
TOHOKU UNIVERSITY
Graduate School of Information Sciences

Latency-tolerant
Vector Processor Architectures

(レイテンシ耐性を持つベクトルプロセッサアーキテクチャ
に関する研究)

A dissertation submitted for the degree of

Doctor of Philosophy (Information Sciences)

Department of Computer and Mathematical Sciences

by

Hikaru Takayashiki

January 10, 2023

Latency-tolerant Vector Processor Architectures

Hikaru Takayashiki

Abstract

A vector instruction set is now available for modern processors. This instruc-

tion set contributes to gaining high computing capability. As a result, the vector

instruction set is essential for modern processors.

In combination with the high memory performance, vector processors that

utilize a vector instruction set can achieve high sustained performance. By op-

timizing the architecture for vector instructions with a long vector length and

designing the memory system to prioritize high memory bandwidth, vector pro-

cessors can achieve a high performance in scientific and engineering applica-

tions. The increasing demand for higher accuracy and broader applicability in

these fields has led to a growth in performance requirements, making vector

processors a promising option for achieving high performance.

Modern vector processors have adopted four features different from the clas-

sical ones. First, modern vector processors have increased their computing ca-

pability by increasing the number of vector cores, even though historically the

vector processors have focused on increasing the performance of one vector core.

As this trend may continue in the future, the many-core technology will play an

essential role in driving the growth of computing capability of vector processors.

Second, modern vector processors employ an out-of-order execution mechanism

for vector instructions. This allows vector processors to increase the utiliza-

tion of vector functional units, as well as the ability to exploit instruction-level

parallelism for higher sustained performance. Third, modern vector processors

i

have a virtual memory system. This system separates the memory space per-

ceived by processes from the actual memory space, leading to improved mem-

ory usage efficiency and reduced programming workload for the user. Fourth,

modern vector processors utilize multi-banked caches in order to maintain high

sustained memory bandwidth. As the number of input/output pins that can be

integrated onto a single chip is limited, further improving the off-chip mem-

ory bandwidth becomes difficult. Therefore, the cache is used to provide vector

cores with reusable data at high bandwidth rather than relying on the off-chip

memory.

Applications for the modern vector processors are actively developed to im-

prove accuracy and expanded their scope. Recently, new applications such as

graph processing and machine learning, which involve irregular memory ac-

cesses, have become popular workloads. Since the modern vector processors and

their memory systems are optimized for high sustained performance in the case

of continuous memory accesses, the processors may not perform at their best in

the case of irregular ones. Furthermore, irregular memory accesses may cause

cache misses due to the lack of locality for the data reference, making it difficult

for vector processors to maintain high performance in applications with irregu-

lar memory accesses. One common aspect of these problems is latency, i.e., the

time between issuing a vector instruction and its completion. The latency is a

common issue that affects the performance of systems dealing with irregular

memory accesses. It can arise due to delays in accessing the data or the over-

head of managing the accesses. Reducing the latency is often a key factor in

improving the performance of systems with irregular memory accesses.

It is generally said that the latency problem does not arise in vector proces-

sors because their vector processing mechanism can hide latency by pipelined

ii

data accesses. However, in modern vector processors, the latency problem be-

comes a performance bottleneck due to the following four reasons. First, as semi-

conductor manufacturing technologies improve computing performance, the time

required for each vector operation tends to become short. The latency hiding

capability of vector processors is gradually decreasing. Second, the number of

instructions that the processor can handle simultaneously may be insufficient to

exploit instruction-level parallelism from the program. For example, irregular

memory accesses can be handled by the vector instructions set using special-

ized instructions. This handling requires multiple instructions for one access,

resulting in a longer latency than sequential accesses. Third, in applications

with irregular memory accesses, data are not reused in the cache system prop-

erly. The irregular memory accesses may not have locality in data references,

the cache system cannot fully be utilized. To solve the problems related to these

reasons, this dissertation proposes four approaches.

First, an indirect memory access prefetcher for vector gather instructions

is designed to reduce the latency of indirect memory accesses on modern vec-

tor processors. These accesses are implemented as vector gather instructions

in the vector instruction set, which allows for the vectorization of irregular or

sparse memory access sequences. When a vector gather instruction is executed,

it loads data from the main memory based on index data that has been pre-

viously loaded. Because the values in the index data are unpredictable, the

processor must wait for their arrivals, which can result in long memory access

latencies that negatively impact performance even on vector processors. To solve

this issue, the vector gather prefetcher employs a two-phase approach. In the

first phase, the vector gather prefetcher loads the index data with assuming

that the index data will be accessed sequentially. In the second phase, after

iii

prefetching the index data is complete, the vector gather prefetcher predicts the

addresses for the indirect memory accesses using the prefetched index data and

attempts to prefetch the data at those addresses. This allows the prefetcher to

hide the latency caused by indirect memory accesses.

The evaluation of the vector gather prefetcher is performed by using a sim-

ple kernel with two types of index data: sequential values and random values.

The evaluation results show that the prefetching mechanism improves the per-

formance of the sequential-indexed and random-indexed kernels by 2.2× and

1.2×, respectively.

Second, a criticality-aware out-of-order mechanism aims at hiding latency of

instructions that cause stalling. The conventional out-of-order mechanism has a

limitation in the number of instructions that can overtake other instructions. If

many instructions with dependencies run out the out-of-order window, the pro-

cessor stops issuing instructions. Thus, the criticality-aware out-of-order mech-

anism issues the instructions causing stalling on another execution path. This

mechanism enables modern vector processors to exploit more instruction-level

parallelism and conceal the latency of issuing instruction.

The evaluation of the criticality-aware out-of-order mechanism is performed

by using memory-intensive applications such as numerical simulations and graph

applications. The evaluation results show that the proposed mechanism achieves

up to 80% performance improvements on several memory-intensive applica-

tions.

Third, a page-address coalescing method aims at reducing the translation

time between virtual memory addresses and physical memory addresses for vec-

tor instructions. Since a vector instruction handles multiple elements in one

instruction, the processor has to translate multiple addresses. Furthermore, in

iv

the case of vector gather instructions that are responsible to indirect memory

accesses, the processor has to translate all the addresses. This causes a long

latency for address translations. The page-address coalescing method tries to

deduplicate page addresses in a vector using vector arithmetic units already

built in the processor.

In the evaluation of the page-address coalescing method, simulation experi-

ments are conducted to evaluate the performance improvement on the numer-

ical applications and the graph applications that contain many vector gather

instructions. The evaluation results show that the proposed method can achieve

a 2x performance improvement in numerical applications and 1.08x in graph

applications.

Fourth, a skewed multi-banked cache is designed to reduce conflict misses

that occur when multiple vector cores access the cache. While a cache with

a high associativity can avoid conflict misses, implementing such a cache for a

multi-banked configuration can be cost-prohibitive. Instead of increasing the as-

sociativity, the skewed multi-banked cache reduces the number of conflict misses

by preventing data requests from using the same cache set. This dissertation

also examines the use of several hashing functions and replacement policies in

the skewed multi-banked cache. Eventually, the proposed cache employs odd-

multiplier displacement hashing to effectively skew the data, and the static re-

reference interval prediction policy for efficient replacement. This mechanism

enables processors to achieve a high cache hit ratio and reduce latency.

In the evaluation of the skewed multi-banked cache, this dissertation dis-

cusses the cache hit rates by using stencil calculation kernels varying the num-

ber of vector cores sharing a cache and its associativity. In a 3D 7-point stencil

kernel, the skewed multi-banked cache can approximately eliminate 70 % of the

v

conflict misses. In a 3D 13-point stencil kernel, the skewed multi-banked cache

can approximately eliminate 90 % of the conflict misses.

In conclusion, this dissertation demonstrates that the proposed four approaches

can solve the latency problems for modern vector processors. These approaches

allow modern vector processors to realize high sustained performance in memory-

intensive applications by making vector processors more tolerant to latency.

These approaches to solve latency problems are valuable for architects to de-

sign vector processors in the future.

vi

CONTENTS

Contents

1 Introduction 1

1.1 Introduction . 1

1.2 Objective of the Dissertation . 5

1.3 Organization of the Dissertation . 7

2 Importance of latency-tolerance for vector processor architec-

tures 9

2.1 Introduction . 9

2.2 Modern vector processors and their requirements 10

2.3 Latency problems of vector processor 15

2.3.1 Latency of preceding dependent instructions 15

2.3.2 Latency of vector instruction stalling 17

2.3.3 Latency of address translation 20

2.3.4 Latency of memory access . 22

2.4 Latency-tolerant vector processor architectures 24

2.5 Related work . 28

2.5.1 Studies of indirect memory accesses 28

2.5.2 Studies of instruction stalling 29

2.5.3 Studies of address translation 31

CONTENTS

2.5.4 Studies of vector cache . 32

2.6 Conclusions . 34

3 Indirect memory access prefetcher for vector gather instructions 36

3.1 Introduction . 36

3.2 Motivation . 38

3.2.1 Indirect memory access prefetcher 38

3.2.2 Vector gather instruction . 39

3.3 Vector gather prefetcher . 41

3.3.1 Stream list vector prefetcher 42

3.3.2 Indirect vector prefetcher . 43

3.4 Evaluations . 44

3.4.1 Configurations of the vector processor 44

3.4.2 Benchmark kernels . 44

3.4.3 Simulator . 45

3.4.4 Performance evaluation . 46

3.4.5 Parameter study . 49

3.4.6 Effect of the number of cache blocks 51

3.5 Conclusions . 56

4 Criticality-aware out-of-order mechanism for vector instructions 57

4.1 Introduction . 57

4.2 Motivation . 60

4.2.1 Runahead execution . 60

4.2.2 Problems to apply precise runahead execution for vector

processors . 61

4.3 Criticality-aware out-of-order vector processor 64

CONTENTS

4.3.1 Challenges . 64

4.3.1.1 Consistency of the committing order 66

4.3.1.2 Consistency of the register renaming order 67

4.3.2 Mechanism overview . 67

4.3.2.1 Decoded instruction queue (DIQ) 69

4.3.2.2 Stalling instruction cache (SIC) 70

4.3.2.3 Pending commit queue (PCQ) 70

4.3.2.4 Critical register aliasing table (CRAT) 71

4.3.3 Behavior of criticality-aware vector processing 71

4.3.3.1 Recognition of the stalling instruction chain in the

normal mode . 72

4.3.3.2 Enter the critical mode 72

4.3.3.3 Exit the critical mode 72

4.3.3.4 Pipeline behaviors in the critical mode 73

4.3.3.5 Contextualization of early-dispatched instruction

in the normal mode 74

4.3.4 Memory disambiguation . 76

4.4 Evaluation . 77

4.4.1 Experimental setup . 77

4.4.2 Applications . 79

4.4.3 Assumptions . 80

4.4.4 Area overheads . 82

4.4.5 Performance . 82

4.4.5.1 PolyBench case . 83

4.4.5.2 Practical application kernels 85

4.4.5.3 Vector Graph Library 87

CONTENTS

4.4.6 Analysis of criticality-aware executed instructions 89

4.4.7 Architectural sensitivity study 90

4.5 Conclusions . 96

5 Page-address coalescing method of vector gather instructions 97

5.1 Introduction . 97

5.2 Motivation . 99

5.2.1 Vector Gather Instruction . 99

5.2.2 Vector Gather Instruction with Virtual Memory 100

5.3 Page-Address Coalescing for Vector Gather Instruction 101

5.3.1 Idea to use existing vector arithmetic units for page-address

coalescing . 101

5.3.2 Procedure of page-address coalescing 103

5.3.3 Implementation . 105

5.3.4 Requirements for vector arithmetic unit 106

5.3.5 Trade-off of the proposal . 106

5.4 Evaluations . 108

5.4.1 Experimental setup . 108

5.4.2 Applications . 110

5.4.3 Coalescing trial and performance 110

5.4.4 Discussion on performance improvement 112

5.4.5 TLB access reduction . 113

5.5 Conclusions . 115

6 Skewed multi-banked cache for many-core vector processors 116

6.1 Introduction . 116

6.2 Motivation . 118

CONTENTS

6.2.1 Many-core Vector Processors with Multi-banked Shared Cache118

6.2.2 Conflict Misses on The Many-core Vector Processor 120

6.2.2.1 3D 7-point Stencil Calculation 120

6.2.2.2 Stencil Calculation with A Shared Cache 120

6.2.3 Preliminary Evaluation . 123

6.3 Skewed Multi-banked Cache for Many-core Vector Processors . . . 126

6.3.1 Hashing Functions . 128

6.3.1.1 XOR-based Hashing Function 128

6.3.1.2 Odd-multiplier Displacement Hashing Function . . 129

6.3.2 Replacement Policies . 130

6.3.2.1 Not Recently Used Not Recently Written 130

6.3.2.2 Static Re-Reference Interval Prediction 130

6.4 Evaluation . 133

6.4.1 Experimental Environment 133

6.4.2 Evaluation Results and Discussion 135

6.4.2.1 Cache Hit Rate . 135

6.4.2.2 Performance . 138

6.5 Conclusions . 141

7 Conclusions 142

Bibliography 148

Acknowledgements 161

LIST OF TABLES

List of Tables

2.1 The relation of this dissertation between chapters and two per-

spectives with four approaches. 25

3.1 Parameters of the evaluation. 45

3.2 The relation between stride or duplicate width and the number of

cache blocks per vector gather instruction. 53

4.1 Baseline configuration for the out-of-order vector processor. 78

4.2 The Bytes per flop of PolyBench. 80

4.3 The Bytes per flop of the optimized version. 81

4.4 The overview of the practical application kernels. 81

4.5 The algorithms of Vector Graph Library. 82

5.1 Baseline configuration for the out-of-order vector processor. 109

5.2 The relationship between the number of coalescing trial and occu-

pying cycles. 109

5.3 The overview of the numerical applications. 111

5.4 The algorithms of Vector Graph Library. 111

6.1 Configurations of the simulation . 134

LIST OF FIGURES

List of Figures

2.1 The overview of the modern vector processor. 11

2.2 The breakdown of latency defined in this dissertation. 16

2.3 Indirect memory accesses. 16

2.4 The roof-line model of the scale kernel with indirect memory ac-

cesses. 18

2.5 The number of instructions for each iteration in the HPC applica-

tions. 19

2.6 TLB bandwidth and room for performance improvement. 21

2.7 The cache hit rate when the number of cores sharing the same

cache and the number of the associativity are changed 23

3.1 Vector gather prefetcher. 42

3.2 Roof-line model of a scale kernel in the case of the sequential index

array. 47

3.3 Roof-line model of a scale kernel in the case of the random index

array. 48

3.4 The effects of parameters, prefetch distance & prefetch degree in

the case of the scale kernel with the sequential index array. 51

3.5 The effects of parameters, prefetch distance & prefetch degree in

the case of the scale kernel with the random index array. 52

LIST OF FIGURES

3.6 The performance improvement when the number of cache blocks

per vector gather instruction is decreased from the sequential case. 54

3.7 The performance improvement when the number of cache blocks

per vector gather instruction is increased beyond the sequential

case. 55

4.1 The percentage of the instructions causing pipeline stalling and

their dependencies. 62

4.2 The challenges to distinguish dependency where the normal mode

and the critical mode. 65

4.3 The overview of the criticality-aware out-of-order vector processor. 69

4.4 The performance evaluation results on the PolyBench suite, nor-

malized by the baseline out-of-order configuration. 84

4.5 The performance evaluation results on six benchmarks, normal-

ized by the baseline out-of-order configuration. 86

4.6 The performance evaluation results on the vector graph library,

normalized by the baseline out-of-order configuration. 88

4.7 Effect of the different size of the DIQ. 91

4.8 Effect of the different size of the PCQ. 91

4.9 Effect of the different size of the CRAT. 92

4.10 Effect of the different size of the SIC. 94

4.11 Effect of the different switching latency. 94

4.12 Effect of physical vector registers. 95

5.1 The percentage of pages per vector gather instruction. 102

5.2 The cycles usable for page-address coalescing. 103

5.3 The example of the proposed address coalescing method. 104

LIST OF FIGURES

5.4 The performance results for numerical applications. 112

5.5 The performance results for graph applications. 113

5.6 The performance improvement for each application. 113

5.7 The number of addresses translated by TLB. 114

6.1 Example of M cores sharing the same cache in the N vector cores

processor . 119

6.2 The elements used in one calculation 121

6.3 The elements shared on the cache . 122

6.4 The cache hit rate when the number of cores sharing the same

cache and the number of the associativity are changed 125

6.5 The 2-way set-associative. 127

6.6 The 2-way skewed-associative. 127

6.7 The bit field of hashing function of the given address 129

6.8 Cache hit rate result with the same hashing function, oDisp, ex-

cept set-associative cache . 135

6.9 Cache hit rate result with the same replacement policy, SRRIP . . 136

6.10 Performance comparison of the conventional set-associative cache

and the proposed skewed cache . 139

LIST OF ALGORITHMS

List of Algorithms

1 An example code of indirect memory accesses. 17

2 The sequence of indirect memory accesses by vector gather in-

structions. 40

3 VLDscale . 45

4 VGTscale . 46

5 3D 7-point stencil calculation . 121

6 The flow of NRUNRW policy. 131

7 The flow of SRRIP policy . 132

LIST OF SOURCE CODES

List of Source Codes

5.1 Example of indirect memory access 99

Chapter 1

Introduction

1.1 Introduction

We live in a world surrounded by computers. When checking weather forecast,

watching movies, listening music, or traveling somewhere, we use computers

in our daily life. Computers have become an integral part of our daily life, and

they provide for our every need. As several types of computers support our lives,

computers have been demanded to realize further performance improvements to

enrich our lives.

In particular, computers in high performance computing are used to conduct

scientific and engineering simulations. These computers are extremely sensitive

to performance improvements. As personal computers now possess the same

level of power as computers in high performance of several decades ago, it is an-

ticipated that the advances in computers for high performance computing will

disseminate throughout all computers in the future. The development of com-

puters in high performance computing is therefore vital for the overall advances

of computers.

The core part of computers is called processors, and the processors are one

1

1.1. Introduction

of the most important parts for performance of the computers. The performance

of processors can be determined by computing capability and memory perfor-

mance. The computing capability means how many calculations in a second the

processor can execute. Thanks to improvements in semiconductor technologies,

the computing capability has continued to improve over the past decade. How-

ever, due to the end of Dennard’s scaling and the stagnation of clock frequency,

processors are required to improve performance while reducing power consump-

tion.

The vector instruction set is one of the promising solutions to satisfy this

requirements. The vector instruction set enables processors to handle mul-

tiple elements by one instruction. Since a compiler guarantees that the ele-

ments in a vector are independent, the processors can leverage data-level par-

allelism by processing the data in parallel by hardware. Many applications can

potentially benefit from the vector instruction set for performance and energy

efficiency [1]. The vector instruction set has been adopted not only for tradi-

tional high-performance computing (HPC) processors [2, 3] but also for general-

purpose processors [4, 5].

The memory performance has also continued to improve over the past decades

to sustain the computing capability improvements. The memory performance

can be explained by bandwidth and latency. The bandwidth refers to the amount

of data transferred per second, while the latency represents the time between a

request for data and the actual receipt of the data. Although there have been

significant advancements in terms of memory bandwidth, including the devel-

opment of 3D die-stacking technologies, memory latency has lagged behind the

bandwidth improvement [6].

Thanks to the architecture specialized for vector instructions, the processors

2

1.1. Introduction

employing vector instruction set, namely vector processors, achieve high com-

puting capability. Especially in high performance computing, vector processors

can achieve high sustained performances. By adopting long vector length to

enhance computing capability and a memory system focusing on high memory

bandwidth, vector processors well work for scientific and engineering applica-

tions traditionally known as memory-intensive applications.

The performance requirements of the memory-intensive applications are in-

creasing as they are developed to improve accuracy and expand the scope of

the memory-intensive applications. For example, new memory-intensive ap-

plications, such as graph processing and machine learning, which rely on ad-

vanced algorithms and complex data structures, have become popular work-

loads. As a result, the memory system can easily become a bottleneck for these

new memory-intensive applications. Vector processors have been expected to

provide high sustained performance even for these new memory-intensive ap-

plications.

Some of numerical simulations and new applications require irregular mem-

ory accesses, and the high memory bandwidth of vector processors may not be

fully utilized. One reason of this problem is a long latency, i.e., the time between

issuing an vector instruction and completing its execution, resulting in degra-

dation of performance. Irregular memory accesses are composed of a sequence

of memory access instructions depending on other memory access instructions.

If the first memory access instruction is delayed, the execution of its dependent

memory access instruction is also delayed. In addition, irregular memory ac-

cesses may cause cache misses because these accesses may not have locality in

the data reference. Therefore, it is difficult for vector processors to achieve high

sustained performance in applications with irregular memory accesses.

3

1.1. Introduction

Vector processors have not been considered a latency problem because their

vector processing mechanism can hide latency. However, it become a perfor-

mance bottleneck due to the following four reasons.

First, as semiconductor manufacturing technologies improves computing ca-

pability, the time required for each vector operation tends to become short. The

latency hiding capability of vector processors is gradually decreasing.

