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Abstract

Digital imaging devices have become more and more important in our daily life.

However, due to environmental conditions and the limitations of imaging devices, the

captured digital images are generally not desirable in visual quality. For example,

real-world scenes have wide illumination ranges that exceed standard camera sensors’

dynamic range; the standard cameras can only produce low dynamic range (LDR)

images with under-exposure and over-exposure regions where the detailed information

is missing. Furthermore, when the depth range of the scene is relatively large, but

the camera’s depth of field (DoF) is limited, the captured image can also be blurry

due to defocus. Thus, there are increasing demands to improve the image quality

from the limited devices. However, it is expensive to use a better camera to achieve

this goal. A common and cost-effective approach is to employ image enhancement

methods to improve the image quality from limited devices. Due to the advancement

of deep learning, deep Convolutional Neural Network (CNN) has achieved impressive

success in computer vision tasks (e.g., image classification, segmentation, detection,

etc.) and have gradually become the dominant method in image enhancement tasks.

In this dissertation, we consider improving the image quality from devices with the

above limitations, aiming at solving the problem above in real-world applications. We

focus on designing effective architectures to address these problems.

In Chapter 2, we consider the problem of generating a high dynamic range (HDR)

image of a scene from its LDR images in a feature fusion manner. Recent studies

employ deep learning and solve the problem end-to-end, leading to significant per-

formance improvements. However, it is still hard to generate a good quality image

from LDR images of a dynamic scene captured by a hand-held camera, e.g., occlusion

due to the significant motion of foreground objects, causing ghosting artifacts. The

key to success relies on how well we can fuse the input images in their feature space,

where we wish to remove the factors leading to low-quality image generation while

performing the fundamental computations for HDR image generation, e.g., selecting

the best-exposed image/region. We propose a novel method that can better fuse the

features based on two ideas. One is multi-step feature fusion; our network gradually
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fuses the features in a stack of blocks having the same structure. The other is the

design of the component block that effectively performs two operations essential to

the problem, i.e., comparing and selecting appropriate images/regions. Experimen-

tal results show that the proposed method outperforms the previous state-of-the-art

methods on the standard benchmark tests.

In Chapter 3, we further consider the HDR image reconstruction problem in an

alignment-before-merging manner. Large object motion and occlusions in the LDR

images often lead to visible artifacts using existing methods. To address this prob-

lem, we propose a deep network that tries to learn multi-scale feature flow guided

by the regularized loss. It first extracts multi-scale features and then aligns features

from non-reference images. After alignment, we use residual channel attention blocks

to merge the features from different images. Extensive qualitative and quantitative

comparisons show that our approach achieves state-of-the-art performance and pro-

duces excellent results where color artifacts and geometric distortions are significantly

reduced.

In Chapter 4, we consider the problem in defocus image deblurring. Previous clas-

sical methods follow two-step approaches, i.e., first defocus map estimation and then

the non-blind deblurring. In the era of deep learning, some researchers have tried to

address these two problems by CNN. However, the simple concatenation of defocus

map, which represents the blur level, leads to suboptimal performance. Considering

the spatial variant property of the defocus blur and the blur level indicated in the de-

focus map, we employ the defocus map as conditional guidance to adjust the features

from the input blurring images instead of simple concatenation. Then we propose a

simple but effective network with spatial modulation based on the defocus map. To

achieve this, we design a network consisting of three sub-networks, including the defo-

cus map estimation network, a condition network that encodes the defocus map into

condition features, and the defocus deblurring network that performs spatially dy-

namic modulation based on the condition features. Moreover, the spatially dynamic

modulation is based on an affine transform function to adjust the features from the

input blurry images. Experimental results show that our method can achieve better

quantitative and qualitative evaluation performance than the existing state-of-the-art

methods on the commonly used public test datasets.
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Chapter 1

Introduction

Digital imaging devices such as smartphone cameras and digital cameras have

become more and more important in our daily life. For example, due to the convenient

usage and low price of the smartphone cameras, people are likely to use smartphone

cameras to record the moments in their daily life. And also, people use surveillance

cameras to guarantee the security of society. Therefore, there are increasing demands

to improve the image quality from the limited devices. However, due to the constraints

of environmental conditions and limited imaging devices, the captured digital images

are generally not desirable in visual quality. For example, the real-world scenes have

wide illumination ranges that exceeds the dynamic range of standard camera sensors;

the standard cameras can only produce low dynamic range (LDR) images that have

under-exposure and over-exposure regions where the detailed information is missing.

And when the depth range of the scene is relatively large, but the depth of field (DoF)

of the camera is limited, the captured image can also be blurry due to defocus. It is

expensive to overcome these problems by using a better camera that has a larger depth

of field or bit-depth. Thus, a common and more cost-effective approach is to employ

image enhancement methods to improve the quality of the imaging from limited

devices. It can effectively improve the image’s visual quality without increasing too

much imaging hardware cost.

Recently, deep Convolutional Neural Networks (CNNs) have achieved impressed

success in computer vision tasks. The most successful application of CNNs in com-

puter vision is image classification, i.e., classifying an image into its class (e.g., dog
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or cat). In 2015, CNNs with residual connections [6] achieved humans’ level accuracy

on a large scale dataset [7]; CNNs with densely connected layers [8] further improved

the performance on the same task. Building on the success of image classification,

CNNs also achieve successful application on many other tasks, like object detection

and segmentation [9–11], image generation [12] and so on, showing their great capac-

ity to address various problems in computer vision. So in this dissertation, we utilize

CNN-based high dynamic range imaging (HDRI) and defocus deblurring methods to

improve the quality of the imaging from the limited devices.

In this chapter, we give a brief introduction on HDRI 1.1, image defocus deblurring

1.2. To encourage more understanding, we include the preliminary knowledge related

to our study in Sec. 1.3. Lastly, in this chapter, the outline of each individual chapter

is described in Sec. 1.4.

1.1 High Dynamic Range Imaging

High dynamic range imaging is an important task in computational photography

and image processing which aims to recover the high dynamic range image from the

low dynamic range images. The dynamic range is defined as the ratio of the highest to

the lowest luminance in a scene. The dynamic range of a real-world scene is extremely

high, which is approximately 14 orders of magnitude [13,14]. For example, the typical

challenging scene for most consumers and even professional digital cameras is a scene

with both dark/indoor and bright/outdoor scenes. Due to the limited range of the

devices, in order to make scenes in the dark visible, the camera needs longer exposure

times, but this will make the bright regions saturated or over-exposure. On the

other hand, using shorter exposure times to capture bright area details will lose the

information in the darker areas.

Accurate recovering the high dynamic range image for natural scenes is a chal-

lenging task [15]. A direct way to achieve HDR image is to use a specialized camera.

However, this strategy is not widely used since such a specialized camera is expen-

sive for ordinary usage. Another strategy is to reconstruct the HDR image based

single/multiple LDR images captured by the limited sensors.

Generally, the LDR camera needs to set the appropriate exposure time (∆tj) and

2
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Figure 1.1: High dynamic range imaging based on multi-exposure images.

relies on the camera response function (CRF) fCRF to map the irradiance (E) of the

natural scene captured by the lens to the LDR image (x) [14]:

xj
i = fCRF (Ej

i ∆tj) (1.1)

where Ej
i and xj

i are the irradiance and pixel value at pixel location (i) in the j-th

exposure image with exposure time ∆tj, respectively. For an image sequence, there

are a set of multi-exposure images X = x1, ..., xj, ..., xJ , where J is the number of

LDR images.

The simplest method for HDR reconstruction is to learn the inverse mapping of

the CRF from a single-exposure LDR image. However, since only a single exposure

image contains limited information for reconstruction, learning the HDR content from

it is an ill-posed problem [14, 16]. Therefore, it is difficult to reconstruct the HDR

image using a single exposure image, and the quality of the HDR image is inferior to

that of using multi-exposure LDR images.

Another strategy for HDRI is to utilize a sequence of different exposure image.

As shown in 1.1, there are two kinds of methods that utilize a sequence of different

exposure image for HDRI: multi-exposure fusion methods [17, 18] in image domain

and HDR reconstruction [1,5,19] in radiance domain and then tone mapping to LDR

image for visualization.

As shown in Figure 1.2, multi-exposure fusion methods [17, 18] provide a simple
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Figure 1.2: Multi-exposure image fusion for a static scene.

approach to achieve high dynamic range image based a fusion operation into the

LDR images with different exposure times. It performs fusion in the 8-bit pixel value

domain and has been widely used in mobile devices for HDR imaging [20].

The fusion operation can be described as followed,

xi =
J∑

j=1

W j
i x

j
i (1.2)

where W j
i and xj

i are the weights and pixel value at pixel location (i) in the j-th

exposure image, respectively; xi is the fused image.

Multi-exposure fusion methods are specially designed only for static scenes and

have achieved good performance on the static scenes [17,21,22]. As shown in Figure

1.4, it is obvious that there would be ghosting artifacts since there are moving objects.

However, in the real situation, there are always moving objects or a shaking camera,

resulting in ghosting artifacts in the dynamic scene. In order to address this kind of

ghosting artifact, the source exposure images are globally registered via registration
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operators such as SIFT [23], Harris [24], SURF [25]. With global alignment, the

multi-exposure fusion methods still perform on the pixel value domain, which limits

the performance of HDR imaging in the dynamic scenes.

Tone mapping

(a) high-bit image (b) 8-bit image

Figure 1.3: An example for tone mapping.

In recent years, deep learning-based methods have achieved unprecedented success

in high dynamic range imaging and gradually become a dominant approach in this

task. Unlike the multi-exposure fusion methods fused on the pixel value domain, the

deep learning based approach to reconstruct HDR content in radiance domain can

directly learn a highly non-linear and complicated mapping function from the given

multi-exposure images to the HDR images. After achieving the HDR image, a tone

mapping function needs to be applied for visualization since standard display devices

like LCD cannot directly show the HDR image. Thus, the tone mapping function

is used to compress the dynamic range of HDR images for effective visualization as

shown in Figure 1.3. To this end, our goal is to design effective network structures

on deep learning to achieve better performance on HDRI.

Under-exposure image Over-exposure imageNormal-exposure image

Figure 1.4: A dynamic scene with multi-exposure.
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1.2 Defocus Image Deblurring

Defocus blur is inevitable when the rays from a scene not lying on the focal plane

of the camera converge to a region rather than a point on the image plane, as shown

in 1.5, and the region is called the circle of confusion (COC) [26]. This phenomenon

is caused by the limitations of the hardware. The exposure of an image is governed by

two parameters: shutter speed and aperture size. Shutter speed indicates the time in

which the sensor is exposed to light, while the aperture controls the amount of light

traveling through the lens and falling on the image sensor. The camera can achieve

the same exposure by fixing one of them while adjusting the other one. For example,

when a camera is set into aperture-priority mode, the aperture is fixed while the

shutter speed is adjusted to control how long the sensor is exposed to light. But the

problem with the slow shutter speed is that it results in the motion blur if there is a

moving object in the scene or a moving camera to captured images. On the contrary,

if the camera is in shutter-priority mode, the shutter speed is fixed while the aperture

adjusts its size. Using a wider aperture allows a large amount of light to reach the

sensor within a fixed time. However, the DoF is reduced, causing defocus blur in

scene regions outside the DoF. However, some computer vision applications require a

wide aperture but still want an all-in-focus image, which poses a challenging problem

for current devices. An obvious example is cameras on self-driving cars or cameras on

cars that map environments. In this case, the camera must use a fixed shutter speed

and the only way to get sufficient light is to use the wide aperture, which results in

the defocus blur.

An example of defocus blur is shown in Figure 1.6(a). The level of the defocus

blur is highly dependent on the scene depth, aperture size and the focal plane of

the camera, which means the level of the defocus blur is spatially variant. And a

defocus map describes the level of the defocus blur as shown in Figure 1.6(b), which

is quantitatively described as the diameter of COC for each pixel. The thin lens

model is shown in Figure 1.5 [26].

Based on the thin lens equation 1
f

= 1
f1

+ 1
S1

, where f is the focal length of the

lens, S1 is the focal distance, f1 is the image distance, the COC diameter c of a scene
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Figure 1.5: Circle of confusion.

point at object distance S2 can be computed by:

c = A
|S2 − S1|

S2

f

S1 − f
(1.3)

where A is the aperture size.

The defocus blurring is an inverse problem - blind deblurring, in which both the

blur kernel and the sharp image are unknown. To remove the defocus blur, conven-

tional defocus deblurring methods typically decompose the problem into two steps:

defocus map estimation and the non-blind deblurring [27–31]. there still is a CNN-

based method that follows first defocus map estimation and then non-blind deblur-

ring [32]. While some end-to-end methods based on convolutional neural network for

defocus deblurring are proposed [33–35]. Although the previous works can remove the

defocus deblur to some extent, there is still a large gap between the results achieved

by these methods and the all-sharp ground truth. It is still a challenging task to

achieve defocus blur removal by using a single image. Thus, we pursue more powerful

approaches to remove the defocus blur.
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(a) Input image (b) Defocus map (c) All-sharp ground truth

Figure 1.6: An example for defocus blur.

1.3 Preliminaries

To encourage more understanding, we introduce the preliminary knowledge that is

relevant to our work in this section, which includes the convolutional neural network,

some architectures related to image quality improvement and the metrics used for

evaluation on image quality improvement.

1.3.1 Evaluation Metrics for Image Quality Assessment

Image quality assessment methods are very important for high-fidelity imaging

since they show the direction to optimize the designed network by quantitatively

measuring the quality of the reconstructed images. Here we will introduce some of

them which are used for evaluation in our work.

Mean Square Error (MSE) Mean square error is the commonly-used metric in

image quality assessment and it is also well-known as L2 loss for optimization. It is

a reference-based metric, which means it needs ground truth for computation. The

value is closer to zero, the performance is better.

