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QUANTIFYING THE CONTRIBUTIONS OF ATMOSPHERIC-OCEANIC INDICES AND 

HYDRO-METEOROLOGICAL ELEMENTS ON WILDFIRES 
ABSTRACT：Wildfire has become one of the major natural hazards worldwide due to its strong 

suddenness, great destructiveness, frequent occurrences, and difficulty during the rescue. To reduce the 

losses caused by wildfires, exploring the spatiotemporal characteristics of wildfires and their causes is 

crucial. In particular, the frequency and severity of wildfires are strongly related to atmospheric-oceanic 

indices and hydro-meteorological elements. However, the impacts of atmospheric-oceanic indices on 

global wildfire homogeneous zones have not been explored, and no studies have systematically discussed 

how different hydro-meteorological elements cause different types of wildfires in any region or globally. 

Therefore, this dissertation first explored the impacts of atmospheric-oceanic indices on the 

homogeneous drought zones, taking Japan as an example, and compared the homogeneous drought 

zones with wildfire statistics. Then, similar methods were further applied at the global scale. This 

dissertation identified the global homogeneous wildfire zones for the first time. It quantified the 

controlling effect of atmospheric-oceanic indices on the spatiotemporal pattern of the global burned area. 

Next, this dissertation proposed a new probability-based framework to describe the wildfire bivariate 

characteristics comprehensively. On this basis, the mechanism of how different hydro-meteorological 

elements cause different types of wildfires was discussed at the continental United States and global 

scales. And through the wildfire bivariate simulation of the artificial neural network, the quantitative 

evaluation of the relationship between hydrometeorology and wildfire was carried out. 

Consequently, according to different drought characteristics, Japan can be divided into nine 

homogeneous drought zones with more than 60% explained variance. Also, these nine zones are 

dominated by different large-scale climate signals: the Arctic Oscillation has the strongest impact on 

zones 1, 7, and 8; the influence of the North Atlantic Oscillation on zones 3, 4, and 6 is significant; zones 

2 and 9 are both dominated by the Pacific decadal oscillation; and El Ni˜no–Southern Oscillation 

dominates zone 5. The results will be valuable for drought management and drought prevention. 

Similarly, eight global homogeneous wildfire zones and their dominant atmospheric-oceanic indices were 

identified. The most effective combinations of hotspots and atmospheric-oceanic indices were the 

Atlantic Multidecadal Oscillation + East Pacific/North Pacific Oscillation + Pacific North American 

Pattern (PNA) with the wildfire pattern around Ukraine and Kazakhstan, the El Niño/Southern 

Oscillation + Arctic Oscillation (AO) + East Atlantic/Western Russia Pattern (EA/WR) with the wildfire 

pattern in Australia, and PNA + AO + Polar/Eurasia Pattern + EA/WR with the wildfire pattern in 

Brazil. These results provide a reference for predicting wildfire and understanding wildfire homogeneity. 

Additionally, compared to the direct joint probability, the wildfire priority index based on the probability 

framework proposed in this dissertation is more sensitive in capturing extreme wildfire events. And 

wildfire risk exhibits an increasing trend in California, Texas, and Arkansas, while most of the 

southeastern United States exhibits decreasing wildfire risk trends. Overall, this analysis can provide a 

reference to understand the spatiotemporal characteristics of wildfire statistics better and contribute to 

wildfire management. 
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Based on the framework of the wildfire priority index, wildfires could be classified into five types: WT-1 

(mega-wildfire), WT-2 (joint wildfire-1), WT-3 (joint extremes), WT-4 (joint wildfire-2), and WT-5 (super 

frequent wildfires). Furthermore, according to the control effect of hydro-meteorological elements on 

different types of wildfires, the continental United States could be further divided into four cluster zones. 

In the four new cluster zones, intensifying droughts are a concern in clusters 1 and 4, while there are 

multiple concerns in cluster 3, namely, stronger winds, higher temperatures, and more drought. The 

hydrometeorology-wildfire relationship analysis based on the wildfire bivariate probabilistic framework 

proposed in this study provides new information on the causes of wildfires and other compound 

disasters. 

Finally, back propagation artificial neural network (BPNN) was applied to simulate the wildfire priority 

index, and this model has achieved excellent performance. In the wildfire bivariate characteristics 

simulation results of the BPNN model, there were five sub-regions where the model achieved high 

simulation accuracy, with the R2 reaching more than 0.90. In addition, eleven sub-regions also achieved 

good simulation results, and their R2 was between 0.8 and 0.9. Only two sub-regions had poor simulation 

accuracy with R2 below 0.5. When the observed time series had significant periodicity and the 

hydro-meteorological element-wildfire relationship was highly correlated, the model accuracy of BPNN 

would be very high. For example, the R2 in the Alaska/N.W. Canada and Southern Africa sub-regions 

were as high as 0.89 and 0.95, respectively. On the other hand, when the correlation between 

hydrometeorology and wildfire was weak, BPNN was insufficient to simulate time series accurately. Still, 

its ability to follow the original observation time series was not inferior. The reliability of the 
hydrometeorology-wildfire relationship is also demonstrated by the good performance of the 
wildfire priority index in the simulation. 
Overall, this paper carried out a comprehensive analysis of wildfire causes from two aspects of factors, 

including atmospheric-oceanic indices on a global scale and hydro-meteorological elements on a local 

scale. The main five innovations of this doctoral dissertation are as follows: (1) nine homogeneous 

drought zones with different characteristics were identified across Japan, and leading 

atmospheric-oceanic indices were quantified for each homogeneous drought zones; (2) global 

homogeneous wildfire zones were identified and the role of atmospheric-oceanic indices controlling 

different global wildfire patterns was quantified; (3) a new wildfire priority index was proposed, which 

can comprehensively consider the wildfire bivariate characteristics. ; (4) based on the fire priority index, 

the control effect of hydro-meteorological elements on different wildfire types can be analyzed; (5) based 

on the relationship between hydro-meteorological elements and wildfires, the wildfire priority index was 

simulated on a global scale and achieved good results. The above results provide new ideas for 

understanding the causes of wildfires and are helpful for future wildfire management and prevention 

around the world. 



 

IV 

 

Acknowledgments 
Whether you are pursuing a master's degree or a Ph.D., you will graduate one day. But 

there is no end to the academic pursuit. During my three years at Tohoku University, I have 

learned a lot, and at the same time, I have become increasingly aware of my ignorance in the 

academic world. I constantly want to touch the end of my research, but I can never touch the 

boundaries that seem so close. The ancient Chinese philosopher Zhuangzi once said that ‘吾生

也有涯, 而知也無涯.’ This sentence means, ‘Our life has a limit, but knowledge has none.’ 

So my graduation is not the end for me, but a new beginning. I am very grateful to the 

professors and friends here, who have become the beacon and torches on my way up. 

First of all, I would like to thank Prof. So Kazama for giving me the opportunity to come 

to Hydro-Environmental System Laboratory at Tohoku University. Prof. So Kazama has 

created a good and relaxed learning and working environment in the laboratory, which makes 

me enjoy my study and life here. Secondly, I am very grateful to Asst. Prof. Yoshiya Touge. 

Asst. Prof. Yoshiya Touge carried out the direction of wildfire research in the field of hydrology 

from nothing in our laboratory, making our team grow gradually. He always brings me new 

ideas academically and works with me to achieve our goals. Equally, I would like to thank Prof. 

Shunichi Koshimura and Prof. Keiko Udo for serving on my committee and for their insightful 

comments and suggestions about my dissertation. Particularly, I would like to thank the China 

Scholarship Council for the financial support during my studies. 

I have unforgettable memories in Japan, and I will always remember those days when we 

drank together and talked about everything. So I want to thank Dr. Chang, Dr. Jacque, Mr. 

Sartsin, Mr. Yamamoto, Mr. Xiao, Mr. Lawson, Mr. Yanagihara, Ms. Wang, Mr. Dong, Ms. Sun, 

Ms. Huang, Mr. Chai, and all my other friends and colleagues in Japan for the wonderful time 

I spent with them. 

Finally, I would like to thank my parents, who have supported me greatly. No matter what 

life road I choose, they will always not hesitate to support me, love me, and give me advice. I 

am so sorry that I cannot go back to visit my parents for three years for various reasons. Words 



 

V 

 

cannot express how much I miss my parents and my hometown. I cannot wait to go home with 

Japanese sake to drink with my father and eat my mother's cooking. 

 

Ke SHI 

Tohoku University 

October 2022 

  



 

VI 

 

Contents 

 

Abstract ............................................................................................................................ II 

Acknowledgments ......................................................................................................... IV 

Contents ......................................................................................................................... VI 

List of Figure ................................................................................................................... X 

List of Table ................................................................................................................ XVI 

List of symbols ......................................................................................................... XVIII 

Chapter 1 Introduction ........................................................................................... 1 

1.1 Overall background ............................................................................................... 1 

1.2 Literature view ...................................................................................................... 4 

1.2.1 Current status of research on climate-wildfire teleconnections ..................... 4 

1.2.2 Current status of research on hydrometeorology-wildfire relationships........ 6 

1.3 A detailed description of research gaps and research objectives .......................... 8 

1.4 Organization of dissertation ................................................................................ 10 

Chapter 2 Data and Methodology ....................................................................... 13 

2.1 Data sources and processing ............................................................................... 13 

2.1.1 Wildfire data for Japan, the continental United States, and the world ........ 13 

2.1.2 Hydro-meteorological data for Japan, the continental United States, and the 
world ...................................................................................................................... 16 

2.1.3 Global atmospheric-oceanic indices data ..................................................... 17 

2.1.4 Land cover and soil parameters for Japan, the continental United States, and 
the world ...................................................................................................................... 19 

2.1.5 Ecoregions in the continental United States and climate zones in the world .. 
 ...................................................................................................................... 20 

2.2 Physical models and drought index .................................................................... 22 

2.2.1 Simple Biosphere including Urban Canopy (for soil moisture) .................. 22 

2.2.2 Standardized Precipitation-Evapotranspiration Index ................................. 24 



 

VII 

 

2.2.3 Palmer Drought Severity Index ................................................................... 27 

2.3 Statistical methods .............................................................................................. 27 

2.3.1 Gaussian Mixture Modelling for Model-Based Clustering for chapter 3 and 
chapter 6 ...................................................................................................................... 27 

2.3.2 Distinct empirical orthogonal function decomposition for chapters 3~4 .... 31 

2.3.3 Wavelet analysis for chapters 3~4 ............................................................... 32 

2.3.4 L-moment estimators for marginal distribution for chapters 5~7 ................ 34 

2.3.5 Bayesian analysis and Markov Chain Monte Carlo algorithm for bivariate 
joint distribution for chapters 5~7 .................................................................................... 38 

2.3.6 Trend-free Prewhitening Mann-Kendall test for chapter 3 and chapters 5~6 . 
 ...................................................................................................................... 40 

2.3.7 Wildfire priority index and return period for chapters 5~7 ......................... 41 

2.3.8 Pearson correlation coefficient for chapter 7 ............................................... 42 

2.3.9 Artificial Neural Networks for chapter 7 ..................................................... 43 

Chapter 3 Quantifying the Contributions of Atmospheric-Oceanic Indices on 
Homogenous Zones Illustrated by the Example of Japan .................................................. 45 

3.1 Introduction ......................................................................................................... 45 

3.2 Results ................................................................................................................. 48 

3.2.1 Soil moisture validation ............................................................................... 48 

3.2.2 Identifying homogeneous drought zones ..................................................... 49 

3.2.3 Probability distribution-related variable of drought in homogeneous drought 
zones ...................................................................................................................... 52 

3.2.4 Duration and seasonality of drought in homogeneous drought zones ......... 54 

3.2.5 Teleconnections between homogeneous drought zones and atmospheric-
oceanic indices .................................................................................................................. 57 

3.2.6 Comparison of homogenous drought zones and wildfire statistics ............. 62 

3.3 Discussion ........................................................................................................... 63 

3.4 Summary ............................................................................................................. 65 

Chapter 4 Quantifying the Contributions of Atmospheric-Oceanic Indices on 
Global Burned Area Homogenous Zones ............................................................................ 66 



 

VIII 

 

4.1 Introduction ......................................................................................................... 66 

4.2 Results ................................................................................................................. 69 

4.2.1 Spatial and temporal patterns of wildfire ..................................................... 69 

4.2.2 Teleconnection between atmospheric-oceanic indices and DEOFs ............ 73 

4.3 Discussion ........................................................................................................... 82 

4.4 Summary ............................................................................................................. 86 

Chapter 5 A New Approach to Describing the Wildfire Extremes Illustrated 
by the Example of the Contiguous United States ................................................................ 87 

5.1 Introduction ......................................................................................................... 87 

5.2 Results ................................................................................................................. 92 

5.2.1 Overall wildfire conditions in the contiguous United States ....................... 92 

5.2.2 Selected univariate probability distributions ............................................... 94 

5.2.3 Differences in choosing the various copula functions ................................. 97 

5.2.4 Selected joint probability distributions ........................................................ 99 

5.2.5 Spatiotemporal characteristics of the wildfire statistics ............................. 100 

5.3 Discussion ......................................................................................................... 104 

5.4 Summary ........................................................................................................... 105 

Chapter 6 Quantifying the Contributions of Hydro-Meteorological Elements 
on Different Wildfire Types Illustrated by the Example of the Contiguous United States 
 ............................................................................................................. 107 

6.1 Introduction ....................................................................................................... 107 

6.2 Results ............................................................................................................... 111 

6.2.1 Performance capabilities with different probabilities ................................ 111 

6.2.2 Overall wildfire conditions in the United States ........................................ 114 

6.2.3 Hydrometeorology-wildfire relationship in different ecoregions .............. 115 

6.2.4 Spatial clustering of wildfire bivariate characteristics ............................... 121 

6.3 Discussion ......................................................................................................... 123 

6.4 Summary ........................................................................................................... 124 



 

IX 

 

Chapter 7 Simulating Global Wildfire Bivariate Characteristics through 
Hydrometeorology-Wildfire Relationship ......................................................................... 125 

7.1 Introduction ....................................................................................................... 125 

7.2 Results ............................................................................................................... 128 

7.2.1 Wildfire characteristics in sub-regions around the world .......................... 128 

7.2.2 Wildfire bivariate characteristics simulation in sub-regions around the world
 .................................................................................................................... 132 

7.3 Discussion ......................................................................................................... 138 

7.4 Summary ........................................................................................................... 138 

Chapter 8 Conclusions and Recommendations ................................................ 140 

8.1 Conclusions ....................................................................................................... 140 

8.2 Recommendations for future studies ................................................................ 142 

References ..................................................................................................................... 145 

Publications and Conferences ..................................................................................... 166 

Peer-reviewed journals ............................................................................................... 166 

Presentations in international conference ................................................................... 167 

 

  



 

X 

 

List of Figure 

Figure 1.1 The conceptual representation of research gaps, methodology, regional sample, 

and global application. ......................................................................................... 10 

Figure 1.2 The organizational structure and research flow chart of the dissertation. ...... 12 

Figure 2.1 Spatial distribution of meshes for frequency analysis and representative 

samples for frequency analysis in chapter 5. ........................................................... 14 

Figure 2.2 Ecoregions of the contiguous United States. .................................................. 21 

Figure 2.3 The spatial boundaries of the geographical regions used in the IPCC 5th 

Assessment Report. .................................................................................................. 22 

Figure 2.4 The structure of the SiBUC (Tanaka, 2004). .................................................. 23 

Figure 2.5 Structure of back-propagation neural network. .............................................. 44 

Figure 3.1 Comparison of model simulation soil moisture and observed soil moisture at 

Kawasaki Town (140.6° E, 38.2° N) during 2019/3/11-2020/12/31 ....................... 48 

Figure 3.2 Spatial distribution of homogeneous drought zones across Japan. ................ 49 

Figure 3.3 The spatial distribution of the average probability distribution parameter values 

in each mesh across Japan from 1958 to 2012. (a) Coefficient of variation; (b) 

Coefficient of skewness; (c) Average soil moisture. ................................................ 53 

Figure 3.4 Examples of probability distribution curves in zone-1 (cyan), zone-6 (green), 

zone-7 (blue), and zone-8 (red). ............................................................................... 53 

Figure 3.5 The spatial distribution of the drought duration in each mesh across Japan from 

1958 to 2012. (a) Length of drought period; (b) Reoccurring periods of drought. .. 55 

Figure 3.6 Scatter plots between the length of drought, reoccurring periods of drought, 

and average soil moisture across Japan from 1958 to 2012. .................................... 55 

Figure 3.7 Examples of soil moisture time series in zone-1 and -8. The red line indicates 



 

XI 

 

the drought threshold, and values below the threshold indicate drought occurrence.

.................................................................................................................................. 55 

Figure 3.8 Average soil moisture in different seasons across Japan from 1958 to 2012. 56 

Figure 3.9 The number of drought months (months below the drought threshold) in 

different seasons across Japan from 1958 to 2012. .................................................. 57 

Figure 3.10 First distinct principal component (DPC) of nine homogeneous drought zones. 

The explained variance in distinct principal component-1 in homogeneous drought 

zones is at the bottom right of the figures. ............................................................... 58 

Figure 3.11 Squared wavelet coherence between large-scale climate signals and distinct 

principal components (DPCs) of nine homogeneous drought zones. The black 

contour designates the 95% confidence level against red noise, and the cone of 

influence (COI), where edge effects might distort the picture, is shown as a lighter, 

paler shade. .............................................................................................................. 60 

Figure 3.12 The global coherence coefficients between large-scale climate signals and 

distinct principal component-1 (DPC1) of nine homogeneous drought zones. ....... 62 

Figure 3.13 Total burned area and wildfire activity across Japan from 1995 to 2017. .... 63 

Figure 4.1 DEOF1~8 for the spatial distribution of logBAA. .......................................... 71 

Figure 4.2 DPC1~8 time series of logBAA (DPCs are the projection of logBAA time series 

in each DEOF pattern). ............................................................................................ 72 

Figure 4.3 WPS of the DPC time series (Periodicity of time series). The black contour 

designates the 95% confidence level against red noise, and the COI, where edge 

effects might distort the picture, is shown as a lighter, paler shade. ........................ 73 

Figure 4.4 The location distribution of the top three atmospheric-oceanic indices with the 

strongest influence on DEOF patterns. The red, blue, and green rectangles indicate 

the strongest, second-strongest, and third-strongest atmospheric-oceanic indices on 



 

XII 

 

the DEOFs, respectively. The black circle indicates the common region in different 

patterns. Hotspot 1: around Ukraine and Kazakhstan; Hotspot 2: Australia; Hotspot 

3: Brazil. ................................................................................................................... 76 

Figure 4.5 WPS of the large-scale climatic single time series (periodicity of time series). 

The black contour designates the 95% confidence level against red noise, and the 

COI, where edge effects might distort the picture, is shown as a lighter, paler shade. 

(DMI and AAO, which have no significant impact on any DEOFs, are removed). 78 

Figure 4.6 Squared wavelet coherence between the atmospheric-oceanic indices and the 

temporal patterns of DPC1~5 (coherence coefficient between the atmospheric-

oceanic indices and DPCs). The black contour designates the 95% confidence level 

against red noise, and the COI, where edge effects might distort the picture, is shown 

as a lighter, paler shade. In addition, the phase lags are illustrated by black arrows. 

The y-axis represents the coherence period, and the color represents the level of the 

coherence coefficient. .............................................................................................. 78 

Figure 4.7 Squared wavelet coherence between the atmospheric-oceanic indices and the 

temporal patterns of DPC6~8 (coherence coefficient between the atmospheric-

oceanic indices and DPCs). The black contour designates the 95% confidence level 

against red noise, and the COI, where edge effects might distort the picture, is shown 

as a lighter, paler shade. In addition, the phase lags are illustrated by black arrows. 

The y-axis represents the coherence period, and the color represents the level of the 

coherence coefficient. .............................................................................................. 79 

Figure 4.8 The global coherence coefficient between atmospheric-oceanic indices and the 

temporal patterns of DPC1~8. ................................................................................. 80 

Figure 4.9 Three-factor multiple wavelet coherence between the top three atmospheric-

oceanic indices and the temporal patterns of DPC1~8. The black contour designates 

the 95% confidence level against red noise, and the COI, where edge effects might 

distort the picture, is shown as a lighter, paler shade. The y-axis represents the 



 

XIII 

 

coherence period, and the color represents the level of the coherence coefficient. . 81 

Figure 4.10 Land cover map of hotspot-1 (around Ukraine and Kazakhstan). ................ 83 

Figure 4.11 Land cover map of hotspot-2 (Australia). .................................................... 84 

Figure 4.12 Land cover map of hotspot-3 (Brazil). ......................................................... 86 

Figure 5.1 Concept map of wildfire bivariate statistical characteristics. ......................... 89 

Figure 5.2 Time series of spatial total wildfire statistics for the United States. .............. 92 

Figure 5.3 Temporal total wildfire statistics for the United States. The bordered grid cells 

are considered in frequency analysis. (a) burned area. (b) wildfire activity. ........... 93 

Figure 5.4 Distribution of wildfire statistics: (a) log-burned-area and (b) log-wildfire-

activity...................................................................................................................... 94 

Figure 5.5 Spatial distribution optimal univariate probability distribution function. In 

particular, regarding LFA, only five distributions pass the optimization step. ........ 97 

Figure 5.6 Joint probability based on the different copulas: choosing sample 2 as an 

example. ................................................................................................................... 99 

Figure 5.7 Spatial distribution optimal bivariate joint probability distribution function.

................................................................................................................................ 100 

Figure 5.8 Relationship between the monthly LFA and LBA in the United States and the 

corresponding return period of the different variables. RP: return period (unit: 

months). ................................................................................................................. 101 

Figure 5.9 Optimal curve of parameter C. When the parameter C =0.77, the objective 

function has the optimal value. .............................................................................. 101 

Figure 5.10 Comparison of the probability and return period between Joint, WP1, and 

WP2. WP1 is the control group: α=1/3, β=1/3, and γ=1/3. WP2 is the optimal group: 

α=1/3, β=77/150, and γ=23/150. ............................................................................ 103 



 

XIV 

 

Figure 5.11 Return period trends of wildfire priority index-2 (WP-2). ......................... 104 

Figure 6.1 Conceptual diagram of the wildfire statistics relationship and the locations of 

five typical wildfire types. ..................................................................................... 108 

Figure 6.2 Comparison of the performance of the Joint, WP1, and WP2 methods in 

assessing the impact of weather elements using the wildfire bivariate statistical 

characteristics framework. ..................................................................................... 113 

Figure 6.3 Seasonal distribution of wildfires in the continental United States. ............. 114 

Figure 6.4 Average probability (P(x>X)) of meteorological values under the five fire types 

in the continental United States: (a) Overall conditions; and (b) Median value. ... 115 

Figure 6.5 Median probability (P(x>X)) of meteorological factors in ecological regions 1-

7 in different seasons and years. ............................................................................ 117 

Figure 6.6 Median probability (P(x>X)) of meteorological factors in ecological regions 8-

13 in different seasons and years. ......................................................................... 119 

Figure 6.7 Median probability (P(x>X)) of meteorological factors in ecological regions 

14-17 in different seasons and years. ..................................................................... 120 

Figure 6.8 Clustering zones of ecoregions based on the probability of meteorological 

factors. .................................................................................................................... 122 

Figure 6.9 Probability of meteorological factors in the clustering zones. ..................... 122 

Figure 6.10 The top two dominant meteorological factors in the clustering zones. ...... 123 

Figure 7.1 Global wildfire characteristics. Figure 7.1(1) shows the average burned area 

per wildfire event. Figure (2) shows the largest burned area and the most frequent 

wildfire activity month in each sub-region. Where 1 to 228 indicates the specific 

number of months in the study period, e.g., 1 indicates January 2001, while 228 

indicates December 2019. ...................................................................................... 130 

Figure 7.2 Violin chart for the log burned area and log wildfire activity. ..................... 131 



 

XV 

 

Figure 7.3 Chord diagram for the correlation coefficient between the hydro-

meteorological elements and wildfire priority index. This figure mainly shows the 

comparison between the correlation coefficients in the same region. The thicker line 

means the stronger correlation. The correlation coefficient values of the top three 

hydro-meteorological elements that dominate each region are also marked in the 

figure. ..................................................................................................................... 134 

Figure 7.4 The performance of wildfire priority index based on BPNN simulation in 

different sub-regions. ............................................................................................. 136 

Figure 7.5 Observed and simulated time series for four representative sub-regions. And 

the correlation coefficient plots in these four sub-regions. .................................... 137 

  



 

XVI 

 

List of Table 

Table 2.1 Information for the candidate global burned area datasets .............................. 15 

Table 2.2 Description and key references of sixteen atmospheric-oceanic indices ......... 18 

Table 2.3 Categories of dryness/wetness degree according to the SPEI values .............. 26 

Table 2.4 Variables used in the clustering of homogeneous drought zones in Japan. ..... 30 

Table 2.5 Theoretical probability distributions of the alternative marginal distributions. 

Note that α, β, and γ are the location, scale, and shape parameters. ........................ 35 

Table 2.6 Theoretical probability distributions of the alternative joint distributions. The 

 denotes the standard Gaussian distribution. The  is the joint distribution of the 

parameter. ................................................................................................................. 39 

Table 2.7 Trend categories according to the Z value ....................................................... 41 

Table 3.1 Characteristics of the nine homogeneous drought zones identified by clustering. 

