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Abstract

In this thesis, we examine the tailed model of quantum walks. Unlike the usual quantum walks, the
tailed model guarantees the convergence of the state of the walker to a stationary state. The purpose
of this study is to study how we can utilize this converging property of our model in various ways.
We consider two types of quantum dynamics, the Szegedy dynamics and a Grover-like dynamics. We
obtain the scattering of the walk for these two dynamics in the long run, and based on the scattering
matrix in the latter case, we obtain a characterization of bipartite graphs. Moreover, we show that, in
the Szegedy walk case, the stationary state expresses an electric current function which satisfies the
Kirchhoff current and voltage laws, and in the Grover-like dynamics, if the underlying graph is (non-
)bipartite, the stationary state expresses a (pseudo-)current function which satisfies (pseudo-)Kirchhoff
laws. Furthermore, in the Grover-like case, we introduce a quantum analogy of the electrical energy,
called ‘comfortability’ and we show that the comfortability of the underlying graph can be expressed
in terms of the combinatorial properties of the graph. Finally, we discuss a quantum search algorithm
on complete graphs, which gives two types of finding probabilities, a maximum probability which is
similar to the usual quantum search algorithms and a converging finding probability which arises from
the converging property in our model.
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Chapter 1

Introduction

1.1 Discrete time quantum walks

Discrete time quantum walks are studied in different aspects, many interesting behaviours and results
of them are derived. Compared to the random walks, quantum walks achieve a quantum speedup
in algorithms, such as the quantum walk based search algorithm. Other than the search algorithms,
quantum walks are useful in many aspects in computing, such as graph characterizations, graph
isomorphism problem, triangle problem and element distinction problem[18, 21, 25].

As discrete-time quantum walks on graphs are being studied, many interesting behaviors of quan-
tum walks, which cannot be observed in the classical random walk setting, have become apparent:
the accomplishment of quantum speed up in quantum algorithm, linear spreading, localization, peri-
odicity, pseudo-perfect state transfer and so on (see [16, 18, 21] and references therein). Among them
it is revealed that behaviors of quantum walks are closely related to geometric features of graphs;
for example, cycle geometry of graphs gives the localization [11, 13], a three-edge-coloring induces an
eigenfunction of some quantum walks [19], and the rotation systems and 1-factorizations of graphs
are reflected on the mixing time of quantum walks [9]. In this paper, we observe what property of
graphs are extracted from the structure of the stationary state of quantum walks. The stationary
state, which is a kind of the long time behavior of quantum walk, has been discussed in [7, 8, 14].
The stationary state of the walk produces some interesting results, which don’t appear in the usual
quantum walks, such as the global scattering of the walk and the induced current function [14]. In
this thesis, we emphasise the fact that, the state of the quantum walk model we introduce in the next
paragraph converges to a stationary state and for the rest of the thesis, we work on several problems
on how to utilize the stationary state of the walker in various aspects?

Let us explain our setting and motivation to focus on stationary states. For a connected and locally
finite graph G = (V,E), which may be infinite, let us define the set of symmetric arcs A induced by
E as follows: for any undirected edge e ∈ E with end vertices u, v ∈ V , the induced arcs are a and a,
which are arcs from u to v and v to u along the edge e ∈ E, respectively. The terminus and origin
vertices of a ∈ A are denoted by t(a), o(a) ∈ V , respectively. The total space of quantum walk treated
here is denoted by CA, which is the vector space of complex-valued functions on A. Let δa(·) be the
delta function such that

δa(a′) =
{

1 if a = a′,

0 otherwise.

The time evolution operator of a quantum walk U : CA → CA is defined by

U = SC.

Here Sδa = δa and C = ⊕
v∈V Cv, where Cv is a local coin operator assigned at vertex v which is a

deg(v)-dimensional unitary matrix on span {δa : t(a) = v}. Note that the time evolution operator U
is unitary in the sense that UU∗ = I. Let ψn be the n-th iteration of U with the initial state ψ0; that
is, ψn+1 = Uψn. We call for any a ∈ A, ψ∞(a) := limn→∞ ψn(a), if it exists, the stationary state.
Another type of stationarity of quantum walks, the stationary measure, is discussed in [17], whose form
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is as follows: Φ(ψn+1)(u) = ∑
t(a)=u |ψn+1(a)|2 = ∑

t(a)=u |ψn(a)|2 for any time step n = 0, 1, 2, . . .
and vertex u ∈ V .

We are interested in how the state converges to the stationary state as a fixed point of a dynamical
system. In general, the state of the walker in a quantum walk on a finite graph does not necessarily
converge because the time evolution operator is unitary and hence the absolute values of the eigenvalues
of the operator are equal to 1. When semi-infinite length paths are connected to a finite graph and
the l∞-initial state is set so that quantum walkers along the tails come into the internal and quantum
walkers go out from that at every time step, the convergence of states are shown in [7, 8, 14]. In
this setup, the state space of the walk is described by l∞-space. This quantum walk always converges
to a stationary state independent of the choice of the vertices of the internal graph, to which the
semi-infinite length paths are connected. In [14], the Grover walk is studied, in which the local coin
operators are described by the Grover operator.

Definition 1.1 (Grover operator). The Grover operator Gr(r) is an r × r matrix defined by

(Gr(r))a,b = 2
r

− δa,b.

Let Ã be the set of arcs in the graph obtained by connecting tails and ψt be the state of the walker
at time step t. Then the following theorem holds.

Theorem 1.2 (See [14]). In the above setting, if unitary operator U is described by the Grover operator
at each vertex, that is Cv = Gr(deg(v)), and the initial state is chosen so that the probability amplitudes
on the arcs of the j-th tail which are coming towards the internal graph are αj and 0 elsewhere, then

ψ∞ := lim
t→∞

ψt

exists. Here the limit denotes the point-wise convergence.

This theorem obtained in [14] is remarkably useful and opens a path to obtain many interesting
results. For example, noting that, the stationary state is a fixed point to the unitary operator, we can
obtain the scattering matrix of the walk.

Definition 1.3 (Scattering Matrix). Let Ain = {a1, · · · , ar} be the set of arcs on the tails where t(aj)
are in the internal graph and Aout = {a : a ∈ Ain}. Let α = [α1, · · · , αr]⊤ and β = [β1, · · · , βr]⊤
where αj = ψ∞(aj) and βj = ψ∞(aj). Then the scattering matrix σ is an r× r matrix which satisfies

β = σα

for any choice of α.

In the case of Grover walks, the following theorem for the scattering matrix is known.

Theorem 1.4. Let Ain, Aout,α and β be defined as in definition 1.3 and the unitary operator is
described by the Grover operator. Then the scattering matrix σ which satisfies the equation β = σα
is given by

σ = Gr(r)

It can be noted that the scattering matrix in the above case does not contain any information
about the internal graph. In a similar way, we study the quantum walk for the case when the time
evolution operator is described by the Szegedy matrix and we obtain the scattering matrix in chapter
2.

Definition 1.5 (Szegedy matrix). For a unit vector v ∈ Cr the Szegedy matrix with respect to v is
defined by

Sz(v) = 2vv∗ − I.

Here, I is the identity matrix.
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In the next chapter, we define the Szegedy matrix in terms of a given probability function p, and
we show that the stationary state ψ∞ exists. As in [14], we can get use of this stationary state to find
the scattering matrix in the long run.

As mentioned earlier, in [12, 14], the Grover walk whose quantum coins are expressed by the Grover
matrices {Gr(deg(u))}u∈V was applied with the constant inflow. Then the scattering on the surface
in the long time limit recovers the local scattering at each vertex; that is, the scattering matrix is
Gr(r), where r is the number of tails. This implies that we can obtain the global scattering by only
some information on the surface, the number of tails connected to the internal graph G0, whereas
this also implies that we cannot obtain any information on the structure of the internal graph G0.
To investigate how the geometrical structure of the internal graph affects the behavior of quantum
walkers in terms of their stationary states, we must change something in our setting; for example,
we replace a constant flow with some oscillated one. In chapter 3, we show that this change in the
input is equivalent to a change in the dynamics, which is called a Grover-like dynamics in this thesis,
and the quantum walk model with this new dynamics is called the defective model. We note that the
defective model is a special case of the model studied in [14], and hence some information on our new
quantum walk model is readily available, for example, the existence of the stationary state ψ∞. As
our interest revolves around the uses of the stationary state, we compute the scattering matrix of our
walk in the long run, and surprisingly, our expected goal of obtaining information about the structure
of the internal graph is achieved. Let us present the corresponding theorem as follows, leaving the
detailed proof of the theorem to Chapter 3.

Theorem 1.6. Let α and β represent the inflow and outflow of the stationary state on the surface.
Then we have

β = σα,

where the scattering matrix σ is unitary and described by

σ =
{
I : G0 is non-bipartite,
τ : G0 is bipartite.

Here τ is described as follows:

τ = −
[
Ik 0
0 −Ir−k

]
Gr(r)

[
Ik 0
0 −Ir−k

]
,

where k and r − k are the numbers of tails connected to each partite set in the internal graph G0.

From this theorem, if the interior is non-bipartite, the scattering is the perfect reflection, while
if the interior is bipartite, the scattering is described by the Grover matrix. We remark that this
theorem gives a characterization of bipartite graphs, and the rest of the chapter 3 flows based on this
characterization.

Another remark we make on this theorem is that it can be used to characterize the disconnected
graphs in some special situations. For example, if the scattering matrix is in the form of a block
diagonal matrix

σ =



σ1 0 · · · 0
0 σ2 · · · 0
.
.
.
0 · · · 0 σs


,

where at least one of σj is of the form τ then the underlying graph is disconnected. In particular, if
all of them are of the form τ then the underlying graph is disconnected with s number of components.
On the other hand, If σ = I then the above theorem does not provide any information about the
connectedness of the graph.

Now let us explain some background on the scattering we study here. In [20], a discrete-time
quantum walk model on Z is studied and it is observed that this model behaves like a quantum tunnel

4



with a tunneling effect: i.e. the quantum mechanical phenomenon where the particles succeed in
passing through a potential barrier. This paper discussed the conditions when a perfect transmission
occurs through a double-well. This double-well is replaced by a finite graph in [14] and the model now
becomes a quantum walk on a finite graph with two infinite tails where in the stationary state, the
perfect transmission occurs. Furthermore, the model is generalized by adding an arbitrary number of
tails and hence, the perfect transmission changes into a scattering in the stationary state.

Another interesting result obtained in [14] is a type of a current function obtained in terms of the
stationary state. In literature, for example in [3, 4, 2, 22], the algebraic models of electric networks are
well studied. These electrical networks can be formulated using the incidence and Laplacian matrices
of the underlying graphs.

1.2 Electrical networks

Let G be the underlying graph of an electric circuit with vertex set V = {v1, ..., vn} and edge set
E = {e1, ..., em} where the edges are labelled so that e1, ..., en−1 are the edges of a given spanning tree
T of G. For each edge e = {u, v}, choose one of the vertices u, v to be the positive end of e and the
other vertex to be the negative end. Then we say that the graph is given an orientation. For a given
orientation, the incidence matrix D = (di,j) is defined by

di,j =


1 if vi is the positive end of ej ,

−1 if vi is the negative end of ej ,

0 otherwise.

The incidence matrix D of G defined above can be partitioned as follows.

D =
[
DT DN

dn

]

where DT is an (n − 1) × (n − 1) matrix and dn is a row matrix which is linearly dependent on the
other rows. By [3, Proposition 5.4] it follows that DT is invertible. Let CT = −D−1

T DN . Define the
matrix C by

C =
[

CT

Im−n+1

]
Now consider the case when each edge ei in the graph has conductanceMi. LetM := diag(M1, · · · ,Mm),
a diagonal matrix whose diagonal elements are the corresponding conductances, then the current vec-
tor w, voltage vector z and the vector of externally applied voltages α defined on E which are related by
the equation z = Mw+α satisfy the following laws of electric circuits which are called the Kirchhoff’s
laws.

1. Kirchhoff’s Current Law (KCL):
Dw = 0

2. Kirchhoff’s Voltage Law (KVL):
C⊤z = 0

In other words, KCL is the rule which says that for every vertex u in the underlying graph G, the
total current entering u is equal to the total current leaving u, and KVL is the rule which says that
for any cycle in the underlying graph G, the total current along the cycle is 0. Here, C is constructed
so that the columns of C corresponds to the vectors in the cycle subspace of the graph [3].

For simplicity, let us assume that each edge has conductance 1. By [3, Additional results 4a], there
exists a potential function ϕ defined on V such that z = D⊤ϕ. Then the equation z = w+α becomes
D⊤ϕ = w + α which implies

Lϕ = η,
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where L := DD⊤ is the Laplacian matrix of G and η := Dα is the vector whose entry labeled by v,
ηv is the current flowing into the network at the vertex v. This is called the Laplacian formulation of
network equations[3].

