

A−1

��
K2,1 K2,1 ⊠K1,1

roo K2,1 ⊠ (K2,1 ⊠K2,1)
id⊠p1oo

are non-zero multiples of the identity. Since Hom(K2,1,K2,1) ≃ C, it is sufficient to show
that f and g are non-zero. We only show g ̸= 0. The proof of f ̸= 0 is similar.

Note that

(i1 ⊠ idK2,1) ◦ l−1
K2,1

(|α2,1⟩)
= (i1 ⊠ idK2,1)(Y1⊠2(|0⟩ , 1) |α2,1⟩) = Y(2⊠2)⊠2(i1(|0⟩), 1) |α2,1⟩ ,

where Y1⊠2 is the intertwining operator of type
(

K2,1

K1,1 K2,1

)
. Since i1(|0⟩) is the cofficient of

x−2h2,1 in Y2⊠2(|α2,1⟩ , x) |α2,1⟩, we can see that (i1 ⊠ idK2,1) ◦ l−1
K2,1

(|α2,1⟩) is the coefficient

of (1− x)−2h2,1 in the expansion of

Y(2⊠2)⊠2(Y2⊠2(|α2,1⟩ , 1− x) |α2,1⟩ , x) |α2,1⟩
= Y(2⊠2)⊠2(Y2⊠2(|α2,1⟩ , 1− x) |α2,1⟩ , 1− (1− x)) |α2,1⟩

as a series in 1− x. Therefore, since the coefficient of (1− x)−2h2,1 in (8.3.14) is non-zero,
we obtain the rigidity of K2,1.

Similar to Proposition 8.3.12, we can prove the following proposition.

Proposition 8.3.16.

1. For p+ ≥ 3, 2 ≤ r ≤ p+ − 1, 1 ≤ s ≤ p−, we have

K2,1 ⊠Kr,s = Kr−1,s ⊕Kr+1,s.

2. For 1 ≤ s ≤ p−, we have

K2,1 ⊠K1,s = K2,s.

The following standard lemma holds for the product of rigid objects in any tensor
category.

Lemma 8.3.17. Let (C,⊗) be a tensor category. Let V1 and V2 be rigid object in C. Then
V1 ⊗ V2 is also rigid with dual V ∨

2 ⊗ V ∨
1 , where V ∨

i be the dual of Vi.

By Propositions 8.3.12, 8.3.16, Theorems 8.3.7, 8.3.15 and Lemma 8.3.17, we obtain
the following theorem.

Theorem 8.3.18. For 1 ≤ r ≤ p+, 1 ≤ s ≤ p−, the indecomposable modules Kr,s are
rigid and self-dual.
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8.4 Tensor product between simple modules X±r,s
In this section, we compute some tensor product between simple modules X±

r,s, using the
rigidity of Kr′,s′ .

By Cororally 8.2.4 and by Theorem 8.3.18, we obtain the following proposition.

Proposition 8.4.1. For 1 ≤ r ≤ p+, 1 ≤ s ≤ p−, we have

X+
1,1 ⊠Kr,s = X+

r,s.

Note that X+
1,1 is self-contragredient and L(h1,1)⊠ X+

1,1 = 0. Then, by Lemma 8.3.13,
we have

HomCp+,p−
(X+

1,1 ⊠ X+
1,1,K∗

1,1) = C, HomCp+,p−
(X+

1,1 ⊠ X+
1,1, L(h1,1)) = 0.

Thus we obtain the following lemma.

Lemma 8.4.2. There exists a surjective module map from X+
1,1 ⊠ X+

1,1 to K∗
1,1.

Proposition 8.4.3. We have

X+
1,1 ⊠ X+

1,1 = K∗
1,1.

Proof. By Lemma 8.4.2, X+
1,1 ⊠ X+

1,1 ̸= 0. Let us determine the top composition factors
of X+

1,1 ⊠ X+
1,1. Let π be the surjection from X+

1,1 ⊠ X+
1,1 to top(X+

1,1 ⊠ X+
1,1). Let ψ

∗ be an
arbitrary element of A0((top(X+

1,1⊠X+
1,1))

∗). Let ϕ1, ϕ2 be arbitrary elements of X+
1,1, and

let u be the highest weight vector of X+
1,1. For n ≥ 1, let w

(n)
i (i = −n,−n + 1 . . . , n) be

the Virasoro highest weight vectors of the vector subspace (2n + 1)L(∆+
1,1;n) ⊂ X+

1,1. Let
us consider the value

⟨ψ∗, ϕ1 ⊗ ϕ2⟩ = ⟨ψ∗, π ◦ Y⊠(ϕ1 ⊗ ϕ2)⟩.

By Lemma 8.1.6, we see that the value ⟨ψ∗, ϕ1 ⊗ ϕ2⟩ is determined by the values

⟨ψ∗, U(L).u⊗ u⟩, ⟨ψ∗, U(L).u⊗ w(n)
i ⟩

for some finite n ≥ 1 and i. Let h be the L0 weight of ψ∗.
Let us assume that ⟨ψ∗, u⊗w(n)

i ⟩ ̸= 0 for some n ≥ 1. Then, by Proposition 7.2.6, we
see that h must satisfies the following equations

2p−−1∏
j=1

(h− h1,(2n+4)p−−2−2j+1) = 0,

2p+−1∏
i=1

(h− h(2n+4)p+−2−2i+1,1) = 0.

We see that h satisfying these equations is given by ∆+
1,1;n = h(2+2n)p+−1,1. We see that

∆+
1,1;n does not correspond to any highest weight of the simple modules. Thus we have a

contradiction. Therefore ⟨ψ∗, ϕ1 ⊗ ϕ2⟩ is determined by the values

⟨ψ∗, U(L).u⊗ u⟩.
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Then, by Proposition 7.2.6, h must satisfies the following equations

2p−−1∏
j=1

(h− h1,4p−−2−2j+1) = 0,

2p+−1∏
i=1

(h− h4p+−2−2i+1,1) = 0.

We see that h satisfying these equations is given by ∆+
1,1;0 = h2p+−1,1. Thus we have

top(X+
1,1 ⊠ X+

1,1) = (m+ 1)X+
1,1

for some m ≥ 0. By Theorem 7.2.6, we see that m = 0. In particular we have X+
1,1⊠X+

1,1 ∈
Cthick

1,1 .
Note that, by Lemma 8.4.2, X+

1,1 ⊠ X+
1,1 has K∗

1,1 as a subquotient. Assume that
X+

1,1 ⊠ X+
1,1 ≇ K∗

1,1. Then, by Proposition 7.3.9, X+
1,1 ⊠ X+

1,1 has a submodule whose
top composition factors are given by some direct sum of X−

p+−1,1 and X−
1,p−−1. Then,

by the rigidity of K2,1 and K1,2 and by Proposition 8.3.9, either K1,2 ⊠ (X−
1,1 ⊠ X−

1,1) or
K2,1 ⊠ (X−

1,1 ⊠ X−
1,1) contains X−

1,p− or X−
p+,1 as composition factors, respectively. On the

other hand, by the associativity and Proposition 8.4.1, we have

K1,2 ⊠ (X+
1,1 ⊠ X+

1,1) = (K1,2 ⊠ X+
1,1)⊠ X+

1,1 = X+
1,2 ⊠ X+

1,1,

K2,1 ⊠ (X+
1,1 ⊠ X+

1,1) = (K2,1 ⊠ X+
1,1)⊠ X+

1,1 = X+
2,1 ⊠ X+

1,1.

Similar to the case of X+
1,1 ⊠ X+

1,1, by using Proposition 7.2.6, we can show that the top
composition factors of X+

1,2 ⊠ X+
1,1 and X+

2,1 ⊠ X+
1,1 are X+

1,2 and X+
2,1, respectively. In

particular, we have X+
1,2⊠X+

1,1 ∈ Cthick
1,2 and X+

2,1⊠X+
1,1 ∈ Ca

2,1, where a = thick for p+ ≥ 3
and a = thin for p+ = 2. But since X−

1,p− ∈ Cthin
p+−1,p− and X−

p+,1 ∈ Cthin
p+,p−−1, we have a

contradiction.

By Propositions 8.4.1 and 8.4.3, we obtain the following proposition.

Proposition 8.4.4. For 1 ≤ r, r′ ≤ p+, 1 ≤ s, s′ ≤ p−, we have

X+
r,s ⊠ X+

r′,s′ = (Kr,s ⊠Kr′,s′)⊠K∗
1,1.

From Proposition 8.4.4 and the following proposition, we can compute the tensor
product between the simple modules X+

r,s by using the tensor product between the inde-
composable modules K+

r,s.

Proposition 8.4.5. For 1 ≤ r ≤ p+, 1 ≤ s ≤ p−, we have

K∗
1,1 ⊠Kr,s = K∗

r,s.

Proof. By Proposition 8.4.3, we have

X+
1,1 ⊠ X+

1,1 = K∗
1,1. (8.4.1)

Multiplying both sides by Kr,s and using Proposition 8.4.1, we have

X+
1,1 ⊠ X+

r,s = K∗
1,1 ⊠Kr,s.
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for 1 ≤ r ≤ p+ − 1, 1 ≤ s ≤ p− − 1. By the exact sequence

0→ L(h1,1)→ K∗
1,1 → X+

1,1 → 0

and the rigidity of Kr,s, we have the following exact sequence

0→ L(hr,s)→ K∗
1,1 ⊠Kr,s → X+

r,s → 0. (8.4.2)

By Theorem 8.3.18 and Lemma 8.3.10, we have

HomCp+,p−
(K∗

1,1 ⊠Kr,s, L(hr,s)) ≃ HomCp+,p−
(K∗

1,1, L(hr,s)⊠Kr,s) = 0.

Thus the exact sequence (8.4.2) does not split. Therefore, since Ext1(X+
r,s, L(hr,s)) = C

by Proposition 7.2.8, we obtain

K∗
1,1 ⊠Kr,s ≃ K∗

r,s.

Similar to Lemma 8.4.2, by using Lemma 8.3.13, we obatin the following lemma.

Lemma 8.4.6. There exists a surjective module map from X−
1,1 ⊠ X−

1,1 to K∗
1,1.

Proposition 8.4.7. We have

X−
1,1 ⊠ X−

1,1 = K∗
1,1, X−

1,1 ⊠ X+
1,1 = X−

1,1.

Proof. First we prove X−
1,1 ⊠ X−

1,1 = K∗
1,1. By Lemma 8.4.6, we see that X−

1,1 ⊠ X−
1,1 ̸= 0.

Let us determine the top composition factors of X−
1,1 ⊠X−

1,1. Let π be the surjection from
X−

1,1 ⊠X−
1,1 to top(X−

1,1 ⊠X−
1,1). Let ψ

∗ be an arbitrary element of A0((top(X−
1,1 ⊠X−

1,1))
∗).

Let ϕ1 and ϕ2 be arbitrary elements of X−
1,1. Let {v+, v−} be a baisis of the highest weight

space of X−
1,1. For n ≥ 1, let

{
v
(n)
i
2

, v
(n)
−i
2

}n+1

i=1
be the basis of the Virasoro highest weight

space of the vector subspace (2n+ 2)L(∆−
1,1;n) ⊂ X−

1,1. Let us consider the value

⟨ψ∗, ϕ1 ⊗ ϕ2⟩ = ⟨ψ∗, π ◦ Y⊠(ϕ1 ⊗ ϕ2)⟩.

By using Lemma 8.1.6 we see that ⟨ψ∗, ϕ1 ⊗ ϕ2⟩ is determined by the values

⟨ψ∗, U(L).vϵ ⊗ vϵ′⟩, ⟨ψ∗, U(L).vϵ ⊗ v(n)± i
2

⟩

for some n ≥ 1 and i, where ϵ = + or − and ϵ′ = + or −. By Proposition 7.2.6, we can see
that there is no highest weight of simple modules that gives the L0 weight of ψ

∗ such that
⟨ψ∗, vϵ⊗ v(n)± i

2

⟩ is non-zero. Thus by using Lemma 8.1.6 again, we see that ⟨ψ∗, ϕ1⊗ ϕ2⟩ is
determined by the values

⟨ψ∗, U(L).vϵ ⊗ vϵ′⟩.

By Proposition 7.2.6, we see that the L0-eigenvalue of ψ∗ is the highest weight of X+
1,1.

Thus, noting W±[0]ψ∗ = 0, ⟨ψ∗, vϵ ⊗ v(n)± i
2

⟩ = 0 and

W±[−h]v± = 0 for h < ∆−
1,1;1 −∆−

1,1;0,
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we have ⟨ψ∗, v± ⊗ v±⟩ = 0. Therefore ⟨ψ∗, ϕ1 ⊗ ϕ2⟩ is determined by the values

⟨ψ∗, U(L).v+ ⊗ v−⟩.