The recorded data are the median, minimum, and maximum values of each drought 

characteristic (parentheses). ..................................................................................... 50 

Table 3.2 Examples of probability distribution parameter values in zone-1, zone-6, zone-

7, and zone-8. ........................................................................................................... 54 

Table 3.3 PASC between the distinct principal components of homogeneous drought zones 

and atmospheric-oceanic indices. The largest PASC of the four atmospheric-oceanic 

indices is bolded. ...................................................................................................... 59 

Table 4.1 PASC (%) for the wavelet transform coherence between DPCs and atmospheric-

oceanic indices. Italic indicates the most significant atmospheric-oceanic indices, 

and bold indicates the first three most significant atmospheric-oceanic indices. .... 74 

Table 5.1 Goodness-of-fit criterion results of the marginal distribution functions and 

parameters of sample 2. ........................................................................................... 95 



 

XVII 

 

Table 5.2 Goodness-of-fit criterion results of the joint distribution functions and 

parameters of sample 2. ........................................................................................... 99 

Table 5.3 P(x>X, y>Y) and return period of the four representative samples. The locations 

of the four sample points are shown in Figure 2.1. ................................................ 103 

Table 6.1 Probability thresholds for wildfire classification. .......................................... 113 

  



 

XVIII 

 

List of symbols 
Akaike information criterion................................................................................................. AIC 

Ali-Mikhail-Haq ................................................................................................................. AMH 

Antarctic Oscillation ........................................................................................................... AAO 

Arctic Oscillation ................................................................................................................... AO 

Arctic Oscillation Index ........................................................................................................ AOI 

Artificial Neural Networks ................................................................................................ ANNs 

Atlantic multidecadal Oscillation ....................................................................................... AMO 

Atlantic Multi-decadal Oscillation ...................................................................................... AMO 

Bayesian information criterion ............................................................................................. BIC 

Clayton ................................................................................................................................. CLA 

The coefficient of skewness .................................................................................................... CS 

The coefficient of variation .................................................................................................... CV 

The cone of influence............................................................................................................ COI 

Cross wavelet transform ..................................................................................................... XWT 

Dipole Mode ..........................................................................................................................DM 

Distinct empirical orthogonal function ..............................................................................DEOF 

Distinct principal components ............................................................................................ DPCs 

Dynamical Regional Downscaling Japanese 55-year Reanalysis .............................. DSJRA-55 

East Atlantic Pattern ................................................................................................................ EA 

East Atlantic/Western Russia Pattern .............................................................................. EA/WR 

East Pacific/North Pacific Oscillation .............................................................................. EP/NP 

El Niño-Southern Oscillation .............................................................................................ENSO 

Exponential distribution ....................................................................................................... EXP 

Forest Service Fire Program Analysis-Fire Occurrence Database ............................... FPA-FOD 

Frank .................................................................................................................................... FRA 

Gaussian .............................................................................................................................. GAU 

Generalized extreme-value distribution ............................................................................... GEV 



 

XIX 

 

Generalized logistic distribution .......................................................................................... GLO 

Gumbel ................................................................................................................................ GUM 

Gumbel (extreme-value type I) distribution ....................................................................... GUN 

Independence ........................................................................................................................ IND 

Keetch-Byram drought index ............................................................................................. KBDI 

Log-burned-area (log m2) .................................................................................................... LBA 

Log-transformed burned area anomalies ....................................................................... logBAA 

Log-wildfire-activity (log times) .......................................................................................... LFA 

Markov Chain Monte Carlo .............................................................................................MCMC 

Monthly moisture anomalies.............................................................................................. MMA 

Multivariate ENSO Index ..................................................................................................... MEI 

National Oceanic and Atmospheric Administration ........................................................ NOAA 

Normal distribution ..............................................................................................................NOR 

North Atlantic Oscillation ................................................................................................... NAO 

North Atlantic Oscillation Index ........................................................................................ NAOI 

Oceanic Niño Index .............................................................................................................. ONI 

Pacific Decadal Oscillation .................................................................................................. PDO 

Pacific Decadal Oscillation Index ....................................................................................... PDOI 

Pacific/North American Pattern ........................................................................................... PNA 

Pearson type III distribution.................................................................................................. P-Ⅲ 

Percent area of significant coherence ................................................................................ PASC 

Polar/Eurasia Pattern ............................................................................................................ POL 

Potential evapotranspiration (mm) ........................................................................................ PET 

Potential loss (mm) ................................................................................................................. PL 

Potential recharge (mm) .......................................................................................................... PR 

Potential runoff (mm) .......................................................................................................... PRO 

Precipitation (mm) ................................................................................................................ PRE 

Probability plot correlation coefficient .............................................................................. PPCC 

Return period (month)............................................................................................................. RP 



 

XX 

 

Root mean square error ..................................................................................................... RMSE 

Simple Biosphere including Urban Canopy .................................................................... SiBUC 

Southern Oscillation index .....................................................................................................SOI 

Standardized Precipitation-Evapotranspiration Index ......................................................... SPEI 

Surface soil moisture (percentage)....................................................................................... SSM 

Temperature (Celsius, °C) ....................................................................................................TEM 

Trend-free Prewhitening Mann-Kendall .................................................................... TFPW-MK 

Tropical Northern Atlantic Pattern ....................................................................................... TNA 

Tropical Southern Atlantic Pattern ....................................................................................... TSA 

Wavelet coherence .............................................................................................................. WCO 

Weibull distribution.............................................................................................................. WEI 

Western Pacific Pattern .......................................................................................................... WP 

Wildfire extent vector ......................................................................................................... WEV 

Wildfire increase vector ....................................................................................................... WIV 

Wildfire priority index (probability) ...................................................................................... WP 

Wildfire type-1 ..................................................................................................................... WT1 

Wildfire type-2 ..................................................................................................................... WT2 

Wildfire type-3 ..................................................................................................................... WT3 

Wildfire type-4 ..................................................................................................................... WT4 

Wildfire type-5 ..................................................................................................................... WT5 

Wind speed (m/s) ................................................................................................................... WS 

 



 

1 

 

Chapter 1 Introduction 

1.1 Overall background 

The wildfire is caused by an initial high-temperature heat source, which may be produced 

by lightning, volcanic activity, or caused by people, either intentionally or by negligence. 

Wildfires can produce a lot of smoke pollution and damage forest ecosystems. But wildfires 

are also a natural part of ecosystems, allowing vital nutrients to return to the soil and giving 

plants and animals a new beginning, which plays an important role in the reproduction of some 

plants (Supriya, 2017). Generally, when the wildfire intensity is low, it is conducive to 

exchanging energy and materials in the forest ecosystem. It also maintains a steady state of the 

ecosystem at the same time. On the other hand, controlled burning can reduce litter that cannot 

be naturally decomposed and promote the natural renewal of forest vegetation, thereby 

reducing the risk of extreme wildfires. However, in recent years, under the influence of 

anthropogenic climate change and human activities (expansion of the wildland-urban interface, 

deforestation, etc.), wildfires have become more extreme (more frequent and larger burned 

areas) around the world. Frequent wildfires have led to large consumption of forest biomass. 

The carbon-containing gas emitted after the combustion also poses a serious threat to the 

atmosphere, becoming a major driving force of global climate change. 

Wildfires have become one of the major global natural hazards due to their strong 

suddenness, great destructiveness, frequent occurrences, and difficulty during the rescue (Doerr 

et al., 2016; McCaffrey, 2004). In particular, some very large, high-impact wildfires are also 

called mega-wildfires. The term "mega wildfire" became common in 2002 when five states in 

the western United States experienced the worst wildfires on record, with prominent scale and 

impact even in the regions where wildfires were frequent (Williams, 2013). For example, Table 

1.1 shows five representative wildfire events (mega-wildfires) in the world. From August to 

November 2020, a wildfire broke out in California, United States, causing the burned area of 

418,000 hectares, destroying 935 structures, and damaging five structures. August Complex 

was the largest wildfire event in recorded California history (Keeley et al., 2021). During 
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September 2019 and March 2020, wildfires burned 12,600,000 hectares in many forested 

regions of Australia, and smoke affected large numbers of people. Due to this unprecedented 

wildfire, more than 3,000 houses were destroyed, and 33 people passed away (Arriagada et al., 

2020). A destructive wildfire swept through Canada from July to September 2017. A total of 

1,216,053 hectares of areas were burned, and 444 buildings were destroyed, causing more than 

39,000 people to be evacuated from their homes (Kirchmeier‐Young et al., 2019). In April 2015, 

wildfires in Russia burned 1,100,000 hectares and damaged about 1,300 buildings, leaving 

roughly 6,000 people homeless (Liesowska, 2015). The substantial social, ecological, and 

economic effects of wildfires, especially mega-wildfires, have made wildfire-related research 

(how the wildfire occurred, how it spread, and how to control it) a hotspot in recent years. 

Table 1.1 Representative extreme wildfire events (mega-wildfires) around the world in recent 
years 

Date Name Location Burned area 
(hectares) Note References 

08/2020~
11/2020 

August 
Complex 

United 
States 418,000 

One firefighter fatality, 
935 structures were 

destroyed, and 5 
structures were damaged. 

Keeley et al. 
(2021) 

09/2019~
03/2020 

Black 
Summer Australia 12,600,000 

More than 3,000 houses 
were destroyed, and 33 

people passed away 

Arriagada et 
al. (2020) 

07/2017~
09/2017 

2017 
British 

Columbia 
wildfires 

Canada 1,216,053 

More than 39,000 people 
were evacuated from 
their homes, and 444 

buildings were destroyed 

Kirchmeier‐
Young et al. 

(2019) 

04/2015 
2015 

Russian 
wildfires 

Russia 1,100,000 

Approximately 1,300 
homes were damaged, 
leaving roughly 6,000 

people homeless 

Liesowska 
(2015) 

Specifically, the intensity and frequency of wildfires are strongly related to atmospheric-

oceanic indices and hydrometeorology. For example, as for atmospheric-oceanic indices, the 
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historical study of wildfires in the western United States found that precipitation was the main 

factor affecting the occurrence of wildfires in this region (Sibold et al., 2006). Furthermore, the 

distribution of precipitation had significant synchronization with the Pacific Decadal 

Oscillation (PDO) and the Atlantic Multi-decadal Oscillation (AMO), indicating that the 

precipitation/drought in the western United States was influenced by atmospheric-oceanic 

indices (Sibold et al., 2006). Analogously, some scholars have analyzed spatiotemporal wildfire 

patterns. For example, the wildfires in southern Canada were affected by atmospheric-oceanic 

indices (McCabe et al., 2004). Notably, relevant scholars generally believe that the impacts of 

atmospheric-oceanic indices on the distribution of wildfires should be analyzed from two 

aspects. On the one hand, on an inter-decadal scale, the change in the coupled atmospheric-

hydrological system affected the distribution of vegetation, which further affected the type of 

forest and the combustible loading in the forest. On the other hand, unusual climate patterns 

could lead to widespread droughts or high temperatures, and such extreme events could trigger 

wildfires (Flannigan et al., 2000; Stephens et al., 2003).  

Simultaneously, hydrometeorology is a comprehensive manifestation of various hydro-

meteorological elements in a region over a period of time. Hydrometeorology is the fluctuation 

of the climate system. Compared with atmospheric-oceanic indices, hydrometeorology has a 

more direct impact on wildfires. A hydrometeorology system accompanied by drought, high 

temperatures, and strong winds can easily induce wildfires. The occurrence of large-scale 

wildfires, especially mega-wildfires, is by no means accidental but contains a complex process 

under the influence of various hydro-meteorological elements. Also, wildfires often have 

obvious regional and seasonal characteristics and vary with the hydro-meteorological elements. 

There are also vibrations in wildfire-prone and infrequent years with the changes in average 

and extreme weather conditions in the same region.  
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1.2 Literature view 

1.2.1 Current status of research on climate-wildfire 

teleconnections 

The discussion on the teleconnections between atmospheric-oceanic indices and wildfires 

began in the 1990s. Swetnam et al. (1990) have found a significant correlation between 

wildfires in the western United States and El Niño-Southern Oscillation (ENSO) for the first 

time. They have analyzed the teleconnections between the wildfire and the Southern Oscillation 

Index (SOI) in regions affected less by human disturbance. They also discussed whether there 

was a difference between the ENSO index in severe wildfire years and the ENSO index in 

wildfire-free years through resampling and superposed epoch analysis (Swetnam et al., 1990). 

These two methods determine the robustness of this teleconnection not only on time series but 

also on spatial scales. Since then, similar studies of teleconnections between atmospheric-

oceanic indices and wildfires have sprung up. ENSO-fire dynamic in insular Southeast Asia 

(Murphy, 2006) and the impact of the Arctic Oscillation pattern (AO) on inter-annual wildfire 

variability in Central Siberia (Balzter et al., 2005) have been well-known to wildfire-related 

scholars in recent years. 

On the one hand, many scholars used statistical methods to quantify this teleconnection 

by directly analyzing and discussing the relationship between atmospheric-oceanic indices and 

regional wildfire statistics. For example, Urrutia‐Jalabert et al. (2018) found that ENSO 

significantly correlated with wildfires in central Chile. And the AO during winter through 

summer was positively correlated with wildfires across central Chile due to drier/warmer 

conditions associated with the positive phase of this oscillation. Shabbar et al. (2011) used the 

multivariate singular value decomposition to explore the relationship between atmospheric-

oceanic indices and wildfires in Canada. Their results indicated that the ENSO and the Pacific 

Decadal Oscillation (PDO) played a significant role in Canadian wildfires. Simultaneously, at 

the decadal scale, wildfires in the British Columbia coastal temperate rainforest were more 

likely to follow the positive ENSO and PDO phases (Hoffman et al., 2016). Through wavelet 
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analysis, Mariani et al. (2016) determined that ENSO exerts a persistent and significant 

influence on southeast Australian wildfires.  

On the other hand, some scholars analyzed the relationship between drought and wildfire 

and then indirectly explored the relationship between climate and wildfire through the driving 

effect of atmospheric-oceanic indices on drought. Because there may be spatial heterogeneity 

in wildfire characteristics due to differences in spatial characteristics of drought. For example, 

as for the wildfires in the western United States, wildfires in Oregon generally occurred in El 

Niño years, while wildfires in New Mexico, Arizona, and southern Utah generally occurred in 

La Niña years (Kitzberger et al., 2001; McCabe et al., 2004). Schoennagel et al. (2005) also 

indicated that the positive phase superposition of El Niño and PDO would cause drought, 

promoting wildfires in the northern Rocky Mountains. While the negative phase superposition 

of La Niña and PDO may cause drought in the southern Rocky Mountains and large-scale 

wildfires. Also, Alencar et al. (2006) found that drought in the Amazon triggered by ENSO has 

greatly increased the risk of severe wildfire events. In central and eastern Washington State, 

the United States, the connections between atmospheric-oceanic indices-drought-wildfire were 

explored through wavelet analysis (Hessl et al., 2004). Their results showed that wildfires 

tended to occur during dry summers and the positive phase of the PDO in this region (Hessl et 

al., 2004). 

Although the research on the impacts of atmospheric-oceanic indices on wildfire has been 

widely carried out, it has mainly focused on regional studies. Since atmospheric-oceanic 

indices have a wide range of influences and are often not confined to a particular region, it is 

still unclear how to understand the driving mechanism of atmospheric-oceanic indices on 

wildfires from a global perspective. Additionally, most studies only focus on point-to-point 

analysis (the relationship analysis between the atmospheric-oceanic indices and wildfire 

statistics of specific grid cells or the summation of wildfire statistics in a certain region). As a 

result, there still is a lack of holistic understanding, nor has it fully explored the differences in 

the driving mechanisms of atmospheric-oceanic indices on wildfires in different regions. 

Therefore, in this dissertation, the first key research objective is to explore the driving 
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mechanism of atmospheric-oceanic indices on global wildfire patterns. A detailed description 

of this research gap and the research objective of the study is given in chapter 1.3. 

1.2.2 Current status of research on hydrometeorology-wildfire 

relationships 

Research exploring the relationship between hydrometeorology and wildfires has a long 

history. Richardson (1919) analyzed the hydro-meteorological conditions (also called weather) 

of the wildfires in northeastern Minnesota, United States, as early as 1919. Then in 1928, Van 

Wagner (1974) began to study hydro-meteorological elements as a predictor for wildfires and 

found that wildfire could occur when the humidity was less than 50%. Then, Calvert (1934) 

proposed wildfire warnings based on hydro-meteorological conditions. A few years later, 

Gisborne and Hesterov proposed the theory of wildfire forecasting based on integrated hydro-

meteorological elements in 1936 and 1944, respectively. Then, Jackson (1968) suggested using 

the drought index for wildfire-related forecasting. Since the 21st century, related studies on the 

relationship between hydrometeorology and wildfire have emerged in an endless stream, 

including regional scales, global scales, single hydro-meteorological elements, and multiple 

hydro-meteorological elements based on statistical or physical models. In the studies of 

hydrometeorology-wildfire relationships so far, the three most well-known and proven systems 

are the Canadian Forest Service Fire Weather Index Rating System, the Australian McArthur 

Mark 5 Rating System, and the U.S. Forest Service National Fire-Danger Rating System. 

The Canadian Forest Service Fire Weather Index Rating System, also known as the Fire 

Weather Index System, contains six components that describe the effects of hydro-

meteorological elements on wildfire and fuel conditions before the wildfire (Van Wagner, 1974; 

Van Wagner et al., 1987; Van Wagner et al., 1985). In this system, the hydro-meteorological 

elements entered into the calculations are temperature, relative humidity, wind speed, and 

precipitation on a daily scale. Then these four hydro-meteorological elements are used to 

calculate a total of six wildfire-related indicators, including fine fuel moisture code, duff 

moisture code, drought code, initial spread index, buildup index, and fire weather index. The 
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hydrometeorology-wildfire relationships based on the Canadian Forest Service Fire Weather 

Index Rating System have been widely used for wildfire warning and forecasting in Portugal 

(Carvalho et al., 2008), China (Tian et al., 2011), France (Fox et al., 2018) and elsewhere. 

The Australian McArthur Mark 5 Rating System, also known as McArthur Forest Fire 

Danger Index System, comprises three components: Keetch-Byram Drought Index (KBDI), 

drought factor, and fire danger index. Temperature, wind speed, relative humidity, and 

precipitation are the essential hydro-meteorological elements in the calculation of this system 

(Cruz et al., 2015; Keetch et al., 1968; McArthur, 1967; Moore, 1986). In addition, the system 

uses the results of more than 800 experimental fire and wildfire observations to determine an 

empirical formula between hydro-meteorological elements and wildfire to determine wildfire 

risk in Australian forest areas. This Australian McArthur Mark 5 Rating System is considered 

to have good performance for wildfire warning and forecasting in Australia. It is also used in 

other countries, such as New Zealand (Anderson, 2009), South Africa (Kraaij et al., 2018), 

Indonesia (Hadisuwito et al., 2021), etc. 

The U.S. Forest Service National Fire-Danger Rating System has four components based 

on the relationship between hydrometeorology and wildfire, including ignition component, 

spread component, energy release component, and burning index. In addition to the same four 

hydro-meteorological elements as in the Canadian Forest Service Fire Weather Index Rating 

System and Australian McArthur Mark 5 Rating System, this system also requires solar 

radiation, vapor pressure deficit, and day length for calculations. In addition, this system 

explicitly calculates the moisture of dead and living vegetation. Dead fuels are divided into 

categories based on their rapid or slow response to changes in air temperature and relative 

humidity. Live fuels are divided into herbaceous and woody shrubs (Mees et al., 1991; 

Schlobohm et al., 2002). The spread and energy release components are largely controlled by 

fuel structure, weather, and antecedent drought. These two components control the burning 

index (Schoenberg et al., 2007). Similar to the other two hydrometeorology-wildfire 

relationship systems, except where the U.S. Forest Service National Fire-Danger Rating 

System is developed, this system is also used in other regions such as Turkey (Yamak, 2006).  
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Although the research on the hydrometeorology-wildfire relationships has been widely 

carried out, and even though the above three proven systems for describing hydrometeorology-

wildfire relationships have been developed, some gaps still have not been filled. First, previous 

studies have only focused on the univariate wildfire characteristics independently, targeting the 

occurrence of wildfire or the final total burned area. Second, previous studies have only 

discussed the spatial heterogeneity of the impact of hydrometeorology on wildfires without 

considering the temporal heterogeneity, even within the same region. The mechanism of how 

different hydro-meteorological elements cause different types of wildfires has not been 

explored. Therefore, the second key research objective is to explore the influence of hydro-

meteorological elements on wildfire bivariate characteristics (a comprehensive consideration 

of burned area and wildfire activity). A detailed description of this research gap and the research 

objective of the study is given in chapter 1.3. 

1.3 A detailed description of research gaps and research 

objectives 

Altogether, this study aims to fill the two gaps that the previous studies did not fully 

explore the effects of climatic factors and hydro-meteorological elements on wildfire. These 

two main research objectives can be further subdivided into five directions, as shown in Figure 

1.1. 

To achieve final goal 1, the methods that need to be used include cluster analysis, space-

time decomposition, and wavelet analysis. First, there are few studies on the overall 

spatiotemporal characteristics of drought and wildfire conditions in Japan. Only Lee et al. 

(2012b) used the effective drought index to describe the characteristics of drought in Japan. 

Still, they did not consider the control effect of atmospheric-oceanic indices on drought and 

drought-wildfire relationships. To fill this gap, this study first identified the homogeneous 

drought zones in Japan and selected the atmospheric-oceanic indices that may impact the 

drought in Japan. Then the effect of atmospheric-oceanic indices on different homogeneous 

drought zones was quantified in Japan. And by comparing the homogeneous drought zone with 
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the wildfire statistics in Japan, the drought-wildfire relationship can be discussed qualitatively. 

Second, similar homogeneous zone explorations are applied globally. Regarding global 

wildfire patterns, Page et al. (2008) discussed the spatiotemporal wildfire patterns. However, 

only wildfire activity was analyzed in their study, and only the impacts of ENSO on wildfire 

were discussed. Another key factor for measuring wildfire is the burned area, which has been 

linked to paleo records (Bowman et al., 2009) and is used to calculate fluxes of carbon from 

the biosphere to the atmosphere (Van der Werf et al., 2010), reflecting the extent of wildfire 

severity (Keeley, 2009). Therefore, this study takes the global burned area as the target object. 

The influence of more than a dozen climatic factors on the global burned area patterns was 

analyzed, which provides a new important reference for global wildfire characteristics. 

To achieve final goal 2, the first thing to solve is how to consider wildfire bivariate 

characteristics comprehensively. There are many studies on extreme wildfires, but they are 

often analyzed independently from the wildfire univariate characteristics. Therefore, the third 

direction is to explore a new method or index to comprehensively describe the wildfire 

bivariate characteristics (burned area and wildfire activity). Finally, wildfire activity and 

burned area are integrated into a new wildfire priority index using a probabilistic model based 

on copula theory. 

Based on the five wildfire types classified by the wildfire priority index, the relationship 

between hydrometeorology and wildfire types can be fully discussed. Therefore, the fourth 

direction is to quantify the control effects of hydro-meteorological elements on different 

wildfire types in different ecological regions in the continental United States. 

Finally, the hydrometeorology-wildfire relationship is determined on a global scale based 

on the wildfire priority index. On this basis, through back propagation neural network, a model 

for simulating the wildfire priority index is constructed, and the model achieves great 

performance. 
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Figure 1.1 The conceptual representation of research gaps, methodology, regional sample, 
and global application. 
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In chapter 4, the impact of atmospheric-oceanic indices on global wildfire patterns (burned 

area) is quantified with global targeting. The hotspots in the global wildfire patterns are 

discussed in detail, which provides a new idea for exploring the atmospheric-oceanic indices-

wildfire teleconnections. These results can also provide a new reference for predicting wildfires 

based on atmospheric-oceanic indices in hotspot regions. 

Chapters 5, 6, and 7 aim to explore the relationships between hydro-meteorological 

elements and wildfires. Chapter 5 is the theoretical basis for chapters 6 and 7. In addition, 

chapter 5 proposed a new wildfire priority index to comprehensively describe wildfire activity 

and burned areas. 

Chapter 6 takes the continental United States as the target area, divides wildfires into 

different types according to the wildfire priority index, and quantifies the control effects of 

hydro-meteorological elements on different wildfire types. 

Chapter 7 is a further extension of chapters 5 and 6, aiming at the global target region and 

quantifying the control effects of hydro-meteorological elements on wildfire bivariate 

characteristics in each climate sub-region worldwide. And the results are applied to wildfire 

simulation. 

Chapter 8 is also not shown in the organizational chart. Chapter 8 summarizes the 

important results in the previous chapter and the main conclusions of this doctoral dissertation. 

Additionally, the limitations of this dissertation and prospects for future work are also discussed 

in this chapter. 
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Figure 1.2 The organizational structure and research flow chart of the dissertation. 

Data preparation

Hydrometeorology

Climatic indicesWildfire

Land cover

Final goal: climatic indices-wildfire teleconnections and hydrometeorology-wildfire relationships

Soil parameters SiBUC (for soil moisture)

Physical models and 
drought index

PDSISPEI

Chapter 2

Quantifying the contributions of climatic indices 
on homogenous drought zones in Japan

Quantifying the contributions of climatic indices
on global wildfire homogenous zones

A new approach to describing the wildfire 
extremes illustrated by the example of U.S.

Quantifying the contributions of hydro-meteorological 
elements on different wildfire types in U.S.

Simulating global wildfire priority index
through hydrometeorology-wildfire relationship

Statistical methods

Mclust

TFPW-MKDEOF

Wavelet MvCAT

L-moments

Identify drought 
homogeneous zone

Wildfire statistics

Climatic indices

indirect contact

Chapter 4

Chapter 3 Chapter 6

Chapter 5

Chapter 7

Identify wildfire 
homogeneous zoneClimatic indices

drive

Identify 
wildfire type

Different wildfire types

Hydro-meteorological elements

connection

Identify predictors

Wildfire priority index

Hydro-meteorological elements

connection

Target Area: Global

Target Area: Japan Target Area: U.S.

Target Area: Global

Target Area: U.S.

Wildfire activity

Wildfire priority index

Burned area

BPNN PCC



 

13 

 

Chapter 2 Data and Methodology 

2.1 Data sources and processing 

2.1.1 Wildfire data for Japan, the continental United States, and 

the world 

The wildfire statistics data sources are divided into three parts: Japan, the continental 

United States, and the world. As for Japan, the burned area and wildfire activity data come 

from fire reports provided by the Fire and Disaster Management Agency of Japan 

(https://www.fdma.go.jp/). The original data contains information on the time of wildfire 

occurrence (Unit: times) and the final burned area (Unit: m2) from 1995 to 2017. The 

information is accurate to the specific city or village. However, to comply with the data privacy 

policy, only wildfire statistics information on the prefecture scale is shown in the results of this 

dissertation. 

As for the continental United States, the wildfire statistics data were obtained from the 5th 

edition of the Forest Service Fire Program Analysis-Fire Occurrence Database (FPA-FOD) 

(Short, 2021) (https://www.fs.usda.gov/rds/archive/catalog/RDS-2013-0009.5). There were 

2.17×106 million wildfire events during 1992~2018 with a total burned area of 667.7×109 m2 

in this dataset, which was obtained from the reporting systems of federal, state, and local fire 

organizations. This dataset is the fourth update of a publication originally generated to support 

the National Fire Program Analysis System. For records to be included in this dataset, the basic 

data elements were mainly included: discovery date, final fire size, and a point location at least 

as exact as a Public Land Survey System (PLSS) section (1-square mile grid). The data were 

modified to comply with the National Wildfire Coordinating Group's data standards, including 

an updated wildfire-cause standard. And this dissertation integrates event-based primary data 

into gridded data (incorporate wildfire events into the nearest grid based on ignition). In 

particular, the obtained wildfire data was transformed into 0.25° × 0.25° spatially in the 

continental United States in Chapter 5. Monthly time series are constructed for each wildfire 
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event in each grid cell by assigning it to a specific month based on the discovery and end date 

of the wildfire event. Any grid cells with fewer than 100 wildfire records during the 27 years 

were removed to ensure accurate estimation of univariate and bivariate distributions. The 

spatial distribution of the reserved grid cells and representative samples across the 

conterminous United States are shown in Figure 2.1. The units of burned area and wildfire 

activity are m2 and times, respectively. Additionally, log transformation was performed to 

process the obtained wildfire statistics into log-burned-area (LBA) and log-wildfire-activity 

(LFA) data. Log transformation is commonly employed in statistical analysis of wildfires and 

can better consider rarely affected wildfire-sensitive ecosystems with a lower vegetation 

restoration capability than other wildfire-dependent ecosystems (Bistinas et al., 2013; Collins 

et al., 2006; Lei et al., 2019).  

 

Figure 2.1 Spatial distribution of meshes for frequency analysis and representative samples 
for frequency analysis in chapter 5. 

Mesh with frequency analysis
Mesh without frequency analysis

(a) Spatial distribution of meshes for frequency analysis

(b)Representative sample for frequency analysis 

Sample-1
Sample-2
Sample-3
Sample-4
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Notably, as for chapter 6, to be consistent with the spatial resolution of hydro-

meteorological elements, wildfire statistics data was converted to 0.5°×0.5° grid cells across 

the contiguous United States spatially. 

When the target is global wildfire statistics, the existing burned area datasets have 

advantages and limitations. There are four widely used global wildfire datasets (Table 2.1). 

Chuvieco et al. (2018) developed the Fire CCI v5.1 dataset for 2001 to 2019 based on a hybrid 

approach combining the highest resolution (250 m) near-infrared band of MODIS with active 

wildfire information. The Fire CCI dataset has been found to be very useful for describing and 

better understanding distributions of burned areas and wildfire activity at regional and global 

scales (Chuvieco et al., 2018). Also, Fire CCI v5.1 was considered a better performer than 

NASA MCD64A1 v006, particularly regarding small wildfire detection capabilities (Lizundia-

Loiola et al., 2020). As for the GFED 4.1s and GABAM datasets, the available times of these 

two datasets are unsatisfactory for this study. Spatiotemporal trends in BA from the Fire CCI 

dataset were confirmed to be consistent with those contained in GFED dataset, and the regional 

differences provide new insights into potential problems or strengths of existing wildfire 

databases. For example, during the extreme wildfires in Eastern Europe in the spring of 2006, 

Fire CCI data captured burned areas more realistically than GFED data (Chuvieco et al., 2018). 

Ultimately, the Fire CCI v5.1 dataset was used. It is important to note that this dataset is treated 

at different spatial resolutions in different sections for different purposes. A coarser resolution 

of 1°×1° was chosen in chapter 4 to reduce localized interference in identifying homogeneous 

wildfire zones. This dataset was processed to the same resolution of 0.5°×0.5° as the hydro-

meteorological elements when exploring hydrometeorology-wildfire relationships. The unit of 

burned area in the Fire CCI dataset is m2. 

Table 2.1 Information for the candidate global burned area datasets 

Global burned area datasets Resolution Available times 

GFED 4.1s 0.25° 1997/1~2016/12 

GABAM 30 m 2000, 2005, 2010, 2015, 2018 
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Global burned area datasets Resolution Available times 

Fire CCI v5.1 250 m 2001/11~2019/12 

NASA MCD64A1 v006 500 m 2000/11~2020/6 

In addition, if the original global burned area time series were used directly, homogeneous 

burned area zones would be occupied by regions with large burned areas, such as the United 

States or Canada. Therefore, explaining the climatic causes of homogeneous burned area zones 

would be difficult under the original time series. To avoid this problem, log transformation was 

performed for the original burned area data. 