Now let us turn back to the quantum walk model with tails. As mentioned earlier, the stationary
state ψ∞ exists, and define a function j(·) as follows.

j(a) := ψ∞(a) − 1
r

r∑
k=1

αk

Then the following theorem holds.

Theorem 1.7 (See [14]). If j(·) is defined as above, then j(·) expresses a current flow.

In other words, the function j(·) satisfies the following Kirchhoff’s laws

1. Kirchhoff’s Current Law:∑
b∈Ã:t(b)=u

j(b) = 0; j(a) + j(a) = 0, (u ∈ Ṽ , a ∈ Ã).

2. Kirchhoff’s Voltage Law:
For any cycle c = (a1, ..., as) with t(a1) = o(a2), ..., t(as−1) = o(as), t(as) = o(a1) in G0, it holds

s∑
k=1

j(ak) = 0.

In this thesis, we first study in chapter 2, a current function which arises from the stationary state
in the case of the Szegedy walk. We obtain a current function j(·) in terms of the stationary state and
show that it satisfies the Kirchhoff’s current and voltage laws. In chapter 3, we study the Grover walk
and we focus on the simplest oscillation of inflow with alternating signs which is a coarse graining
of alternating current input. This setup gives a characterization of bipartite graphs and based on
this characterizattion, we define a current and a pseudo-current function which satisfy the Kirchhoff
and a kind of a psudo-Kirchhoff laws respectively. Moreover, we express these results in terms of the
Laplacian and signless-Laplacian matrices of the underlying graphs respectively.

As mentioned earlier, the scattering matrix gives an information about the surface or the boundary
of the graph. Next it is natural to ask what happens to the interior. To answer this question, we
introduce the idea of comfortability. The comfortability is a function of the interior, and gives how
quantum walkers accumulate in the internal graph in the long time limit, which is the energy stored
the interior. The detailed definition of the comfortability EQW (G0) is described in Definition 3.3. We
obtain that when only two tails are connected, the comfortability of the graph can be expressed in
terms of the geometric information of the graph as follows.

Theorem 1.8. Assume the number of tails is 2, and the inflow α = (α1, α2)⊤ = (1, 0)⊤. Then the
comfortability εQW (G0) of the quantum walk is given by

εQW (G0) =



1
4

(
χ2(G0)
χ1(G0) + |E0|

)
: G0 is bipartite,

ι2(G0)
ι1(G0) : G0 is non-bipartite.

Here |E0| is the number of edges of G0, χ1(G0) is the tree number of G0, that is the number of the
spanning trees of G0 and χ2(G0) is the number of the spanning forests of G0 with two components in
which one contains u1 and the other contains un. Here u1 and un are the vertices in G0 where the
tails with the inflows α1 and α2 are connected respectively. The geometric quantities of ι1(G0) and
ι2(G0) are defined in Section 3.
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We illustrate the ranking of the comfortability among all of the graphs with four vertices in
Section 3.6. To show the above theorem, we first define a (pseudo-)current function [12, 14] on a (non-
)bipartite graph and we show that these functions satisfy the (pseudo-)Kirchhoff laws in Theorems 3.6
and 3.7, respectively. Secondly, we obtain a potential function with respect to these (pseudo-)current
functions, in terms of (signless-)Laplacian matrix in [3, 4] and Theorem 3.9, respectively. Thirdly, using
these expressions of the potential functions, we obtain expressions for the comfortability in terms of the
(non-)oriented incident matrix and the (signless-)Laplacian matrix, when the graph is (non-)bipartite
in Propositions 3.12 and 3.13. Finally, using the speciality of the setting, we obtain the expression of
the comfortability using the graph factors induced quantum walks defined by Definition 3.10.

A similar notion of extracting the combinatorial information of the underlying graph in an electric
network can be found in literature, for example in [2]. For an electric network on the underlying graph
G0 with the given inductance, resistance and capacitance on each edge, the Laplace transformed
network equations are used to find the resultant impedance between the input and the output vertices
u1 and un in terms of the combinatorial properties of G0. For example, the impedance of an electric
network between the vertices u1 and un can be found using the following theorem. Here we assume
that the resistance on each edge is 1 for simplicity.

Theorem 1.9. (See [2, Section 3.8]) The impedance Z of the electric circuit is given by

Z = χ2(G0)
χ1(G0)

where χ1(G0) is the tree number of G0, that is the number of the spanning trees of G0 and χ2(G0) is
the number of the spanning forests of G0 with two components in which one contains u1 and the other
contains un.

1.3 Quantum search algorithms

Quantum walk based search algorithm is a popular area of study in quantum walks. For a given graph
G, the problem is to search a specific set of vertices of G. For simplicity, let the size of this set be 1,
that is the problem is to search a given vertex u∗ of G, where the number of vertices of G is N . In the
classical case, the run-time of the search algorithms are of the order O(N). With the quantum walk
based search algorithms, the vertex u∗ can be searched in the run-time of the order O(

√
N), that is,

the quantum walk based search algorithm gives a quadratic speed up.
Let us explain the search algorithm based on the Grover operator, which is related to chapter 4 in

this thesis. Let G be a graph with the set of vertices V , the set of edges E and the set of arcs induced
by E is A. Let M be the set of marked vertices, which are to be searched. Define the coin operator
C = ⊕

v∈V Cv as follows.

Cv =


−Gv if v ∈ M

Gv if v ∈ V \M

where Gv is the Grover operator on the vertex v. In particular, let M = {u∗}, then the time evolution
operator U ′ can be written as

U ′ = UR

where U is the time evolution operator described by the Grover operator defined at each vertex of G
and R is the operator given as follows.

R = I − 2
∑

a:t(a)=u∗

|a⟩ ⟨a| .

By choosing the initial state as
Ψ0 = 1√

|A|
∑
a∈A

|a⟩ ,
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the time evolution operator U ′ is applied t times to obtain the state Ψt of the walker at the time step
t. The finding probability of u∗ at time step t is given by

pt(u∗) =
∑

a:t(a)=u∗

|Ψt(a)|2.

The problem is to find the optimal time topt such that the finding probability ptopt(u∗) is maximum,
which is called the success probability denoted by psucc.

It is known (by [21]) that applying the search algorithm to the complete graph with N number of
vertices, choosing the optimal time topt to be

t = ⌊π4
√
N⌋

and measuring the state of the walker, the marked vertex u∗ can be searched with a success probability
psucc given by

psucc = 1 +O( 1
N

).

Moreover in [23], it is proved that if the above time evolution operator U ′ is applied to the above initial
state Ψ0 on a hypercube with N = 2n number of vertices, the optimal run-time of the algorithm to
search the marked vertex u∗ is given by

topt = ⌊π2
√
N⌋

and the success probability is given by

psucc = 1
2 +O( 1

n
).

Furthermore, it is known by [24] that the quantum search algorithm on a Johnson graph J(n, k) has
a success probability

psucc = 1
2 +O( 1√

n
)

at the optimal run-time
topt ≈ π

2
√

2
√
N.

These results show that the quantum search algorithm on above graphs has a quadratic speed-up
and the optimal run-time is of the order O(

√
N). Similar to these results, we study in chapter 4,

the quantum search of a given vertex in a complete graph with N vertices, where infinite tails are
connected to the graph. As our intuition suggests, we show that the optimal run-time of the algorithm
is of the order topt = O(

√
N) and the success probability satisfying psucc >

1
2.

In addition to that, since the state of the walker converges in our model, it is natural to arise the
question ”What would it be the finding probability in the long run?” To answer this question, we study
the limit of the finding probability in the long run. In chapter 4, we show that

lim
t→∞

pt(u∗) = 1
2 .

Moreover, by obtaining ∥Ψ∞ − Ψt∥, we show that the finding probability pt becomes arbitrary close
to 1

2 while the run-time of the algorithm is set to the order O(N logN). This result implies that the
tailed model we define gives two types of finding probabilities, a maximum finding probability at the
run-time of the order O(

√
N) and a finding probability in the stationary state, which is at a run-time

O(N logN).
With the use of these notion, we arrange the rest of the thesis as follows. In chapter 2, we study

the Szegedy walk on the tailed model. We obtain the scattering matrix in the long run, and in the
stationary state, we derive an electric current function which satisfies the Kirchhoff’s current and
voltage laws.
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In chapter 3, we study a Grover-like dynamics on the tailed model. First we show that in our
setting, we can obtain a characterization of bipartite graphs by finding the scattering matrix and the
rest of the chapter is based on this characterization. In the stationary state, we derive a current
function and a pseudo-current function in the case when the underlying graph is bipartite and non-
bipartite respectively, which satisfies the Kirchhoff’s laws and pseudo-Kirchhoff laws respectively.
Moreover, we formulate these network equations using the Laplacian and signless-Laplacian matrices
of the underlying graph respectively. Furthermore, we introduce the notion of comfortability, an
analogy of the electrical energy and using the properties of Laplacian and signless-Laplacian matrices,
we obtain the comfortability of the underlying graph in terms of the combinatorial properties of the
graph. In particular, if the underlying graph is bipartite, we show that the comfortability of the
underlying graph can be obtained in terms of the tree number and the number of spanning forests,
and if the underlying graph is non-bipartite, we show that the comfortability can be obtained in terms
of spanning unicyclic subgraphs.

Finally, in chapter 4, we study a quantum search algorithm on complete graphs. Here we show that
there are two types of finding probabilities, a maximum finding probability as in the usual quantum
walks at the run-time of the order O(

√
N) and a finding probability in the long run, which is at a

run-time O(N logN) which arises from the converging property in our tailed model.
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Chapter 2

Electric circuit induced by quantum
walks

2.1 Setting

In this section, we study the Szegedy walk in the tailed model. We show that the state of the walker
converges in the long run and in this converging state, we derive the scattering matrix of the walker.
Moreover, if the underlying random walk is reversible, then we define an electric current function,
which satisfies the Kirchhoff’s current and voltage laws.

Now let us explain the setting of the quantum walk. Let G0 = (V0, E0) be a finite connected
graph and A0 be the symmetric arc set induced by E0. We choose the boundary of G0, ∅ ≠ δV ⊂ V0
with δV = {v(0)

1 , ..., v
(0)
r }, where v(0)

i ̸= v
(0)
j if and only if i ̸= j. Let {Pj : j = 1, ..., r} be the set of

semi-infinite length paths called the tails whose end vertices are v(0)
j , connected to the finite graph G0

such that V (Pj) =
{
v

(0)
j ∼ v

(1)
j ∼ v

(2)
j ∼ ...

}
. Here u ∼ v means that the vertices u and v are adjacent.

We denote the constructed graph by G̃ = (Ṽ , Ẽ). We also denote the arc set induced by E0 and Ẽ
by A0 and Ã respectively. For any arc a = (u, v) ∈ Ã, we write a = (v, u), o(a) = u and t(a) = v.
Remark that o(a) = t(a) and t(a) = o(a).

Set p : Ã → (0, 1] such that ∑
o(a)=u

p(a) = 1, (u ∈ Ṽ );

p(a) = 1/2, (a ∈ ∪r
j=1A(Pj) \ δA).

Here δA := {a ∈ Ã : o(a) ∈ V0, t(a) ∈ Ṽ \ V0}. The total state space associated with the quantum
walk treated here is CÃ. We define the time evolution operator U on CÃ in the matrix form by

(UΨ)(a) =
∑

b∈Ã:t(b)=o(a)

(2
√
p(a)p(b) − δa,b)Ψ(b),

for any Ψ ∈ CÃ. Note that the walk becomes “free” on the tails; that is,

(U)a,b =
{

1 : o(a) = t(b), a ̸= b,
0 : otherwise

for any o(a) /∈ V0. Set the initial state of the walk as

Φ0(a) =


αj if o(a) = v

(s+1)
j , t(a) = v

(s)
j , s = 0, 1, 2, ..., j = 1, 2, ..., r,

0 otherwise.

10



Let χ : CÃ → CA0 be the boundary operator of A0, defined as for any Ψ ∈ CÃ, (χΨ)(a) = Ψ(a)
(a ∈ A0). The adjoint operator, χ∗ : CA0 → CÃ is described as follows. For any ψ ∈ CA0 ,

(χ∗ψ)(a) =


ψ(a) if a ∈ A0,

0 otherwise.

Remark that χχ∗ : CA0 → CA0 is the identity operator on CA0 and χ∗χ : CÃ → CÃ is the projection
operator on CÃ with respect to A0.

Now we restrict the walk on Ã to A0. Let E be the time evolution operator restricted to A0, that
is

E = χUχ∗.