Second, the number of instructions that the processor can handle simultane-

ously may be insufficient to exploit instruction-level parallelism from the pro-

gram. Irregular memory accesses can be handled by a vector instructions set

using a specialized instruction, and this handling requires multiple instructions

for one access. This fact may result in a longer latency than the case of sequen-

tial accesses.

Third, in applications with irregular memory accesses, data may not hit in

the cache system properly. Because the irregular memory accesses may not have

locality in data references, the cache system cannot fully be utilized.

Fourth, memory bandwidth and memory capacity have been improved year

by year, however, the memory access latency has not been reduced much com-

pared to the memory bandwidth and memory capacity.

Therefore, architectures that make vector processors latency-tolerant are de-

manded.

4

1.2. Objective of the Dissertation

1.2 Objective of the Dissertation

This dissertation aims to establish the architectonic methodology for vector pro-

cessors that enables high sustained performance in memory-intensive applica-

tions from the viewpoints of latency-tolerance. The latency tolerance to be dis-

cussed in this dissertation is defined as the ability to achieve a high sustained

performance in the case of irregular memory access or indirect memory access

in memory-intensive applications. The latency-tolerant architectures can con-

tribute to the resolution of latency-related problems when designing the next-

generation vector processors. To this end, the following research items are clar-

ified in this dissertation.

The first item is to clarify which architectural elements of vector processors

causing latency problems and to establish approaches to solve these latency

problems. It is also explained that the impact of the latency on the sustained

performance of vector processors is significant and should be resolved.

Based on the impact of latency on vector processors clarified in this disser-

tation, architectures to make vector processors latency-tolerant are proposed.

The second item is to show that the architectural approaches for making vector

processors latency-tolerant, which is stated in the first item, are evaluated in

various memory-intensive applications. In particular, this dissertation shows

four approaches. The first approach is a prefetch mechanism for indirect mem-

ory access through vector instructions. The second approach is an out-of-order

execution mechanism according to the instruction latency of vector instructions.

The third approach is a method for reducing conversion latency by optimizing

address translation of vector instructions. The fourth approach is a mechanism

for reducing memory access latency by reducing conflict misses in the cache

mechanism for vector processors.

5

1.2. Objective of the Dissertation

These architectural approaches enable vector processors to achieve high sus-

tained performance in memory-intensive applications with irregular memory

access or indirect memory access. These approaches expand the range of ap-

plications for vector processors, contributing to the advancement of science and

technology.

6

1.3. Organization of the Dissertation

1.3 Organization of the Dissertation

This dissertation is organized as follows. Chapter 1 describes the background

and the objective of this dissertation. This chapter highlights the importance

of addressing latency tolerance in vector processors to achieve the sustained

performance.

Chapter 2 describes an architecture of vector processors assumed in this

dissertation. The vector processors are crucial in high-performance comput-

ing (HPC) processors and general purpose processors, especially for memory-

intensive applications such as scientific and engineering endeavors. However,

the performance of vector processors can be compromised by the latency, i.e.,

the time between issuance of a vector instruction and its completion, especially

for applications with irregular memory access patterns. Providing the defini-

tion of latency in the vector processors, this chapter discusses the sources of the

latency that can be a bottleneck for the vector processors. Then, this chapter

breaks down this long latency into four types.

Chapter 3 proposes a prefetching mechanism for vector gather instructions

to hide the latency in the aspect of dependency among memory instructions. The

proposed mechanism consists of two prefetchers. The first prefetcher loads se-

quential data that are indices for indirect memory accesses. Using the prefetched

data, the second prefetcher calculates the addresses of indirect memory accesses

and prefetches these data.

Chapter 4 proposes a criticality-aware out-of-order mechanism for the vector

processors to hide the latency due to stalling. The out-of-order mechanism is

crucial to hide latency by executing vector instructions in an out-of-order man-

ner. The proposed mechanism identifies vector instructions that cause stalling

7

1.3. Organization of the Dissertation

and tracks the dependencies of these instructions. Once the stalling vector in-

structions are identified, the mechanism issues them while the vector processors

are stalling, allowing the processors to utilize unused resources.

Chapter 5 proposes an address coalescing method for vector gather instruc-

tions to reduce the latency in the aspect of address translation. The proposed

method aims to reduce the latency of address translation by using the arithmetic

vector units already built into the vector processors to deduplicate the virtual

addresses of vector gather instructions. By deduplicating these addresses, the

number of address translations is reduced, thereby reducing the number of cy-

cles required for address translation.

Chapter 6 proposes a skewed cache mechanism to reduce the latency in the

aspect of the conflict miss. Since the vector processors employ multiple-core

architecture, the cache system receives many requests from multiple cores. This

situation causes the way-conflict of the cache due to the shortage of associativity.

The proposed mechanism reduces cache misses using the skewed associativity

to avoid conflict misses.

Finally, Chapter 7 concludes this dissertation and discusses remaining issues

as the future work.

8

Chapter 2

Importance of latency-tolerance

for vector processor architectures

2.1 Introduction

This chapter discusses the importance of the latency-tolerant vector processor

architectures. First, this chapter shows the vector processors assumed in this

dissertation. The vector processors implement vector processing units and high

memory bandwidth. Then, this chapter defines the latency that this dissertation

addresses. From the definition of the latency, this chapter breaks down the

latency into four latencies with architectural factors.

While vector processors are well-suited to handle regular memory access pat-

terns that can be easily vectorized, they struggle to achieve high sustained per-

formance in applications that require irregular memory accesses. This is be-

cause such accesses often consume resources for an unnecessarily long duration,

resulting in a decrease in resource utilization.

9

2.2. Modern vector processors and their requirements

2.2 Modern vector processors and their require-

ments

Since vector processors appeared in the early 1970s, vector processors have been

used for scientific and engineering simulations in high performance comput-

ing [7]. The design of vector processors enables the processors to exploit data-

level parallelism from programs. Successors to the original vector processors,

namely modern vector processors, realize high sustained performance for sev-

eral memory-intensive applications.

First, this section explains the features of modern vector processors that

are inherited from traditional vector processors. This section then describes

the points that modern vector processors have evolved from traditional vector

processors. The modern vector processors inherit traditional vector processors,

such as a powerful core with the capability of vector processing with long vector

length, and high bandwidth memory.

Figure 2.1 depicts a modern vector processor assumed in this dissertation.

The modern vector processor contains multiple vector cores. The vector core

consists of a scalar processing unit and a vector processing unit. The scalar

processing unit fetches and decodes all the instructions and is responsible for

the execution of scalar instructions in the subsequent pipeline.

The vector processing unit consists of vector functional units and vector reg-

isters. The vector functional units execute vector instructions that perform

arithmetic or logical operations on vectorized data. Multiple elements of vec-

torized data are handled by a single vector instruction. Vector length refers to

the number of elements that can be processed by a single vector instruction. For

example, the maximum vector length is 256 for double-precision floating-point

10

2.2. Modern vector processors and their requirements

Fetch

Decode

Rename

Vector inst.
Scheduler

Vector Float.
A

dders

Vector Float.
M

ultipliers

Vector
D

iv. / Sqrt units

Scalar Processing Unit Vector Processing Unit
Core

Load Store Buffer

Scalar
ALU

Scalar inst.
Scheduler

Scalar
Floating

Vector
Registers

Scalar
Registers

Cache

Main Memory

TLB

Prefetcher

H
B

M
H

B
M

H
B

M

H
B

M
H

B
M

H
B

M
C

ache

C
ache

C
ore

C
ore

C
ore

C
ore

C
ore

C
ore

Figure 2.1: The overview of the modern vector processor.

elements in the NEC SX vector processor series, such as SX-ACE [8, 3] and SX-

Aurora TSUBASA [2, 9, 10]. Compared to SIMD instructions of general-purpose

processors [4, 5, 11, 12, 13, 14], vector instructions can process a vast amount of

data with a single instruction.

Vector registers hold vector data used in vector instructions during execu-

tion, and vector functional units can access these data for calculations. These

units contain multiple arithmetic pipelines for various operations such as ad-

dition, multiplication, division/square root, and logical operations. Vector mask

registers represent the validity of the results of vector instruction execution, and

they can be used to vectorize loops, including conditional branches and execute

them as vector instructions.

As traditional vector processors realize high memory bandwidth, the modern

vector processors also realize high memory bandwidth. To realize high sustained

11

2.2. Modern vector processors and their requirements

memory bandwidth, the modern vector processors adopt high bandwidth mem-

ory (HBM). Compared to conventional memory such as DDR4, HBM can provide

more bandwidth by stacking multiple memory dies as a package. HBM with up

to eight stacked DRAM dies is connected to the memory controller via silicon in-

terposer. The dies are connected vertically to each other inside the stack using

through-silicon via (TSV) technologies. Since HBM has many memory channels

and wider bus, its memory bandwidth is higher than conventional DDR mem-

ories [15]. The modern vector processors implement several packages of HBM.

For example, SX-Aurora TSUBASA implements six HBM packages [16, 17].

Furthermore, modern vector processors have employed four architectural

mechanisms, such as multiple vector cores, an out-of-order execution mecha-

nism, virtual memory system, and cache memory, over the traditional design to

satisfy the demand from applications.

First, the modern vector processors contain many vector cores allowing for

more computational capacity, although the vector processor is composed of a

small number of high performance vector cores, instead of implementing a large

number of low performance cores in the case of a scalar general-purpose proces-

sor such as X86 processors. The modern vector processors achieve computational

capacity by achieving process-level parallelism through multi-core technologies.

Second, the modern vector processors adopt an out-of-order execution mecha-

nism. The vector processing unit schedules vector instructions in an out-of-order

fashion. This out-of-order mechanism allows vector instructions to be executed

as soon as they become available, hence enhancing performance by exploiting

instruction-level parallelism.

The out-of-order execution mechanism is enabled by a larger number of phys-

ical vector registers than logical vector registers specified by the instruction set

12

2.2. Modern vector processors and their requirements

architecture (ISA). The registers defined by the ISA are referred to as logical reg-

isters, whereas the registers that the processor really contains are referred to as

physical registers in this dissertation. Since the vector processing unit renames

vector registers from logical registers to physical registers, vector instructions

can circumvent false dependency of vector registers.

Third, the modern vector processors support a virtual memory system, which

decouples the process-visible memory space from the actual memory space. This

functionality allows many programs to seamlessly utilize the memory space and

decreases the programming burden for developers [7]. The process of converting

addresses from the process-visible space to the actual memory space is called

address translation. During address translation, a virtual memory address is

divided into a virtual page number and a page offset, where the virtual page

number will be translated to a physical page number.

In order to reduce the cost of address translation, a translation lookaside

buffer (TLB) is used to cache the mapping information between virtual page

numbers and physical page numbers. When a virtual page number is trans-

lated to a physical page number, the TLB is accessed in the load/store queue to

translate the addresses for each vector memory instruction. This mechanism

reduces the time required for subsequent translations of the same virtual page

number.

Fourth, the modern vector processors adopt multi-banked caches to keep the

high sustained memory bandwidth. With the improvement of the computing ca-

pability of vector cores, the demand for memory performance also increases to

supply the data required by vector cores. However, the improvement of mem-

ory performance is relatively behind that of computing capability even with the

13

2.2. Modern vector processors and their requirements

debut of HBM. Since it is difficult to further increase the off-chip memory capac-

ity owing to the limited number of input/output ports on a single chip, on-chip

caches feed vector cores with reusable data at high bandwidth. For example, the

SX-9 and later vector processors in NEC SX series include on-chip multi-banked

cache memories [18, 2, 19].

Modern vector processors are widely used for memory-intensive applications,

such as scientific simulations and engineering applications, for example, tsunami

inundation simulation [20], oil and gas applications [21], superconductivity sim-

ulations [22], drug design application [23], liquid crystal simulation [24], and

analytical query processing [25]. Furthermore, the modern vector processors

have been used in various range of emerging research and productions, such as

simulated annealing applications [26, 27], graph applications [28, 29, 30], and

machine learning applications [31]. The performance requirements of these ap-

plications are growing as these applications are eagerly developed to satisfy the

demands of improving their accuracy and broadening the scope of applications.

14

2.3. Latency problems of vector processor

2.3 Latency problems of vector processor

The term “latency” is used to express the delay, such as the memory access la-

tency that is the time between sending a request and receiving data from mem-

ory. The memory access latency has a significant impact on the completion time

of a vector instruction. The completion of the vector instruction has a signifi-

cant impact on the execution of dependent vector instructions. Accordingly, the

latency has a significant impact on the overall performance of vector processors.

To clearly discuss the impact on vector processor performance, this disser-

tation expands the concept of the latency in a broader sense that more directly

affects sustained performance. Here, this dissertation defines “latency” as the

time between the fetch of a vector instruction and the completion of the vector

instruction.

The latency is the sum of a number of different sources of the latency within

the architecture. From the definition of latency in this dissertation, this disser-

tation breaks down the latency into four types as shown in Figure 2.2.

2.3.1 Latency of preceding dependent instructions

The execution of some memory access instructions may be contingent upon com-

pleting another memory access instruction. This kind of memory access instruc-

tion cannot be executed until the result of the previous memory access instruc-

tion has been completed.

One example of instruction sequences having dependency is indirect memory

accesses. Algorithm 1 represents a simple program including indirect memory

accesses. In the indirect memory accesses, the index array determines the ad-

dresses where they access. In Algorithm 1, the elements in array L determine

15

2.3. Latency problems of vector processor

Vector core

Fetch & Decode

Reservation
station

TLB

Cache memory

Main memory

① Latency of preceding
dependent instructions

② Latency of issuing

③ Latency of address
translation

④ Latency of memory access

Figure 2.2: The breakdown of latency defined in this dissertation.

A B C D E F G H I J

J E B D A I

𝐴𝐴[𝑖𝑖]

𝐴𝐴[𝐿𝐿[𝑖𝑖]]

9 4 1 3 0 8𝐿𝐿[𝑖𝑖]

0 1 2 3 4 5 6 7 8 9

Figure 2.3: Indirect memory accesses.

how the elements in array A are accessed, as shown in Figure 2.3. The elements

of array A are accessed indirectly through array L, for example A[L[i]] = J,E,B

while A[i] = A,B,C for i = 0, 1, 2. In general, the values of array L are not

consecutive, resulting in irregular access patterns for A[L[i]].

Applications such as numerical calculations, machine learning, and graph

algorithms often rely on indirect memory accesses. For instance, a sparse matrix

with many zero elements is often compressed to reduce memory consumption,

requiring indirect memory accesses to access each non-zero element. Similarly,

machine learning and graph algorithms also use sparse matrices that require

16

2.3. Latency problems of vector processor

Algorithm 1 An example code of indirect memory accesses.
1: for i = 0, 1, ...N do
2: B[i] = s× A[L[i]]
3: end for

indirect memory accesses.

To examine the performance degradation by indirect memory accesses, this

dissertation conducts preliminary evaluation. Figure 2.4 shows the preliminary

evaluation of the scale kernel with/without indirect memory accesses, shown in

the roof-line model [32]. The vertical axis shows the performance, and the hori-

zontal axis shows operational intensity that is the amount of floating operations

divided by the amount of memory accesses. Scale indicates the scale kernel

as shown in Figure 2.3, and Scale with indirect memory accesses indicates the

case of using indirect memory accesses. The index array contains continuous

values. Scale obtains performance near the ceiling of the roof-line model that

represents an upper bound of performance. However, the obtained performance

of Scale with indirect memory accesses is far from the performance of Scale. This

suggests that the latency of indirect memory accesses hinders the ability of the

vector processor to utilize its memory bandwidth.

2.3.2 Latency of vector instruction stalling

Modern vector processors can execute vector instructions in an out-of-order fash-

ion to enhance instruction execution efficiency. However, due to the limitation

of hardware budget of the processor, there is a limit to the number of vector

instructions that the processor can analyze for their readiness. If instructions

take memory access latency, the execution of subsequent instructions will be

17

2.3. Latency problems of vector processor

1

2

4

8

16

32

 1/64 1/32 1/16 1/8 1/4 1/2 1 2 4 8

G
Fl

op
s

Operational intensity

Scale with indirect memory accesses Scale

Figure 2.4: The roof-line model of the scale kernel with indirect memory ac-
cesses.

stalled.

Vector processors have traditionally been used to execute applications such

as numerical simulations. These applications often involve repeating the same

loop structure many times to compute large computational spaces or time steps

to iteratively solve mathematical or physical equations. This means that the

same vector instructions tend to be executed repeatedly, including those with a

long access latency that may degrade performance.

Additionally, these applications have hundreds of instructions in one itera-

tion. Figure 2.5 shows the number of instructions in one iteration on the ap-

plication for vector processors. The vertical axis shows the number of vector

instructions inside one iteration, and the horizontal axis shows applications.

This chapter prepares six kinds of applications from different application do-

mains [19, 2]. Each application has a single loop structure that iterates multiple

times. These applications are compiled for the vector processors and optimized

18

2.3. Latency problems of vector processor

0

100

200

300

400

500

600

Antenna EarthQuake LandMine Plasma Turbine TurbulentFlow

Th
e

nu
m

be
r o

f i
ns

tru
ct

io
ns

fo
r e

ac
h

ite
ra

tio
n

Figure 2.5: The number of instructions for each iteration in the HPC applica-
tions.

so that 99% part of the code can be vectorized. The detail of the evaluation

environment will be shown in Section 5.4. Figure 2.5 shows that the number

of instructions in one iteration varies depending on applications. The Turbu-

lentFlow kernel especially has many instructions appearing in one iteration,

making it easy to fill the out-of-order window with instructions of one iteration.

The Plasma and the Turbine kernels also involve hundreds of instructions in

one iteration. Note that in the cases of the LandMine and EarthQuake ker-

nels, the number of instructions appearing in one iteration is small because they

are stencil calculations without loop unrolling.

Since vector instructions for memory accesses appear frequently, a large

number of vector instructions between each memory access should wait for their

execution. This can hinder conventional out-of-order mechanisms from effec-

tively paralleling these memory accesses. The processor may not have sufficient

capacity to simultaneously handle the instruction-level parallelism present in

the program, resulting in the latency as instructions must wait to be issued.

19

2.3. Latency problems of vector processor

For example, the Fujitsu A64FX processor, which utilizes the vector instruc-

tion set to take advantage of data-level parallelism, has 79 reservation stations

connected to its execution pipeline, enabling it to handle a maximum of 79 in-

structions simultaneously [33]. This limitation on the number of instructions

that can be handled at once can prevent the processor from fully exploiting the

instruction-level parallelism present in the applications that commonly run on

vector processors.

The inability of the processor to exploit the ILP causes vector instructions

waiting to be executed. This can result in latency. Therefore, there is potential

to improve the performance of vector processors by enabling them to exploit the

ILP across iterations of vector instructions.

2.3.3 Latency of address translation

Since vector instructions can handle multiple elements in a single instruction,

all addresses of the instruction must be translated. This translation process

may take a long time for the translation of all addresses, resulting in a long

latency.

In the case of address translation for vector instructions, addresses should

be translated as many as vector elements. Supposing that consecutive accesses

can be expected, such as in the case of vector load instructions, the minimum

number of required pages can be predicted from the range of virtual addresses.

On the other hand, in the case of indirect memory accesses, where memory

accesses are not sequential, and the addresses are unpredictable, it is neces-

sary to translate all the virtual page numbers in the addresses to physical page

numbers. The number of virtual page numbers that need to be translated is

proportional to the vector length. The vector processor with a long vector length

20

2.3. Latency problems of vector processor

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

1 2 4 8 16 32 64 128 256

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

 o
n

av
er

ag
e

TLB bandwidth [address/cycle]

Figure 2.6: TLB bandwidth and room for performance improvement.

consumes a non-negligible number of cycles for the address translation.

To confirm this fact, the preliminary experiment is conducted. The vec-

tor processor with a long vector length executes several benchmarks, such as

numerical computation and graph algorithms containing indirect memory ac-

cesses using a simulator. Figure 2.6 shows the impact of the TLB performance

on the total performance in handling vector gather instructions. The vertical

axis shows the average performance and the horizontal axis shows the through-

put regarding the number of pages that the TLB can translate per cycle (TLB

bandwidth). This figure indicates that the performance increases as the TLB

bandwidth increases.

The TLB requires many cycles to translate all virtual addresses of vector

instructions when the bandwidth is limited. As a result, the latency of vector

instruction is affected more by the limited TLB bandwidth. Although increasing

the bandwidth of the TLB is challenging, the time spent on the TLB must be

minimized.

21

2.3. Latency problems of vector processor

2.3.4 Latency of memory access

The vector processor is equipped with cache memories to realize high sustained

bandwidth. The cache memory is also important for reducing the memory access

latency. However, if the cache cannot cover the memory access pattern, the

accesses become cache misses, resulting in a long latency. Furthermore, when

the vector processor has multiple cores, the accesses that the cache receives

become more complex.