Log transformation can increase the focus on wildfire-sensitive ecosystems that are rarely 

affected by wildfire and have a lower capacity for vegetation recovery than other wildfire-

dependent ecosystems (Bistinas et al., 2013; Collins et al., 2006; Lei et al., 2019). Then, the 

monthly log-transformed burned area anomalies (logBAA) in chapter 3 can be calculated by 

the following equation: 

  (2.1) 

Where logBAi,n is the monthly log-transformed wildfire burned area in the month i of year 

n in a given mesh; m is the number of years in the study period; and logBAAi,n is the monthly 

log-transformed wildfire burned area anomaly in the month i of year n in a given mesh. 

2.1.2 Hydro-meteorological data for Japan, the continental 

United States, and the world 

For Simple Biosphere including Urban Canopy (SiBUC) forcing data in Japan, the forcing 

data other than precipitation with high resolution (5 km × 5 km) during 1958-2012 come from 

the Dynamical Regional Downscaling Japanese 55-year Reanalysis (DSJRA-55) dataset 

(Kayaba et al., 2016), including temperature (Unit: K), radiation (Unit: W/m2), barometric 

pressure (Unit: Pa), etc. (https://jra.kishou.go.jp/DSJRA-55/index_ja.html). The precipitation 
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(Unit: mm) data from 1958 to 2012 were taken from the Asian Precipitation Highly Resolved 

Observational Data_Japan (APHRO_JP) gridded dataset (Kamiguchi et al., 2011; Kamiguchi 

et al., 2010; Yatagai et al., 2012) (http://aphrodite.st.hirosaki-u.ac.jp/). In the statistical analysis, 

precipitation from APHRO_JP shows good performance for both mean and extreme values 

(Kamiguchi et al., 2011; Kamiguchi et al., 2010). 

For SiBUC forcing data in the continental United States and globally, the underlying 

meteorological data for this study were obtained from ERA5 hourly data at a 0.5°×0.5° 

resolution from 1992 to 2019 (Hersbach et al., 2018). The global and continental United States 

simulation timeframes are 2001~2019 and 1992~2018, respectively. Temperature (TEM, Unit: 

K), wind speed (WS, Unit: m/s), and precipitation (PRE, Unit: mm) were directly used to 

analyze the relationship between hydro-meteorological elements and wildfires. Hourly TEM 

and WS data were calculated as monthly averages, and hourly PRE data were calculated as 

monthly totals. In addition, other hydro-meteorological data (barometric pressure, shortwave 

radiation, longwave radiation, etc.) were used to calculate the soil moisture and drought index 

in Chapter 2.2. 

2.1.3 Global atmospheric-oceanic indices data 

The relationship between atmospheric-oceanic indices and extreme weather has been 

widely discussed worldwide, including in the United States (Meehl et al., 2007), China (Gu et 

al., 2017), and Turkish (Baltacı et al., 2018). The selection of targeted atmospheric-oceanic 

indices for different study areas is an important step in this type of research. In chapter 3, when 

considering Japan as a target area, four atmospheric-oceanic indices (AO, NAO, ENSO, and 

PDO) were used to analyze the teleconnections between the atmospheric-oceanic indices and 

drought in Japan. These four indices have been shown to influence the hydro-meteorological 

characteristics of Japan. For example, a warm winter in East Asia may be caused by a positive 

winter AO (He et al., 2017). Aizen et al. (2001) noted that NAO could significantly affect 

rainfall conditions in western Japan. Similarly, Hu et al. (2005) found an important role for 

ENSO in the variability of summer rainfall in East Asia. Lee et al. (2012b) pointed out that 

negative PDO years could increase rainfall as tropical cyclones approached Japan. Specifically, 
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chapter 3 quantifies the impact of these atmospheric-oceanic indices through the Arctic 

Oscillation Index (AOI) (Jianping et al., 2003), North Atlantic Oscillation Index (NAOI) 

(Jianping et al., 2003), Pacific Decadal Oscillation Index (PDOI) (Mantua et al., 2002), and 

Oceanic Niño Index (ONI) (Bamston et al., 1997). 

For the teleconnections between atmospheric-oceanic indices and wildfires in chapter 4, 

sixteen atmospheric-oceanic indices that may impact wildfires were selected (Table 2.2). 

Chapter 4 selects as many atmospheric-oceanic indices as possible to assess the influence of 

climate on the spatiotemporal characteristics of wildfire. All atmospheric-oceanic indices are 

from the National Oceanic and Atmospheric Administration (https://www.noaa.gov/, last 

access: 18 October 2022). All atmospheric-oceanic indices used in this dissertation are 

dimensionless. 

Table 2.2 Description and key references of sixteen atmospheric-oceanic indices 

Climate pattern Abbreviation Primitive elements Key references 

Polar/Eurasia Pattern POL geopotential height field Barnston et al. 
(1987)  

Dipole Mode DM sea surface temperature Saji et al. 
(1999)  

Arctic Oscillation AO sea level pressure Thompson et 
al. (1998)  

Antarctic Oscillation AAO geopotential height field Gong et al. 
(1998) (1999) 

Western Pacific Pattern WP geopotential height field 

Barnston et al. 
(1987) 

Wallace et al. 
(1981) 

East Atlantic/Western 
Russia Pattern EA/WR geopotential height field Barnston et al. 

(1987)  

Pacific/North American 
Pattern PNA geopotential height field Blackmon et 

al. (1984)  
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Climate pattern Abbreviation Primitive elements Key references 

Pacific Decadal 
Oscillation PDO sea surface temperature Newman et al. 

(2016) 

East Pacific/North 
Pacific Oscillation EP/NP geopotential height field Bell et al. 

(1995) 

Multivariate ENSO 
Index MEI 

sea level pressure, sea surface temperature, 
surface zonal winds, surface meridional 
winds, and outgoing longwave radiation 

Wolter et al. 
(1993) (1998) 

(2011) 

Oceanic Niño Index ONI sea surface temperature Huang et al. 
(2017) 

Atlantic multidecadal 
Oscillation AMO sea surface temperature Enfield et al. 

(2001)  

North Atlantic 
Oscillation NAO sea level pressure 

Barnston et al. 
(1987) 

Hurrell (1995) 
Wallace et al. 

(1981) 

East Atlantic Pattern EA geopotential height 

Barnston et al. 
(1987) 

Wallace et al. 
(1981) 

Tropical Northern 
Atlantic Pattern TNA sea surface temperature Enfield et al. 

(1999)  

Tropical Southern 
Atlantic Pattern TSA sea surface temperature Enfield et al. 

(1999)  

2.1.4 Land cover and soil parameters for Japan, the continental 

United States, and the world 

For the calculation of SiBUC in Japan, the land-use and land-type data come from the 

Global Land Cover Characterization (Loveland et al., 2000) and Ministry of Land, 

Infrastructure, Transport and Tourism, Japan (https://nlftp.mlit.go.jp/ksj/index.html, last 

accessed 30 September 2022). Soil and vegetation parameters, such as the leaf area index, come 
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from ECOCLIMAP (Champeaux et al., 2005). For the calculation of SiBUC in the continental 

United States and globally, the land cover and soil parameters are also from the Global Land 

Cover Characterization and ECOCLIMAP, respectively (Champeaux et al., 2005). 

2.1.5 Ecoregions in the continental United States and climate 

zones in the world 

Chapter 6 divides the United States into 17 ecoregions based on Environmental Protection 

Agency regional offices (McMahon et al., 2001; Omernik, 1987, 2004; Omernik et al., 2014) 

(https://www.epa.gov/eco-research/ecoregions), as shown in Figure 2.2. Ecoregions are 

geographical areas with broadly comparable ecosystems and types, qualities, and quantities of 

natural resources. This ecoregion framework is based on mapping done in cooperation with 

EPA regional offices, other Federal agencies, state resource management agencies, and 

bordering North American nations, as well as the work of Omernik (1987). Ecoregions identify 

areas of similarity in the mosaic of biotic, abiotic, terrestrial, and aquatic ecosystem 

components, with humans being considered part of the biota. They are designed to serve as a 

spatial framework for the research, assessment, and monitoring of ecosystems. These areas are 

crucial for organizing and putting into practice ecosystem management strategies among 

federal agencies, state agencies, and nonprofit groups that are in charge of various resource 

categories within the same geographical areas. 

Similarly, in chapter 7, AR5 (IPCC 5th Assessment Report) Reference Regions (IPCC, 

2014) (https://www.ipcc-data.org/guidelines/pages/ar5_regions.html) are used when exploring 

the relationships between hydro-meteorological elements and different types of wildfire around 

the globe, as shown in Figure 2.3.  
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Figure 2.2 Ecoregions of the contiguous United States. 
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Figure 2.3 The spatial boundaries of the geographical regions used in the IPCC 5th 
Assessment Report. 

 

2.2 Physical models and drought index 

2.2.1 Simple Biosphere including Urban Canopy (for soil 

moisture) 

Soil moisture acts as a good drought index, reflecting recent precipitation and preceding 

conditions, indicating vegetation potential and available water storage (Keyantash et al., 2002). 

The soil moisture used in this dissertation is derived from simulations using the Simple 
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CNA: Central North America
EAS: East Asia                                    
MED: South Europe/Mediterranean   
NAU: North Australia
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SEA: Southeast Asia
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TIB: Tibetan Plateau  
WAS: West Asia  
WSA: West Coast South America 

AMZ:Amazon
CAS: Central Asia
CAR: Small Islands Regions Caribbean
CGI:Canada/Greenland/Iceland
EAF: East Africa 
ENA: East North America
NAS: North Asia
NEB: North-East Brazil 
SAF: Southern Africa 
SAU: South Australia/New Zealand 
SSA: Southeastern South America 
WAF: West Africa 
WNA: West North America 
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Biosphere Model including Urban Canopy (SiBUC), which was developed by Tanaka (2004). 

The schematic diagram of the SiBUC is shown in Figure 2.4. In the physical processes in 

SiBUC, water and heat are transferred between state quantities called forecast variables, and 

the values of forecast variables are determined for each land cover. The forecast variables are 

the following 4 types and 16 variables: (1) surface temperature (Unit: K): surface temperature 

in the canopy (Tc), surface temperature in the ground (Tg), surface temperature in the water 

body (Twb), surface temperature in the bulk roof (Tbr), surface temperature in the bulk wall 

(Tbw), surface temperature in the urban ground (Tug); (2) underground temperature (Unit: K): 

underwater temperature (Tdw), the underground temperature in vegetation area (Tdg), 

underground urban temperature (Tdu); (3) intercepted moisture (Unit: m/s): intercepted 

moisture in the canopy (Mc), intercepted moisture in ground (Mg), intercepted moisture in the 

bulk roof (Mbr), intercepted moisture in urban ground (Mug); (4) soil moisture (Unit: %): soil 

moisture in the surface layer (W1), soil moisture in the root zone (W2), soil moisture in recharge 

zone (W3). The soil moisture in the surface layer (W1) was used in this dissertation. 

 

Figure 2.4 The structure of the SiBUC (Tanaka, 2004). 
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The program of the SiBUC is based on FORTRAN. Additionally, a single-layer snow 

model is also considered in the SiBUC, providing an opportunity to consider spring water 

supply based on snowmelt processes. The model has been used in Turkey (Fujihara et al., 2008), 

Japan (Kotsuki et al., 2015), and Southeast Asia (Kotsuki et al., 2013) with great performances. 

And the impact of human activity is eliminated in the SiBUC calculations by removing 

irrigation. Using river discharge, SiBUC was nicely validated. The SiBUC is a model based on 

physical processes, which is more credible than the empirical model. To further ensure the 

accuracy of the soil moisture results from SiBUC, we have validated the model results in 

chapter 3. Notably, the soil moisture simulated by SiBUC in this study is the saturation ratio in 

the first layer. After obtaining the daily soil moisture, the monthly minimum soil moisture was 

extracted to show the driest situation every month. 

2.2.2 Standardized Precipitation-Evapotranspiration Index 

The Standardized Precipitation-Evapotranspiration Index (SPEI) is based on the monthly 

difference between precipitation and potential evapotranspiration. Different time scales of 

SPEI can represent different climatic water balances. The potential evapotranspiration was 

calculated through the Penman-Monteith equation rather than the Thorntwhaite equation 

because the former can more realistically estimate potential evapotranspiration. The specific 

formula is listed as follows: 

  (2.2) 

Where PET is potential evapotranspiration (Unit: mm/day), Rn is the net radiation (Unit: 

MJ/m2/day), G is the soil heat flux density (Unit: MJ/m2/day), TEM is the air temperature at a 

2 m height (Unit: °C), WS2 is the wind speed at a 2 m height (Unit: m/s), es is the vapor pressure 

of the air at saturation (Unit: kPa), ea is the actual vapor pressure (Unit: kPa), Δ is the slope of 

the vapor pressure curve (Unit: kPa/°C), and γ is the psychrometric constant (Unit: kPa/°C) 

(Allen et al., 1998). The calculated initial PET is the daily scale, and then the daily scale PET 

is summed to become the PET at a monthly scale (Unit: mm/month). 
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With a value for potential evapotranspiration, the difference between the precipitation 

(Unit: mm/month) and potential evapotranspiration (Unit: mm/month) for the month i can be 

calculated as follows: 

  (2.3) 

The calculated Di values are aggregated at different time scales. The difference in a given 

month j and year i depends on the chosen timescale k. For example, the accumulated difference 

for one month in a particular year i with a 12-month timescale can be calculated as follows 

(Vicente-Serrano et al., 2010): 
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Based on the behavior of the most extreme values, the log-logistic distribution is very 

suitable for normalizing the D-series to obtain the SPEI (Vicente-Serrano et al., 2010). The 

probability density function of a three-parameter log-logistic distributed variable is expressed 

as: 

 

2
1( ) ( ) 1 ( )x xf x β ββ γ γ

α α α

−
−− − = +    (2.5) 

Where α, β, and γ are scale, shape, and origin parameters, respectively, for D values in the 

range (γ >D <ꝏ). 

The probability distribution function of the D series, according to the log-logistic 

distribution, can be given by 

 

1

( ) 1 ( )F x
x

βα
γ

−
 

= + −   (2.6) 

Then, the SPEI can be easily obtained as the standardized values of F(x) (Abramowitz et 

al., 1964). 
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Where 

 2 ln( )    ,    0.5W P P= − ≤  (2.8) 

And P is the probability of exceeding a determined D value, P = 1 − F(x). If P> 0.5, then 

P is replaced by 1−P, and the sign of the resultant SPEI is reversed. The constants are: 

C0=2.515517, C1=0.802853, C2=0.010328, d1=1.432788, d2=0.189269, and d3=0.001308.  

The SPEI1 usually represents a meteorological drought, while SPEI3 is often used as an 

agricultural drought index. SPEI at longer scales, such as SPEI5 and SPEI12, can indicate 

hydrological drought and monitor surface water resources (Beguería et al., 2014; Hayes et al., 

2011). It should be noted that the SPEI used in this study is the mean of SPEI1, SPEI3, SPEI6, 

SPEI9, and SPEI12. The SPEI calculation program in this dissertation is written by MATLAB. 

And the SPEI class is shown in Table 2.3. The SPEI is dimensionless. 

Table 2.3 Categories of dryness/wetness degree according to the SPEI values 

Categories SPEI values 

Extremely wet [2.0, +∞) 

Severely wet [1.5, 2.0) 

Moderately wet [1.0, 1.5) 

Slightly wet [0.5, 1.0) 

Near normal (-0.5, 0.5) 

Slightly dry (-1.0, -0.5] 

Moderately dry (-1.5, -1.0] 

Severely dry (-2.0, -1.5] 
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Categories SPEI values 

Extremely dry (-∞, -2.0] 

2.2.3 Palmer Drought Severity Index 

The Palmer Drought Severity Index (PDSI) was presented by Palmer Palmer (1965). The 

PDSI is calculated from the monthly moisture anomalies (MMA) determined by estimating the 

difference between the actual precipitation and the precipitation required for the climate to be 

suitable for existing conditions (Zhai et al., 2010). The PDSI is dimensionless. The PDSI 

calculation program in this dissertation is written by MATLAB. The PDSI incorporates 

antecedent precipitation, water supply, and water demand into a hydrological system (Dai et 

al., 2004). Specifically, the equation used to calculate the MMA is shown as follows: 

  (2.9) 

The MMA can show dryness/wetness in the month i. K is a climatic characteristic value 

that varies over time and space to account for climate changes. αi, βi, φi, and δi are the weighted 

values according to the climate of the area. PRE, PET, PR, PRO, and PL represent precipitation 

(Unit: mm/month), potential evapotranspiration (Unit: mm/month), potential recharge (Unit: 

mm/month), potential runoff (Unit: mm/month), and potential loss (Unit: mm/month), 

respectively. Through the MMA, the PDSI value can be calculated for a given month using the 

following equation: 

  (2.10) 

2.3 Statistical methods 

2.3.1 Gaussian Mixture Modelling for Model-Based Clustering 

for chapter 3 and chapter 6 

The Gaussian Mixture Modelling (Mclust toolkit) based on R was used for cluster analysis 
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in this dissertation, containing three parts: (1) initialization by model-based hierarchical 

clustering approach; (2) maximum likelihood estimation based on an expectation-

maximization algorithm (Bradley et al., 1998; Dempster et al., 1977); (3) selection of the 

number of clusters and the Bayesian model via Bayesian Information Criterion approximation 

(Fraley et al., 2002; Fraley et al., 2012; Scrucca et al., 2016). Specifically, the Gaussian Mixture 

Modelling is divided into the following four steps: (1) determine a maximum number of 

clusters (It is set to 15 for the maximum number of clusters in this dissertation, and the optimal 

clustering numbers of the results in this dissertation are all less than 15) and a set of hybrid 

models to consider; (2) perform hierarchical clustering to maximize the classification 

likelihood for each model, and obtain the corresponding classifications for up to the maximum 

number of clusters; (3) apply the expectation-maximization algorithm for each model and each 

number of clusters; (4) compute Bayesian Information Criterion approximation for the single-

cluster case for each model and the hybrid model with the optimal parameters (Fraley et al., 

2002; Fraley et al., 2012; Scrucca et al., 2016). In addition, noise and outliers can be dealt with 

by iterative sampling, where points with low probability are removed from the clusters. The 

clustering/removal process is repeated until all remaining observations have a relatively high 

density (Fraley et al., 2002; Fraley et al., 2012; Scrucca et al., 2016). It is important to note that 

all input data were normalized before clustering. For more detailed information about the 

Gaussian Mixture Modelling for Model-Based Clustering, please refer to the Mclust toolkit 

(https://cran.r-project.org/web/packages/mclust/index.html). 

For a sample  of n independent and identically distributed 

observations, through the use of a finite mixture model with G components, a probability 

density function that describes the distribution of each observation can be provided:  

  (2.11) 

Where are the parameters of the mixture model,  

is the kth component density for observation xi with parameter vector θk, (π1, …, πG−1) are the 
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mixing weights or probabilities (such that πk > 0, ), and G is the number of mixture 

components (Fraley et al., 2002; Fraley et al., 2012; Scrucca et al., 2016). Typically, the 

parameters Ψ must be estimated because they are unknown. In this Gaussian Mixture 

Modelling, the Expectation–Maximization (EM) algorithm is used to calculate the maximum 

likelihood estimation of parameters (Dempster et al., 1977). 

For the input data used for clustering in chapter 3, the drought probability distribution 

characteristics, duration of drought, seasonality of drought, and distance between regions were 

assembled, as shown in Table 2.4. The mean soil moisture indicates the average state of soil 

moisture over the entire study period and influences the overall position of the probability 

distribution curve of soil moisture. The coefficient of variation (CV) represents the ratio of the 

standard deviation to the average value. It shows the degree of variability of the data relative 

to the average value, which determines whether the soil moisture probability distribution curve 

is steep or gentle. Also, the coefficient of skewness (CS) indicates the tail of the probability 

distribution curve. For example, a positive CS value indicates a probability curve with the right 

tail, while a negative CS value indicates a probability curve with the left tail. The specific 

equation for calculating CS is shown below: 

  (2.12) 

Where N is the number of samples, which is the number of months in this study; X is the 

sample; X is the average of samples; σ is the standard deviation.  

When discussing the drought duration, the drought event must first be defined. In this 

dissertation, drought is defined as occurring when the soil moisture of a month is lower than 

90% of the other months during the entire study period. On this basis, the average length of the 

drought period was calculated by counting the number of continuous months of each drought. 

The number of months between two drought events is considered to be the reoccurring periods 

of drought. 
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As for the seasonality of drought, the average soil moisture for spring (March-May), 

summer (June-August), autumn (September-November), and winter (December-February) was 

calculated. In order not to disperse homogeneous drought sub-regions, the longitude and 

latitude of each grid were also used as variables for clustering analysis. 

Table 2.4 Variables used in the clustering of homogeneous drought zones in Japan. 

Category Data type 

Probability distribution-related variable 

Average soil moisture 

Coefficient of variation (CV) 

Coefficient of skewness (CS) 

Duration-related variable 
Length of drought period 

Reoccurring periods of drought 

Seasonality-related variable 

Average soil moisture in spring 

Average soil moisture in summer 

Average soil moisture in autumn 

Average soil moisture in winter 

Distance-related variable 
Latitude 

Longitude 

As for chapter 6, the median values of hydro-meteorological elements under each wildfire 

type were used as input (missing wildfire types were entered as 0). In this case, not only the 

presence or absence of wildfire types and hydrometeorology-wildfire can be used for clustering 

the continental United States. 
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2.3.2 Distinct empirical orthogonal function decomposition for 

chapters 3~4 

The distinct empirical orthogonal function (DEOF) decomposition, proposed by 

Dommenget (2007), was used to identify homogeneous drought or wildfire zones. The DEOF 

method decomposes the spatiotemporal matrix into the distinct spatial function component 

(DEOF) and the temporal function component (distinct principal component, DPC). The DEOF 

calculation program in this dissertation is written by MATLAB. The detailed calculation 

process is shown below. 

Assuming that a hydro-meteorological element X consists of m spatial points and n 

temporal points, then X can be expressed as: 

  (2.13) 

X can be decomposed into V*T, where V=m*r is the space function part which does not 

change with time; T=r*n is the time function part which only depends on time; r is the rank of 

the matrix X. Through the linear combination of time and space function, different principal 

components of X can be obtained. The map associated with an EOF represents a pattern that is 

statistically independent and spatially orthogonal to the others. The eigenvalue indicates the 

variance accounted for by the pattern (Kim et al., 2011). 

The DEOF method, with the addition of an isotropic diffusion process, differs from the 

classical EOF technique (Lorenz, 1956), reducing the possibility of failing to identify spatial 

patterns with underlying physical mechanisms due to interference from spatial white noise 

(Dommenget, 2007). Similar to the EOF decomposition, a larger explained variance of the 

DPCs implies that more information about the original field is focused on the decomposed 

patterns. 

The leading DEOF pattern is defined as the pattern that maximizes the differences in 
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explained variance : 

  (2.14) 

Where Varbobs is the variance that the DEOF pattern explains in the observer data, and 

Varnull is the variance that the DEOF pattern explains under the null hypothesis (Dommenget, 

2007). 

2.3.3 Wavelet analysis for chapters 3~4 

Wavelet analysis is an effective tool for identifying teleconnections between hydro-

meteorological elements and weather extremes. The calculation program of wavelet analysis is 

based on the Wavelet Toolbox from MATLAB. Specifically, the coherence between two time 

series can be calculated by the cross wavelet transform (XWT) (Torrence et al., 1998) and 

wavelet coherence (WCO) (Torrence et al., 1999). The first step for wavelet analysis is to 

perform a continuous wavelet transform (CWT) of the data. A wavelet is a zero-mean, 

frequency- and time-local function. A wavelet can be characterized by how localized it is in 

time ( ) and frequency ( , known as the bandwidth). The Morlet wavelet can be defined as: 

  (2.15) 

Where ω0 is the dimensionless frequency and η is dimensionless time. And when ω0=6 in 

Morlet wavelet, it is considered to be a good balance of time and frequency localization 

(Grinsted et al., 2004). This is also the bandwidth used in the subsequent analysis of this 

dissertation. 

After the process of CWT, the time series is stretched in time by varying its scale (s, s=…, 

4, 8, 16, 32, 64, 128, … , unit: months), and we can get η=s* t. The CWT of a time series (xn, 

n=1, … , N, N is the length of the time series) with uniform time steps δt (month is the time step 

for wavelet analysis of this dissertation), is defined as the convolution of xn with the scaled and 

normalized wavelet:  
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  (2.16) 

Where the range of n’ is from n to N. Then the wavelet power can be defined as . 

The complex argument of  can be interpreted as the local phase.  

Furthermore, the WCO between two time series can be calculated by normalizing and 

smoothing their XWT: 

  (2.17) 

Where Wn
X(s) and Wn

Y(s) represent the wavelet power spectrum of the time series xn and 

yn with n=1, 2… N, respectively; s is the wavelet scale; * denotes its complex conjugate; and n 

is the location of the wavelet in time. 

The higher coherence indicates that the two time series are more similar in the time-

frequency plane. However, it should be noted that the part outside the cone of influence (COI) 

should also be interpreted with caution (Torrence et al., 1998). The wavelet coherence 

coefficient ranges from 0 to 1, and higher values indicate greater coherence (Torrence et al., 

1998). In addition, a significance level of P<0.05 was used to assess the statistical significance 

of the results. 

To quantitatively compare the strength of the effects of different atmospheric-oceanic 

indices on drought or wildfire, the percent area of significant coherence (PASC) relative to the 

wavelet scale-location domain and global wavelet coherence coefficient were adopted (Hu et 

al., 2016). A large PASC value indicates a greater coherence between atmospheric-oceanic 

indices and weather extremes. And the global wavelet coherence coefficient (Partal et al., 2006) 

was defined to evaluate the coherence between two time series at different scales while 

neglecting the influence of time. The difference between PASC and global wavelet coherence 

coefficient is that they are used to identify the most significant coherent variable and 

quantitatively judge the level of coherence, respectively. 
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2.3.4 L-moment estimators for marginal distribution for 

chapters 5~7 

The univariate distribution parameter estimation approach involves the L-moment theory, 

which Hosking Hosking (1990) developed based on order statistics. The first four L-moments 

are defined as: 

  (2.18) 

Where βi is defined based on probability-weighted moment methods (Greenwood et al., 

1979): 

  (2.19) 

Where F is the non-exceedance probability, and x (F) denotes the inverse or quantile 

function of x. Then, L-moment ratios are calculated as follows: 

  (2.20) 

Where τ2, τ3, and τ4 are L-coefficients of the variance (LCv), L-skewness (LCs), and L-

kurtosis (LCk), respectively (Hosking, 1990). 

Through the above L-moment ratios, distribution parameters can be calculated. For more 

details, please refer to Hosking (Hosking, 1990; Hosking et al., 1997). A total of seven 

commonly considered marginal distributions was selected, and the specific expressions of these 
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functions are provided in Table 2.5. 

Table 2.5 Theoretical probability distributions of the alternative marginal distributions. Note 
that α, β, and γ are the location, scale, and shape parameters. 

Distribution Abbreviation Probability density function (PDF) and Parameter estimates 

Generalized 

extreme-

value 

distribution 

GEV 

PDF: 

 

Parameter estimates:  

 

Gumbel 

(extreme-

value type I) 

distribution 

GUM 

PDF: 

 

Parameter estimates: 

GUM is a special type of GEV distribution, and parameter estimates 

are the same as GEV distribution. 

Generalized 

logistic 

distribution 

GLO 

PDF: 

 

Parameter estimates: 
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Distribution Abbreviation Probability density function (PDF) and Parameter estimates 

 

Normal 

distribution 
NOR 

PDF: 

 

Parameter estimates: 

 

Weibull 

distribution 
WEI 

PDF: 

 

Parameter estimates:  

WEI is a special type of GEV distribution, and parameter estimates 

are the same as GEV distribution. 