Given the reconstructed image Irec ∈ RC×H×W and the ground truth image Igt ∈
RC×H×W , where the C is the number of channels in the image, C = 1 for gray images

while C = 3 for color images, and H and W are the height and width of the images,

respectively, the mean square error between the reconstructed image and the ground

truth image is defined as,

MSE(Irec, Igt) =
1

CWH

C∑
c=1

W∑
x=1

H∑
y=1

(Irec(c, x, y) − Igt(c, x, y))2, (1.4)
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Mean Absolute Error (MAE) Mean absolute error is also the commonly-used

metric in image quality assessment and it is also well-known as L1 loss for opti-

mization. It is also a reference-based metric and if the value is closer to zero, the

performance is better. The mean absolute error between the reconstructed image and

the ground truth image is defined as,

MAE(Irec, Igt) =
1

CWH

C∑
c=1

W∑
x=1

H∑
y=1

|Irec(c, x, y) − Igt(c, x, y)|, (1.5)

Peak Signal-to-Noise Ratio (PSNR) The Peak Signal-to-Noise Ratio is the most

commonly-used metric in image quality assessment. The PSNR is an expression for

the ratio between the maximum possible signal power and the power of the distorting

noise, which affects the quality of its representation. Because many signals (e.g.,

images) have a very wide dynamic range, The PSNR is usually expressed as the

logarithm term of the decibel scale. The PSNR value varies from 30 to 50 dB for

image and video quality evaluation due to the 8-bit data representation for images.

The PSNR between the reconstructed image and the ground truth image is defined

as,

PSNR(Irec, Igt) = 10 · log10
IMAX

MSE(Irec, Igt))
, (1.6)

where IMAX is the maximum value of an image. For example, for an 8-bit image, the

maximum value is 255.

Structure Similarity Index Method (SSIM) The Structural Similarity Index

Method is a reference-based perceptual metric. SSIM is computed by the combination

of three major components: luminance, contrast and structural [36]. Given two

images (or patches) x and y, luminance and contrast is estimated as the mean and

standard deviation of each image,

µx =
1

N

N∑
n=1

xn (1.7)

σx =

√√√√ 1

N − 1

N∑
n=1

(xn − µx)2 (1.8)
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where N is the number of pixels in the image x, xn is the pixel value of n-th pixel

location. Structure is estimated by their covariance σx,y, which is computed by,

σx,y =

√√√√ 1

N − 1

N∑
n=1

(xn − µx)(yn − µy) (1.9)

Then the SSIM can be defined as,

SSIM(Irec, Igt) = [l(Irec, Igt)]
α · [c(Irec, Igt)]

β · [s(Irec, Igt)]
γ (1.10)

where l(Irec, Igt) is the luminance comparison function, c(Irec, Igt) is contrast compar-

ison function and s(Irec, Igt) is the structure comparison function, respectively, and

α, β and γ are positive constants to adjust the effect of luminance, contrast and

structure comparison function.

The comparison function are given as

l(Irec, Igt) =
2µrecµgt + C1

µ2
recµ

2
gt + C1

(1.11)

c(Irec, Igt) =
2σrecσgt + C2

σ2
recσ

2
gt + C2

(1.12)

s(Irec, Igt) =
σrec,gt + C3

σrecσgt + C3

(1.13)

where µrec and µgt are the local means for the image Irec and Igt, respectively. σrec

and σgt are the standard deviations for the image Irec and Igt, respectively. And the

σrec,gt is the cross-covariance for the image Irec and Igt. When α = β = γ = 1 and

C3 = C2/2, then the SSIM in Equation 1.10 can be simplified as the following form

using Equations 1.11-1.13:

SSIM(Irec, Igt) =
(2µrecµgt + C1)(2σrecσgt + C2)

(µ2
recµ

2
gt + C1)(σ2

recσ
2
gt + C2)

(1.14)

Learned Perceptual Image Patch Similarity (LPIPS) The Learned Percep-

tual Image Patch Similarity [37] is also a reference-based perceptual metric. LPIPS
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performs a comparison on the features extracted by some deep models, and these

models are pre-trained on the large-scale image dataset like ImageNet [7]. As argued

in [37], the stronger a feature set is at classification and detection, the stronger it is as

a model of perceptual similarity evaluation. Thus, the LPIPS can quantitatively com-

pute the perceptual scores of images based on the features extracted by intermediate

layers in the pre-trained deep models.

Given a netowrk, ylrec ∈ RHl×Wl×Cl and ylgt ∈ RHl×Wl×Cl are the normalized fea-

tures extracted for l-th layer from the reconstructed image Irec and the ground truth

Igt. The the LPIPS score between the reconstructed image Irec and the ground truth

Igt image is computed as followed,

LPIPS(Irec, Igt) =
L∑
l=1

1

HlWl

Hl∑
h=1

Wl∑
w=1

||wl ⊙ (ylrec − ylgt)||22 (1.15)

where wl ∈ RCl is the weight vector in l-th layer.

1.3.2 Convolutional Neural Network

Convolutional layers extract image features by performing a weighted summation

operation between the convolutional kernel and the input features. Convolutional

layers are often stacked in a deep convolutional neural network with the lower con-

volutional layers extracting simple features such as texture and color and the deeper

convolutional layers extracting deeper semantic features. Convolutional layers have

the features of weight sharing and local connectivity, which reduce the number of pa-

rameters and avoid overfitting. Weight sharing means that the weight parameters of

the convolutional kernel are shared for each position in the input features. Compared

with the fully connected layer, the weight sharing reduces in the convolutional layer

the number of parameters. The local connection means that the convolutional kernel

is performed on a local patch in the input features at a time. The advantage of local

connectivity is that the number of parameters is reduced. Local connectivity also

helps to extract local features of the image.

For simplicity, here we introduce the convolutional operation by setting the num-

ber of channel to 1. Given a input feature x ∈ RH×W and a kernel x ∈ RK×K , the
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Figure 1.7: An illustration of convolutional operation

convolutional operation is defined as,

y(u, v) =
K∑
i=0

K∑
j=0

x(u + i, v + j) × w(i, j) (1.16)

where u and v denote the pixel location of input feature. The convolutional operation

is shown in Figure 1.7.

1.3.3 Batch Normalization (BN) Layer

Batch Normalization [38] is initially proposed to reduce the internal covariate shift

in deep networks. Deep networks consist of many layers and the parameter update

of each layer will cause the input distribution of the next layer to change. The input

distribution of the deeper layer will change drastically due to a small change in the

shallow layer, resulting in a significant shift in deeper layers. So the learning rate,

weight initialization, and optimization methods need to be set carefully to train the

deep models. Batch Normalization alleviates the internal covariate shift problem

by adjusting the mean and the standard deviation of the input features for each

layer. Specifically, there are two steps in Batch Normalization: the normalization

step and the scale and shift step. In the normalization step, the input samples will

be normalized to make them have the mean of zero and the standard deviation of 1,
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µ =
1

m

m∑
i=1

xi

σ2 =
1

m

m∑
i=1

(xi − µ)

x̂i =
x− µ√
σ2 + ϵ

(1.17)

where ϵ is a small constant number to avoid zero division and xi is the i-th sample

in the mini-batch.

Then in the scale and shift step, the normalized features x̂ are transformed by,

yi = x̂i × γ + β (1.18)

where γ and β are the learnable parameters. Batch Normalization can accelerate the

convergence in model training and make the model training process more stable.

1.3.4 Fully Connected (FC) Layer

A fully connected (FC) layer performs a linear combination on each element in a

vector by using the learnable parameters, i.e., weight and bias parameters. Given an

m dimensional input vector x ∈ Rm, the fully connected layer is defined as,

y = WTx + b (1.19)

where y ∈ Rn is the output, W ∈ Rm×n is the weight parameter, and b ∈ Rn is the

bias parameter. An illustration of FC layer is shown in Figure 1.8

1.3.5 Pooling Layer

The pooling layer is used to reduce the spatial dimension of the input. Then

the non-representative features will be filtered out. Thus the more valuable features

can be extracted. The commonly-used pooling layers are Max pooling and Average

pooling as shown in Figure 1.9.

Given a feature map F ∈ RH×W×C , a max pooling layer with stride s and kernel
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Figure 1.8: Fully connected layer

size K is applied to each c-th channel of F as follows,

O(i, j, c) =max(F (s× i + 1, s× j + 1, c)), . . . ,

F (s× i + m, s× j + n, c)), . . . , F (s× i + K, s× j + K, c))
(1.20)

For an average pooling layer, the output is computed as follows,

O(i, j, c) =
1

K ×K

K∑
m=1

K∑
n=1

F (s× i + m, s× j + n, c)) (1.21)
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Figure 1.9: Two typical pooling layers, i.e. max pooling and average pooling with
stride 2 and kernel size 2.
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1.3.6 Activation Function

Activation functions play a very important role in providing the non-linear mod-

eling capacity of the deep neural network since the convolutional operation can be

considered as matrix multiplication which is only a linear combination of the input

features or images, while the activation functions provide the non-linear mapping for

the features. We introduce some commonly-used activation functions as follows.

Sigmoid Function or Logistic Function Sigmoid function is the commonly-

used activation function that has ”S”-shaped curve. Sigmoid function maps arbitrary

input of real value into the probability-like output, [0, 1], as shown in Figure 1.10.

The formulation of sigmoid function is defined as

sigmoid(x) =
1

1 + e−x
. (1.22)

One main disadvantage of sigmoind function is that it is computationally expensive

since it involves exponential in nature. And since the output of sigmoind function is

in [0, 1], it is a non-zero-centered function, which leads to slow convergence.
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Figure 1.10: The plot of sigmoid function.

Hyperbolic Tangent Function While hyperbolic tangent function (tanh) is a

zero-centered function since its output range is in [−1, 1]. This plot between input

and output is shown in Figure 1.11. The function is defined as

tanh(x) =
ex − e−x

ex + e−x
. (1.23)
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Since tanh also involves exponential in nature, the computational cost of tanh is also

high.
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Figure 1.11: The plot of hyperbolic tangent (tanh) function.

Rectified Linear Unit (ReLU) [39] The above two functions have been success-

fully used in the neural network. However, when the above two functions are used

in the hidden layers, gradient vanishing would commonly occur. This is because

when the absolute value of the input is extremely large, the above two functions will

saturate.
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Figure 1.12: The plot of rectified linear unit (ReLU) function.

The ReLU function can avoid the gradient vanishing problem and it is defined as

ReLU(x) = max(0, x). (1.24)

Although the ReLU function looks like a linear function, it is a non-linear function

since the output is zero when the input is smaller than zero, while the output is
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the same as the input when the input is higher than zero. Due to the simplicity of

ReLU, the computational cost is low. And the ReLU function causes the output of

some neurons to be zero, which imposes the sparsity on the network, alleviating the

overfitting problem.

Softmax The softmax function takes a vector with N real numbers as input and

outputs a probability distribution. The softmax function is defined as,

Softmax(x)i =
exi∑N
n=1 e

xn

, for i = 1, . . . , N. (1.25)

Thus, the each element in the output of softmax is in [0, 1] and the over all elements

will add up to 1.

1.3.7 Deep Residual Learning

Deep residual learning is introduced by [6]. An obvious problem on training deep

models is the gradients vanishing and/or exploding [6], which hammer the conver-

gence of the training. Proper parameters initialization [40, 41] and normalization

layer [38] in the network can largely address this problem. Another problem for deep

models is the degradation: the performance gets saturated with the deeper models.

Without a proper setting, the performance of the deep models is limited. By intro-

ducing residual learning, the deep models can be trained and achieve much better

performance. Residual learning is defined as,

y = F(x) + x, (1.26)

where x is the input features and F(.) is the function implemented by some convolu-

tional layers or blocks. Figure 1.13 shows an illustration of residual learning, in which

F(.) is implemented by two convolutional layers.

Loss Function and Gradient Descent Optimization

The loss functions commonly-used in image enhancement tasks are L1 loss, L2 loss,

SSIM loss, perceptual loss [42] and adversarial loss [12]. The model trained on L2
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Figure 1.13: An illustration of residual learning.

loss achieves the blurry images since the L2 loss correlates poorly with image quality

as perceived by a human observer [43] and works on the Gaussian noise distribution

assumption, which is not the truth for many tasks. While the model trained on L1

loss achieves the sharper images in practice. The perceptual loss and adversarial loss,

on the other hand, can provide more details for the reconstructed image.

Training the deep neural network needs the paired data, i.e., the low-quality im-

ages and the corresponding ground truth image in the image-to-image translation

task. The low-quality images are fed into the network to generate the reconstructed

images and then the loss is computed by the loss functions between the reconstructed

image and the corresponding ground truth image.

The optimization methods adjust the parameters iteratively to reduce the loss.

These methods are the gradient descent optimization methods. There are some

commonly-used optimization methods in deep learning, for example, SGD [44] and

Adam [45]. In general, gradient descent methods update the parameters in each step

using the mini-batch with n data samples by,

wi+1 = wi − η · 1

n

n∑
i=1

∇wLi (1.27)

where w is the learnable parameters, η is the step size or the learning rate, Li is the

loss computed on the i-th sample, ∇wLi = dLi

dw
is the gradient with respect to the

parameter w on loss Li.
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1.4 Outline of the Dissertation

In this dissertation, we consider the quality improvement of the imaging from

limited devices. Specifically, we try to improve the quality in the high dynamic range

imaging and the defocus image deblurring. The outline of the content is described in

what follows.

Chapter 2 We consider the problem of generating an HDR image of a scene from its

LDR images. Recent studies employ deep learning and solve the problem in an end-

to-end fashion, leading to significant performance improvements. However, it is still

hard to generate a good quality image from LDR images of a dynamic scene captured

by a hand-held camera, e.g., occlusion due to the large motion of foreground objects,

causing ghosting artifacts. The key to success relies on how well we can fuse the input

images in their feature space, where we wish to remove the factors leading to low-

quality image generation while performing the fundamental computations for HDR

image generation, e.g., selecting the best-exposed image/region. We propose a novel

method that can better fuse the features based on two ideas. One is multi-step feature

fusion; our network gradually fuses the features in a stack of blocks having the same

structure. The other is the design of the component block that effectively performs

two operations essential to the problem, i.e., comparing and selecting appropriate

images/regions. Experimental results show that the proposed method outperforms

the previous state-of-the-art methods on the standard benchmark tests.

Chapter 3 In addition, we further consider the problem of the reconstruction of

ghosting-free HDR images of dynamic scenes in the alignment-before-merging ap-

proach from a set of multi-exposure images, especially with large object motion and

occlusions. To address this problem, we propose a deep network that tries to learn

multi-scale feature flow guided by the regularized loss. It first extracts multi-scale

features and then aligns features from non-reference images. After alignment, we

use residual channel attention blocks to merge the features from different images.

Extensive qualitative and quantitative comparisons show that our approach achieves

state-of-the-art performance and produces excellent results where color artifacts and

geometric distortions are significantly reduced.

Chapter 4 Finally, we consider the problem in defocus image deblurring. Previous
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classical methods follow two-step approaches, i.e., first defocus map estimation and

then the non-blind deblurring. In the era of deep learning, some researchers try to

address these two problems by CNN. However, the simple concatenation of defocus

map, which represents the blur level, leads to suboptimal performance. Considering

the spatial variant property of the defocus blur and the blur level indicated in the de-

focus map, we employ the defocus map as conditional guidance to adjust the features

from the input blurring images instead of simple concatenation. Then we propose

a simple but effective network with spatial modulation based on the defocus map.