To evaluate the effect of multiple accesses from multiple cores into the caches,

the preliminary experiment is conducted. Figure 2.7 shows the results of the

preliminary evaluation in a stencil calculation. The vertical axis indicates the

cache hit rate, and the horizontal axis indicates the number of cores sharing one

cache with an associativity of four. In Figure 2.7, the theoretical cache hit rate,

which is calculated by the memory access pattern, increases as the number of

cores sharing one cache increases. On the other hand, the cache hit rate of the

set-associative cache with the LRU replacement policy becomes significantly low

in the case of a large number of cores sharing one cache with an associativity

of four. This is because, when the stencil calculation is executed in parallel,

multiple cores simultaneously access the same set, resulting in conflict misses.

When the cache hit ratio is low, two issues may arise. First, the sustained

memory bandwidth is reduced due to the failure to exploit data locality. Second,

the memory access latency increases because all data must be transferred from

the main memory. On the other hand, if the cache hit ratio becomes high, the

processor not only benefits from high sustained memory bandwidth but also

becomes more tolerant of latency.

22

2.3. Latency problems of vector processor

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1core 2cores 4cores 8cores 16cores 32cores

4-way

C
ac

he
 h

it
ra

te

Number of cores that share the cache / associativity

Set-associative+LRU Theoretical

Figure 2.7: The cache hit rate when the number of cores sharing the same cache
and the number of the associativity are changed

23

2.4. Latency-tolerant vector processor architectures

2.4 Latency-tolerant vector processor architec-

tures

This dissertation aims to present architectural approaches to designing latency-

tolerant vector processors. As discussed in Section 2.3, latency-tolerance is an

important factor in achieving high sustained performance in memory-intensive

applications on modern vector processors. Since vector processors have tradi-

tionally been designed to achieve throughput rather than the latency, it is nec-

essary to develop latency-tolerant architectures to achieve high sustained per-

formance.

This dissertation proposes four approaches from two perspectives as shown

in Table 2.1. There are two perspectives that can be taken to solving latency

problems in modern vector processors. The first perspective is to consider mul-

tiple ways to solve latency problems, as different mechanisms may be more ef-

fective in different scenarios. This includes both approaches to hide latency and

reduce latency. The second perspective is the need to consider both the core

architecture and memory architecture of modern vector processors, as both can

significantly impact the overall performance of the processors.

For the first perspective, there are two approaches to solve latency problems

discussed in Section 2.3 in modern vector processors. The first approach is to

hide latency, which involves ways to continue executing instructions even in the

presence of latencies. This can be achieved through various architectures such

as an out-of-order execution, and speculative execution. The second approach is

to reduce latency, which involves implementing features or taking procedures to

minimize latency. This can be achieved through architectures such as improv-

ing cache utilization, and reducing the number of cycles required for address

24

2.4. Latency-tolerant vector processor architectures

Table 2.1: The relation of this dissertation between chapters and two perspec-
tives with four approaches.

Hiding latency Reducing latency
Core An out-of-order mechanism A page-address coalescing method

architecture in Chapter 4 in Chapter 5
Memory A prefetching mechanism A skewed cache

architecture in Chapter 3 in Chapter 6

translations.

For the second perspective, there are two architectural approaches to solve

latency problems in modern vector processors. The first approach is to optimize

the core architecture of the processor, which involves designing the processor to

handle latencies of as an out-of-order execution and a virtual memory. The sec-

ond approach is to improve the memory architecture, which involves the design

of the cache system and a prefetching mechanism to handle latencies.

From these perspectives, this dissertation proposes four approaches. First,

this dissertation proposes a prefetch mechanism. This is the approach to hid-

ing the latency of memory access instructions that depend on each other, such

as indirect memory accesses, for the memory architecture. The idea is that a

prefetcher can identify the index data needed for the indirect memory accesses

and load it in advance, allowing the processor to overlap memory accesses and

improve performance. However, prefetching also carries the risk of loading re-

dundant data, which can reduce the overall benefit. Moreover, the vector in-

structions used in many memory-intensive applications handle multiple ele-

ments in a single instruction, and therefore, the negative performance impact

of prefetching misses can be significant. To overcome this trade-off, it is nec-

essary to design a prefetcher that is specialized for vector instructions and can

effectively hide latency while minimizing the risk of loading redundant data.

25

2.4. Latency-tolerant vector processor architectures

Second, this dissertation investigates the use of speculative execution tech-

niques. This is the approach to hide the latency of issuing instruction in vector

processors, for the core architecture. While an out-of-order execution mecha-

nism can be effective at hiding latency, it can also be resource-intensive and

energy-consuming. Instead, this dissertation focuses on the runahead mecha-

nism to hide latency at the time of instruction issue. The runahead mechanism

is a form of speculative execution that exploits instruction-level parallelism be-

yond the scope of out-of-order execution, allowing the processor to hide latency

and improve performance. However, because vector processors often have large

amounts of data, this dissertation proposes the mechanisms to reduce the re-

dundant bandwidth occupancy between vector cores and caches by utilizing the

data discarded speculatively in runahead mechanisms.

Third, this dissertation proposes a method that deduplicates virtual addresses

before address translations. This is the approach to reduce the latency of ad-

dress translations in vector processors, for the core architecture. In vector pro-

cessors, indirect memory accesses require multiple virtual address translations,

which can consume significant TLB bandwidth. To solve this issue, an approach

to use hardware coalescers has been proposed in GPU systems [34]. However,

this approach can be resource-intensive and may not be feasible in systems with

limited area budgets. The proposed method in this dissertation leverages the

existing vector arithmetic units in the vector processor to perform address dedu-

plication, eliminating the need for additional hardware and reducing the latency

of address translations.

Finally, this dissertation tackles to reduce cache conflict misses in vector pro-

cessors. This is the approach to reduce the latency of memory accesses, for the

26

2.4. Latency-tolerant vector processor architectures

memory architecture. One of the methods to reduce conflict misses is to in-

crease the associativity; however, it is challenging to realize the higher associa-

tivity because of cost, power consumption, and area overheads on the chip in

large-capacity and multi-banked caches. Therefore, this dissertation discusses

another way to eliminate conflict misses instead of increasing the associativity.

In summary, the latency-tolerant vector processor architectures proposed in

this dissertation can meet the following requirements.

• Minimizing performance degradation due to dependencies between vector

memory instructions. Chapter 3 proposes indirect memory access prefetcher

for vector gather instructions.

• Hiding latency by leveraging instruction-level parallelism. Chapter 4 pro-

poses criticality-aware out-of-order mechanism for vector instructions.

• Avoiding performance degradation due to address translation of vector in-

structions. Chapter 5 proposes page-address coalescing method of vector

gather instructions.

• Achieving high cache hit rate for vector instructions. Chapter 6 proposes

skewed multi-banked cache for many-core vector processors.

27

2.5. Related work

2.5 Related work

This section introduces studies tackling to solve the factors discussed in Sec-

tion 2.4 and addresses the approaches discussed in this dissertation among

them.

2.5.1 Studies of indirect memory accesses

Several papers have addressed the problem of indirect memory access through

prefetching. Ainsworth et al. [35] have developed a compiler pass that generates

software prefetches for indirect memory accesses and evaluated it across various

in-order and out-of-order architectures. Their implementation has shown aver-

age speedups between 1.1x and 2.7x for memory-intensive benchmarks. How-

ever, their work focuses on scalar processors and scalar instructions rather than

vector instructions. It does not clarify the effects of their indirect memory access

mechanism on vector gather instructions.

Al Farhan et al. [36] have proposed software optimizations, including soft-

ware prefetching, for indirect memory accesses in the context of vector instruc-

tions. These optimizations exploit prefetching instructions provided by AVX-

512, such as VGATHERPF0DPD and VGATHERPF1DPD, which utilize the vector

units for non-blocking prefetching. In their approach, some gather prefetch-

ing instructions are performed before the data is required. The evaluation re-

sults show that these software optimizations achieve a 2.9x speedup on the Intel

Knights Landing processor.

Ainsworth et al. [37] have proposed a programmable prefetcher for irregular

memory access patterns, which provides more flexibility for prefetching beyond

specific data structures. In addition, they have developed compiler techniques

28

2.5. Related work

to automatically assist the prefetcher by analyzing source code, enabling it to

prefetch more complex access patterns, including indirect access patterns.

These studies indicate that prefetching benefits indirect memory accesses, al-

though they have not clarified the effect on the vector instruction set. Therefore,

this dissertation focuses on a hardware prefetcher for indirect memory accesses

by vector gather instruction.

2.5.2 Studies of instruction stalling

Dundas et al. [38] have proposed runahead execution that speculatively exe-

cutes future instructions to exploit ILP. Mutlu et al. [39] have introduced and

evaluated the runahead execution for out-of-order processors. The runahead

execution enables the processor to make the opportunities to hit the cache by

exploiting instruction-level parallelism for accurate prefetching.

There are several optimization techniques that can improve the efficiency

and performance of the runahead execution. Hashemi et al. [40] have proposed

a mechanism of filtering only the instructions that cause stalls and storing them

in a runahead buffer. This mechanism allows the front-end of the pipeline to

halt, which can improve energy efficiency. Naithani et al. [41] have clarified

that processors have sufficient resources such as the issue queue and physical

registers when entering the runahead mode. This insight enables processors to

avoid releasing the resources for the runahead execution. They also proposed a

mechanism to track multiple instruction chains that cause stalling. Ramirez et

al. [42] have proposed using another thread to conduct runahead execution.

The previous proposals for optimizing the runahead execution have primar-

ily focused on scalar processors executing general applications. Many of the

29

2.5. Related work

latest scalar processors have adopted vector extensions in order to improve per-

formance. Since vector instructions handle vectorized multiple data, unlike the

scalar register on scalar processors, the penalty of flushing physical registers

and executing them again is not insignificant. This dissertation focuses on vec-

tor processors and tries to retain the data executed by the runahead execution

to avoid the penalty of flushing physical registers.

Srinivasan et al. [43] have proposed continual flow pipelines. The continual

flow pipelines drain the stalling instruction chains from the ROB and re-execute

them after the data arrives. Hilton et al. [44] have proposed BOLT that im-

proves energy efficiency by reusing SMT hardware to rename deferred instruc-

tions, which are the stalling instructions and their dependencies. The difference

between the proposed mechanism in this dissertation and the latency tolerant

executions is that the proposed mechanism executes subsequent instructions

that may cause stalling. In contrast, the latency tolerant executions temporarily

drain stalling instructions to the buffer and re-execute them later. The proposed

mechanism in this dissertation does not require the re-execution.

Deshmukh et al. [45] have proposed criticality driven fetch (CDF) that fo-

cuses on the criticality of instructions and reflects the criticality for allocating

the processor resources. The CDF treats load instructions as critical and solves

difficult-to-predict branch instructions in advance of the other instructions, re-

sulting in significant performance improvements and a reduction in power con-

sumption for general-purpose processor workloads. The basic idea of the pro-

posed mechanism in this dissertation is similar to the CDF; however, the pro-

posed mechanism is much simpler than the CDF. Since the target processors and

applications in this dissertation are further specialized for well-vectorized codes

30

2.5. Related work

with mask instructions than those targeted by the CDF, the proposed mecha-

nism can realize performance improvement without the complexity for solving

branch instructions.

There is a coordinated software and hardware approach to exploit ILP. Tran et

al. [46] have proposed the SWOOP compiler that divides a program into access

and execute phases. By reordering access phases and keeping execution phases

in the program order, the SWOOP compiler can exploit memory and instruction

level parallelism on in-order processors. For the SWOOP compiler to enable

this reordering, the hardware provides lightweight information about register

renaming and cache misses. The proposed mechanism in this dissertation can

identify the stalling load instruction without assistance by the compiler.

2.5.3 Studies of address translation

Vesely et al. [47] have highlighted the issue of address translation potentially

causing a bottleneck in applications with irregular memory accesses on GPUs.

Their study aims to mitigate the negative impact of TLB misses. This disserta-

tion also notes that TLB bandwidth can be a bottleneck, even in the cases where

all TLB hits occur in vector gather instructions.

Puthoor et al. [48] have proposed a compiler-assisted method for coalesc-

ing. They analyzed the complexity of hardware coalescing and subsequently

proposed a technique in which the compiler provides a clue to the processor to

ensure that the requests of 64 work-items, i.e., a wavefront, fall within the same

virtual page. This clue allows the hardware to only check if the first and last

addresses of the wavefront are on the same page. If these addresses are on the

same page, all addresses within the wavefront are contained within a single

page, enabling translations to be performed with a single TLB access. Whereas

31

2.5. Related work

their proposal requires a clue from the compiler, the proposed method in this

dissertation does not require any clue from the compiler.

The A64FX processor, which employs ARM SVE [33, 49], handles vector

gather instructions by dividing the vector elements into pairs of two elements

before address translation. If these pairs fit within a 128-byte space, the ac-

cesses are combined, reducing the number of TLB accesses required. However,

this approach only checks virtual addresses pairwise, whereas the method pro-

posed in this dissertation examines the entire set of virtual addresses contained

within a vector register.

2.5.4 Studies of vector cache

Some research has attempted to address the issue of conflict misses. Qureshi

et al. [50] have proposed the V-Way cache, which incorporates a flexible tag

mechanism. This mechanism allows global replacement to eliminate conflict

misses. The V-Way cache has extra tag entries that vary associativity in a set

on-demand. These tag entries are linked to data entries through indirection

pointers. This allows the selection of victims from a global perspective, rather

than being confined to the same set. However, the V-Way cache incurs signifi-

cant hardware costs and has a latency in finding a victim for replacement.

Sanchez et al. [51] have proposed the ZCache, which aims to solve conflict

misses due to a lack of replacement candidates on eviction. The ZCache ad-

dresses this issue by selecting multiple replacement candidates using multiple

hashing functions for the same set on each miss. If a necessary block is about

to be evicted, another useless block from a different set is chosen for eviction,

allowing the necessary block to be relocated to and retained in the cache. How-

ever, the ZCache requires multiple array lookups to find a block in the cache and

32

2.5. Related work

incurs additional overhead due to data movement during relocations, which can

be costly for caches that prioritize high bandwidth.

While these approaches effectively reduce conflict misses, they come with

significant hardware overhead. Additionally, their effectiveness has only been

evaluated in the context of scalar processors, not vector processors. As a re-

sult, this dissertation seeks a simpler way to reduce conflict misses for vector

processors, revisiting the concept of skewed-associativity [52].

There have been various investigations for the benefits of incorporating caches

in vector processors. Musa et al. [53] have demonstrated that a vector proces-

sor with either one or two shared caches can achieve a 15-40% increase in per-

formance compared to a version without caches. This is due to the fact that

neighboring cores can utilize the shared cache to access previously stored data,

leading to an improvement in cache hit rate and overall performance. How-

ever, their research have only examined vector processors with up to 4 cores. As

modern vector processors have eight or more cores, it is necessary to study the

effects of shared caches on these newer processors with a large number of cores.

Additionally, this study does not consider the impact of cache associativity.

Egawa et al. [54, 55] have conducted a study on the effects of shared caches

in multi-core vector processors with up to 16 cores, using real applications. They

found that increasing the number of cores and the capacity of the shared cache

lead to an improvement in the cache hit rate. In addition, the shared cache

was shown to enhance performance efficiency and reduce power consumption.

It was also determined that an 8MB shared cache configuration is optimal for a

16-core vector processor. However, their research did not address the impact of

cache associativity to be discussed in this dissertation.

33

2.6. Conclusions

2.6 Conclusions

This chapter explains the modern vector processors assumed in this disserta-

tion. To realize high sustained performance for the modern vector processors,

this dissertation focuses on latency of the modern vector processors. This chap-

ter redefines latency in this dissertation. The “latency” is defined as the time

between the fetch of a vector instruction and the completion of the vector in-

struction.

This chapter discusses the breakdown of the latency by four factors. The first

factor is due to dependencies among vector memory instructions caused by indi-

rect memory accesses is a factor that can degrade performance even with suffi-

cient bandwidth in the vector processor. The second factor is that the ability to

hide latency by the out-of-order execution mechanism is limited for applications

with a large number of instructions per loop, such as commonly run on the vec-

tor processor. The third factor is caused by the address translation required for

every memory access in the vector processor with virtual memory can be a bot-

tleneck for vector memory instructions. The fourth factor is the memory access

latency that is closely related to the cache hit ratio for the vector processor.

To address the problems related to these latencies, this chapter examines two

perspectives. The first perspective involves exploring various ways for mitigat-

ing latency, including two approaches to hiding latency and reducing latency.

From this perspective, the first approach to hiding latency can be achieved

through out-of-order and speculative execution. The second approach to reduc-

ing latency involves implementing features or adopting procedures that mini-

mize latency.

The second perspective to solving latency problems involves taking into ac-

count both the core and memory architectures of modern vector processors.

34

2.6. Conclusions

From this perspective, there are two approaches to mitigating latency problems.

The first approach is to design the processor to handle latencies through out-

of-order execution and virtual memory. The second approach involves improv-

ing the memory architecture, including the design of the cache system and a

prefetching mechanism to solve latency problems.

From these perspectives, this chapter clarifies the requirements to make the

modern vector processors latency-tolerant by four approaches.

35

Chapter 3

Indirect memory access

prefetcher for vector gather

instructions

3.1 Introduction

Indirect memory accesses used to access data stored at non-contiguous or sparse

memory locations, are often characterized by low spatial and temporal locality

due to the non-sequential nature of the index data that determine the accessed

data. As a result, these access patterns tend to incur additional latencies and

bandwidth overheads in order to bring the necessary data into the processor.

These issues can become a performance bottleneck for vector processing.

This chapter presents a hardware prefetching technique called a vector gather

prefetcher that aims to improve the performance of vector gather instructions

responsible for indirect memory accesses in the vector instruction set. The vec-

tor gather prefetcher operates in two phases: first, it prefetches index data that

36

3.1. Introduction

are accessed sequentially; second, it predicts the addresses for indirect memory

accesses using the prefetched index data and attempts to prefetch the data at

these predicted addresses. The vector gather prefetcher aims to mitigate the

impact of the increased latency caused by indirect memory accesses.

37

3.2. Motivation

3.2 Motivation

This section introduces the prefetcher that tackles to improve the performance of

indirect memory assesses. This section describes how indirect memory accesses

are handled by the vector instruction set.

3.2.1 Indirect memory access prefetcher

Yu et al. [56] have investigated the use of a hardware prefetcher to address indi-

rect memory accesses in their work, and proposed an Indirect Memory Prefetcher

(IMP). IMP is composed of three components: a stride prefetcher, an indirect

pattern detector, and an address generator. The stride prefetcher detects and

prefetches index data, while the indirect pattern detector identifies pairs of in-

dex and indirect access data. If such a pair is found, the address generator

generates the addresses for future indirect memory accesses to be prefetched.

IMP focuses on the indirect memory accesses that are usually described as

A[B[i]] on the code. The address of A[B[i]] is expressed by the following equation.

ADDR(A[B[i]]) = Coeff × B[i] + BaseAddr, (3.1)

where, Coeff is the size of each element in A, and BaseAddr is the address of

A[0].

To prefetch the data at A[B[i]], IMP follows these three steps: first, the stride

prefetcher quickly detects the access pattern of the consecutive addresses in

B[i], and if it can determine the values of Coeff and BaseAddr, it can calculate

and prefetch the address of A[B[i]] after prefetching B[i]. Second, the indirect

pattern detector pairs the addresses of the stride access with its consecutive

miss accesses, and uses these pairs to find a reasonable combination of Coeff

38

3.2. Motivation

and BaseAddr. Using these values, the address generator calculates the address

of A[B[i]] based on Coeff , BaseAddr, and B[i]. Finally, IMP prefetches the data

at this address. This process can also apply to prefetch the addresses and data

at B[i+∆] and A[B[i+∆]].

When calculating the address of A[B[i]], the address generator uses the sim-

plified equation of Eq. (3.1) to reduce hardware costs, shown as the following

equation.

ADDR(A[B[i]]) = (B[i] ≪ shift) + BaseAddr. (3.2)

This is because the size of each element in A can be expected to be small pow-

ers of two in real applications. Therefore, only one shifter and one adder are

required instead of a multiplier.

3.2.2 Vector gather instruction

This chapter focuses on vector gather instructions in vector instruction sets to

enable the efficient processing of indirect memory accesses. These instructions

allow the processor to access multiple memory locations specified by a list vector,

enabling flexible and efficient access to irregular memory patterns [57, 2, 58]. In

contrast, standard vector load instructions are limited to sequential or stride ac-

cess patterns. Algorithm 2 demonstrates how Algorithm 1 can be implemented

using vector instructions, including vector load (VLD), vector multiply (VMUL),

vector add (VADD), and vector gather (VGATHER). These instructions are used

to calculate addresses, gather data from those addresses, and then multiply the

resulting vector by a scalar value. The ability of vector gather instructions to

vectorize indirect memory accesses allows vector processing units to operate on

39

3.2. Motivation

Algorithm 2 The sequence of indirect memory accesses by vector gather in-
structions.
VLD $v0, address, stride # Load L[i]
VMUL $v1, $s0, $v0 # Multiply the element size
VADD $v2, $s1, $v1 # Add the base address
VGATHER $v3, $v2 # Gather A[L[i]]
VMUL $v4, $s2, $v3 # s ∗ A[L[i]]

the data simultaneously.