Then, by Proposition 7.2.6, we have

top(X−
1,1 ⊠ X−

1,1) = X+
1,1. (8.4.3)

Note that by Lemma 8.4.6 X−
1,1⊠X−

1,1 has K∗
1,1 as a subquotient. Assume X−

1,1⊠X−
1,1 ≇ K∗

1,1.
Then noting (8.4.3) we see that X−

1,1⊠X−
1,1 has a submodule whose top composition factors

are given by some direct sum of X−
p+−1,1 and X−

1,p−−1. Hence, by the rigidity of K2,1

and K1,2 and by Proposition 8.3.9, we see that at least one of K1,2 ⊠ (X−
1,1 ⊠ X−

1,1) and
K2,1 ⊠ (X−

1,1 ⊠ X−
1,1) contains X−

1,p− or X−
p+,1 as composition factors, respectively. On the

other hand, by the associativity and Proposition 8.3.9, we have

K1,2 ⊠ (X−
1,1 ⊠ X−

1,1) = (K1,2 ⊠ X−
1,1)⊠ X−

1,1 = X−
1,2 ⊠ X−

1,1,

K2,1 ⊠ (X−
1,1 ⊠ X−

1,1) = (K2,1 ⊠ X−
1,1)⊠ X−

1,1 = X−
2,1 ⊠ X−

1,1.

Similar to the case of X−
1,1⊠X−

1,1, we can see that the top composition factors of X−
1,2⊠X−

1,1

and X−
2,1 ⊠X−

1,1 are X+
1,2 and X+

2,1, respectively. In particular, we have X−
1,2 ⊠X−

1,1 ∈ Cthick
1,2

and X−
2,1 ⊠ X−

1,1 ∈ Ca
2,1, where a = thick for p+ ≥ 3 and a = thin for p+ = 2. But since

X−
1,p− ∈ C

thin
p+−1,p− and X−

p+,1 ∈ Cthin
p+,p−−1, we have a contradiction.

Next we prove the second equation. By the exact sequence

0→ X+
1,1 → K1,1 → L(h1,1)→ 0,

we have a surjection

X−
1,1 ⊠ X+

1,1
π−→ X−

1,1 → 0.

As in the case of the proof of the first equation, by using the rigidities of K1,2 and K2,1,
we can show Kerπ = 0. Thus we obtain X−

1,1 ⊠ X+
1,1 ≃ X−

1,1

By Propositions 8.3.9, 8.4.5 and 8.4.7, we obtain the following proposition.

Proposition 8.4.8.

1. For 1 ≤ r ≤ p+ − 1, 1 ≤ s ≤ p− − 1, we have

X−
1,1 ⊠ X−

r,s = K∗
r,s,

X−
1,1 ⊠Kr,s = X−

r,s,

X−
1,1 ⊠ X+

r,s = X−
r,s.

2. For 1 ≤ s ≤ p−, we have

X−
1,1 ⊠ X±

p+,s = X∓
p+,s.

3. For 1 ≤ r ≤ p+, we have

X−
1,1 ⊠ X±

r,p− = X∓
r,p− .
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8.5 The self-duality of Q(X±r,s)•,• and P±r,s
In this section, we will compute the tensor product K ⊠ Q(X±

r,s)•,• and K ⊠ P±
r,s, where

K = K1,2 or K2,1. Then we will show that all simple modules in the thin blocks and all
indecomposable modules Q(X±

r,s)•,• and P±
r,s are self-dual. In the following Propositions

8.5.1 and 8.5.2, we will determine the tensor product K1,2 ⊠ X±
•,p− and K2,1 ⊠ X±

p+,•.

Proposition 8.5.1.

K1,2 ⊠ X±
p+,p− = Q(X±

p+,p−−1)p+,1,

K2,1 ⊠ X±
p+,p− = Q(X±

p+−1,p−)1,p− .

Proof. Similar to Lemma 8.3.14, we can show that the tensor product K1,2 ⊠ X±
•,p− and

K2,1 ⊠ X±
p+,• are non-zero. Since X±

p+,p− is projective, by the rigidity of K1,2 and K2,1,
K1,2 ⊠ X±

p+,p− and K2,1 ⊠ X±
p+,p− become projective modules. Thus, by Propositions 8.3.2

and 8.3.3, we obtain the proposition.

Proposition 8.5.2.

1. For 1 ≤ r ≤ p+ − 1, we have

K1,2 ⊠ X±
r,p− = Q(X±

r,p−−1)r,1.

2. For 1 ≤ s ≤ p− − 1, we have

K2,1 ⊠ X±
p+,s = Q(X±

p+−1,s)1,s.

Proof. We only prove K1,2 ⊠X+
r,p− = Q(X+

r,p−−1)r,1. The other equations can be proved in
the same way, so we omit the proofs.

By Proposition 8.3.2 and Lemma 8.3.14, we have

top(K1,2 ⊠ X+
r,p−) = X

+
r,p−−1 (8.5.1)

and a surjection from K1,2 ⊠ X+
r,p− to K∗

r,p−−1.

Let r = 1. Assume that K1,2 ⊠ X+
1,p− has X−

p+−1,p−−1 as a composition factor. Then

K2,1 ⊠ (K1,2 ⊠ X+
1,p−) ≃ K1,2 ⊠ X+

2,p−

has X−
p+,p−−1 ∈ Cthin

p+,1 as a composition factor. But, by (8.5.1) and Proposition 8.5.1, we

have a contradiction because K1,2⊠X+
2,p− ∈ C

thick
2,p−−1 for p+ ≥ 3 and K1,2⊠X+

2,p− ∈ C
thin
2,p−−1

for p+ = 2. Inductively, we see that K1,2 ⊠X+
r,p− does not have X−

r∨,p−−1 as a composition
factor.

By Lemma 8.3.10 and the self-duality of K1,2, we see that

HomCp+,p−
(X+

r,p−−1,K1,2 ⊠ X+
r,p−) = C.

Thus by Proposition 7.3.9 we obtain K1,2 ⊠ X+
r,p− ≃ Q(X

+
r,p−−1)r,1.
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Proposition 8.5.3. The tensor products of K1,2 ⊠ Q(X±
r,s)•,• and K2,1 ⊠ Q(X±

r,s)•,• are
given by :

1. For 1 ≤ r ≤ p+ − 1, 2 ≤ s ≤ p− − 1,

K1,2 ⊠Q(X±
r,s)r∨,s = Q(X±

r,s−1)r∨,s−1 ⊕Q(X±
r,s+1)r∨,s+1.

2. For 1 ≤ r ≤ p+, 2 ≤ s ≤ p− − 2,

K1,2 ⊠Q(X±
r,s)r,s∨ = Q(X±

r,s−1)r,s∨+1 ⊕Q(X±
r,s+1)r,s∨−1.

3. For p+ ≥ 3, 2 ≤ r ≤ p+ − 1, 1 ≤ s ≤ p− − 1,

K2,1 ⊠Q(X±
r,s)r,s∨ = Q(X±

r−1,s)r−1,s∨ ⊕Q(X±
r+1,s)r+1,s∨ .

4. For p+ ≥ 3, 2 ≤ r ≤ p+ − 2, 1 ≤ s ≤ p−,

K2,1 ⊠Q(X±
r,s)r∨,s = Q(X±

r−1,s)r∨+1,s ⊕Q(X±
r+1,s)r∨−1,s.

5. For 1 ≤ r ≤ p+ − 1,

K1,2 ⊠Q(X±
r,1)r∨,1 = Q(X±

r,2)r∨,2.

6. For 1 ≤ r ≤ p+,

K1,2 ⊠Q(X±
r,p−−1)r,1 = 2X±

r,p− ⊕Q(X
±
r,p−−2)r,2.

7. For 1 ≤ s ≤ p− − 1,

K2,1 ⊠Q(X±
1,s)1,s∨ = Q(X±

2,s)2,s∨ .

8. For 1 ≤ s ≤ p−,

K2,1 ⊠Q(X±
p+−1,s)1,s = 2X±

p+,s ⊕Q(X±
p+−2,s)2,s.

9. For 1 ≤ r ≤ p+, 1 ≤ s ≤ p−,

K1,2 ⊠Q(X±
r,1)r,p−−1 = 2X∓

r,p− ⊕Q(X
±
r,2)r,p−−2,

K2,1 ⊠Q(X±
1,s)p+−1,s = 2X∓

p+,s ⊕Q(X±
2,s)p+−2,s.

Proof. We will only prove

K1,2 ⊠Q(X+
r,s)r∨,s = Q(X+

r,s−1)r∨,s−1 ⊕Q(X+
r,s+1)r∨,s+1 (8.5.2)

for 1 ≤ r ≤ p+ − 1, 2 ≤ s ≤ p− − 1. The other equations can be proved in a similar way,
so we omit the proofs. By the rigidity of K1,2 the composition factors of K1,2⊠Q(X+

r,s)r∨,s
is given by

X+
r,s−1, Kr,s−1, 2X−

r∨,s−1, X
+
r,s+1, Kr,s+1, 2X−

r∨,s+1.
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By using Lemma 8.3.10 and the self-duality of K1,2, we can see that

HomCp+,p−
(K1,2 ⊠Q(X+

r,s)r∨,s,X+
r,s−1) = C,

HomCp+,p−
(K1,2 ⊠Q(X+

r,s)r∨,s,X+
r,s+1) = C,

HomCp+,p−
(K1,2 ⊠Q(X+

r,s)r∨,s, 2X−
r∨,s−1 ⊕ 2X−

r∨,s+1) = 0.

Thus by Proposition 7.3.9 we obtain (8.5.2).

By Proposition 8.5.3, we obtain the following theorems.

Theorem 8.5.4. All indecomposable modules of type Q(X•,•)•,• are rigid and self-dual.

Theorem 8.5.5. All simple modules in the thin blocks and the semi-simple blocks are
rigid and self-dual.

Since X+
1,1 ⊠ X±

a,b = X
±
a,b for any simple module X±

a,b in the thin blocks and the semi-
simple blocks, by Propositions 8.5.1, 8.5.2 and 8.5.3, we obtain the following proposition.

Proposition 8.5.6. For any indecomposable module Q(X±
a,b)c,d of type Q(X•,•)•,•, we have

X+
1,1 ⊠Q(X±

a,b)c,d = Q(X
±
a,b)c,d.

By Propositions 8.4.8, 8.5.1, 8.5.2 and 8.5.3, we obtain the following proposition.

Proposition 8.5.7. For any indecomposable module Q(X±
a,b)c,d of type Q(X•,•)•,•, we have

X−
1,1 ⊠Q(X±

a,b)c,d = Q(X
∓
a,b)c,d.

Since all indecomposable modules of types Q(X±
•,p−)•,p− , Q(X

±
p+,•)p+,• and P±

•,• are
projective and generated from the top composition factor, by using Lemma 8.3.10, we
obtain the following propositions.

Proposition 8.5.8.

1. For 1 ≤ r ≤ p+ − 1, we have

K1,2 ⊠Q(X±
r,p−)r∨,p− = P±

r,p−−1.

2. For 1 ≤ s ≤ p− − 1, we have

K2,1 ⊠Q(X±
p+,s)p+,s∨ = P±

p+−1,s.

Proposition 8.5.9. The fusion products of K1,2 ⊠ P±
r,s and K2,1 ⊠ P±

r,s are given by :

1. For 1 ≤ r ≤ p+ − 1, 2 ≤ s ≤ p− − 2,

K1,2 ⊠ P±
r,s = P±

r,s−1 ⊕ P±
r,s+1.

2. For p+ ≥ 3, 2 ≤ r ≤ p+ − 2, 1 ≤ s ≤ p− − 1,

K2,1 ⊠ P±
r,s = P±

r−1,s ⊕ P±
r+1,s.
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3. For 1 ≤ r ≤ p+ − 1, s = 1,

K1,2 ⊠ P±
r,p−−1 = 2Q(X±

r,p−)r∨,p− ⊕ P
±
r,p−−2.

4. For r = 1, 1 ≤ s ≤ p− − 1,

K2,1 ⊠ P±
p+−1,s = 2Q(X±

p+,s)p+,s∨ ⊕ P±
p+−2,s.

5. For 1 ≤ r ≤ p+ − 1, 1 ≤ s ≤ p− − 1,

K1,2 ⊠ P±
r,1 = 2Q(X∓

r,p−)p+−r,p− ⊕ P±
r,2,

K2,1 ⊠ P±
1,s = 2Q(X∓

p+,s)p+,p−−s ⊕ P±
2,s.

From the above propositions, we obtain the following theorem.

Theorem 8.5.10. All indecomposable modules P±
r,s are rigid and self-dual.

By Propositions 8.5.7 and 8.5.9, we obtain the following propositions.

Proposition 8.5.11. For 1 ≤ r ≤ p+ − 1, 1 ≤ s ≤ p− − 1, we have

X+
1,1 ⊠ P±

r,s = P±
r,s.

Proposition 8.5.12. For 1 ≤ r ≤ p+ − 1, 1 ≤ s ≤ p− − 1, we have

X−
1,1 ⊠ P±

r,s = P∓
r,s.
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Chapter 9

Non-semisimple fusion rings

Let Ip+,p− be the set consisting of all simple modules of type X±
r,s and all indecomposable

modules Q(X±
r,s)•,• and P±

r,s, and let Sp+,p− be the set consisting of all simple modules of
type X±

r,s. In this chapter, we consider the structure of commutative rings P 0(Cp+,p−) and
K0(Cp+,p−) defined on Ip+,p− and Sp+,p− , respectively. We will also discuss the relation-
ship between these commutative rings and the non-semisimple fusion ring P (Cp) and the
Grothendieck ring K(Cp) of the triplet W -algebra Wp.

In Section 9.3, we introduce a braided tensor category C0p+,p− , which is defined by the
quotient of the abelian category Cp+,p− by the Serre subcategory Minp+,p− consisting of
all minimal simple modules L(hr,s). This category C0p+,p− is expected to be equivalent to
gp+,p−-mod, as the abelian category, and even ribbon tensor equivalent. See [9],[22],[23]
for the quantum group gp+,p− .