To achieve this, we design a network consisting of three sub-networks, including the

defocus map estimation network, a condition network that encodes the defocus map

into condition features and the defocus deblurring network that performs spatially

dynamic modulation based on the condition features. And the spatially dynamic

modulation is based on an affine transform function to adjust the features from the

input blurry images. Experimental results show that our method can achieve better

quantitative and qualitative evaluation performance than the existing state-of-the-art

methods on the commonly used public test datasets.
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Chapter 2

Progressive and Selective Fusion

Network for High Dynamic Range

Imaging

2.1 Introduction

As real-world scenes usually have a range of luminosity beyond the dynamic range

of imaging devices, standard digital cameras can only produce low dynamic range

(LDR) images containing under-exposure and over-exposure regions where the de-

tailed information is missing. There are demands for high dynamic range (HDR)

imaging from various fields such as movie [46] and computer rendering [47], etc.

There are special cameras that can capture HDR images, which tend to be expensive.

Thus, there are methods for generating an HDR image from a series of LDR images

captured by a standard camera with different exposure settings. While they can pro-

duce high-quality HDR images for static scenes, these methods tend to yield images

with many ghosting artifacts for dynamic scenes or even for static scenes when the

input images are captured by a hand-held camera. Numerous efforts have been made

so far to remove the ghosting artifacts in the HDR image reconstruction. There are

several methods that attempt to detect motion regions in the input LDR images and

then remove these regions [48–50]. However, they tend to work well only when the

motion in the input images is relatively small. When there is large motion, a large
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number of image pixels need to be removed, which results in incorrect reconstruction

due to missing information about these pixels. There are also methods that align the

input LDR images using the optical flows to a reference image from the others before

merging them [51–53]. While these methods can handle larger image motion, their

performance highly depends on the accuracy of the estimated optical flows. When

the motion regions are either over or under-exposed, there tend to emerge noticeable

artifacts in the resulting HDR images.

More recent studies employ convolutional neural networks (CNNs) and formulate

the problem in an end-to-end fashion. They train CNNs to learn the direct mapping

from multiple LDR images to an HDR image using appropriate training data [5,54,55].

Although they achieve better performance than the above methods, they still suffer

from the ghosting artifacts when there is large motion in the input LDR images.

We can think of the current CNN-based methods employing the same approach

to the problem, i.e., fusing the input images in their feature space and then recon-

structing an HDR image from the fused feature, typically using an encoder-decoder

network. It relies on the feature fusion to solve the two fundamental problems, i.e., se-

lecting well-exposed images/regions from the input images and correcting/eliminating

the misalignment of the images plus possible occlusions due to object/image motion.

Previous studies perform this feature fusion in a single step using a relatively simple

method such as summation and concatenation. We think this leads to suboptimal

feature fusion, causing ghosting artifacts.

In this chapter, we propose a novel network named progressive and selective feature

network (PSFNet) to resolve the above issue. PSFNet employs i) a multi-step ap-

proach that progressively fuses features and ii) a more suitable mechanism for feature

fusion.

For (i), we split the difficult problem of feature fusion into multiple steps, by

which we intend to make it easier for the network to learn to solve it. It is analogous

to nonlinear optimization algorithms that update parameters iteratively. PSFNet is

designed to fuse the image features in a progressive fashion using a stack of blocks

having the same structure named the progressive and selective feature block (PSFB).

A single PSFB updates the image features by a small amount, and a series of PSFBs

updates them gradually, completing their fusion.
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For (ii), we design the PSFB that effectively performs the two operations playing

the central roles in the feature fusion, i.e., comparison and selection. The former

compares the input LDR images to identify their differences. The latter selects the

images/regions based on the comparison results. These two operations are the key to

successful HDR image computation since it is fundamentally correctly selecting im-

ages/regions that are well-exposed and properly eliminating inter-image misalignment

and possible occlusions.

The experiments demonstrate that the above approach can successfully produce

ghosting-free HDR images. Our method can achieve better performance in terms of

quantitative and qualitative evaluation than the popular algorithms on the commonly

used public test datasets.

2.2 Pioneering Works

Motion Detection and Removal Some methods classify all the pixels of the

input LDR images as static or moving depending on whether they correspond to static

background or moving foreground. They then merge the pixels found to be static

while removing those found to be moving. In [48], weights are computed iteratively

and then applied to pixels to determine their contribution to the final image. Heo et

al. [49] propose a method that assigns a weight to each pixel by computing a Gaussian-

weighted distance to a reference pixel. Jacobs et al. [56] propose a method that detects

moving pixels by calculating the variance of different LDR images. Zhang et al. [57]

propose to detect image motion by analyzing image gradients. Rank minimization [58]

and sparse representation [50] have been employed to detect outliers, including moving

pixels, and reconstruct the final HDR image. However, even when all pixels are

classified correctly, removing the moving pixels makes it impossible to utilize all the

information contained in the input images; the generated HDR images will inevitably

lose some details.

Alignment based Methods These methods first align the input LDR images and

then merge them to reconstruct an HDR image. The images are aligned either at the

pixel level or the patch level. In [51], the optical flow field is estimated and used for

the alignment by warping the input images with them. In [59], a method for merging
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images is proposed to eliminate the artifacts of the alignment using optical flow. Sen et

al. [2] formulate the HDR reconstruction as an energy-minimization task that jointly

solves patch-based alignment and HDR image reconstruction. Hu et al. [52] propose

a method for image alignment using brightness and gradient information. Hafner et

al. [53] propose an energy-minimization method that simultaneously computes the

aligned HDR composite and accurate displacement maps. These methods tend to fail

to deal with large motion and excessively dark or bright regions since the alignment

process is vulnerable to them, generating artifacts in the aligned images. These

methods employ a simple method for merging aligned LDR images, which cannot

eliminate those artifacts.

Deep Learning based Methods As with other similar tasks, deep learning has

been applied to HDR image generation. Eilertsen et al. [60] propose a deep network

having the encoder-decoder structure for HDR image generation from a single image.

It is proposed in [61] to synthesize multiple LDR images with different exposures from

a single LDR image with a deep learning based method and use them to generate

an HDR image. Such single-image-based methods tend to fail to reconstruct the

textures on the saturated regions accurately. Kalantari et al. [1] propose using a

convolutional neural network (CNN) for the task, which takes the LDR images for

the input aligned in advance using optical flow. Wu et al. [5] propose to use a CNN

with the U-net structure to reconstruct a ghosting-free HDR image without explicit

alignment of the input images. Yan et al. [55] propose a non-local structure into a

U-net to improve the accuracy of HDR image generation. Yan et al. [54] propose

attention modules for improving the merging of input images with a reference image.

Pu et al. [62] use deformable convolution [63] across multiscale features to perform

pyramidal alignment of input images and also use attention mechanism to reconstruct

an HDR image from the aligned feature accurately.
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Figure 2.1: Archtecture of proposed network.

2.3 Proposed Method

2.3.1 Outline of the PSFNet

Given a set of LDR images, L1, L2, ..., Lk, of a dynamic scene with different ex-

posures, the goal of HDR imaging is to reconstruct an HDR image H aligned to a

selected reference image Lr. Following the settings in [1], we consider the case of

using three LDR images, L1, L2, and L3, sorted in the order of exposures. We select

L2 as the reference image. Following [1], before feeding them into the network, we

map the LDR images into an HDR domain using gamma correction. To be speicfic,

we map Li to Hi as

Hi = Lγ
i /ti, i = 1, 2, 3, (2.1)

where γ = 2.2 [64] and ti is the exposure time of Li. We then concatenate Li and Hi

in the channel dimension to get a six channel tensor Xi = [Li, Hi] for each of i = 1, 2, 3

and input X1, X2, and X3 to our network. We expect that Li’s help identify image

noises and/or saturated regions, whereas Hi’s help identify the differences from the

reference image.

Our network consists of two sub-networks, the feature extraction network and the

reconstruction network, as shown in Figure 2.1. While the overall construction is sim-

ilar to the encoder-decoder design employed in previous studies [54,62], we design the

sub-networks with clearer intentions. Specifically, the feature fusion network fuses the

input LDR images in their feature space, aiming to eliminate their misalignment and
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possible occlusions due to moving objects. The reconstruction network reconstructs

an HDR image from the fused feature. We will explain their details in what follows.

2.3.2 Feature Fusion Network

The input LDR images are geometrically unaligned and could contain occlusions,

which need to be eliminated. Previous studies leave it to the fusion of the input image

features in the encoder part of a network, which is also intended to generate an HDR

image from multiple input images. Most of them perform the feature fusion in a single

step using a simple operation such as summation and concatenation. We think this

leads to suboptimal results causing ghosting artifacts etc. For better feature fusion,

we employ i) a multi-step approach that progressively fuses features and ii) a more

suitable mechanism for the feature fusion. We explain the two below.

Progressive Feature Fusion

Initially extracting features from the input LDR images, the feature fusion network

fuses their features in a progressive fashion using a stack of blocks having the same

structure, as shown in Figure 2.1. We name the block the progressive and selective

fusion block (PSFB). In our experiments, we use a stack of six PSFBs.

Our intention behind this design is to split the difficult task of feature fusion into

multiple steps, by which we attempt to make it easier for the network to learn to

perform the task. It is analogous to nonlinear optimization algorithms that update

parameters iteratively. Previous studies of other tasks employed this idea of design-

ing an architecture to gradually update estimates to get better results, e.g., RAFT

(recurrent all-pairs field transforms) for optical flow estimation [65]. Our approach

shares the same motivation.

Progressive and Selective Feature Block

Roughly speaking, the computation of an HDR image requires to conduct the

following two: the selection of images/regions that are well-exposed (i.e., neither

under nor over-exposed) and the elimination of inter-image misalignment and possible
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Figure 2.2: Progressive and selective fusion block (PSFB).

occlusions. For the latter, it will be necessary first to identify differences among the

images.

These computations will essentially reduce to two fundamental operations, com-

parison and selection, i.e., comparing the images to identify their differences and

selecting them based on the comparison results. We design the PSFB to perform

these two operations effectively; see Figure 2.2.

A PSFB performs the inter-image comparison in its second half. Specifically, we

concatenate the fused feature computed in its first half with the individual image

features and then apply convolution to each of the concatenated features, as shown

in Figure 2.2. This computation will perform the above comparison since the fused

feature should contain all the image information; the convolution will learn to compare

the input image features and identify their differences.

The PSFB performs the second operation of selection in a component named

the selective feature fusion block (SFFB) in its first half. To design the SFFB, we

borrow the feature fusion mechanism of the selective kernel convolution [66], which

was developed to adaptively choose the size of convolution kernels (e.g., 3×3 or 5×5)

in a convolution layer. Figure 2.3 shows the design of SFFB. It receives inputs from

three input features from different images. We first combine these features using

an element-wise summation as: F = F 1
1 + F 1

2 + F 1
3 . Then global average pooling

is applied across the spatial dimension of F ∈ RH×W×C to generate channel-wise

statistics as s ∈ R1×1×C . A compact feature vector z ∈ R1×1×d is achieved by a

27



GAP FC
PR
eL
U

𝐹!

𝐹!"

𝐹#"

𝐹"" 𝐹""

𝐹#"

𝐹!"

𝐹 s z

𝑣"

𝑣#
𝑣!

𝑠"
𝑠#
𝑠!

softmax

GAP Global average pooling

Fused features

FC
FC

FC

Fully connected layerFC

Figure 2.3: Selective feature fusion block (SFFB).

simple fully connection (fc) layer with dimensionality reduction. d is set to C
8

in our

experiments. Finally, the feature vector z passes through three parallel fc layers with

the dimensionality expansion to generate three feature de scriptors v1, v2 and v3, each

with dimensions 1 × 1 × C. Softmax function is applied to v1, v2 and v3, generating

attention weights s1, s2 and s3 that we use to adaptively recalibrate the feature maps

from different images, respectively. The final feature map F 2 is obtained through the

attention weights on feature maps from different images: F 2 = s1 ·F 1
1 +s2 ·F 1

2 +s3 ·F 1
3 .

Previous studies fuse multiple features with simple methods such as summation

and concatenation, which we think limits the expressive power of the network. Fol-

lowing [66], SFFB performs dynamic fusion via two operations, i.e., fuse and select.

The fusion operator aggregates the input features by their summation followed by

global average pooling and two fully-connected layers, yielding attention weights on

the channels of the individual input features. The selection operator applies these

attention weights to the input features. The attended features are added to form a

fused feature, which is the final output of a SFFB.

It should be noted that while the order of comparison and selection is exchanged

within a PSFB, the fused feature is necessary for the comparison of the image features

as above, and their intra-block order does not matter since we stack multiple PSFBs

as mentioned above.

Details of Computation in PSFB

Taking the first block as an example, we explain the detailed design of a PSFB

here. Firstly, setting the input feature F 0
i = Fi (as this is the first block), it updates
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F 0
i into F 1

i using a convolution layer with kernel size of 3 × 3 as

F 1
i = Conv1(F 0

i ). (2.2)

We then fuse features {F 1
1 , F

1
2 , F

1
3 } using the above SFFB, yielding a fused feature

F 2 as

F 2 = SFFB([F 1
1 , F

1
2 , F

1
3 ]). (2.3)

We concatenate the fused feature F 2 with F 1
i as F 3

i = [F 2, F 1
i ] (i = 1, 2, 3). Thus,

F 3
i contains the individual image feature and the fused feature. We use a convolution

layer with the kernel size of 3 × 3 to convert it to an feature Oi as

Oi = Conv2(F 3
i ) + F 0

i (2.4)

We use “+F 0
i ” to represent a residual connection [6]; the output of Conv2() has the

same size as F 0
i .

Summary of the Feature Fusion Network

As shown in Figure 2.1, the input to the feature fusion network are the three

6-channel input images X1, X2, and X3 corresponding to the input LDR images. The

network first extracts a feature map with N = 64 channels from each using a shared

convolutional layer, yielding F1, F2, and F3. These are inputted to the stack of six

PSFBs. As explained above, a single PSFB updates the image features by a small

amount, and thus the features are progressively fused in the PSFB stack. The input

and output of all the PSFBs have the same size and channels. The features outputted

from the last PSFB are concatenated as Z0 = [O1, O2, O3, F2] and then inputted to

the reconstruction network.