Pearson type 

III 

distribution 

P-Ⅲ 

PDF: 

 

Parameter estimates:  
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Distribution Abbreviation Probability density function (PDF) and Parameter estimates 

 

Exponential 

distribution 
EXP 

PDF: 

 

Parameter estimates:  

EXP is a special type of P-Ⅲ distribution, and parameter estimates 

are the same as the P-Ⅲ distribution. 

The probability plot correlation coefficient (PPCC) and root mean square error (RMSE) 

are utilized for the goodness of fit. The specific calculation functions are expressed in 

Equations 2.18 and 2.19, respectively. The RMSE is one of the most widely employed 

indicators representing the goodness of fit (Yang et al., 2018). Moreover, the PPCC evaluates 

how well the simulated L-skewness and L-kurtosis of a fitted distribution match the average 

regional L-skewness and L-kurtosis values obtained from observation data. The PPCC statistic 

achieves a maximum value of 1. The PPCC has been verified as a powerful index to evaluate 

the goodness-of-fit of a wide range of alternative distribution hypotheses (Stedinger, 1993) and 

to perform hypothesis tests of various two-parameter distribution alternatives. 

  (2.21) 
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Where Pe and Pt are empirical cumulative probability and theoretical cumulative 

probability, respectively. 

  (2.22) 

Where Xi and Mi are the ordered observations and the order statistic medians, respectively; 

X and M are the average value of observations and statistic medians, respectively (Filliben, 

1975). 

2.3.5 Bayesian analysis and Markov Chain Monte Carlo 

algorithm for bivariate joint distribution for chapters 5~7 

The joint frequency analysis method used in this study is based on Multivariate Copula 

Analysis Toolbox (MvCAT) in MATLAB (Sadegh et al., 2017). This approach for estimating 

the parameters of the univariate distribution includes Bayesian analysis and the Markov Chain 

Monte Carlo (MCMC) algorithm. In particular, Bayes’ law conveniently attributes all modeling 

uncertainties to the parameters and estimates the posterior distribution of model parameters as 

follows: 

  (2.23) 

Where  and  denote the prior and posterior distributions, respectively, of 

the parameters. The prior distribution is a constant value in modeling practice based on the 

evidence. It can be omitted from analysis if the main goal is to estimate the posterior 

distribution of the parameters, and the posterior distribution of the parameters can be estimated 

as: 

  (2.24) 
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Bayes’ equation is usually difficult to solve analytically, and a numerical method, the 

MCMC algorithm, is adopted to sample the posterior distribution. MCMC algorithms comprise 

a class of statistical methods to sample high-dimensional complex distributions (Andrieu et al., 

2008). The equilibrium state of the MCMC algorithm, if the transition kernel warrants 

ergodicity, represents the target distribution. 

The RMSE, Akaike information criterion (AIC), and Bayesian information criterion (BIC) 

are employed in terms of the goodness of fit. The AIC considers both the model complexity 

and minimization of error residuals and provides a more robust measure of the quality of model 

predictions. Furthermore, the AIC avoids the problem of over-conditioning by adding a penalty 

term based on the number of parameters. The AIC is formulated as (Aho et al., 2014; Akaike, 

1974): 

  (2.25) 

Where D is the number of parameters of the statistical model, and l is the log-likelihood 

value of the best parameter set.  

Similar to the AIC, the BIC is expressed as (Schwarz, 1978): 

  (2.26) 

A total of 8 commonly considered joint distributions were selected, and the expressions 

of the specific functions are listed in Table 2.6. 

Table 2.6 Theoretical probability distributions of the alternative joint distributions. The  

denotes the standard Gaussian distribution. The  is the joint distribution of the parameter. 

Distribution Abbreviation Probability density function (PDF) 

Gaussian copula GAU  
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Distribution Abbreviation Probability density function (PDF) 

Clayton copula CLA  

Frank copula FRA  

Gumbel copula GUM  

Independence copula IND  

Ali-Mikhail-Haq copula AMH  

2.3.6 Trend-free Prewhitening Mann-Kendall test for chapter 3 

and chapters 5~6 

The trend analysis method used in this study is the Trend-free Prewhitening Mann-Kendall 

(TFPW-MK) test, which was based on the Mann-Kendall (MK) test proposed by Mann (1945) 

and modified by Kendall (1948). Hydro-meteorological time series often exhibit serial 

correlation, increasing the probability of detecting a significant trend with the MK test, thus 

changing the magnitude of the estimated serial correlation (Yue et al., 2002). Therefore, the 

TFPW-MK test was recommended to efficiently eliminate the effect of serial correlation (Yue 

et al., 2002). The steps for the specific TFPW-MK test are shown as follows: 

Step 1. Using the Theil-Sen method, the slope (b) of the time series trend is estimated. If 

the slope is almost equal to zero, then there is no need to continue with the trend analysis. If 

the slope is different from zero, then the time series is detrended using the following equation: 

  (2.27) 

Step 2. The lag-k serial correlation coefficient rk of detrended series Xt’ is computed with 

equation 2.24, and the auto-regression model (k) is then removed from Xt’ according to the 

following equation: 
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  (2.28) 

  (2.29) 

This prewhitening procedure after series detrending is referred to as the TFPW procedure. 

After applying the TFPW procedure, the resultant time series should be independent. 

Step 3. The identified trend Tt and residual Yt’ are blended with the following equation: 

  (2.30) 

Step 4. The MK test is applied to the blended series to assess the significance of the trend. 

The statistic Z value can be obtained through the TFPW-MK test, thereby measuring the degree 

to which a given trend consistently decreases or increases (Table 2.7) (Wang et al., 2015). 

Table 2.7 Trend categories according to the Z value 

Categories Z value 

Significant increasing trend [1.96, +∞) 

Weak increasing trend [1.64, 1.96) 

No significant increasing trend [0, 1.64) 

No significant decreasing trend (-1.64, 0) 

Weak decreasing trend (-1.96, -1.64] 

Significant decreasing trend (-∞, -1.96] 

2.3.7 Wildfire priority index and return period for chapters 5~7 

The direct application of bivariate probability distributions in wildfire frequency analysis 

can neglect single mega-wildfire events and numerous wildfire events with a normal-sized 

burned area. Accordingly, the weighted average method was adopted to determine the wildfire 
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priority (WP) probability to balance bivariate and univariate probability. The return period can 

be calculated as the inverse of the probability. The specific equation for WP is as follows: 

  (2.31) 

Where α, β, and γ are weighting coefficients. To ensure sufficient weighting at the joint 

extremes, α is set to 1α to 1/3. Then we use the traversal algorithm to select the optimal β and 

γ. β is set to C*2/3, and γ is (1-C)*2/3. C is discrete from 0 to 1 in steps of 0.01. This study 

requires WP probability to perform better than bivariate joint probability in the case of super 

frequent wildfires and mega-wildfires. Therefore, the objective function (OF) is set to the sum 

of the proportion of WP probability that is better than the joint probability (when the probability 

of LBA is greater than 0.95 and when the probability of LFA is greater than 0.95). The specific 

objective equation is as follows: 

 (2.32) 

2.3.8 Pearson correlation coefficient for chapter 7 

The Pearson correlation coefficient was used to detect the correlation between hydro-

meteorological elements and wildfire bivariate characteristics. The Pearson method assesses 

the correlation coefficient of two conditioning factors. The correlation value is calculated by 

their covariance divided by the product of their standard deviations, as follows: 

  (2.33) 

Where X and Y are two time series, and the  and  are the average value of the time 

series. 
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Pearson correlations are represented in square tables called correlation matrices, which 

compute Pearson correlations for each column pair of a set of variables. Each matrix value 

represents the calculated correlation of the corresponding row and column variables (Tehrany 

et al., 2019). 

2.3.9 Artificial Neural Networks for chapter 7 

As for Artificial Neural Networks (ANNs). In particular, the BPNN model consists of 

three layers (Figure 2.4): the input layer, the hidden layer, and the output layer. BPNN has all 

the features and unique advantages of ANNs, and BPNN is a popular choice in the field of 

hydrology to deal with a variety of complex physical processes. Therefore, this study selects 

BPNN as the model to simulate the wildfire bivariate characteristics. 

Specifically, in the study, the training function of BPNN is the Levenberg-Marquardt 

algorithm (Moré, 1978). The Levenberg-Marquardt algorithm can train the BPNN several 

times faster than the traditional algorithm, an iterative algorithm for locating the minimum of 

a function expressed as a sum of squares of nonlinear functions. Furthermore, the Levenberg-

Marquardt algorithm obtains the smallest error associated with the weights through the damped 

least-squares Method (Duncan, 2014). Compared with other algorithms, the disadvantage of 

this algorithm is that it needs to occupy more memory during calculation. But it is widely 

recognized for its extremely fast training speed and for outperforming simple gradient and 

conjugate descent methods (Tabbussum et al., 2020). The performance equations are mean 

squared error (MSE) and coefficient of determination (R2), as follows: 

  (2.34) 

  (2.35) 

Where n is the sample length, Y is the observed value,  is the mean of the observed 
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data, and  is the simulated value. 

As for the input data, the data were randomly divided into the training group (75%), 

validation group (15%), and test group (15%) in this study. The training group is used to find 

an optimal set of parameters in a given hypothesis space. The purpose of the validation group 

is to find the optimal hyperparameters. The optimal set of hyper-parameters can be obtained by 

comparing the effects of the models trained with each set of hyper-parameters through the 

validation group. The test group is used to evaluate the final generalization ability of the model. 

In addition, the BPNN model will be trained fifty times, and the final simulation results will be 

taken as the average time series of the fifty simulations. 

 

Figure 2.5 Structure of back-propagation neural network.  
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Chapter 3 Quantifying the Contributions of 
Atmospheric-Oceanic Indices on Homogenous 

Zones Illustrated by the Example of Japan 

This chapter was published in the Journal of Applied Meteorology and Climatology in 

January 2022: Ke Shi, Yoshiya Touge, and So Kazama. "Defining Homogeneous Drought 

Zones Based on Soil Moisture across Japan and Teleconnections with Large-Scale Climate 

Signals." Journal of Applied Meteorology and Climatology 61.1 (2022b): 43-60.  

3.1 Introduction 

Drought is one of the most complex and insurmountable weather extremes (Dai, 2011; 

Hagman et al., 1984; Kogan et al., 2016). Compared to other weather extremes, severe droughts 

are more widespread and can last for a year or even several years (Asong et al., 2018). As an 

illustration, in 1934, an extreme drought swept through nearly the entire western North 

America, severely impacting agriculture and water resources (Cook et al., 2014). Southeastern 

Australia experienced one of the worst droughts observed in the world from 2001 to 2003 due 

to several years of lack of rainfall and record-high temperatures that almost completely dried 

up surface water resources (Leblanc et al., 2009). Strikingly, droughts and their impacts vary 

by region, with varying intensity, duration, and seasonality (Edwards et al., 2019; Herrera‐

Estrada et al., 2017; Mishra et al., 2010; Wilhite et al., 2007). Droughts in South America and 

Asia tend to spread more rapidly, while those in Africa and Australia spread relatively slowly 

(Herrera‐Estrada et al., 2017). These spatial and temporal characteristics and the multiple 

causes of drought lead to heterogeneity of droughts in different climatic zones and even in the 

same geographical location. And whether the consequences of drought, such as wildfire, are 

also heterogeneous across regions has not been explored. 

This chapter explores the causes and effects of homogeneous drought zones, using Japan 

as the target region, where heterogeneity of drought is evident. Mountains cover 70% of Japan, 

and the rapid flow of rain to the sea after it falls has led to unique drought characteristics in 
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Japan (Lee et al., 2012a). Historically, most of Japan has experienced varying droughts, such 

as in 1967, 1973, 1978, 1984, 1985, and 1994 (Okada, 2016). The 1994 drought was considered 

the worst in Japan, with almost the entire country experiencing exceptional drought (Lee et al., 

2012a). In addition, anthropogenic climate change has increased the uncertainty in the spatial 

and temporal characteristics of drought in Japan, which poses additional challenges in defining 

homogeneous drought zones and analyzing the relationship between drought and wildfire. 

Previous studies exploring the impact of atmospheric-oceanic indices on drought found a 

strong relationship between El Niño-Southern Oscillation (ENSO) and drought in the East 

African rainy season, quantified by correlation coefficients (Park et al., 2020). More than half 

of the multi-year drought frequency in the United States was caused by the Pacific Decadal 

Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO) (McCabe et al., 2004). 

Based on the principal component analysis, the established relationship between North Atlantic 

Oscillation (NAO) phases and drought indices was also found suitable for predicting 

widespread drought in the Mediterranean basin (Vicente-Serrano et al., 2010). However, 

previous studies on the impacts of atmospheric-oceanic indices on drought have only focused 

on analyzing relationships at specific grid points or remote links between atmospheric-oceanic 

indices and principal components across the region, ignoring the possible heterogeneity of the 

same region. In other words, they do not fill the gap in exploring homogeneous drought zones 

and climate impacts, nor do they discuss the impact of drought (such as wildfire). 

Meanwhile, similar studies on drought or wildfire have never been conducted in Japan. 

For other hydro-meteorological elements, the relationship between precipitation in western 

Japan and NAO has been shown to be significant (Aizen et al., 2001). Furthermore, the 

occurrence of ENSO can strengthen the link between the South Asian summer monsoon and 

East Asian summer precipitation, as highlighted in previous studies (Hu et al., 2005). In 

addition, it has been suggested that a positive winter AO may lead to a warmer winter in East 

Asia (He et al., 2017). Overall, the hydro-meteorological characteristic in Japan has been 

confirmed to be affected by these large-scale climate signals. However, considering the 

heterogeneity of Japan, gridpoint-specific relationship analysis is limited by the resolution of 
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the data, and the teleconnections between large-scale climate signals and principal components 

of the entire region cannot distinguish the exact climatic causes between different 

homogeneous zones in the same geographical location. 

When analyzing homogeneous drought zones, drought characteristics and other factors 

(such as the distance between meshes) should be considered because two homogeneous 

drought zones far apart are not conducive to uniform drought risk reduction. Therefore, 

variables related to probability distributions, drought duration and seasonality, and distances 

between regions are considered in this chapter. In fact, the homogeneous hydro-meteorological 

elements zones have attracted the attention of researchers in recent years. By identifying the 

latent spatial structure of seasonal variation and magnitude of precipitation, four uniform 

precipitation bands were obtained in Nepal, corresponding to four independent precipitation 

types (Kansakar et al., 2004). Classifying homogeneous wildfire zones based on unique 

biophysical and anthropogenic attributes affecting California wildfires was also explored 

(Syphard et al., 2020). Similar studies on identifying homogeneous regions emerge in an 

endless stream, including homogeneous aerosol zones (Omar et al., 2005). Such analyses can 

better identify regional features and establish teleconnections to atmospheric-oceanic indices. 

However, this definition of a homogeneous hydro-meteorological elements zones has not been 

applied to the analysis of the spatiotemporal characteristics and climatic causes of drought 

Therefore, this study first attempts to provide a way to define homogeneous drought zones 

in Japan by dividing the regional space into natural clusters, and then discusses the causes of 

drought and its effects. This approach highlights the characteristics of homogeneous drought 

zones and produces clusters that consider the linkages between different homogeneous regions. 

Droughts can be significantly heterogeneous due to various factors and thus may be dominated 

by different atmospheric-oceanic indices even within the same geographic location. This 

approach could also improve drought predictions by accounting for the effects of large-scale 

climate signals. However, when comparing the homogeneous drought zones with the wildfire 

statistics, it can be found that only considering the drought still cannot fully explain the wildfire 

characteristics. 
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3.2 Results 

3.2.1 Soil moisture validation 

A total of 662 days of soil moisture data were collected in Kawasaki town of Japan (140.6° 

E, 38.2° N) from March 11, 2019, to December 31, 2020, to validate soil moisture simulation 

results. A time domain reflectometry (TDR) moisture sensor recorded the observed soil 

moisture hourly. Since high-resolution data from DSJRA-55 was unavailable after 2012, 

meteorological forcing data with a resolution of 0.25° were extracted from the ERA5 reanalysis 

dataset for validation (Hersbach et al., 2020). The other data, including land use and land type, 

soil parameters, and vegetation parameters, are the same as the original simulation data. 

In addition, to accommodate the observational data, the soil moisture saturation ratio of 

the model simulation results was converted to volume-based soil moisture. The specific results 

are shown in Figure 3.1. The simulation results are highly consistent with the observed data. 

Especially SiBUC model can simulate the changing process of soil moisture after precipitation. 

This validation process of soil moisture can ensure subsequent analysis of the identification of 

homogeneous drought zones. 

 

Figure 3.1 Comparison of model simulation soil moisture and observed soil moisture at 
Kawasaki Town (140.6° E, 38.2° N) during 2019/3/11-2020/12/31 
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3.2.2 Identifying homogeneous drought zones 

Nine homogeneous drought zones with different characteristics were identified in Japan 

based on Gaussian Mixture Modelling for Model-Based Clustering, as shown in Figure 3.2. 

The specific characteristics of the nine homogeneous drought zones identified by clustering are 

shown in Table 3.1. This partitioning suggests significant heterogeneity across Japan. For 

example, Hokkaido, located at the northernmost tip of Japan, was dominated by zones-4 and -

9, with a small part of zones-1 and -3. Furthermore, even though the topography was not 

considered in the clustering in this chapter, the Ou Mountains divide the Tohoku region into 

two main heterogeneous parts (zones-3 and -5). In particular, the Kanto Plain was the region 

with the most obvious drought heterogeneity, including four sub-zones: zones-1, -5, -6, and -7. 

Zone-8 was a homogeneous drought zone dominated by high mountains, spanning the Chubu, 

Kinki, Shikoku, and Kyushu regions of Japan. Zones-6 and -7 were located near the coastline 

or at the foot of mountains, where precipitation flows into the ocean. Zone-2 mainly dominated 

Chugoku and Kyushu. The appearance of zone-1 over a wide area from Hokkaido to Shikoku 

suggests that this zone may represent a unique drought situation with a high coefficient of 

variation, long drought recurrences, and long dry periods that can break through distance 

constraints. 

 

Figure 3.2 Spatial distribution of homogeneous drought zones across Japan.
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Table 3.1 Characteristics of the nine homogeneous drought zones identified by clustering. The recorded data are the median, minimum, and 
maximum values of each drought characteristic (parentheses).  

Characteristic Zone-1 Zone-2 Zone-3 Zone-4 Zone-5 Zone-6 Zone-7 Zone-8 Zone-9 

Average soil 
moisture, % 

69.1 

(19.8~86.7) 

66.9 

(57.8~81.2) 

70.9 

(67.6~76.0) 

72.3 

(60.7~89.3) 

67.2 

(54.5~78.3) 

63.0 

(39.8~78.4) 

71.0 

(60.7~89.8) 

70.5 

(62.8~75.3) 

67.7 

(49.3~80.1) 

Coefficient of variation 
(CV) 

0.12 

(0~0.59) 

0.09 

(0~0.17) 

0.07 

(0.02~0.11) 

0.06 

(0.01~0.11) 

0.09 

(0.02~0.26) 

0.14 

(0.05~0.35) 

0.06 

(0~0.14) 

0.04 

(0.02~0.09) 

0.11 

(0.01~0.29) 

Coefficient of skewness 
(CS) 

-1.1 

(-1.5~1.7) 

-1.9 

(-5.0~-0.2) 

-1.8 

(-3.4~-0.5) 

-1.5 

(-3.5~0.9) 

-1.6 

(-3.1~-0.4) 

-1.2 

(-3.1~1.2) 

-2.2 

(-7.9~0.6) 

-0.9 

(-2.2~1.1) 

-1.9 

(-3.3~-0.3) 

Reoccurring periods of 
drought, months 

19.3 

(10.2~49.8) 

17.3 

(11.9~25.4) 

19.3 

(13.9~24.4) 

19.8 

(13.2~30.3) 

18.8 

(14.2~27) 

17.1 

(11.5~24.8) 

16.3 

(12.3~27.8) 

15.6 

(11.5~23) 

21.8 

(11.6~31.8) 

Length of drought 
period, months 

2.2 

(1.1~6.3) 

2.0 

(1.2~3.2) 

1.8 

(1.2~2.5) 

2.0 

(1.2~3.1) 

1.9 

(1.2~3.6) 

1.9 

(1.1~3.3) 

1.7 

(1~3.3) 

1.6 

(1~2.6) 

2.3 

(1.2~4) 

Average soil moisture in 
spring, % 

69.5 

(19.5~87.5) 

65.0 

(54.4~81.9) 

68.9 

(64.8~76.2) 

71.3 

(56.6~89.1) 

63.5 

(47.4~78.3) 

60.9 

(35.1~79.1) 

70.1 

(58.5~89.9) 

69.8 

(62.8~73.9) 

67.0 

(46.7~80.5) 

Average soil moisture in 
summer, % 

69.7 

(17.0~86.0) 

66.9 

(56.6~82.1) 

67.8 

(61.8~74.3) 

69.6 

(56.8~88.5) 

65.4 

(44.9~77.3) 

65.4 

(43.5~82.6) 

69.8 

(55.5~85.8) 

71.4 

(63.4~77.5) 

62.3 

(39.8~79.6) 
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Characteristic Zone-1 Zone-2 Zone-3 Zone-4 Zone-5 Zone-6 Zone-7 Zone-8 Zone-9 

Average soil moisture in 
autumn, % 

68.9 

(18.9~85.6) 

67.2 

(57.8~80.1) 

73.1 

(70.3~77.3) 

74.4 

(62.1~90.2) 

70.0 

(59.3~80.5) 

63.8 

(41.1~80.4) 

71.8 

(59.9~90.3) 

71.9 

(63.7~76.4) 

61.6 

(54.3~80.3) 

Average soil moisture in 
winter, % 

45.8 

(5.8~80.5) 

45.9 

(17.9~75.6) 

70.4 

(62.8~76.7) 

69.8 

(51.5~88.7) 

57.2 

(26.3~77.0) 

32.5 

(14.6~52.4) 

66.5 

(38.6~92.1) 

61.6 

(33.9~73.4) 

55.6 

(24.4~77.0) 
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3.2.3 Probability distribution-related variable of drought in 

homogeneous drought zones 

The shape of the probability distribution curve of the soil moisture time series is 

determined by the coefficient of variation (CV), coefficient of skewness (CS), and average 

value. The average value of these three parameters in each grid in Japan from 1958 to 2012 is 

shown in Figure 3.3. High CV values are concentrated in the vicinity of the Seto Inland Sea 

and the northern side of the Kitami Mountains in Hokkaido, suggesting that the soil moisture 

in these areas varies greatly from month to month. These areas with high CV values belong to 

zones-1 and -6, respectively. Higher positive CS values occurred in zones-1, -6, and -8, 

indicating that more than half of the monthly soil moisture was below the long-term average. 

Zone-7 had the long left tail (small negative CS) in the probability distribution curve. Zone-7 

also had the opposite drought characteristics to zones-1, -6, and -8, indicating that wetness was 

the norm and dryness was the norm in these two types of zones, respectively. 

The probability distribution curves of monthly soil moisture and specific parameters for 

several representative homogeneous drought zone samples are shown in Figure 3.4 and Table 

3.2. Differences in the average value will result in clear distinctions between zone-8 with zone-

1 and zone-8 with zone-6, even though their curves were all right-skewed. In zone-6, the soil 

moisture changed greatly, which led to its high CV value. In addition, from the example of the 

probability distribution curve of zone-7, it can be directly seen that this zone belongs to the 

humid region of Japan. 
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Figure 3.3 The spatial distribution of the average probability distribution parameter values in 
each mesh across Japan from 1958 to 2012. (a) Coefficient of variation; (b) Coefficient of 

skewness; (c) Average soil moisture. 

 

Figure 3.4 Examples of probability distribution curves in zone-1 (cyan), zone-6 (green), 
zone-7 (blue), and zone-8 (red). 
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Table 3.2 Examples of probability distribution parameter values in zone-1, zone-6, zone-7, 
and zone-8. 

 Coefficient of variation 
(CV) 

Coefficient of skewness 
(CS) 

Average soil moisture 
(%) 

Zone-1 0.18 1.0 34.0% 

Zone-6 0.28 0.3 47.9% 

Zone-7 0.07 -3.2 77.6% 

Zone-8 0.06 0.4 69.3% 

3.2.4 Duration and seasonality of drought in homogeneous 

drought zones 

The spatial distribution of drought duration in each grid in Japan over the period 1958 to 

2012 is presented in Figure 3.5. The long duration of the drought and the large reoccurring 

period were the distinguishing features of the northwestern Kanto Plain (identified as zone-1), 

an area known for being affected by the foehn wind (Nishi et al., 2019). And the relationship 

between drought characteristics is shown in Figure 3.6. In chronically wet or dry regions, 

drought duration and the reoccurring period were strongly limited. Regions frequently affected 

by extreme events, such as persistent lack of precipitation or extreme heat events, are 

vulnerable to prolonged extreme drought. But after soil moisture has dropped to insufficient 

levels due to extreme events, it often takes a long time to return to its normal level. For example, 

the soil moisture time series for representative zones-1 and -8 are shown in Figure 3.7. These 

two different types of time series showed that more extreme droughts were accompanied by 

longer durations of droughts, with longer reoccurrences. Unlike the severe drought in zone-1, 

the zone -8 example experienced more frequent but weaker drought events. 
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Figure 3.5 The spatial distribution of the drought duration in each mesh across Japan from 
1958 to 2012. (a) Length of drought period; (b) Reoccurring periods of drought. 

 

Figure 3.6 Scatter plots between the length of drought, reoccurring periods of drought, and 
average soil moisture across Japan from 1958 to 2012. 

 

Figure 3.7 Examples of soil moisture time series in zone-1 and -8. The red line indicates the 
drought threshold, and values below the threshold indicate drought occurrence. 
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For seasonality, the average soil moisture for each season is shown in Figure 3.8. Notably, 

soil moisture in zones-1 (around the Seto Inland Sea) and -6 (on the north side of the Kitami 

Mountains in Hokkaido) was lower than in the rest of Japan in all seasons. While the 

northwestern Kanto Plain showed low soil moisture only in spring. Figure 3.9 shows the 

number of drought months in different seasons. And strong spatial homogeneity was found in 

drought seasonality. Spring drought mainly occurs in central and southern Japan, and summer 

drought mainly occurs in northern Japan. The spring drought was mainly distributed in zones-

2, -5, -6, and 8, and the summer drought was mainly distributed in zones-3, -4, and -9. Zones-

1, -6, and -8 were mainly occupied by autumn and winter droughts. 

 

Figure 3.8 Average soil moisture in different seasons across Japan from 1958 to 2012. 
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Figure 3.9 The number of drought months (months below the drought threshold) in different 
seasons across Japan from 1958 to 2012. 
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extreme drought and had a long recurrence period. Except for zone-4 and -9, the 1994 drought 

affected almost all of Japan. 1994 was considered the driest year since 1958, consistent with 

the study by Lee et al. (2012b). 

 

Figure 3.10 First distinct principal component (DPC) of nine homogeneous drought zones. 
The explained variance in distinct principal component-1 in homogeneous drought zones is at 

the bottom right of the figures. 

Table 3.3 shows the effects of large-scale climate signals on homogeneous drought zones. 

The most significant atmospheric-oceanic indices (with the largest PASC) are shown in bold. 
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contributions to homogeneous drought zones. For example, among the nine homogeneous 

drought zones, the coherence between zone-9 and the atmospheric-oceanic indices was the 

weakest (the largest PASC in zone-9 was only 11.4%). On the other hand, zone-1 had the 

strongest relationship with atmospheric-oceanic indices, with a PASC value of 16.7%. 

However, the teleconnection results need to be treated with caution given the lower explained 

variance of zone-1. Even though zones-4 and -9 were geographically concentrated in the 

Hokkaido region, their dominant large-scale climate signals differed. It also hints at the 

limitations of traditional geographic regions and the advantages of these homogeneous drought 

regions in identifying dominant atmospheric-oceanic indices. 

Table 3.3 PASC between the distinct principal components of homogeneous drought zones 
and atmospheric-oceanic indices. The largest PASC of the four atmospheric-oceanic indices 

is bolded. 