9.1 The ring structure of P 0(Cp+,p−)
As in the subsection 5.3 in [64], we introduce the free abelian group P 0(Cp+,p−) of rank
8p+p− − 4p+ − 4p− + 2 generated by all simple modules, all projective modules and all
indecomposable modules Q(X±

r,s)•,•

P 0(Cp+,p−) =

p+⊕
r=1

p−⊕
s=1

⊕
ϵ=±

Z[X ϵ
r,s]P ⊕

p+−1⊕
r=1

p−−1⊕
s=1

⊕
ϵ=±

Z[Pϵ
r,s]P

⊕
p+−1⊕
r=1

p−−1⊕
s=1

⊕
ϵ=±

Z[Q(X ϵ
r,s)r∨,s]P ⊕

p+−1⊕
r=1

p−−1⊕
s=1

⊕
ϵ=±

Z[Q(X ϵ
r,s)r,s∨ ]P

⊕
p+−1⊕
r=1

⊕
ϵ=±

Z[Q(X ϵ
r,p−)r∨,p− ]P ⊕

p−−1⊕
s=1

⊕
ϵ=±

Z[Q(X ϵ
p+,s)p+,s∨ ]P

For any M ∈ Cp+,p− which have minimal simple modules in the Socle, let π0(M) be the
quotient module of M quotiented by all the minimal simple modules in the Socle. We
define the endfunctor π of Cp+,p− by the condition that for any M in Cp+,p−

π(M) =

{
π0(M) M contains minimal simple modules in Soc(M)

M otherwise

Then, from the results presented in the previous chapter, we can define the structure of
a commutative ring on P 0(Cp+,p−) such that the product as a ring is given by

[M1]P · [M2]P = [π(M1 ⊠M2)]P ,

where M1,M2 ∈ Ip+,p− and we extend the symbol [•]P as follows[ n⊕
i≥1

Ni

]
P
=

n⊕
i≥1

[Ni]P
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for any Ni ∈ Ip+,p− and any n ∈ Z≥1.

Remark 9.1.1. By Propositions 8.4.3, 8.4.4, 8.4.5, 8.4.7 and 8.4.8, we see that the
tensor product does not close on the set Ip+,p−. Therefore, to define the structure of a
commutative ring on P 0(Cp+,p−), we need to quotient by the minimal simple modules.
Note that

π(X+
r,s ⊠M) = X+

r,s ⊠M = Kr,s ⊠M, 1 ≤ r ≤ p+ − 1, 1 ≤ s ≤ p− − 1,

for any rigid indecomposable module M in Ip+,p−.

The three operators

X = π(X+
1,2 ⊠−), Y = π(X+

2,1 ⊠−), Z = π(X−
1,1 ⊠−)

define Z-linear endomorphism of P 0(Cp+,p−). Thus P
0(Cp+,p−) is a module over Z[X,Y, Z].

We define the following Z[X,Y, Z]-module map

ψ : Z[X,Y, Z]→ P 0(Cp+,p−),

f(X,Y, Z) 7→ f(X,Y, Z) · [X+
1,1]P .

Before examining the action of Z[X,Y, Z] on P 0(Cp+,p−), we introduce the following Cheby-
shev polynomials.

Definition 9.1.2. We define Chebyshev polynomials Un(A), n = 0, 1, · · · ∈ Z[A] recur-
sively

U0(A) = 1, U1(A) = A,

Un+1(A) = AUn(A)− Un−1(A).

Note that the coefficient of the leading term of Un(A) is 1.
The goal of this section is to prove the following theorem.

Theorem 9.1.3. The Z[X,Y, Z]-module map ψ is surjective and the kernel of ψ is given
by the following ideal

kerψ = ⟨Z2 − 1, U2p−−1(X)− 2ZUp−−1(X), U2p+−1(Y )− 2ZUp+−1(Y )⟩.

We will show some propositions to prove this theorem.
By Propositions 8.4.4 and 8.4.8, all simple modules can be expressed using the Cheby-

shev polynomials as follows.

Proposition 9.1.4. For 1 ≤ r ≤ p+, 1 ≤ s ≤ p−, we have

[X+
r,s]P = Us−1(X)Ur−1(Y )[X+

1,1]P , [X−
r,s]P = ZUs−1(X)Ur−1(Y )[X+

1,1]P .

By Proposition 8.5.2, we have the following proposition.

Proposition 9.1.5. For 1 ≤ r ≤ p+ − 1, 1 ≤ s ≤ p− − 1, we have

[Q(X+
r,p−−1)r,1]P = XUr−1(Y )Up−−1(X)[X+

1,1]P ,

[Q(X+
p+−1,s)1,s]P = Y Up+−1(Y )Us−1(X)[X+

1,1]P .
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By Propositions 8.5.3 and 9.1.5, we obtain the following proposition.

Proposition 9.1.6.

1. For 1 ≤ r ≤ p+, 1 ≤ s ≤ p− − 1, we have

[Q(X+
r,s)r,s∨ ]P =

(
U2p−−s−1(X) + Us−1(X)

)
Ur−1(Y )[X+

1,1]P .

2. For 1 ≤ r ≤ p+ − 1, 1 ≤ s ≤ p−, we have

[Q(X+
r,s)r∨,s]P =

(
U2p+−r−1(Y ) + Ur−1(Y )

)
Us−1(X)[X+

1,1]P .

3. We have the following relations(
U2p−−1(X)− 2ZUp−−1(X)

)
[X+

1,1]P = 0,(
U2p+−1(Y )− 2ZUp+−1(Y )

)
[X+

1,1]P = 0.
(9.1.1)

By Proposition 8.5.8, we have the following proposition.

Proposition 9.1.7. For 1 ≤ r ≤ p+ − 1, we have

[P+
r,p−−1]P =

(
U2p+−r−1(Y ) + Ur−1(Y )

)(
Up−(X) + Up−−2(X)

)
[X+

1,1]P ,

[P+
p+−1,s]P =

(
U2p−−s−1(X) + Us−1(X)

)(
Up+(Y ) + Up+−2(Y )

)
[X+

1,1]P .

By Propositions 8.5.9 and 9.1.7, we obtain the following proposition.

Proposition 9.1.8. For 1 ≤ r ≤ p+ − 1, 1 ≤ s ≤ p− − 1, we have

[P+
r,s]P =

(
U2p+−r−1(Y ) + Ur−1(Y )

)(
U2p−−s−1(X) + Us−1(X)

)
[X+

1,1]P .

From the above propositions, we can prove Theorem 9.1.3.

Proof of Theorem 9.1.3. By the above propositions and Propositions 8.4.8, 8.5.7, 8.5.12,
we can see that ψ is surjective. We define the following ideal of Z[X,Y, Z]

I = ⟨Z2 − 1, U2p−−1(X)− 2ZUp−−1(X), U2p+−1(Y )− 2ZUp+−1(Y )⟩.

Then, by the relations (9.1.1) and by Propositions 8.4.8, 8.5.7, 8.5.12, we see that I is
contained in kerψ. It is easy to see that the dimension of the quotient ring Z[X,Y, Z]/I
is 8p+p− − 4p+ − 4p− + 2. Therefore we have kerψ = I.

For p ≥ 2 let Cp be the abelian category of modules of the triplet W -algebra Wp. As
in shown [1],[58], Cp has 2p simple modules X±

s (s = 1, . . . , p) and 2(p − 1) projective
coves P±

s of simple modules X±
s , where we use the notation in [58]. Since Wp is C2-

cofinite, Cp has braided tensor category structure as developed in the series of papers

111



[37, 38, 39, 40, 41, 42, 43, 44]. The structure of this braided tensor category is completely
determined by [56] and [64]. Let

P (Cp) :=
p⊕

s=1

⊕
ϵ=±

Z[X ϵ
s ]P ⊕

p−1⊕
s=1

⊕
ϵ=±

Z[Pϵ
s ]P

be the free abelian group of rank 4p− 2. P (Cp) has the structure of a commutative ring
where the product as a ring is given by [•]P · [•]P = [• ⊠ •]P and the unit is [X+

1 ]P . As
shown in [64], P (Cp) is generated by [X+

1 ]P , [X+
2 ]P and [X−

1 ]P , and is isomorphic to

Z[X,Z]
⟨Z2 − 1, U2p−1(X)− 2ZUp−1(X)⟩

,

where

[X+
1 ]P 7→ 1, [X+

2 ]P 7→ X, [X−
1 ]P 7→ Z.

By Theorem 9.1.3, we obtain the following proposition.

Proposition 9.1.9. By setting X = 0 or Y = 0 in P 0(Cp+,p−), we obtain two fusion rings
P (Cp+) and P (Cp−):

P (Cp+)
X=0←−−−−− P 0(Cp+,p−)

Y=0−−−−−→ P (Cp−).

9.2 The ring structure of K0(Cp+,p−)
In this section, we introduce a certain Grothendieck ring K0(Cp+,p−) and review the struc-
ture of this ring in our setting. The structure of the Grothendieck ring K0(Cp+,p−) is
determined by Ridout and Wood [61] (cf. [22],[60],[66]). They determine the structure of
K0(Cp+,p−) using the Verlinde ring of the singlet W -algebra consisting of the characters
of the singlet W -algebra.

Let us introduce the rank 2p+p− + (p+−1)(p−−1)
2

Grothendieck group of Cp+,p−

K(Cp+,p−) =

p+⊕
r=1

p−⊕
s=1

⊕
ϵ=±

Z[X ϵ
r,s]K ⊕

⊕
(r,s)∈T

Z[L(hr,s)]K .

K(Cp+,p−) has the structure of a commutative ring where the product as a ring is given
by

[•]K · [•]K = [•⊠ •]K .
Note that K(Cp+,p−) has the ideal generated by all minimal simple modules L(hr,s). Let
K0(Cp+,p−) be the quotient ring of K(Cp+,p−) quotiented by this ideal. The three operators

X = π(X+
1,2 ⊠−), Y = π(X+

2,1 ⊠−), Z = π(X−
1,1 ⊠−)

define Z-linear endomorphism ofK0(Cp+,p−). ThusK
0(Cp+,p−) is a module over Z[X,Y, Z].

We define the following Z[X,Y, Z]-module map

ϕ : Z[X,Y, Z]→ K0(Cp+,p−),

f(X,Y, Z) 7→ f(X,Y, Z) · [X+
1,1]K .

As in the case of P 0(Cp+,p−), we can prove the following theorem.
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Theorem 9.2.1. The Z[X,Y, Z]-module map ϕ is surjective and the kernel of ϕ is given
by the following ideal

kerϕ = ⟨Z2 − 1, Up−(X)− Up−−2(X)− 2Z,Up+(Y )− Up+−2(Y )− 2Z⟩.

Let us consider the relationship between K0(Cp+,p−) and the rank 2p Grothendieck
group

K(Cp) :=
p⊕

s=1

⊕
ϵ=±

Z[X ϵ
s ]K .

of the triplet W -algebra. K(Cp) has the structure of a commutative rings and, as shown
in [64], is isomorphic to the ring

Z[X,Z]
⟨Z2 − 1, Up(X)− Up−2(X)− 2Z⟩

,

where

[X+
1 ]K 7→ 1, [X+

2 ]K 7→ X, [X−
1 ]K 7→ Z.

By Theorem 9.2.1, we obtain the following proposition.

Proposition 9.2.2. By setting [X+
1,2]K = 0 or [X+

2,1]K = 0 in K0(Cp+,p−), we obtain two
Grothendieck rings K(Cp+) and K(Cp−):

K(Cp+)
[X+

1,2]K=0
←−−−−−−−− K0(Cp+,p−)

[X+
2,1]K=0

−−−−−−−−→ K(Cp−).

Remark 9.2.3. By setting Up+−1(X) = Up−−1(Y ) = 1 in P 0(Cp+,p−), we obtain K
0(Cp+,p−).

9.3 The braided tensor category C0p+,p−
Let Minp+,p− be the full subcategory of Cp+,p− consisting of the whole minimal simple
modules L(hr,s). Since

Ext1(L(hr,s), L(hr′,s′)) = 0, 1 ≤ r, r′ < p+, 1 ≤ s, s′ < p−,

Minp+,p− is a Serre subcategory. Let

C0p+,p− := Cp+,p−/Minp+,p−

be the quotient of the abelian category Cp+,p− by the Serre subcategory Minp+,p− . Since
by Corollary 8.2.5 L(hr,s)⊠M ∈ Minp+,p− for anyM ∈ Cp+,p− , the abelian category C0p+,p−

has the structure of a braided tensor category.
Before we examine the properties of C0p+,p− , let us review some properties of weakly

rigid tensor category according to [53],[64].
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Definition 9.3.1. Let (C,⊗,1) be a tensor category. We say that an object M is weakly
rigid if the contravariant functor

FM(−) = HomC(−⊗M,1)

is representable.

For the proof of the following proposition, see Appendix A in [53].

Proposition 9.3.2. Let C be a weakly rigid tensor category. Assume that C satisfies the
following properties

1. C has enough projective and injective objects.

2. All projective objects are injective and all injective objects are projective.

3. All projective objects are rigid.

Then if

0→ L→M → N → 0

is an exact sequence in C such that two of L, M , N are rigid, then the third object is also
rigid.