2.3.3 Reconstruction Network

In [54], three dilated residual dense blocks are used to decode the encoded image

feature, reconstructing an HDR image. Although their method achieves good per-

formance, it tends to consume a large amount memory, especially when the input

image size is large. To cope with this, we employ a residual block with dual attention
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mechanism [67] consisting of channel attention [68] and spatial attention [69]. The

residual dual attention mechanism is known to work well for superresolution [69] and

denoising [67]. We expect it to work for our case because of their similarity.

As shown in Figure 2.1, the reconstruction network takes the concatenated features

Z0 = [O1, O2, O3, F2]. It consists of a series of a convolution layer, four residual dual

attention blocks, and three additional convolution layers with a local and a global

skip connections. The structure of a dual attention block is shown in Figure 2.4 and

the structure of a residual dual attention block is shown in Figure 2.5. Applying

a sigmoid function to the output of the last convolution layer, the reconstruction

network outputs an HDR image.

2.3.4 Loss Function

Following [1], we consider the optimization in the domain of tone-mapped HDR

images. It produces better results with fewer artifacts in the dark regions than the

optimization in the original domain of HDR images. To be specific, we employ µ-law
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Table 2.1: Comparison of the methods on the test set of [1]. The primary metrics are
PSNR-µ, SSIM-µ, and HDR-VDP-2; see Sec. 3.4.1 for more detailss.

Methods PSNR-µ PSNR-L SSIM-µ SSIM-L HDR-VDP-2

TMO [61] 8.3120 8.8459 0.5029 0.0924 44.3345

HDRCNN [60] 13.7054 13.8956 0.5924 0.3456 47.5690

Sen [2] 40.9689 38.3425 0.9859 0.9764 60.3463

Kalantari [1] 42.7177 41.2200 0.9889 0.982 61.3139

Wu [5] 41.9977 41.6593 0.9878 0.9860 61.7981

AHDR [54] 43.7013 41.1782 0.9905 0.9857 62.0521

PAN [62] 43.8487 41.6452 0.9906 0.9870 62.5495

PSFNet 44.0613 41.5736 0.9907 0.9867 63.1550

for tone mapping loss, which is formulated as,

T (H) =
log(1 + µH)

log(1 + µ)
, (2.5)

where µ is set to 5, 000 throughout our experiments. It is also reported in [54] that

minimizing the L1 norm between the predicted HDR image Ĥ and its ground truth

H in the tone-mapped domain works better than others. Following their study, we

employ the following loss

L = ∥T (Ĥ) − T (H)∥1. (2.6)

2.4 Experiments

2.4.1 Experimental Settings

Training data

We train our network on the dataset of Kalantari and Ramamoorthi [1], which

consists of indoor and outdoor scenes. It includes 74 samples for training and 15

samples for testing. We use the former for training the PSFNet. Each sample includes
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Figure 2.6: Results for “Building” from the test set of [1]. Upper row from left
to right: the three input LDR images, the HDR image produced by the proposed
method, and (zoomed-in) LDR image patches with two identical positions/sizes (in
red and blue). Lower row: the same patches of the HDR images produced by different
methods.

ground truth HDR images and three LDR images with exposure biases of {−2, 0,+2}
or {−3, 0,+3}. Following the standard procedure of recent studies [1,54,62], we resize

all the images to 1, 000 × 1, 500 pixels.

Testing data

Following recent studies, we choose the datasets for testing. We evaluate methods

on the 15 scenes of the dataset of [1]; we conduct quantitative evaluation using the

provided ground truths. We also use the datasets of Sen et al. [2] and Tursun et

al. [3], which do not contain ground truths; we use them for qualitative evaluation.
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Figure 2.7: Results for “PianoMan” from the dataset of [2]. See Figure 2.6 for the
explanation of the panels.

Evaluation metrics

It is argued in [1] that HDR image generation methods should be evaluated in the

tone-mapped domain, as we usually use generated HDR images after tone-mapping.

Following this argument, we use PSNR-µ and SSIM-µ for primary metrics, which are

PSNR and SSIM values in the tone-mapped domain. We show PSNR and SSIM in

the linear domain, denoted by PSNR-L and SSIM-L, for completeness. We also show

HDR-VDP-2 [70], which is designed to evaluate the quality of HDR images.

It should be noted that there is a limitation in the evaluation based on PSNR-

µ etc. The recent studies, including ours, aim at adequately dealing with ghosting

artifacts. However, the artifacts usually appear in a small area of an image, and they

often have only small impacts on these metrics. HDR-VDP-2 may better evaluate

the image quality in that case. To supplement the quantitative evaluation, we also

show the results of qualitative comparisons.
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Figure 2.8: Results for an image from the dataset of [3]. See Figure 2.6 for the
explanation of the panels.

2.4.2 Implementation Details

The training data are first cropped into patches of 256× 256 pixel size with stride

of 128 pixels. We employ rotation and flipping for data augmentation to avoid over-

fitting. We use the Adam optimizer [45] with β1 = 0.9 , β2 = 0.999, initial learning

rate = 10−4 and set the batch size to 8. We perform training for 210 epochs and

employ the cosine annealing strategy [71] to steadily decrease the learning rate from

initial value to 1 × 10−6. We conducted all the experiments using PyTorch [72] on

NVIDIA GeForce RTX 2080 GPUs.

2.4.3 Comparison with the State-of-the-art Methods

We evaluate the proposed method and compare it with previous methods including

the state-of-the-art. We use Kalantari’s testset [1] for quantitative evaluation and the

above datasets without ground truths [2,3] for qualitative evaluation. The compared
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Figure 2.9: Results from the Testing data (08) of [1]. See Figure 2.6 for the explana-
tion of the panels

methods are as follows: two single image HDR imaging methods, TMO [61] and

HDRCNN [60], and five multi-image HDR imaging methods, the patch-based method

[2], the flow-based method with CNN merger [1], the U-net structure without optic

flow [5], the attention-guide method (AHDR) [54], and pyramidal alignment network

(PAN) [62]. For all methods, we used the authors’ code for testing comparison,

except [62] since their code is not available as of the time of writing this paper.

Evaluation on Kalantari et al.’s Dataset

Table 3.1 shows the quantitative evaluation on the test set of [1], i.e., averaged

values over 15 test scenes. It is seen that the proposed method achieves better per-

formance than others in the primary metrics, PSNR-µ, SSIM-µ, and HDR-VDP-2.

Figure 2.6, Figure 2.9, Figure 2.10 and Figure 2.11 show examples of qualitative

comparisons. The input LDR images contain saturated background and foreground

motions. It is observed from the results of the single-image methods, TMO [61] and
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Figure 2.10: Results from the Testing data (09) of [1]. See Figure 2.6 for the expla-
nation of the panels

HDRCNN [60], which uses the reference image alone, that while they can avoid the

ghosting artifacts, they cannot recover detailed textures; they also suffer from color

distortion. The patch based method of Sen et al. [2] fails to find correct patches,

generating some artifacts. The method of Kalantari et al. [1] cannot completely

eliminate the effects of the occlusion. The method of Wu et al. [5] and AHDR [54]

produce better results but fail to recover the fine details of the texture. Our method

produces the best results; it produces less color distortion and recovers the textures

more accurately.

We also show several samples from from the test set of [1].

As shown in Figure 2.12 and 2.13, there are some samples that our method can

produce almost the same output with the groudtruth.
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Figure 2.11: Results from the Testing data (10) of [1]. See Figure 2.6 for the expla-
nation of the panels

Evaluation on Datasets w/o Ground Truth

We also show qualitative comparisons using Sen’s [2] and Tursun’s [3] datasets,

which do not have ground truths. The results are shown in Figure 2.7, Figure 2.8

and Figure 2.14. The single image methods, TMO [61] and HDRCNN [60], fail to

recover a sharp image and suffer from color distortion and noise. The patch based

method (Sen et al [2]) produces severe artifacts in the saturated area and ghosting

artifacts in the areas undergoing large motion. The same is true for the method of

Kalantari et al. [1]; it produces artifacts in the areas undergoing large motion and

fails to recover the details of the saturated areas. These are arguably because of the

possible misalignment of optical flows and the limitation of the merging method. The

results of Wu et al.’s method [5] tend to show over-smoothness and yield ghosting

artifacts on the large motion areas. AHDR [54] yields artifacts in the saturated areas
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(a) PSFNet (b) Ground Truth

Figure 2.12: Results of the test set of [1].
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(a) PSFNet (b) Ground Truth

Figure 2.13: Results of the test set of [1].
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Figure 2.14: Results for an image from the dataset of [3]. See Figure 2.6 for the
explanation of the panels.

and also suffers from ghosting artifacts due to large motion. On the other hand, our

method produces good results with noticeably reduced geometric and color distortions

compared with others.

Table 2.2: Comparison of fusion methods on the test set of [1].

Fusion Methods PSNR-µ PSNR-L SSIM-µ SSIM-L

Summation 43.9789 41.4092 0.9904 0.9866

Concatenation 43.9560 41.4579 0.9907 0.9867

SFFB 44.0613 41.5736 0.9907 0.9867
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2.4.4 Ablation Study

We conducted experiments to evaluate the components of PSFNet. First, we

compare different methods for feature fusion in the PSFB. To be specific, we replace

the SFFB with concatenation or summation and evaluate the performance. Table 2.2

shows the results. It is observed that the SFFB yields better PSNR values, although

there is little difference in SSIM values.

w/o PSF w/o LSCw/o DAU w/o GSC PSFNet

Figure 2.15: Results obtained by ablated networks.

Table 2.3: Ablation study using the test set of [1].

Methods PSNR-µ PSNR-L SSIM-µ SSIM-L

w/o PSFBs 43.3586 40.9648 0.9902 0.9864

w/o DAB 43.7917 41.0672 0.9903 0.9856

w/o LSC 43.9923 41.4289 0.9906 0.9864

w/o GSC 44.0125 41.3756 0.9907 0.9866

PSFNet 44.0613 41.5736 0.9907 0.9867

We also evaluate individual components in PSFNet. We eliminate either the

stack of PSFBs, the local skip connection (LCS), or the global skip connection (GSC)

from the feature fusion network. When we eliminate the PSFB stack, we use the

feature maps Fi’s instead of Oi’s. We also ablate the DAB from the reconstruction

network. Table 2.3 shows the results. It is seen that PSFBs and DAB are essential to

achieve the best performance and the skip connections (LSC and GSC) show modest
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Table 2.4: Number of PSFBs used in the feature fusion network.

Number of Blocks PSNR-µ PSNR-L SSIM-µ SSIM-L

4 43.9610 41.1000 0.9907 0.9865

5 43.9895 41.3123 0.9907 0.9865

6 44.0613 41.5736 0.9907 0.9867

7 44.0504 41.5091 0.9906 0.9867

8 43.9737 41.3107 0.9906 0.9860

contributions. Figure 2.15 shows examples of zoomed-in patches of an HDR image

produced by the ablated networks. It is seen that color distortion emerges except the

PSFNet (with full components).

Finally, we examine how the number of PSFBs in the feature fusion network affects

the performance. Table 2.4 shows the results. It is seen that there is a peak around

6 and 7 blocks. We conclude that stacking multiple PSABs does contribute to better

performance and too large a number of blocks does not lead to a good result.

EV=-2.0 EV=0 EV=2.0 Ours Ground truth

Figure 2.16: An example failure case of the proposed method.

2.4.5 Limitation

Although our method achieves good performance, as reported above, there are

several cases that it cannot handle well. Figure 2.16 shows an example, where the

generated image contains artifacts on the region occluded by the hand in one of the

input images. The artifacts emerge because the other images do not provide useful
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information about the occluded area due to overexposure. Our method does not work

well for such cases; they might be better formulated as image inpainting.

2.5 Summary and Conclusion

In this section, we have proposed a new method for generating an HDR image of

a dynamic scene from its LDR images. When employing deep learning, the problem

reduces to first fusing the features of the input images and then reconstructing an

HDR image from the fused feature. The first step of feature fusion plays a central

role in generating good quality HDR images. Considering the complexity and diffi-

culty with it, we proposed a network named PSFNet that gradually fuses the image

features in multiple steps with a stack of computational blocks and the design of

the component block that can effectively perform the two operations fundamental to

the HDR image generation, i.e., comparing and selecting appropriate images/regions.

The experimental results have validated the effectiveness of the proposed approach.
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Chapter 3

Learning Regularized Multi-Scale

Feature Flow for High Dynamic

Range Imaging

3.1 Introduction

High dynamic range (HDR) imaging is a method to generate a larger dynamic

range of illumination than standard imaging systems. It has been applied to movies

[46] and computer rendering [47] to gain more information and better visual expe-

rience. As cameras that can capture HDR images are generally expensive, an alter-

native way to get HDR images is to reconstruct HDR images from a series of low

dynamic range (LDR) images captured by a standard camera with different expo-

sure settings. While they can reconstruct high-quality HDR images for static scenes,

the existing methods tend to yield images with many ghosting artifacts for dynamic

scenes, in which the imaging scenes are static captured by a hand-held camera or there

are some moving objects. Increasing efforts have been invested in exploring how to

remove ghosting artifacts in the multi-exposure-based HDR reconstruction. There

are several methods that attempt to detect motion regions in the input LDR images

and then remove these regions in the step of merging the images [48–50]. However,

they tend to work well only when the motion in the input images is relatively small.

When there are large motions, a large number of image pixels need to be removed,
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which results in incorrect reconstruction because the information about these pixels

is lost.