 PDO ENSO NAO AO 

Zone-1_DPC1 13.4% 6.6% 13.6% 16.7% 

Zone-2_DPC1 12.6% 11.0% 12.5% 10.3% 

Zone-3_DPC1 6.5% 8.7% 14.4% 9.0% 

Zone-4_DPC1 7.5% 4.0% 13.6% 8.3% 

Zone-5_DPC1 5.6% 12.1% 6.8% 7.6% 

Zone-6_DPC1 11.9% 12.3% 14.0% 12.7% 

Zone-7_DPC1 4.2% 3.9% 9.4% 12.1% 

Zone-8_DPC1 10.2% 9.7% 10.0% 14.8% 

Zone-9_DPC1 11.4% 3.7% 11.1% 6.4% 

Then, Figure 3.11 shows the WTC results between dominant atmospheric-oceanic indices 

and DPCs of nine homogeneous drought zones. Only zones-8 and -9 were affected by 

atmospheric-oceanic indices throughout the study period. For the AO, which controlled zones-
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1, -7, and 8, the coherence mainly occurred at ten years (128 months). At the same time, a 

temporally negative correlation between 20 and 32 months can also be found during 1992-2000. 

On the other hand, the effects of NAO on zones-3, -4, and -6 were concentrated on a scale of 

approximately eight years (96 months). The longest coherence period with NAO was with 

zone-6 from 1958 to 2010, while its coherence period with zone-4 was only from 1975 to 2000. 

Both zones-2 and -9 were strongly affected by PDO, even though the two regions were far 

apart. From 1970 to 2012, there was a negative correlation on a ten-year scale between PDO 

and zone-2. At the same time, the impact of PDO on zone-9 was mainly concentrated outside 

the cone of influence. ENSO was only detected to affect zone 5 on the 16-year (1958~2000) 

and 5-year (2000~2012) scales significantly. 

 

Figure 3.11 Squared wavelet coherence between large-scale climate signals and distinct 
principal components (DPCs) of nine homogeneous drought zones. The black contour 

designates the 95% confidence level against red noise, and the cone of influence (COI), 
where edge effects might distort the picture, is shown as a lighter, paler shade. 

The global coherence coefficients evaluated average coherence between homogeneous 

drought zones and atmospheric-oceanic indices over different timescales (Figure 3.12). It can 
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be found that all other regions have high global coherence coefficients with NAO on the ten-

year scale except for zones-8 and -9. On the other hand, zones-1, -2, -5, and -6 were affected 

by ENSO on a fifteen-year scale. The global coherence coefficients between AO and zone-1, -

3, -6, and -8 showed an increasing trend over several decades, while the coherence coefficients 

in other homogeneous zones have reached a maximum value at about a ten-year or fifteen-year 

scale. Similar to the AO, the global coherence coefficient between the PDO and zones-1, -2, 

and -6 has reached a maximum over the study period. However, the coherence coefficients 

between PDO and zones-3, -4, and -9 were still increasing on the scale of decades. 

NAO was detected to impact hydrometeorology in the western region of Japan (Aizen et 

al., 2001). However, the effects of PDO and AO were also highlighted in zones-2 and -8 in 

western Japan by identifying homogeneous drought zones. This result suggests that even if 

precipitation heterogeneity is not apparent in the same geographical location, droughts may 

have significant heterogeneity due to various factors and thus be dominated by atmospheric-

oceanic indices. In addition, identifying homogeneous drought zones minimizes the loss of 

information and allows the quantification of significant periods when the atmospheric-oceanic 

indices affect each homogeneous drought zone. 
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Figure 3.12 The global coherence coefficients between large-scale climate signals and distinct 
principal component-1 (DPC1) of nine homogeneous drought zones. 

3.2.6 Comparison of homogenous drought zones and wildfire 

statistics 

To discuss the effects of drought, Figure 3.313 illustrates the statistical characteristics of 

wildfires at the prefectural scale in Japan. As for the burned area, zone-6 has a large burning 
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area, especially around the Seto Inland Sea. However, the Iwate Prefecture of Japan, which 

also has a large burning area, cannot be explained by the homogeneous drought zone-5. There 

was a much larger area in zone-5, but Miyagi Prefecture of zone-5 does not have as large burned 

areas as Iwate Prefecture. Similarly, the Fukushima Prefecture, which has many wildfire 

activities, was difficult to identify from the homogeneous drought zone. This result suggests 

that only the drought characteristics regions around the Seto Inland Sea were consistent with 

wildfire statistics. It also shows that it is not enough to consider only one factor (such as drought) 

when discussing wildfire characteristics. 

 

Figure 3.13 Total burned area and wildfire activity across Japan from 1995 to 2017. 
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homogeneous drought zones and the relationship between homogeneous drought zones and 

wildfire characteristics. To fill this research gap, this chapter proposed a new framework for 

analyzing the teleconnections between drought and atmospheric-oceanic indices based on 

modeled soil moisture in Japan (the region with significant drought heterogeneity) from 1958 

to 2012. First, nine homogeneous drought zones were delineated by considering the 

probability-related variables, drought duration, seasonality, and the distance between regions. 

Then, combining cluster analysis, DEOF, and WCO, the first principal components of the nine 

homogeneous drought zones with high explained variance were remotely correlated with 

atmospheric-oceanic indices to elucidate their qualitative relationships. And the shortcomings 

of the homogenous drought zone in its ability to analyze wildfire characteristics were also 

revealed. Overall, the results of this chapter can provide a reference for defining homogeneous 

drought zones in Japan, overcoming the shortcomings of classical drought analysis in 

identifying the causes of drought. 

Zone-1 was dominated by extreme drought events and is the region with the longest 

drought periods, the longest reoccurring periods, and the largest coefficient of variation of the 

nine homogeneous drought zones. On the other hand, spring droughts were mainly found in 

homogeneous drought zones-2 and -6, and the lowest average soil moisture was found in zone-

6. Furthermore, the Tohoku region of Japan was divided into two parts by Ōu Mountains: 

zones-3 and -5. Zones-4 and -9 were dominated by summer drought and were both located in 

the Hokkaido region. The degree of rightward bias in the probability distribution curve of soil 

moisture for zone-7 was the most significant of the nine zones, implying that the zone was wet 

most of the time. On the other hand, homogeneous drought zone-8 covered by high mountains 

was dominated by weak drought events with short dry periods and reoccurring periods. 

Furthermore, some of these nine zones were separated since soil moisture could show the same 

characteristics even in two areas distant from each other. As an illustration, zone-6 was 

characterized by marked variability and low soil moisture. Topographically, zone-6 was located 

on the coastal edge or at the foot of the mountains. On the one hand, during the rainy season, 

soil moisture increases greatly on rainy days and decreases rapidly after rain in this zone. On 
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the other hand, in the non-rainy season, high temperatures and strong transpiration make it easy 

to keep soil moisture at a low level in zone-6. 

Except for zone-1, the explained variances of the principal components in the other 

regions all exceeded 60%, reflecting the high homogeneity of these regions. Different 

atmospheric-oceanic indices dominated the nine homogeneous drought zones. AO had the 

strongest impacts on homogeneous drought zones-1, -7, and -8 on the ten-year scale. The effect 

of NAO on zones-3, -4, and -6 was mainly concentrated on a scale of around eight-year. Zones-

2 and -9 were far apart, but they were both dominated by PDO. ENSO mainly controlled zone-

5 on a five-year and sixteen-year scale before and after 2000, respectively. These results 

demonstrated the superiority of principal components in homogeneous drought zones in 

exploring teleconnections. Due to the heterogeneity of droughts, even droughts within the same 

geographical location may be dominated by different atmospheric-oceanic indices. At the same 

time, it should be noted that the homogeneous drought zones were insufficient in exploring 

wildfire characteristics. 

3.4 Summary 

Overall, this chapter established the teleconnections between atmospheric-oceanic indices 

and homogeneous drought zones across Japan. The results of this chapter contributed to a better 

understanding of the homogeneity of spatial and temporal characteristics of droughts across 

Japan. Focusing on atmospheric-oceanic indices provides a valid and promising reference for 

predicting drought due to changing climatic, atmospheric, and oceanic conditions. The findings 

are also valuable for drought management and drought prevention. 
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Chapter 4 Quantifying the Contributions of 
Atmospheric-Oceanic Indices on Global Burned 

Area Homogenous Zones 

This chapter was published in Scientific Reports in January 2022: Ke Shi and Yoshiya 

Touge. "Characterization of global wildfire burned area spatiotemporal patterns and underlying 

climatic causes." Scientific Reports 12.1 (2022a): 1-17. 

4.1 Introduction 

Wildfires are an important component of the ecological processes of the Earth's natural 

systems and range in scale from local to global. However, wildfire risk has increased 

significantly in recent years due to higher temperatures, more rain-free days, and more wildfire-

affected areas (Vitolo et al., 2020). Historical estimates of annual global wildfire burned area 

range from 394×106 to 519×106 ha from 2001 to 2018, with an average of 463×106 ha 

(Lizundia-Loiola et al., 2020). There were 79,000 wildfire events in August 2019 globally, 

compared to 16,000 wildfire events in the same period last year (Fernández et al., 2016). In 

addition, catastrophic wildfires in recent years have been found to be on a marked increase 

globally. As an illustration, severe wildfires swept through California in consecutive years of 

2017 and 2018 (Zhongming et al., 2019). The 2020 wildfire in the western United States was 

considered the most destructive wildfire in the country, a wildfire that killed thousands of 

people from smoke and damaged or destroyed over 10,000 structures (Higuera et al., 

2021). Driven by extremely high temperatures, both Alaska and Siberia experienced 

widespread fires in 2019 (Zhongming et al., 2019). Temperate broadleaf forest fires 

accompanied by large burned areas (5.8×106 ha) were recorded in Australia from 

September 2019 to January 2020 (Boer et al., 2020), which were the most widespread 

wildfires ever recorded in the temperate broadleaf forest in Australia (Nolan et al., 2020). 

"Climate variability is often the dominant factor affecting large wildfires." was stated by 

Intergovernmental Panel on Climate Change (IPCC, 2014). In addition, wildfire disturbance 
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was identified by the Global Climatic Observing System (Secretariat, 2006) as an "important 

climate variable", and it was emphasized that long-term time series data were required to 

quantify the relationships between climate and wildfire. For example, the synchronization of 

wildfire weather conditions in far-off areas due to teleconnection processes driven by 

atmospheric-oceanic indices was how the atmosphere's globalizing influence manifests itself 

(Page et al., 2008). The ENSO-wildfire dynamic in Southeast Asia is one of the most well-

known teleconnection processes (Murphy, 2006). In tropical woods (from 5.5°S to 5.5°N), 

there were significant associations between wildfires and the ENSO index (Murphy, 2006). 

Balzter et al. (2005) discovered the influence of the AO pattern on inter-annual wildfire 

variability in Central Siberia. The burnt region in Central Siberia may be essentially replicated 

using a linear combination of the Arctic Oscillation index and the summertime temperature 

(Balzter et al., 2005). The recent shift to the positive phase of the Atlantic Multidecadal 

Oscillation (AMO) provided evidence of higher wildfire frequencies in Colorado in the United 

States (Schoennagel et al., 2007). Years of combined positive AMO, negative ENSO, and 

Pacific Decadal Oscillation (PDO) phases represent "triple whammies" that significantly 

increased the occurrence of drought-induced wildfires in western Colorado (Schoennagel et al., 

2007). However, it turns out that wildfires with greater intensity and the larger burned area are 

on the rise in the southwestern United States, which is more relevant than increased wildfire 

frequency (Singleton et al., 2019), underscoring our worry about burned areas. 

Overall, the variation in wildfire behavior and severity at different temporal and 

geographical scales may be influenced by climatic variability (Liu et al., 2010). Therefore, 

many studies have concentrated on the connection between local wildfires, weather, and 

climate. The association between burned areas and hydro-meteorological elements, such as 

high temperatures and intermediate annual rainfall, was investigated (Aldersley et al., 2011). 

Similarly, the relationships between the worldwide burned area and vegetation production, 

precipitation, and crucial factors were explored based on the generalized additive model 

(Hantson et al., 2015). These studies, however, largely concentrated on relationship analysis 

between burned area and gridpoint-specific hydro-meteorological elements. In their worldwide 
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wildfire research, atmospheric-oceanic indices like AMO and ENSO were not taken into 

account in more detail. As a result, the links between atmospheric-oceanic indices and wildfires 

are still not completely understood. It might even be expected to find teleconnections between 

wildfires in different regions, meaning that the same atmospheric-oceanic index affects 

wildfires in multiple regions. 

In recent years, researchers have been drawn to the teleconnections between hydro-

meteorological elements in various locations and atmospheric-oceanic indices. For example, 

15 regional hazards (e.g., storms in Australia, rainfall in China, and rainfall in the USA) share 

links through ENSO (Steptoe et al., 2018). Research of this nature might improve knowledge 

of concurrent global hazards. Wavelet coherence was applied to evaluate the multivariate link 

between the streamflow of sixteen major rivers worldwide and meteorological 

factors/atmospheric-oceanic indices, which offered a reference for medium- to long-range 

hydrological predictions (Su et al., 2019). Nguyen et al. (2021) also investigated the combined 

impacts of ENSO and PDO on worldwide droughts and discovered that when ENSO and PDO 

were in phase, the Amazon, India, Central China, Indonesia, and eastern Australia were the 

places where drought tended to worsen and spread. The possible links in regional climates 

might be investigated using this teleconnection study between atmospheric-oceanic indices and 

hydro-meteorological elements. But the links between worldwide wildfire and the 

atmospheric-oceanic indices are still poorly understood. The first worldwide evaluation of 

cross-regional climatic effects and spatiotemporal wildfire variability was made by Page et al. 

(2008). But this study was limited in that they only examined wildfire activity and chose ENSO 

as the primary global climatic cause for study. The burned area, which reflects the level of 

wildfire severity, is another important criterion for gauging wildfires (Keeley, 2009). Burned 

area is often used to assess global wildfire traits, which have been connected to ancient records 

(Bowman et al., 2009) and are used to estimate carbon fluxes from the biosphere to the 

atmosphere (Van der Werf et al., 2010). But since many global climatic variables often impact 

wildfires at once (Aldersley et al., 2011), adding as many atmospheric-oceanic indices as 

possible will help us better understand how climate affects wildfires. 
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Research gaps in prior research have not been addressed by exploring the spatiotemporally 

homogenous zones of globally burned areas. Therefore, a thorough investigation of the patterns 

of burned areas worldwide will aid in our understanding of wildfires. This chapter's primary 

objective was to examine the teleconnections between burned areas and atmospheric-oceanic 

indices. First, the spatiotemporally homogenous zones of burned areas around the globe were 

identified using the distinct empirical orthogonal function (DEOF). Then, the cross-wavelet 

transform and wavelet coherence were utilized to evaluate the links between the main patterns 

of burned areas and numerous worldwide atmospheric-oceanic indices. Then, by identifying 

common regions and common atmospheric-oceanic indices for different wildfire patterns, the 

relationship between specific regions and important atmospheric-oceanic indices can be 

discussed in detail. 

4.2 Results 

4.2.1 Spatial and temporal patterns of wildfire 

The monthly logBAA time series at 1° resolution was utilized by DEOF computation. The 

top eight DEOFs accounted for 30.0% of the overall variation. The explained variance did not 

reach high levels for two key reasons. The first reason is that in the global teleconnection 

analysis, the competitive relationship between local correlation and long-distance 

teleconnection makes it difficult to find the dominant principal component. For instance, in 

identifying the global homogeneous drought zones, the explained variance of the first two 

principal components was only 6.7% and 5.1%, respectively (Dai et al., 2004). Another reason 

is that wildfires are not only affected by weather or climate but also by human activities, so 

wildfires are highly heterogeneous and different from traditional hydro-meteorological 

elements. Similarly, in the identification of homogeneous zones of global wildfire activity, the 

explained variance of the first nine principal components was only 40% (Page et al., 2008). 

The first eight DEOFs, which account for 30% of the total explained variance, were actually 

consistent with the anticipated outcomes since the factors that contributed to the burned area 

are more complex than the wildfire activity. As this research focuses on wildfire anomalies, it 
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should be highlighted that the wildfire anomalies in areas prone to wildfires (like the United 

States) had less influence. 

The spatial patterns of DEOF1~DEOF8 are presented in Figure 4.1, and Figure 4.2 depicts 

the time series aspect of DPCs. And the DPCs were normalized to a range of -1 to 1 to display 

the time series more clearly. Each DEOF pattern's logBAA time series projection was known 

as a DPC. The burned area in the positive loading zone was bigger than the multi-year monthly 

average when the DPCs value was positive. In contrast, the burned area in the negative loading 

zone was less than the multi-year monthly average. 

Different DEOFs illustrated various atypical features of burned areas. The 20% of the 

greatest (smallest) DEOF values were deemed to be positive (negative) loading values. For 

instance, the geographical distribution of DEOF2 showed negative loadings in several areas of 

Russia and Ukraine. At the same time, the high positive loadings were mostly concentrated in 

northern Kazakhstan. The two concentrated areas of negative and positive loading had opposite 

characteristics of burned areas. 

DPCs can be used for the time function to determine the precise moment the aberrant 

wildfire event happened. There was a substantial lowering trend in DPC1, indicating that the 

burned area was diminishing in the portion of Russia and the north of Kazakhstan, where strong 

positive loadings are concentrated. This trend of burned area reduction in Kazakhstan has also 

been verified in other studies (Xu et al., 2021a). In contrast, the burned area for DPC7 has 

increased in recent years, showing that the burned area in eastern Brazil was expanding, which 

was also identified by Forkel et al. (2019). August 2002 had a large and atypically high value 

in DPC1. Correspondingly, in 2002, Kazakhstan had the most devastating wildfire, with a 

maximum burned area of 4.6×106 ha (Xu et al., 2021a). With DPC5, an exceptionally high 

value was seen in 2010 and 2012, and a strong positive loading was identified in Brazil. 

Schmidt et al. (2020) also uncovered these two enormous wildfires in Brazil that occurred 

barely two years apart. 
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Figure 4.1 DEOF1~8 for the spatial distribution of logBAA. 
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Figure 4.2 DPC1~8 time series of logBAA (DPCs are the projection of logBAA time series in 
each DEOF pattern). 

Figure 4.3 depicts the precise temporal periodicity of DPC1~8 as determined by CWT. 

The black contour represents a 95% confidence level against red noise, whereas the COI, where 

edge effects may distort the image, is shown as a softer and paler tone. These findings indicated 

that none of the DPCs had a dominating long-term periodicity. Except for DPC1 and DPC4, all 

DPCs exhibited dominant but intermittent roughly yearly (8~16 month) periodicities relative 

to inter-annual ones. For instance, DPC7 had two yearly periodic bands from 2003 to 2009 and 
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2016 to 2018. The periodic bands of DPC2 tended to be concentrated on the inter-annual scale, 

while those of DPC4 tended to be concentrated on the multiyear scale. 

 

Figure 4.3 WPS of the DPC time series (Periodicity of time series). The black contour 
designates the 95% confidence level against red noise, and the COI, where edge effects might 

distort the picture, is shown as a lighter, paler shade. 

4.2.2 Teleconnection between atmospheric-oceanic indices and 

DEOFs 

Table 4.1 summarizes the impacts of atmospheric-oceanic indices on DPC1~8. For each 

DEOF pattern, the atmospheric-oceanic indices with the biggest PASC are shown in italics, 

and the top three PASCs are highlighted in bold. According to the PASC, distinct atmospheric-
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oceanic indices contributed differently to wildfire patterns. The maximum PASC for 

atmospheric-oceanic indices throughout DPC1~8 varied from 11.3% to 21.0%, with an average 

of 16.0%. PNA and EA/WR exhibited the greatest ranges of effect among these atmospheric-

oceanic indices on DPC1~8. Concurrently, the AAO and DMI were the global climate factors 

that had no discernible impact on any DEOF1~8 patterns. 

Table 4.1 PASC (%) for the wavelet transform coherence between DPCs and atmospheric-
oceanic indices. Italic indicates the most significant atmospheric-oceanic indices, and bold 

indicates the first three most significant atmospheric-oceanic indices. 

 
DPC1 DPC2 DPC3 DPC4 DPC5 DPC6 DPC7 DPC8 

TSA 9.5% 3.5% 10.4% 14.5% 1.3% 6.4% 3.3% 7.0% 

POL 11.5% 3.7% 3.6% 5.5% 3.8% 15.0% 11.4% 1.5% 

WP 6.5% 7.9% 12.4% 8.0% 4.7% 4.5% 8.1% 12.0% 

PDO 4.8% 8.4% 12.3% 20.6% 6.5% 5.2% 8.4% 4.1% 

ONI 4.6% 8.4% 12.2% 17.3% 4.6% 6.9% 5.8% 6.6% 

AMO 20.4% 4.9% 5.9% 10.0% 6.8% 4.7% 10.1% 6.8% 

DMI 3.6% 3.8% 9.4% 5.9% 2.6% 4.1% 5.0% 4.7% 

AO 3.3% 4.0% 7.3% 4.8% 11.3% 5.5% 5.2% 13.7% 

NAO 4.8% 3.6% 11.2% 9.7% 10.6% 5.7% 8.9% 3.6% 

PNA 7.8% 12.5% 15.0% 21.0% 3.5% 5.2% 4.7% 7.6% 

AAO 13.5% 7.4% 10.1% 6.2% 5.7% 3.3% 5.2% 7.0% 

EA 5.6% 14.5% 4.4% 11.9% 4.3% 3.8% 3.9% 7.1% 

EA/WR 4.9% 10.0% 8.3% 6.8% 8.8% 4.0% 12.7% 14.7% 

TNA 13.8% 3.5% 12.8% 10.6% 4.7% 5.7% 6.2% 9.3% 

MEI 5.4% 5.9% 17.0% 18.1% 2.8% 5.4% 4.5% 4.7% 
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DPC1 DPC2 DPC3 DPC4 DPC5 DPC6 DPC7 DPC8 

EP/NP 17.9% 16.0% 8.3% 14.8% 7.0% 6.1% 4.1% 9.8% 

Figure 4.4 depicts the zone delineated by the three atmospheric-oceanic indices that have 

the greatest effect on DEOF1~8. Different DEOF patterns regularly occurred in various places. 

DEOF1~3 discovered hotspot-1 (near Ukraine and Kazakhstan). Among these indices, AMP, 

EP/NP, and PNA were the biggest influencing factors for hotspot-1. There were three potential 

combinations of global climatic factors impacting hotspot-2 (Australia) for DEOF3, DEOF5, 

and DEOF8: MEI-DEOF3, AO-DEOF5, and EA/WR-DEOF8. The atmospheric-oceanic 

indices that impact hotspot 3 (Brazil) have grown quite diversified, with ten separate 

atmospheric-oceanic indices identified as having an effect. In hotspot 3 of DEOF4~7, which 

was affected by ten atmospheric-oceanic indices, PNA, AO, POL, and EA/WR were the 

predominant atmospheric-oceanic indices. 

The time periodicity of sixteen g atmospheric-oceanic indices is shown in Figure 4.5. The 

ONI and MEI, which represent the influence of ENSO in different ways, have substantial 

multiyear periodicity. The intra-annual periodicity is the AMO's primary periodic band. 

However, it is challenging to identify the dominating periodicity among the thirteen remaining 

g atmospheric-oceanic indices. Figures 4.6 and 4.7 indicate the coherence coefficient between 

DPCs and the top three atmospheric-oceanic indices with phase delays shown by black arrows. 

Among DPC1~8, DPC6 had the lowest coherence with atmospheric-oceanic indices (the 

average PASC of the top three atmospheric-oceanic indices s was only 9.5%). On the other 

hand, DPC4 had 19.1% of the top three average PASC, showing significant coherence with 

atmospheric-oceanic indices. 

Atmospheric-oceanic indices had strong wavelet coherence for DPC1 and DPC4 at more 

than four-year scales (48~64 months) over the whole study period. In addition, strong wavelet 

coherence was found in EA-DPC2, EP/NP-DPC2, POL-DPC6, and WP-DPC8. Similarly, 

PNA-DPC2, PNA-DPC3, MEI-DPC3, TSA-DPC6, and AMO-DPC7 exhibited strong wavelet 

coherence at about two-year scales (16~32 months) with atmospheric-oceanic indices. This 
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two-year wavelet coherence persisted longest between MEI and DPC3, from 2001 to 2018, but 

the coherence between TSA and DPC6 did not emerge until 2010. 

 

Figure 4.4 The location distribution of the top three atmospheric-oceanic indices with the 
strongest influence on DEOF patterns. The red, blue, and green rectangles indicate the 

strongest, second-strongest, and third-strongest atmospheric-oceanic indices on the DEOFs, 
respectively. The black circle indicates the common region in different patterns. Hotspot 1: 

around Ukraine and Kazakhstan; Hotspot 2: Australia; Hotspot 3: Brazil. 
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Figure 4.5 WPS of the large-scale climatic single time series (periodicity of time series). The 
black contour designates the 95% confidence level against red noise, and the COI, where 
edge effects might distort the picture, is shown as a lighter, paler shade. (DMI and AAO, 

which have no significant impact on any DEOFs, are removed). 

 

Figure 4.6 Squared wavelet coherence between the atmospheric-oceanic indices and the 
temporal patterns of DPC1~5 (coherence coefficient between the atmospheric-oceanic indices 
and DPCs). The black contour designates the 95% confidence level against red noise, and the 

COI, where edge effects might distort the picture, is shown as a lighter, paler shade. In 
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addition, the phase lags are illustrated by black arrows. The y-axis represents the coherence 
period, and the color represents the level of the coherence coefficient. 

 

Figure 4.7 Squared wavelet coherence between the atmospheric-oceanic indices and the 
temporal patterns of DPC6~8 (coherence coefficient between the atmospheric-oceanic indices 
and DPCs). The black contour designates the 95% confidence level against red noise, and the 

COI, where edge effects might distort the picture, is shown as a lighter, paler shade. In 
addition, the phase lags are illustrated by black arrows. The y-axis represents the coherence 

period, and the color represents the level of the coherence coefficient. 

The global coherence coefficients are shown in Figure 4.8 and provide an assessment of 

the averaged coherence between the monthly DPCs and the top three atmospheric-oceanic 

indices across various periods. It is feasible to assess the relative coherence relevance of the 

atmospheric-oceanic index in each burned area pattern under all-time scales by displaying the 

top three atmospheric-oceanic indices together. Only DPC1 demonstrated strong coherence 

coefficients with global climate factors on an annual and multiyear scale. High global 

coherence coefficients for DPC3 were observed at timescales of more than four years and 

around two years. These findings suggested that certain global climatic factors may 
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significantly impact both long and short periods. Other DPCs, on the other hand, only 

demonstrated strong coherence coefficients on time scales greater than 32 months. Particularly, 

several atmospheric-oceanic indices, such as PNA-DPC2 and ONI-DPC6, could not achieve 

high global coherence coefficients on all time scales, suggesting that these atmospheric-oceanic 

indices have very limited effects on these DEOF patterns. 

 

Figure 4.8 The global coherence coefficient between atmospheric-oceanic indices and the 
temporal patterns of DPC1~8. 

Figure 4.9 summarizes the combinations of the top three atmospheric-oceanic indices that 

explain global burned area pattern variations. From Figure 4.9(a), the interactive effect of 

AMO-TNA on DPC1 at 8~16 months and the interactive effect of AMO-TNA-EP/NP on DPC1 
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at 64 months can be identified. Nevertheless, for DPC9 (Figure 4.9(h)), only WP showed 

significant coherence at 64 months, and the interaction effect of WP-AO-EA/WR on DPC1 

became insignificant at 64 months. Consequently, when atmospheric-oceanic indices show the 

same periodicity or have significant impacts on DPCs at the same period frequency, the 

interactive effect of atmospheric-oceanic indices will strengthen this influence relationship on 

DPCs. Conversely, when the interaction between atmospheric-oceanic indices is insignificant, 

multifactor coherence will reduce the impact of atmospheric-oceanic indices on DPCs. 

 

Figure 4.9 Three-factor multiple wavelet coherence between the top three atmospheric-
oceanic indices and the temporal patterns of DPC1~8. The black contour designates the 95% 
confidence level against red noise, and the COI, where edge effects might distort the picture, 
is shown as a lighter, paler shade. The y-axis represents the coherence period, and the color 

represents the level of the coherence coefficient. 
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4.3 Discussion 

Overall, our teleconnection research has shown how atmospheric-oceanic indices 

influence worldwide burned area patterns, therefore providing a means for predicting burned 

areas. In terms of worldwide patterns of burned area, heterogeneity is quite apparent. These 

hotspots, such as the regions around Ukraine and Kazakhstan, Australia, and Brazil, regularly 

emerge in various worldwide burned area patterns. Similarly, the regions around Ukraine and 

Kazakhstan, as well as a portion of Australia, were identified as hotspots for the simultaneous 

occurrence of wildfires and heatwaves (Ridder et al., 2020). In addition, most of the locations 

mapped by Sungmin et al. (2020) for the largest monthly burned area percentage from 2001 to 

2018 were similar to the hotspots observed in our research. Even while there was not a 

substantial extensive burned area in the Ukrainian region, there were significant burned area 

anomalies.  