Note that, in the braided tensor category C0p+,p− , the unit object is given by

K1,1 ≃ K∗
1,1 ≃ X+

1,1. (9.3.1)

Thus, by (9.3.1) and by Lemma 8.3.13, we obtain the following proposition.

Proposition 9.3.3. The braided tensor category C0p+,p− is weakly rigid.

From the results in Chapters 7 and 8, we obtain the following propositions.

Proposition 9.3.4. In the abelian category C0p+,p−, the indecomposable modules Q(X±
•,p−)•,p−,

Q(X±
p+,•)p+,• and P±

r,s are projective.

Proposition 9.3.5. In the braided tensor category C0p+,p−, all simple modules X±
r,s and all

indecomposable modules Q(X±
r,s)•,• and P±

r,s are rigid.

Proof. Since Kr,s ≃ X+
r,s in C0p+,p− , it is sufficient to show that all simple module X−

r,s are
rigid. Note that

X−
1,1 ⊠ X+

r,s = X−
r,s

in C0p+,p− . Thus it is sufficient to show that X−
1,1 is rigid. Then we can see that the rigidity

of X−
1,1 follows by choosing the evaluation map and coevaluation map as

evX−
1,1

= IdX−
1,1

: X−
1,1 ⊠ X−

1,1
∼−→ X+

1,1, coevX−
1,1

= IdX−
1,1

: X+
1,1

∼−→ X−
1,1 ⊠ X−

1,1.
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Since the projective covers of all simple modules are rigid in C0p+,p− , by Proposition
9.3.2, we obtain the following theorem.

Theorem 9.3.6. The braided tensor category C0p+,p− is rigid.

Let us define the following full subcategories of C0p+,p−

Definition 9.3.7. Let 1 ≤ r ≤ p+ − 1, 1 ≤ s ≤ p− − 1.

1. Let C1,s be the full abelian subcategory of C0p+,p− defined by

M ∈ C1,s

⇔ all composition factors of M are given by X+
1,s and X−

1,s∨ .

2. Let Cr,1 be the full abelian subcategory of C0p+,p− defined by

M ∈ Cr,1

⇔ all composition factors of M are given by X+
r,1 and X−

r∨,1.

3. Let C±
1,p− be the full abelian subcategory of C0p+,p− defined by

M ∈ C±
1,p−

⇔ all composition factors of M are given by X±
1,p− .

4. Let C±
1,p− be the full abelian subcategory of C0p+,p− defined by

M ∈ C±
p+,1

⇔ all composition factors of M are given by X±
p+,1.

Definition 9.3.8. Let C1,p− and Cp+,1 be the following full subcategories of C0p+,p−:

C1,p− :=

p−−1⊕
s=1

C1,s ⊕ C+
1,p− ⊕ C

−
1,p− , Cp+,1 :=

p+−1⊕
r=1

Cr,1 ⊕ C+
p+,1 ⊕ C−

p+,1.

By the results in Chapters 7 we obtain the following proposition.

Proposition 9.3.9. Let 1 ≤ r ≤ p+ − 1, 1 ≤ s ≤ p− − 1.

1. In C1,p−, Q(X+
1,s)1,s∨ and Q(X−

1,s∨)1,s are the projective covers of X+
1,s and X−

1,s∨,
respectively.

2. In Cp+,1, Q(X+
r,1)r∨,1 and Q(X−

r∨,1)r,1 are the projective covers of X+
r,1 and X−

r∨,1,
respectively.

3. In C1,p−, the simple module X±
1,p− ∈ C

±
1,p− is projective.

4. In Cp+,1, the simple module X±
p+,1 ∈ C±

p+,1 is projective.

Then, similar to the arguments in Section 6 of [58], we obtain the following proposition.
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Proposition 9.3.10. We have the following equivalences as the abelian categories

C1,p− ≃ Cp− , Cp+,1 ≃ Cp+ .

Theorem 9.3.11. C1,p− and Cp+,1 are braided tensor subcategories of C0p+,p−. Furthermore,
we have the following equivalences as the braided tensor categories

C1,p− ≃ Cp− , Cp+,1 ≃ Cp+ .

Proof. The structure of the tensor product between all indecomposable modules of Cp
is determined by [64]. Then, by Proposition 9.3.10 and by the results in Section 9.1,
we see that the tensor structures of C1,p− and Cp+,1 coincide with those of Cp− and Cp+ ,
respectively.

Let gp+,p−-mod be the category of finite dimensional gp+,p−-modules, where gp+,p− is
the quantum group constructed by Feigin et al.[22].

Conjecture 9.3.12. The braided tensor category C0p+,p− is ribon tensor equivalent to
gp+,p−-mod.

Remark 9.3.13. The equivalence of the ribbon tensor categories Cp and U q(sl2)-mod is

proved in [34], where U q(sl2) (q = e
πi
p ) is the restricted quantum group.

Remark 9.3.14. gp+,p− is a Hopf algebra over C generated by e±, f± and K±1 with
relations

KK−1 = K−1K = 1, e
p±
± f

p±
± = 0, K2p+p− = 1,

Ke±K
−1 = q2±e±, Kf±K

−1 = q−2
± f±,

e+e− = e−e+, f+f− = f−f+, e±f∓ = f∓e±,

[e±, f±] =
Kp∓ −K−p∓

q
p∓
± − q

−p∓
±

,

where q± = q2p∓ = exp(π
√
−1

p±
).

In [23], it is shown that the restricted quantum groups U q
p∓
±
(sl2) = ⟨e±, f±, K±⟩ are

embedded in gp+,p− by

e± 7→ e±, f± 7→ f±, K± 7→ Kp∓

and that

gp+,p− ≃ U q
p−
+
(sl2)⊗ U q

p+
−
(sl2)/(K

p−
+ ⊗ 1− 1⊗Kp+

− ),

where (K
p−
+ ⊗ 1− 1⊗Kp+

− ) is the Hopf ideal generated by (K
p−
+ ⊗ 1− 1⊗Kp+

− ). For more
detailed structure of gp+,p−, see [9].
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Chapter 10

Representation theory of the Neveu-
Schwarz algebra

There are two minimal extensions of the Virasoro algebra with N = 1 supersymmetry:
the Neveu Schwarz algebra and the Ramond algebra. In this thesis, we only consider the
Neveu-chwarz algebra. The N = 1 Neveu-Schwarz algebra is the Lie superalgebra

ns =
⊕
n∈Z

CLn ⊕
⊕

r∈ 1
2
+Z

CGr ⊕
⊕

CC

with commutation relations (k, l ∈ Z, r, s ∈ Z+ 1
2
):

[Lk, Ll] = (k − l)Lk+l + δk+l,0
k3 − k
12

C,

[Lk, Gr] = (
1

2
k − r)Gk+r,

{Gr, Gs} = 2Lr+s +
1

3
(r2 − 1

4
)δr+s,0C,

[Lk, C] = 0, [Gr, C] = 0.

We identify C with a scalar multiple of the identity, C = c · id, when acting on modules
and refer to the number c ∈ C as the central charge. In this chapter we fix m ∈ Z≥1 and
review basic facts of representation theory of the Neveu-Schwarz algebra whose central
charge is

c = cN=1
1,2m+1 =

15

2
− 3(2m+ 1 +

1

2m+ 1
),

in accordance with the papers [11],[46],[47].

10.1 Free field realisation of the Neveu-Schwarz al-

gebra

The fermion algebra f is the Lie superalgebra

f =
⊕

r∈Z+ 1
2

Cbr ⊕ C1

with anti-commutation relations:

{br, bs} = δr+s,0, {br,1} = 0.

The fermion algebra f has the triangular decomposition

f± =
⊕
r>0

Cbr, f0 = C1.

117



Let C |0⟩NS be the one dimensional representation of f≥ = f+ ⊕ f0, which satisfy

1 |0⟩NS = |0⟩NS , f+ |0⟩NS = 0.

Definition 10.1.1. The Neveu-Schwarz fermionic Fock module F f is defined by

F f = Indf
f≥
C |0⟩NS .

Let b(z) =
∑

n∈Z+ 1
2
bnz

−n− 1
2 and we define the following energy-momentum tensor

T (f)(z) =
1

2
: ∂b(z)b(z) :=

∑
n∈Z

L(f)
n z

−n−2

whose central charge is c = 1
2
.

We set

β0 :=
√
2m+ 1− 1√

2m+ 1
.

We define the following bosonic energy-momentum tensor

T (B)(z) =
1

2
(: a(z)2 : +β0∂a(z)) =

∑
n∈Z

L(B)
n z−n−2

whose central charge is

c = 1− 3β2
0 = cN=1

1,2m+1 −
1

2
.

We introduce an even field and an odd field:

T (z) = T (B)(z) + T (f)(z),

G(z) = a(z)b(z) + β0∂b(z).

Proposition 10.1.2. T (z) and G(z) have the following operator product expansions

T (z)T (w) =
cβ0/2

(z − w)4
+

2T (w)

(z − w)3
+
∂T (w)

z − w
+ · · · ,

T (z)G(w) =
3
2
G(w)

(z − w)2
+
∂G(w)

z − w
+ · · · ,

G(z)G(w) =
2cβ0/3

(z − w)3
+

2T (w)

z − w
+ · · · ,

where cβ0 :=
3
2
− 3β2

0 = cN=1
1,2m+1. For the Fourier mode expansions of fields

T (z) :=
∑
n∈Z

Lnz
−n−2, G(w) :=

∑
r∈Z+ 1

2

Grz
−r− 3

2 ,
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each mode satisfies the following commutation or anti-commutation relations

[Lm, Ln] = (m− n)Lm+n + δm+n,0
m3 −m

12
cβ0 ,

[Lm, Gr] = (
1

2
m− r)Gm+r,

{Gr, Gs} = 2Lr+s +
1

3
(r2 − 1

4
)δr+s,0cβ0 .

Namely the each mode of the fields T (z) and G(z) generates the Neveu-Schwarz algebra
whose central charge is cβ0 =

3
2
− 3β2

0 = cN=1
1,2m+1.

Definition 10.1.3. For β ∈ C, we set

F ns
β := Fβ ⊗ F f

and call this tensor product Fock module simply.

From this section, we omit |β⟩⊗|0⟩NS as |β⟩ for any β ∈ C and omit the tensor product
symbols for brevity, identifying an with an ⊗ 1 and br with 1⊗ br.

We define the following two vectors in F ns
0

T =
1

2
(a2−1 + β0a−2 + b− 1

2
b− 3

2
) |0⟩ ,

G = (a−1b− 1
2
+ β0b− 3

2
) |0⟩ .

Definition 10.1.4. The Fock module F ns
0 carries the structure of a 1

2
Z-graded vertex

operator superalgebra, with

Y (|0⟩ ; z) = id, Y (a−1 |0⟩ ; z) = a(z), Y (b− 1
2
|0⟩ ; z) = b(z),

Y (G; z) = G(z), Y (T ; z) = T (z).

We denote this vertex operator superalgebra by Fns
β0
.

10.2 Structure of Fock modules

We set

β+ =
√
2m+ 1, β− = −

√
1

2m+ 1
.

For r, s, n ∈ Z, we set

βr,s;n :=
1− r
2

β+ +
1− s
2

β− +
n

2
β+, βr,s = βr,s;0,

and we use the abbreviation as F ns
r,s;n = F ns

βr,s;n
, F ns

r,s = F ns
βr,s

. For r, s, n ∈ Z, let us set

hnsr,s :=
1

8
(r2 − 1)(2m+ 1)− 1

4
(rs− 1) +

1

8
(s2 − 1)

1

2m+ 1
,

hnsr,s;n := hnsr−n,s = hnsr,s+(2m+1)n

and let Lns(h) be the simple ns-module whose highest weight and central charge are h
and cN=1

1,2m+1.
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Theorem 10.2.1 ([47]). For each r, s ∈ Z, r − s ∈ 2Z, the Fock module F ns
r,s ∈ Fns

β0
-Mod

has the following socle series as an ns-module:

1. For each F ns
1,s;n (1 ≤ s < 2m+ 1, n ∈ Z, s− n ∈ 2Z+ 1), we have

Soc(F ns
1,s;n) =

⊕
k≥0

Lns(hns1,2m+1−s;|n|+2k+1),

F ns
1,s;n/Soc(F

ns
1,s;n) =

⊕
k≥a

Lns(hns1,s;|n|+2k),

where a = 0 if n ≥ 0, a = 1 if n < 0.

2. For each F ns
1,2m+1;2n(n ∈ Z), we have

Soc(F ns
1,2m+1;2n) = F ns

1,2m+1;2n =
⊕
k≥0

Lns(hns1,2m+1;|2n|+2k).

We introduce the following two fields

Qns
+ (z) := b(z)Vβ+(z), Qns

− (z) := b(z)Vβ−(z).

The operator product expansions between these fields, T (z) and G(z) are given by:

T (z)Qns
± (w) ∼ ∂w

Qns
± (w)

z − w
, G(z)Qns

± (w) ∼
1

β±
∂w
Vβ±(w)

z − w
. (10.2.1)

By (10.2.1), the following operators become commutative with U(ns)-action:

Qns
+ :=

∮
z=0

Qns
+ (z)dz : F

ns
1,2k+1 → F ns

−1,2k+1, k ∈ Z,

Qns
− :=

∮
z=0

Qns
− (z)dz : F

ns
2k+1,1 → F ns

2k+1,−1, k ∈ Z.