However, vector gather instructions in vector processing may result in de-

creased performance due to two reasons. First, a vector gather instruction re-

quires a list vector to generate addresses because the instruction depends on

the vector load instruction that loads the list vector. If this load instruction is

delayed, the vector gather instruction will also be delayed. Second, the mem-

ory accesses initiated by the vector gather instruction are likely to take a long

time due to their irregular access patterns, which do not benefit from the high

bandwidth of memory systems for sequential and regular access patterns. Fur-

thermore, it is difficult to predict which data should be cached at run-time, as

the values of the list vector are not known until that time. As a result, vec-

tor gather instructions may significantly decrease performance and become a

bottleneck, particularly in memory-intensive applications.

If the load latency of the list vector is reduced, the vector gather instruction

can be issued early. Moreover, if the irregular memory accesses issued by the

vector gather instruction can be cached, the memory access latency of the vec-

tor gather can be reduced. Therefore, this dissertation proposes a prefetching

mechanism for the vector gather instruction.

40

3.3. Vector gather prefetcher

3.3 Vector gather prefetcher

This section discusses a mechanism for prefetching data in modern vector pro-

cessors before the processor requires the data. Vector gather instructions neces-

sitate list vectors prior to their execution, and these memory accesses are often

irregular and exhibit a low locality. As a result, it can be difficult to cache this

type of data. Nevertheless, by caching the list vectors beforehand, it is possi-

ble to predict the locations of indirect memory accesses as shown in Eq. (3.2).

Therefore, this mechanism aims to prefetch list vectors in advance.

Figure 3.1 illustrates the overview of the vector gather prefetcher, which

mainly consists of a stream list vector prefetcher and an indirect vector prefetcher.

In order to prefetch the data loaded by a vector gather instruction, the vector

gather prefetcher follows two steps. First, the stream list vector prefetcher mon-

itors the addresses of vector load instructions issued for list vectors. Using the

memory accesses of a list vector, the stream prefetcher forecasts the addresses

of the subsequent list vectors. If the data of the subsequent list vectors are not

present in the cache, the stream list vector prefetcher retrieves them. If these

data have already been cached or prefetched, the indirect vector prefetcher com-

putes the addresses of the indirect memory accesses using the value in the cache

and initiates the prefetching.

This mechanism operates under the assumption that the vector instruction

set includes a VLDIDX instruction for loading a list vector. When the processor

issues VLDIDX, the processor determines the element size, base address, and

that the loaded data will be utilized in a future vector gather instruction. Thus,

the processor informs the prefetcher whether the memory requests can be pro-

cessed successfully to load list vectors or not.

41

3.3. Vector gather prefetcher

Stream list vector

prefetcher

Memory accesses

issued by VLDIDX

Indirect vector

prefetcher

CPU side Cache side

The list vector does

not exist in the cache
Prefetching the

list vector

The list vector exists in

the cache

Prefetching the

indirect memory

access data

Base address＆
Size of element

Figure 3.1: Vector gather prefetcher.

3.3.1 Stream list vector prefetcher

The stream list vector prefetcher tracks the memory accesses of VLDIDX. Upon

arrival of the access requests of VLDIDX, the stream list vector prefetcher re-

trieves the subsequent list vectors. If the cache already holds the target list

vectors, the data are forwarded to the indirect vector prefetcher. Additionally,

when the target list vectors reach the cache, the data are also provided to the

indirect vector prefetcher.

This prefetcher utilizes two parameters: the prefetch degree and the prefetch

distance. The prefetch distance determines the timing of prefetching list vectors

relative to the current accessed vectors. If the prefetch timing is too early or

too late, it may give a harmful effect. Hence, an optimal value for the prefetch

distance parameter is necessary. The prefetch degree determines the quantity of

data prefetched at once. If there is sufficient space in the cache for prefetching,

prefetching additional list vectors may enhance performance. However, as the

actual cache capacity is limited, prefetching too much data may evict necessary

data.

Since vector instructions are processed as a vector, prefetching follows a

42

3.3. Vector gather prefetcher

similar approach. Let v represent the vector length, D represent the prefetch

distance, and ϕ represent the prefetch degree. When the current accessed ad-

dresses are between B[i] and B[i + v − 1], the prefetcher prefetches addresses

between B[i+ (v − 1)D] and B[i+ (v − 1)(D + ϕ)].

3.3.2 Indirect vector prefetcher

The indirect vector prefetcher generates the addresses to be issued by vector

gather instructions and prefetches the data accordingly. These addresses can

be computed using Eq. (3.2) and the cached values provided by VLDIDX or the

stream list vector prefetcher. However, it can be challenging for the prefetcher

to determine at runtime which accesses are being used as indices for indirect

accesses. To simplify the analysis of prefetching’s effects, this study makes the

assumption that the processor can directly supply the prefetcher with the ele-

ment size and base address. Since the processor knows which instruction loads

data for the vector gather instruction due to VLDIDX, it can also send this infor-

mation to the prefetcher when issuing VLDIDX.

43

3.4. Evaluations

3.4 Evaluations

In order to examine the effect of the vector gather prefetcher, this dissertation

conducts experiments by a simulator.

3.4.1 Configurations of the vector processor

The vector processor has a similar configuration to NEC SX-ACE [58], with an

ability to process 256 elements per instruction. It consists of a vector core, cache,

and main memory. The cache utilizes data reuse to reduce the memory access

latency, and the proposed prefetching mechanism aims to further decrease the

latency by prefetching data into the cache. It is integrated into the cache and

tracks accesses of list vectors and indirect memory accesses, as described in

Section 3.3. The other processor parameters are listed in Table 3.1.

3.4.2 Benchmark kernels

This study uses a scale kernel that multiplies scalar value s with array A. Al-

gorithm 3 presents a pseudo-code for a normal scale kernel, and Algorithm 4

presents the scale kernel with indirect memory accesses. To vary the opera-

tional intensity of each code, the size of array P is modified. P is set to 1, 2, 4,

8, 16, 32, 64, and 128. As the performance of Algorithm 4 is heavily influenced

by the contents of the index array L[i], this study evaluates two types of index

arrays: sequential and random.

With a sequential index array, the memory access latencies of vector gather

instructions are similar to those of vector load instructions. In the case of a

random index array, the memory access latencies of vector gather instructions

become longer than those of vector load instructions due to the irregular access

44

3.4. Evaluations

Table 3.1: Parameters of the evaluation.

Number of cores 1
Performance of floating operation 32 GFlops

Instruction decode width 4
Processor clock cycle 1 Ghz

Vector length 256
Cache size 1 MB

Cache associativity 4-way
Cache line size 128 Bytes

Cache bandwidth 256 GB/s
Memory bandwidth 256 GB/s
Prefetch distance 1 (Sequential), 1 (Random)
Prefetch degree 32 (Sequential), 1 (Random)

Algorithm 3 VLDscale
1: for i = 0, 1, ...N do
2: B[i] = s× A[i]P

3: end for

patterns induced by the vector gather instructions.

3.4.3 Simulator

This study uses the simulator of vector processors developed based on the gem5

simulator [59], which is a general-purpose architecture simulator. The devel-

oped simulator uses an instruction trace data as an input, which is obtained

by vector supercomputer SX-ACE. It simulates the occupancy of hardware re-

sources inside the processor and calculates the various performance metrics. In

this evaluation, this study uses a 16 channels DDR3 memory model in order

to simulate the variation of the latencies depending on the irregular memory

access.

As the simulator is trace-driven, it only manages memory access addresses,

45

3.4. Evaluations

Algorithm 4 VGTscale
1: for i = 0, 1, ...N do
2: B[i] = s× A[L[i]]P

3: end for

not the values stored at these addresses. Therefore, it cannot calculate the ad-

dresses of indirect memory accesses in the same manner as IMP, which checks

the values of the index array in the cache and calculates the addresses loaded

by vector gather instructions. To model the proposed prefetcher in the simula-

tor, the relations between vector load instructions and vector gather instructions

are profiled and recorded in the trace data before the simulation. The simulator

then simulates the prefetcher’s behavior by utilizing this recorded trace data

to identify the relations, calculate the addresses, and prefetch the correspond-

ing data. In other words, the prefetcher can effectively track accesses of index

arrays and vector gather instructions in an ideal setting.

3.4.4 Performance evaluation

Figure 3.2 illustrates the performance results of the scale kernel simulation with

a sequential index array. The performance is depicted on the vertical axis, while

the operational intensity is depicted on the horizontal axis. The dotted line rep-

resents the upper bound of the roof-line model [32], indicating the achievable

performance of the processor. The scale kernel referred to as VLD scale is de-

scribed in Algorithm 3, while the VGT scale sequential kernel refers to the scale

kernel outlined in Algorithm 4 without prefetching. The VGT scale sequential

with prefetching indicates the scale kernel utilizing the proposed prefetching

technique.

46

3.4. Evaluations

0.125

0.25

0.5

1

2

4

8

16

32

64

 1/64 1/32 1/16 1/8 1/4 1/2 1 2 4 8

G
FL

O
PS

Operational Intensity (Flop/Bytes)

VLD scale

VGT scale sequential

VGT scale sequential with prefetch

Figure 3.2: Roof-line model of a scale kernel in the case of the sequential index
array.

In Figure 3.2, the VLD scale approaches the upper bound of performance.

The VGT scale sequential exhibits lower performance due to the incorporation

of vector gather instructions. However, the use of prefetching leads to an im-

provement in performance, bringing it closer to the upper bound. On average,

the performance is improved by a factor of 2.1 when prefetching is utilized. The

maximum performance improvement of 3.29 is achieved at an operational in-

tensity of 0.14 corresponding to P = 4 in Algorithm 4. At higher operational

intensities, especially P = 4 or larger, the improvement in performance is 1.11.

This is due to the fact that high operational intensities already contribute to

sufficient performance, and the presence of additional arithmetic instructions

helps to hide the latency of vector gather instructions.

In the scenario where the maximum performance improvement is achieved,

the cache hit rate for read accesses increases dramatically from 7.96% to 96.72%.

47

3.4. Evaluations

0.125

0.25

0.5

1

2

4

8

16

32

64

 1/256 1/128 1/64 1/32 1/16 1/8 1/4 1/2 1 2

G
FL

O
PS

Operational Intensity (Flop/Bytes)

VGT scale random

VGT scale random with prefetch

Figure 3.3: Roof-line model of a scale kernel in the case of the random index
array.

The use of prefetching greatly enhances the cache hit rate. The sustained band-

width between the processor and cache also increases significantly, from 10.15GB/s

to 32.03GB/s. The sustained bandwidth between the cache and main memory

similarly increases, from 13.67GB/s to 44.92GB/s. It is clear that prefetching

can effectively utilize these increased bandwidths.

There is potential for further performance improvement when comparing the

VLD scale with the VGT scale sequential with prefetching. This is likely due to

the fact that the processor lacks the ability to generate addresses prior to issuing

vector gather instructions.

Figure 3.3 presents the results of the scale kernel simulations using a ran-

dom index array. The VGT scale random refers to the scale kernel outlined in

Algorithm 4 without prefetching, while the VGT scale random with prefetching

refers to the scale kernel when using the proposed prefetching mechanism.

On average, the performance is improved by a factor of 1.2 when prefetching

48

3.4. Evaluations

is utilized. The maximum performance improvement of 1.33 is achieved at an

operational intensity of 0.0064 (P = 1 in Algorithm 4). When using a random

index array, the VGT scale random is relatively closer to the VGT scale random

with prefetching, compared to the case of the sequential index array. This is

due to the fact that a single vector gather instruction in the random index array

loads numerous cache blocks, leading to pressure on cache capacity and memory

bandwidth. Thus, even when the prefetcher accurately attempts to prefetch the

necessary blocks, the cache may not have sufficient capacity to store all of them.

As a result, the performance improvement is limited.

In the scenario where maximum performance is achieved, the cache hit rate

for read accesses increases significantly from 0.43% to 46.34%. The use of prefetch-

ing is successful in enhancing the cache hit rate. The sustained bandwidth

between the processor and cache also increases, from 36.28GB/s to 48.35GB/s,

and the sustained bandwidth between the cache and main memory similarly

increases from 76.24GB/s to 106.63GB/s. The prefetching can contribute to in-

crease sustained bandwidth.

3.4.5 Parameter study

On the vector gather prefetcher, prefetch distance and prefetch degree signifi-

cantly affect the performance. Thus, Section 3.4.5 discusses the effects of these

parameters.

The optimal combination of these parameters is dependent on a variety of

factors. This study primarily focuses on the number of cache blocks accessed by

a single vector gather instruction as a key factor. This number is closely related

to the properties of the index array, such as elements having similar values. If

the index array is likely to have random values, the vector gather instruction

49

3.4. Evaluations

will access multiple addresses across numerous cache blocks. However, if the

elements in the index array are more likely to have similar values, the vector

gather instruction will access fewer cache blocks compared to the case of a ran-

dom index array.

Figure 3.4 illustrates the results of varying the prefetch distance and prefetch

degree parameters in the scale kernel using a sequential index array. The x-

axis and y-axis represent the prefetch distance and prefetch degree, respectively,

while the z-axis represents the performance. The highest performance is achieved

when the prefetch distance is 1 and the prefetch degree is 32. It can be seen

in Figure 3.4 that, for appropriate values of prefetch distance, increasing the

prefetch degree leads to improved performance. However, when both the prefetch

distance and prefetch degree are excessively large, there is a significant drop in

performance, indicated by the steep cliff in the graph. This is due to the fact

that when both parameters are too large, the necessary prefetched cache blocks

are prematurely evicted due to limitations on cache capacity.

Figure 3.5 displays the results of varying the prefetch distance and prefetch

degree parameters with a random index array. The highest performance is

achieved when both parameters are equal to 1. In the case of a random index

array, a single vector gather instruction accesses a large number of cache blocks,

with a maximum of 256 cache blocks accessed at once. In contrast, with a se-

quential index array, a vector gather instruction accesses only 16 cache blocks.

The increased number of cache blocks accessed per vector gather instruction

leads to the eviction of previously prefetched data by subsequent blocks being

prefetched. As a result, smaller values of the parameters yield better perfor-

mance.

50

3.4. Evaluations

Figure 3.4: The effects of parameters, prefetch distance & prefetch degree in the
case of the scale kernel with the sequential index array.

3.4.6 Effect of the number of cache blocks

Properly set parameters can lead to a slight performance increase even when

using a random index array. Thus, if the prefetcher can determine the typi-

cal number of cache blocks accessed by vector gather instructions, appropriate

prefetching can be implemented by adjusting the parameters. This study inves-

tigates the characteristics of the number of cache blocks and their relation to

these parameters.

This study includes additional types of index arrays with the aim of causing

a single vector gather instruction to access a constant number of cache blocks,

depending on the array used. Table 3.2 illustrates the relationship between

51

3.4. Evaluations

Figure 3.5: The effects of parameters, prefetch distance & prefetch degree in the
case of the scale kernel with the random index array.

stride or duplicate values and the number of cache blocks accessed. In Ta-

ble 3.2, “Stride” refers to an index array composed of regularly spaced values,

such as {0,2,4,6,8,...}. With this type of array, vector gather instructions access

more cache blocks compared to those using a sequential index array. “Dupli-

cation” refers to an index array comprising regularly repeating values, such as

{0,0,1,1,2,2,...}. This type of array leads to fewer cache blocks being accessed by

vector gather instructions compared to a sequential index array.

Figures 3.6 and 3.7 show the results of strided/duplicated index arrays. The

x- and y-axes represent the prefetch distance and prefetch degree, respectively,

while the z-axis displays the normalized sustained performance in flop/s relative

to the case without the proposed prefetching. Note that while the scales of the

axes in the figures are consistent, the scales of the color bars in each figure may

52

3.4. Evaluations

Table 3.2: The relation between stride or duplicate width and the number of
cache blocks per vector gather instruction.

Stride/Duplication Width Cache blocks
Duplication 16 1
Duplication 8 2
Duplication 4 4
Duplication 2 8
Sequential N/A 16

Stride 2 32
Stride 4 64
Stride 8 128
Stride 16 256

vary. These figures demonstrate that the optimal pair of parameters depends on

the index array. When the number of cache blocks accessed by a single vector

gather instruction is small, a small prefetch distance and large prefetch degree

yield the highest performance. Conversely, when the number of cache blocks

per vector gather instruction exceeds that of the sequential index array, the

best performance is achieved with both parameters set to small values. This

is due to the relationship between the number of cache blocks per vector gather

instruction and spatial locality; a low spatial locality can hinder the performance

of prefetching. Therefore, for the cases depicted in Figures 3.7a–3.7d where the

number of cache blocks per vector gather instruction exceeds 32, it is advisable

to use small values for both the prefetch distance and prefetch degree.

When the number of cache blocks is small, as shown in Figures 3.6a–3.6d,

these parameter pairs can achieve higher performance. However, as the number

of cache blocks increases, only a limited number of pairs can lead to improved

performance. Therefore, adjusting these parameters according to the number of

cache blocks accessed can enable more effective prefetching. It is also worth not-

ing that the fewer number of cache blocks accessed per vector gather instruction

53

3.4. Evaluations

(a) Cache blocks per vector gather instruc-
tion = 1.

(b) Cache blocks per vector gather instruc-
tion = 2.

(c) Cache blocks per vector gather instruc-
tion = 4.

(d) Cache blocks per vector gather instruc-
tion = 8.

Figure 3.6: The performance improvement when the number of cache blocks per
vector gather instruction is decreased from the sequential case.

leads to the greatest performance improvements through prefetching, suggest-

ing that spatial locality plays a crucial role in prefetching.

54

3.4. Evaluations

(a) Cache blocks per vector gather instruc-
tion = 32.

(b) Cache blocks per vector gather instruc-
tion = 64.

(c) Cache blocks per vector gather instruc-
tion = 128.

(d) Cache blocks per vector gather instruc-
tion = 256.

Figure 3.7: The performance improvement when the number of cache blocks per
vector gather instruction is increased beyond the sequential case.

55

3.5. Conclusions

3.5 Conclusions

This chapter has presented a hardware prefetching mechanism for indirect mem-

ory accesses of vector gather instructions. The proposed prefetching mechanism

aims to prefetch the index data in advance and subsequently prefetch the data

of indirect memory access using the index values. The prefetching mechanism

has two parameters: prefetch distance and prefetch degree, which significantly

impact the performance of the prefetching.

The performance of the scale kernel using vector gather instructions can be

improved by approximately 2.1 times when using a sequential index array and

1.2 times when using a random index array with the proposed prefetching mech-

anism. Additionally, this chapter demonstrated that the choice of prefetch dis-

tance and prefetch degree, two key parameters that impact the performance of

prefetching, is crucial to achieving optimal performance, which can be sensi-

tively affected by the values in the index array.

Additionally, this chapter have discussed the impact of the number of cache

blocks per vector gather instruction on performance. The findings demonstrate

that a lower number of cache blocks per vector gather instruction leads to im-

proved performance. However, a large number of cache blocks per vector gather

instruction may result in detrimental prefetching and decrease performance.

By utilizing prefetching for indirect memory accesses, the proposed mecha-

nism can conceal the latency incurred by waiting for instructions with depen-

dencies and thus improve performance.

56

Chapter 4

Criticality-aware out-of-order

mechanism for vector

instructions

4.1 Introduction

In order to take advantage of instruction-level parallelism (ILP), the modern

vector processors utilize an out-of-order execution model [16]. These processors

execute independent vector instructions by rearranging the execution order of

them at runtime. While this technique has proven successful in improving per-

formance, it raises a question for architects: how much ILP is optimal for vector

processors? This ultimately depends on the individual application. The modern

vector processors are designed for vectorized applications with data-level paral-

lelism, and ideally should be able to fully utilize ILP even between iterations.

However, it is not feasible for vector processors to examine the dependencies

of all the vector instructions across iterations using the traditional out-of-order

57

4.1. Introduction

execution model. This is because increasing the ILP of the vector processor

would necessitate significant resources for each vector instruction with a long

vector length. Vector processors are designed with a focus on throughput, and

therefore only require the minimal amount of ILP, leading to a tendency to un-

derestimate the significance of ILP. It is difficult to further increase ILP for

vector processors that already consume hardware resources for data-level par-

allelism.

This chapter focuses on the use of runahead execution mechanisms to make

vector processors more tolerant of latency. Runahead execution is a speculative

execution technique that accurately prefetches long-latency loads in subsequent

instructions [38, 39, 60]. When the long-latency loads run out the instruction

window and cause pipeline stalling, the processor saves the current processor

state and enters a runahead mode. In this mode, the processor speculatively ex-

ecutes subsequent instructions that would only result in additional long-latency

accesses. Once the pipeline stall is resolved, the processor discards the registers

from the runahead mode and returns to the normal mode. As the runahead exe-

cution leaves the data in the cache, processor in the normal mode can access the

data with shorter latency through cache hits.