The most significant combinations of hotspots and atmospheric-oceanic indices were 

AMO-EP/NP-PNA with the pattern around Ukraine and Kazakhstan, ENSO-AO-EA/WR with 

the pattern in Australia, and PNA-AO-POL-EA/WR with the pattern in Brazil, in terms of 

relationships between wildfire and atmospheric-oceanic indices. For instance, Figure 4.10 

depicts the land cover of hotspot-1 (Ukraine and Kazakhstan). It can be observed that the 

Ukrainian area consists mostly of agriculture interspersed with various kinds of woodland. In 

addition, after the dissolution of the Soviet Union (Alcantara et al., 2013), the amount of 

abandoned agriculture in Ukraine has continued to rise. These abandoned croplands were 

particularly susceptible to wildfires due to the fast vegetation growth and fuel accumulation 

(Zambon et al., 2019). It should be emphasized, however, that the 1° resolution utilized in our 

wildfire pattern makes it easy for agriculture, abandoned cropland, and woodland to show on 

the same grid. For this reason, log transformation and analysis of burned area anomalies will 

minimize the human effect on agricultural burning and concentrate on uncontrolled fires in 

abandoned cropland and forest regions. 
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Figure 4.10 Land cover map of hotspot-1 (around Ukraine and Kazakhstan). 

After a warm winter caused by AMO, a considerably greater sea level pressure and 

geopotential height in the summer of Eurasia will be noted for the coupling of AMO with the 

pattern surrounding Ukraine and Kazakhstan (Gao et al., 2021). The high sea level pressure 

associated with descending atmospheric motion can result in the possibility of favoring fewer 

clouds and precipitation, more incoming solar energy, and an increase in the pace of warming 

(Betts, 1973; Gao et al., 2021). The findings of the broad time scale coherence between AMO 

and wildfires may be questionable over longer periods owing to the availability of global 

wildfires, which is a limitation of our research. AMO itself really has a well-known periodicity 

characteristic of more than 60 years (Ionita et al., 2013; Schlesinger et al., 1994). On a decades 

scale, there was a considerable consistency between the AMO and European temperatures 

(Buchhorn et al., 2020). Larger-scale coherence between the AMO and wildfire is more likely 

to be found as the time series of wildfire data becomes longer. 
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A significant correlation between ENSO and burned areas was discovered in northern 

Australia (Harris et al., 2008). But as shown in Figure 4.11, unlike forest wildfires in 

southeastern Australia (Attiwill et al., 2013), wildfires in grasslands are more common in 

northern Australia (Rossiter et al., 2003). In northern Australia, a lot of grassland serves as fuel 

for wildfires. And there is a well-known cycle of grass and wildfires (Prior et al., 2011). 

Wildfires damaged the vegetation, but rain enabled new flora to reemerge where it had been 

burned away. The significance of precipitation for the cycle of grass and wildfires in northern 

Australia is obvious. Given the apparent link between ENSO events and precipitation in 

northern Australia (Harris et al., 2008), ENSO events presumably influenced precipitation in 

northern Australia, which tended to influence wildfire anomalies. 

 

Figure 4.11 Land cover map of hotspot-2 (Australia). 

Figure 4.12 depicts the vegetation types in hotspot-3. Broadleaf forests, shrubland, and 
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herbaceous vegetation predominate, with farmland making up a tiny portion of the vegetation 

types. The mixed-vegetation regions of Mato Grosso, Mato Grosso do Su, Tocantins, and Goiás 

in central Brazil had more anomalous burned areas than the vast tropical rain forests in northern 

Brazil. The biggest wildfire outbreaks occur in illegal deforestation regions, particularly in 

Mato Grosso (Rossi et al., 2020). However, the climate has a greater direct influence on 

Brazilian wildfires than human activity because favorable weather conditions are a 

precondition for human-induced wildfires (Silvestrini et al., 2011). 

Regarding the PNA-Brazil, equatorial central and eastern Pacific sea surface temperature 

anomalies were inversely linked with precipitation over Northeast Brazil from March to May 

(Uvo et al., 1998). Pacific sea surface temperature anomalies primarily have two effects on 

Northeast Brazil's precipitation: one is a direct process by which the location of the Atlantic 

Intertropical Convergence Zone is influenced by anomalous Walker circulation (Giannini et al., 

2001; Uvo et al., 1998); another way is by a covert process using an air bridge resembling the 

PNA pattern, which causes anomalies in tropical North Atlantic sea surface temperatures and 

shifts the location of the Atlantic Intertropical Convergence Zone (Nobre et al., 1996). Heavy 

precipitation and cumulus clouds are often associated with the Atlantic Intertropical 

Convergence Zone. (Schneider et al., 2014). In other words, PNA has an impact on 

precipitation anomalies, which in turn has an impact on the wildfire danger of hotspot-3. 
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Figure 4.12 Land cover map of hotspot-3 (Brazil). 

4.4 Summary 

This chapter demonstrated for the first time the teleconnection between atmospheric-

oceanic indices and burned area patterns, investigating the physical mechanism behind their 

teleconnection from a global viewpoint. Under the combined effect of the Atlantic 

Multidecadal Oscillation (AMO) and a rise in abandoned agriculture, the hotspot-1 (around 

Ukraine and Kazakhstan) has shown anomalies of burned areas. The burnt area of hotspot-2 

(Australia) varies due to the inter-annual volatility of ENSO. In hotspot 3 (Brazil), hydro-

meteorological conditions are still a prerequisite for human-caused wildfires. These findings 

contribute to a greater comprehension of the spatiotemporal aspects of the global burned area. 

The results will also be useful for wildfire management, wildfire prevention, and the ecological 

climatology of global wildfires. 
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Chapter 5 A New Approach to Describing the 
Wildfire Extremes Illustrated by the Example of 

the Contiguous United States 

This chapter was under review in the International Journal of Wildland Fire: Ke Shi, and 

Yoshiya Touge. "Probabilistic Assessment of Burned Area and Wildfire Activity Considering 

the Wildfire Bivariate Statistical Characteristics in the Continental United States". 

5.1 Introduction 

Wildfires constitute a critical ecological process in the natural Earth system associated 

with regional and global biogeochemical cycles, human activities, and vegetation structure 

(Bowman et al., 2009). Also, wildfire, as a major agent of soil erosion and land degradation, 

has been suggested as the most significant factor of geomorphological change (Shakesby, 2011). 

The post-fire effect on vegetation cover, physical properties of soil, and biological activity 

changes with the characteristics of wildfire (Efthimiou et al., 2020). Therefore, before 

discussing the post-fire effect, a comprehensive perspective is essential to elucidate what kind 

of wildfire has a higher severity or risk, especially in the United States, which hosts 823 million 

acres of forest- and woodland areas (Brashaw et al., 2021). Over just four years, from 2017 to 

2020, nearly 200 lives were lost, and more than 45,000 structures were destroyed in California 

wildfires (Brashaw et al., 2021). In particular, wildfires with large burned areas have increased 

in the western United States in recent years (Dennison et al., 2014; Zhang et al., 2020). 

Subjectively, more wildfire activities could lead to more severe wildfires and larger burned 

areas. However, the reduction in wildfire activities (number of wildfires) driven by policy and 

wildfire management has resulted in changes in the vegetation structure and an increase in fuel 

accumulation in the western United States (Hurteau et al., 2014). As a consequence, wildfire 

suppression and the subsequent increase in fuel loads have coincided with warmer and drier 

wildfire seasons, causing high-severity wildfire events yielding large burned areas (Dennison 

et al., 2014; Fulé et al., 2003; Holden et al., 2018; Steel et al., 2015) . These two seemingly 
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contradictory situations are attributed to the unique relationship structure between the wildfire 

activity and burned area, posing challenges for assessing the wildfire characteristics 

comprehensively. 

In particular, to describe the relationship among wildfire statistics in detail, this study first 

provides a concept map of wildfire bivariate statistical characteristics, as shown in Figure 5.1. 

Three lines control the wildfire bivariate statistical characteristics—the wildfire increase vector 

(WIV), wildfire extent vector (WEV), and wildfire extreme line (WEL). Assuming that every 

wildfire event is immediately detected and controlled, even if each wildfire event is associated 

with a statistically minimum burned area, the burned area moves linearly upward along the 

WIV with increasing wildfire activity. Notably, the wildfire activity and burned area attain a 

positive correlation near the WIV. For example, a strong positive correlation between wildfire 

activity and the burned area was demonstrated in parts of the western United States (Cattau et 

al., 2020), Portugal (Moreira et al., 2010), Australia (Adams, 2013), and Africa (Ramo et al., 

2021). In contrast, lower-frequency wildfire activities near the WEL could lead to a larger 

burned area because lower-frequency wildfire activities could increase fuel load accumulation 

and wildfire risk. For example, forests in Arizona (Fulé et al., 2003), California, Nevada (Miller 

et al., 2009), and the southwestern United States face low-frequency wildfires yielding large 

burned areas (Hurteau et al., 2014). Additionally, with increasing wildfire activity, the length 

of the WEV gradually decreases. Given a single wildfire event, the burned area achieves the 

largest range of WSL variation. Under the influence of different meteorological conditions and 

human activities, wildfires can be extinguished before spreading or become mega-wildfires. 



 

89 

 

 

Figure 5.1 Concept map of wildfire bivariate statistical characteristics. 

The above unique wildfire bivariate statistical characteristics interacting with the nexus 

of wildfires, weather, soil, vegetation, and human activities pose challenges in explaining the 

impact of wildfires and assessing the wildfire risk (Black et al., 2016; Goodrick et al., 2017; 

Martin, 2016; Neary, 2019). In general wildfire risk analysis, a wildfire has often been 

characterized by its severity, intensity, and soil burn severity from a single wildfire event 

(Keeley, 2009). Simultaneously, wildfires can also be characterized by wildfire activity (Mozny 

et al., 2020) and burned areas (Jiang et al., 2020; Wu et al., 2021) at annual and monthly scales. 

For example, the relationship between the return period (RP) of wildfire activities and the mean 

rainfall, vegetation type, and effects of grazing herbivores was analyzed (O'Connor et al., 2011). 

Their results clarified that the RP of wildfire activities decreased with increasing mean annual 

rainfall in a semiarid African savanna (O'Connor et al., 2011). A wildfire risk map was also 

proposed by determining the wildfire RP under different burned area thresholds (Oliveira et al., 
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2012). Nevertheless, current research has often only focused on univariate wildfire 

characteristics in risk analysis, which is inadequate to describe wildfires' multivariate 

phenomenon probabilistic properties accurately. Moreover, it is difficult to evaluate the wildfire 

risk in which year or month is higher from a comprehensive perspective. Accordingly, this 

study aims to perform a wildfire risk assessment considering the wildfire bivariate statistical 

characteristics. 

For disaster analysis, research on the derivation of bi- and multivariate joint distributions 

of hydro-meteorological elements has been extensively carried out in statistical hydrology and 

statistical climatology. The copula theory is the most widely adopted method to derive joint 

distributions (Sklar, 1959). Copulas are mathematical functions that build a multivariate joint 

distribution considering the dependence structure among variables (Nelsen, 2003, 2007), 

regardless of their univariate distributions (Genest et al., 2007). For example, Zheng et al. (2015) 

proposed a method to assess the coastal flooding risk by constructing the joint probability 

distribution of extreme precipitation and storm tides. Yang et al. (2018) constructed a nonlinear 

multivariate drought index through the 3-dimensional theoretical joint cumulative probability 

considering three drought indices (meteorological drought, hydrological drought, and 

agricultural drought) in the Wei River Basin, China. The joint return period of the drought 

duration and severity was also analyzed based on the Bayesian framework in California, United 

States (Kwon et al., 2016). Li et al. (2015) applied the copula theory and determined the 

behavior of precipitation extremes considering the co-occurrence of extremely high and low 

precipitation under historical and future scenarios. Unfortunately, due to the unique wildfire 

bivariate statistical characteristics, the relationship between wildfire variables is more 

complicated than that between traditional hydro-meteorological elements. The application of a 

similar copula approach to wildfire characteristics remains inadequate. It will only consider 

joint wildfire events and may overlook single mega-wildfire events (as indicated by zone 2 in 

Figure 5.1) (an extraordinary wildfire devastating a large area (Westerling et al., 2006; Williams, 

2013)) and super frequent wildfires (as shown by zone 1 in Figure 5.1). This occurs because 

the copula approach considers wildfire events as joint extremes only when the burned area and 
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wildfire activity are both notable (as revealed by zone 3 in Figure 5.1). Notably, mega-wildfires 

are unprecedentedly destructive. One mega-wildfire, the 2017 Thomas Fire in California, 

burned approximately 114 thousand ha and directly threatened approximately 262,407 people 

with the potential for fire damage in or near cities (Kress, 2020). Similar disasters are not 

regarded as high-risk disasters in joint frequency analysis through the copula approach because 

of the limited number of wildfire activities. Therefore, single wildfire characteristics and the 

direct application of copula theory are both insufficient to reveal the complicated wildfire 

bivariate statistical characteristics, and the wildfire risk cannot be accurately assessed. To 

overcome this issue, another objective of this study is to construct a probability distribution of 

the wildfire priority (WP) to comprehensively measure the wildfire risk through the weighted 

average of the univariate and joint probabilities of wildfire statistics. 

Accordingly, this chapter simultaneously focuses on the univariate extreme probability 

distribution of wildfire characteristics and copula-based bivariate probability distribution 

considering the wildfire activity and burned area. First, we determine the univariate distribution 

of these two target wildfire characteristics. Correspondingly, zones 1 and 2, as shown in Figure 

5.1, are identified as priority events in terms of the wildfire activity and burned area, 

respectively. Second, we calculate the joint probability of the wildfire activity and burned area 

according to a copula-based joint distribution. In particular, zone 3 is considered a joint priority 

event. Then, the weighted average method is applied to balance the copula-based bivariate and 

univariate probability distributions to calculate the WP probability. If the same weight is 

assigned to zones 1, 2, and 3 in WP analysis, these three situations are comprehensively 

considered. If zone 3 is assigned a higher weight in WP analysis, mega-wildfires can be better 

considered, which agrees with the definition of severe disasters. In this manner, a 

comprehensive method for wildfire risk assessment is proposed. Finally, this WP analysis 

approach can explore the spatiotemporal variability and trends of wildfire risk. Since the 

contiguous United States is experiencing increasingly extreme wildfires, this region is selected 

as the study area. 
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5.2 Results 

5.2.1 Overall wildfire conditions in the contiguous United States 

To better understand the spatiotemporal characteristics of wildfire statistics in the 

contiguous United States, the total monthly burned area and monthly wildfire activities in the 

United States are first obtained, as shown in Figure 5.2. There occurs an increasing trend of the 

burned area. The two most notable wildfire months both occurred after 2010. Especially in 

August 2018, the burned area in the United States reached as large as 4.18 billion m2 within a 

month. Conversely, wildfire activity exhibits a decreasing trend. Notably, the wildfire activity 

in August 2018 and July 2015 was much lower than that in March 2006, at 13.86 thousand 

events. 

 

Figure 5.2 Time series of spatial total wildfire statistics for the United States. 

Then, Figure 5.3 shows the total burned area and monthly wildfire activities in each grid 
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cell to indicate the spatial distribution of wildfire statistics. Grid cells with large burned areas 

are mainly distributed in California, and some grid cells are scattered in Oklahoma and the 

junction of Kentucky and West Virginia. California, Oklahoma, Mississippi, and Georgia 

contain high wildfire activity grid cells. California hosts many grid cells with high wildfire 

activity, indicating frequent wildfire events. The obtained spatial distribution of wildfire 

statistics clarifies that high-frequency wildfire events and large burned areas are not completely 

consistent. For example, although Georgia hosts grid cells with high-frequency wildfire activity, 

grid cells with large burned areas rarely occur. 

 

Figure 5.3 Temporal total wildfire statistics for the United States. The bordered grid cells are 
considered in frequency analysis. (a) burned area. (b) wildfire activity. 
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5.2.2 Selected univariate probability distributions 

The first step for wildfire risk assessment is determining the optimal marginal distribution 

functions of monthly wildfire statistics (LFA and LBA) in wildfire bivariate statistical 

characteristics. Firstly, the distributions of wildfire statistics are shown in Figure 5.4. It can be 

seen that there is a right-skewed characteristic of the distribution of LBA, that is: mode value 

<median value <mean value. The distribution functions without a right-skewed structure (like 

the normal distribution) are not suitable for fitting the LBA in most instances. However, when 

the distribution is close to the minimum value, there is a finite positive slope in the LFA 

distribution. For such a structure, the three-parameter Weibull distribution can generally fit 

well. And the follow-up results indeed confirmed the previous conjecture.  

 

Figure 5.4 Distribution of wildfire statistics: (a) log-burned-area and (b) log-wildfire-activity 

Seven marginal distribution functions were employed to fit monthly LFA and LBA values 

based on the L-moments approach. Afterward, according to the RMSE and PPCC, the optimal 

goodness of fit of six marginal distribution functions was calculated by comparing the 

theoretical cumulative probabilities of the LFA and LBA statistics. In contrast to traditional 

frequency analysis of hydro-meteorological elements, there was significant regionality in the 

statistical characteristics of wildfires under the influence of local climate conditions. 

Accordingly, this study did not choose the same marginal distribution function to fit the entire 

study area but determined the best distribution function for each grid cell. Grid cells with the 
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largest monthly burned area and highest wildfire activity in the continental United States were 

chosen as an example to explain the determination process of the optimal marginal distribution 

functions. 

The smallest RMSE and largest PPCC values represent the best goodness-of-fit of the 

selected marginal distribution function. For example, given sample 2 (as indicated in Table 5.1), 

the values of the two evaluation indices of the Weibull (WEI) distribution are RMSE=0.0954 

and PPCC=0.9844. Therefore, a WEI distribution with α =1.5452, β = 3.4592, and γ =3.5551 

is the most appropriate marginal distribution function to fit the monthly LBA values in sample 

2. Similarly, a generalized extreme-value (GEV) distribution with α=4.3182, β=0.9755, and 

γ=0.2863 is the most appropriate marginal distribution function to fit the monthly LFA values 

in sample 2. 

Table 5.1 Goodness-of-fit criterion results of the marginal distribution functions and 
parameters of sample 2. 

Type Function 
Parameters Goodness-of-fit indices 

α β γ RMSE PPCC 

LBA 

GEV 4.3182 0.9755 0.2863 0.0956 0.9841 

GUM 4.2007 0.7961 / 0.1623 0.9479 

GLO 4.6614 0.5518 0.0014 0.1245 0.9649 

NOR 4.6602 0.9780 / 0.1073 0.9806 

WEI 1.5452 3.4592 3.5551 0.0954 0.9844 

P-Ⅲ 4.6602 0.9780 -0.0085 0.1072 0.9806 

EXP 3.5566 1.1036 / 0.2568 0.8838 

LFA 
GEV 1.0869 0.7035 0.2641 0.1358 0.9677 

GUM 1.0084 0.5809 / 0.1405 0.9620 
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Type Function 
Parameters Goodness-of-fit indices 

α β γ RMSE PPCC 

GLO 1.3364 0.4026 -0.0110 0.1835 0.9181 

NOR 1.3437 0.7137 / 0.1703 0.9416 

WEI -0.7775 2.3650 3.2927 0.1689 0.9517 

P-Ⅲ 1.3437 0.7138 0.0678 0.1735 0.9493 

EXP 0.5384 0.8053 / 0.2863 0.8257 

Analogously, the spatial distribution of the selected univariate probability distributions of 

the monthly LBA and LFA statistics is shown in Figure 5.5. About the monthly LBA, the WEI 

distribution is the most applicable to the entire grid of the United States, reaching 57.7%, 

followed by the GEV distribution with 25.6%. Notably, the grid cells under the GEV 

distribution are mainly concentrated in the central and eastern parts of the United States. The 

optimal marginal distributions for 9.2% and 5.6% of all grid cells are the Pearson type III (P-

Ⅲ) and generalized logistic (GLO) distributions, respectively. The other four distributions 

(exponential (EXP), Gumbel (extreme-value type I) (GUM), and normal (NOR) only apply to 

1.9% of the total grid. For monthly LFA, the WEI distribution occupies a dominant position, 

accounting for 83.5% of all grid cells. In contrast to LBA, the second best distribution of LFA 

is the P-Ⅲ distribution, accounting for 8.3% of all cells. The GEV, GLO, and EXP distributions 

accounted for 3.8%, 3.4%, and 1.0%, respectively. These distribution optimization results 

illustrate that the NOR and GUM distributions are completely unsuitable for monthly LFA. 
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Figure 5.5 Spatial distribution optimal univariate probability distribution function. In 
particular, regarding LFA, only five distributions pass the optimization step. 

5.2.3 Differences in choosing the various copula functions 

The choice of the joint function can affect the final WP probability and the calculation of 

the RP. Therefore, it is necessary to evaluate whether the selection of the GUM function 

conforms to the underlying physical mechanism between LBA and LFA. The joint probability 

of Joint for sample 2 based on the different copulas is shown in Figure 5.6. Through 

optimization, the GUM function is considered the most suitable copula for sample 2. The 
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isoline indicates the joint probability, and the different colors indicate the joint density. 

Independent copulas are not applicable in this analysis, so they are not discussed. Among the 

other five copulas, the probability isoline of the GUM function attained the highest inclination. 

In contrast, the probability isoline of the AMH function attained the lowest inclination, 

indicating that the correlation between LFA and LBA increased from AMH to GUM. 

Additionally, the GAU and GUM functions revealed characteristics whereby the upper tail was 

higher than the lower tail, while the other three copulas revealed opposite characteristics. 

Notably, in the GAU and GUM functions, LBA was correlated with the upper tail of LFA, and 

the lower tail became increasingly independent, demonstrating that the minimum LFA imposed 

little influence on LBA. At the same time, the maximum LFA exerted a significant influence 

on LBA. Frequent wildfire activities can lead to large burned areas, and their correlation can 

further increase. On the other hand, when fire activities do not frequently occur, fuel can more 

notably accumulate, which increases the possibility of large-scale wildfires. Under these 

circumstances, the correlation between wildfire activity and burned areas can weaken. 
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Figure 5.6 Joint probability based on the different copulas: choosing sample 2 as an example. 

5.2.4 Selected joint probability distributions 

After determining the optimal marginal distribution functions of the LBA and LFA data 

in each grid cell, six bivariate copulas were employed to fit joint distributions of these LBA 

and LFA data based on the Bayesian and MCMC approaches. Subsequently, according to the 

RMSE, AIC, and BIC, the optimal goodness-of-fit of these six bivariate copulas was calculated 

by comparing the theoretical joint cumulative probability between the LBA and LFA data. 

Similarly, the parameters of the bivariate copulas and goodness-of-fit of samples 1 and 2 are 

chosen as examples. 

Small RMSE, AIC, and BIC values indicate the best goodness-of-fit of the selected 

bivariate copulas. Concerning sample 2 (as indicated in Table 5.2), the GUM distribution 

resulting in the smallest values of these indices, i.e., RMSE=0.1342, AIC=-1402, and BIC=-

1399, was considered the most appropriate bivariate copula. The corresponding parameter is 

=4.1939. 

Table 5.2 Goodness-of-fit criterion results of the joint distribution functions and parameters 
of sample 2. 

Function 
Parameter The goodness of fit indices 

θ AIC BIC RMSE 

GAU 0.9149 -1344 -1341 0.1619 

CLA 3.2326 -1236 -1233 0.2298 

FRA 16.5556 -1359 -1356 0.1544 

GUM 4.1939 -1402 -1399 0.1342 

IND / -608 -608 1.7508 

AMH 0.9999 -757 -754 1.0745 
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In addition, the spatial distribution of the selected bivariate copulas of the monthly LBA 

and LFA is shown in Figure 5.7. The applicability of the Gaussian (GAU) function is the highest 

among the six alternative copulas, reaching 43.1%. The second most applicable copula is the 

Frank (FRA) function, reaching 22.5%, followed by the Clayton (CLA) function with 17.0%. 

Additionally, the GUM and Ali-Mikhail-Haq (AMH) functions account for 16.4% and 1.0%, 

respectively. As expected, the independent function is unsuitable in all grid cells, reflecting the 

correlation between LFA and LBA. 

 

Figure 5.7 Spatial distribution optimal bivariate joint probability distribution function. 

5.2.5 Spatiotemporal characteristics of the wildfire statistics 

Figure 5.8 shows the relationship between LBA and LFA, and the color of the different 

points corresponds to the RP of these variables. The points in Figure 10 include all grid cells 

participating in frequency analysis, and the RP is calculated for each grid. First, the relationship 

between LBA and LFA reveals that there exists an approximately triangular boundary. Then, 

based on the RP, large RP values of LBA are mainly concentrated in the center-right and 

bottom-right of the triangle. Regarding the RP of LBA, the upper part of the triangle is the 

concentration area of large values. The RP of the LBA of super frequent wildfires is generally 

smaller than that of mega-wildfires. Because frequent wildfire activities make it difficult for 
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fuel to accumulate, thus preventing the formation of a larger burned area. However, once the 

fuel is fully accumulated, even a single ignition event may cause a mega-wildfire. 

 

Figure 5.8 Relationship between the monthly LFA and LBA in the United States and the 
corresponding return period of the different variables. RP: return period (unit: months). 

The optimal parameter C for WP is determined based on the selected univariate and 

bivariate joint probability distributions, as shown in Figure 5.9. The value of the large 

parameter C means that more weight is given to the mega-wildfire. But when the value of C 

exceeds 0.77, the objective function begins to decrease. In other words, the too-large parameter 

C will ignore most super frequent wildfires and further affect the ability of WP to assess 

wildfire risks. 

 

Figure 5.9 Optimal curve of parameter C. When the parameter C =0.77, the objective 
function has the optimal value. 
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To compare the wildfire assessment ability of the optimal WP in detail, Figure 5.10 shows 

the difference between Joint, WP-1(Control group: α=1/3, β=1/3, and γ=1/3) and WP-2 

(Optimal group: α=1/3, β=77/150, and γ=23/150) in describing the wildfire risk through the 

probability and RP. Additionally, this study selected four representative samples to evaluate the 

advantages and disadvantages of these three different methods. Figure 5.10 demonstrates that 

the probability more sensitively measures the difference in extreme events (super frequent 

wildfires and mega-wildfires), while the RP is more sensitive to joint wildfire events. In other 

words, the probability can suitably represent the difference between Joint, WP-1, and WP-2 

given the considered samples, while the RP is suitable for disaster risk trend analysis. Therefore, 

the P(x>X, y>Y) of representative samples are listed in Table 5.3. Sample 1 represents super 

frequent wildfires resulting in a normal burned area. Ten wildfire events occurred within a 

month in the grid of sample 1 in February 2000. The corresponding P(x>X, y>Y) values of 

WP-1 and WP-2 are 40.70% and 23.10%, respectively. WP-1 indicates that the priority of super 

frequent wildfires is higher than WP-2, but both perform better than Joint. Given sample 2, 

which exhibits both a burned area and wildfire activity associated with a large RP value in April 

1998, there is a minor difference in the performance of the RP between WP-1 and WP-2, 

reaching more than 99% of P(x>X, y>Y). The advantage of focusing on mega-wildfires is more 

significant in WP-2 when considering sample 3. Sample 3 contains the largest mega-wildfire 

in California history from 1992-2018, the Mendocino Complex Fire (Jia et al., 2020; Tentoglou 

et al., 2021). The total burned area due to the Mendocino Complex Fire reached almost 460 

thousand acres, destroying over 280 businesses and homes (Yaloveha et al., 2019). The 

probability of such a mega-wildfire considering Joint and WP-1 is still lower than 50%, 

indicating that these two methods are insufficient in assessing mega-wildfires. In contrast, the 

probability of WP-2 is 67.26%, which is significantly higher than Joint and WP-1. Sample 4 

attains a P(x>X, y>Y) value of 99.04% for the burned area and a P(x>X, y>Y) value of 90.06% 

for the wildfire activity. The burned area of sample 4 in April 1995 reached 34 thousand acres, 

which was the second-largest fire in the history of this sample. The performance of WP-2 is 

also better than WP-1, reaching a probability of 94.59%. Overall, both WP-1 and WP-2 

perform better than Joint in assessing wildfire conditions. In particular, the advantage of WP-
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2 is that mega-wildfires are assigned a higher priority.  