We put
ψt := χΨt

is the restriction of the state on A0. Observe that we have the following.

ψt = χΨt

= χUΨt−1

= χUχ∗χΨt−1 + χU(1 − χ∗χ)Ψt−1

= Eψt−1 + χUΨ0.

Let ρ := χUΨ0 be the external source to the dynamics of the walk. Then we have

ψt = Eψt−1 + ρ.

By applying an argument to this recursion, similar to the argument in [14], the following theorem
holds.

Theorem 2.1. Let the quantum walk be defined as above. Then there exists Ψ∞ ∈ CÃ such that

Ψ∞ = lim
t→∞

Ψt.

2.2 Scattering matrix

The convergence of the state leads to the scattering matrix of the walker. To find the scattering matrix
in the long run, first we give the following lemma.

Lemma 2.2. For a given probability function p : Ã → (0, 1] and u ∈ Ṽ , 1
2
√
p(a)

(Ψ∞(a) + Ψ∞(a)) is

constant for all a ∈ Ã such that o(a) = u.

Proof. It follows from the dynamics of the walk that, in the stationary state, for any a ∈ Ã,

Ψ∞(a) =
∑

b∈Ã:t(b)=o(a)

2
√
p(a)p(b)Ψ∞(b) − Ψ∞(a).

It follows that,
1

2
√
p(a)

(Ψ∞(a) + Ψ∞(a)) =
∑

b∈Ã:t(b)=u

√
p(b)Ψ∞(b), o(a) = u.

Observe that for a given u ∈ Ṽ , the right hand side of the equation is a constant.

11



Let ρV (u) := ∑
b∈Ã:t(b)=u

√
p(b)Ψ∞(b), then we have

√
p(a)ρV (o(a)) = 1

2 (Ψ∞(a) + Ψ∞(a)) =
√
p(a)ρV (t(a))

and hence
p(a)ρ2

V (o(a)) = p(a)ρ2
V (t(a)).

By using the above lemma, we give the proof of the following theorem.

Theorem 2.3. Assume the underlying random walk is reversible; that is, there exists mV ∈ CṼ and
mE ∈ CẼ such that

mE(|a|) = p(a)mV (o(a)) = p(a)mV (t(a)) ̸= 0.

Here |a| denotes the edge containing the arc a. Let α := [α1, α2, ..., αr]T , β := [β1, β1, ..., βr]T ∈ Cr,
where αj = Ψ∞(a) with o(a) = v

(1)
j , t(a) = v

(0)
j and βj = Ψ∞(a) with o(a) = v

(0)
j , t(a) = v

(1)
j . Set a

unit vector on Cr by

mδE :=
[√

mE(|a1|)/m(G0), ...,
√
mE(|ar|)/m(G0)

]T

,

where m(G0) =
r∑

j=1
mE(|aj |) and aj ∈ Pj such that o(aj) = v

(1)
j , t(aj) = v

(0)
j . We define the Szegedy

matrix by, for a unit vector v ∈ Cr, Sz(v) = 2vv∗ − ICr . Then we have

β = Sz(mδE)α.

Remark. Here mV (u) = ρ2
V (u).

Proof. Let
ci := ρV (ui) =

∑
b∈Ã:t(b)=ui

√
p(b)Ψ∞(b), (2.1)

where ui = v
(0)
i . Now fix i, and consider the case when the initial state is set to αj = δi,j . Let Ψ(i)

∞
and βj,i be the stationary state and the transmitting value along Pj in the stationary state with this
initial state respectively. We put ψ(i)

∞ := χΨ(i)
∞ . By lemma 2.2, βj,i = 2cj

√
mE(|aj |) − δi,j . Let

Ain =
{
a ∈ Ã : o(a) ∈ Ṽ \ V0, t(a) ∈ V0

}
,

Aout =
{
a ∈ Ã : a ∈ Ain

}
.

Then by applying the time evolution operator once, we get

U (Ψ∞|Ain + Ψ∞|A0) = Ψ∞|Aout + Ψ∞|A0 .

This can be rewritten as
U(χ∗ψ(i)

∞ + |ai⟩) = χ∗ψ(i)
∞ + β(i),

where β(i) =
r∑

j=1
βj,i |aj⟩. Now we have the following.

⟨ψ(i′)
∞ , ψ(i)

∞ ⟩ + ⟨β(i′),β(i)⟩ = ⟨χ∗ψ(i′)
∞ + β(i′), χ∗ψ(i)

∞ + β(i)⟩

= ⟨χ∗ψ(i′)
∞ + |ai′⟩ , χ∗ψ(i)

∞ + |ai⟩⟩

= ⟨ψ(i′)
∞ , ψ(i)

∞ ⟩ + δi′,i

Thus we have
⟨β(i′),β(i)⟩ = δi′,i

12



which is equivalent to

ci = 0 or ci =
√
mE(|ai|)
m(δG0) .

Here m(δG0) :=
r∑

j=1
mE(|aj |). Now to obtain the desired result, we show that ci ̸= 0. To the contrary

let’s assume that ci = 0. Then by lemma 2.2 and equation 2.1, Ψ(i)
∞ (a) = −Ψ(i)

∞ (a) holds. Moreover,
it follows that ∑

a∈Ã:t(a)=u

√
mE(|a|)Ψ(i)

∞ (a) = 0

for any u ∈ Ṽ and hence ∑
a∈Ã:t(a)∈V0

√
mE(|a|)Ψ(i)

∞ (a) = 0.

Therefore it follows that ∑
a:a∈A0

√
mE(|a|)Ψ(i)

∞ (a) + 1 = 0.

Now by computing ∑
a:a∈A0

√
mE(|a|)Ψ(i)

∞ (a) in two ways, we have the following:

1 = −
∑

a:a∈A0

√
mE(|a|)Ψ(i)

∞ (a)

= −
∑

u∈V0

∑
a∈A0:t(a)=u

√
mE(|a|)Ψ(i)

∞ (a)

=
∑

u∈V0

∑
a∈A0:t(a)=u

√
mE(|a|)Ψ(i)

∞ (a)

=
∑

u∈V0

∑
a∈A0:t(a)=u

√
mE(|a|)Ψ(i)

∞ (a)

=
∑

a:a∈A0

√
mE(|a|)Ψ(i)

∞ (a)

= −1

which is a contradiction and hence
ci =

√
mE(|ai|)
m(δG0) .

Thus for any j = 1, · · · , r,
βj,i = 2

m(δG0)

√
mE(ei)mE(ej) − δi,j .

By the linearity of the time evolution, β(j) =
r∑

i=1
βj,iα(i) which proves the theorem.

Now let us consider the case when the underlying random walk is non-reversible. Since p(a)ρ2
V (o(a)) =

p(a)ρ2
V (t(a)) holds, ρV (u) must be 0 for all u ∈ Ṽ . This leads to the following theorem.

Theorem 2.4. Let α and β be the input and output vectors defined in theorem 2.3. If the underlying
random walk is non-reversible, then the following holds.

β = −α

Proof. Since the underlying random walk is non-reversible, ρV (u) = 0 for all u ∈ Ṽ which implies
Ψ∞(a) + Ψ∞(a) = 0 for all a ∈ Ã. In particular, Ψ∞(aj) = −Ψ∞(aj) for any j = 1, · · · , r which
implies

β = −α

13



Remark. We remark that if the random walk is non-reversible, then the following holds.∑
a∈Ã:t(a)=u

√
p(a)Ψ∞(a) = 0, (u ∈ Ṽ )

On the other hand, since the underlying random walk is non-reversible, p(a) = p(a) is not necessarily
true,

∑
a∈Ã:o(a)=u

√
p(a)Ψ∞(a) = 0, (u ∈ Ṽ ) is not necessarily true. Hence in the next section, we define

a current function, assuming that the underlying random walk is reversible.

2.3 Kirchhoff laws

In this section, we provide an electric current function which satisfies the Kirchhoff’s current and
voltage laws. In this section, we assume that the underlying random walk is reversible. Before stating
the main theorem in this section, we give the following lemma which will be useful in proving the next
theorem.

Lemma 2.5. For any cycle c = (a1, ..., ar), the induction function in CÃ is denoted by

wc(a) =



1√
mE(|ak|)

if a = ak,

− 1√
mE(|ak|)

if a = ak,

0 otherwise,

Then ⟨wc,Ψ∞⟩ = 0 holds.

Proof. It is easy to check that wc is an eigenvector of U with the eigenvalue 1, which has the support
in A0. By the proof of the convergence of Ψ∞, it follows that ⟨wc,Ψ∞⟩ = 0.

Now we have the following theorem.

Theorem 2.6. Let the underlying random walk is reversible. Define j(·) ∈ CÃ by

j(a) :=
√
mE(|a|)Ψ∞(a) − mE(|a|)√

m(G0)
⟨mδE ,α⟩.

Then j(·) describes the electric current flow of the following electric circuit: the conductances are
assigned at all the edges, and the conductance value at each edge e is given by mE(e).

Proof. To show that j(·) is an electric current, we show the following Kirchhoff’s laws.

1. Kirchhoff’s current law: ∑
t(a)=u

j(a) =
∑

o(a)=u

j(a) = 0; j(a) + j(a) = 0;

2. Kichhoff’s voltage law:
s∑

k=1

j(ak)
mE(|a|) = 0 for any cycle c = (a1, ..., as).

To show the Kirchhoff’s current law, we have

ρ̃V (u) = 1
mV (u)

∑
t(a)=u

√
mE(|a|)Ψ∞(a) = 1√

m(δG0)
⟨mδE , αin⟩,
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which implies ∑
t(a)=u

√
mE(|a|)Ψ∞(a) =

∑
t(a)=u

mE(|a|)√
m(δG0)

⟨mδE , αin⟩.

On the other hand, since ρE(|a|) =
√
mE(|a|)ρ̃V (o(a)), we have

ρE(|a|) = 1
2 (Ψ∞(a) + Ψ∞(a)) =

√
mE(|a|)√
m(δG0)

⟨mδE , αin⟩,

which implies √
mE(|a|) (Ψ∞(a) + Ψ∞(a)) = 2mE(|a|)√

m(δG0)
⟨mδE , αin⟩

this implies that ∑
t(a)=u

j(a) =
∑

o(a)=u

j(a) = 0; j(a) + j(a) = 0.

To show that j(·) satisfies the Kirchhoff’s voltage law, we use lemma 2.5. It holds that

⟨wc,Ψ∞⟩ = 0 ⇔
s∑

k=1

Ψ∞(ak) − Ψ∞(ak)√
mE(|ak|)

= 0

⇔
s∑

k=1

(
j(ak)

mE(|ak|) − j(ak)
mE(|ak|)

)
= 0

⇔
s∑

k=1

j(ak)
mE(|ak|) = 0

which concludes the proof.
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Chapter 3

A comfortable graph structure for
Grover walk

3.1 Setting

Let G0 = (V0, E0) be a finite connected graph and A0 be the symmetric arc set induced by E0. We
choose the boundary of G0, ∅ ≠ δV ⊂ V0 with δV = {v(0)

1 , ..., v
(0)
r }, where v(0)

i ̸= v
(0)
j if and only if

i ̸= j. Let {Pj : j = 1, ..., r} be the set of semi-infinite length paths called the tails whose end vertices
are v(0)

j , connected to the finite graph G0 such that V (Pj) =
{
v

(0)
j ∼ v

(1)
j ∼ v

(2)
j ∼ ...

}
. Here u ∼ v

means that the vertices u and v are adjacent. We denote the constructed graph by G̃ = (Ṽ , Ẽ). We
also denote the arc set induced by E0 and Ẽ by A0 and Ã respectively. For any arc a = (u, v) ∈ Ã,
we write a = (v, u), o(a) = u and t(a) = v. Remark that o(a) = t(a) and t(a) = o(a).

The total state space associated with the quantum walk treated here is CÃ. We define the time
evolution operator W on CÃ in the matrix form by

(W )a,b =


( 2

deg(o(a)) − δab

)
if o(a) = t(b),

0 otherwise,

which is so called the Grover walk. Note that the walk becomes “free” on the tails; that is,

(W )a,b =
{

1 : o(a) = t(b), a ̸= b,
0 : otherwise

for any o(a) /∈ V0. For simplicity, let us denote v(0)
j by uj . We set the l∞-initial state by using a

complex value z with |z| = 1:

Φ0(a) =


z−dist(uj ,t(a))αj if o(a) = vs+1

j , t(a) = vs
j , s = 0, 1, 2, ..., j = 1, 2, ..., r,

0 otherwise.

Then quantum walkers inflows into the internal graph G0 at every time step n from the tails. On the
other hand, a quantum walker outflows towards the tails from the internal graph.