Similar to (3.3.2), we introduce the non-trivial field

Q
ns[s]
− (z) : F ns

s+2k,s → F ns
s+2k,−s[[z, z

−1]], k ∈ Z,

as follows

Q
ns[s]
− (z) =

∫
Γs(κ−)

Qns
− (z)Q

ns
− (zx1)Q

ns
− (zx2) · · ·Qns

− (zxs−1)z
s−1dx1 · · · dxs−1

for s ≥ 2, where Γs(κ−) is a certain regularized cycle constructed from the simplex

∆s−1 = { (x1, . . . , xs−1) ∈ Rs−1 | 1 > x1 > · · · > xs−1 > 0 }.

The following proposition is due to [47].
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Proposition 10.2.2. For each s ≥ 2, the zero-mode

Q
ns[s]
− :=

∮
z=0

Q
ns[s]
− (z)dz : F ns

s+2k,s → F ns
s+2k,−s, k ∈ Z

is non trivial and commutative with ns-action of Fns
β0
-modules.

These fields Q
ns[•]
± (z) are called screening currents and the zero-modes Q

ns[•]
± are called

screening operators. The following theorem is due to [47].

Theorem 10.2.3 ([47]). For any 1 ≤ s ≤ 2m and n ∈ Z such that s − n is odd, let us
define the ns-modules

Kns
s;n = kerQ

ns[s]
− : F ns

1,s;n → F ns
1,−s;n.

Then Kns
s;n = Soc(F ns

1,s;n).
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Chapter 11

The N = 1 triplet vertex operator su-
peralgebra SW(m)

In Section 11.1, we review some results on the super tripletW -algebra SW(m) by Admović
and Milas in [2] briefly. In Section 11.3, we will construct logarithmic SW(m)-modules
SP±

• by using the logarithmic deformation by J. Fjeistad et al.[27]. By using the structure
of the structure of the logarithmic modules SP+

• , in Section 11.4, we review the structure
of the Zhu-algebra A(SW(m)) determined in [6].

11.1 Vertex operator superalgebras Vns
L and SW(m)

Fix any m ∈ Z≥1. Let L = Zβ+ = Z
√
2m+ 1 be an integer lattice.

Definition 11.1.1. The lattice vertex operator superalgebra Vns
L associated with L is the

quadruple

(
⊕
β∈L

F ns
β , |0⟩ , T,G, Y )

where the fields corresponding to |0⟩, a−1 |0⟩, b− 1
2
|0⟩, T and G are those of Fns

β0
and

Y (|β⟩ ; z) = Vβ(z), β ∈ L.

For each i ∈ Z, we introduce the following symbol

γi =
i

2m+ 1
β+ = −iβ−.

It is a known fact that simple Vns
L -modules are given by

Vns
L+γi

:=
⊕
n∈Z

F ns
β1,1;2n+γi

=
⊕
n∈Z

F ns
1,1+2i;2n, i = 0, . . . , 2m.

For each i ∈ {0, . . . ,m− 1}, we define

SX+
i+1 := ker Q

ns[2i+1]
− |Vns

L+γi

SX−
m−i := ker Q

ns[2(m−i)]
− |Vns

L+γ2m−i
.

By Proposition 10.2.3, we have the following decomposition as ns-modules

SX+
i+1 ≃

⊕
n∈Z≥0

(2n+ 1)Lns(hns1,2i+1;−2n)

SX−
m−i ≃

⊕
n∈Z≥1

(2n)Lns(hns1,2(m−i);−2n+1),

123



and

SX+
i+1 ≃ Vns

L+γ2m−i
/SX−

m−i

SX−
m−i ≃ Vns

L+γi
/SX+

i+1.

For i = m, we define

SX+
m+1 := Vns

L+γm ≃
⊕
n∈Z≥0

(2n+ 1)Lns(hns1,2m+1;−2n).

Define the following vertex superalgebra

SW(m) := ker Qns
− |Vns

L
.

Proposition 11.1.2 ([2]). SW(m) has the structure of a vertex operator superalgebra.

We call this vertex operator superalgebra the N = 1 triplet vertex operator superal-
gebra.

We define the following three elements in Vns
L

W− := |β1,1;−2⟩ , W 0 := Qns
+W

−, W+ := Qns
+ ◦Qns

+W
−.

These elements have the same L0-weight h1,3 = 2m + 1
2
. We define the following three

elements

Ŵ− := b− 1
2
|β1,1;−2⟩ , Ŵ 0 := Qns

+Ŵ
−, Ŵ+ := Qns

+ ◦Qns
+Ŵ

−.

These elements have the same L0-weight 2m+ 1.

Theorem 11.1.3 ([2]). The N = 1 triplet vertex operator superalgebra SW(m) is gener-
ated by Y (W±; z), Y (W 0; z), G(z). Furthermore SW(m) is strongly generated by

G(z), T (z), Y (W±; z), Y (W 0; z), Y (Ŵ±; z), Y (Ŵ 0; z).

Theorem 11.1.4 ([2]). The N = 1 triplet vertex operator superalgebra SW(m) is C2-
cofinite.

Let A(SW(m)) be the Zhu-algebra [68] of SW(m).

Proposition 11.1.5 ([2]). Zhu-algebra A(SW(m)) is generated by [Ŵ+], [Ŵ 0], [Ŵ−] and
[T ]. The generators satisfy the following relations:

[Ŵ 0] ∗ [Ŵ−]− [Ŵ−] ∗ [Ŵ 0] = −2f([T ])[Ŵ−],

[Ŵ 0] ∗ [Ŵ+]− [Ŵ+] ∗ [Ŵ 0] = 2f([T ])[Ŵ+],

[Ŵ+] ∗ [Ŵ−]− [Ŵ−] ∗ [Ŵ+] = −2f([T ])[Ŵ 0],

[Ŵ 0] ∗ [Ŵ 0] = g([T ]),

[Ŵ+] ∗ [Ŵ+] = 0,

[Ŵ−] ∗ [Ŵ−] = 0,

where f([T ]) and g([T ]) are non-trivial polynomials of [T ].

124



Proposition 11.1.6 ([2]).

1. For each 0 ≤ i ≤ m, SX+
i+1 becomes an simple SW(m)-module. The highest weight

space of SX+
i+1 becomes a one dimensional simple A(SW(m))-module.

2. For each 0 ≤ j ≤ m − 1, SX−
m−j becomes an simple SW(m)-module. The highest

weight space of SX−
m−i becomes a two dimensional simple A(SW(m))-module.

Proposition 11.1.7 ([2]). For each 0 ≤ i ≤ m − 1, the simple Vns
L -modules Vns

L+γi
and

Vns
L+γ2m−i

become SW(m)-modules and satisfy the following exact sequences:

0→ SX+
i+1 → Vns

L+γi
→ SX−

m−i → 0,

0→ SX−
m−i → Vns

L+γ2m−i
→ SX+

i+1 → 0.

Theorem 11.1.8 ([2]). All simple SW(m)-modules are completed by 2m + 1 simple
SW(m)-modules

{SX−
i : 1 ≤ i ≤ m} ∪ {SX+

i : 1 ≤ i ≤ m+ 1}.

For the dimension of Zhu-algebra A(SW(m)), the following theorem holds.

Theorem 11.1.9 ([2]).

dimCA(SW(m)) = 6m+ 1.

Remark 11.1.10. In [6], the structure of A(SW(m)) was determined. We will review
this theorem in Subsection 11.4.

11.2 The block decomposition of SCm
Definition 11.2.1. Let SCm be the abelian category of weak SW(m)-modules.

For anyM in SCm, letM∗ be the contragredient ofM . Note that SCm is closed under
contragredient.

We denote ExtnSCm
(•, •) by the n-th Ext groups in the abelian category SCm. The

following theorem can be proved in the same way as Theorem 4.4. in [1].

Theorem 11.2.2. For all i ̸= j

Ext1SCm
(SX+

i+1,SX+
j+1) = Ext1SCm

(SX−
m−i,SX−

m−j) = 0,

Ext1SCm
(SX+

i+1,SX−
m−j) = 0.

For each 0 ≤ i ≤ m − 1 we denote by Ci+1 the full abelian subcategory of SCm such
that

M ∈ Ci+1 ⇔ every composition factors of M are given by SX+
i+1,SX−

m−i.

We denote by Cm+1 the full abelian subcategory of SCm such that

M ∈ Cm+1 ⇔ every composition factors of M are given by SX+
m+1.

By Theorem 11.2.2, we have the following theorem.

Theorem 11.2.3. The abelian category SCm has the following block decomposition

SCm =
m⊕
i=0

Ci+1.
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11.3 Construction of logarithmic modules SP±•
Similar to the arguments in Section 5.1, we have the following proposition.

Proposition 11.3.1. For 0 ≤ i ≤ m − 1, the screening operators Q
[2i+1]
− , Q

[2(m−i)]
− are

SW(m) homomorphisms, that is, for A ∈ SW(m)

[Q
ns[2i+1]
− , Y (A; z)] = 0, [Q

ns[2(m−i)]
− , Y (A; z)] = 0.

For each 0 ≤ i ≤ m− 1, we set

SPγi = Vns
L+γi
⊕ Vns

L+γ2m−i
∈ Ci+1

and let (SPγi , YSPγi
) be the ordinary SW(m)-module. Let us consider the logarithmic de-

formation by the screening currents Q
ns[2i+1]
− (z) and Q

ns[2(m−i)]
− . Note that, by Proposition

11.3.1, for A ∈ SW(m) two fields ∆
Q

ns[2i+1]
−

(Y (A; z)) and ∆
Q

ns[2(m−i)]
−

(Y (A; z)) does not

contain a logz term. By using Theorem 5.1.4, we can define the structure of a logarithmic
module on SPγi .

Definition 11.3.2. For 1 ≤ i ≤ m − 1, we define SW(m)-modules (SP+
i+1, J

+
i+1) and

(SP−
m−i, J

−
m−i) as follows. As the vector spaces

SP+
i+1 = SP−

m−i = SPγi

and the module actions are defined by

J+
i+1(A; z) =

{
YSPγi

(A; z) + ∆
Q

ns[2i+1]
−

(YSPγi
(A; z)) on Vns

L+γi

YSPγi
(A; z) on Vns

L+γ2m−i
,

J−
m−i(A; z) =

{
YSPγi

(A; z) + ∆
Q

ns[2(m−i)]
−

(YSPγi
(A; z)) on Vns

L+γ2m−i

YSPγi
(A; z) on Vns

L+γi
.

for any A ∈ SW(m).

For any A ∈ SW(m), we use the following notation

J+
i+1(An) :=

∮
z=0

J+
i+1(A; z)z

n+∆A−1dz,

J−
m−i(An) :=

∮
z=0

J−
m−i(A; z)z

n+∆A−1dz.

For the energy momentum tensor T (z) = Y (T ; z), we have the following proposition.

Proposition 11.3.3.

1. On the Vns
L+γ2m−i

, we have

J+
i+1(T ; z) = T (z) +

Q
ns[2(m−i)]
− (z)

z
,

J+
i+1(L0) = L0 +Q

ns[2(m−i)]
− .
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2. On the Vns
L+γi

, we have

J−
m−i(T ; z) = T (z) +

Q
ns[2i+1]
− (z)

z
,

J−
m−i(L0) = L0 +Q

ns[2i+1]
− .

By Propositions 10.2.3 and 11.3.3, we see that SW(m)-modules SP±
• are indecompos-

able.

11.4 The structure of the Zhu-algebra A(SW(m))

In the following, we review the structure theorem of Zhu-algebra A(SW(m)) which was
proved in [6], using the logarithmic modules SP+

γi
, 0 ≤ i ≤ m− 1.

We set R = A(SW(m)). For 0 ≤ i ≤ m − 1, let Vi+1 = H(SP+
i+1) be the highest

weight space of SW(m)-module SP+
i+1:

Vi+1 = H(SP+
i+1) = C |β1,2(m−i);1⟩+ C |β1,2i+1⟩ .

Vi+1 becomes a left R-module. Then, by Proposition 11.3.3, the action of L0 on Vi+1 is
given by

(J+
i+1(L0)− hns1,2i+1) |β1,2(m−i);1⟩ = |β1,2i+1⟩ .

Therefore, the image of the representation of R, ΦVi+1
: R→M2(C) contains

I+i+1 :=
{(a 0

b a

)
; a, b ∈ C

}
.

Let Wi+1 = H(SX−
m−i) be the highest weight space of SX−

m−i. Since Wi+1 is two dimen-
sional irreducible R-module, the image of the representation of R, ΦWi+1

: R → M2(C),
becomes

I−m−i := ImΦWi+1
=M2(C).

Let Vm+1 = H(SX+
m+1) be the highest weight space of SX+

m+1. Since Vi+1 is the one
dimensional R-module, the image of the representation of R, ΦVm+1 : R→ C, becomes

I+m+1 := ImΦVm+1 = C.

Therefore, by Theorem 11.1.9, we have the following theorem [6].

Theorem 11.4.1 ([6]). The Zhu algebra A(SW(m)) is isomorphic to

I =
m⊕
i=0

I+i+1 ⊕
m−1⊕
i=0

I−m−i.