 

Figure 5.10 Comparison of the probability and return period between Joint, WP1, and WP2. 
WP1 is the control group: α=1/3, β=1/3, and γ=1/3. WP2 is the optimal group: α=1/3, 

β=77/150, and γ=23/150. 

Table 5.3 P(x>X, y>Y) and return period of the four representative samples. The locations of 
the four sample points are shown in Figure 2.1. 

 P of LBA P of LFA P of Joint P of WP-1 P of WP-2 Date 

Sample 1 1.39% 99.17% 21.55% 40.70% 23.10% 
February 

2000 

Sample 2 99.03% 99.68% 98.72% 99.14% 99.03% April 1998 
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 P of LBA P of LFA P of Joint P of WP-1 P of WP-2 Date 

Sample 3 99.56% 0.44% 48.25% 49.42% 67.26% July 2018 

Sample 4 99.04% 90.06% 89.81% 92.97% 94.59% April 1995 

Analogously, WP-2 is considered to assess the wildfire conditions in the United States 

comprehensively. According to the RP trends of WP-2, future wildfire risk changes can also be 

determined. In particular, the RP trends of WP-2 are shown in Figure 5.11. The results indicated 

that the RP of LBA exhibits a significant increasing trend in California, Texas, Kentucky, and 

Arkansas. Moreover, most of the southeastern United States exhibits significant decreasing 

trends. Overall, the RP of LBA significantly increased and decreased in 15.9% and 34.9% of 

all grid cells, respectively. 

 

Figure 5.11 Return period trends of wildfire priority index-2 (WP-2). 

5.3 Discussion 

This study called for attention to the wildfire bivariate statistical characteristics and 

proposed a comprehensive framework for wildfire risk assessment based on these statistical 

characteristics. In this framework, different risk conditions in mega-wildfire events, joint 

extremes, and super frequent wildfires can be assessed, which is an important prerequisite for 
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wildfire management and post-fire effect analysis. In particular, this study established the joint 

probability of wildfire statistics considering the wildfire activity and burned area in the United 

States from 1992-2018 for the first time. Marginal distributions of the wildfire activity and 

burned area were determined, and corresponding joint distributions were constructed. The final 

distribution function was optimized according to the goodness of fit. The RP and RP trends of 

wildfire statistics were calculated, and the possible physical mechanism determining the choice 

of copulas was examined.  

There remain a few limitations in describing the bivariate characteristics of wildfire. 

Wildfire statistics do not yield long-term continuous time series similar to other traditional 

hydro-meteorological data. It is also common that no wildfire occurs for several months in a 

high-rainfall year. Even though grid cells with fewer than 100 valid data points were removed 

in this study, the data length remains an unavoidable source of uncertainty in frequency analysis. 

The generation of longer data series or reconstruction of wildfire events through paleoclimate 

research can provide more reliable data for wildfire frequency analysis. 

5.4 Summary 

Based on the results, the major conclusions are as follows: 

(1) The statistical structure of the burned area is more variable than that of the wildfire 

activity. Different probability distributions are suitable for various regions. Among the seven 

univariate probability distribution functions, the WEI distribution is the most applicable to the 

burned areas in the United States, followed by the GEV distribution. Regarding wildfire activity, 

the WEI distribution occupies a dominant position, accounting for more than 80% of all grid 

cells. The second-best distribution of wildfire activity is the P-Ⅲ distribution. Additionally, the 

optimal copulas are determined in each grid cell. The weighted probability of WP-2 can better 

reflect the triangular relationship between the wildfire activity and burned area instead of 

ignoring single mega-wildfire events and frequent wildfire events yielding normal burned areas. 

(2) Based on the example obtained from sample 2, the GUM function can better reflect 

the underlying physical mechanism between the wildfire activity and burned area. In the GUM 
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function, the minimum wildfire activity imposes little influence on the burned area, while the 

maximum wildfire activity significantly influences the burned area. Notably, the correlation 

between the burned area and wildfire activity increases with increasing wildfire activity, which 

the GUM function can distinguish. 

(3) WP-1 and WP-2 perform better than Joint in describing the joint RP of wildfires. In 

particular, WP-2 defines more mega-wildfires as a high priority. On this basis, through trend 

analysis of the RP of WP-2, there occurs an increasing trend in California, Texas, Kentucky, 

and Arkansas. Moreover, most southeastern United States exhibits significantly decreasing 

trends in wildfire risk. 

Overall, the framework of wildfire frequency analysis proposed in this study can provide 

a reference to understand the spatiotemporal characteristics of wildfire statistics better. In 

addition, this new wildfire risk assessment approach will also facilitate considering post-fire 

effects. 
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Chapter 6 Quantifying the Contributions of 
Hydro-Meteorological Elements on Different 

Wildfire Types Illustrated by the Example of the 
Contiguous United States 

This chapter was under review in Agricultural and Forest Meteorology: Ke Shi, Yoshiya 

Touge, and So Kazama. "Hydrometeorology-Wildfire Relationship Analysis Based on a 

Wildfire Bivariate Probabilistic Framework in Different Ecoregions of the Continental United 

States." 

6.1 Introduction 

Wildfire is a vegetation disturbance of our earth system associated with interactions 

between climate/weather, fuel, and human activity (Flannigan et al., 2009; Kennedy et al., 

2021). The burned area and wildfire activity (number of wildfires) trends vary by region 

globally (Riaño et al., 2007), with some regions experiencing increasing trends and others 

experiencing decreasing trends (Earl et al., 2018; Ellis et al., 2022; Forkel et al., 2019; Jones et 

al., 2022). This spatiotemporal heterogeneity of wildfires leads to unique triangular structures 

in wildfire statistics, as shown in Figure 6.1. Additionally, when considering extreme wildfires 

(wildfire extreme zone as shown in Figure 6.1), five different types of wildfires can be seen in 

the wildfire statistics relationship. Among them, the most extensive attention is given to mega-

wildfires, such as the 2014 California mega-wildfire in the United States (Coen et al., 2018), 

the 2017 mega-wildfire in Chile (Pliscoff et al., 2020) and the 2019/2020 mega-wildfire in 

Victoria, Australia (Geary et al., 2022). This kind of wildfire has non-negligible negative social, 

economic, and environmental effects due to its large amount of burned area (Jones et al., 2021; 

Le Breton et al., 2022; Shen et al., 2022). On the other hand, studying super frequent wildfires 

in different regions, such as Portugal (Moreira et al., 2010), Australia (Clarke et al., 2019), and 

the United States (Cattau et al., 2020), is also a hot topic in wildfire science. A related issue 

associated with super frequent wildfires is that they may result in alien species expansion 
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(Syphard et al., 2009). For example, biodiversity in California is threatened by shrubbery 

conversion to alien annual grasses under the influence of super frequent wildfires (Keeley et 

al., 2005). However, the discussion of the other three types of wildfires has thus far been very 

limited. Without the ability to characterize different types of wildfires using wildfire bivariate 

statistical characteristics and only roughly characterizing super frequent wildfires and mega-

wildfires, it is impossible to determine how wildfires can transition from a wildfire type-1 

(WT1) to a wildfire type-5 (WT5) under the influence of weather conditions and human activity. 

Thus, only by systematically understanding the relationship and causes of different types of 

wildfires using wildfire bivariate statistical characteristics can we implement more targeted 

wildfire prevention plans, thereby increasing the resilience of vegetation and reducing the 

losses caused by wildfires. 

 

Figure 6.1 Conceptual diagram of the wildfire statistics relationship and the locations of five 
typical wildfire types. 
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Existing studies have extensively explored the relationship between hydro-meteorological 

elements and burned areas or wildfire activity from a univariate perspective. Antecedent hydro-

meteorological conditions, such as reduced precipitation, high temperature, and drought events, 

influence these wildfire events through the preconditioning of fuels (Littell et al., 2016). In 

contrast, wind speed is a key factor affecting the spread of wildfire after the wildfire has begun 

(Andrews et al., 2013; Özbayoğlu et al., 2012). Specifically, long-term trends in the burned 

area and wildfire activity are more significantly affected by precipitation than short-term trends 

(Andela et al., 2017; Flannigan et al., 2016; Wei et al., 2020). High temperatures can increase 

evaporation, resulting in drier fuels and water loss in forest flora, thus increasing wildfire 

activity (Mansoor et al., 2022). The largest wildfire-burned area was associated with high-

temperature events (Aldersley et al., 2011; Cardil et al., 2015; Wang et al., 2021). Wind speed 

can only play a secondary role in wildfire activity (de Dios et al., 2022) but is more sensitive 

to the burned area (Shabbir et al., 2020). Wildfire activity is limited to extreme, wind-driven 

wildfires. However, once a wildfire occurs, the severity of the wind will affect the ultimate size 

of the wildfire event (Keeley et al., 2017). To date, several different types of drought indices, 

such as the Standardized Precipitation-Evapotranspiration index (SPEI) (Cardil et al., 2019; 

Rodrigues et al., 2021), Palmer Drought Severity Index (PDSI) (Collins et al., 2006; Flatley et 

al., 2011) and surface soil moisture (SSM) (Bartsch et al., 2009; Dadap et al., 2019), have been 

used in the discussion of the relationship between drought and wildfire. The regional depletion 

of soil (e.g., PDSI and SSM) and atmospheric (e.g., SPI) moisture can lead to a low moisture 

content in duff (both fibrous and humic horizons) and surface fuels. It can ultimately result in 

a higher potential for widespread wildfires (Littell et al., 2016). Drought affects the likelihood 

of ignition at multiple time scales, affecting fuel moisture and propagation on shorter time 

scales and affecting fuel availability by controlling ecosystem characteristics and productivity 

on longer time scales (Loehman et al., 2014). Considering wildfire activity and burned area 

separately, the relationship between hydro-meteorological elements and wildfire activity or 

burned area is well documented. In contrast, the relationship between meteorological variables 

and wildfire bivariate statistical characteristics is still emerging. In particular, the effect of 

meteorological conditions on the simultaneous occurrence of extreme burned areas and 
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extreme wildfire activity, i.e., wildfire type-2 (WT2), -3 (WT3), and-4 (WT4), has not been 

explored. Also, it is difficult to fairly compare burned areas and wildfire activity in previous 

studies because of their large magnitude differences. Using a probabilistic framework makes it 

possible to compare WT1 and WT5 at the same extreme level. 

In the continental United States, since 2000, an average of 70,072 wildfires have occurred 

each year, burning over 2.8 million ha annually (Hoover et al., 2021). Moreover, wildfires in 

the United States are becoming increasingly frequent, leading to greater environmental 

degradation, property damage, and economic loss (Dennison et al., 2014). Wildfires in the 

United States are projected to cost nearly $1.8 billion annually in wildfire suppression by 2025 

(USFS, 2015). The United States experienced not only multiple mega-wildfire events 

(Buckland, 2019), such as the 2002 Biscuit wildfire (Harma et al., 2003), the 2013 Rim wildfire 

(Povak et al., 2020), the 2007 Zaca wildfire (Keeley et al., 2009) , and the 2014 King wildfire 

(Coen et al., 2018) but also super frequent wildfire events (Cattau et al., 2020). Additionally, 

considering geology, landforms, soils, vegetation, climate, land use, wildlife, and hydrology, 

the continental United States can be divided into different ecoregions (Omernik et al., 2014), 

and wildfires in different ecoregions show spatial heterogeneity. For example, the average 

burned area in the western United States was more extensive than in the eastern United States 

(Nagy et al., 2018). Additionally, wildfire activity showed a decreasing trend in Mediterranean 

California but an increasing trend in the Rocky Mountains (Dennison et al., 2014). Wildfire 

characteristics can show temporal heterogeneity under the current anthropogenic climate 

change, even in the same regions. As the climate becomes warmer and drier, the shift in 

vegetation from mesic forest and cold forest to dry forest and then to shrubland/grassland 

becomes possible, corresponding to an increasing trend of wildfire activity at first, followed by 

a decreasing trend (Parks et al., 2018). The wide variety of wildfires and spatiotemporal 

heterogeneity of wildfire characteristics make the United States a suitable study area for 

examining the hydrometeorology-wildfire relationship. 

Chapter 5 documented wildfire bivariate statistical characteristics based on extensive 

wildfire data in the continental United States. From a bivariate perspective, we expanded on 
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this research by examining the potential relationships between hydro-meteorological elements 

and wildfires. In addition, most studies of hydrometeorology in relation to wildfires have 

examined the relationship between seasonal or annual hydro-meteorological elements and 

wildfire variables (wildfire activity and burned area) to measure and link patterns of the key 

drivers of wildfires (Higuera et al., 2021; Holden et al., 2018; van Wagtendonk et al., 2020). 

Nevertheless, the relationship between hydrometeorology and wildfire should be examined on 

at least a monthly scale to prevent extreme weather conditions from being overlooked due to 

averaging. Here, we analyzed hydrometeorology-wildfire relationships for 324 months of 

wildfire data from 1992 to 2018 to assess how these relationships persist across different 

ecoregions of the continental United States. Specifically, the bivariate probability of wildfire 

was first calculated from the univariate and bivariate probability distributions. Next, the five 

different types of wildfires were classified according to their probability threshold. Then, the 

probability of hydro-meteorological elements corresponding to the different wildfire types was 

calculated to discuss the relationship between hydrometeorology and wildfire. Based on our 

hydrometeorology-wildfire relationship results, we additionally performed a cluster analysis to 

obtain new wildfire clusters with similar wildfire characteristics and hydro-meteorological 

impacts on the wildfire. Finally, the trends of each hydro-meteorological element within the 

new wildfire clusters were analyzed. In particular, we addressed the following key issues in 

hydrometeorology-wildfire relationships: (1) the dominant hydro-meteorological elements of 

the five types of wildfires, (2) the possible intrinsic relationship between the five types of 

wildfires, and (3) the significant changes in hydro-meteorological elements that need to be 

noted in the new, different wildfire clusters. 

6.2 Results 

6.2.1 Performance capabilities with different probabilities 

To assess the hydrometeorology-wildfire relationship, it is first necessary to determine 

how to classify the five wildfire types. This paper selected marginal probabilities and joint 

probabilities combined with marginal probabilities as control groups to compare the differences 
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in assessing the hydrometeorology-wildfire relationship under different probability calculation 

methods. For the probability thresholds of the control group, the burned area was the dominant 

element in WT1 and WT2. Thus, the required probability of the burned area exceeded 0.99. In 

addition, in WT1, which also ensured less wildfire activity, the probability of wildfire activity 

was set to less than 0.3. The reason for not choosing a threshold of 0.2 or 0.1 here was that 

there were no WT1 fires in the entire study area. For WT2, wildfire activity near the 0.5 

probability was selected, i.e., fire activity probabilities between 0.45 and 0.55. The same 

approach was used for WT4 and WT5. WT3 indicates that both the burned area and wildfire 

activity reached extremes, so the probability threshold for both was 0.99. For the experimental 

group, the univariate probabilities were selected according to the same principles as the control 

group. WT3 indicated the extreme condition for the joint probability and thus had a joint 

probability threshold of 0.99. The threshold range was adjusted several times for WT1, WT2, 

WT4, and WT5. The three experimental groups achieved the most similarity to the control 

group when the final probability thresholds were within the range in Table 6.1. 

Based on the probability threshold in Table 6.1, Figure 6.2 shows the comparison results 

for the experimental and control groups, with different colors indicating the median probability 

of weather values. WP2 was most similar to the control group, especially in WT1 and WT2, 

where the burned area was the dominant element. WP2 performed significantly better than 

WP1 and the joint, especially when measuring the relationship between the hydro-

meteorological elements and WT1, which was also consistent with the findings in chapter 5. 

For WT3, there was no significant difference between the three experimental groups. 

Additionally, WP1 and WP2 also outperformed the joint for WT4. In conclusion, by comparing 

the probabilities calculated under the different methods, WP2 outperformed the other two 

methods. Therefore, WP2 was used to classify the wildfire types in all subsequent analyses. 
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Figure 6.2 Comparison of the performance of the Joint, WP1, and WP2 methods in assessing 
the impact of weather elements using the wildfire bivariate statistical characteristics 

framework. 

Table 6.1 Probability thresholds for wildfire classification. 

Types Control Group Joint WP1 WP2 

WT1 

(mega-wildfire) 

PBA>0.99 

PFA<0.30 

PBA>0.99 

0.7<PJoint,WP1, WP2<0.8 

WT2 

(joint wildfire-1) 

PBA>0.99 

0.45<PFA<0.55 

PBA>0.99 

0.8< PJoint,WP1, WP2<0.9 

WT3 

(joint extremes) 

PBA>0.99 

PFA>0.99 
PJoint,WP1, WP2>0.99 

WT4 

(joint wildfire-2) 

0.45<PBA<0.55 

PFA>0.99 

PFA>0.99 

0.8< PJoint,WP1, WP2<0.9 

WT5 PFA>0.99 PFA>0.99 

WT1
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WT4

WT5

Control group          Joint                  WP1                  WP2
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Types Control Group Joint WP1 WP2 

(super frequent wildfires) PBA<0.30 0.7< PJoint,WP1, WP2<0.8 

6.2.2 Overall wildfire conditions in the United States 

Based on the classification method of WP2, the seasonal distribution of the five wildfire 

types is shown in Figure 6.3. WT1 and WT5 showed significant seasonality. WT1 was mainly 

concentrated in summer, while WT5 corresponded to spring. For WT2 and WT4, the wildfire 

was dominant in autumn. However, WT3 could be distributed in any season. In fact, in the 

United States, especially in the eastern United States, there is much wildfire activity (especially 

human-caused wildfires) in the spring (Balch et al., 2017; Nagy et al., 2018). On the other hand, 

of the 43 notable mega-wildfires in the United States (Buckland, 2019), 33 wildfires occurred 

in the summer, and July accounted for 42.2% of the summer mega-wildfires. 

 

Figure 6.3 Seasonal distribution of wildfires in the continental United States. 

To further understand the hydrometeorology-wildfire relationship in the United States, the 

probabilities of the hydro-meteorological elements under different wildfire types are tabulated 

in Figure 6.4. A higher probability indicated drier (less precipitation and lower SPEI, PDSI, or 
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SSM values), hotter weather, and stronger wind speeds. No single hydro-meteorological 

element had a significantly higher probability than the others in WT1 and WT2. However, this 

does not suggest that there is no relationship between hydro-meteorological elements WT1 or 

WT2. Because wildfires are often subject to a combination of meteorological elements in 

locations dominated by large burned areas. Three significant high-probability variables could 

be identified for the other three wildfire types. Specifically, WT3 was dominated by SPEI, PRE, 

and TEM; SSM, SPEI, and PRE dominated WT4; and SSM, PRE, and TEM dominated WT5. 

Compared to a regular wet and rainy spring, a warm and dry spring dominated by a high 

probability of SSM, PRE, and TEM created natural conditions for frequent wildfire activity, 

i.e., WT5. 

 

Figure 6.4 Average probability (P(x>X)) of meteorological values under the five fire types in 
the continental United States: (a) Overall conditions; and (b) Median value. 

6.2.3 Hydrometeorology-wildfire relationship in different 

ecoregions 

Hydro-meteorological conditions and vegetation characteristics vary among ecoregions 

in the United States. Therefore, to fully understand their complex relationship, Figures 6.5~6.7 

show the hydro-meteorological and wildfire relationships within each zone during different 
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seasons. These seventeen ecoregions can be divided into three major categories based on their 

distributions of wildfire types: ecoregions containing five wildfire types, ecoregions containing 

four wildfire types in addition to super frequent fires, and ecoregions with only three or fewer 

wildfire types. 

Six ecoregions, the Western Sierra Madre Piedmont and Warm Deserts, Western 

Cordillera, Southeastern Plains, Ozark Ouachita-Appalachian Forests, Mississippi Alluvial, 

and Southeastern Coastal Plains, and West-Central Semi-Arid Prairies, had all wildfire types. 

Specifically, the WT5 in Western Sierra Madre Piedmont and Warm Deserts were concentrated 

in the summer months of 1992~1999, and high temperatures were their main causal factor. 

Moreover, extreme wildfires in this ecoregion showed a decreasing trend, with no occurrence 

of WT1 or WT5 from 2010 to 2018. In the Ozark Ouachita-Appalachian Forests and West-

Central Semi-Arid Prairies, a strong wind speed provided conditions for spreading mega-

wildfires, i.e., WT5. In contrast, for WT3, these two ecoregions differed, with WT3 in the 

Ozark Ouachita-Appalachian Forests being dominated by PDSI. In comparison, WT3 in the 

West-Central Semi-Arid Prairies was consistent with the dominant factors of mega-wildfire, 

both PRE and WS. WT2 in Southeastern Plains presented high-probability values of hydro-

meteorological elements. The extremely low precipitation and drought index value (especially 

SPEI) led to conditions that were suitable for WT2. The most notable combination in the 

Mississippi Alluvial and Southeastern Coastal Plains was PRE-WT1. Additionally, the Western 

Cordillera was dominated by extremely high temperatures for both WT4 and WT5 (dominated 

by wildfire activity). This region significantly increased extreme wildfire events, especially 

during 2010~2018, with WT2 and WT4 occurring in all seasons. 
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Figure 6.5 Median probability (P(x>X)) of meteorological factors in ecological regions 1-7 in 

different seasons and years. 

(1)Cold deserts (2)Mediterranean California
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There were seven ecoregions without super frequent wildfires (WT5), namely Cold 

deserts, Mediterranean California, Mixed wood Shield, Marine West Coast Forest, Mixed wood 

Plains, Temperate Prairies, and South-Central Semi-Arid Prairies. For WT1, the high 

probability of hydro-meteorological elements was in the Cold deserts, Mixed wood Shield, 

Temperate Prairies, and South-Central Semi-Arid Prairies. The specific combinations were 

PDSI-SSM-WT1 in the Cold deserts, PRE-WT1 in the Mixed wood Shield, PDSI-SPEI-WT1 

in the Temperate Prairies, and PRE-WS-WT1 in the South-Central Semi-Arid Prairies. On the 

other hand, the dominant hydro-meteorological elements in the other three regions were 

reflected in WT2, such as TEM-WT2 in Mediterranean California, SSM-SPEI-WT2 in the 

Marine West Coast Forest, and TEM-WT2 in the Mixed wood Plains. Additionally, WT1, WT2, 

and WT4 in the Mixed wood Shield, Marine West Coast Forest, and Mixed wood Plains curred 

only in the period from 2010~2018. 

Among the four other ecoregions (the Upper Gila Mountains, Atlantic Highlands, Central 

Plains, and Texas-Louisiana Coastal Plain and Tamaulipas-Texas Semiarid Plain), joint 

extremes existed only in the Central Plains. The vegetation cover of the Central Plains is mainly 

grassland, and wildfire activity and burned area have a strong correlation, with a high 

probability of wildfire activity and burned area often occurring simultaneously. The dominant 

combinations of hydrometeorological-wildfire relationships in the other three ecoregions were 

WT1 with PDSI in the Upper Gila Mountains, WT1 with WS in the Atlantic Highlands, and 

WT2 with TEM in the Texas-Louisiana Coastal Plain and Tamaulipas-Texas Semiarid Plain. 
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Figure 6.6 Median probability (P(x>X)) of meteorological factors in ecological regions 8-13 
in different seasons and years. 

(1)Western Sierra Madre 
Piedmont and Warm Deserts

(2)Western Cordillera
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Probability 
(P(x>X))

Probability 
(P(x>X))

Probability 
(P(x>X))

Probability 
(P(x>X))

Probability 
(P(x>X))

Probability 
(P(x>X))

Percentage Percentage

Percentage Percentage

Percentage Percentage



 

120 

 

 

Figure 6.7 Median probability (P(x>X)) of meteorological factors in ecological regions 14-17 
in different seasons and years. 

In addition, we focused on the seasonal variation in wildfires. For example, in 

Mediterranean California and the Ozark Ouachita-Appalachian Forests, the season of large 

wildfires shifted from spring and summer to autumn, and low soil moisture content was 

dominant in autumn. In other words, the impact of extreme autumn drought on mega-fires 

increased. Furthermore, both WT2 and WT4 in Mediterranean California had the same second 

dominant factor, i.e., wind, but WT4 could change to WT2 when the first dominant factor 

changed from PRE to TEM. A similar situation was found in the Ozark Ouachita-Appalachian 

Forests, where WT2 could also change to WT4 when the dominant factor changed from PDSI 

combined with SPEI to PDSI combined with SSM. This result revealed that similar factors 

influence joint wildfires and that changes in meteorological elements at different times can 

cause joint wildfires to transition between WT2 and WT4. 
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6.2.4 Spatial clustering of wildfire bivariate characteristics 

The hydrometeorology-wildfire relationships within the 17 ecoregions presented too 

much information. To further extract valid information and thus provide guidance for wildfire 

prevention, the median hydro-meteorological probability values under each wildfire type were 

used as input (missing fire types were input as 0) to obtain four new clusters, as shown in Figure 

6.8. This cluster partitioning divided the original classification of ecoregions that considered 

only vegetation and climatic characteristics. Considering the relationship between 

hydrometeorology and wildfire through classification is more instructive for wildfire research. 

For example, cluster 2 contained two ecoregions, the Central Plains and the Texas-Louisiana 

Coastal Plain and Tamaulipas-Texas Semiarid Plain. Unlike other plain types, the wildfire 

activity and burned area within these two ecoregions had a strong correlation, and WT1 and 

WT5 were completely absent from these two ecoregions. 

As shown in Figure 6.9, among the four clusters, only cluster 3 had all wildfire types, and 

cluster 2 had only three types of wildfires: WT2, WT3, and WT4. The most significant 

combination of all the combinations of wildfire type and hydro-meteorological elements in 

both cluster 1 and cluster 2 was WT2-TEM. In cluster 3, the dominant roles of the SPEI and 

PDSI for WT2 prevailed. The dominant role of the SPEI and PDS in cluster 4 was reflected in 

WT1. 

Additionally, we analyzed the trend of the hydro-meteorological elements in all the 

clusters and extracted the top two elements with the highest probability. From Figure 6.10, it 

can be seen that drought showed an intensifying trend among the hydro-meteorological 

elements in cluster 1. Cluster 4 was similar to cluster 1 and also has increased drought concerns. 

The hydro-meteorological elements in cluster 2 showed no significant change trend. Multiple 

extreme hydro-meteorological elements (stronger winds, drier weather, higher temperatures) 

intensified simultaneously in cluster 3. 
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Figure 6.8 Clustering zones of ecoregions based on the probability of meteorological factors. 

 

Figure 6.9 Probability of meteorological factors in the clustering zones. 
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Figure 6.10 The top two dominant meteorological factors in the clustering zones. 

6.3 Discussion 

Even though our study focused only on bivariate statistical characteristics of wildfire, it 

also provided a new way of thinking about other compound hazards in the face of climate 

change. Research on compound hazards such as compound droughts and hot extremes (Hao et 

al., 2018) and compound wildfires and COVID-19 (Navarro et al., 2021) has surfaced recently. 

By applying the analytical framework of compound hazards in this chapter, understanding 

other types of compound hazards can also be improved. 

There are still some limitations in characterizing the wildfire bivariate characteristics. 

Wildfire statistics do not produce long-term continuous time series similar to other traditional 

time series. It is not uncommon for wildfires to be absent for several months in rainy years. 

Data length is an unavoidable source of uncertainty in frequency analysis. 

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Top1 Top2 Top1 Top2 Top1 Top2 Top1 Top2

WT1 SPEI PRE - - PRE WS PDSI SPEI
(-) (↑↑) (-) (↑) (↑↑) (-)

WT2 PDSI TEM PRE TEM PDSI SPEI SSM SPEI
(↑↑) (-) (-) (-) (-) (↓) (↑↑) (-)

WT3 SSM TEM SPEI WS PRE TEM PRE TEM
(↑↑) (-) (-) (-) (-) (↑) (↑) (-)

WT4 PDSI SPEI PDSI TEM SSM TEM PDSI PRE
(↑↑) (-) (-) (-) (↑↑) (↑) (↑↑) (↑)

WT5 - - - - SSM TEM - -(↑↑) (↑)

0.3   0.5    0.6    0.7   0.9

Hydrometeorological variable 
probability((P(x>X))). 