Another approach has also been studied, which is to align input LDR images

to a reference view, and then merge them altogether for HDR image reconstruc-

tion [51–53]. Many recent methods employ convolutional neural network (CNN)

to improve reconstruction image quality. However, there is still room for improve-

ments in the area of ghosting artifacts. End-to-end learning-based approaches such

as [5, 54, 73] without explicit alignment directly feed LDR images into a network to

reconstruct HDR images, failing to deal with scenarios with complex motion or large

disparity. As shown in Fig. 3.1, these end-to-end leaning-based methods fails to deal

with the motion region. The method in [1] performs optical flow-based image align-

ment followed by a convolutional neural network at the merging process. Aligning

images in the pixel domain is often prone to noisy or saturated pixels-induced mis-

alignment, which leads to visible artifacts in the final synthesized presentation. In

addition, the classical optical flow methods and the optical flow models pre-trained on

other datasets can not deal with the occlusion region in which the ghosting artifacts

often occur. As suggested in [74], feature warping can achieve better performance

compared with warping the image. The method in [62] performs alignment in feature

domain by using deformable convolution layers [63]. However, it has a limitation

in finding long-distance correspondence; as argued in [75], deformable convolution

could also lead to an unstable training process and limited generalization. Inspired

by non-local structure [76], Choi et al. [77] proposed to calculate the inter-similarity

between LDR images for every pixel, which are used to align non-reference features

toward the reference feature. However, this non-local structure-based operation is

computationally expensive and needs large memory when the size of input images is

large, while the images for HDR imaging often have a large size. According to [78],

Task-Oriented flow learns to handle occlusions well, though its estimated motion field

differs from the ground truth optical flow. Considered the benefit from Task-Orient

flow, Kalantari et al. [79] proposed a Task-Oriented flow network which is specifically

designed for HDR video reconstruction and is only based on the loss for HDR video

reconstruction. This Task-Oriented flow network performs better than pre-trained or

classical optimization-based optical flow methods since it can deal with the occlusion,
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Figure 3.1: Examples of generated HDR images from the test set of [1]. The zoomed
regions of different methods are highlighted.

which reduces the artifacts in occlusion regions. However, only trained on the task-

specific loss (i.e. HDR reconstruction loss), the Task-Oriented flow will fail on the

large saturated areas in which there are a few details. In this case, this misalignment

leads to artifacts on the over-exposed regions in the reference image.

Inspired by the photometric loss [80] for self-supervised learning of optical flow, we

proposed the regularized loss to provide supervision for flow learning to address the

misalignment in Task-Orient flow in HDR imaging. We directly reconstruct an HDR

image based on the aligned features and compute loss between this reconstructed

image and the corresponding ground truth.

Differing from the previous methods [1, 79, 81] that use the existing optical flow

model like SPyNet [82] and PWC-Net [83], we design a simple but effective network

for learning the flow for feature alignment. We remove the context encoder in the

flow network and directly use the features for HDR image reconstruction as the input

for flow estimation. We argue that this flow structure can achieve better alignment

performance in the HDR imaging task since there are large illumination changes and
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large saturated areas in image space, while the extracted features for HDR recon-

struction can provide rich information to avoid misalignment. And we name this flow

structure as feature flow.

To this end, we propose a new network that enables end-to-end training, includ-

ing alignment. The proposed method consists of two networks: alignment network

and merging network in this order. The alignment network extracts multi-scale fea-

tures from the input LDR images and estimates optical flow. It then aligns the

non-reference LDR images to the reference LDR image in feature space using the

estimated flow. The merging network takes the aligned features and multi-scale fea-

tures as input and generates a final HDR image using a residual attention mecha-

nism. Experimental results show that our method can achieve better quantitative

and qualitative evaluation performance than the existing state-of-the-art methods on

the commonly used public test datasets.

3.2 Pioneering Works

3.2.1 Motion Removal based Methods

These methods is firstly to detect the motion region and then remove these pixels

on the motion region in the merging processing. Khan et al. [48] use a non-parametric

model to compute weights iteratively and apply these computed weights to pixels to

fuse multiple LDR images to obtain final HDR images. Heo et al. [49] detect motion

regions based on the joint probability densities and refine these regions by using

energy minimization. Jacobs et al. [56] propose a method to detect moving pixels

based on the difference between the LDR images. Zhang et al. [57] propose motion

detection method based on the image gradients between different images. Lee et

al. [58] considered that the noise, moving objects, and distortions as outliers, so they

proposed a low-rank model to reconstruct HDR images. Following their method, Yan

et al. [50] proposed a sparse model to detect motion regions. When the motion in

LDR images is small, motion-removal-based methods can achieve satisfactory results.

However, when the motion is large, a large number of pixels are unavoidably removed

in the merging stage, causing undesirable artifacts in the generated HDR images.
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3.2.2 Alignment based Methods

Most alignment based methods adopt optical flow and its variants to align LDR

images and then merge aligned LDR images to generate corresponding HDR images.

Bogoni [51] use optical flow to estimate motion filed between LDR images and then

warped and aligned these LDR images by using the computed motion field. Instead

of fusing LDR images in the spatial domain, Kang et al. [59] firstly utilize the in-

formation of exposure time and converted LDR images into luminance domain. In

the fusion process, a method was proposed to eliminate artifacts by using the opti-

cal flow. Sen et al. [2] propose a method based on a patch-matching algorithm for

HDR reconstruction. Hu et al. [52] propose a displacement estimation method which

converts images by the intensity mapping function and then merging images in the

transformed domain for HDR image generation, which implicitly align LDR images

by searching and aggregating similar patches. Hafner et al. [53] propose a method

to jointly estimate the optical flow and reconstruct HDR image. However, since the

alignment process in the image domain is vulnerable to large motion and excessively

dark or bright regions, these methods tend to generate artifacts in the aligned images.

3.2.3 CNN Based Methods

As with other computer vision tasks, CNNs have been applied to HDR imaging.

Eilertsen et al. [60] propose an encoder-decoder network to generate an HDR im-

age from a single LDR image. Endo et al. [61] synthesize multiple LDR images with

different exposures from a single LDR image by CNNs, and then merge them to recon-

struct an HDR image. These single-image-based methods are unable to reconstruct

the textures on saturated regions accurately.

To generating more accurate images, more attention is paid on obtaining HDR

images from a sequence of LDR images captured with different exposures. Kalantari

et al. [1] propose the first CNN-based method for HDR imaging, where the input LDR

images are first aligned by optical flow and then the aligned LDR images are fed to

CNNs to reconstruct an HDR image. In stead of using explicit alignment, Wu et al. [5]

directly concantenated the features extracted from input LDR images and forwarded

them to a deep model with the U-net structure to reconstruct HDR images. Yan et
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Figure 3.2: Three LDR images of the same scene captured with three different expo-
sures. L1, L2, and L3 denote the images captured with the low, medium, and high
exposure, respectively.

al. [55] introduce a non-local structure [76] into the U-net as for implicit alignment.

Yan et al. [54] propose an attention module to learn to identify misaligned elements

before merging the LDR images. Pu et al. applied the deformable convolution [63]

to multi-scale features, which aligned LDR images in a pyramidal manner, and re-

constructed the corresponding HDR images. To reduce the computational cost by

CNN-based methods, Prabhakar et al. [84] propose an efficient method that performs

all operations in low resolution and upscales the result to the required full resolution.

Similar to our work, a few studies consider using optical flow for the alignment. But

they either use a pre-trained estimator [81] or optimize the estimator through the

reconstruction loss [79], which may lead to suboptimal results.

3.3 Proposed Method

Given a series of LDR images, L1, L2, ..., Lk, captured with different exposures,

the goal of HDR imaging is to generate an HDR image H corresponding to a selected

reference image Lr.

There are two samples with different exposure settings shown in Fig. 3.2. The

sample in the first row shows that L3 has little effect for image restoration of L2
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Figure 3.3: Overview of the proposed network. It consists of two sub-networks:
feature alignment and merging networks. The alignment network warps the features
of the non-reference images onto those of the reference image using optical flow. The
merging network takes the warped features as input and reconstructs an HDR image.

since there are large areas of over-exposure region in L3. While the sample in the

second row shows that L3 can be helpful for image restoration of L2. In this case, the

model can easily produce high-quality HDR images due to the efficient information.

Without the input of L3, the model can also generate a high-quality HDR image

though the model needs to be more effective.

Unlike the previous methods taking three LDR images as input, we use two LDR

images, L1 and L2 as inputs, sorted in the order of exposures and set L2 as the

reference image by considering the properties in L3. And two images for input can

also reduce computational costs.

Following the settings of previous studies [1, 54], we first map the LDR images

into the HDR domain using gamma correction and then feed them into the network.

To be specific, we map Li to Hi by

Hi = Lγ
i /ti, i = 1, 2, (3.1)

where γ denotes the gamma correction parameter and followed [64] we use γ = 2.2 in

this section. ti is the exposure time of Li. As the suggestion in [1], we concatenate Li

and Hi in the channel dimension to obtain a six-channel tensor Xi = [Li, Hi], i = 1, 2,
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Figure 3.4: Architecture of the multi-scale feature flow module (MS-Flow). It fol-
lows the coarse-fine manner to generates multi-scale optical flows and the multi-scale
feature maps aligned to the reference image.

and input X1 and X2 to the network.

Our network consists of two sub-networks, the alignment network and merging

network, as shown in Fig.3.3. We first describe the alignment network (Sec.3.3.1)

and then explain the merging network (Sec.3.3.2).

3.3.1 Feature Alignment Network

The feature alignment network first extracts multi-scale feature maps from the

input tensor Xi. Specifically, the feature extractor consists of a convolution layer

with stride = 1 and the following two layers with stride = 2, which forms multi-

scale feature maps with scale = 0, 1, and 2. We represent the feature map at scale

s ∈ {0, 1, 2} as F s
i ∈ RHs×Ws×Cs , where Hs = H/2s, Ws = H/2s, and Cs = C. These

feature maps will be used in the subsequent modules. For clarity, we use the index

r(= 2) to indicate the reference LDR images; thus, Xr = X2 and F s
r = F s

2 in what

follows.
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Multi-Scale Feature Flow Module (MS-Flow)

Following SPyNet [82] and PWC-Net [83], we estimate the optical flow in a coarse-

to-fine manner, as shown in Fig. 3.4. The estimated flows at the coarser scales can

capture the large motions. On the other hand, the flows at the finer scales will be

helpful to capture small motions.

We first concatenate the coarsest scale features F s
i with F s

r in the channel di-

mension and feed it to a flow estimator. The estimator consists of five convolution

layers with 7 × 7 kernel size and generates the s-th scale optical flow f s1→r. Then, we

upsample f s1→r by factor = 2 and use it to warp the non-reference feature map F s−1
1

onto the reference feature map F s−1
r . Specifically, we map each pixel ps−1

1 in F s−1
1 to

its estimated correspondence in F s−1
r as

ps−1
r = ps−1

1 + f̃ s1→r(p
s−1
1 ), (3.2)

where f̃ s1→r represents the upsampled flow of the s-th scale flow f s1→r. We then con-

catenate the warped and reference feature maps in the channel dimension and feed it

to the subsequent flow estimator. The output of the flow estimator is then element-

wise added to the upsampled flow, yielding the flow at scale s − 1. We iterate this

procedure for s = 1 and 0, obtaining multi-scale optical flows f s1→r and the warped

multi-scale feature maps F s
i→r.

Multi-Scale Feature Fusion Module (MS-Fuse)

As shown in Fig. 3.5, the multi-scale feature fusion module takes the concatenated

feature maps at each scale F̄ s = [F s
1→r, F

s
r ]. We apply a convolution layer with the

kernel size of 3× 3 followed by ReLU to the finest feature map F̄ 0 to obtain a feature

map O0. For the feature maps F̄ 1 and F̄ 2, we first apply a convolution layer with the

same kernel size and then upsample the outputs with bilinear interpolation so that

the resulting maps become the same size as the finest one. Finally, all the outputs are

concatenated as Z0 = [O0, O1, O2] and then used as input for the following merging

network.
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Figure 3.5: Multi-scale feature fusion.
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Figure 3.6: Reconstruction of Hof .

Reconstruction using Warped Features

Unlike the previous HDR imaging studies using optical flow, we reconstruct an

HDR image Hof using the feature maps F s
1→r, which are the feature maps right after

warping by the optical flow. Our intention behind this reconstruction is to directly

guide the network to generate accurate optical flow and perform better alignment.

As shown in Fig. 3.6, we first upsample the feature maps F 1
1→r, F

2
1→r so as to be the

same size as the finest feature map F 0
1→r. We then concatenate them and feed them

to a series of convolution layers with the kernel size of 3 × 3 followed by ReLU and

five residual channel attention blocks (RCAB) [4]; see Fig. 3.7 for the detail of the

RCAB. We then calculate ℓ1 loss between the reconstructed HDR image Hof and its

ground truth HDR image, as will be explained later.

3.3.2 Merging Network

Following the previous methods [4, 54], we employ an attention mechanism to

merge the feature maps and generate an HDR image; in specific, we use the RCAB.

As shown in Fig. 3.3, the merging network takes the concatenated feature maps

Z0 = [O0, O1, O2]. We apply a convolution layer and three RCABs to Z0 and then
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Figure 3.7: Architecture of a residual channel attention block (RCAB) [4].

concatenate the outputs of each RCAB as Z5 = [Z2, Z3, Z4]. Applying three convo-

lutions and a global skip connection with F 0
r , the merging network outputs a final

HDR image.

3.3.3 Loss Function

Following [1], we consider the optimization in the domain of tonemapped HDR

images because the HDR images are usually displayed after tonemapping and training

the network on the domain is more effective than that on the original domain of HDR

images. Thus, we employ the µ-law for tone mapping as suggested in [1], which is

formulated as

T (H) =
log(1 + µH)

log(1 + µ)
, (3.3)

where µ is set to 5, 000 throughout our experiments. It is also reported in [54,85] that

minimizing the L1 norm between the predicted HDR image Ĥ and its ground truth

H in the tone-mapped domain works better than others. Following their studies, we

use the following ℓ1 loss,

Ltm = ∥T (Ĥ) − T (H)∥1. (3.4)

For the standard optical flow estimators such as SPyNet [82] and PWC-Net [83],

they are trained on the datasets with the standard exposure settings (e.g. Sintel [86],

KITTI [87], and Middlebury [88]). However, there is no dataset containing ground

truths of optical flow maps for the HDR imaging task. Inspired by the photomet-

ric loss [80] for self-supervised learning of optical flow, we use ℓ1 loss between the

reconstruction Hof and its ground truth H in the tone-mapped domain to provide
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supervision for the optical flow learning,

Lreg = ∥T (Hof ) − T (H)∥1. (3.5)

Our total loss is taken as the weighted sum of two losses

L = Ltm + λLreg, (3.6)

where we use λ = 2 in this section.

3.4 Experiments

3.4.1 Experimental Settings

Training Data

To train our network, we adopt the HDR dataset [1] which consists of 74 samples

for training and 15 samples for testing. We use the former for training our model.

Each sample includes a ground truth HDR image and three LDR images with different

exposure settings of {−2, 0,+2} or {−3, 0,+3}. All the images are resized to the

resolution of 1000 × 1500.

Testing Data

Following recent studies, we choose the following datasets for testing. We evaluate

our method on the 15 scenes of the dataset of [1], where we perform a quantitative

evaluation using the provided ground truths. We also test the proposed method on

the datasets of Sen et al. [2] and Tursun et al. [3]. Since these datasets do not contain

ground truths of HDR images, we compare the reconstructed HDR images by our

method with those by state-of-the-art methods for qualitative evaluation.