Furthermore, the latest advancement in runahead execution allows for the

speculative execution of only those instructions that may decrease performance

rather than all instructions [41]. This enhancement allows a processor to take

advantage of loop-level parallelism by considering the importance of instruc-

tions. However, this is not the case for vector processors. As vector instructions

work with vectorized data, the cost of reloading from the cache and executing

them again is significant. If applications require a high bandwidth to accommo-

date a large volume of data, runahead execution may hinder performance.

58

4.1. Introduction

This chapter proposes a criticality-aware out-of-order mechanism for vector

processors (COV). The COV has normal and critical modes, similar to the state-

of-the-art runahead execution techniques. The difference is that the data pro-

duced in the critical mode remain in the vector registers after exiting the critical

mode. The COV uses these data in the normal mode by migrating the instruction

information in the critical mode to the normal mode using additional queues.

This mechanism enables the COV to reduce the cost of an additional penalty of

the runahead execution techniques and to eliminate the need to re-execute the

instructions that have already been executed in the critical mode.

59

4.2. Motivation

4.2 Motivation

4.2.1 Runahead execution

Runahead execution [38, 39, 60] has been proposed for processors to exploit ILP

beyond the instruction window size. This technique improves performance by

speculatively executing future instructions while the processor is stalled. When

the instruction window of the processor becomes full and is unable to issue new

instructions, the processor enters a runahead mode. In this mode, the processor

eagerly retrieves and executes future instructions. If the stalling is resolved and

the processor is able to issue new instructions again, the processor discards the

registers and restores the architectural state. As the instructions executed in

runahead mode are fetched and executed again in normal mode shortly after

exiting runahead mode, runahead execution can bring the necessary data into

the cache through accurate prefetching.

In early proposals for runahead execution, the processor copies physical reg-

isters to a backup space upon entering a runahead mode. Upon exiting runahead

mode, the processor must re-fetch and re-execute the discarded instructions in

normal mode, thereby limiting the benefits of runahead execution.

Naithani et al. [41] have proposed the precise runahead execution (PRE) to

solve the limitations of conventional runahead execution mechanisms. They

have enhanced the conventional runahead mechanisms in three ways. First,

they have ensured that there are sufficient free registers and issue queue re-

sources before entering the runahead mode, eliminating the need to back up

these resources upon entering the runahead mode.

60

4.2. Motivation

Second, PRE only speculatively executes stalling load slices, which are in-

structions causing pipeline stalling and their dependencies, unlike the conven-

tional runahead execution that executes all instructions. A stalling load slice

consists of an instruction causing pipeline stalling and its dependent instruc-

tions. To identify stalling load slices, PRE tracks the dependencies of stalling

instructions iteratively. PRE accurately speculatively executes only those in-

structions that would significantly improve performance, even in short inter-

vals.

Finally, PRE uses a mechanism to reuse registers during the runahead mode.

By allocating released registers to new instructions during the runahead mode,

precise runahead execution can reduce the number of registers used in the runa-

head mode.

These improvements allow the processor to perform runahead execution with-

out incurring additional penalties for entering runahead mode, expanding the

range of performance improvement.

4.2.2 Problems to apply precise runahead execution for

vector processors

The idea to adopt the runahead execution mechanisms to the vector processors

is derived from two insights into applications commonly executed on the vector

processors. First, the kernel part of each application has loop structures. Sec-

ond, there are only a limited number of instructions inside the iteration that

need to wait for long memory accesses. This chapter defines this type of instruc-

tion as critical instructions. Since a limited number of instructions requiring

long memory accesses will appear in each iteration, early dispatching of the in-

structions across iterations can lead to performance improvements. Figure 4.1

61

4.2. Motivation

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

antenna earthquake land_mine plasma turbine turbulent_flow

Pe
rc

en
ta

ge
 o

f i
ns

tru
ct

io
ns

critical non_critical

Figure 4.1: The percentage of the instructions causing pipeline stalling and their
dependencies.

shows the ratio of the critical instructions and their dependencies in the ker-

nel part of the applications. Three out of six applications contain less than 10%

critical instructions, and two out of six applications contain up to 40% critical in-

structions. These results indicate that a limited number of instructions require

long memory accesses and repeatedly appear due to the loop structure. These

two insights inspire us to exploit more instruction-level parallelism among the

loops by proactively executing future critical instructions. The precise runahead

execution can fit this demand by awareness of the criticality.

On the other hand, to apply the runahead execution to vector processors,

the runahead execution may incur another penalty. In the runahead execution,

the processor has two modes: runahead mode and normal mode. The processor

switches to the runahead mode if the pipeline stalling occurs and continues to

speculatively execute subsequent instructions. When the runahead mode is fin-

ished, the processor flushes used registers to avoid affecting the normal mode.

62

4.2. Motivation

Although data produced in the runahead mode is correct, the processor must

re-execute the instructions and reproduce the results from data in the cache in

the normal mode.

Since vector instructions deal with vectorized data, the vector register con-

tains multiple data. Thus, unlike the scalar register on scalar processors, the

costs of reloading from the cache and executing them again are not negligible.

In applications that require a high bandwidth to accommodate a large amount

of data, the runahead execution can hurt performance. The runahead execution

can be regarded as the method to generate prefetch instructions. Unlike other

prefetching techniques, the runahead execution transfers data to the registers,

which will be flushed at the end of the runahead mode. Thus, the runahead ex-

ecution mechanism consumes more bandwidth between the core and the cache

than standard prefetching mechanisms.

Therefore, it should be desirable to use the obtained data in the runahead

mode through registers instead of the cache. This dissertation considers keeping

the data calculated in the runahead mode and using them in the normal mode

without flushing the data.

63

4.3. Criticality-aware out-of-order vector processor

4.3 Criticality-aware out-of-order vector proces-

sor

This dissertation proposes a criticality-aware out-of-order mechanism for vector

processors (COV). The COV can dispatch critical instructions beyond the win-

dow of the conventional out-of-order mechanism by leaving the registers after

exiting the runahead mode. The proposed mechanism replaces the runahead

mode with a critical mode to realize this function. The critical mode can exit

without flushing the registers to be used the registers in the normal mode. How-

ever, the vector processor faces two challenges in using the critical mode.

4.3.1 Challenges

If the register remains unchanged after the critical mode, there is a problem to

be solved. An example of this scenario upon exiting the critical mode is depicted

in Figure 4.2. A pseudo-code for vector instructions within a loop structure is

shown in Figure 4.2a, and the dependency structure of the pseudo-code is de-

picted in Figure 4.2b. The processor can usually detect this dependency through

the logical registers of the instructions. As illustrated in Figure 4.2a, it is as-

sumed that instruction I3 will cause pipeline stalling. Since the precise runa-

head execution mechanism can track stalling instructions and their dependen-

cies, the instructions from I0 to I3 are marked as stalling instructions, depicted

as red circles in Figure 4.2b. These instructions are referred to as the stalling

instruction chain in this chapter. During the critical mode, the processor only

dispatches instructions within the stalling instruction chain.

Upon encountering a pipeline stall at instruction I3, the processor enters the

critical mode and begins issuing subsequent instructions. However, instructions

64

4.3. Criticality-aware out-of-order vector processor

PC

for i+=VL

I0 vld $v1 Mem[i:VL]

I1 vmul $v2 $v1 $s1

I2 vadd $v3 $v2 $s2

I3 vgt $v4 $v3

I4 vld $v5

I5 vmul $v6 $v4 $v5

I6 vst $v6 Mem’[i:VL]

end

(a) The pseudo code of a loop structure of the vector instructions.

I0

I1

I2

I4
I3

I5

I6

stalling

instruction

chain

(b) The logical de-
pendency structure
of the pseudo code.

I0

I1

I2

I4
I3

I0’

I1’

I2’

I3’

I5

? ?

I0”

I1”

I2”

I3”

?

(1) (2) (3)

(c) (1)First iteration in the normal mode, (2)Second iteration in
the critical mode and (3)Third iteration in the critical mode.

Figure 4.2: The challenges to distinguish dependency where the normal mode
and the critical mode.

I4 through I6 are not part of the stalling instruction chain and are therefore

ignored by the processor. Instead, the processor moves on to the stalling instruc-

tion chain of the next iteration, as depicted in Figure 4.2c with iterations I0’

through I3’ and I0" through I3". After exiting the critical mode, the processor

returns to its normal mode and attempts to dispatch the instruction I5. How-

ever, the presence of three in-flight instructions, I3, I3’, and I3", all of which

65

4.3. Criticality-aware out-of-order vector processor

have a dependency on I5. This dependency leads to a situation where the pro-

cessor is unable to determine which instruction has the true dependency on I5

through the logical registers during the renaming process.

To identify the correct dependency, the processor has to keep two orders: the

committing order and the register renaming order.

4.3.1.1 Consistency of the committing order

In an out-of-order processor, the reorder buffer (ROB) is responsible for manag-

ing in-flight instructions within an instruction window, allowing for their out-of-

order execution while still ensuring that the final execution results match the

original program order. As a result, both insertion into and deletion from the

ROB must be performed in an in-order fashion.

However, the proposed mechanism attempts to dispatch instructions in an

out-of-order fashion, which may result in their insertion into the ROB in an

out-of-order manner. This can lead to a commit order that differs from the orig-

inal program order. To solve this issue, the prior runahead execution mecha-

nism [41] introduces the use of a dedicated queue called the register deallocation

queue (RDQ) during the runahead mode, instead of the ROB, to avoid altering

the commit order. The RDQ is responsible for managing in-flight instructions

and pseudo-committing them during the runahead mode, after it is discarded

upon returning to the normal mode, thereby preventing any unintended effects

on the normal operation.

This study aims to realize the critical mode. However, the contents of the

registers become obsolete once the RDQ is discarded at the end of the runahead

mode. To retain the information of the instructions after exiting the critical

mode, the RDQ must be preserved. Consequently, the processor must decide

66

4.3. Criticality-aware out-of-order vector processor

between using the ROB or the RDQ in order to maintain the commit order of

dispatched instructions between normal and critical modes.

4.3.1.2 Consistency of the register renaming order

An out-of-order processor employs a register aliasing table (RAT) to track the

most recent renaming information and resolve dependencies among instruc-

tions. The mapping between logical and physical registers is updated when in-

structions are dispatched and committed. However, if the processor dispatches

instructions in different modes, the physical registers renamed in the critical

mode may contain data for instructions that are not immediately needed in the

normal mode. If the RAT are updated immediately in the runahead mode, it

would overwrite the aliasing information from the previous normal mode.

The prior runahead execution mechanism utilizes a new renaming mecha-

nism to manage register renaming information during the runahead mode, dis-

carding it upon returning to the normal mode. However, this study aims to im-

plement the critical mode that does not flush registers upon exiting. To retain

renaming information for instructions after exiting the critical mode, it cannot

be discarded. Furthermore, the processor must be able to resolve dependencies

when instructions with the same program counter are in-flight, as depicted in

Figure 4.2c.

4.3.2 Mechanism overview

To overcome these challenges, this chapter proposes a criticality-aware out-of-

order mechanism for vector processors (COV). The proposed mechanisms mi-

grate the order information and the renamed register information of the instruc-

tions from the critical mode to the normal mode with the correct program order.

67

4.3. Criticality-aware out-of-order vector processor

The key idea is that additional queues hold the information of the instructions in

the critical mode. After returning to the normal mode, the processor dispatches

the instructions referring to these queues. If instructions are executed in the

critical mode, the information of these instructions is migrated from the queues

used in the critical mode to queues used in the normal mode.

Figure 4.3 shows the overview of the proposed mechanism for vector pro-

cessors. The processor dispatches vector instructions that may cause pipeline

stalling, namely critical instructions, in a different path by switching modes,

similar to the state-of-the-art runahead execution mechanism [41]. The vector

processor has two modes: a normal mode and a critical mode.

In the normal mode, the vector processor executes instructions as usual. Ad-

ditionally, our proposed mechanism has modified the rename stage in the normal

mode. This dissertation calls it a rename/contextualize stage. When the vector

processors in the normal mode find that an instruction is already dispatched in

the critical mode, the vector processor updates the register aliasing table and

transfers the information of the instruction from the PCQ to the ROB. This dis-

sertation calls this process contextualizing an instruction.

In the critical mode, the processor dispatches the critical instructions beyond

the instruction window. This dissertation calls the dispatched instructions in

the critical mode an early-dispatched instruction.

To realize the critical mode and the contextualization, the proposed mecha-

nism adds four components to an out-of-order vector processor: decoded instruc-

tion queue (DIQ), stalling instruction cache (SIC), pending commit queue (PCQ),

and critical register aliasing table (CRAT), as shown in the green-shaded boxes.

68

4.3. Criticality-aware out-of-order vector processor

Register
aliasing

table

Pl
ac

em
en

t i
n

RO
B

or
 C

PQ

Vector
Functional

Units

Reorder Buffer

Fetch Decode

I-Cache Decoder
Register files

LSQ

Rename/Contextualize Dispatch

IQ

Data Cache

Load/Store
buffer

Issue Execute CommitWrite-back

Contextualize in
normal mode

Normal mode

Critical mode

From
Head To Tail

To Tail

To Tail

Stalling
instruction

cache

Decoded
instruction

queue
Critical
register
aliasing

table

Pending Commit Queue

Figure 4.3: The overview of the criticality-aware out-of-order vector processor.

4.3.2.1 Decoded instruction queue (DIQ)

The DIQ is a first-in-first-out (FIFO) queue that temporarily stores decoded in-

structions. It is implemented as a circular buffer-like structure with two addi-

tional features. First, each entry has a 1-bit flag called a dispatched flag. This

flag is set when the vector processor renames the operands of an instruction

in the critical mode. The vector processor in the normal mode can determine

whether an instruction is already in-flight in the critical mode by checking this

flag.

In addition to the head and tail pointers that a circular buffer-like structure

typically includes, the DIQ also has a critical pointer that points to a specific

entry. This critical pointer saves the position at which an instruction is checked

in the critical mode. Initially, the critical pointer points to the same entry as the

head pointer. In the critical mode, the vector processor attempts to rename the

instruction at the entry indicated by the critical pointer. If it is able to dispatch

the instruction in the critical mode, the dispatched flag is set and the critical

pointer is incremented. The critical pointer is also incremented if the instruction

cannot be dispatched in the critical mode. In this way, the vector processor can

69

4.3. Criticality-aware out-of-order vector processor

search for future instructions by incrementing the critical pointer in the critical

mode, and find critical instructions within the DIQ. When the vector processor

dispatches instructions from the head pointer in the normal mode, the critical

pointer is also incremented if it points to the same entry as the head pointer.

The DIQ allows the vector processor to ensure that all instructions in the

queue are checked only once for dispatch in the critical mode, thus preventing

the presence of duplicate in-flight vector instructions on the processor.

4.3.2.2 Stalling instruction cache (SIC)

The SIC, which is a fully associative cache, stores the program counters (PCs)

of instructions and instructions’ dependencies that prevent the reorder buffer

(ROB) from committing. When the ROB is delayed in committing and waits

for a number of cycles beyond a certain threshold in the normal mode, the SIC

stores the PC of the oldest instruction in the ROB.

4.3.2.3 Pending commit queue (PCQ)

The PCQ is a FIFO queue that temporally stores the information of the in-flight

instructions dispatched in the critical mode. The entry of the PCQ has the same

fields as the ROB entry.

Upon issuing an instruction in the critical mode, the vector processor adds it

to the PCQ rather than the ROB. Unlike the ROB, the PCQ does not commit any

instructions. Its purpose is merely to maintain the order of dispatched instruc-

tions in the critical mode. In the normal mode, the rename/contextualize stage

transfers the instructions in the PCQ to the ROB, which subsequently commits

them.

70

4.3. Criticality-aware out-of-order vector processor

4.3.2.4 Critical register aliasing table (CRAT)

To obtain the operands during the critical mode, the vector processor must

search PCQ’s logical destination registers for the instruction’s source register.

However, locating the logical destination register within the PCQ necessitates

a time-consuming prioritized match search. In contrast, the RAT in the ROB is

designed to prevent the need for traversing the queue [61].

In this study, the CRAT is proposed as an additional table for renaming in the

critical mode. Each entry in the CRAT is comprised of both a logical destination

register and a physical destination register, and the table can be accessed by us-

ing logical destination registers as indices. When an entry is added to the PCQ,

the vector processor will search the CRAT for the logical destination operand. If

it is found, the CRAT will assign a new physical register to the logical register,

and update the entry in the CRAT to reflect the assignment of this physical reg-

ister to the logical destination operand. If the logical destination operand is not

found in the CRAT, a new entry will be created and a new physical register will

be assigned to the logical destination register. However, if there is not enough

space to create a new entry, the vector processor will be unable to execute any

instructions in the critical mode and will have to exit the critical mode. The

CRAT and the RAT both utilize a shared pool of free physical registers.

4.3.3 Behavior of criticality-aware vector processing

The section shows the execution flow of instructions in the critical mode. The

flow follows the dashed arrow in Figure 4.3.

71

4.3. Criticality-aware out-of-order vector processor

4.3.3.1 Recognition of the stalling instruction chain in the normal mode

When the ROB reaches capacity and the number of cycles exceeds a predeter-

mined threshold in the normal mode, the instruction at the head of the ROB

is added to the SIC. Additionally, if an instruction is dispatched in the normal

mode and encounters the SIC, the RAT will follow the producer PC of that in-

struction and add it to the SIC as well. This process of continuously tracing the

chain of stalling instructions allows the gradual inclusion of the stalling instruc-

tions and their dependencies, if they will be decoded again in the next iteration

of a loop. It is assumed that the target applications being considered in this

chapter are constructed using loop structures, making this mechanism effective

in capturing all stalling instruction chains.

4.3.3.2 Enter the critical mode

Unlike prior runahead mechanisms, such as those described in [38, 41, 39], the

proposed mechanism for vector processors does not involve checkpointing the

PCs of instructions in the ROB or the state of the RAT. When the ROB halts

committing in the normal mode, the vector processor transitions to the critical

mode. However, vector instructions in the ROB can still be executed as they

would in the normal mode.

4.3.3.3 Exit the critical mode

The only distinction between the critical mode and the normal mode is the

source from which the front-end dispatches instructions, either the head pointer

or the critical pointer of the DIQ. As a result, the front-end enters the critical

mode whenever the ROB is full in the normal mode, and returns to the nor-

mal mode when the ROB resumes committing or when there are insufficient

72

4.3. Criticality-aware out-of-order vector processor

resources for criticality-aware execution in the critical mode.

4.3.3.4 Pipeline behaviors in the critical mode

Fetch and Decode The fetch stage and the decode stage in the critical mode

do their operations as they do in the normal mode. After the instructions are

decoded, they are pushed to the DIQ.

Rename/Contextualize The rename/contextualize stage attempts to rename

the logical register of the instruction indicated by the critical pointer of the DIQ.

The vector processor checks whether the instruction is present in the SIC. If it

is, the instruction can be dispatched in the critical mode. To do so, the vector

processor must ensure that there is sufficient capacity to dispatch the instruc-

tion in the critical mode by verifying two conditions. First, the vector proces-

sor must confirm that the logical register of the instruction’s source operands

is present in the CRAT, as the information for instructions dispatched in the

critical mode should already be stored in the CRAT. Additionally, the stalling

instruction chain must not be dependent on the destination operands of other

instructions dispatched in the normal mode to avoid false dependencies. If the

CRAT does not contain the required information, the source operands’ instruc-

tion is not in-flight, or the stalling instruction chain is being constructed in the

SIC, the vector processor will ignore the instruction and increment the critical

pointer. The second condition that the vector processor must verify is whether

the PCQ or the issue queue is full or not. If either of these queues is full, the

processor runs out the resources to dispatch the instructions in the critical mode.

It is worth noting that the critical pointer is incremented to evaluate the next

instruction in the queue, regardless of whether the instruction is present in the

SIC, until the critical pointer reaches the same position as the tail pointer. The

73

4.3. Criticality-aware out-of-order vector processor

instructions checked in this manner remain in the decoded instruction queue.

However, the vector processor will exit the critical mode if the PCQ, CRAT, or

other resources become full.

Dispatch In the dispatch stage, the vector processor adds the instructions into

the PCQ instead of the ROB.

Issue, execute and write-back The instructions dispatched in the critical

mode are issued, executed, and written back as the instructions dispatched in

the normal mode. Until contextualized, the instructions are executed in the

critical mode and stay in the PCQ.

Commit After transferring from the PCQ to the ROB, the instructions are

committed in the ROB as usual. If the exception occurs or the early-dispatched

path is wrong (also be treated as the exception), the ROB should handle the

exception or execute the correct path.

4.3.3.5 Contextualization of early-dispatched instruction in the nor-

mal mode

Section 4.3.3.5 explains the execution path of the case of contextualizing the

early-dispatched instruction in the normal mode, shown in the dot-dashed arrow

in Figure 4.3.

The vector processor performs two functions in the contextualization process.

First, it conveys the instruction order information from the PCQ to the ROB to

maintain the committing order. Second, it ensures that the physical registers

calculated in the critical mode are accessible in the normal mode by updating

the RAT to reflect the proper mapping of logical registers to physical registers.