Let Φn ∈ CÃ be the n-th iteration of the quantum walk such that Φn+1 = WΦn. Since the inflow
oscillates with respect to the time step, the total state does not converge in the long time limit. We
put Φ′

n := znΦn, which satisfies Φ′
n+1 = zWΦ′

n. The convergence of Φ′
n is ensured by [14] as follows.

Theorem 3.1 ([14]). Φ′
∞ := lim

n→∞
Φ′

n exists; that is, WΦ′
∞ = z−1Φ′

∞.

Let us focus on the dynamics restricted to the internal graph. To this end, we define the boundary
operator of A0, χ : CÃ → CA0 by,

(χf̃)(a) = f̃(a), a ∈ A0
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for any f̃ ∈ CÃ. The adjoint χ∗ : CA0 → CÃ is described by

(χ∗f)(a) =
{
f(a) if a ∈ A0,

0 otherwise

for any f ∈ CA0 . Remark that χχ∗ : CA0 → CA0 is the identity operator on CA0 and χ∗χ : CÃ → CÃ

is the projection operator on CÃ with respect to A0. Putting χΦ′
n =: ϕ′

n and χWχ∗ =: E, we have

ϕ′
n+1 = zEϕ′

n + ρ, ϕ′
0 = 0, (3.1)

where ρ = χWΦ0. The dynamical system given by (3.1) can be also accomplished by the restriction
to the internal graph of the following alternating quantum walk for z = −1 case: the time evolution
operator of the alternating quantum walk U : CÃ → CÃ is defined in the matrix form by

(U)a,b =

(−1)1V0 (o(a))
( 2

deg(o(a)) − δab

)
if o(a) = t(b),

0 otherwise,
(3.2)

where 1V0 is the characteristic function of V0. The quantum coin assigned at every vertex in the
internal graph is the “signed” Grover matrix. The initial state of the walker is

Ψ0(a) =


αj if o(a) = v

(s+1)
j , t(a) = v

(s)
j , s = 0, 1, 2, ..., j = 1, ..., r,

0 otherwise.
(3.3)

In this chapter, we consider Ψn+1 = UΨn instead of Φn. Since Ψ∞ := limn→∞ Ψn exists and UΨ∞ =
Ψ∞ holds according to [14], we compute its stationary state. In particular, we focus on the following
quantities.

Definition 3.2. Scattering matrix: Let α := [α1, α2, ..., αr]T , β := [β1, β1, ..., βr]T , where βj = Ψ∞(a)
with o(a) = v

(0)
j , t(a) = v

(1)
j . The scattering matrix σ, which is an r-dimensional unitary matrix, is

defined by
β = σα

for any choice of α.

The existence of such a unitary matrix is ensured by [7, 8]. If z = 1, the scattering matrix gives
us only the information of the number of tails because the scattering matrix for z = 1 is expressed
by Gr(r) [12]. In this chapter, setting z = −1, we obtain the information on the internal graph in
Theorem 3.5. We are also interested in the stationary state in the internal graph, especially how many
quantum walkers exist; that is, how quantum walkers feel comfortable to the graph.

Definition 3.3. The comfortability of G0 with α with δV for quantum walker :

EQW (G0; α, δV ) = 1
2
∑

a∈A0

|Ψ∞(a)|2.

We extract some geometric graph structures from these quantities which derive from some quantum
effects in Theorem 3.11.

3.2 Scattering matrix

In this section, we obtain the scattering matrix in our model, which gives a characterization of bipartite
graphs. To obtain this scattering matrix, we first give the following lemma.

Lemma 3.4. For a given u ∈ V0, Ψ∞(a) − Ψ∞(a) is constant for all a ∈ Ã with o(a) = u.

17



Proof. It follows from the dynamics of the walk that, in the stationary state, for a ∈ Ã such that
o(a) ∈ A0,

Ψ∞(a) = −
∑

b:t(b)=o(a)

2
deg(o(a))Ψ∞(b) + Ψ∞(a).

It follows that
Ψ∞(a) − Ψ∞(a) = − 2

deg(u)
∑

b:t(b)=u

Ψ∞(b), o(a) = u.

Observe that for a given u ∈ V0, the right hand side of the equation is a constant.

Now using the above lemma, we obtain the following theorem.

Theorem 3.5. (Scattering on the surface) Assume the time evolution operator is described by (3.2).
For the stationary state Ψ∞, let α := [α1, α2, ..., αr]T and β := [β1, β1, ..., βr]T , where αj is the inflow
described by (3.3) and βj is the outflow described by βj = Ψ∞(a) with o(a) = v

(0)
j , t(a) = v

(1)
j . Then

the scattering matrix, which is an r-dimensional unitary matrix; β = σα, is expressed as follows.

σ =
{
I : G0 is non-bipartite,
τ : G0 is bipartite.

Here I is the identity matrix and τ is described as follows:

τ = −
[
Ik 0
0 −Ir−k

]
Gr(r)

[
Ik 0
0 −Ir−k

]

with the computational basis labeled by
{
v

(0)
1 , ..., v

(0)
k , v

(0)
k+1, ..., v

(0)
r

}
, where v(0)

1 , ..., v
(0)
k ∈ X ∩ δV and

v
(0)
k+1, ..., v

(0)
r ∈ Y ∩ δV . Here X and Y are the partite sets of the underlying bipartite graph.

Proof. By Lemma 3.4, Ψ∞(a) − Ψ∞(a) is a constant on u ∈ V0 such that o(a) = u, We denote this
value by ρ(u). That is, Ψ∞(a) − Ψ∞(a) = ρ(u), o(a) = u. It follows that if u ∼ v then ρ(u) = −ρ(v).

Suppose G0 is non-bipartite. Then there is an odd cycle C = (u1, ..., u2l−1), ui ∈ V0 in G0. Then
we have ρ(u1) = −ρ(u2) = ρ(u3) = ... = ρ(u2l−1) = −ρ(u1) which implies ρ(u1) = 0. Since G0 is
connected, ρ(u) = 0 for any u ∈ V0. Thus Ψ∞(a) − Ψ∞(a) = 0 for any a ∈ A0 such that o(a) ∈ V0. In
particular βi = αi for any i. Hence β = α.

Now suppose G0 is bipartite with bipartition V0 = X ⊔ Y . Observe that

s := ρ(v) (3.4)

is constant for all v ∈ X. Then
ρ(v) = −s (3.5)

for all v ∈ Y . Define

AX
in =

{
a ∈ Ã : o(a) ∈ Ṽ \ V0, t(a) ∈ X

}
,

AX
out =

{
a ∈ Ã : a ∈ AX

in

}
,

AY
in =

{
a ∈ Ã : o(a) ∈ Ṽ \ V0, t(a) ∈ Y

}
,

AY
out =

{
a ∈ Ã : a ∈ AY

in

}
.

Then by applying the time evolution operator once, we get

U
(
Ψ∞|AX

in
+ Ψ∞|AY

in
+ Ψ∞|A0

)
= Ψ∞|AX

out
+ Ψ∞|AY

out
+ Ψ∞|A0 .

By taking the squared norm, we get∥∥∥Ψ∞|AX
in

∥∥∥2
+
∥∥∥Ψ∞|AY

in

∥∥∥2
+ ∥Ψ∞|A0∥2 =

∥∥∥Ψ∞|AX
out

∥∥∥2
+
∥∥∥Ψ∞|AY

out

∥∥∥2
+ ∥Ψ∞|A0∥2 .
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It follows from (3.4) and (3.5) that∥∥∥Ψ∞|AX
in

∥∥∥2
+
∥∥∥Ψ∞|AY

in

∥∥∥2
=
∥∥∥s1AX

in
+ SΨ∞|AX

in

∥∥∥2
+
∥∥∥−s1AY

in
+ SΨ∞|AY

in

∥∥∥2

= s2|X ∩ δV | + 2s
∑

a∈AX
in

Ψ∞(a) +
∥∥∥Ψ∞|AX

in

∥∥∥2

+ s2|Y ∩ δV | − 2s
∑

a∈AY
in

Ψ∞(a) +
∥∥∥Ψ∞|AY

in

∥∥∥2
.

Here S is the shift operator: Sδa = δā for any a ∈ Ã. Hence if s ̸= 0,

s = − 2
|δV |

 ∑
a∈AX

in

Ψ∞(a) −
∑

a∈AY
in

Ψ∞(a)

 . (3.6)

Then it follows that

βi = αi − 2
|δV |

 ∑
a∈AX

in

Ψ∞(a) −
∑

a∈AY
in

Ψ∞(a)

 ,
where βi = Ψ∞(a) for some a ∈ AX

out and

βi = αi − 2
|δV |

 ∑
a∈AY

in

Ψ∞(a) −
∑

a∈AX
in

Ψ∞(a)

 ,
where βi = Ψ∞(a) for some a ∈ AY

out. Hence β = τα where

τ =



− 2
|δV |

+ 1 − 2
|δV |

...

− 2
|δV |

− 2
|δV |

+ 1 ...

.

.

.

2
|δV |

2
|δV |

− 2
|δV |

+ 1 − 2
|δV |

...

− 2
|δV |

− 2
|δV |

+ 1 ...

.

.

.



.

It is clear that, to satisfy the condition s ̸= 0, we must have ∑a∈AY
in

Ψ∞(a) ̸= ∑
a∈AX

in
Ψ∞(a). Now

let us see that s = 0 if and only if κX = κY , where κX = ∑
a∈AX

in
Ψ∞(a) and κY = ∑

a∈AY
in

Ψ∞(a).
By Lemma 3.4 we have, s = 0 if and only if

Ψ∞(a) = Ψ∞(a), a with o(a) ∈ A0

and ∑
b:t(b)=u

Ψ∞(b) = 0, u ∈ V0.
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1

Figure 3.1: Example of the inflow of s ̸= 0.

Thus we have

0 =
∑

a:t(a)∈Y

Ψ∞(a)

=
∑

a: t(a)∈Y, o(a)∈X

Ψ∞(a) + κY

=
∑

a:∈o(a)∈X, t(a)∈Y

Ψ∞(a) + κY

=
∑

a:o(a)∈X

Ψ∞(a) − κX + κY

= −κX + κY ,

which implies κX = κY if s = 0.
If α satisfies κX = κY , then s = 0 and the same argument as in the case where G0 is non-bipartite

is valid; β = α holds. It is easy to check that β = τα holds for τ defined above.

Remark. If we set the inflow to a bipartite graph with the partite sets X and Y so that total inflow
to the partite set X coincides with that to the partite set Y , the perfect reflecting happens. This means
that we can not detect the bipartiteness of graph with such an initial state. These inputs vectors are
described by eigenvectors of the scattering matrix τ with the eigenvalue 1.

3.3 Kirchhoff and pseudo-Kirchhoff laws

In this section we will see that the stationary state can represent a kind of current function [12, 14]
on the underlying bipartite and non-bipartite graphs.

Bipartite case
First, we will introduce a current function induced by the stationary state Ψ∞ on a bipartite graph.
Let G0 be a bipartite graph with bipartition V0 = X ⊔ Y . Define the function f(·) such that

f(a) =


0 if t(a) ∈ X,

1 if t(a) ∈ Y.

Then by Lemma 3.4, it follows that the measure 1
2
(
(−1)f(a)Ψ∞(a) + (−1)f(a)Ψ∞(a)

)
is a constant

for any a ∈ A0. We denote this constant by ρ. Then the following theorem holds.

Theorem 3.6. Let the setting be the same as the above and define j(a) = (−1)f(a)Ψ∞(a) − ρ. Then
j(·) satisfies the Kirchhoff’s current and voltage laws:
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1. (Kirchhoff current law) For any u ∈ Ṽ and a ∈ Ã,∑
b∈Ã:t(b)=u

j(b) = 0; j(a) + j(a) = 0.

2. (Kirchhoff voltage law) For any cycle c = (a1, ..., as) with t(a1) = o(a2), ..., t(as−1) = o(as), t(as) =
o(a1) in G0, it holds

s∑
k=1

j(ak) = 0.

Proof. We can rewrite the expression in Lemma 3.4 as

1
2
(
(−1)f(a)Ψ∞(a) + (−1)f(a)Ψ∞(a)

)
= 1

deg(u)
∑

b:t(b)=u

(−1)f(b)Ψ∞(b), o(a) = u,

in which the right hand side is a measure on the vertex u, denoted by ρ(u). Then it follows that if
u ∼ v then ρ(u) = ρ(v). Since G0 is connected, it follows that ρ(u) is a constant for all u ∈ V0, which
is denoted by ρ. Summarizing the above, we have

1
deg(u)

∑
b:t(b)=u

(−1)f(b)Ψ∞(b) = ρ, u ∈ V0. (3.7)

Then from (3.6) we can express

ρ = 1
|δV |

 ∑
a∈AX

in

Ψ∞(a) −
∑

a∈AY
in

Ψ∞(a)

 .
Equation (3.7) implies∑

a:t(a)=u

j(a) =
∑

a:t(a)=u

(−1)f(a)Ψ∞(a) − ρdeg(u) = 0, u ∈ V0.