Evaluation Metrics

As used in the existing studies, we use PSNR-µ and SSIM-µ for primary metrics,

which are PSNR and SSIM values in the tone-mapped domain using µ-law. We show
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PSNR and SSIM values in the linear domain, which are denoted by PSNR-L and

SSIM-L for completeness. We also report HDR-VDP-2 [70], which is designed to

evaluate the quality of HDR images.

3.4.2 Implementation Details

For training, we first crop the training images into patches of 256× 256 pixel size

with a stride of 128 pixels. We then apply random rotation and flipping for data

augmentation to avoid over-fitting. We use the Adam optimizer [45] with β1 = 0.9,

β2 = 0.999, initial learning rate 1 × 10−4 and set the batch size to 8. We train

our model for 210 epochs and employ the cosine annealing strategy [71] to steadily

decrease the learning rate from an initial value to 1× 10−6. We implement our model

using PyTorch [72] on NVIDIA GeForce RTX 2080 GPUs.

3.4.3 Comparison with the State-of-Art Methods

We compare the proposed method with existing methods. Specifically, we compare

our model with two HDR imaging methods based on a single LDR image, TMO [61]

and HDRCNN [60], and five HDR imaging methods based on multi LDR images,

the patch-based method [2], the flow-based method with CNN merger [1], the U-net

structure without optical flow [5], the attention-guide method (AHDR) [54], pyra-

midal alignment network (PANet) [62], and progressive and selective fusion network

(PSFNet) [73]. For all the methods, we used the authors’ code for comparison, except

for [62] since their code is not available as of the time of writing this paper.

Evaluation on Kalantari et al.’s Dataset

Figure 3.8 and 3.9 show two examples on the test set of [1]. The input LDR

images contain saturated background and foreground motions. We can observe from

the results of the single-image methods, TMO [61] and HDRCNN [60], that they

cannot sufficiently recover the detailed textures and generate artifacts in the over-

exposed regions; they also suffer from the color distortion. The patch-based method

of Sen et al. [2] generates some artifacts due to the failure of finding patches correctly.

Kalantari et al.’s method [1] cannot completely eliminate the effects of the occlusion.
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Table 3.1: Quantitative comparison on the Kalantari’s test sets [1]. The numbers in
the table are the average values of the 15 test images.

Methods PSNR-µ PSNR-L SSIM-µ SSIM-L HDR-VDP-2

TMO [61] 8.3120 8.8459 0.5029 0.0924 44.3345

HDRCNN [60] 13.7054 13.8956 0.5924 0.3456 47.5690

Sen [2] 40.9689 38.3425 0.9859 0.9764 60.3463

Kalantari [1] 42.7177 41.2200 0.9889 0.9829 61.3139

Wu [5] 41.9977 41.6593 0.9878 0.9860 61.7981

AHDR [54] 43.7013 41.1782 0.9905 0.9857 62.0521

PANet [62] 43.8487 41.6452 0.9906 0.9870 62.5495

PSFNet [73] 44.0613 41.5736 0.9907 0.9867 63.1550

Ours 44.3298 41.8936 0.9911 0.9878 63.1190

The method of Wu et al. [5] cannot deal with over-exposed regions and then produces

artifacts on motion areas. Non-aligned methods (i.e. AHDR [54] and PSFNet [73])

yield artifacts in the saturated areas and also suffer from ghosting artifacts due to

the large motions. Compared with them, our proposed method produces less color

distortion and recovers the textures more accurately, leading to the best qualitative

results.

Table 3.1 shows the quantitative evaluation on the same dataset. In specific, we

report the averaged values over 15 test scenes. It can be seen that the proposed

method achieves better performance than the others in terms of PSNR-µ, SSIM-µ,

PSNR-L and SSIM-L. Also, our method achieves comparable performance to the

state-of-the-art method [73] in terms of the HDR-VDP-2 metric.

We also compute PSNR-µ and PSNR-L on different masks. As shown in 3.12,

there are two kinds of masks. Mask1 can be considered as the occluded region while

Mask2 can be considered as the combination between the occlusion region and the

object. As shown in Table 3.2, Wu et al.’s method [5] achieves the best performance

in Mask1 setting while our method achieves the best performance in Mask2 setting.

But our method can produce much better visualization results than Wu et al. [5] as

shown in 3.13. The potential explanation about the high numerical result achieved
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Figure 3.8: Results from the Testing data (08) of [1]. Upper row from left to right:
the two input LDR images, the HDR image produced by the proposed method, and
(zoomed-in) LDR image patches with two identical positions/sizes (in green and red).
Lower row: the same patches of the HDR images produced by different existing
methods

by Wu et al. [5] on Table 3.2 is that the most artifacts produced by Wu et al. [5] are

color distortion and the over-exposure region, which may not have large numerical

error.

Evaluation on Datasets w/o Ground Truth

We also provide comparisons using Sen’s [2] and Tursun’s [3] datasets. These

datasets do not have ground truths of HDR images and thus we qualitatively compare

the generated HDR images.

Some examples of the results are shown in Fig. 3.10 and 3.11. The single image

methods, TMO [61] and HDRCNN [60], generate serious noises and color distortions

in the under-exposed regions. The patch-based method (Sen et al [2]) also generates

severe artifacts. The method of Kalantari et al. [1] produces artifacts due to the align-
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Figure 3.9: Results from the Testing data (09) of [1]. See Figure 3.8 for the explana-
tion of the panels

ment error and also generates serious noises in the under-exposed regions. These are

arguable because of the misalignment by the estimated optical flow and the limitation

of the merging method. Wu et al.’s method [5] tends to yield over-smoothness and

generate ghosting artifacts on the large motion areas. AHDR [54] yields color distor-

tions and also suffers from ghosting artifacts due to large motions shown in Fig. 3.11.

PSFNet [73] generates ghosting artifacts in the motion regions and generates the ge-

ometric distortions shown in Fig. 3.10. On the other hand, our method produces

better results with noticeably reduced geometric and color distortions compared with

others.

3.4.4 Ablation Study

We demonstrate the effectiveness of each component in the proposed method. We

use the same configurations as those used above unless otherwise noted.
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Figure 3.10: Example of Sen et al.’s dataset [2]

Effects of Optical Flow Learning

First, we verify the effect of the proposed loss in Eq. 3.5 by changing the value

of the parameter λ. When λ = 0, the network will be trained only using the ℓ1 loss

(i.e. Eq. 3.4) between the final outputs and their ground truths. This is equivalent to

the previous methodology using optical flow [79]. It should be noted that although

the work [79] tackles the HDR video reconstruction, the approach also works on the

HDR imaging task. As shown in Fig. 3.14, the model without the proposed loss (i.e.

λ = 0) generates sever color and geometry distortions. In contrast, the models with

the proposed training (i.e. λ > 0) significantly improve the reconstruction results.

We also quantitatively evaluate them on the Kalantari et al.’s test set [1]. As shown

in Table 3.3, our proposed training with λ = 2 achieves the best performance. Even

though the gain by the proposed training is not so large, the artifacts usually appear

in a small area of an image, and they have only small impacts on these metrics.

To further verify the effectiveness of the regularization loss, we show the image

warped by the flow learning by different λ settings. When λ = 0, our model is only

61



TMO HDRCNN Sen Kalantari Wu AHDR PSFNet Ours

LDR images Tonemapped HDR images LDR Patches

[6] [5] [28] [12] [32] [34] [37]

Figure 3.11: Example of Tursun et al.’s dataset [3]

optimized by the Ltm in Eq. 3.4. As shown in Fig. 3.15, this optimization fills the

occluded region by the hand somewhat better than that with the Lreg (λ = 2), but

it produces severe distortions in some regions.

The reconstruction of Hof is only based on the warped features from the non-

reference images. Then Lreg computed on Hof and the ground truth imposes a heavy

constraint on these warped features to provide more accurate gradients to the warping

field than the Ltm which involves both the warped features and the features from the

reference image. As shown in the Fig. 3.15 image warped by the flow when λ = 2, the

occlusion can be partially addressed since there are some mask regions that cannot

be filled, but no extra severe distortion is introduced.

Effects of Different Configurations

Since our method has several design choices, we conduct experiments to examine

which configuration shows the best. Specifically, we examine the effect of channel

attention (CA), multi-scale feature flow module (MS-Flow), feature flow module (FF),
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Table 3.2: Quantitative results on different masked regions in the Kalantari’s test
sets [1].

Mask1 Mask2

Methods PSNR-µ PSNR-L PSNR-µ PSNR-L

TMO [61] 13.9311 8.6773 10.8671 8.9529

HDRCNN [60] 17.0306 9.5235 15.2617 12.072

Sen [2] 23.6155 11.0598 29.1973 17.0423

Kalantari [1] 26.9829 13.4805 32.1771 19.656

Wu [5] 33.9415 20.4405 38.1358 25.3188

AHDR [54] 32.3999 17.9917 37.3266 23.8053

PSFNet [73] 32.7707 18.2808 37.3645 23.9271

Ours 33.0874 18.754 38.2312 24.7554

(a) L1 (b) L2

(c) Mask1 (d) Mask2

Figure 3.12: Two different masks on Testing data (08) in [1].
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(a) Wu (b) Ours

Figure 3.13: Visualization comparison between Wu et al. [5] and ours on dynamic
scenes in [1].

and multi-scale feature (MS-Fuse). The results are shown in Table 3.4. When we

eliminate the MS-Flow, we use a single convolution layer to extract feature maps and
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Table 3.3: Results obtained with different λ values in Eq. 3.6.

PSNR-µ PSNR-L SSIM-µ SSIM-L

λ=0 44.1229 41.8947 0.9911 0.9875

λ=1 44.0978 41.7622 0.9910 0.9868

λ=2 44.3298 41.8936 0.9911 0.9878

λ=3 44.1238 41.7043 0.9911 0.9871

𝜆 = 0 𝜆 = 3𝜆 = 1 𝜆 = 2

Figure 3.14: Results obtained with different λ values in Eq. 3.6. It can be seen that
our proposed training (i.e. λ > 0) significantly improve the reconstruction results.

then concatenate them as Z0. We also do not reconstruct HDR images using the

warped feature maps. When we eliminate the FF, we also do not reconstruct HDR

images and directly use F s
1 as F s

1→r (s = 1, 2, 3) since there is no optical flow available

for the alignment. We can observe from Table 3.4 that CA and MS-Flow are essential

to achieve better performance. Figure 3.16 shows some examples of the zoomed-in

patches produced by the models with different configurations. It can be seen that

artifacts appear except the MSFFNet (with full components).

We compare the proposed multi-scale feature flow estimation module with other

optical flow methods (SPyNet [82] and PWC-Net [83]). We replace the FF with the

optical flow (SPyNet and PWC-Net) in the proposed network named MSFFNet w/o

FF w/ SPyNet and MSFFNet w/o FF w/ PWC-Net. As shown in Table 3.4, the

proposed method achieves better performance than other optical flow-based methods

even the PWC-Net has a more complicated network structure (e.g. with correlation

layer [89]) than ours. Since our feature flow network can not be pre-trained on other
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𝜆 = 0 𝜆 = 2EV=-2.0 EV=0

Figure 3.15: An example of the low exposure images warped by the flow for different
λ values. Image from left to right are the low and medium exposure image, low
exposure image warped by the flow when λ = 0, low exposure image warped by the
flow when λ = 2.

Oursw/o CA w/o MS w/o MSFF w/o FF w/o FF
w/ PWC

w/o FF
w/ Fix-PWC

w/o FF
w/ Spy

w/o FF
w/ Fix-Spy

Figure 3.16: Results obtained by ablated networks.

datasets with optical flow ground truth, we also compare the pre-trained optical flow

network named MSFFNet w/o FF w/ fixed-pre-trained SPyNet and MSFFNet w/o

FF w/ fixed-pre-trained PWC-Net with the model trained on the proposed regularized

loss to demonstrate the effectiveness of the proposed regularized loss. These two

ablated networks are trained by only using tone-mapped loss in Eq. 3.4. As shown in

Table 3.4, the model trained on the proposed regularized loss (MSFFNet w/o FF w/

SPyNet and MSFFNet w/o FF w/ PWC-Net) achieve better performance than the

pre-trained model (MSFFNet w/o FF w/ fixed-pre-trained SPyNet and MSFFNet

w/o FF w/ fixed-pre-trained PWC-Net). As shown in Figure 3.16, there is severe

color and geometry distortion in the images generated from the optical flow-based

method.
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Table 3.4: Results of ablation tests on Kalantari’s test set. The upper row shows the
effects of channel attention (CA), multi-scale feature flow module (MS-Flow), feature
flow module (FF), and multi-scale feature fusion module (MS-Fuse). The lower row
shows the effects of the choice of optical flow.

Methods PSNR-µ PSNR-L SSIM-µ SSIM-L

MSFFNet w/o CA 44.0377 41.8150 0.9909 0.9875

MSFFNet w/o MS 44.1236 41.8216 0.9908 0.9869

MSFFNet w/o FF 43.9466 41.3520 0.9909 0.9867

MSFFNet w/o MSFF 43.6752 41.4698 0.9908 0.9868

MSFFNet w/o FF w/ SPyNet 43.9717 41.3563 0.9905 0.9852

MSFFNet w/o FF w/ fixed-pre-trained SPyNet 43.6611 41.6913 0.9896 0.9821

MSFFNet w/o FF w/ PWC-Net 44.1436 42.0084 0.9911 0.9879

MSFFNet w/o FF w/ fixed-pre-trained PWC-Net 43.3769 41.5546 0.9891 0.9808

MSFFNet 44.3298 41.8936 0.9911 0.9878

3.5 Summery and Conclusion

in this section, we propose a new method for generating an HDR image of a dy-

namic scene from its LDR images along the alignment-before-merging direction. The

first step of feature alignment plays a central role in generating high-quality HDR

images. Trained by the regularized loss, the multi-scale feature flow module can ef-

fectively learn the flow for alignment even in occlusion regions and the large saturated

areas, which greatly reduce the artifacts in these regions. After the alignment by the

estimated flow, the features from the non-reference image will be fused with the fea-

tures from the reference image to reconstruct an HDR image. The experimental

results have validated the effectiveness of the proposed approach.
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Chapter 4

Defocus Map Guided Network for

Defocus Deblurring

4.1 Introduction

Defocus blur is inevitable when the rays from a scene not lying on the focal plane

of the camera converge to a region rather than a point on the image plane and the

region is called the circle of confusion (COC) [26]. Using a large aperture allows more

light to pass through the lens in a shorter exposure time. But this results in a shallow

depth of field (DoF), thereby causing defocus blur. Shallow DOF is useful to make

the subject stand out from the blurry background and foreground. But on the other

hand, defocus blur causes visual information losses, which is important for other tasks

like image understanding. Thus, recovering the blurry images can help improve the

performance on these tasks.