74

4.3. Criticality-aware out-of-order vector processor

This maintains the consistency of register renaming across both modes.

During the normal mode, the vector processor dispatches instructions using

the head pointer. If the dispatched flag is activated, the instruction proceeds

to the rename/contextualize stage for contextualization. This proposed mecha-

nism incorporates contextualization in order to prevent the flushing of data in

physical registers that have been calculated in the critical mode.

Migrate pending commit queue entry During the contextualization, the

entry indicated by the head pointer of the PCQ is transferred to the ROB. This

is because the last early-dispatched instruction is the most recently contextu-

alized. As the instructions in the DIQ are arranged according to the program

order, transferring the entry to the ROB during contextualization ensures that

the ROB is updated according to the program order

Update the register alias table and evict from the critical register alias-

ing table The contextualization process updates the RAT using the entry trans-

ferred from the PCQ to the ROB, which contains information about the physical

register of the destination operands. As the information on the logical register

of the destination operands required to update the RAT can be obtained from

the DIQ, the vector processor is able to update the physical register of the RAT

entry using the head of the PCQ.

During eviction of an entry from the PCQ, the vector processor compares the

physical registers of the destination operands of the evicted entry with those

of the corresponding entry in the CRAT having the same logical registers of

destination operands. If these indicate different physical registers, the CRAT

retains the entry as another instruction with the same logical register uses it.

However, if both registers are the same, the CRAT entry is also evicted, as no

75

4.3. Criticality-aware out-of-order vector processor

other logical registers exist in the PCQ. This contextualization stage enables

the values in registers calculated in the critical mode to be made available to

the next dispatched instruction in the normal mode.

4.3.4 Memory disambiguation

Since instructions in the critical mode are dispatched early, the order in which

they are dispatched does not align with the normal mode. Despite the proposed

mechanism statically preserving the dependencies of these early-dispatched in-

structions, it is possible for the addresses of early-dispatched load instructions

to overlap with those of preceding store instructions. However, this may not be a

concern for applications running on vector processors, because optimization for

vectorization often assumes that there is no memory aliasing. In other words,

vectorized programs are often optimized by adding flags such as the “ restrict”

modifier in the C/C++ language, which assumes that there is no overlap. Thus,

this study assumes that statically unanalyzable memory disambiguation does

not occur for these applications.

76

4.4. Evaluation

4.4 Evaluation

4.4.1 Experimental setup

The proposed mechanism is evaluated by using a simulator developed based on

Gem5 [62]. The configuration of the vector processor is shown in Table 4.1. The

core specifications are similar to the latest vector processor, SX-Aurora TSUB-

ASA [16]. As the sizes of the ROB and the issue queue of SX-Aurora TSUBASA

are not available, this chapter assumed the sizes that most closely match the

performance of the actual machine on the simulator. On the single-core config-

uration, the memory system scales down in proportion to the number of cores

from the actual product, VE 20B of SX-Aurora TSUBASA, to evaluate the single-

core configuration. The number of physical registers is 256, which conforms to

the specification of the SX-Aurora TSUBASA. The architecture does not distin-

guish the physical registers for integer and floating-point operations. To switch

the front-end of the pipeline between the critical mode and the normal mode,

the vector processor takes one cycle penalty.

Since the simulator is trace-driven, instruction traces is obtained using the

GDB for SX-Aurora TSUBASA. The instruction traces are five million instruc-

tions of the kernel part of each benchmark. To avoid the warming up phase of

applications on simulations, the trace does not contain non-essential parts, such

as initialization or other non-vectorized parts.

In the evaluation, the following four configurations are compared to clarify

the advantage of the proposed mechanism for vector processors:

OoO The baseline out-of-order vector processor.

ROB144 A vector processor with the expanded ROB size of the baseline configu-

ration for examining the effect of simply increasing the number of in-flight

77

4.4. Evaluation

Table 4.1: Baseline configuration for the out-of-order vector processor.

Frequency 1.4 GHz
Number of cores 1

Type Out-of-order
ROB size 48

Issue queue size 48
Load queue size 32
Store queue size 32
SPU issue width 4 insts./cycle
Functional units 3 FMA (8 cycles),

2 ALU (8 cycles),
1 DIV (div 32 cycles,

sqrt 64 cycles)
Register file 256 (int+fp, identical)

LLC cache size 2 MB, assoc 4
Cache bandwidth 410 GB/s, 2 cycles

Memory bandwidth HBM-Like conf., 1GHz
channels: 8, ranks: 1,

banks: 16, bus: 128 bits
tRP-tCL-tRCD: 15-15-15

decoded instruction queue size 768 entry
Stalling instruction 144 entry

cache size
Stalling threshold 150 cycles
Pending commit 96 entry

queue size
Critical register 64 entry
aliasing table

instructions.

PRE A vector processor with the precise runahead execution [41], which is the

state-of-the-art runahead mechanism. In our implementation, the PRE

can track up to 4096 vector instructions. The size of the PRDQ is 96, which

is the same as the size of the PCQ.

COV A vector processor with the proposed mechanism.

78

4.4. Evaluation

4.4.2 Applications

The proposed mechanism for vector processors is evaluated on three sets of ap-

plications. Each kernel has a single loop structure that iterates a sufficient num-

ber of times for each application to reach a stable state. The first application set

is from the PolyBench [63, 64]. The PolyBench suite contains primitive HPC

kernels without any optimization. Kernels that the NEC compiler can vectorize

without specific options or modifications for the evaluation are chosen. Addi-

tionally, an optimized version of the same kernel with the PolyBench suite is

prepared from NEC Numeric Library Collection, a well-optimized calculation li-

brary including BLAS/LAPACK kernels. These optimized applications are listed

as ” opt” suffixes in the benchmark name. The size of datasets is ”large,” not to

exceed the main memory size of a single Vector Engine on SX-Aurora TSUBASA

on all the kernels. Tables 4.2 and 4.3 show the bytes per flop of the applications.

The actual B/F indicates the bytes per flop value obtained by the count of the

read and write accesses to the memory on the simulator.

The second application set is the practical application kernels of HPC ap-

plications from the different research areas, which are continuously used to

measure the performance of vector processors [2, 19]. These applications show

the typical behavior of the HPC applications that are run on vector processors.

Table 4.4 shows the detail of the applications. As these applications are well

optimized for vector processors, 99 % of the code is vectorized.

The third application set is five algorithms from Vector Graph Library [71]

with seven datasets. The algorithms are graph algorithms with highly-vectorized

and optimized. These algorithms are characterized as memory-intensive due to

79

4.4. Evaluation

Table 4.2: The Bytes per flop of PolyBench.

Application Description Actual B/F
2mm 2 Matrix Multiplications 4.00
3mm 3 Matrix Multiplications 0.16
adi Alternating Direction Implicit solver 14.1

atax Matrix Transpose and Vector Multiplication 4.63
bicg BiCG Sub Kernel of BiCGStab Linear Solver 4.00

cholesky Cholesky Decomposition 0.06
correlation Correlation Computation 3.92
covariance Covariance Computation 113

doitgen Multiresolution analysis kernel (MADNESS) 0.06
fdtd-2d 2-D Finite Different Time Domain Kernel 7.29

fdtd-apml FDTD using Anisotropic Perfectly Matched Layer 0.80
gemm Matrix-multiply 4.00

gemver Vector Multiplication and Matrix Addition 3.50
gesummv Scalar, Vector and Matrix Multiplication 3.94

gramschmidt Gram-Schmidt decomposition 6.05
jacobi-1d 1-D Jacobi stencil computation 0.01
jacobi-2d 2-D Jacobi stencil computation 10.4

lu LU decomposition 8.60
lucmp LU decomposition 0.43
mvt Matrix Vector Product and Transpose 4.12

symm Symmetric matrix-multiply 117
syr2k Symmetric rank-2k operations 3.06
syrk Symmetric rank-k operations 3.35

trisolv Triangular solver 3.88

the need to access complex data structures, and they often include many inte-

ger operations and few floating-point operations. Table 4.5 shows the five algo-

rithms used in the evaluations.

4.4.3 Assumptions

Note that since vector processors usually handle conditional branches using

the mask register, this dissertation assumes that speculative executions using

branch prediction do not appear in the kernel code. Additionally, this disser-

tation assumes that branch prediction at the end of the loop is as accurate as

80

4.4. Evaluation

Table 4.3: The Bytes per flop of the optimized version.

Application Description Actual B/F
gemm opt Matrix-multiply 0.08
symm opt Symmetric matrix-multiply 0.10
syr2k opt Symmetric rank-2k operations 0.14
syrk opt Symmetric rank-k operations 0.10

trmm opt Triangular matrix-multiply 0.12

Table 4.4: The overview of the practical application kernels.

Application Research field Method Actual B/F
Antenna [65] Electromagnetic FDTD 0.81

TurbulentFlow [66] CFD Navier-Stokes equation 0.56
Earthquake [67] Seismology Friction Law 4.00
Landmine [68] Electromagnetic FDTD 6.05
Turbine [69] CFD LU-SGS method 0.34
Plasma [70] Physics Lax-Wendroff 0.88

possible and has no impact on performance.

This dissertation also assumes that the accuracy of analyzing dependencies

of critical instructions is perfect. Because this dissertation targets the applica-

tions where the vector processors handle branch instructions by the vector mask

registers, criticality-aware dispatching on the wrong path caused by branch mis-

prediction hardly occurs. One of the candidates to make these assumptions fea-

sible is that the programmer or the compiler should be able to notify which part

of the code can be early-dispatchable by such as user directives.

The applications are compiled without the -mvector-floating-divide-instruction

option as the default so that divisions and square roots can be compiled as re-

ciprocal instructions. Although the proposed mechanism can track any vector

instructions in a chain, the evaluated applications do not include fdiv/sqrt in-

structions in their object codes.

81

4.4. Evaluation

Table 4.5: The algorithms of Vector Graph Library.

Name Algorithm
bfs Breadth-First Search [28]
cc Connected Components [29]
pr Page Rank [72]

sssp Single Source Shortest Paths [30]
scc Strongly Connected Components [30]

4.4.4 Area overheads

The proposed mechanisms require four additional components: two FIFO queues,

one full-associative cache, and one CAM-based table. The DIQ requires a circu-

lar buffer-type FIFO queue with three-pointers. Each entry has the same field

as the instruction buffer that the out-of-order processor is internally equipped

with in the decode stage (our configuration is 8-byte for each entry) and addi-

tionally requires 1-bit for the critical flag. These three pointers require a total of

30 bits; each 10-bit pointer can identify 768-entry in the DIQ. The DIQ requires

approximately 6.3 KB for 768 entries. The SIC requires a total of 1152 bytes,

which can store 144 8-byte instructions. The PCQ requires the same field as

the ROB. Our configuration requires 83 bits for each entry and has 96 entries.

Thus, the PCQ requires approximately 1 KB. The CRAT entry is 8-bit for logical

registers and 8-bit for physical registers. Thus, the CRAT uses the 1 KB area

budget of the CAM-based table. Overall, the proposed mechanism requires an

8.3 KB area budget.

4.4.5 Performance

Figures 4.4, 4.5, and 4.6 show the results of the performance of the PolyBench

suite, the practical application kernels, and the vector graph library, where they

82

4.4. Evaluation

are normalized by the baseline out-of-order configuration. The Floating Opera-

tions Per Second (FLOPS) is used to evaluate the sustained performance of the

PolyBench suite and the practical application kernels. Since the vector graph

library applications do not include floating operations, the committed vector ele-

ments per second as the performance evaluation metric are used. The geometric

mean in each figure is the value for the respective benchmark set. COV achieves

an 8.4 % performance improvement on average compared to OoO across all the

benchmarks. ROB144 achieves a 4.8 % performance improvement, and PRE de-

grades performance by 0.3 %. These results indicate that our proposed mecha-

nism outperforms the processors increasing the size of the ROB and the previous

work.

4.4.5.1 PolyBench case

Figure 4.4 shows that COV achieves an 8.6 % performance improvement on

average in the PolyBench suite, while ROB144 and PRE achieve 3.2 % and -

0.55 % performance improvements, respectively. On the benchmarks such as the

fdtd-apml kernel, both COV and ROB144 achieve a 30% or more performance

improvement, which indicates that the kernel benefits from increasing the ROB

size. As shown in Table 4.2, these benchmarks have low actual B/F values, and

therefore, there is room in the bandwidth for early-dispatching of the critical

instructions. Since almost all memory access instructions are marked as critical

in these benchmarks by the proposed mechanisms, increased ILP can improve

performance.

On the other hand, doitgen and jacobi-1d do not show any performance im-

provement despite the low actual B/F values. Because there are almost no stalls

in the processor due to sufficient memory bandwidth, COV does not dispatch

83

4.4. Evaluation

-50%
-40%
-30%
-20%
-10%

0%
10%
20%
30%
40%
50%
60%

2m
m

3m
m ad
i

at
ax

bi
cg

ch
ol

es
ky

co
rr

el
at

io
n

co
va

ria
ne

do
itg

en
fd

td
-2

d
fd

td
-a

pm
l

ge
m

m
ge

m
ve

r
ge

su
m

m
v

gr
am

sc
hm

id
t

ja
co

bi
-1

d
ja

co
bi

-2
d lu

lu
dc

m
p

m
vt

sy
m

m
sy

r2
k

sy
rk

tri
so

lv
ge

m
m

_o
pt

sy
m

m
_o

pt
sy

r2
k_

op
t

sy
rk

_o
pt

trm
m

_o
pt

G
eo

m
ea

nPe
rf

or
m

an
ce

 im
pr

ov
em

en
t b

y
ba

se
lin

e

PRE ROB144 COV

Figure 4.4: The performance evaluation results on the PolyBench suite, normal-
ized by the baseline out-of-order configuration.

any critical instructions, resulting in no performance improvements.

COV outperforms ROB144 and PRE in the case of most kernels, especially

the optimized versions such as gemm opt, symm opt, syr2k opt, and syrk opt

kernels. There are two reasons why the optimized versions can achieve per-

formance improvement. First, since the optimized versions can maximize the

vector length, the efficiency of each vector instruction is simply higher than the

reference version by reordering instructions. Second, the optimized versions ex-

ploit the temporal and spatial localities to improve the cache hit rate. This opti-

mization significantly contributes to the realization of the higher performance of

COV compared to ROB144 because the criticality-aware mechanism can easily

find the cache misses that software optimizations cannot cover. These results

imply that combining our proposal with software optimization, such as cache

blocking, may enhance the possibilities for performance improvements.

3mm is a simple kernel that does three matrix multiplications. The compiler

84

4.4. Evaluation

could detect such patterns as idioms and transform the code into optimized ver-

sions. This transformation contributes to performance improvement, similar to

the optimized versions discussed in the opt benchmarks. Unfortunately, the

compiler could not detect an idiom in the case of 2mm.

In the cases of gemver and gramschmidt, ROB144 and COV degrade the per-

formances. Because the performance bottleneck of these kernels is due to the

lack of the ROB size, ROB144 and COV alleviate the bottleneck. However, the

bottleneck moves to the lack of the issue queue in the cases of ROB144 and COV.

Due to the limitations of the scheduling algorithm of the issue queue, there are

cases where scheduling hurts its performance. These applications are suscep-

tible to minor changes in the ordering of resource allocation; in such cases, the

performance is degraded.

4.4.5.2 Practical application kernels

Figure 4.5 shows that COV achieves a 17.8 % performance improvement on aver-

age in the practical application kernels, while ROB144 and PRE achieve 11.7 %

and 0.26 % performance improvements, respectively.

The Antenna, Plasma, Turbine, and TurbulentFlow kernels significantly achieve

performance improvements in COV and ROB144, because these kernels involve

a large number of instruction-level parallelism. Since these kernels have more

instructions in one iteration than other kernels, as shown in Figure 4.2c, COV

and ROB144 realize performance improvement.

Among these kernels, the Turbine kernel achieves a 27% performance im-

provement on COV, whereas ROB144 realizes only a 7.5% performance improve-

ment. This indicates that the Turbine requires increasing instruction-level par-

allelism and handling critical instructions, which contributes significantly to

85

4.4. Evaluation

-10%

0%

10%

20%

30%

40%

50%

60%

Pe
rf

or
m

an
ce

 im
pr

ov
em

en
t b

y
ba

se
lin

e

PRE ROB144 COV

Figure 4.5: The performance evaluation results on six benchmarks, normalized
by the baseline out-of-order configuration.

performance improvement. As shown in Figure 2.5, the Turbine kernel contains

about 200 instructions in one iteration. ROB144 can only exploit 144 instruc-

tions that are not enough to reach the next stalling instruction chain. On the

other hand, COV can exploit 768 instructions, which can exploit critical instruc-

tions over multiple iterations.

The Plasma kernel contains many vector gather instructions. The vector

processor modeled in this evaluation has a limitation of reordering between a

vector gather instruction and a vector store instruction in the issue queue. COV

regards these instructions as critical and dispatches them in the critical mode;

however, the processor cannot execute them due to the above limitations. On

the other hand, ROB144 processes the instructions regardless of the criticality.

Therefore, ROB144 outperforms COV. These facts indicate that the criticality-

aware execution is less effective in the case of the instructions causing many

hardware structural hazards.

86

4.4. Evaluation

The Earthquake and Landmine kernels are extensively memory-intensive

kernels. There is no room to improve beyond the memory bandwidth bottleneck.

The PRE could only realize performance improvement on the TurbulentFlow

kernel. The Turbine kernel is a cache bandwidth bottleneck whose cache hit

rate is already 99% on the baseline configuration. Thus, the additional memory

requests induced by PRE can deteriorate performance. In the Antenna kernel,

the critical instructions are vector load instructions that cause the strided mem-

ory accesses. Compared to sequential memory accesses, the strided memory ac-

cesses bring more cache blocks into the memory system. The PRE speculatively

executes such strided memory accesses as a result of prefetching. Although PRE

could improve the cache hit rate, PRE causes a shortage of the cache bandwidth,

resulting in performance degradation. Since COV and ROB144 do not increase

the number of memory accesses, the Antenna kernel achieves performance im-

provement.

4.4.5.3 Vector Graph Library

Figure 4.6 shows that COV achieves a 6.8 % performance improvement on aver-

age in the vector graph library set, while ROB144 and PRE achieve 5.0 % and

-0.7 % performance improvements, respectively.

COV can achieve higher performance improvements on the bfs and scc ap-

plications than the other applications. These applications suffer from the short-

age of the ROB. Since ROB144 has the increased size of the ROB, ROB144 can

solve the shortage and realizes performance improvement. COV can virtually

increase the size of the ROB for critical instructions by the PCQ. COV initiates

critical instructions by early dispatching, which enables further performance

improvement.

87

4.4. Evaluation

-15%
-10%

-5%
0%
5%

10%
15%
20%
25%
30%
35%

ro
ad

_c
en

tra
l_

us
a

ra
tin

g_
ya

ho
o_

so
ng

s
sy

n_
rm

at
_2

4_
32

sy
n_

ru
_2

4_
32

w
eb

_d
bp

ed
ia

_l
in

ks
w

eb
_u

k_
do

m
ai

n_
20

02
w

eb
_w

ik
ip

ed
ia

_l
in

ks
_e

n
ro

ad
_c

en
tra

l_
us

a
ra

tin
g_

ya
ho

o_
so

ng
s

sy
n_

rm
at

_2
4_

32
sy

n_
ru

_2
4_

32
w

eb
_d

bp
ed

ia
_l

in
ks

w
eb

_u
k_

do
m

ai
n_

20
02

w
eb

_w
ik

ip
ed

ia
_l

in
ks

_e
n

ro
ad

_c
en

tra
l_

us
a

ra
tin

g_
ya

ho
o_

so
ng

s
sy

n_
rm

at
_2

4_
32

sy
n_

ru
_2

4_
32

w
eb

_d
bp

ed
ia

_l
in

ks
w

eb
_u

k_
do

m
ai

n_
20

02
w

eb
_w

ik
ip

ed
ia

_l
in

ks
_e

n
ro

ad
_c

en
tra

l_
us

a
ra

tin
g_

ya
ho

o_
so

ng
s

sy
n_

rm
at

_2
4_

32
sy

n_
ru

_2
4_

32
w

eb
_d

bp
ed

ia
_l

in
ks

w
eb

_u
k_

do
m

ai
n_

20
02

w
eb

_w
ik

ip
ed

ia
_l

in
ks

_e
n

ro
ad

_c
en

tra
l_

us
a

ra
tin

g_
ya

ho
o_

so
ng

s
sy

n_
rm

at
_2

4_
32

sy
n_

ru
_2

4_
32

w
eb

_d
bp

ed
ia

_l
in

ks
w

eb
_u

k_
do

m
ai

n_
20

02
w

eb
_w

ik
ip

ed
ia

_l
in

ks
_e

n

G
eo

m
ea

n

bfs pr scc sssp cc

Pe
rf

or
m

an
ce

 im
pr

ov
em

en
t b

y
ba

se
lin

e

PRE ROB144 COV

Figure 4.6: The performance evaluation results on the vector graph library, nor-
malized by the baseline out-of-order configuration.