Also we have
j(a) + j(a) = (−1)f(a)Ψ∞(a) + (−1)f(a)Ψ∞(a) − 2ρ = 0, a ∈ A0.

Now suppose C = (a1, ..., a2l), ai ∈ A0 is an even cycle in G0. Assume that o(a1) ∈ X. Define φ such
that

φ(a) =


1 if a = a2k+1 or a2k+1,

−1 if a = a2k or a2k,

0 otherwise.

Let ψ∞ := χ∗Ψ∞. Since φ is a centered eigenvector of χUχ∗ whose eigenvalue is −1, by [14, Lemmas
3.4 and 3.5] we have ψ∞ ⊥ φ and it follows that

0 = ⟨ψ∞|φ⟩

=
∑

a∈A0

ψ∞(a)φ(a)

=
l∑

k=1
[[ψ∞(a2k−1) + ψ∞(a2k−1)] − [ψ∞(a2k−1) + ψ∞(a2k−1)]]

=
l∑

k=1

[
(−1)f(a2k−1) (j(a2k−1) − j(a2k−1)) − (−1)f(a2k) (j(a2k) − j(a2k))

]

=
2l∑

k=1
[j(ak) − j(ak)] .
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Since j(a) + j(a) = 0, it follows that
s∑

k=1
j(ak) = 0.

Non-bipartite case
Next let us investigate the property of ψ∞ in the non-bipartite case. We can see that the stationary
state itself has similar properties to the electrical current flow as follows.

Theorem 3.7. Let ψ∞ ∈ CA0 be the stationary state on the non-bipartite graph. Then ϕ∞ satisfies
the following properties:

1. (Pseudo-Kirchhoff current law) For each u ∈ V0 and a ∈ A0,∑
t(a)=u

ψ∞(a) = 0, ψ∞(a) = ψ∞(ā).

2. (Pseudo-Kirchhoff voltage law) For any even closed walk (e1, . . . , e2s) such that
t(e1) = o(e2), . . . , t(e2s−1) = o(e2s) and t(e2s) = o(e1),

2s∑
k=1

(−1)kψ∞(ek) = 0.

Proof. The proof of the first part is obtained from the proof of Theorem 3.5. To prove the second part,
for an even closed walk (e1, . . . , e2s) such that t(e1) = o(e2), . . . , t(e2s−1) = o(e2s) and t(e2s) = o(e1),
define the function ϕ by

ϕ(a) =


(−1)k if a = ek or a = ek,

0 otherwise.
Note that in the case when the arcs in the walk overlap, then ϕ(a) is set to be the sum of all such
values defined above, on the corresponding arcs. Then it is easy to check that ϕ is an eigenvector of
U with the eigenvalue −1. By the proof of the convergence of Ψ∞, it follows that ⟨ϕ,Ψ∞⟩ = 0 which
gives the desired conclusion.

3.4 Laplacian and signless Laplacian

We have seen that the stationary state has the properties of current function or pseudo-current func-
tion in CA0 . Then it is natural to determine the potential function in CV0 with respect to the current.
In this subsection, we characterize the potential function using the Laplacian and the signless Lapla-
cian for the cases of bipartite and non-bipartite graphs, respectively.

Bipartite case
Let M be the adjacency matrix and D be the degree matrix of G0. The Laplacian matrix of G0 is
denoted by L = D − M . Using the Laplacian matrix with the Poisson equation, we can characterise
the current function j(·) on A0 in terms of a potential function on V0 ([3] and [4]) in which exists
under the Kirchhoff current and voltage laws.

Theorem 3.8 (see e.g., [3, 4]). Let the setting be the same as in Theorem 3.6. Let G0 be a bipartite
graph and L be the Laplacian matrix of G0. Then there exists a potential function ϕ ∈ CV0 such that
j(a) = ϕ(o(a)) − ϕ(t(a)). Here ϕ satisfies the following equation.

Lϕ = −q,

where q(u) = ∑
a∈Ã\A0:t(a)=u

j(a), u ∈ V0.
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Proof. Let V0 = {v1, ..., vn}. Denote the incidence mapping by B : CA0 → CV0 which satisfies

(Bψ)(vi) =
m∑

j=1
bijψ(aj), 1 ≤ i ≤ n

where m = |A0| and

bij =


1 if t(aj) = vi,

−1 if o(aj) = vi,

0 otherwise.
Then we have

(Bψ)(v) =
∑

a∈A0:t(a)=v

ψ(a) −
∑

a∈A0:o(a)=v

ψ(a), v ∈ V0.

The adjoint operator B∗ : CV0 → CA0 is given by

(B∗f)(a) = f(t(a)) − f(o(a)).

Then we have BB∗ in terms of the Laplacian matrix L

BB∗ = 2(D −M) = 2L.

If the potential function is ϕ ∈ CV0 and the conductance along each arc is assumed to be 1, by the
Ohm’s law,

j(a) = ϕ(o(a)) − ϕ(t(a))
= −(B∗ϕ)(a).

Now we can state the latter part of the Kirchhoff’s current law as follows.

j(a) = ϕ(o(a)) − ϕ(t(a)) = ϕ(t(a)) − ϕ(o(a)) = −j(a), a ∈ A0.

And it follows that ∑
a∈Ã:o(a)=u

j(a) = −
∑

a∈Ã:o(a)=u

j(a)

= −
∑

a∈Ã:t(a)=u

j(a)

which implies ∑
a∈Ã:t(a)=u

j(a) = 0, u ∈ V0.

Now we can denote the first part of the Kirchhoff’s current law in terms of the incident matrix as
follows. ∑

a∈A0:t(a)=u

j(a) +
∑

a∈Ã\A0:t(a)=u

j(a) −
∑

a∈A0:o(a)=u

j(a) −
∑

a∈Ã\A0:o(a)=u

j(a) = 0

And it follows that
(Bj)(u) = −2

∑
a∈Ã\A0:t(a)=u

j(a).

This gives an analogy of the equation given in [3] as

Bj = −2q

where q(u) = ∑
a∈Ã\A0:t(a)=u

j(a), u ∈ V0. In other words,

Lϕ = −q.

Moreover, for any cycle c = (a1, ..., as) with t(a1) = o(a2), ..., t(as−1) = o(as), t(as) = o(a1) in G0,
taking the sum of j(ai) = ϕ(o(ai)) − ϕ(t(ai)) over the cycle, the Kirchhoff’s voltage law satisfies.
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Here we should remark that q ∈ (ker(L))⊥: actually we have

0 =
∑

a∈A:t(a)∈V0

j(a) ≡
∑

a∈A\A0:t(a)∈V0

j(a) =
∑

v∈V0

q(v)1(v),

where 1(·) is the constant function whose value is 1 and ker(L) = {c1 : c ∈ C}.

Non-bipartite case
When the underlying graph is non-bipartite, the following two properties hold for the stationary sate
Ψ∞ by Theorem 3.7:

Ψ∞(a) = Ψ∞(a), for any a ∈ Ã, o(a) ∈ V0; (3.8)∑
a∈Ã:t(a)=u

Ψ∞(a) = 0, for any u ∈ V0. (3.9)

As an analogy to the current function in the bipartite case, we represent these properties in terms
of the non-oriented incidence matrix and the signless Laplacian matrix in the following theorem. Here
the signless Laplacian matrix of G0 is denoted by Q = M +D.

Theorem 3.9. Let Ψ∞ be the stationary state of quantum walk such that Ψ∞(a) = limn→∞(UnΨ0)(a)
for any a ∈ Ã. Let G0 be a non-bipartite graph and Q be the signless Laplacian matrix of G0. Then
there uniquely exists ϕ ∈ CV0 such that Ψ∞(a) = ϕ(o(a)) + ϕ(t(a)) for any a ∈ A0. Here ϕ satisfies
the following equation.

Qϕ = −q

where q(u) = ∑
a∈Ã\A0:t(a)=u

Ψ∞(a), u ∈ V0.

Proof. Denote the non-oriented incidence matrix on the set of arcs by C̃ : CA0 → CV0 which satisfies

(C̃ψ)(vi) =
m∑

j=1
cijψ(aj), 1 ≤ i ≤ n,

where m = |A0| and

cij =
{

1 if t(aj) = vi or o(aj) = vi,

0 otherwise.

Then we have
(C̃ψ)(v) =

∑
a∈A0:t(a)=v

ψ(a) +
∑

a∈A0:o(a)=v

ψ(a), v ∈ V0.

The adjoint operator C̃∗ : CV0 → CA0 is given by

(C̃∗f)(a) = f(t(a)) + f(o(a)).

Then we have C̃C̃∗ in terms of the signless Laplacian matrix Q

C̃C̃∗ = 2(D +M) = 2Q.

Let ψ∞ = χ∗Ψ∞. Now let us see that if there exists a potential function ϕ ∈ CV0 such that ψ∞(a) =
(C̃∗ϕ)(a) for any a ∈ A0, then ϕ must satisfy

Qϕ = −q.

Remark that for any a ∈ A0

ψ∞(a) = (C̃∗ϕ)(a) = ϕ(t(a)) + ϕ(o(a)) = ϕ(t(a)) + ϕ(o(a)) = (C̃∗ϕ)(a) = ψ∞(a)
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and hence the first property of (3.8) can be easily confirmed. We have, by the property (3.8),∑
a∈Ã:o(a)=u

Ψ∞(a) =
∑

a∈Ã:o(a)=u

Ψ∞(a)

=
∑

a∈Ã:t(a)=u

Ψ∞(a),

and by the property (3.9), ∑
a∈Ã:t(a)=u

Ψ∞(a) +
∑

a∈Ã:o(a)=u

Ψ∞(a) = 0, u ∈ V0.

Let us divide the summation in the above equation by∑
a∈A0:t(a)=u

Ψ∞(a) +
∑

a∈Ã\A0:t(a)=u

Ψ∞(a) +
∑

a∈A0:o(a)=u

Ψ∞(a) +
∑

a∈Ã\A0:o(a)=u

Ψ∞(a) = 0.

Then it follows that
(C̃ψ∞)(u) = −2

∑
a∈Ã\A0:t(a)=u

Ψ∞(a).

which implies
Qϕ = 1

2 C̃C̃
∗ϕ = −q,

where q(u) = ∑
a∈Ã\A0:t(a)=u Ψ∞(a), u ∈ V0. Although the existence of the potential function ϕ is

ensured by the pseudo-Kirchhoff voltage law in Theorem 3.7, we prove here directly as follows. To
show the existence of ϕ, it is enough to show that

ψ∞ ∈ Range(C̃∗) = ker(C̃)⊥.

Let us see that
ker(C̃) = (ker(d) ∩ H+) ⊕ H−, (3.10)

where H+ =
{
ψ ∈ CA0 : ψ(a) = ψ(a) for any a ∈ A0

}
, H− =

{
ψ ∈ CA0 : ψ(a) = −ψ(a) for any a ∈ A0

}
and

(dφ)(u) = 1√
degG0(u)

∑
a∈A0:t(a)=u

φ(a).

Note that H+ ⊕ H− = CA0 and H+ = ker(1 − S0), H− = ker(1 + S0), where S0 is the shift operator
on CA0 such that S0δa = δā for any a ∈ A0. The operator C̃ can be rewritten by

(C̃ψ)(u) =
√

degG0(u) ((dψ)(u) + (dS0ψ)(u)) .

Then we have
ker C̃ = ker(d(1 + S0)),

which implies (3.10). By [14] it follows that

ψ∞ ∈ (ker(d) ∩ H+)⊥.

Since ψ∞(ā) = ψ∞(a), then ψ∞ ∈ H+ = H⊥
−. Therefore ψ∞ ∈ ker(C̃)⊥ = Range(C̃∗).

Furthermore, since G0 is non-bipartite, the least eigenvalue of Q is positive (cf. [6]) and hence Q
is invertible. This completes the proof of the existence and the uniqueness of ϕ.
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3.5 Comfortability

We have seen that relations between stationary state and the (signless-)Laplacian, which contains
information of the geometry of the graph. Let us express the comfortability in terms of some graph
geometrical properties.

Definition 3.10. (Important graph factors) Let χ1(G0) be the number of spanning trees of G0 and
χ2(G0;u1, un) be the number of spanning forests of G0 with exactly two components, one containing
u1 and the other containing un. Here the isolate vertex is regarded as a tree.