From Theorem 11.4.1, in particular we obtain the following proposition (see also
Proposition 7.7 in [56]).
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Proposition 11.4.2. For 0 ≤ i ≤ m− 1,

Ext1SCm
(SX+

i+1,SX+
i+1) = 0, Ext1SCm

(SX−
m−i,SX−

m−i) = 0.

Let us consider the structure of the logarithmic modules SP±
• . By Proposition 11.4.2,

we obtain the following proposition.

Proposition 11.4.3. Let 0 ≤ i ≤ m− 1.

1. At least one of SP+
i+1/SX+

i+1 or SP+∗
i+1/SX+

i+1 is indecomposable.

2. At least one of SP−
m−i/SX−

m−i or SP−∗
m−i/SX−

m−i is indecomposable.
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Chapter 12

The structure of braided tensor cate-
gory on SCm
Since the super triplet W algebra SW(m) is C2-cofinite, Theorem 4.13 in [36] show
that SW(m) has braided tensor category structure as developed in the series of papers
[37, 38, 39, 40, 41, 42, 43, 44] (see also [14]). We denote (SCm,⊠) by the tensor category
on SCm, where the unit object is given by SX+

1 . In this chapter, we compute certain
non-semisimple fusion rules and determine the structure of the projective covers of all
simple modules.

12.1 The tensor product SX−1 ⊠ SX−1
In the following, we abbreviate hnsr,s;n as hr,s;n.

Lemma 12.1.1. For i = 1, . . . ,m, the vector space A0((SX−
1 ⊠ SX−

i )
∗) is at most two

dimensional. L0 acts semisimply on A0((SX−
1 ⊠ SX−

i )
∗) and any L0 eigenvalue of this

space is contained in {h1,2i−1, h1,2i+1}, where h1,2i−1 and h1,2i+1 are the L0 weights of the
highest weight space of SX+

i−1 and SX+
i+1, respectively.

Proof. We will only prove the first case. The other cases can proved in the same way, so
we omit the proofs.

Let ψ∗, ϕ1 and ϕ2 be arbitrary elements of A0((SX−
1 ⊠ SX−

i )
∗), SX−

1 and SX−
i ,

respectively. For 1 ≤ j ≤ m, let {v+j , v−j } be a basis of the highest weight space of SX−
j

such that

Ŵ±[0]v±j = 0, Ŵ±[0]v∓j ∈ C×v±j .

For n ≥ 1, let w
(n)
k (k = 1 . . . , 2n + 2) be the U(ns)-highest weight vectors of the vector

subspace (2n+ 2)Lns(h2n+2,2i) ⊂ SX−
i . By Lemma 8.1.6 and the relation{ 4t

t2 − 1
G4

− 1
2
+
t+ 1

t− 1
G− 1

2
G− 3

2
+
t− 1

t+ 1
G− 3

2
G− 1

2

}
v±1 = 0, t = −2m− 1, (12.1.1)

we see that, depending on whether ψ∗ is even or odd, the value ⟨ψ∗, ϕ1⊗ϕ2⟩ is determined
by the values

⟨ψ∗, vϵ1 ⊗ vϵ
′

i ⟩, ⟨ψ∗, L−1v
ϵ
1 ⊗ vϵ

′

i ⟩,
⟨ψ∗, vϵ1 ⊗ w

(2n)
k ⟩, ⟨ψ∗, L−1v

ϵ
1 ⊗ w

(2n)
k ⟩,

⟨ψ∗, G− 1
2
vϵ1 ⊗ w

(2n−1)
k ⟩, ⟨ψ∗, G3

− 1
2
vϵ1 ⊗ w

(2n−1)
k ⟩.

or

⟨ψ∗, G− 1
2
vϵ1 ⊗ vϵ

′

i ⟩, ⟨ψ∗, G3
− 1

2
vϵ1 ⊗ vϵ

′

i ⟩,

⟨ψ∗, vϵ1 ⊗ w
(2n−1)
k ⟩, ⟨ψ∗, L−1v

ϵ
1 ⊗ w

(2n−1)
k ⟩,

⟨ψ∗, G− 1
2
vϵ1 ⊗ w

(2n)
k ⟩, ⟨ψ∗, G3

− 1
2
vϵ1 ⊗ w

(2n)
k ⟩.
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for some finite n ≥ 1 and k, where ϵ = ± and ϵ′ = ±.
By using Lemma 8.1.6 and (12.1.1), we have(

⟨L0ψ
∗, vϵ1 ⊗ w

(n)
k ⟩

⟨L0ψ
∗, (L−1v

ϵ
1)⊗ w

(n)
k ⟩

)

=

(
h2,2 + h2n+2,2i 1

2m2

2m+1
h2n+2,2i h2,2 + h2n+2,2i + 1− (2m+1)2+1

2(2m+1)

)(
⟨ψ∗, vϵ1 ⊗ w

(n)
k ⟩

⟨ψ∗, (L−1v
ϵ
1)⊗ w

(n)
k ⟩

)
.

We see that the eigenvalues of this matrix do not correspond to L0 weight of the highest
weight of all simple SW(m)-modules. Thus we have

⟨ψ∗, vϵ1 ⊗ w
(n)
k ⟩ = 0, ⟨ψ∗, (L−1v

ϵ
1)⊗ w

(n)
k ⟩ = 0

for any n ≥ 1. Similary we can show that

⟨ψ∗, G− 1
2
vϵ1 ⊗ w

(n)
k ⟩ = 0, ⟨ψ∗, G3

− 1
2
vϵ1 ⊗ w

(n)
k ⟩ = 0

for any n ≥ 1.
Therefore the value ⟨ψ∗, ϕ1 ⊗ ϕ2⟩ is determined by the values

⟨ψ∗, vϵ1 ⊗ vϵ
′

i ⟩, ⟨ψ∗, L−1v
ϵ
1 ⊗ vϵ

′

i ⟩

or

⟨ψ∗, G− 1
2
vϵ1 ⊗ vϵ

′

i ⟩, ⟨ψ∗, G3
− 1

2
vϵ1 ⊗ vϵ

′

i ⟩.

Let us assume that ψ∗ is odd. Then ⟨ψ∗, ϕ1 ⊗ ϕ2⟩ is determined by the values

⟨ψ∗, G− 1
2
vϵ1 ⊗ vϵ

′

i ⟩, ⟨ψ∗, G3
− 1

2
vϵ1 ⊗ vϵ

′

i ⟩,

By using Lemma 8.1.6 and (12.1.1), we have(
⟨L0ψ

∗, G− 1
2
vϵ1 ⊗ vϵ

′
i ⟩

⟨L0ψ
∗, G3

− 1
2

vϵ1 ⊗ vϵ
′
i ⟩

)

=

(
h2,2 + h2,2i +

1
2

1
m2

2m+1
+ 2m2

2m+1
h2,2i h2,2 + h2,2i +

3
2
− (2m+1)2+1

2(2m+1)

)(
⟨ψ∗, G− 1

2
vϵ1 ⊗ vϵ

′
i ⟩

⟨ψ∗, G3
− 1

2

vϵ1 ⊗ vϵ
′
i ⟩

)
.

We see that this matrix is diagonalizable and eigenvalues are given by {h1,2i+1, h3,2i−1}.
Note that the eigenvalue h3,2i−1 does not correspond to any L0 eigenvalues of the highest
weight space of the simple SW(m)-modules. Thus the L0-weight of ψ

∗ is h1,2i+1.
Next let us assume that ψ∗ is even. Then ⟨ψ∗, ϕ1 ⊗ ϕ2⟩ is determined by the values

⟨ψ∗, vϵ1 ⊗ vϵ
′

i ⟩, ⟨ψ∗, L−1v
ϵ
1 ⊗ vϵ

′

i ⟩,

By using Lemma 8.1.6 and (12.1.1), we have(
⟨L0ψ

∗, vϵ1 ⊗ vϵ
′
i ⟩

⟨L0ψ
∗, (L−1v

ϵ
1)⊗ vϵ

′
i ⟩

)
=

(
h2,2 + h2,2i 1

2m2

2m+1
h2,2i h2,2 + h2,2i + 1− (2m+1)2+1

2(2m+1)

)(
⟨ψ∗, vϵ1 ⊗ vϵ

′
i ⟩

⟨ψ∗, (L−1v
ϵ
1)⊗ vϵ

′
i ⟩

)
.
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We see that this matrix is diagonalizable and eigenvalues are given by {h1,2i−1, h3,2i+1}.
Note that the eigenvalue h3,2i+1 does not correspond to any L0 eigenvalues of the highest
weight space of the simple SW(m)-modules. Thus the L0-weight of ψ

∗ is h1,2i−1.

Note that Ŵ±[0] acts trivially on the highest weight spaces of SX+
i−1 and SX+

i+1. Then
we have

Ŵ±[0]ψ∗ = 0.

Thus, by Lemma 8.1.6, we see that ⟨ψ∗, ϕ1 ⊗ ϕ2⟩ is determined by the values

⟨ψ∗, v+1 ⊗ v−i ⟩, ⟨ψ∗, L−1v
+
1 ⊗ v−i ⟩

or

⟨ψ∗, G− 1
2
v+1 ⊗ v−i ⟩, ⟨ψ∗, G3

− 1
2
v+1 ⊗ v−i ⟩.

Therefore, from the above results, we can see that the vector space A0((SX−
1 ⊠ SX−

i )
∗)

is at most two dimensional.

Remark 12.1.2. In the proof of Lemma 12.1.1 we see in particular that if i = 1 and
L0ψ

∗ = h1,1ψ
∗ = 0, then G− 1

2
ψ∗ = 0.

For any β ∈ Am := { βr,s;n | r, s, n ∈ Z}, let

Vns
β+L :=

⊕
n∈Z

F ns
β+n

√
2m+1

be a simple Vns
L -module. For any β, β′ ∈ Am, it can be proved easily that there are

no Vns
L -module intertwining operators of type

(
Vns
β′′+L

Vns
β′+L Vns

β+L

)
unless β′′ ≡ β′ + β mod L,

and dimCI

(
Vns
β′+β+L

Vns
β′+L Vns

β+L

)
= 1. Let Y be the Vns

L -module intertwining operator of type(
Vns
β′+β+L

Vns
β′+L Vns

β+L

)
. Then, by restricting the action of Vns

L to SW(m), Y defines a SW(m)-

module intertwining operator of type
(
Vns
β′+β+L

Vns
β′+L Vns

β+L

)
. We denote this SW(m)-module

intertwining operator by Yβ′,β.

Lemma 12.1.3.

I

(
SX+

1

SX−
1 SX−

1

)
̸= ∅, I

(
SX+

2

SX−
1 SX−

1

)
̸= ∅.

Proof. Let us consider SW(m)-module intertwining operator Y = Yβ1,β2 , where β1 = β2,2
and β2 = β1,2m−1;2. Then we have

⟨β1,2m;1|Y (|β2,2⟩ ; z) |β1,2m−1;2⟩ ̸= 0.

Thus we have

I

(
SX+

1

SX−
1 Vns

β2

)
̸= ∅. (12.1.2)
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Note the following exact sequence

0→ SX+
m → Vns

β2
→ SX−

1 → 0.

Then we have the following exact sequence

SX−
1 ⊠ SX+

m → SX−
1 ⊠ Vns

β2
→ SX−

1 ⊠ SX−
1 → 0.

From this exact sequence, we have the following exact sequence

0→ HomSW(m)(SX−
1 ⊠ SX−

1 ,SX+
1 )→ HomSW(m)(SX−

1 ⊠ Vns
β2
,SX+

1 )

→ HomSW(m)(SX−
1 ⊠ SX+

m,SX+
1 ). (12.1.3)

By Lemma 12.1.1, we have

HomSW(m)(SX−
1 ⊠ SX+

m,SX+
1 ) = 0.

Therefore by (12.1.2) and (12.1.3), we obatin

HomSW(m)(SX−
1 ⊠ SX−

1 ,SX+
1 ) ̸= 0.

The second equation can be shown similarly by considering the intertwining operator
Yβ′

1,β
′
2
, where (β′

1, β
′
2) = (β2,2, β2,2).

By Lemmas 12.1.1 and 12.1.3, we have the following proposition (see Remark 12.1.2).

Proposition 12.1.4.

SX−
1 ⊠ SX−

1 = SX+
1 ⊕ Γ(SX+

2 ), (12.1.4)

where Γ(SX+
2 ) is a highest weight module such that top(Γ(SX+

2 )) = SX+
2 .

12.2 Four point functions

In the next section, we will show the self-duality of the simple module SX−
1 . Before

that, we introduce four point functions which satisfy a fourth order Fuchsian differen-
tial equation, and examine monodromy property of these four points function by using
Dotsenko-Fateev integrals [17],[18],[28],[62].

Let a, b, c, a′, b′, c′ be generic complex numbers and let

U(u, v; z) := ua(u− 1)b(u− z)cva′(v − 1)b
′
(v − z)c′(u− v)−2,

where z ∈ R such that 0 < z < 1. Let us consider the following Dotsenko-Fateev integrals

Ii(z) :=

∫
[∆i]

U(u, v; z)dudv, (i = 1, 2, 3, 4),

where [∆i] are regularized cycles associated to the following regions

∆1 := {1 < u < v}, ∆2 := {0 < u < 1, 1 < v},
∆3 := {1 < u, 0 < v < z}, ∆4 := {0 < u < v, v < z}.
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Remark 12.2.1. In [62], the meromorphic continuation of the Dotsenko-Fateev integral∫
[∆i]

ua(u− 1)b(u− z)cva′(v − 1)b
′
(v − z)c′(u− v)2γF (u, v)dudv

is constructed, where F (u, v) is any symmetric polynomial of u and v. It is proved that
γ = −1 is an apparent singularity and is removable.