The pr algorithm achieves performance improvement on ROB144 and COV.

Although the pr application does not contain indirect memory accesses such

as vector gather or scatter instructions, some vector load instructions cause

pipeline stalling. Increasing instruction-level parallelism allows the processor

to process in-flight multiple stalling vector load instructions.

The sssp and cc algorithms cannot archive performance improvement in all

the processors. The sssp and cc algorithms contain many vector gather instruc-

tions, and the number of memory requests that the vector processor can handle

is saturated on the baseline configuration. Therefore, COV and ROB144 cannot

make any remedy for these applications.

In particular, the cc algorithm especially contains many vector scatter in-

structions in addition to vector gather instructions. As discussed in the case

of the Plasma kernel, there are limitations in reordering memory instructions

between a vector scatter instruction and a vector load instruction due to the

88

4.4. Evaluation

limitation of the architectural resources, making COV difficult to improve per-

formance.

4.4.6 Analysis of criticality-aware executed instructions

Section 4.4.6 provides how the proposed mechanism handles stalling vector in-

struction chains in loops. Overall, the proposed mechanism tends to identify

the first load instruction of each iteration in the loop as critical in most appli-

cations. This is because these instructions are likely to cause cache misses and

delay the subsequent instructions. Thus, by executing these instructions earlier,

the proposed mechanism can improve performance.

There are other cases for the Turbine and TurbulentFlow kernels where the

performance improvement is particularly more significant than the other appli-

cations. In the case of the Turbine kernel, the lengths of some chains are longer

than ten to track the instructions with vector gather instructions. Since the

Turbine kernel uses indirect memory accesses with complex index calculations,

the vector gather instructions often appear in the loop. To calculate the index

for the indirect memory accesses, the Turbine kernel uses several instructions

such as logical and/or instructions and floating max/min instructions so that

the proposed mechanism can identify these instructions as a stalling instruction

chain of the vector gather instruction and its dependency.

In the case of the TurbulentFlow kernel, the proposed mechanism identifies

some vector store instructions as the stalling instructions. Since a vector store

instruction must have a long instruction chain, all instructions of the calculation

path have been wrapped up and isolated from the normal mode when enough

iterations have progressed to track the entire instructions by the SIC.

These facts indicate that the proposed mechanism can accelerate the critical

89

4.4. Evaluation

path in the loop.

4.4.7 Architectural sensitivity study

Section 4.4.7 explores the effects of the queue sizes of the mechanism, the num-

ber of physical vector registers, and the switching penalty of the mode on the

performances while the other parameters are fixed to a maximum size of the

parameters. The sensitivity study is performed by 44 benchmarks in which the

proposed mechanism can realize 1% or more performance improvement. Note

that the average values of the 44 benchmarks show the same trend as the aver-

age of all the benchmarks.

Figure 4.7 shows the performance normalized by the lowest case with the

various sizes of the DIQ. The size of the DIQ indicates how far the proposed

mechanism can execute future instructions. The proposed mechanism could im-

prove the performance by the size of 768 for the DIQ. As shown in Figure 4.2c,

the practical application kernels contain hundreds of vector instructions in one

iteration. If the size of the DIQ covers all the number of vector instructions

in one iteration, the processor can aggressively dispatch the upcoming instruc-

tions across loop iterations. It contributes to performance improvement if the

resources such as vector registers and IQ slots are not utilized.

Figure 4.8 shows that the performance is saturated when the size of the PCQ

is around 96. The size 96 of the PCQ is twice larger than the size of the ROB. The

sizes of the issue queue and the ROB are estimated based on the real product,

VE Type 20B of SX-Aurora TSUBASA, in the baseline configuration. The vector

processor can still exploit ILP for the benchmarks, especially the benchmarks

including critical vector instructions. If the vector processors explore critical

90

4.4. Evaluation

0.97
0.98
0.99

1
1.01
1.02
1.03
1.04
1.05
1.06
1.07

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

The size of the DIQ

Figure 4.7: Effect of the different size of the DIQ.

0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

1.025

16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

25
6

27
2

28
8

30
4

32
0

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

The size of the PCQ

Figure 4.8: Effect of the different size of the PCQ.

instructions from future instructions, up to 96 critical instructions can be in-

flight inside the processor on this configuration.

Figure 4.9 shows that the performance becomes nearly saturated when the

size of the CRAT is 48. Although the number of architectural registers is 64,

these results indicate that the number of CRAT entries is less than architectural

registers because the CRAT is only used in the critical mode. Since the critical

91

4.4. Evaluation

0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

16 24 32 40 48 56 64 72 80 88 96

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

The size of the CRAT

Practical application set PolyBench set Vector graph library set All

Figure 4.9: Effect of the different size of the CRAT.

instructions tracked by the SIC use a limited number of logical registers, the

variation of the logical registers used in the critical mode only covers some of

the logical registers.

Moreover, the performances of the Turbine and TurbulentFlow kernels are

improved with 24 or more CRAT entries. However, the performances of the Poly-

Bench suite and the vector graph library set are not improved. These kernels

have long instruction chains for criticality-aware execution, as described in Sec-

tion 4.4.6. In the case of having long instruction chains in the application, the

proposed mechanism cannot track the whole chains with two situations to fail

early-dispatching, as explained in Section 4.3.3. The first situation is the lack of

resources to allocate a new entry for early-dispatching. In this situation, the pro-

posed mechanism stops dispatching in the critical mode. The second situation is

the lack of entries for source operands in the CRAT for early-dispatching. In this

situation, the instruction of the source operands is already contextualized, not

in-flight; the proposed mechanism cannot early dispatch the instructions of the

chain. Thus, the proposed mechanism skips these instructions of the chain and

92

4.4. Evaluation

continues to seek the next instruction of other chains. This behavior causes the

performance fluctuation of the practical application set shown in Figure 4.9.

On the other hand, the kernels in the vector graph library are not affected by

the size of the CRAT. This is because these kernels have relatively short stalling

instruction chains. The size of 16 for the CRAT is already sufficient for these

kernels.

Figure 4.10 shows that the performance becomes nearly saturated when the

size of the SIC is 144. The size of the SIC affects the number of critical instruc-

tions that the vector processor can track. From Figure 4.10, 144 is enough for

the size of the SIC in this configuration.

Figure 4.11 shows the performance of the various switching latency of the

normal mode and the critical mode, normalized by the case of the switching

latency of 1. The performance declines by about 3% in the case of six cycles and

gradually decreases after eight or more cycles.

Figure 4.12 shows the performance under the various number of physical vec-

tor registers, normalized by the case of 64 physical vector registers correspond-

ing to the number of architectural vector registers of the original vector archi-

tecture. The performance becomes saturated at 144 physical vector registers on

COV, while the baseline becomes saturated at 112. This is because the proposed

mechanism uses more physical registers than the baseline for criticality-aware

execution.

93

4.4. Evaluation

0.98

0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256 272 288 304 320

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

The size of the SIC

Figure 4.10: Effect of the different size of the SIC.

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

The switching cycle of mode

Figure 4.11: Effect of the different switching latency.

94

4.4. Evaluation

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

64 80 96 112 128 144 160 176 192 208 224 240 256

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

The number of physical registers

COV Baseline

Figure 4.12: Effect of physical vector registers.

95

4.5. Conclusions

4.5 Conclusions

Modern vector processors have achieved high sustained performance in HPC

applications due to their powerful instruction set. The latest vector processors

utilize out-of-order execution of vector instructions to exploit ILP, as there is a

significant latency gap between vector arithmetic instructions and vector mem-

ory access instructions, even in modern out-of-order vector processors.

This chapter has proposed a criticality-aware out-of-order mechanism for

vector processors to further exploit ILP to hide the latency of vector instruc-

tions. The proposed mechanism early dispatches the subsequent instructions

that may incur pipeline stalling, enabling the exploitation of ILP. Unlike the

conventional runahead mechanisms, our proposed mechanism leaves the regis-

ters containing the results and uses them in the normal mode. The key idea

is that additional queues hold the information of the instructions in the criti-

cal mode. After going back to the normal mode, the processor dispatches the

instructions referring to these queues. If there are instructions executed in the

critical mode, the information of these instructions is migrated from the queues

used in the critical mode to queues used in the normal mode. This enables the

vector processor to migrate the commit order information and the register alias-

ing information of the early-dispatched instruction to the normal mode. The

evaluation results show that the proposed mechanism achieves an 80% perfor-

mance improvement at a maximum, an 8.7% on average over the conventional

mechanism in all applications.

By utilizing the proposal method, the vector processor can conceal the la-

tency beyond conventional out-of-order mechanisms until vector instructions are

issued. As a result, the vector processor can achieve latency tolerance.

96

Chapter 5

Page-address coalescing method

of vector gather instructions

5.1 Introduction

Virtual memory enables processes to handle memory addresses that are inde-

pendent of the actual memory addresses, thus preventing address conflicts be-

tween processes. When a processor accesses memory, it must translate virtual

memory addresses to physical memory addresses. In the case of memory ac-

cesses using vector load instructions, the access pattern is sequential. Therefore,

the vector processor can efficiently access memory in blocks of several contigu-

ous elements. As the number of blocks accessed by the vector load instruction

is smaller than the number of vector elements, the number of accesses to the

Translation-look-aside-buffer (TLB) is reduced.

On the other hand, when using vector gather instructions, the access pattern

becomes irregular rather than sequential. As accesses made using vector gather

97

5.1. Introduction

instructions can be distributed throughout the physical memory space, the pro-

cessor must obtain physical addresses for all virtual addresses. As a result, the

number of translations required is equal to the number of vector elements. This

means that TLB throughput can potentially become a limiting factor in terms of

performance.

This chapter proposes a coalescing method for reducing the number of TLB

accesses to reduce the address translation latency. Before translating the virtual

memory addresses specified in a vector gather instruction to physical memory

addresses, the proposed method reduces the number of TLB accesses by check-

ing whether the virtual addresses are located in the same page. If the virtual

addresses are in the same page, the processor can access TLB using a reduced

number of coalesced virtual addresses.

98

5.2. Motivation

5.2 Motivation

5.2.1 Vector Gather Instruction

The vector gather instruction enables indirect memory accesses as part of the

vector instruction set. Listing 5.1 shows a simple code written in the C language

that includes indirect memory accesses in a loop. The elements of array B are

accessed using array L. Indirect memory accesses are commonly used in various

numerical computations and graph applications. For instance, when working

with sparse matrices in a compressed format, memory accesses become indirect

memory accesses.

The vector gather instruction is responsible for managing indirect memory

accesses. By accepting the value of each element in the vector register as a

memory address, the vector gather instruction initiates a memory access for

each vector element. The addresses contained within the vector register are

process-specific addresses known as virtual addresses, which are distinct from

the actual memory locations referred to as physical addresses. The memory

system performs address translation using TLB to access the physical address

space.

Source Code 5.1: Example of indirect memory access
1 for (i=0; i<n; i++){
2 A[i] = s * B[L[i]]
3 }

99

5.2. Motivation

5.2.2 Vector Gather Instruction with Virtual Memory

During address translation for vector instructions, the addresses must be trans-

lated for each vector element. If consecutive accesses can be anticipated, such

as with vector load instructions, the minimum number of required pages can

be predicted based on the range of virtual addresses. In contrast, with vec-

tor gather instructions, where memory accesses are not sequential and the ad-

dresses are unpredictable, it is necessary to translate all of the virtual page

numbers in the addresses to physical page numbers.

For sequential accesses, such as vector load instructions, a considerable amount

of TLB bandwidth is not necessary. On the other hand, indirect memory ac-

cesses, such as vector gather instructions, require a greater number of address

translations in comparison to sequential accesses, making TLB bandwidth vi-

tal for optimizing performance. However, increasing the TLB bandwidth can be

challenging due to the high energy consumption of the TLB component in the

processor [73].

100

5.3. Page-Address Coalescing for Vector Gather Instruction

5.3 Page-Address Coalescing for Vector Gather

Instruction

This chapter proposes a page-address coalescing method for vector gather in-

structions.

5.3.1 Idea to use existing vector arithmetic units for page-

address coalescing

The proposed method in this chapter aims to minimize TLB bandwidth usage

for vector gather instructions by examining the number of pages accessed per

vector gather instruction. If multiple data is located in the same page, it can be

translated with a single TLB access, reducing TLB bandwidth and potentially

improving the performance of vector gather instructions. Figure 5.1 illustrates

the percentage of pages per vector gather instruction for a 64 MB page size. The

input size for graph applications is maximized to fit within the memory size of

the machine. From Figure 5.1, it can be seen that the majority of applications

access one or two pages in a vector gather instruction. Although the percentage

may be influenced by several factors such as page size, application input size,

and others, this information inspires us to coalesce page addresses and reduce

TLB bandwidth usage.

The proposed method in this chapter focuses on the vector arithmetic units

already present in the processor. It suggests that by combining multiple arith-

metic instructions, the process of page-address coalescing can be implemented

to reduce the number of TLB accesses by deduplicating the pages of the virtual

address of the vector gather instruction in advance.

However, if a vector gather instruction occupies the vector arithmetic units,

101

5.3. Page-Address Coalescing for Vector Gather Instruction

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Pl
as

m
a

Tu
rb

in
e

xs
pz

2w
ro

ad
_c

en
tra

l_
us

a
ra

tin
g_

ya
ho

o_
so

ng
s

sy
n_

rm
at

_2
4_

32
sy

n_
ru

_2
4_

32
w

eb
_d

bp
ed

ia
_l

in
ks

w
eb

_u
k_

do
m

ai
n_

20
02

w
eb

_w
ik

ip
ed

ia
_l

in
ks

_e
n

ro
ad

_c
en

tra
l_

us
a

ra
tin

g_
ya

ho
o_

so
ng

s
sy

n_
rm

at
_2

4_
32

sy
n_

ru
_2

4_
32

w
eb

_d
bp

ed
ia

_l
in

ks
w

eb
_u

k_
do

m
ai

n_
20

02
w

eb
_w

ik
ip

ed
ia

_l
in

ks
_e

n
ro

ad
_c

en
tra

l_
us

a
ra

tin
g_

ya
ho

o_
so

ng
s

sy
n_

rm
at

_2
4_

32
sy

n_
ru

_2
4_

32
w

eb
_d

bp
ed

ia
_l

in
ks

w
eb

_u
k_

do
m

ai
n_

20
02

w
eb

_w
ik

ip
ed

ia
_l

in
ks

_e
n

ro
ad

_c
en

tra
l_

us
a

ra
tin

g_
ya

ho
o_

so
ng

s
sy

n_
rm

at
_2

4_
32

sy
n_

ru
_2

4_
32

w
eb

_d
bp

ed
ia

_l
in

ks
w

eb
_u

k_
do

m
ai

n_
20

02
w

eb
_w

ik
ip

ed
ia

_l
in

ks
_e

n

sssp bfs cc scc

Pa
ge

s a
cc

es
se

d
pe

r
ve

ct
or

 g
at

he
r i

ns
tru

ct
io

n
1 2 3 4 5 6+

Figure 5.1: The percentage of pages per vector gather instruction.

other instructions may be unable to use them, resulting in structural hazards.

To evaluate the potential of page-address coalescing, this section conducted a

preliminary evaluation to determine how many cycles the benefits of page-address

coalescing would outweigh the performance loss due to structural hazards. In

this preliminary evaluation, two assumptions are made. First, the processor

can ideally coalesce the virtual addresses before TLB accesses. Second, all vec-

tor gather instructions occupy a vector arithmetic unit for a predefined number

of cycles during page-address coalescing.

Figure 5.2 displays the results of the preliminary evaluation, with the verti-

cal axis representing the average performance with page-address coalescing nor-

malized by the performance without coalescing, and the horizontal axis showing

the number of cycles during the period each vector gather instruction occupies

a vector arithmetic unit. The figure illustrates that the processor can consume

at least 92 cycles for page-address coalescing per vector gather instruction with-

out suffering from a decline in performance. This suggests that if the processor

102

5.3. Page-Address Coalescing for Vector Gather Instruction

0.8

0.9

1

1.1

1.2

1.3

1.4

4 12 20 28 36 44 52 60 68 76 84 92 100 108 116 124

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Spent cycles to page-address coalescing

Figure 5.2: The cycles usable for page-address coalescing.

is able to perform page-address coalescing in a small number of cycles, an im-

provement in performance can be achieved.

5.3.2 Procedure of page-address coalescing

It is necessary to distinguish whether each element of a vector instruction ac-

cesses the same page or a different page. This must be done using operations

that can be performed by the vector arithmetic unit provided in the vector pro-

cessor.

Prior to discussing the details of the processor’s implementation of page-

address coalescing, it is important to outline the general procedure for this pro-

cess. As depicted in Figure 5.3, page-address coalescing involves two stages.

During the first stage, the virtual address contained within the vector operand

is split into its virtual page number and offset components. In the second stage,

a vector XOR operation is performed between the first element and all other

103

5.3. Page-Address Coalescing for Vector Gather Instruction

Shift exec. XOR exec. 1st Mask XOR exec

Repeat these steps or abort

Virtual
address

→
Decouple
page number
and offset

→
Take XOR
between first
element and
others

0

0

0

1

0

0

1

1

0

1st page number

→
Take XOR
the first
element and
others with
mask 1

2nd page number

The elements with
the result 1 should
be translated by
TLB

The elements with
the result 0 are 2nd
page number

Offsets

Page numbers

2nd Mask

-

-

-

0

-

-

1

0

-

Figure 5.3: The example of the proposed address coalescing method.

elements in the vector holding the virtual page numbers. Taking the blue ele-

ment at the top of Figure 5.3 as an example, the outcome of this XOR operation

results in zeros in the blue box and non-zeros in the other boxes.

By these two steps, the first coalesced address can be obtained. If the result of

the vector XOR operation shows zeros, then the page number is the same as the

blue element in Figure 5.3. This result is then used as a mask and transferred

to the mask register, with non-zero values being converted to ones, as shown in

Figure 5.3. This represents the first attempt at coalescing the page addresses. If

the mask is not entirely composed of zeros and further coalescing is required for

the remaining elements, additional steps must be taken for the next iteration.

In the subsequent steps, the XOR operation is performed between the ele-

ment with the first mask bit set to 1 and all other elements with mask bits set

to 1. In the example depicted in Figure 5.3, the element corresponding to the top

orange box represents the second coalesced virtual page number. As elements

with non-zero mask values have not yet been coalesced, the processor executes

the XOR operation using this element and other elements specified by the first

mask. If the second XOR result is zero, then the page number is the same as the

104

5.3. Page-Address Coalescing for Vector Gather Instruction

orange element. This marks the second trial in coalescing page addresses.

This process can be repeated until all mask bits are zero or until the page-

address coalescing is prematurely terminated. If the latter occurs, the remain-

ing virtual page numbers are translated by the TLB as usual. In the example

shown in Fig 5.3, the page number represented by the green box does not match

any of the other boxes. As this page number cannot be coalesced through two

iterations, it must also be translated by the TLB.

5.3.3 Implementation

To implement the page-address coalescing described in Section 5.3.2, the pro-

posed method introduces multiple additional stages into the vector gather in-

struction pipeline to perform virtual address number coalescing prior to TLB ac-

cesses. This method utilizes vector arithmetic units for XOR vector operations,

a mask register, and several vector registers, resources commonly available in

processors that support vector instructions.

Upon decoding a vector gather instruction, it is placed into the reservation

station. Here, the vector gather instruction occupies multiple vector arithmetic

units to perform virtual page-address coalescing. Once virtual page-address co-

alescing is completed or prematurely terminated before the mask is fully zeroed

out, the vector gather instruction is forwarded to the load queue, where the TLB

is accessed to obtain the physical addresses.

The number of cycles required for page-address coalescing can be expressed

as follows:

Ccoalescing = 2× T + 2n× T, (5.1)

105

5.3. Page-Address Coalescing for Vector Gather Instruction

where Ccoalescing is the number of cycles for coalescing, n is the number of coalesc-

ing trials, and T is the cycle time for a vector arithmetic instruction. The first

term of 2 × T represents the cycles required to separate the virtual addresses

into virtual page numbers and offsets, which is assumed to be performed using

two vector instructions. The second term of 2n× T accounts for the vector XOR

instructions and a vector instruction for the mask.

Several processors with vector instructions may possess a chaining feature [1],

which bring data to the vector unit responsible for the next vector instruction

without waiting for the current vector instruction to complete. This feature may

potentially reduce the number of cycles T per vector arithmetic instruction in

Eq. (5.1).

5.3.4 Requirements for vector arithmetic unit

The proposed method necessitates vector arithmetic units capable of executing

vector XOR between any element and the other elements. Alternatively, this can

be achieved through the use of two vector instructions: one to extract a specific

element from a vector to a scalar register, and the other to execute a vector XOR

operation with the scalar register. Regardless of the implementation, the vector

operations utilizing mask registers must be supported.