Let Co be the set of spanning subgraphs of G0 all of whose components are odd unicyclic graphs and
let T Co be the set of spanning subgraphs of G0 whose one component is a tree containing the vertex u1
and remaining components are odd unicyclic graphs, which are possibly empty. Note that T Co contains
the spanning trees of G0 as well. See Figure 3.2.

Now define the functions ι1 and ι2 by

ι1(G0) =
∑

H∈Co

4ω(H)

and
ι2(G0;u1) =

∑
H∈T Co

4ω(H)−1,

where ω(H) is the number of components in H.

Then with the above notations, we have the following theorem.

Theorem 3.11. (Comfortability in the interior) Assume the number of tails is 2, and the inflow
α = (α1, α2) = (1, 0) at u1 and un, respectively. Then the comfortability of the quantum walk (3.2) is
given by

εQW (G0;u1, un) =



1
4

(
χ2(G0;u1, un)

χ1(G0) + |E0|
)

if G0 is bipartite,

ι2(G0;u1)
ι1(G0) if G0 is non-bipartite.

Then we can determine how much quantum walker feels comfortable to the given graph by listing
up the spanning subgraphs in Definition 3.10 of this graph. We will demonstrate it for the graphs
with four vertices in the next section.

Proof. Bipartite case
Now we introduce the energy of the electric circuit εEC(G0) which is given by,

εEC(G0) = 1
2 ∥j∥2 = 1

2
∑

a∈A0

|j(a)|2.

To give the next proposition, we prepare the following notion. Note that the Laplacian matrix
L is singular and hence ϕ is not determined uniquely. We impose the ground condition ϕ(n) = 0
which reduces the equation in Theorem 3.8 to L(n)ϕ(n) = −q(n), where L(n) is the matrix obtained
by removing the n-th row and the n-th column of the Laplacian matrix, ϕ(n) and q(n) are the vectors
obtained by removing the n-th element from ϕ and q respectively. Here, det(L(n)) is the number
of spanning trees of G0 (see [3]), and hence non-zero. So ϕ(n) is determined uniquely by ϕ(n) =
−(L(n))−1q(n). More over, we denote by B and B̃, the usual incidence matrix and the non-oriented
incidence matrix on the set of edges respectively. More precisely, we fix an orientation of each e ∈ E0
and denote it by E⃗0:

A0 = E⃗0 ∪ (E⃗0),
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Figure 3.2: Co-factor and T Co-factor of K4: The white colored vertex in the complete graph K4
corresponds to u1. The left figure depicts the list of the family of odd unicyclic factor of K4 and the
right figure depicts the list of the T Co-factor of K4. Note that the isolated vertex is regards as a tree
and the family of the spanning tree is included in T Co.

where (E⃗0) = {a ∈ A0 | ā ∈ E⃗0}. Then B : CE⃗0 → CV0 is denoted by

(Bψ)(u) =
∑

t(a)=u

ψ(a) −
∑

o(a)=u

ψ(a);

then its adjoint is expressed by

(B∗f)(a) = f(t(a)) − f(o(a)).

The non-oriented incidence matrix B̃ : CE⃗0 → CV0 is denoted by

(B̃ψ)(u) =
∑

t(a)=u

ψ(a) +
∑

o(a)=u

ψ(a);

then its adjoint is expressed by

(B̃∗f)(a) = f(t(a)) + f(o(a)).

Now we give the following proposition.

Proposition 3.12. The electrical energy of the circuit is given by

εEC(G0) = 1
det(L(n))

n−1∑
i,j=1

(−1)i+jq(n)(i)q(n)(j)
∑

H⊂G0
|E(H)|=n−2

det(B(n,j)
H )det((B(n,i)

H )∗),

where B
(n,j)
H is the matrix obtained by choosing the columns corresponding to the edges in H and

removing the j-th and n-th rows in the oriented incidence matrix of G0.

Proof. By definition, we can write the electrical energy in terms of the Laplacian matrix as follows.

εEC(G0) = 1
2 ∥j∥2 = ⟨B∗ϕ,B∗ϕ⟩ = ⟨ϕ,Lϕ⟩ = − ⟨ϕ, q⟩ = −

〈
ϕ(n), q(n)

〉
=
〈
(L(n))−1q(n), q(n)

〉
=

n−1∑
i=1

q(n)(i)((L(n))−1q(n))(i).
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By Cramer’s rule, we get,

εEC(G0) = 1
det(L(n))

n−1∑
i=1

q(n)(i)det(L(n)
i ),

where L(n)
i is the matrix obtained by replacing the i-th column of L(n) by q(n). Now by expanding

along the i-th column, we get

εEC(G0) = 1
det(L(n))

n−1∑
i,j=1

q(n)(i)q(n)(j)det(L(n)
(j,i)),

where L(n)
(j,i) is the matrix obtained by removing the j-th row and the i-th column from L(n). Note

that L(n)
(j,i) = B(j,n)(B(i,n))∗ and hence

εEC(G0) = 1
det(L(n))

n−1∑
i,j=1

q(n)(i)q(n)(j)det(B(j,n)(B(i,n))∗),

where B(j,n) is the matrix obtained by removing the j-th and the n-th rows from B. Now by Binet-
Cauchy theorem (see [6]), it follows that

εEC(G0) = 1
det(L(n))

n−1∑
i,j=1

(−1)i+jq(n)(i)q(n)(j)
∑

H⊂G0
|E(H)|=n−2

det(B(n,j)
H )det((B(n,i)

H )∗),

where B(n,j)
H is the matrix obtained by choosing the columns corresponding to the edges in H from

B(j,n). □
Now we apply Proposition 3.12. Observing that ρ = 1/2, q(n)(1) = 1 − ρ = 1/2 and q(n)(i) = 0

(i = 2, . . . , n− 1) in our setting of Theorem 3.11 and applying Proposition 3.12 to our setting, we get

εEC(G0) = 1
4

1
det(L(n))

∑
H⊂G0

|E(H)|=n−2

(
det(B(n,1)

H )
)2
.

Focusing on the linear dependence on the column vectors of the incidence matrix of the spanning
subgraph H ⊂ G0, we obtain the following:

1. If H contains a cycle, then det(B(n,1)
H ) = 0;

2. If H contains a connected component including both u1 and un, then det(B(n,1)
H ) = 0.

Hence, it implies that if det(B(n,1)
H ) ̸= 0, then H is a spanning forest which contains exactly two

components, one containing u1 and the other one containing un. On the other hand, if H is a spanning
forest which contains exactly two components, one containing u1 and the other one containing un,
B

(n,1)
H is of the form

B
(n,1)
H =

(
BT1 0

0 BT2

)
for the trees T1 and T2 in the forest which are the spanning trees of the two components of the forest.
Now by [3], det(BT1) = det(BT2) = ±1 and hence

(
det(B(n,1)

H )
)2

= 1. Thus,
(
det(B(n,1)

H )
)2

= 1 if
and only if H is a spanning forest which contains exactly two components, one containing u1 and the
other one containing un. Hence it follows that

εEC(G0) = χ2(G0;u1, un)
χ1(G0) .

28



Let G0 be a bipartite graph. Then

εQW = 1
2
∑

a∈A0

|Ψ∞(a)|2 = 1
2
∑

a∈A0

|j(a) + ρ|2 = 1
2
∑

a∈A0

j(a)2 + ρ
∑

a∈A0

j(a) + ρ2|E0|

= εEC(G0) + ρ2|E0|. (3.11)

Note that in our setting with only two tails, we have ρ2 = 1
4, which leads to the formula in the

theorem.

Non-bipartite case

Now let G0 be non-bipartite. Then we have ψ∞(e) = ψ∞(ē) = (B̃∗ϕ)(e) for any e ∈ E⃗0 and
Qϕ = −q. Now since G0 is non-bipartite, it follows that Q is invertible (for example, see [6, Theorem
7.8.1]) and hence ϕ = −Q−1q. By a similar argument, it follows that

εQW (G0) = 1
2
∑

a∈A0

|Ψ∞(a)|2 = 1
2 ⟨ψ∞, ψ∞⟩ =

〈
B̃∗ϕ, B̃∗ϕ

〉
= ⟨ϕ,Qϕ⟩ =

〈
Q−1q, q

〉
.

By using the Cramer’s rule and the Binet-Cauchy theorem, we can derive a similar expression for the
non-bipartite graphs as follows:

Proposition 3.13. Let G0 be a non-bipartite graph with an arbitrary choice of u1 and un. Then we
have

εQW (G0) = 1
det(Q)

n∑
i,j=1

(−1)i+jq(i)q(j)
∑

H⊂G0
|E(H)|=n−1

det(B̃(i)
H )det(B̃(j)

H ),

where B̃(j)
H is the matrix obtained by choosing the columns corresponding to the edges in H and re-

moving the j-th row from B̃.

Observing that q(j) = δ1(j) in our setting and applying Proposition 3.13, then we have

εQW (G0) = 1
det(Q)

∑
H⊂G0

|E(H)|=n−1

(
det(B̃(1)

H )
)2
.

Focusing on the linear dependence on the column vectors of the incidence matrix of the spanning
subgraph H ⊂ G \ {u1}, we obtain the following:

1. If H has an even cycle, then det(B̃(1)
H ) = 0;

2. If H has a connected component having at least two odd cycles, then det(B̃(1)
H ) = 0;

3. If H has a connected component having an odd cycle and u1, then det(B̃(1)
H ) = 0.

Hence it implies that if det(B̃(1)
H ) ̸= 0 then H = T ∪C1 ∪ ... ∪Ck where u1 ∈ T where T is a tree and

C1 ∪ ... ∪ Ck are odd unicycles. Now if H = T ∪ C1 ∪ ... ∪ Ck where u1 ∈ T where T is a tree and
C1 ∪ ... ∪ Ck are odd unicycles, then B̃

(1)
H is of the form

B̃
(1)
H =



B̃T 0 ... 0
0 B̃C1 ... 0
.
.
.

0 ... 0 B̃Ck


.

29



Note that det(B̃T ) = ±1 (by [3]) and by expanding the determinant of the non-oriented incidence
matrix of a cycle, we can show that det(B̃Ci) = ±2 (see Appendix for the details), which implies that(

det(B̃(1)
H )

)2
= 4ω(H)−1,

where ω(H) is the number of components in H. Furthermore, by [5],

det(Q) =
∑

H∈C0

4ω(H)

and it follows that

εQW =

∑
H∈T Co

4ω(H)−1

∑
H∈C0

4ω(H)

which completes the proof.

3.6 Example

As an example to our result in Theorem 3.11, we consider the connected graphs with 4 vertices labeled
by {u1, u2, u3, u4}. The setting is the same as in Theorem 3.11 and we choose the inflow α = (1, 0)
at the vertices u1 and u4, respectively. We classify these graphs into 10 classes based on the number
of edges, bipartiteness and the configuration of u1 and u4 and the numbers of important factors state
in Definition 3.10. Note that the comfortability for the non-bipartite case depends only on u1. We
conclude that every graph with 4 vertices belongs to exactly one of the following classes (see Fig 3.3):

G1 = {K4} ,

G2 = {K4 − u1uj : j = 2, 3, 4} ,

G3 = {K4 − uiuj : i, j = 2, 3, 4} ,

G4 = {C4 : u1 ∼ u4} ,

G5 = {C4 : u1 ≁ u4} ,

G6 = {G : G is constructed by joining u1 to exactly one vertex in the cycle u2, u3, u4} ,

G7 = {G : G is constructed by joining ui(i = 2, 3, 4) to exactly one vertex in the cycle u1, uk, ul(k, l ̸= 1, i)} ,

G8 = {T : T is a tree with dist(u1, u4) = 1} ,

G9 = {T : T is a tree with dist(u1, u4) = 2} ,

G10 = {T : T is a tree with dist(u1, u4) = 3} .

Here K4−uiuj is the graph obtained by removing the edge uiuj from K4. Now for Gi ∈ Gi(i = 1, ..., 10),
we compute εQW as follows. When G0 = K4 for example, since K4 is non-bipartite, we have

εQW (K4) = ι2(K4;u1)
ι1(K4) .

To compute ι1(K4), we need to find the number of odd unicyclic subgraphs which span K4. The only
such possible subgraph is a 3-cycle with an additional edge. It is clear that there are 4 ways to choose
a 3-cycle and for a chosen 3-cycle, there are 3 ways to choose an edge which connects the remaining
vertex to the cycle. Hence, altogether there are 12 such subgraphs, which are shown as Co in figure
3.2. Observe that each subgraph has only one component and hence we have

ι1(K4) = 48.