↑ ↑: Significant increasing trend in the probability of extreme weather.
↑: Weak increasing trend in the probability of extreme weather.
↓ : Weak decreasing trend in the probability of extreme weather.

↓ ↓: Significant decreasing trend in the probability of extreme weather.

Note: Higher probability 
means drier, less rain, 

stronger wind and hotter.
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6.4 Summary 

Unlike previous studies that considered burned area and wildfire activity separately in 

their wildfire regime classifications (Brewer et al., 2005; Malamud et al., 2005; Trucchia et al., 

2022), we present the first wildfire type classification based on the wildfire bivariate statistical 

characteristics. On this basis, the influence of hydro-meteorological elements on different 

wildfire types was examined from 1992 to 2018. The major conclusions were as follows: 

(1) In this paper, wildfires were classified into five types using the bivariate statistical 

characteristics of wildfire: WT1 (mega-wildfire), WT2 (joint wildfire-1), WT3 (joint extremes), 

WT4 (joint wildfire-2), and WT5 (super frequent wildfires). In the continental United States, 

WT1 and WT2 were affected by multiple weather elements, and their causes were more 

complicated, while WT5 was mainly affected by soil moisture, precipitation, and temperature. 

(2) The influence of hydro-meteorological elements on different wildfire types was 

discussed in 17 ecoregions. The most dominant combinations of hydro-meteorological 

elements and wildfire types in the 17 ecoregions were: PDSI-WT1 in the Cold deserts, TEM-

WT2 in Mediterranean California, TEM-WT5 in the Western Sierra Madre Piedmont and 

Warm Deserts, SPEI-WT1 in the Upper Gila Mountains, PRE-WT1 in the Mixed wood Shield, 

WIND-WT1 in the Atlantic Highlands, PRE-WT1 in the Western Cordillera, SPEI-WT2 in the 

Marine West Coast Forest, TEM-WT2 in the Mixed wood Plains, WS-WT3 in the Central 

Plains, SPEI-WT2 in the Southeastern Plains, WS-WT1 in the Ozark Ouachita-Appalachian 

Forests, PRE-WT1 in the Mississippi Alluvial and Southeastern Coastal Plains, PDSI-WT1 in 

the Temperate Prairies, TEM-WT5 in the West-Central Semi-Arid Prairies, SPEI-WT2 in the 

South-Central Semi-Arid Prairies, and TEM-WT2 in the Texas-Louisiana Coastal Plain and 

Tamaulipas-Texas Semiarid Plain. Changes in hydro-meteorological elements in different 

periods could also lead to mutual conversion between WT2 and WT4. 

(3) In the four new clusters, intensifying droughts are a concern in clusters 1 and 4, while 

there are multiple concerns in cluster 3, namely, stronger winds, higher temperatures, and more 

drought.  
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Chapter 7 Simulating Global Wildfire Bivariate 
Characteristics through Hydrometeorology-

Wildfire Relationship 

This chapter is scheduled for submission to Agricultural and Forest Meteorology: Ke Shi 

and Yoshiya Touge. "Simulating global wildfire bivariate characteristics through 

hydrometeorology-wildfire relationship" 

7.1 Introduction 

Wildfires are natural factors around the globe that affect human communities and the 

ecosystems on which we depend (Moritz et al., 2014). The occurrence and spread of wildfires 

are influenced by many aspects, including human activities, atmospheric-oceanic indices, and 

hydro-meteorological elements. Under the complex influence of various factors, wildfire has 

the characteristics of many types, including super frequent wildfires, mega-wildfires (wildfires 

with a particularly large burned area) (Linley et al., 2022), etc. Also, the loss caused by wildfire 

varies according to the type of wildfire. On the one hand, wildfires were part of the world well 

before humans evolved and helped the environment. As an ecosystem service, wildfires can 

maintain diversity and genetic variability, contributing to creating a range of natural products 

for human consumption (Pausas et al., 2019). On the other hand, extreme wildfires, such as 

mega-wildfires, can cause huge damage. Extreme wildfires can destroy buildings and houses, 

burn forests, and even claim lives (Linley et al., 2022). For example, in 2003, the mega-wildfire 

was directly responsible for the loss of 21 lives and an estimated total burned area of 450,000 

ha in Portugal, double the largest fire previously recorded in Portugal (Tedim et al., 2013; Trigo 

et al., 2006). However, in the existing wildfire forecast and early warning system, the target is 

often the univariate characteristics of wildfire (modeling wildfire activity and burned area 

separately), rather than bivariate characteristics of wildfire. 

There has been much research into wildfire warning and forecasting based on the 

relationship between hydrometeorology and wildfire, for example, the three well-known 
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wildfire warning systems: Canadian Forest Service Fire Weather Index Rating System (Van 

Wagner, 1974; Van Wagner et al., 1987; Van Wagner et al., 1985), Australian McArthur Mark 

5 Rating System (Cruz et al., 2015; Keetch et al., 1968; McArthur, 1967; Moore, 1986), and 

U.S. Forest Service National Fire-Danger Rating System (Mees et al., 1991; Schlobohm et al., 

2002), which have been widely used around the world. Simultaneously, statistical or process-

based physical models have also been applied to simulate wildfires using hydro-meteorological 

elements. The Glob-FIRM model, an empirical model, used fuel moisture as a threshold to 

determine whether a wildfire can occur or not (Thonicke et al., 2001). The dynamic simulations 

of autoregressive distributed lag (ARDL) models were also used to simulate burned areas 

through the relationship between temperature, relative humidity, precipitation, wind speed, 

sunlight, and wildfire (Shabbir et al., 2020). Like the LPJ-LMfire model (Pfeiffer et al., 2013), 

the SPread and InTensity of FIRE (SPITFIRE) model (Thonicke et al., 2010), and the 

HESFIRE (Human–Earth System FIRE) model (Page et al., 2015) , the process-based physical 

models determined the probability of wildfire occurrence and extinguishment based on hydro-

meteorological elements and landscape fragmentation (human activities, topography, or past 

wildfire events). In other words, the models for simulating the final burned area and the 

occurrence wildfire have been extensively studied and discussed. But given the impact of 

wildfires, it is the extreme wildfires that deserve our attention rather than all wildfires. Just like 

floods, we don't have to worry about the runoff every moment in the river, but only need to 

focus on the flood process when heavy rain will hit, which is enough to provide guidance on 

reducing disaster damage. Accordingly, in early warning and forecasting of wildfires, we need 

to pay more attention to bivariate characteristics of wildfire to improve pertinence and 

efficiency.  

For wildfire simulation, since wildfires are similar in frequency analysis to extreme floods 

and extreme droughts, the research on flood and drought forecasting can be transplanted to 

wildfire. Furthermore, with the rise of machine learning in recent years, more and more 

machine learning techniques have been applied to flood-related and drought-related research. 

Because machine learning techniques provide easier implementation, low computation cost, 
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fast training, validation, testing, and evaluation, high performance compared to physical 

models, and relatively less complexity (Mosavi et al., 2018). Artificial Neural Networks 

(ANNs) are the most popular learning algorithms among all machine learning methods. They 

are known to be versatile and efficient in modeling complex processes with high fault tolerance 

and accurate approximations (Abbot et al., 2014). In particular, ANNs are proven to provide a 

reliable means of detecting the flood hazard in South Korea (Kim et al., 2000), the U.K. 

(Dawson et al., 2006), Sudan (Elsafi, 2014), and Japan (Arai et al., 2022). Similarly, as for 

drought forecasting, ANNs are used to predict the Streamflow Drought Index (SDI) for 

hydrological drought (Eroğluer et al., 2020), the Standard Precipitation Index (SPI) for 

meteorological drought (Achite et al., 2022), Soil Moisture Deficit Index (SMDI) for 

agricultural drought (Wambua, 2019), etc., and the modeling framework based on ANNs has 

wide applicability in drought forecasting. Nevertheless, we have not come across studies that 

utilize ANN methods for wildfire bivariate characteristics forecasting by linking hydro-

meteorological elements and wildfires comprehensively. And the joint probability between 

different hydro-meteorological elements also has not been considered in the existing model. 

Consequently, this chapter aims to fill these gaps by comprehensively analyzing 

hydrometeorology-wildfire relationships across the globe. In particular, the research objective 

of this chapter is to simulate wildfire bivariate characteristics in different regions at the global 

scale based on the hydrometeorology-wildfire relationship. First, this chapter uses the wildfire 

priority index proposed in chapter 5 to describe the wildfire bivariate characteristics. Second, 

the control effects of hydro-meteorological elements on wildfires were quantified through the 

correlation coefficient. Then, after identifying the dominant hydro-meteorological elements in 

different regions, ANNs were utilized for wildfire bivariate characteristics simulation. This 

study will provide a new understanding of global wildfire forecasting to reduce the losses to 

human communities and the ecosystems caused by wildfires in the future. 
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7.2 Results 

7.2.1 Wildfire characteristics in sub-regions around the world 

First, according to the AR5 (IPCC 5th Assessment Report) Reference Regions, the world 

is divided into 27 sub-regions (the sub-regions where no wildfires have occurred were 

removed). The 27 sub-regions are specifically Alaska/N.W. Canada (ALA), Central 

America/Mexico (CAM), Central Europe (CEU), Central North America (CNA), East Asia 

(EAS), South Europe/Mediterranean (MED), North Australia (NAU), North Europe (NEU), 

Sahara (SAH), Southeast Asia (SEA), South Asia (SAS), Tibetan Plateau (TIB), West Asia 

(WAS), West Coast South America (WSA), Amazon (AMZ), Central Asia (CAS), Small 

Islands Regions Caribbean (CAR), Canada/Greenland/Iceland (CGI), East Africa (EAF). East 

North America (ENA), North Asia (NAS), North-East Brazil (NEB), Southern Africa (SAF), 

South Australia/New Zealand (SAU), Southeastern South America (SSA), West Africa (WAF), 

and West North America (WNA). 

To fully understand the wildfire characteristics of each sub-region, the average burned 

area per wildfire ( ) within each sub-region was plotted in Figure 7.1 (1). 

It is clear that the sub-regions with higher average burned area per wildfire were mainly 

concentrated in WNA, SAF, NAU, and CAS. Especially in NUA, almost every grid cell has 

experienced extensive wildfires. Figure 7.1 (2) shows the maximum burned area month and 

the most frequent wildfire activity month of each sub-region. This result illustrated temporal 

heterogeneity between burned areas and wildfire activity. For example, in the SAU, the largest 

burned area of this sub-region occurred in December 2019, while the most frequent wildfire 

activity occurred in April 2011. Among the 27 sub-regions, the largest burned area and the 

most frequent wildfire activities were consistent only in the five regions of TIB, CGI, CAR, 

CEU, and WAS. The largest burned area in the SEA, NAU, SAU, SAS, CNA, AMZ, NEB, 

SAH, WAF, and SAF was later than the most frequent wildfires, which means that the wildfire 

characteristics in these regions tended to become larger rather than more frequent. At the same 
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time, the wildfires became more frequent in the remaining eleven regions (ALA, NEU, WNA, 

ENA, WSA, SSA, NAS, MED, EAF, CAS, and EAS). Because the burned area and wildfire 

activity were not highly correlated, the wildfire bivariate characteristics must be 

comprehensively considered in wildfire forecasting. 

Figure 7.2 further shows the log-processed statistical characteristics of the total burned 

area and total wildfire activity within each sub-region. The month with the most frequent 

wildfire activity occurred in SAF, while WAF had the highest median of wildfire activity and 

burned area worldwide. 
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Figure 7.1 Global wildfire characteristics. Figure 7.1(1) shows the average burned area per wildfire event. Figure (2) shows the largest burned 
area and the most frequent wildfire activity month in each sub-region. Where 1 to 228 indicates the specific number of months in the study 

period, e.g., 1 indicates January 2001, while 228 indicates December 2019. 
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Figure 7.2 Violin chart for the log burned area and log wildfire activity. 
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7.2.2 Wildfire bivariate characteristics simulation in sub-regions 

around the world 

The wildfire priority index proposed in chapter 5 was first applied globally to consider the 

wildfire bivariate characteristics in wildfire forecasting. Then, to choose the appropriate 

predictor as much as possible in wildfire forecasting for preventing overfitting, the correlation 

coefficients of each hydro-meteorological element and wildfire priority index were calculated, 

as shown in Figure 7.3. Not only single hydro-meteorological elements such as precipitation 

(PRE) and surface soil moisture (SSM) were considered, but the joint probabilities of hydro-

meteorological elements were also used as an alternative predictor for wildfire. Each sub-

region is located in different climatic zones and covered by different vegetation types. 

Therefore, the hydro-meteorological elements that dominate the wildfire bivariate 

characteristics varied by sub-regions. In particular, in ALA, the relationship between the 

wildfire priority index with temperature (TEM), TEM + PRE, and TEM + SSM showed the 

strongest correlation, all above 0.8. Combinations with correlation coefficients greater than 0.8 

for the first three dominant variables also included NEB and SAF. Especially in SAF, the 

correlation coefficient between SSM and the wildfire priority index was as high as 0.94. In 

addition, the correlation coefficients of the first three dominant hydro-meteorological elements 

of SAS and MED were all higher than 0.7. And SSM and SSM-based joint probability 

significantly affected the wildfire characteristics of these two sub-regions. In the SEA, CGI, 

CAM, and NAS sub-regions, the correlation coefficients of the first three dominant elements 

can only reach above 0.6. Also, the most significant elements affecting these four regions were 

SSM, TEM, SSM, and TEM, respectively. In TIB, NAU, SAU, WNA, SSA, SAH, WAF, EAF, 

WAS, and CAS, the correlation coefficients of the first three leading factors varied widely, 

ranging from 0.40 to 0.87. And the dominant combinations were TEM-TIB, PRE+SSM-SAU, 

TEM-WNA, SSM-SSA, PRE-SAH, TEM+PRE-WAF, TEM+PRE-EAF, TEM-WAS, and 

TEM-CAS. However, the relationship between hydro-meteorological elements and wildfire 

characteristics was insignificant in the NEU, CNA, WSA, CEU, and EAS sub-regions. 

Especially in EAS, the highest correlation coefficient was only 0.20.  
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Figure 7.3 Chord diagram for the correlation coefficient between the hydro-meteorological elements and wildfire priority index. This figure 
mainly shows the comparison between the correlation coefficients in the same region. The thicker line means the stronger correlation. The 

correlation coefficient values of the top three hydro-meteorological elements that dominate each region are also marked in the figure. 

 

(7) (8) (9)
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After quantifying the relationship between the hydro-meteorological elements and the 

wildfire priority index in each sub-region, this chapter selected the first three dominant hydro-

meteorological elements as predictors to simulate the wildfire priority index based on Back 

Propagation Neural Network (BPNN). BPNN is one of the most widely used Artificial Neural 

Networks. The performance of the BPNN simulations for each sub-region is shown in Figure 

7.4. Even with only three predictors, the accuracy of the model achieved good performance. 

The R2 of the overall data in 16 sub-regions has reached over 0.80. The R2 of the test data of 

12 regions has also reached over 0.80. And all the data R2 in the five sub-regions of CAM, 

MED, NEB, WAF, and SAF even reached 0.90 or more. The model performed best in the SAF 

region, with R2 of 0.95 and 0.94 for all data and test data, respectively. However, the R2 of all 

data was only 0.41 in the CNA sub-region, and the simulation performance in this sub-region 

was poor. Similar poor model performance was also found in the ENA region, with 0.50 R2 of 

all data. 

To further explore the reasons for the differences in simulation performance, Figure 7.5 

selects four representative regions: ALA with the 0.89 R2 of all data, NEU with the 0.66 R2 of 

all data, CNA with the worst simulation performance, and SAF with the best simulation 

performance. Firstly, the wildfire bivariate characteristics in this sub-region showed significant 

cyclicality for the SAF sub-region. Secondly, the correlation between meteorological elements 

and wildfire characteristics was very strong. The correlation coefficients for the three predictors 

were above 0.85, with 0.94, 0.93, and 0.88, respectively. Similarly, the ALA sub-region also 

had similar characteristics with significant cyclicality and high correlation coefficients. The 

cyclicality was weaker for the wildfire bivariate time series in the NEU and CNA sub-regions. 

The highest correlation coefficient in NEU was only 0.41, while the highest value in the CNA 

was only 0.26. The weak correlation between hydro-meteorological elements and the wildfire 

priority index led to the low accuracy of BPNN model simulations. However, it could be seen 

from the NEU and CNA sub-regions that even though there was a lack of ability to simulate 

specific wildfire priority index values in these sub-regions accurately, the trends in the 

simulated time series were largely consistent with the observed time series. The three predictors 
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selected in this chapter to simulate the wildfire bivariate characteristics still achieved some 

breakthroughs. The BPNN model achieved good results in most areas regarding accuracy 

values and time series trends. Even in some areas where accuracy was lacking, a good ability 

to follow time series could also guide wildfire prevention and management. 

 

Figure 7.4 The performance of wildfire priority index based on BPNN simulation in different 
sub-regions. 
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Figure 7.5 Observed and simulated time series for four representative sub-regions. And the correlation coefficient plots in these four sub-regions. 
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7.3 Discussion 

This study called for attention to the wildfire bivariate characteristics simulation and 

proposed a wildfire simulation framework based on the hydrometeorology-wildfire 

relationship. In particular, this study first analyzed the wildfire characteristics from 2001~2019 

of 27 sub-regions worldwide. Then, the relationship between hydro-meteorological elements 

and wildfire bivariate characteristics (described by the wildfire priority index proposed in 

chapter 5) in different sub-regions was quantified by Pearson correlation coefficients. Finally, 

the first three dominant hydro-meteorological elements in each sub-region were selected as 

predictors, and the BPNN model simulated the wildfire bivariate characteristics. 

However, for the modeling of wildfire bivariate characteristics in this Chapter, only 

historical hydro-meteorological data was used for wildfire simulation without further 

predicting future wildfire bivariate characteristics under the current climate change. In future 

work, inputting hydro-meteorological data is an important direction to carry out the long-term 

prediction and trend analysis of wildfire bivariate characteristics. 

7.4 Summary 

Based on the results, the major conclusions are as follows: 

(1) Among the 27 sub-regions, the largest burned area and the most frequent wildfire 

activities were consistent only in the five sub-regions. In the SEA, NAU, SAU, SAS, CNA, 

AMZ, NEB, SAH, WAF, and SAF, wildfire characteristics in these regions tended to become 

larger. In contrast, wildfires became more frequent in the sub-regions of ALA, NEU, WNA, 

ENA, WSA, SSA, NAS, MED, EAF, CAS, and EAS. Also, the month with the most frequent 

wildfire activity occurred in SAF, while WAF had the highest median of wildfire activity and 

burned area worldwide. 

(2) In the wildfire bivariate characteristics simulation results of the BPNN model, there 

were five sub-regions where the model achieved high simulation accuracy, with the R2 reaching 

more than 0.90. In addition, eleven sub-regions also achieved good simulation results, and their 
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R2 was between 0.8 and 0.9. Only two sub-regions had poor simulation accuracy with R2 below 

0.5. 

(3) On the one hand, when the observed time series had significant periodicity and a high 

correlation occurred between the hydro-meteorological elements and wildfire bivariate 

characteristics, the model accuracy of BPNN would be very high. For example, the R2 in the 

ALA and SAF sub-regions were as high as 0.89 and 0.95, respectively. On the other hand, when 

the correlation between hydrometeorology and wildfire was weak, BPNN was insufficient to 

simulate time series accurately. Still, its ability to follow the original observation time series 

was not inferior 

Overall, the framework of wildfire bivariate characteristic simulation proposed in this 

study can provide a reference for future wildfire management and wildfire prevention in 

various global sub-regions. 
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Chapter 8 Conclusions and Recommendations 

8.1 Conclusions 

This research attempted to analyze how atmospheric-oceanic indices and hydro-

meteorological elements affected the spatiotemporal distribution characteristics of wildfires. 

On the one hand, first illustrated by the example of Japan, the teleconnections between 

atmospheric-oceanic indices and the drought (soil moisture) homogeneous zones were 

identified, and the wildfire statistics were compared with the drought (soil moisture) 

homogeneous zones. Then, looking at the global, the teleconnections between atmospheric-

oceanic indices and the global wildfire (burned area) homogeneous zones were discussed. On 

the other hand, illustrated by the example of the continental United States, a probability-based 

index was developed to evaluate the bivariate characteristics s of wildfire comprehensively. On 

this basis, the control effects of hydro-meteorological elements on different types of wildfires 

were quantified. Finally, the dominant hydro-meteorological elements for each wildfire type 

were identified in different global climate reference regions. In particular, the conclusions are 

generalized as follows: 

(1) Among these nine zones, zone 1 was dominated by extreme drought events. Zones 2 

and 6 were typical representatives of spring droughts, whereas zone 7 was wet for most of the 

period. The Hokkaido region was divided into wetter zone 4 and drier zone 9. The topography 

distinguished zones-3, -5, and -8. The analyses also reveal almost all nine zones had a high 

level of homogeneity, with more than 60% explained variance. Also, these nine zones were 

dominated by different large-scale climate signals: the Arctic Oscillation had the strongest 

impact on zones 1, 7, and 8; the influence of the North Atlantic Oscillation on zones 3, 4, and 

6 was significant; zones 2 and 9 were both dominated by the Pacific decadal oscillation; El 

Ni˜no–Southern Oscillation dominated zone 5. The results will be valuable for drought 

management and drought prevention. 

(2) The most significant atmospheric-oceanic indices that strongly impacted each of the 

eight major wildfire patterns (the explained variance accounted for 30%) were identified. The 
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most significant combinations of hotspots and atmospheric-oceanic indices were the Atlantic 

multidecadal Oscillation-East Pacific/North Pacific Oscillation (EP/NP)-Pacific North 

American Pattern (PNA) with the pattern around Ukraine and Kazakhstan, El Niño/Southern 

Oscillation-Arctic Oscillation (AO)-East Atlantic/Western Russia Pattern (EA/WR) with the 

pattern in Australia, and PNA-AO-Polar/Eurasia Pattern-EA/WR with the pattern in Brazil. 

Overall, these results provided a reference for predicting wildfire and understanding wildfire 

homogeneity. Overall, this study established the teleconnection between atmospheric-oceanic 

indices and burned area patterns for the first time and explored the physical mechanism behind 

their teleconnection from a global perspective.  

(3) The regional difference in the optimal marginal distribution of the burned area was 

more significant than the wildfire activity. The Weibull (WEI) distribution remained applicable 

to these two variables in most grid cells. Compared to the direct joint probability, the 

probability of WP was more sensitive in capturing extreme wildfire events. Also, the wildfire 

risk exhibited an increasing trend in California, Texas, Kentucky, and Arkansas, while most 

southeastern United States exhibited decreasing wildfire risk trends. Overall, this analysis can 

provide a reference to understand the spatiotemporal characteristics of wildfire statistics better 

and contribute to wildfire management. 

(4) Through the probability of wildfire bivariate statistical characteristics, wildfires could 

be classified into five types in this paper: WT-1 (mega-wildfire), WT-2 (joint wildfire-1 (burned 

area dominated)), WT-3 (joint extremes), WT-4 (joint wildfire-2 (fire activity dominated)), and 

WT-5 (super frequent wildfires). The dominant hydro-meteorological elements under different 

wildfire types were discussed in 17 ecoregions of the United States. Also, in the four new 

cluster regions, intensifying droughts were a concern in clusters 1 and 4, while there were 

multiple concerns in cluster 3, namely, stronger winds, higher temperatures, and more drought. 

Overall, the hydrometeorology-wildfire relationship analysis based on the wildfire bivariate 

probabilistic framework proposed in this study provides new information on the causes of 

wildfires and other compound hazards. 

(5) A global wildfire simulation framework was proposed based on the 
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hydrometeorology-wildfire relationship. Among the 27 sub-regions around the world, when 

the observed time series has significant periodicity and the hydro-meteorological elements and 

wildfire bivariate characteristics were significantly correlated, the model accuracy of BPNN 

would be very high. For example, the R2 in the ALA and SAF sub-regions were as high as 0.89 

and 0.95, respectively. On the other hand, when the correlation between hydrometeorology and 

wildfire was weak, BPNN was insufficient to simulate time series accurately. Still, its ability 

to follow the original observation time series was not inferior. Overall, the framework of 

wildfire bivariate characteristic simulation proposed in this study can provide a reference for 

future wildfire management and wildfire prevention in various global sub-regions.  

8.2 Recommendations for future studies 

Although this study has analyzed and discussed the effects of atmospheric-oceanic indices 

and hydro-meteorological elements on wildfire as fully as possible, there are still some 

limitations in this study. The following are specific limitations in this study and 

recommendations for future studies: 

(1) For studies about return periods, only long data periods can ensure greater results 

robustness. However, the discussion on the wildfire return period in this dissertation is limited 

by the period length of the wildfire data, which is difficult to overcome. Therefore, in future 

research, the period can be increased through the reconstruction of ancient wildfires or wildfire 

simulation in future scenarios to further improve the robustness of the return period results. 

(2) As the teleconnections between atmospheric-oceanic indices and the global wildfire 

(burned area) homogeneous zones, the limitations include the lack of validation of the physical 

mechanism between wildfires and atmospheric-oceanic indices. Furthermore, some regions 

were ignored in our identified global wildfire patterns. Although some studies described how 

atmospheric-oceanic indices affect wildfires in specific regions, due to the limited hotspots of 

global wildfire patterns, it is not easy to compare with some climate-wildfire relationships, 

such as ENSO-wildfire dynamics in Insular Southeast Asia (Murphy, 2006), AO-wildfire in 

Central Siberia (Balzter et al., 2005) and AMO+ENSO+PDO-wildfire in Colorado 

(Schoennagel et al., 2007). On the other hand, the advantage of teleconnection between global 
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wildfire patterns and atmospheric-oceanic indices lies in direct finding the widespread climatic 

influence from a global perspective, that is, the discovery of global wildfire homogeneity under 

the influence of the same atmospheric-oceanic indices. Therefore, how to further balance 

regional phenomena and global relevance should be addressed in future studies. 

(3) There remain a few limitations in describing the bivariate characteristics of wildfire. 

Wildfire statistics do not yield long-term continuous time series similar to other traditional 

hydro-meteorological data. It is also common that no wildfire occurs for several months in a 

high-rainfall year. Even though grid cells with fewer than 100 valid data points were removed 

in this study, the data length remains an unavoidable source of uncertainty in frequency analysis. 

The generation of longer data series or reconstruction of wildfire events through paleoclimate 

research can provide more reliable data for wildfire frequency analysis. 

(4) Neither the analysis of the impact of atmospheric-oceanic indices on wildfire nor the 

impact of hydro-meteorological elements on wildfire has considered human influences, such 

as wildfire management, wildfire suppression, wildfire prevention, and fuel treatments. 

Considering human influences on wildfire will be critical in future research. In wildfire 

forecasting, atmospheric-oceanic indices and hydro-meteorological elements and indicators 

such as GDP and population density need to be considered as predictor variables. 

(5) The analysis in this dissertation is only aimed at wildfire statistics on a monthly scale. 

While the results are useful for analyzing wildfire trends and characteristics over the long-term 

time scales, they cannot achieve the forecasting and early warning of wildfire occurrence in the 

short-term time scales (hourly scale, daily scale, and weekly scale). However, the fine-scale 

physical process-based wildfire model has the characteristics of a too large amount of 

computation and is too complicated for long-term wildfire trend forecasting. Therefore, the 

future research direction is to couple the control effects of atmospheric-oceanic indices and 

hydro-meteorological elements on wildfire quantified in this dissertation with the fine-scale 

physical process-based wildfire model to achieve the purpose of variable-scale wildfire 

forecasting and early warning. 

(6) For the modeling of wildfire bivariate characteristics in this dissertation, only historical 
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hydro-meteorological data was used for wildfire simulation without further predicting future 

wildfire bivariate characteristics under the current climate change. In future work, inputting 

hydro-meteorological data is an important direction to carry out the long-term prediction and 

trend analysis of wildfire bivariate characteristics. And by predicting future wildfires, the 

response of wildfires to climate change can be further discussed. 
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