However, defocus deblurring is still a challenging task due to the spatial variant

blur, i.e., the level of blur for each pixel is different. For example, the scene on the

focal plane is captured sharply while the scene out of the focal plane is captured in

blurry. And the level of defocus is usually depicted by the point spread function

(PSF), resulting in a pixel-wise defocus map.

The defocus blur can be modeled by

Ib = K ∗ Ic + N (4.1)
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where Ib is the blurry image, Ic is the clean image, K is the blur kernel and N is

the additive noise [90]. Thus the natural idea for defocus deblurring is to follow two

steps to address this problem, i.e., first to estimate the defocus map indicating the

level of defocus blur, then apply non-blind deconvolution [27–29]. These classical

methods can achieve satisfying results under the low or medium level defocus blur

but it is hard for these methods to achieve sharp results under high level blur. Some

image priors are utilized to improve the performance but these priors works well under

some particular scenes but may fail to cover the real-world scenes. What is more,

the classical methods need iterative optimization to achieve sharp results, which is

time-consuming.

In the era of deep learning, many CNN-based based approaches are proposed

for deblurring problem. Nah et al. [91] propose multi-scale structure for dynamic

scene deblurring and achieve good visual results. Kupyn et al. [92, 93] utilize the

generative adversarial networks (GANs) [12] for the deblurring. Cho et al. [94] propose

a multi-input multi-output U-net (MIMO-UNet) to improve the performance while

reduce the computational cost. Zamir et al. [95] propose a multi-stage and multi-scale

architecture for motion blur removal. And Chen et al. [96] propose a baseline model

that achieves better performance and lower inference time compared with previous

methods. But the above methods focus on the motion blur and therefore may be

unsuitable for the defocus deblurring.

Recently, there are also some methods proposed for defoucs blurring in an end-to-

end manner [33–35]. Abuolaim et al. [33] use the UNet structure to recover the sharp

image in an end-to-end manner. Lee et al. [34] propose an iterative filter adaptive

module to handle spatially-varying and large defocus blur and a training scheme

based on defocus disparity estimation and re-blurring to boost the deblurring quality.

Son et al. [35] propose to simulate inverse kernels by kernel sharing parallel atrous

convolution block.

However, there still is a CNN-based method that follows first defocus map estima-

tion and then non-blind deblurring [32]. Compared with end-to-end based methods,

the two-step CNN-based methods can achieve higher performance since the bind de-

blurring problem is much more complicated than the non-blind deblurring problem,

while the two steps CNN-based methods can utilize the important information from
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the defocus map. After the estimation of the defocus map using convolutional neural

network, Ma et al. [32] concatenates the defocus map and the defocus image as input

of the neural network to achieve all sharp images. We argue that direct concatenation

can not fully use the information in defocus map, which represents the blur level.

Considering the spatial variant property of the defocus blur and the blur level

indicated in the defocus map, we employ the defocus map as the conditional guidance

to adjust the features from the input blurring images instead of simple concatenation.

Then we propose a simple but effective network with spatial modulation based on the

defocus map. To achieve this, we design a network consisting of three sub-networks,

including the defocus map estimation network, a condition network that encodes the

defocus map into condition features and the defocus deblurring network that performs

spatially dynamic modulation based on the condition features. And the spatially

dynamic modulation is achieved by an affine transform function to adjust the features

from the input blurry images. Experimental results show that our method can achieve

better quantitative and qualitative evaluation performance than the existing state-

of-the-art methods on the commonly used public test datasets.

4.2 Related Work

In this section, we briefly introduce the related works, including defocus map

estimation, non-blind deblurring, and single image defocus deblurring.

4.2.1 Defocus Map Estimation

There are different approaches to defocus map estimation, which can be roughly

divided into three categories: edge-based, region-based, and CNN-based methods.

The basic idea of the edge-based methods is to compute a sparse defocus map only

at the edges of the images and then propagate the map to the whole image [28,97–100].

In [97], the input image is re-blurred by the Gaussian kernels, and then the defocus

amount along the edges is computed by the rate of the gradients of the re-blurred

image. Similar to [97], Elder and Zucker [98] propose a method that simultaneously

detects image edges and estimates blur. These two studies [97, 98] only focus on

the sparse defocus map estimation. Liu et al. [100] propose a two-parameter model
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to improve the performance of the defocus map estimation on the edges. Bae and

Durand [99] try to estimate the defocus map on the whole image. After the sparse

defocus map estimation, their method uses a bilateral filter to remove outliers. It then

uses a colorization-scheme-based interpolation method to achieve the full defocus

map. Zhuo and Sim [28] propose using alpha Laplacian Matting to propagate the

sparse defocus map to the whole image. These methods suffer from inaccurate defocus

map estimation for the image areas far from the edges. In [29], a connected edge filter

is proposed to smooth the initial sparse blur map based on pixel connectivity within

detected edge contours. Then a fast-guided filter is used to propagate the sparse blur

map through the whole image.

Region-based methods directly estimate the defocus amount from the local patches

centered at the current pixel [101, 102]. For each local patch in the image, Trouvé

et al. [101] use a maximum likelihood method to select the local blur from a set

of PSF candidates. In [103], a machine learning approach based on the regression

tree fields is used to train a model able to regress a coherent defocus blur map of

the image, labeling each pixel by the scale of a defocus point spread function. Shi

et al. [102] propose a method based on dictionary learning using sharp and slightly

blurred patches.

Recently, CNN-based methods have been proposed for defocus map estimation.

Yan and Shao [104] propose a method that first classifies the blur type and then

estimates the blur parameter using a general regression neural network. Zhao et

al. [105] propose a method that detects defocus blur by using a bottom-top-bottom

fully convolutional network. Since defocus blur detection only classifies each pixel as

blur pixel and the non-blur pixel while the defocus map estimation needs to estimate

the blue level of each pixel so the defocus blur detection can be considered as the

loose formulation of the defocus map estimation. Lee et al. [106] propose an end-

to-end CNN-based method (DME-Net) for spatially varying defocus map estimation,

for which they also created a synthetic dataset. They employ a domain adaptation

method to address the gap between real and synthetic datasets. Theirs is the first

truly CNN-based defocus map estimation method. Similar to [106], Ma et al., [32]

train their model in an end-to-end manner for defocus map estimation. These methods

suffer from the lack of sufficient real data.
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4.2.2 Non-Blind Defocus Deblurring

Non-blind defocus deblurring, which assumes either the defocus map or the blur

kernel to be known, is an ill-posed problem since some information will inevitably

be lost during the blurring process. Most classical methods impose some image pri-

ors to regularize the solution, for example, patch-based prior [107], hyper-Laplacian

prior [30], and local color prior [108]. These methods usually need computationally

expensive iterative optimization. Recently, researchers have shown that CNN-based

methods will be better than these classical approaches in terms of accuracy and ef-

ficiency [109–111]. However, most existing methods, such as Schuler et al. [109] and

Xu et al. [110], need to be trained for each specific blur kernel; when we encounter

images with unseen kernels, we need to retrain the networks.

4.2.3 Single Image Defocus Deblurring

Many studies have been conducted for single-image defocus deblurring. Conven-

tional methods typically decompose the problem into two steps. The first step is

to estimate the defocus map of an input image, which indicates the blur level for

each pixel [27–29]. The second step is the non-blind deconvolution [30,31], where the

defocus map estimated in the first step is used. Most of the methods employing this

two-step approach focus on improving the accuracy of the first step, i.e., the defocus

map estimation, since the small error on the defocus map will significantly deteriorate

the final deblurring performance [29,102,103,112].

Another approach is to train a network to directly predict the deblurred image

from a blurry input image in an end-to-end fashion. Abuolaim et al. [33] use a

network with the UNet structure to do this. Lee et al. [34] propose an iterative

filter adaptive module to handle spatially-varying and large defocus blur. They also

propose a training scheme based on defocus disparity estimation and re-blurring to

boost deblurring quality. Son et al. [35] propose to simulate inverse kernels by kernel

sharing parallel atrous convolution block. However, these methods based on direct

prediction depend too much on the training data, and we believe their performance

is suboptimal.

73



R
es

B
lo

ck
, 1

28

C
on

v,
 6

4

C
on

di
tio

ne
d 

R
es

B
lo

ck
, 1

28

13 blocks

Shared Conditions

Defocuse Map

C
on

v,
 6

4

C
on

v,
 6

4

R
es

B
lo

ck
, 1

28

C
on

v,
 6

4

C
on

v,
 6

4

C
on

v,
 6

4

C
on

v,
 6

4

C
on

di
tio

ne
d 

R
es

B
lo

ck
, 1

28

C
on

v,
 6

4

C
on

v,
 6

4
5 blocks

Input Image

Deblurring Image

Defocus Deblurring Network

Condition Network

Defocus Map Estimation Network

Figure 4.1: Architecture of the proposed network.

4.3 Proposed Method

We propose a network to remove spatial variant defocus blur from a single blurry

image. Inspired by the previous deblurring methods that decompose the blind de-

blurring task into defocus map estimation task and non-blind deblurring [27–29,32].

Our network also first estimates the defocus map as an intermediate result. For

CNN-based based methods, they directly use the feed-forward networks to learn the

mapping from the input blurring images, while the previous CNN-based two steps

method directly concatenates the defocus map with the input blurring images as the

input as the non-blind deblurring network. The defocus map, i.e., knowing the blur

level for each pixel, is very important information for the non-blind deblurring. But

previous method utilizes the defocus map by simple concatenation. We think this

leads to suboptimal results.

Considering the spatial variant property of the defocus blur and the blur level

indicated in the defocus map, we employ the defocus map as conditional guidance to
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adjust the features from the input blurring images instead of simple concatenation.

For better usage of the defocus map, we employ an affine transform to adjust the

features from the input blurring images for each pixel. By considering the same blur

level on regions in blurring image, we further decompose the parameters for scaling

in the affine transform into spatial and channel dimensions to reduce the redundancy

and improve the capacity.

Figure 4.1 shows our network which consists of three sub-network: defocus map

estimation network, the condition network and the deblurring network.

C
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v
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on
v

SF
T

SF
T

Conditions

Figure 4.2: Architecture of the conditioned res-block.

4.3.1 Defocus Map Estimation Network

The defocus map estimation network utilizes several residual blocks to ease the

training procedure and maximize the information flow, which takes the blurry images

as input and then estimates the defocus map.

4.3.2 Condition Network

The condition network only consists of three convolutional layers, which takes the

estimated defocus map as input and maps it into the feature space as conditions that

are afterward used to modulate the intermediate features in the defocus deblurring

network. The key to reconstructing the all-sharp images is to recover the missing

details in the out-of-focus regions in the input blurrying images. Different areas in

one image have different contents and blur levels. Further, different images also have

different contents and blur levels. Therefore, it is necessary to deal with input images
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with location-specific and image-specific operations. However, the convolutional layer

is spatial invariant. Inspired by spatial feature transform (SFT) [113], we introduce

a network with SFT to perform a spatial variant adjustment. Here the condition

network is to generate the conditions for SFT from the defocus map.

C
on
v

C
on
vConditions

Features
D
T

𝛾
⊙

𝛽

Figure 4.3: Architecture of the feature transform.

4.3.3 Defocus Deblurring Network

Defocus deblurring network takes not only the blurring image but also the con-

ditions from the condition network as input. There are some conditioned residual

blocks in the defocus deblurring network and the Figure 4.2 shows the details of con-

ditioned residual blocks. The key component in conditioned residual blocks is the

SFT layer. The structure of SFT layer is shown in Figure 4.3. The SFT learns a

mapping function that generates the paired modulation parameters γ and β based on

the defocus map as prior. The learned parameters adaptively adjust the output by an

affine transform for each pixel to the intermediate features on the defocus deblurring

network. Specifically, the SFT layer can be described as,

SFT (F ) = γ ⊙ F + β (4.2)

F ∈ RC×H×W is the intermediate features in defocus deblurring network and γ ∈
RC×H×W and β ∈ RC×H×W are the parameters for modulation. ⊙ is the element-wise

multiplication.

Further, as shown in Figure 4.1, there are some regions with the same value in

defocus map causing the redundancy on the conditions. Inspired by channel attention
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Figure 4.4: Architecture of the decomposition transform.

[68] and spatial attention [69], we perform decomposition on the generation for γ in

the channel dimension RC×1×1 and spatial dimension R1×H×W as shown in Figure 4.4.

It should be noted that we do not apply the decomposition transform to the generation

of β since there are differences for each pixel value, even though their blur levels are

the same. Thus, the β without decomposition transform can provide the detailed

compensation for the deblurring network. By using this modulation strategy, our

method can better use the important information in defocus map.

4.3.4 Loss Function

The proposed network consists of three sub-network: defocus map estimation

network, condition network and the deblurring network. Following the previous work

[32], we use the L1 norm loss and L2 norm loss for training. Specifically, for defocus

map estimation, the loss is computed as follows,

Ldme = ||DMe −DMgt||1 (4.3)

where DMe is the estimated defocus map and the DMgt is the ground truth for the

defocus map.

While for the defocus deblurring, we exploit two losses: Ldb and Lwd. Ldb is defined

as

Ldf = ||Idf − Igt||1 (4.4)

while Lwd is defined as

Lwd = ||Wdm ∗ (Idf − Igt)||2 (4.5)
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where Idf is the deblurring result of the deblurring network and the Igt is the all-sharp

ground truth image. Wdm is defined as

Wdm =
DMgt

mean(DMgt)
(4.6)

Similar to [32], we train our network for three stages. In stage one and stage

two, the two networks are jointly trained for 400 and 200 epochs, respectively. For

stage one, the ground truth defocus map is set as the input of the defocus deblurring

network, which avoids divergence caused by random output of the defocus map es-

timation network. For stage two, the output of the defocus map estimation network

is set as the input of the defocus deblurring network to jointly training the whole

network. For both stage one and stage two, the loss used for training is

Loss1 = λ1 × Ldme + λ2 × Ldf (4.7)

In stage three, we use the following loss to finetune the network for another 400

epochs,

Loss2 = λ2 × Ldf + λ3 × Lwd (4.8)

In this work, we set the weights for loss function as λ1 = 0.2, λ2 = 0.9 and λ3 = 0.1

4.4 Experiments

4.4.1 Experimental Settings

Training Data To train our network, we use the defocus image deblurring dataset

in [32] which consists of both the defocus map ground truth and all-sharp image

ground truth.