Now to compute ι2(K4;u1), we have to find the spanning subgraphs which contains a tree with u1
and the remaining are odd cycles, which are possibly empty. There are two types of such subgraphs,
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as shown as T Co in figure 3.2 one being the spanning trees and the other being the cycle u2, u3, u4
along with the single vertex u1. In the first case the number of spanning trees is the tree number, or
the complexity, of K4, given by 44−2 = 42 (e.g., [3]) while in the second case there is only one such
subgraph which has two components. So it follows that

ι2(K4;u1) = 20

and hence
εQW (K4) = 20

48 = 5
12 .

Now consider G4 ∈ G4. This graph is a 4-cycle with u1 ∼ u4. This graph is bipartite and hence

εQW (G4) = 1
4

(
χ2(G4;u1, u4)

χ1(G4) + |E0|
)
.

Since χ1(G4) is the tree number of G4 and by removing an edge from G4 we can get a spanning tree,
we have

χ1(G4) = 4.

To compute χ2(G4;u1, u4), we have to find the number of forests with exactly two components, one
containing u1 and the other containing u4. To find such a forest, the edge {u1, u4} has to be removed,
and other than that, one of the remaining edges has to be removed. So we have

χ2(G4;u1, u4) = 3

and hence
εQW (G4) = 1

4(3
4 + 4) = 19

16 .

Similarly, we compute the comfortability on the remaining classes of graphs and we tabulate these
values as shown in Table 1.

Gi G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

εQW (Gi) 5/12 3/4 1/2 19/16 5/4 7/4 3/4 1 5/4 3/2
Scattering R R R T T R R T T T

Bipartiteness - - - ◦ ◦ - - ◦ ◦ ◦
|E| 6 5 5 4 4 4 4 3 3 3

Table 3.1: The comfortability of quantum walker to graphs with four vertices: The comfortability to
each graph class is described by EQW . The symbols of “R” and “T” mean the perfect reflection and
transmitting, respectively. The best graph with four vertices of the comfortability is the G6 and the
worst graph is the complete graph.

Based on εQW , we have the following ordering of graphs:

G6 ≻QW G10 ≻QW G5, G9 ≻QW G4 ≻QW G8 ≻QW G2, G7 ≻QW G3 ≻QW G1.

Furthermore, we remark that for a tree T in general, with n vertices, the comfortability of the
quantum walker is given by

εQW (T ) = 1
4 (dist(u1, un) + (n− 1)) .

Finally we also consider the comparison between the comfortability for z = 1 and z = −1 cases.
Any graph of four vertices is isomorphic to one of the graphs Γ1,Γ2, . . . ,Γ6 given in Figure 3.4.

We set
Comf(G) = max

u1,un∈V (G)
EQW (G; α, u1, un)
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Figure 3.3: The Hasse diagram of comfortability of graphs: The most comfortable graph for this
quantum walker is G6 which is a non-bipartite graph, while the most uncomfortable graph is G1
(the complete graph). Here the entrance vertex u1 is indicated by the white vertex, and the exit
vertex uN is indicated by the black vertex for the bipartite case. Note that in the non-bipartite
case, the comfortability for this quantum walker is independent of the position of the exit vertex (see
Theorem 3.11).

Γ1 Γ2 Γ3 Γ4 Γ5 Γ6

z = −1 5/4 3/2 5/4 7/4 3/4 5/12
z = 1 5/4 3/2 5/4 17/12 3/2 13/8

Table 3.2: Comf(Γj) for z = ±1
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Γ1 Γ2 Γ3 Γ4 Γ5 Γ6

Figure 3.4: Non-isomorphic graphs Γj ’s for four vertices

for α = (1, 0) at u1 and un. Then we have the comfortabilities for each graph and z = ±1 as in
Table 3.2. Thus we have, for z = −1,

Comf(Γ6) < Comf(Γ5) < Comf(Γ1) = Comf(Γ3) < Comf(Γ2) < Comf(Γ4),

and for z = 1,

Comf(Γ1) = Comf(Γ3) < Comf(Γ4) < Comf(Γ2) = Comf(Γ5) < Comf(Γ6).
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Chapter 4

A quantum search on complete graphs

4.1 Setting

In this section, we introduce a quantum search algorithm using the tailed model. Note that, as we
explained in the introduction, our goal is to utilize the properties obtained by the convergence in our
model, we are particularly interested about the finding probability of a particular vertex in the long
run. Now let us explain the setting and the notations in our study.

LetG0 = KN be the complete graph withN number of vertices. We connectN tails {Pj : j = 1, ..., N}
to every vertex of the graph, namely {u1, ..., uN }. We choose a vertex u∗ as a marked vertex and we
define the time evolution operator U as follows.

(U)a,b =


−
( 2

deg(o(a)) − δab

)
if o(a) = t(b) = u∗,( 2

deg(o(a)) − δab

)
if o(a) = t(b) ̸= u∗,

0 otherwise.

(4.1)

The state of the walker after time step t is Ψt ∈ CÃ and can be computed by Ψt = UΨt−1. The initial
state Ψ0 ∈ CÃ is defined as follows.

Ψ0(a) =
{

1 if a ∈ Ã \A, dist(t(a),KN ) < dist(o(a),KN )
0, otherwise,

(a ∈ Ã), (4.2)

where dist(u,KN ) is the shortest distance between u and KN . It is known from [14] that the following
theorem holds.

Theorem 4.1. There exists Ψ∞ ∈ C∞ such that, for any a ∈ Ã

lim
t→∞

Ψt(a) = Ψ∞(a).

The relative probability of finding the vertex u∗ at time t is given by

ν̃t(u∗) =
∑

a∈A0:t(a)=u∗

|ψt(a)|2.

Note that due to the initial state defined in equation 4.2, it acts as an external input to the graph,
hence ν̃t does not describe a probability. To normalize it, we set

νt(u) := ν̃t(u)∑
v∈V (KN ) ν̃t(v) .
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4.2 A search algorithm

It is noted that in our setup, when the operator U is applied trun = ⌊π
√
N⌋ times, the finding

probability of u∗ is higher, where we have a similar phenomena as the usual quantum search algorithms;
that is we have trun = O(

√
N). The difference in our model is that the state of the walker converges

and hence the finding probability. Therefore we are particularly interested in the finding probability
in the long run. First let us set up some basic results we use in the main theorems in this section.

4.2.1 An invariant subspace

It can be noted by the symmetricity of the walk, that there are 3 types of arcs which are partitioned
into the disjoint sets A+, A−, A∗ as follows.

A+ = {a ∈ A0 : t(a) = u∗},
A− = {a ∈ A0 : o(a) = u∗},
A∗ = {a ∈ A0 : t(a), o(a) ̸= u∗}.

Also from the symmetricity of the time evolution, it is easy to notice that the value Ψt(a) is invariant
of the subsets A+, A− and A∗. Thus setting at = Ψt(a) (a ∈ A+), bt = Ψt(a) (a ∈ A−) and
ct = Ψt(a) (a ∈ A∗), from the dynamics we have in (4.1), we obtain

at+1
bt+1
ct+1

 =


0 −1 + 2

N
2 − 4

N

−1 + 2
N

0 0

0 2
N

1 − 4
N


at

bt

ct

+ 2
N

 1
−1
1

 .

We can project this walk on to a path by normalizing these probability amplitudes at, bt and ct. To
obtain this projected walk, we normalize these as follows,

αt :=


√
N − 1 0 0

0
√
N − 1 0

0 0
√

(N − 1)(N − 2)


at

bt

ct

 .
Thus we obtain the following master equation:

αt+1 = T (ϵ)αt + bϵ, α0 = 0. (4.3)

Here

T (ϵ) =

 0 −1 + ϵ2
√

2ϵ2(1 − ϵ2)
−1 + ϵ2 0 0

0
√

2ϵ2(1 − ϵ2) 1 − 2ϵ2


and

bϵ =
[
ϵ
√

2 − ϵ2, −ϵ
√

2 − ϵ2,
√

4 − 6ϵ2 + 2ϵ4
]⊤
,

where ϵ =
√

2
N

.
Remark that the relative probability of the marked vertex can be computed by νt(u∗) = ||αt(1)||2.

Now let us consider the asymptotics for large N , which is equivalent to considering (4.3) for small
perturbation ϵ. Also by solving the recursion in equation 4.3, we obtain the following.

αt =
(
I + T (ϵ) + T 2(ϵ) + · · · + T t−1(ϵ)

)
bϵ.

And we use perturbation theory on T (ϵ) to approximate αt.
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4.2.2 Kato’s perturbation theory on T (ϵ)
Observe that T (ϵ) can be expanded using the Maclaurin series as follows.

T (ϵ) = T0 + ϵT1 + ϵ2T2 + · · · ,

where

T0 =

 0 −1 0
−1 0 0
0 0 2

 , (4.4)

which is symmetric and hence diagonalizable. Note that the spectrum of T0 is Spec(T0) = {−1, 1, 1},
hence we can use the degenrate perturbation to approximate the eigenvalues and eigenvectors of T0.
Moreover, we have

T1 =

0 0
√

2
0 0 0
0

√
2 0


and

T2 =

0 1 0
1 0 0
0 0 −2

 .
Now let us explain the expansions of the eigenvalues and the projection operators on to the corre-
sponding eigenspaces. Since the spectrum of T0 is Spec(T0) = {−1, 1, 1}, we can use the degenerate
perturbation in [15]. Denote the eigenvalue of T (ϵ) which corresponds to −1 by λ−1(ϵ) and the two
eigenvalues corresponding to 1 by λ1,±(ϵ) and the expansions are given as follows.

λ−1(ϵ) = −1 + ϵλ
(1)
−1 + ϵ2λ

(2)
−1 +O(ϵ3) (4.5)

λ1,±(ϵ) = 1 + ϵλ
(1)
1,± + o(ϵ) + · · · (4.6)

Since −1 is a simple eigenvalue of T0, the coefficients λ(1)
−1 and λ

(2)
−1 are given as follows.

λ
(1)
−1 = tr(T1P−1), (4.7)

λ
(2)
−1 = tr(T2P−1 − T1S−1T1P−1), (4.8)

where Pλ is the eigenprojection corresponding to the eigenvalue λ and Sλ is the reduced resolvent at
λ (λ ∈ Spec(T )) which can be computed using

P−1 =


1
2

1
2 0

1
2

1
3 0

0 0 0


and

S−1 = − lim
ξ→−1

∑
λ∈Spec(T )\{−1}

(ξ − λ)−1Pλ = 1
2(I − P−1)

= 1
2


1
2 −1

2 0

−1
2

1
2 0

0 0 1

 .
Thus we have

λ
(1)
−1 = 0
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and
λ

(2)
−1 = 1

2 .

Hence, we obtain
λ−1(ϵ) = −1 + 1

2ϵ
2 +O(ϵ3). (4.9)

Since 1 is a semi-simple eigenvalue of T0, to compute λ1,±(ϵ), we use the reduction process given in
[15]. Consider

T̃ (ϵ) := 1
ϵ

(T (ϵ) − 1)P1(ϵ).

Here P1(ϵ) is the total projection for the +1-group. The new matrix T̃ (ϵ) can be expanded by

T̃ (ϵ) = T̃0 + ϵT̃1 + · · ·

because +1 is semi-simple eigenvalue of T . Here T̃0 is computed using the results given in [15]:

T̃0 = P1T1P1

= 1√
2

0 0 −1
0 0 1
1 −1 0

 .
Using this expression for T̃0 the coefficient λ(1)

1,± can be obtained from the spectrum of T̃0 as follows:

λ
(1)
1,± ∈ Spec

(
T̃0|(P1)

)
= {±i},

and the corresponding eigenvectors are given by

v1,±i = 1
2 [∓i, ±i,

√
2]⊤.

Since T̃0 is a skew-Hermitian matrix, the eigenprojections of ±i can be directly computed by its
normalized eigenvectors v1,±i as

P1,± := v1,±v
∗
1,±i

and it can be checked that
P1 = v1,+iv

∗
1,+i + v1,−iv

∗
1,−i.

Moreover, since the eigenvalues ±i are simple, the term o(ϵ) of the expansion of λ1,±(ϵ) can be
expressed by

o(ϵ) = ϵ2λ
(2)
1,± +O(ϵ3)

and the coefficient λ(2)
1,± can be obtained by using the formula of the weighed mean of the perturbed

eigenvalues again; that is,
λ

(2)
1,± = tr

(
T̃0P1,±

)
= −5

4 .

And finally, we obtain the rest of the eigenvalues of T (ϵ) as follows.