Using similar methods in [17], we obtain the following relations:

I1(z) =
s(a)s(a′)

s(b+ c)s(b′ + c′)
I1(1− z)−

s(c)s(a′)

s(b+ c)s(b′ + c′)
I2(1− z)

− s(a)s(c′)

s(b+ c)s(b′ + c′)
I3(1− z) +

s(c)s(c′)

s(b+ c)s(b′ + c′)
I4(1− z),

I2(z) = −
s(a+ b+ c)s(a′)

s(b+ c)s(b′ + c′)
I1(1− z)−

s(b)s(a′)

s(b+ c)s(b′ + c′)
I2(1− z)

+
s(a+ b+ c)s(c′)

s(b+ c)s(b′ + c′)
I3(1− z) +

s(b)s(c′)

s(b+ c)s(b′ + c′)
I4(1− z),

I3(z) = −
s(a)s(a′ + b′ + c′)

s(b+ c)s(b′ + c′)
I1(1− z) +

s(c)s(a′ + b′ + c′)

s(b+ c)s(b′ + c′)
I2(1− z)

− s(a)s(b′)

s(b+ c)s(b′ + c′)
I3(1− z) +

s(c)s(b′)

s(b+ c)s(b′ + c′)
I4(1− z),

I4(z) =
s(a+ b+ c)s(a′ + b′ + c′)

s(b+ c)s(b′ + c′)
I1(1− z) +

s(b)s(a′ + b′ + c′)

s(b+ c)s(b′ + c′)
I2(1− z)

+
s(a+ b+ c)s(b′)

s(b+ c)s(b′ + c′)
I3(1− z) +

s(b)s(c′)

s(b+ c)s(b′ + c′)
I4(1− z),

where s(x) = sin(πx).
For r, s ∈ Z and t ∈ C×, we set

β̃r,s :=
(1− r)

2
β+ +

(1− s)
2

β− + t.

For i = 1, 2, 3, 4, let us consider the following 4-point function

Ψ̃i(z, t) : =

∫
[∆i]

⟨β2,2 + 2t|Qns
− (u)Q

ns
+ (v)Vβ̃2,2

(1)Vβ̃2,2
(z) |β̃2,2⟩ dudv

=

∫
[∆i]

uβ−β̃2,2(u− 1)β−β̃2,2(u− z)β−β̃2,2

× vβ+β̃2,2(v − 1)β+β̃2,2(v − z)β+β̃2,2(u− v)−2dudv.

By using the formulas of Dotsenko-Fateev integral [18],[28], we see that Ψ̃i(z) is finite and
non-trivial in the limit of t = 0. Let

Ψi(z) := lim
t→0

Ψ̃i(z, t)
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for i = 1, 2, 3, 4. Then, from the above four relations for Ii(z), we obtain

Ψ1(z) =
1

2

s(β−β2,2)

s(2β−β2,2)
Ψ1(1− z)−

1

2

s(β−β2,2)

s(2β−β2,2)
Ψ2(1− z)

− 1

2

s(β−β2,2)

s(2β−β2,2)
Ψ3(1− z) +

1

2

s(β−β2,2)

s(2β−β2,2)
Ψ4(1− z),

Ψ2(z) = −
1

2

s(3β−β2,2)

s(2β−β2,2)
Ψ1(1− z)−

1

2

s(β−β2,2)

s(2β−β2,2)
Ψ2(1− z)

+
1

2

s(3β−β2,2)

s(2β−β2,2)
Ψ3(1− z) +

1

2

s(β−β2,2)

s(2β−β2,2)
Ψ4(1− z),

Ψ3(z) = −
3

2

s(β−β2,2)

s(2β−β2,2)
Ψ1(1− z) +

3

2

s(β−β2,2)

s(2β−β2,2)
Ψ2(1− z)

− 1

2

s(β−β2,2)

s(2β−β2,2)
Ψ3(1− z) +

1

2

s(β−β2,2)

s(2β−β2,2)
Ψ4(1− z),

Ψ4(z) =
3

2

s(3β−β2,2)

s(2β−β2,2)
Ψ1(1− z) +

3

2

s(β−β2,2)

s(2β−β2,2)
Ψ2(1− z)

+
1

2

s(3β−β2,2)

s(2β−β2,2)
Ψ3(1− z) +

1

2

s(β−β2,2)

s(2β−β2,2)
Ψ4(1− z).

From these relations, we obtain

Ψ1(z) + Ψ3(z) =−
s(β−β2,2)

s(2β−β2,2)
(Ψ1(1− z) + Ψ3(1− z))

+
s(β−β2,2)

s(2β−β2,2)
(Ψ2(1− z) + Ψ4(1− z)), (12.2.1)

Ψ2(z) + Ψ4(z) =
s(3β−β2,2)

s(2β−β2,2)
(Ψ1(1− z) + Ψ3(1− z))

+
s(β−β2,2)

s(2β−β2,2)
(Ψ2(1− z) + Ψ4(1− z)). (12.2.2)

Similar to the arguments in [45], we can see that each Ψi satisfies the following Fuchsian
differential equation

( d4
dz4

+
p3(z)

z(z − 1)

d3

dz3
+

p2(z)

z2(z − 1)2
d2

dz2
+

p1(z)

z3(z − 1)3
d

dz
+

p0(z)

z4(z − 1)4

)
Ψi(z) = 0 (12.2.3)
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where

p0(z) =
3m4

(2m+ 1)4
(
(16m3 − 8m2 − 16m− 4)z2

+ (−16m3 + 8m2 + 16m+ 4)z + (3m4 + 12m3 + 2m2 − 4m− 1)
)

p1(z) =
2

(2m+ 1)3
(
(16m5 + 48m4 + 56m3 + 34m2 + 12m+ 2)z3

+ (−24m5 − 72m4 − 84m3 − 51m2 − 18m− 3)z2

+ (−12m6 − 8m5 + 12m3 + 13m2 + 6m+ 1)z

+ (6m6 + 8m5 + 12m4 + 8m3 + 2m2)
)

p2(z) =
2

(2m+ 1)2
(
(8m4 + 32m3 + 44m2 + 28m+ 7)z2

+ (−8m4 − 32m3 − 44m2 − 28m− 7)z + (−m4 + 2m3 + 5m2 + 4m+ 1)
)

p3(z) =
4(m+ 1)2(2z − 1)

(2m+ 1)

The Riemann scheme of the Fuchsian differential equation (12.2.3) is given by
0 1 ∞

− 3m2

2m+1
− 3m2

2m+1
0

m2

2m+1
m2

2m+1
1

2m+1
1−3m2

2m+1
1−3m2

2m+1
4m2

2m+1
m2+4m+1

2m+1
m2+4m+1

2m+1
2m+ 1

 .
Note that

h1,1 − 2h2,2 = −
3m2

2m+ 1
,

h3,3 − 2h2,2 =
m2

2m+ 1
,

h1,3 +
1

2
− 2h2,2 =

1− 3m2

2m+ 1
,

h3,1 +
1

2
− 2h2,2 =

m2 + 4m+ 1

2m+ 1
.

Let ρi be the characteristic exponent of Ψi(z) around z = 0. Then we have

ρ1 = h3,3 − 2h2,2,

ρ2 = h3,1 +
1

2
− 2h2,2

ρ3 = h1,3 +
1

2
− 2h2,2

ρ4 = h1,1 − 2h2,2.

12.3 Self duality of the simple module SX−1
Theorem 12.3.1. SX 1 is rigid and self-dual.
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Proof. We show the rigidity of SX−
1 using the methods detailed in [15] and [56] (cf.[64]).

By Proposition 12.1.4, we have homomorphisms

i1 : SX+
1 → SX−

1 ⊠ SX−
1 ,

p1 : SX−
1 ⊠ SX−

1 → SX+
1 ,

i3 : Γ(SX+
2 )→ SX−

1 ⊠ SX−
1 ,

p3 : SX−
1 ⊠ SX−

1 → Γ(SX+
2 )

such that

p1 ◦ i1 = idSX+
1
, p3 ◦ i3 = idΓ(SX+

2 )

and

i1 ◦ p1 + i3 ◦ p3 = idSX−
1 ⊠SX−

1
.

To prove that SX−
1 is rigid, it is sufficient to prove that the homomorphisms f, g :

SX−
1 → SX−

1 defined by the commutative diagrams

SX−
1

r−1
//

f
� �

SX−
1 ⊠ SX+

1

id⊠i1 // SX−
1 ⊠ (SX−

1 ⊠ SX−
1 )

A
��

SX−
1 SX+

1 ⊠ SX−
1

loo (SX−
1 ⊠ SX−

1 )⊠ SX−
1

p1⊠idoo

and

SX−
1

l−1
//

g

��

SX+
1 ⊠ SX−

1

i1⊠id // (SX−
1 ⊠ SX−

1 )⊠ SX−
1

A−1

��
SX−

1 SX−
1 ⊠ SX+

1
roo SX 1 ⊠ (SX−

1 ⊠ SX−
1 )

id⊠p1oo

are non-zero. We only show f ̸= 0. The proof of g ̸= 0 is similar.
Let Y2⊠2, Y(2⊠2)⊠2 and Y2⊠(2⊠2) be the non-zero intertwining operators of type(

SX−
1 ⊠ SX−

1

SX−
1 SX−

1

)
,

(
(SX−

1 ⊠ SX−
1 )⊠ SX−

1

SX−
1 ⊠ SX−

1 SX−
1

)
,

(
SX−

1 ⊠ (SX−
1 ⊠ SX−

1 )
SX−

1 SX−
1 ⊠ SX−

1

)
,

respectively.
To prove f ̸= 0, it is sufficient to show that the intertwining operator

Y2
21 = lSX−

1
◦ (p1 ⊠ idSX−

1
) ◦ ASX−

1 ,SX−
1 ,SX−

1
◦ Y2⊠(2⊠2) ◦ (idSX−

1
⊗ i1)

is non-zero.
Define the following intertwining operator

Y2
23 = lSX−

1
◦ (p3 ⊠ idSX−

1
) ◦ ASX−

1 ,SX−
1 ,SX−

1
◦ Y2⊠(2⊠2) ◦ (idSX−

1
⊗ i3).
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Fix any highest weight vectors v ∈ SX−
1 [h2,2], v

∗ ∈ SX−∗
1 [h2,2]. Then, for some x ∈ R

such that 1 > x > 1− x > 0, we have

⟨v∗,Y2
21(v; 1)(p1 ◦ Y2⊠2)(v;x)v⟩+ ⟨v∗,Y2

23(v; 1)(p3 ◦ Y2⊠2)(v;x)v⟩
= ⟨v∗, lSX−

1
◦ (p1 ⊠ idSX−

1
) ◦ ASX−

1 ,SX−
1 ,SX−

1

(
Y2⊠(2⊠2)(v; 1)Y2⊠2(v;x)v

)
⟩

= ⟨v∗, lSX−
1
◦ (p1 ⊠ idSX−

1
)
(
Y(2⊠2)⊠2(Y2⊠2(v; 1− x)v;x)v

)
⟩

= ⟨v∗, lSX−
1

(
Y1⊠2((p1 ◦ Y2⊠2)(v; 1− x)v;x)v

)
⟩,

= ⟨v∗, YSX−
1

(
(p1 ◦ Y2⊠2)(v; 1− x)v;x)

)
v⟩,

where Y1⊠2 is the intertwining operator of type
(

SX−
1

SX+
1 SX−

1

)
. Since p1 ◦Y2⊠2 is the non-zero

intertwining operator of type
(

SX+
1

SX−
1 SX−

1

)
, we have

⟨v∗, YSX−
1

(
(p1 ◦ Y2⊠2)(v; 1− x)v;x)

)
v⟩ ∈ C×(1− x)−2h2,2

(
1 + (1− x)C[[1− x]]

)
.

(12.3.1)

We define the following 4-point functions

ϕ1(x) = ⟨v∗,Y2
21(v; 1)(p1 ◦ Y2⊠2)(v;x)v⟩ ∈ Cxh1,1−2h2,2

(
1 + xC[[x]]

)
,

ϕ3(x) = ⟨v∗,Y2
23(v; 1)(p3 ◦ Y2⊠2)(v;x)v⟩ ∈ Cxh3,3−2h2,2

(
1 + xC[[x]]

)
.

Similar to the arguments in [45], we can show that ϕ1(z) and ϕ3(z) satisfy the Fuchsian
differential equation (12.2.3) in Subsection 12.2. Therefore, by the relations (12.2.1) and
(12.2.2) given in Subsection 12.2 and by the non-zero four point function (12.3.1), we see
that ϕ1(x) is non-zero. In particular Y2

21 is non-zero. Thus SX−
1 is rigid and self-dual.

12.4 Non-semisimple fusion rules

From this section we introduce the following symbols:

1. For 0 ≤ i ≤ m

X2i+1 := SX+
i+1.

2. For 1 ≤ i ≤ m

X2i := SX−
i .

3. For 1 ≤ i ≤ m

P2i := SP+
m−i+1.