Test Data Followed the previous work [32], we evaluate the proposed method on

the Realistic dataset [103] and the DED test dataset [32].

Implementation Details For training, we use the Adam optimizer [45] with

β1 = 0.9, β2 = 0.999 with initial learning rate 1 × 10−4 and set the batch size to

16. And the number of epochs for each stage is mentioned above. The input blurring
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Table 4.1: Quantitative Results for Defocus Map Estimation

Methods MAE, Realistic MSE, Realistic

Karraali [29] 0.3102 0.1245

DMENet [106] 0.1191 0.0242

DID-ANet [32] 0.1331 0.0312

Ours-DMENet 0.1242 0.0281

Ours 0.1303 0.0299

(a)
Input image

(b)
Ground truth

(c)
Karraali [29]

(d)
DMENet [106]

(e)
DID-ANet [32]

(f)
Ours-DMENet

(g)
Ours

Figure 4.5: Visual comparison of defocus map estimation on realistic.

image, the defocus map ground truth and the corresponding all-sharp ground truth are

randomly cropped into patches with 256×256. We also apply other data augmentation

like random rotation and flipping to avoid over-fitting. We implement our model by

PyTorch [72] platform and train our model on NVIDIA GeForce RTX 2080 GPUs.

4.4.2 Experimental Resutls

We first evaluate the performance of defocus map estimation. We compare the

proposed method with the methods of Karaali and Jung [29] and the recent deep

learning-based DME-Net [106] and DID-ANet [32] for defoucs map estimation. Mean

absolute error (MAE) and mean squared error (MSE) are used as the evaluation

metrics. Table 4.1 shows the quantitative results on Realistic dataset. The proposed
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(a) Input image (b) Ground truth (c) Karraali [29] (d) DMENet [106] (e) DID-ANet [32] (f) Ours

Figure 4.6: Visual comparison of defocus map estimation on DED dataset.

method achieves almost the same performance with DID-ANet [32] since we adopt

the same network with DID-ANet [32] and is comparable with DMENet [106] on

Realistic dataset.

Several samples for visualization of defocus map estimation are shown in Figure 4.5

and 4.6.

We compare the proposed method with the DME-Net [106] that estimates the

defocus map by CNN and achieves deblurring by conventional deconvolution [30],

two CNN-based methods for defocus deblurring (DPDDNet [33] and IFAN [34]), three

CNN-based state-of-arts methods (MPRNet [95], MIMO-UNet [94] and NAFT [96])

for motion deblurring and two-step CNN-based method (DID-ANet [32]). All the

methods are fine-tuned on the training set of DED dataset. And the training settings

are set separately based on the original paper. The epochs for fine-tuning are set to

600 to ensure the models are convergent.

We use the Peak Signal to Noise Ratio (PSNR) and Structural Similarity (SSIM)

for evaluation metrics. The quantitative results are shown in Table 4.2 where the

best results are in bold. For Realistic dataset, the proposed method achieves better

performance than the other methods in terms of PSNR and SSIM. The CNN-based

methods for motion blur and defocus blur do not achieve good performance com-

pared with the two-stage methods (e.g., DID-ANet [32]), since they do not utilize

the information from the defocus map which is essential for defocus image blurring.

Although The proposed method achieves almost the same performance with DID-

ANet [32] in the defoucs map estimation, it still achieves much higher performance
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Input Groud Truth DME-Net DPDDNet

IFAN DID-ANetNAFT Ours

Figure 4.7: Visual comparison of defocus image deblurring on realistic (08).

Input Groud Truth DME-Net

IFAN DID-ANetNAFT Ours

DPDDNet

Figure 4.8: Visual comparison of defocus image deblurring on realistic (09).
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Input MPRNet DME-Net DPDDNet

IFAN DID-ANetNAFT Ours

Figure 4.9: Visual comparison of defocus image deblurring on DED dataset (604).

Input DME-Net DPDDNet

IFAN DID-ANetNAFT Ours

MPRNet

Figure 4.10: Visual comparison of defocus image deblurring on DED dataset (794).
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Input DME-Net DPDDNet

IFAN DID-ANetNAFT Ours

MPRNet

Figure 4.11: Visual comparison of defocus image deblurring on DED dataset (971).

Input DME-Net DPDDNet

IFAN DID-ANetNAFT Ours

MPRNet

Figure 4.12: Visual comparison of defocus image deblurring on DED dataset (941).
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Input DME-Net DPDDNet

IFAN DID-ANetNAFT Ours

MPRNet

Figure 4.13: Visual comparison of defocus image deblurring on DED dataset (1007).

than DID-ANet [32] with more than 0.6db improvement, which shows the effective-

ness of the proposed method. And also compared DME-Net [106] with conventional

deconvolution [30], the CNN-based methods (e.g., DID-ANet [32]) can achieve much

better performance.

Several visualization results are shown in Figure 4.7-4.11. Among them, Figure 4.7

and 4.8 are from Realistic test set while Figure 4.9-4.11 are from DED test set. Since

the image size for the DED test set is large, we crop the images from DED test set

and zoom them for a better view.

The images from Figure 4.7 and 4.8 are almost the same contents but have

different focal plane. The image (08) in the Figure 4.7 focuses on the tree then the

background is blurry. As shown in Figure 4.7, the structures on the road and the

fence are clearer in our result. While in Figure 4.8, ours results have clearer texture

compared with other methods. As shown in Figure 4.9, our method can achieve the

sharper edge on the wall with fewer artifacts. The light region in input image shown

in Figure 4.10 is blurry, while our method can successfully recover the sharp shape of

the light region. The hand and the watch are more realistic and clearer in our result.

In contrast, the previous works cannot address the defocus blur very well. The

DME-Net [106] estimates the defocus map and then uses the deconvolution deblurring
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Table 4.2: Quantitative Results for Defocus Image Deblurring

PSNR, Realistic SSIM, Realistic

DMENet [106] 24.0397 0.7180

DPDDNet [33] 24.7232 0.7640

IFAN [34] 24.9261 0.8211

MPRNet [95] 25.2738 0.7869

MIMO-UNet [94] 25.3430 0.7962

NAFT [96] 24.3461 0.7484

DID-ANet [32] 25.9491 0.8204

Ours 26.5535 0.8465

[30] to achieve defocus deblurring. Their results look blurry compared with ours. On

the other hand, the CNN-based based methods (DPDDNet [33] and IFAN [34]) also

achieve blurry results though the model are finetuned on the DED dataset. For the

state-of-the-art method in motion deblurring methods, NAFT [96] cannot deal with

the defocus blur very well. For the two-stage methods, DID-ANet achieves better

performance than the above methods. However, the important information in the

defocus map can not be fully utilized by simple concatenation. On the contrary, the

proposed method exploits the information from the defocus map by the SFT with

the decomposition method, which leads to higher PSNR and SSIM than previous

methods, as shown in Table 4.2

4.4.3 Ablation Study

We demonstrate the effectiveness of each component in the proposed method on

the Realistic dataset. The results are shown in Table 4.3. For the baseline model,

we remove the SFT with the decomposition method. For the ”baseline+SFT”, it

means that we use the original SFT in the baseline. For the ”baseline+SFT-Dec”,

it means that we use the SFT with the decomposition on γ into the baseline. For

the ”baseline+SFT-FDec”, it means that we use the SFT with the decomposition on

both γ and β into the baseline. S1, S2 and S3 indicate the different training stages,

85



Table 4.3: Ablation Study on Results for Defocus Image Deblurring

Methods PSNR, Realistic SSIM, Realistic

baseline-S1 25.6443 0.8077

+SFT-S1 26.1286 0.8294

+SFT-Dec-S1 26.0837 0.8289

+SFT-FDec-S1 25.9939 0.8253

+SFT-Dec-DME-S1 26.4595 0.8402

baseline-S2 25.7936 0.8118

+SFT-S2 26.2533 0.8307

+SFT-Dec-S2 26.4275 0.8310

+SFT-FDec-S2 26.1735 0.8307

+SFT-Dec-DME-S2 26.6031 0.8482

baseline-S3 25.9638 0.8191

+SFT-S3 26.3973 0.8379

+SFT-Dec-S3 26.5535 0.8465

+SFT-FDec-S3 26.4327 0.8400

+SFT-Dec-DME-S3 26.61 0.8455

+SFT-Dec-end 26.1143 0.8259

respectively while ”-end” means the model is trained in an end-to-end manner with

the supervision of the defocus map and the all sharp ground truth.

As shown in Table 4.3, for all these methods, the performance increases after each

stage training. While the final model ”baseline+SFT-Dec-s3” achieves the best per-

formance compared with other ablated networks. At the same time, if the final model

is trained in an end-to-end manner, the performance decreases by a large margin. By

introducing the SFT, the performance increases about 0.4db in PSNR and 0.02 in

SSIM compared with the baseline model. While incorporating the decomposition

method, the performance increases by about 0.6db in PSNR and 0.03 in SSIM com-

pared with the baseline model. However, if we also apply the decomposition method

to the β, the performance drops about 0.1db in PSNR. This is because the β provides
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the detailed information for modulation but the decomposition method will remove

these details to some extent.

We also use the DMENet to estimate the defocus map as indicated ”+SFT-Dec-

DME”. As shown in Table 4.3, the ”+SFT-Dec-DME” can achieve the better per-

formance than the ”+SFT-Dec”. However, the number of parameter in ”+SFT-Dec-

DME” is 30.20M while the number of parameter in ”+SFT-Dec” is 5.12M. And the

improvement by using DMENet for defocus map estimation is only 0.06db. So con-

sidering the trade-off between the performance and the model complexity, we use the

+SFT-Dec” as our full model.

4.5 Summary and Conclusion

In this section, we propose a new method for defocus image deblurring by first

defocus map estimation and then the defocus deblurring direction. The defocus map

is important information for defocus image deblurring since it contains the blur level

for each pixel. To remove the spatial variant blur, we introduce the spatial feature

transform and the decomposition technique to perform spatial modulation based on

the defocus map. The experimental results have validated the effectiveness of the

proposed approach.
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Chapter 5

Conclusion

In this dissertation, we have studied image quality enhancement from limited

devices. Specifically, we utilize the CNN-based methods for high dynamic range

imaging and defocus image deblurring. We have proposed a novel method that can

better fuse the features based on two ideas for high dynamic range imaging. One is

multi-step feature fusion; our network gradually fuses the features in a stack of blocks

having the same structure. The other is the design of the component block that effec-

tively performs two operations essential to the problem, i.e., comparing and selecting

appropriate images/regions. Experimental results show that the proposed method

outperforms the previous state-of-the-art methods on the standard benchmark tests.

This is introduced in Chapter 2.

In Chapter 3, we have further proposed a network that follows an alignment-

before-merging manner. Specifically, we propose a deep network that tries to learn

multi-scale feature flow guided by the regularized loss. It first extracts multi-scale

features and then aligns features from non-reference images. After alignment, we

use residual channel attention blocks to merge the features from different images.

Extensive qualitative and quantitative comparisons show that our approach achieves

state-of-the-art performance and produces excellent results where color artifacts and

geometric distortions are significantly reduced.

In Chapter 4, we have proposed a network for defocus image deblurring. Previous

classical methods follow two-step approaches, i.e., first defocus map estimation and

then the non-blind deblurring. In the era of deep learning, some researchers try to
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address these two problems by CNN. However, the simple concatenation of defocus

map, which represents the blur level, leads to suboptimal performance. Considering

the spatial variant property of the defocus blur and the blur level indicated in the de-

focus map, we employ the defocus map as conditional guidance to adjust the features

from the input blurring images instead of simple concatenation. Then we propose

a simple but effective network with spatial modulation based on the defocus map.

To achieve this, we design a network consisting of three sub-networks, including the

defocus map estimation network, a condition network that encodes the defocus map

into condition features and the defocus deblurring network that performs spatially

dynamic modulation based on the condition features. And the spatially dynamic

modulation is based on an affine transform function to adjust the features from the

input blurry images. Experimental results show that our method can achieve better

quantitative and qualitative evaluation performance than the existing state-of-the-art

methods on the commonly used public test datasets.
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Appendix A

Appendix for Multi-Scale Feature

Flow Network (Chapter 3)

A.1 Visualization Results

We provide additional examples of the results obtained by our method and exist-

ing state-of-the-art methods in Figs. A.1. Specifically, we compare our model with

two single image HDR imaging methods (i.e., TMO [61] and HDRCNN [60]) and

five multi-image HDR imaging methods (i.e., the patch-based method [2], the flow-

based method with CNN merger [1], the U-net structure without optical flow [5], the

attention-guide method (AHDR) [54], and progressive and selective fusion network

(PSFNet) [73]).

As shown in Figure A.2 and A.3, there are two samples to illustrate the effec-

tiveness of the regularization loss. Here we only show two settings for λ, i.e., λ = 0

and λ = 2. As show in Figure A.2 and A.3, sub-figure (a) shows the low exposure

image, sub-figure (b) shows the medium exposure image, sub-figure (c) shows the low

exposure image warped by the flow learned in λ = 0 settings and sub-figure (d) shows

the low exposure image warped by the flow learned in λ = 2 settings.

91



GTAHDRWuKalantariSenHDRCNNTMO OursPSFNet

LDR images Tonemapped HDR images LDR Patches

Figure A.1: Results from the Testing data (BarbequeDay) of [1]. Upper row from
left to right: the two input LDR images, the HDR image produced by the proposed
method, and (zoomed-in) LDR image patches with two identical positions/sizes (in
green and red). Lower row: the same patches of the HDR images produced by different
existing methods
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(a) EV = -2.0 (b) EV = 0

(c) λ = 0 (d) λ = 2

Figure A.2: The low exposure images (010) in test set of [1] warped by the flow for
different λ values.
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(a) EV = -2.0 (b) EV = 0

(c) λ = 0 (d) λ = 2

Figure A.3: The low exposure images (007) in test set of [1] warped by the flow for
different λ values.
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(a) L1 (b) L2

(c) Mask1 (d) Mask2

Figure A.4: Two different masks on Testing data (07) in [1].
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(a) L1 (b) L2

(c) Mask1 (d) Mask2

Figure A.5: Two different masks on Testing data (09) in [1].
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(a) L1 (b) L2

(c) Mask1 (d) Mask2

Figure A.6: Two different masks on Testing data (10) in [1].
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