λ1,±(ϵ) = 1 ± iϵ− 5
4ϵ

2 +O(ϵ3). (4.10)

Now with the approximations of the eigenvalues, we can write the spectral decomposition of T (ϵ)
which is given by

T (ϵ) = λ−1(ϵ)P1(ϵ) + λ1,+(ϵ)P1,+(ϵ) + λ1,−(ϵ)P1,−(ϵ),

where Pj(ϵ) is the eigenprojection onto the each perturbed eigenvalues and can be expanded by

Pj(ϵ) = Pj +O(ϵ).
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This implies

αt =
(

1 − λt
−1(ϵ)

1 − λ−1(ϵ)P−1(ϵ) +
1 − λt

1,+(ϵ)
1 − λ1,+(ϵ)P1,+(ϵ) +

1 − λt
1,−(ϵ)

1 − λ1,−(ϵ)P1,−(ϵ)
)
bϵ. (4.11)

Inserting the expansions of λ−1(ϵ), λ1,±(ϵ) in (4.9), (4.10) into (4.11), we have the following expression
for αt:

αt = 1
2

{
1 − (−1)te− ϵ2t

2 (1+O(ϵ))
}
e

ϵ2
4 (1+O(ϵ))b(−1)

ϵ

+ i

ϵ

{
1 − eiϵte− 5

4 ϵ2t(1+O(ϵ))
}
e

5
4 iϵ(1+O(ϵ))b(1,+)

ϵ

− i

ϵ

{
1 − e−iϵte− 5

4 ϵ2t(1+O(ϵ))
}
e− 5

4 iϵ(1+O(ϵ))b(1,−)
ϵ . (4.12)

Here b(j)
ϵ := Pj(ϵ)bϵ. We notice that P−1b0 = 0, which implies that there exists b′ such that b(−1)

ϵ =
ϵ(b′ +O(ϵ)).

4.2.3 Theorems on the quantum search driven by the tailed model

Now let us give the main theorems in this section. Comparing to the usual quantum walk search
algorithms, we have a similar theorem as follows, which gives a run-time of the order O(

√
N) to get

a maximum finding probabilty of u∗.

Theorem 4.2. (Pulsation) Until the time step O(N), the finding probability of the marked vertex is
estimated by

νt(u∗) ∼ 1
2

( 1 − ct cos[t
√

2/N ] )2

1 + c2
t

,

where ct = e−(5/2)·(t/N) for large size N . In particular, at the time step t ∼ π
√
N/2, the finding

probability of the marked vertex is

νt(u∗) ∼ 1
2

( 1 + e
− 5π

2
√

2N )2

1 + e
− 5π√

2N

>
1
2 .

Proof. Since b(−1)
ϵ ∈ O(ϵ), if t ≪ 1/ϵ2, the second and third terms in (4.12) are main terms; that is,

αt ∼ i

ϵ
(1 − eiϵte− 5

4 ϵt2)b(1,+)
ϵ − i

ϵ
(1 − e−iϵte− 5

4 ϵt2)b(1,−)
ϵ

for sufficiently small ϵ. Note that

b(1,+)
ϵ = P1,+bϵ = ⟨v1,i, b0⟩v1,i +O(ϵ)

= [−i/
√

2, i/
√

2, 1]⊤ +O(ϵ).
b(1,−)

ϵ = P1,−bϵ = ⟨v1,−i, b0⟩v1,−i +O(ϵ)
= [i/

√
2,−i/

√
2, 1]⊤ +O(ϵ).

Therefore until t ∈ O(1/ϵ), we have

αt ∼ i

ϵ

[
−

√
2(1 − ct cos ϵt),

√
2(1 + ct cos ϵt), 2 sin ϵt

]⊤
,

where ct = e−(5/4)ϵ2t. Then the normalized constant of the relative probability can be computed by
4(1 + c2

t ). Then we have

νt(u∗) ∼ 2(1 − ct cos ϵt)2

4(1 + c2
t ) ,
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for t ∈ O(1/ϵ). In particular, if t = π/ϵ, then the finding probability at the marked vertex takes the
local maximal value

νt(u∗) = 1
2

(1 + e−5π/(2
√

2N))2

1 + e−5π/
√

2N
> 1/2.

This theorem implies that until the time step O(N), this walk has the oscillation with the peri-
odicity π

√
2N . Thus the locally maximal value of the time sequence of {µt(u∗)}t>0 can be observed

around O(
√
N) and its probability is higher than 1/2.

Next we answer the natural question arised in our model, What is the behaviour of the finding
probability in the long run?

Definition 4.3. (The limit distribution) The normalized finding probabilty on V (KN ) is defined by

µN (u) = lim
t→∞

νt(u)

for any u ∈ V (KN ).

Theorem 4.4. (The finding probability of the marked vertex at the fixed point)
Let µ be the limit distribution of the finding probability defined as the above. Then we have

lim
N→∞

µN (u∗) = 1
2 .

Proof. Taking t → ∞ in (4.11) and inserting the expansions of λ−1(ϵ) and λ1,±(ϵ) in (4.9) and (4.10),
we have

α∞ := lim
t→∞

αt

= 1
2e

ϵ2(1+O(ϵ))/4P−1(ϵ)bϵ + i

ϵ
e5iϵ(1+O(ϵ))/4P1,+(ϵ)bϵ − i

ϵ
e−5iϵ(1+O(ϵ))/4P1,−(ϵ)bϵ.

Then

lim
ϵ→0

ϵα∞ = lim
ϵ→0

(ie5iϵ/4P1,+(ϵ)bϵ − ie−5iϵ/4P1,−(ϵ)bϵ)

= lim
ϵ→0

2Re
(
ie5iϵ/4P1,+bϵ

)
= −2Im(P1,+b0)

= −1√
2

−i
i
0

 .
Thus the finding probability at the target vertex u∗ is 1/2 because the relative probability is given by
|α∞(1)|2.

This theorem implies that we can find the marked vertex in the stable state with probability 1/2
while the traditional quantum search algorithm has the oscillation. Since the traditional quantum
search algorithm takes O(

√
N) if we measure the system at an appropriate time, now the next interest

may be that how long does it take to converge? To answer the question, let us introduce the finite
time which we regard as convergence.

Definition 4.5. (ℓ2-mixing time of quantum walk) Let Ψt be the t-th iteration of the quantum walk
and Ψ∞ be its stationary state. For θ > 0, we set t(θ) by

t(θ) := min{s > 0 : ∀t > s, ||Ψ∞ − Ψt||KN
< e−θ},

where for f ∈ CÃ, the norm ||f ||KN
is the ℓ2-norm with respect the internal graph; that is,

||f ||2KN
:=

∑
a∈A: t(a)∈V (KN )

|f(a)|2.
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Theorem 4.6. (The ℓ2-mixing time) Let t(θ) be the ℓ2-valued mixing time defined as the above. Then
we have

t(θ) ∈ Θ(N logN)

for any fixed θ > 0.

Proof. By (4.12), we have

||α∞ − αt|| = e− ϵ2t
2 (1+o(1))

ϵ

∣∣∣∣∣∣∣∣ϵ22 (−1)t(b′ + o(1)) + ie− 3
4 ϵ2t(b(1,+)

0 + o(1)) − ie− 3
4 ϵ2t(b(1,−)

0 + o(1))
∣∣∣∣∣∣∣∣.

(4.13)

There is a conflict between ϵ2 and e−3ϵ2t/4 in the RHS. Note that ϵ2 ≪ e−3ϵ2t/4 if and only if t <
8| log ϵ|/(3ϵ2). Let us see the lower bound of t such that ||α∞ − αt|| < e−θ if t < 8| log ϵ|/(3ϵ2). By
(4.13), there exists m > 0 such that

||α∞ − αt|| = (m+ o(1))e
− 5ϵ2t

4 (1+o(1))

ϵ
. (4.14)

Then solving

(m+ o(1))e
− 5ϵ2t

4 (1+o(1))

ϵ
< e−θ,

we obtain the lower bound of t by

t > (θ + log(m+ o(1)) + | log ϵ|) 4
5ϵ2(1 + o(1)) .

Thus the lower bound of such a t must belong to at least Θ(| log ϵ|/ϵ2). On the other hand, if
t ≥ 8| log ϵ|/(3ϵ)2, then (4.13) is rewritten by

||α∞ − αt|| = (m′ + o(1))ϵe− ϵ2t
2 (1+o(1)), (4.15)

which implies
t > (θ + log

(
m′ + o(1)

)
− | log ϵ|) 2

ϵ2(1 + o(1)) .

Since t > 8| log ϵ|/(3ϵ)2, this inequality is satisfied for any fixed θ if ϵ is sufficiently small. Therefore
we can conclude that t(θ) ∈ Θ(| log ϵ|/ϵ2) = Θ(N logN).

Remark. We remark that theorems 4.2 and 4.6 both give finding probabilities in their unique ways,
where the former one gives a quantum speed-up and the latter one shows a stability. In other words, the
former one appears to be a finding probability which is in usual quantum walk based search algorithms
and the latter one occurs because of the converging property of our model which shows a speed down
and takes more time than classical search algorithms, but has advantage in measuring as the finding
probability is stable.
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Chapter 5

Conclusion

Discrete time quantum walks is the quantum analogy of random walks, which is determined by a set of
states in the Hilbert space spanned by the set of arcs of the underlying graph, and a unitary operator
which describes the dynamics that changes the state of the walker at each time step. In general, it is
not necessary that the state of the walker converges, because the time evolution operator is unitary,
and hence the eigenvalues lie on the unit circle. We introduce the tailed model which guarantees the
convergence of the state in the long run. The state which the state of the walker converges to is called
the stationary state. This property is new to the tailed model and we are interested in utilizing it and
study the use of this stationary state in various situations.

First we study the Szegedy dynamics in the tailed model. We show that in the long run, the
scattering matrix of the walker becomes the Szegedy matrix. Moreover, we define an electric current
function in terms of the stationary state and we show that this current function satisfies the Kirchhoff’s
current and voltage laws.

Next we study a Grover-like dynamics in the tailed model, which is equivalent to a special case of
a previously known model. In this study we find the scattering matrix and show that the scattering
matrix gives a characterization of bipartite graphs. Based on this characterization, if the underlying
graph is bipartite or non-bipartite, we derive a current function and a pseudo-current function re-
spectively, which satisfy Kirchhoff laws and a type of pseudo-Kirchhoff laws respectively. Moreover,
we formulate the electric network equations using the Laplacian and signless-Laplacian matrices of
the underlying graph respectively. Furthermore, we introduce the notion of the comfortability of the
underlying graph, a quantum analogy of the energy of the electric circuit and using the properties
of the Laplacian and the signless-Laplacian matrices, we obtain the comfortability of the underlying
graphs in terms of the combinatorial properties of the graph. If the underlying graph is bipartite,
we show that the comfortability can be computed in terms of the tree number and the number of
spanning forests of the graph and if the underlying graph is non-bipartite, we show that it can be
computed in terms of the odd unicyclic subgraphs.

Finally, we study a quantum search algorithm on the complete graph KN , which arises from the
tailed model. Unlike the usual quantum search algorithm in the literature, since the state of the
walker converges in our model, we have two types of finding probabilities for a given marked vertex.
The first type of the finding probability is a maximum finding probability obtained at a time step of
order O(

√
N), which is a similar result to the usual quantum search algorithms. The second type of

the finding probability is the probability obtained at the stationary state, or the limiting probability
in the long run. This type of finding probability arises due to the convergence property in our model
which is not achieved in the usual quantum search algorithms. We show that this limiting probability
is arbitrary close to 1

2 when the order of the run-time of the algorithms is as large as O(N logN).
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Appendix

Let Ci be an odd unicyclic graph and let B̃Ci be the non-oriented incident matrix of Ci. Let us prove
that det(B̃Ci) = ±2. Since an odd unicyclic graph is obtained by connecting trees to an odd cycle (say
C ′), If we expand det(B̃Ci) along the row corresponding to a leaf of a tree connected to C ′, it reduces
to a similar determinant. By expanding recursively along the rows corresponding to the leaves of the
graph, we obtain

det(B̃Ci) = ±det(BC′).

Now it is enough to show that det(BC′) = 2. Observe that we have

det(BC′) = det



1 0 ... 0 1
1 1 0 ... 0
. .
. .
. .
0 ... 0 1 1


.

Expanding the determinant in the right hand side along the first row, since there are odd number of
rows and columns, we get

det(BC′) = det



1 0 ... 0 0
1 1 0 ... 0
. .
. .
. .
0 ... 0 1 1


+ det



1 1 ... 0 0
0 1 1 ... 0
. .
. .
. .
0 ... 0 0 1


.

Now to compute the two determinants in the right hand side, we expand the first determinant recur-
sively along the rows and the second along the columns and we obtain that these two determinants
are equal to 1. Hence we conclude that

det(B̃Ci) = ±2.
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