4. For 0 ≤ i ≤ m− 1

P2i+1 := SP−
m−i.

Lemma 12.4.1.
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1. For i = 1, . . . ,m−1, the vector space A0((X2⊠X2i+1)
∗) is at most four dimensional.

L0 acts semisimply on A0((X2 ⊠ X2i+1)
∗) and any L0 eigenvalue of this space is

contained in {h2,2i, h2,2i+2}, where h2,2i and h2,2i+2 are the L0 weights of the highest
weight spaces of X2i and X2i+2, respectively.

2. The vector space A0((X2⊠X2m+1)
∗) is at most four dimensional. Any L0 eigenvalue

of this space is contained in {h1,1, h2,2m} = {0, 12}, where h1,1 and h2,2m are the L0

weights of the highest weight spaces of X1 and X2m, respectively.

Proof. We only prove the first claim. The second claim can be proved in the same way, so
we omit the proof. Let ψ∗, ϕ1 and ϕ2 be arbitrary elements of A0((X2⊠X2i+1)

∗), X2 and
X2i+1, respectively. For 1 ≤ j ≤ m, let {v+, v−} be a basis of the highest weight space of
X2 such that

Ŵ±[0]v± = 0, Ŵ±[0]v∓ ∈ C×v±.

For n ≥ 1, let w
(n)
k (k = 1 . . . , 2n + 1) be the ns-highest weight vectors of the vector

subspace (2n + 1)L(h2n+1,2i+1) ⊂ X2i+1. Similar to the arguments in Lemma 12.1.1, we
see that

⟨ψ∗, U(ns).v± ⊗ w(n)
k ⟩ = 0

for any n ≥ 2 and k, where U(ns) is the universal enveloping algebra of the Neveu-Schwarz
algebra. Note that

Ŵ±[−h]vϵ ∈ U(ns).vϵ + U(ns).v−ϵ, W±[−h]vϵ ∈ U(ns).vϵ + U(ns).v−ϵ

for h ≤ h3,1 =
1
2
+ 2m, where ϵ = ±. Thus, by using Lemma 8.1.6, we see that the value

⟨ψ∗, ϕ1 ⊗ ϕ2⟩ is determined by the values

⟨ψ∗, U(ns).v± ⊗ u⟩,

where u is the highest weight vector of X2i+1. Then, similar to the arguments in Lemma
12.1.1, we see that L0 acts semisimply on ψ∗ and the L0 eigenvalue of ψ∗ is contained in

{h1,2(m−i)+1, h1,2(m−i)−1, h2,2i, h2,2i+2}.

Let us assume that the L0 eigenvalue of ψ∗ is h1,2(m−i)+1 or h1,2(m−i)−1. Then, similar to
the arguments in Lemma 12.1.1, we see that

⟨ψ∗, U(ns).v± ⊗ w(1)
k ⟩ = 0 (12.4.1)

for any k. Note that Ŵ±[0]ψ∗ = 0. Then, by Lemma 8.1.6 and by (12.4.1), we have

⟨ψ∗, U(ns).v± ⊗ u⟩ = 0.

Thus we have a contradiction.
Next, let us assume that the L0 eigenvalue of ψ∗ is h2,2i or h2,2i+2. Note that

W±[−h]v± = 0, Ŵ±[−h]v± = 0 (12.4.2)
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for h ≤ h3,1. Then, by Lemma 8.1.6 and by (12.4.2), we see that

⟨Ŵ±[0]ψ∗, v± ⊗ U(ns).u⟩ = 0.

Thus ⟨ψ∗, ϕ1 ⊗ ϕ2⟩ is determined by the values

⟨Ŵ+[0]ψ∗ + ψ∗, U(ns).v− ⊗ u⟩.

Therefore, by using the relation 12.1.1 and Lemma 8.1.6, we see that A((X2 ⊠X2i+1)
∗) is

at most four dimensional.

Proposition 12.4.2. For s = 2, . . . , 2m, we have

X2 ⊠Xs = Xs−1 ⊕Xs+1.

Proof. Let us show that

X2 ⊠X2i = X2i−1 ⊕X2i+1.

Similar to Lemma 12.1.3, we can show that

I

(
X2i−1

X2 X2i

)
̸= ∅, I

(
X2i+1

X2 X2i

)
̸= ∅. (12.4.3)

By Lemmas 12.1.1, 8.3.10 and by the self-duality of X2, we see that

HomSW(m)(X2(m−i+1) ⊕X2(m−i), X2 ⊠X2i) = 0.

Thus, by (12.4.3), we obtain

X2 ⊠X2i = X2i−1 ⊕X2i+1.

Next let us show the formula

X2 ⊠X2i+1 = X2i ⊕X2i+2, i = 0, . . . ,m− 1.

Similar to Lemma 12.1.3, we can show that

I

(
X2i

X2 X2i+1

)
̸= ∅, I

(
X2i+2

X2 X2i+1

)
̸= ∅. (12.4.4)

By Lemmas 12.4.1, 8.3.10 and by the self-duality of X2, we see that

HomSW(m)(X2(m−i)−1 ⊕X2(m−i)+1, X2 ⊠X2i+1) = 0.

Thus, by (12.4.4), we obtain

X2 ⊠X2i+1 = X2i ⊕X2i+2.

Since SW(m) is C2-cofinite, every simple module has projective cover [36]. For 0 ≤
i ≤ m − 1, let P̃2i+2 and P̃2i+1 be the projective covers of the simple modules X2(m−i)+1

and X2(m−i), respectively.
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Proposition 12.4.3.

X2 ⊠X2m+1 = P̃1 = P1.

Proof. SinceX2m+1 is projective, by the self-duality of X2, X2⊠X2m+1 must be projective.
By using Lemma 8.3.10 and Proposition 12.4.2, we have

HomSW(m)(X2m, X2 ⊠X2m+1) = C,
HomSW(m)(X2 ⊠X2m+1, X2m) = C,
HomSW(m)(X1, X2 ⊠X2m+1) = 0,

HomSW(m)(X2 ⊠X2m+1, X1) = 0.

(12.4.5)

Thus we obtain

X2 ⊠X2m+1 = P̃1.

By Proposition 11.4.3, we can see that P̃1 has 2X1 as composition factors. Note that L0

weight of the highest weight spaces of X2m and X1 are given by 1
2
and 0, respectively.

Thus, by Lemma 12.4.1 and (12.4.5), we can see that P̃1 has the socle series

Soc(P̃1) = Soc1(P̃1) ≤ Soc2(P̃1) ≤ Soc3(P̃1) = P̃1

such that

Soc1(P̃1) ≃ X2m, Soc2(P̃1)/Soc1(P̃1) ≃ X1 ⊕X1,

Soc3(P̃1)/Soc2(P̃1) ≃ X2m.

Since P1 and P̃1 have the same com composition factors, we see that

P̃1 ≃ P1 ≃ P ∗
1 .

By Lemma 8.3.10 and by Propositions 12.4.2, 12.4.3, we obtain the following proposi-
tions.

Proposition 12.4.4. For every s = 1, . . . , 2m,

P̃s = Ps.

The socle series of the projective covers of the simple modules are given by:

1. For 1 ≤ i ≤ m,

Soc(P2i) = Soc1(P2i) ≤ Soc2(P2i) ≤ Soc3(P2i) = P2i

such that

Soc1(P2i) ≃ X2(m−i)+1, Soc2(P2i)/Soc1(P2i) ≃ X2i ⊕X2i,

Soc3(P2i)/Soc2(P2i) ≃ X2(m−i)+1.
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2. For 0 ≤ i ≤ m− 1,

Soc(P2i+1) = Soc1(P2i+1) ≤ Soc2(P2i+1) ≤ Soc3(P2i+1) = P2i+1

such that

Soc1(P2i+1) ≃ X2(m−i), Soc2(P2i+1)/Soc1(P2i+1) ≃ X2i+1 ⊕X2i+1,

Soc3(P2i+1)/Soc2(P2i+1) ≃ X2(m−i).

Proposition 12.4.5.

X2 ⊠ P1 = 2X2m+1 ⊕ P2.

Proposition 12.4.6. For 2 ≤ s ≤ 2m− 1,

X2 ⊠ Ps = Ps−1 ⊕ Ps+1.

Proposition 12.4.7.

X2 ⊠ P2m = 2X2m+1 ⊕ P2m−1.

From these proposition, we obtain the following theorem.

Theorem 12.4.8. For 1 ≤ s ≤ 2m+ 1 and 1 ≤ t ≤ 2m, the simple modules Xs and the
projective modules Pt are rigid and self-dual.

Similar to the arguments in [64], we obtain the following theorem.

Theorem 12.4.9. The braided tensor category (SCm,⊠) is rigid. For any M ∈ SCm, we
have M∨ =M∗, where M∨ is the dual of M .

Let U small
q (sl2)-mod be the abelian category of finite dimensional modules over the

small quantum group U small
q (sl2), where q = e

2πi
2m+1 . Similar to the arguments in Section

6 of [58], by Proposition 12.4.4, we obtain the following theorem.

Theorem 12.4.10. Two abelian categories SCm and U small
q (sl2)-mod are equivalent as

abelian categories.

Remark 12.4.11. Let q = e
2πi

2m+1 . The small quantum group U small
q (sl2) is an associa-

tive C-algebra which is generated by E,F,K,K−1 satisfying the following fundamental
relations

KK−1 = K−1K = 1, KEK−1 = q2E, KFK−1 = q−2F,

EF − FE =
K −K−1

q − q−1
,

E2m+1 = F 2m+1 = 0, K2m+1 = 1.

See [54] for details.
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12.5 Non-semisimple fusion rings

We introduce the free abelian group P (SCm) of rank 4m + 1 generated by all simple
modules and all projective modules

P (SCm) =
2m+1⊕
s=1

Z[Xs]P ⊕
2m⊕
s=1

Z[Ps]P .

From the results presented in the previous subsection, we see that P (SW(m)) has the
structure of a commutative ring where the product as a ring is given by

[•]P · [•]P = [•⊠ •]P .

The operators

X = X2 ⊠−

define Z-linear endomorphism of P (SCm). Thus P (SCm) is a module over Z[X]. We
define the following Z[X]-module map

ψ : Z[X]→ P (SCm),
f(X) 7→ f(X) · [X1]P .

From the results of previous section, we obtain the following propositions.

Proposition 12.5.1. For s = 1, . . . , 2m+ 1,

[Xs]P = Us−1(X)[X1]P .

Proposition 12.5.2. For s = 1, . . . , 2m− 1,

[Ps]P = (U2m+s(X) + U2m−s(X))[X1]P

Proposition 12.5.3.

U4m+1(X)[X]P = 2U2m(X)[X1]P .

From these proposition, we obtain the following theorem.

Theorem 12.5.4. The Z[X]-module map ψ is surjective and the kernel of ψ is given by
the following ideal

kerψ = ⟨U4m+1(X)− 2U2m(X)⟩.

Proof. By Proposition 12.5.1 and 12.5.2, we see that ψ is surjective. We define the
following ideal of Z[X]

I = ⟨U4m+1(X)− 2U2m(X)⟩.

By Proposition 12.5.3, we see that I is contained in kerψ. It is easy to see that the
dimension of Z[X]/I is 4m+ 1. Therefore we obtain kerψ = I.
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Let us show below that, from the non-semisimple fusion ring P (Cp) (p = 2m + 1)
determined in [64], we obtain the non-semisimple fusion ring P (SCm). Recall that the
rank 4p− 2 free abelian group

P (Cp) =
p⊕

s=1

⊕
ϵ=±

Z[X ϵ
s ]P ⊕

p−1⊕
s=1

⊕
ϵ=±

Z[Pϵ
s ]P

has the structure of a commutative ring and is isomorphic to

Z[X,Y ]

⟨Y 2 − 1, U2p−1(X)− 2Y Up−1(X)⟩
,

where

[X+
1 ]P 7→ 1, [X+

2 ]P 7→ X, [X−
1 ]P 7→ Y.

Let p = 2m + 1 and set Y = 1 in P (Cp), and then we obtain the non-semisimple fusion
ring P (SCm):

P (C2m+1)
[X−

1 ]P=1
−−−−−−−→ P (SCm).

In the paper [2], Adamović and Milas showed that the characters of the simple SW(m)-
modules are intimately related to the characters of the simpleW2m+1-modules. From their
results and ours, it is expected that there is a deep connection between SCm and C2m+1.

Remark 12.5.5. In the paper [3], Adamović and Milas introduced a certain non-rational
vertex operator superalgebra SW(p, q), where p and q are positive integers such that q > p
and (q, q−p

2
) = 1. This vertex operator superalgebra SW(p, q) is a natural generalization

of SW(m) and is a extension of the super Virasoro minimal models:

Lns(cN=1
p,q , 0) ⊂ SW(p, q),

where Lns(cN=1
p,q , 0) is the Neveu-Schwarz vertex operator superalgebra of central charge

cN=1
p,q =

3

2

(
1− 2

(p− q)2

pq

)
.

Just as SW(m) andW2m+1 are related, SW(p, q) is considered to be related toW2p+1,2q+1.
We conjecture that the commutative ring P 0(C2m1+1,2m2+1)|[X−

1,1]P=1 ((m1,m2) = 1) corre-

sponds to a non-semisimple fusion ring of SW(2m1 + 1, 2m2 + 1).
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