5.3.5 Trade-off of the proposal

While the proposed page-address coalescing method can alleviate the pressure

to TLB, it incurs additional cycles for its own execution. Specifically, the vector

gather instruction consumes these cycles as it determines whether virtual ad-

dresses can be coalesced or not. Additionally, the proposed method occupies vec-

tor arithmetic units for a period of time, potentially causing a structural hazard

106

5.3. Page-Address Coalescing for Vector Gather Instruction

as other instructions may be unable to access them, which negatively impacts

the performance.

107

5.4. Evaluations

5.4 Evaluations

Section 5.4 evaluates the proposed method by using applications including vec-

tor gather instructions.

5.4.1 Experimental setup

This section presents results obtained using a simulator of a vector processor

developed based on the gem5 simulator [62], which is a general-purpose archi-

tecture simulator. The processor configuration for the vector instruction set is

shown in Table 5.1 and is capable of operating on a maximum of 256 elements

per instruction. The core specifications are similar to those of the latest vec-

tor processor, the SX-Aurora TSUBASA [16, 74, 75]. As the TLB bandwidth of

SX-Aurora TSUBASA is not publicly disclosed, the TLB bandwidth has been as-

sumed so as to most closely approximate the performance of the actual machine

on the simulator. The evaluation employs the HBM memory model in gem5

to simulate the latency variations. The developed simulator takes instruction

trace data as input, which is obtained from the Vector Engine of the SX-Aurora

TSUBASA. It then calculates the occupancy of hardware resources within the

processor and outputs various performance metrics.

The simulations assume that the TLB does not cause any misses other than

compulsory misses. This assumption is made because application designers for

data-level parallelism often take measures, such as using larger page sizes and

exploiting data locality, to avoid the negative impact of TLB miss penalties. If

the TLB miss penalties are substantial, the proposed method may have lim-

ited effect as the TLB miss penalty becomes more dominant than the reduced

address translation time offered by the proposed method.

108

5.4. Evaluations

Table 5.1: Baseline configuration for the out-of-order vector processor.

Frequency 1.4 GHz
Type Out-of-order

ROB size 48
Issue queue size 48
Load queue size 64
Store queue size 64
SPU issue width 4 insts./cycle
Vector functional 3 FMA (8 cycles),

units 2 ALU (8 cycles),
1 DIV (div 32 cycles,

sqrt 64 cycles)
TLB bandwidth 2 addr./cycle

Page size 64 MB
LLC cache size 2 MB

Cache bandwidth 410 GB/s
Memory bandwidth 128 GB/s

Table 5.2: The relationship between the number of coalescing trial and occupy-
ing cycles.

number of required occupying
coalescing trial operations cycles

1 4 16
2 6 24
3 8 32
4 10 40
5 12 48
6 14 56
7 16 64
8 18 72

The case where a dedicated hardware is added to the processor is also dis-

cussed in comparison with the proposed method. This case uses the dedicated

hardware instead of the vector arithmetic units in the processor. In the case

of the dedicated hardware, deduplication itself uses the same procedure as the

method proposed in Section 5.3.2.

Table 5.2 shows the relationship between the numbers of trials and cycles

109

5.4. Evaluations

to run the proposed method in this evaluation. The occupying cycles are calcu-

lated from Eq. (5.1) where the T is four, under the consideration of the chaining

feature in this evaluation.

The proposed method is applicable to both vector gather and vector scatter

instructions. However, this evaluation covers only vector gather instructions

and not scatter instructions.

5.4.2 Applications

Tables 5.3 and 5.4 list the applications evaluated in this chapter. This study

includes two types of applications. The first set consists of three numerical ap-

plications that heavily utilize vector gather instructions. The actual B/F value

shown represents the bytes per flop ratio obtained through the count of read and

write accesses to memory on the simulator.

The second set of applications evaluated in this study consists of four algo-

rithms from the Vector Graph Library [71], with on seven datasets. These highly

vectorized and optimized graph algorithms, listed in Table 5.4, are characterized

as memory-intensive due to their intense access to complex data structures, re-

sulting in numerous vector gather instructions. The input graph size is the

maximum that can be accommodated by the memory of the actual machine, the

NEC SX-Aurora VE-20B model with 48GB of capacity[16].

5.4.3 Coalescing trial and performance

Figure 5.4 displays the results of the normalized performance improvement

on the numerical applications averaged over all datasets. The horizontal axis

shows the number of coalescing trials. The proposed method yields an average

2.2× performance improvement on the numerical applications as it can coalesce

110

5.4. Evaluations

Table 5.3: The overview of the numerical applications.

Application Research field Method Actual B/F
Turbine [69] CFD LU-SGS method 0.34
Plasma [70] Physics Lax-Wendroff 0.88

Legendre Mathematics 6.02

Table 5.4: The algorithms of Vector Graph Library.

Name Algorithm
bfs Breadth-First Search [28]
cc Connected Components [29]

sssp Single Source Shortest Paths [30]
scc Strongly Connected Components [30]

all page addresses in vector gather instructions to a single page, resulting in

a significant reduction in the number of TLB accesses, because the numerical

applications almost exclusively access one page in the case of vector gather in-

structions.

Figure 5.5 presents the results of the normalized performance improvement

on the graph applications averaged over all datasets. The horizontal axis shows

the number of coalescing trials. For graph applications, where vector gather

instructions frequently access multiple pages, the proposed method yields the

best performance when performing page-address coalescing twice. In contrast,

attempting page-address coalescing of three or more pages outweighs the advan-

tages of reduced TLB accesses with the disadvantages of the increased number

of cycles required for page-address coalescing, leading to a limited performance

improvement. On average, the proposed method realizes a 1.08× performance

improvement.

111

5.4. Evaluations

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

im

pr
ov

em
en

t

Number of coalescing trials

Figure 5.4: The performance results for numerical applications.

5.4.4 Discussion on performance improvement

In Figure 5.6, the performance improvement of each application normalized by

the baseline is depicted. The Dedicated Hardware indicates the case where the

dedicated hardware is added to coalesce page addresses, and the Proposal indi-

cates the proposed method that uses the vector arithmetic units in the processor.

The number of coalescing trials is one for the numerical applications and two for

the graph applications, as previously demonstrated in Figures 5.4 and 5.5. It can

be seen that the numerical applications experience a significant performance im-

provement, which is attributed to their primary reliance on vector floating-point

arithmetic units rather than vector integer units. As the proposed method only

employs vector integer units, resource conflicts are avoided.

Using dedicated hardware results in an additional 3% performance improve-

ment compared to using the vector arithmetic units in the processor. This is due

to the ability of dedicated hardware to avoid hardware conflict.

It is worth noting that the proposed method does not enhance the perfor-

mance of the Breadth-First Search (BFS) application. In BFS, vector gather

112

5.4. Evaluations

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1 2 3 4 5 6 7 8

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

im

pr
ov

em
en

t

Number of coalescing trials

Figure 5.5: The performance results for graph applications.

0
0.5

1
1.5

2
2.5

3

Tu
rb

in
e

Pl
as

m
a

Le
ge

nd
re

ra
tin

g
ya

ho
o

so
ng

s

ro
ad

 c
en

tra
l u

sa

sy
n

rm
at

 2
4

32

sy
n

ru
 2

4
32

w
eb

 d
bp

ed
ia

 li
nk

s

w
eb

 u
k

do
m

ai
n

20
02

w
eb

 w
ik

ip
ed

ia
 li

nk
s e

n

ra
tin

g
ya

ho
o

so
ng

s

ro
ad

 c
en

tra
l u

sa

sy
n

rm
at

 2
4

32

sy
n

ru
 2

4
32

w
eb

 d
bp

ed
ia

 li
nk

s

w
eb

 u
k

do
m

ai
n

20
02

w
eb

 w
ik

ip
ed

ia
 li

nk
s e

n

ra
tin

g
ya

ho
o

so
ng

s

ro
ad

 c
en

tra
l u

sa

sy
n

rm
at

 2
4

32

sy
n

ru
 2

4
32

w
eb

 d
bp

ed
ia

 li
nk

s

w
eb

 u
k

do
m

ai
n

20
02

w
eb

 w
ik

ip
ed

ia
 li

nk
s e

n

ra
tin

g
ya

ho
o

so
ng

s

ro
ad

 c
en

tra
l u

sa

sy
n

rm
at

 2
4

32

sy
n

ru
 2

4
32

w
eb

 d
bp

ed
ia

 li
nk

s

w
eb

 u
k

do
m

ai
n

20
02

w
eb

 w
ik

ip
ed

ia
 li

nk
s e

n

N
um

er
ic

al
 G

m
ea

n

G
ra

ph
 G

m
ea

n

A
ll

G
m

ea
n

sssp bfs cc scc

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

im

pr
ov

em
en

t

Dedicated Hardware Proposal

Figure 5.6: The performance improvement for each application.

instructions accesses are utilized when the vector length is short, and although

two or more pages are required as depicted in Figure 5.1, TLB bandwidth does

not become a performance bottleneck in this application.

5.4.5 TLB access reduction

To further understand the performance improvements achieved by the proposed

method, this section examines the reduction in the number of TLB accesses. The

numerical applications can be coalesced almost all addresses of vector gather in-

structions onto a single page. Figure 5.7 shows the average number of addresses

113

5.4. Evaluations

0
32
64
96

128
160
192
224
256

ra
tin

g
ya

ho
o

so
ng

s

ro
ad

 c
en

tra
l u

sa

sy
n

rm
at

 2
4

32

sy
n

ru
 2

4
32

w
eb

 d
bp

ed
ia

 li
nk

s

w
eb

 u
k

do
m

ai
n

20
02

w
eb

 w
ik

ip
ed

ia
 li

nk
s

en

ra
tin

g
ya

ho
o

so
ng

s

ro
ad

 c
en

tra
l u

sa

sy
n

rm
at

 2
4

32

sy
n

ru
 2

4
32

w
eb

 d
bp

ed
ia

 li
nk

s

w
eb

 u
k

do
m

ai
n

20
02

w
eb

 w
ik

ip
ed

ia
 li

nk
s

en

ra
tin

g
ya

ho
o

so
ng

s

ro
ad

 c
en

tra
l u

sa

sy
n

rm
at

 2
4

32

sy
n

ru
 2

4
32

w
eb

 d
bp

ed
ia

 li
nk

s

w
eb

 u
k

do
m

ai
n

20
02

w
eb

 w
ik

ip
ed

ia
 li

nk
s

en

ra
tin

g
ya

ho
o

so
ng

s

ro
ad

 c
en

tra
l u

sa

sy
n

rm
at

 2
4

32

sy
n

ru
 2

4
32

w
eb

 d
bp

ed
ia

 li
nk

s

w
eb

 u
k

do
m

ai
n

20
02

w
eb

 w
ik

ip
ed

ia
 li

nk
s

en

sssp bfs cc scc

Av
er

ag
e

nu
m

be
r o

f T
LB

 lo
ok

up
s

pe
r v

ec
to

r g
at

he
r i

ns
tru

ct
io

n

Baseline The proposed method

Figure 5.7: The number of addresses translated by TLB.

of vector gather instructions that needed to be translated by the TLB. In con-

trast, the graph applications has coalescing of addresses onto multiple pages.

As shown in Figure 5.7, the average number of TLB accesses is reduced for all

applications except BFS. The proposed method has a minimal effect on the per-

formance of BFS because vector gather instructions are used with short vector

lengths.

114

5.5. Conclusions

5.5 Conclusions

As vector instruction sets become more prevalent in processors, their appli-

cations are expected to benefit from the high vector processing capabilities of

these processors. However, some of these applications involve irregular memory

accesses in vector gather instructions, which can hinder performance improve-

ments. The proposed method of page-address coalescing using vector arithmetic

units has been demonstrated to be effective in improving the performance of

applications employing vector instruction sets, particularly those that require

irregular memory accesses through vector gather instructions. In numerical

applications, the proposed method has achieved an average performance im-

provement of 2x, while in graph applications, an average improvement of 1.08x

is obtained. These results highlight the usefulness of the proposed method in

addressing the bottleneck caused by TLB accesses in vector gather instructions

and enabling acceleration of vector instruction-based applications.

By using the proposed method, overlap of virtual addresses is eliminated

and the number of addresses requiring address translation is reduced. This

reduces the latency required for address translation and contributes to latency

reduction.

115

Chapter 6

Skewed multi-banked cache for

many-core vector processors

6.1 Introduction

As the number of vector cores increases, the off-chip memory can become a bot-

tleneck for memory-intensive applications. To solve this issue, the efficient uti-

lization of the shared cache becomes crucial for vector processors, despite of their

relatively high memory bandwidth. By allowing the vector cores to reuse data

stored in the shared cache, the need for unnecessary off-chip memory accesses

can be reduced. As a result, it is important for applications running on vector

processors to be optimized to take advantage of the shared cache as much as

possible. If such optimization is successful, an increase in the number of vector

cores with certain optimization to share data on the shared cache will result in

a higher number of cache hits and reduced pressure on off-chip memory.

This chapter conducts a preliminary evaluation of the impact of shared cache

116

6.1. Introduction

organizations on a many-core vector processor. By applying a simple optimiza-

tion to an application, this chapter aims to increase the amount of data shared

as the number of vector cores increases. As a result, if the number of vector cores

sharing the cache increases, an increase in the cache hit rate can be expected.

However, the preliminary evaluation reveals that a cache shared by many vector

cores experiences a high number of conflict misses. While increasing the cache

associativity is a common approach to reduce conflict misses, it also incurs a

significant overhead for a multi-banked cache.

In this chapter, a skewed cache design is proposed for many-core vector pro-

cessors. The skewed cache employs skewed associativity [76], which helps to

reduce the occurrence of conflict misses by avoiding simultaneous data requests

from multiple vector cores to use the same cache set. Two features of the skewed

cache are also examined, including hashing functions and replacement policies.

The proposed design utilizes odd-multiplier displacement hashing for effective

skewing and the static re-reference interval prediction policy for reasonable re-

placement. The performance of the skewed cache is evaluated using a stencil

calculation kernel with varying the number of vector cores sharing the cache

and its associativity. The results show that the proposed cache can effectively

eliminate conflict misses and achieve almost ideal hit rates in shared cache con-

figurations. By improving the cache hit ratio, the vector processor can achieve a

performance improvement.

117

6.2. Motivation

6.2 Motivation

This section first presents the organization of the many-core vector processor

that is considered in this study. The impact of conflict misses on the hit rates of

shared caches is then preliminarily evaluated using various shared cache con-

figurations of the many-core vector processor.

6.2.1 Many-core Vector Processors with Multi-banked Shared

Cache

As vector cores become more powerful, there is an increasing demand for im-

proved memory performance to support the data needs of these cores. However,

the improvement of memory performance lags behind that of computing capa-

bility. To bridge this gap, cache memory becomes essential, and is thus imple-

mented in modern vector processors. For instance, the NEC SX series of vec-

tor processors, starting with the SX-9, includes an on-chip multi-banked cache

memory [18, 2]. This section assumes that the many-core vector processor also

includes such a multi-banked cache memory.

In the future, it is expected that as the number of vector cores increases,

several cores will be connected to one cache. Figure 6.1 illustrates an example

in which each cache is shared by M vector cores when the total number of vector

cores is N . The relationship between M and N can be expressed as follows:

C =
N

M
, (6.1)

where C is the number of caches, and M is the number of vector cores connected

to one cache. Equation (6.1) demonstrates that the number of caches C depends

on the values of M and N . Thus, the number of cache banks in a cache, b, can be

118

6.2. Motivation

C

・・・

Main Memory

．．．

C: core

C C C C

Cache

C C C C

Cache

C C C

N cores

X bar X bar X bar

X bar

Bank
1

Bank
2

Bank
b

Figure 6.1: Example of M cores sharing the same cache in the N vector cores
processor

calculated as follows:

b =
B

C
=

BM

N
, (6.2)

where B is the total number of banks in a many-core vector processor.

In this section, the total number of vector cores, N , and the total number of

banks in a many-core vector processor, B, are held constant as various configu-

rations of the shared cache are analyzed under the same computing capability

and memory performance. As a result, only the number of vector cores con-

nected to the cache, M , influences the number of banks per cache, b, according

to Equation (6.2). It should also be noted that the capacity of each bank is fixed,

and thus the number of banks per cache determines the overall cache capacity.

119

6.2. Motivation

6.2.2 Conflict Misses on The Many-core Vector Processor

6.2.2.1 3D 7-point Stencil Calculation

This section investigates various configurations of the shared cache using the

3D 7-point stencil kernel, a representative memory-intensive computing kernel.

Stencil computations, which include this kernel, play a significant role in scien-

tific and engineering simulation codes.

Algorithm 5 provides a pseudo-code for the 3D 7-point stencil kernel, which

computes the arithmetic mean of a central element and its six neighboring ele-

ments along the x, y, and z axes. The calculation is repeated for all elements in

a 3D space. Thus, for each iteration of the innermost loop of Algorithm 5, a total

of seven elements are needed.

Figure 6.2 illustrates the elements used for one calculation in Algorithm 5,

with translucent elements representing the calculation space and solid elements

representing the seven elements used in the calculation.

6.2.2.2 Stencil Calculation with A Shared Cache

This section assumes that the outermost loop regarding the z-axis in Figure 5

is parallelized. As a result, each iteration of the z-axis loop is assigned to a dif-

ferent core in a cyclical manner. Specifically, the k-th iteration of the outermost

loop is calculated by the core with ID (k mod N).

During the stencil calculation, each vector core accesses the central element

and its neighboring elements. If these elements are already being accessed by

other vector cores, they may have been placed in the cache, allowing them to be

reused and reducing pressure on the off-chip memory.

Using the described parallelization, the theoretical cache hit rate of the 3D

7-point stencil calculation can be calculated. It is important to note that a single

120

6.2. Motivation

Algorithm 5 3D 7-point stencil calculation
1: for z = 1, ...Nz − 1 do
2: for y = 1, ...Ny − 1 do
3: for x = 1, ...Nx − 1 do
4: b[z][y][x]=(a[z][y][x]+
5: a[z][y][x-1]+a[z][y][x+1]+
6: a[z][y-1][x]+a[z][y+1][x]+
7: a[z-1][y][x]+a[z+1][y][x])/7
8: end for
9: end for

10: end for

xy
z

Figure 6.2: The elements used in one calculation

layer of elements in the x-y plane does not fit in the cache, but a single line of

elements along the y-axis does. The theoretical cache hit rate is first calculated

in the case where the vector cores do not share the cache at all. Figure 6.3 il-

lustrates which elements will hit the cache. The translucent elements represent

the group of elements calculated by one core, while the solid blue element in

Figure 6.3 cause cache misses regardless of whether the cache is shared. The

red elements: a[z][y][x], a[z][y][x-1], a[z][y][x+1], and a[z][y-1][x] should hit because

the last iteration brings them into the cache regardless of whether the cache is

shared or not. The solid purple and green elements cannot be considered hits

121

6.2. Motivation

xy
z

Figure 6.3: The elements shared on the cache

because a single layer of the x-y plane does not fit in the cache. As a result, in

the case where vector cores do not share a cache, the theoretical hit rate becomes

4/7 (57.14%).

The theoretical cache hit rate can be calculated for the case where vector

cores share the cache with their neighboring cores. The purple and green ele-

ments can be retrieved from the cache because the neighboring cores also bring

these elements into the cache. This means that a[z-1][y][x] and a[z+1][y][x] can

also be retrieved from the cache. However, cores with numbers 0 or M − 1

only have one neighboring core, so either a[z-1][y][x] or a[z+1][y][x] will always

be missed for these cores. Based on this information, it can be determined that

at most 2/7 (28.57%) of elements in the 3D 7-point stencil calculation can be

shared by the shared cache.

When M iterations of the outermost loop are calculated in parallel, there are

7 × M accesses by M cores. If the first core calculates loop 1, the second core

calculates loop 2, and so on, with the M -th core calculating loop M , the cores in

charge of loop 1 and loop M can only reuse 5 elements from the shared cache,

122

6.2. Motivation

while the other cores can reuse 6 elements. Based on this, the number of hits

in one iteration for all cores can be calculated as 6(M − 2) + 5 × 2. Therefore,

the theoretical hit rate of the 3D 7-point stencil calculation can be expressed as

follows:

H7 =
6(M − 2) + 5× 2

7M
=

6

7
− 2

7M
. (6.3)

Equation (6.3) can predict the hit rate of the stencil calculation theoretically

based on the number of cores sharing a single cache, M . It can be observed that

as M increases, the cache hit rate monotonically increases, eventually asymp-

totically approaching 6/7 (85.71%).

Overall, an increase in the number of vector cores sharing a cache allows

more vector cores to reuse the data stored in that cache. This can result in an

increase in the theoretical cache hit rate for stencil calculations.

6.2.3 Preliminary Evaluation

Equation (6.3) expresses the upper-bound of the cache hit rate because this

equation only considers the reusability of the elements, and other effects are

ignored. In order to confirm the model defined by Equation (6.3), a prelimi-

nary evaluation is conducted to investigate the hit rate in the many-core vector

processor by varying the number of cores that share a cache. The stencil cal-

culation is parallelized to share the data, as discussed in Section 6.2.2.2. Thus,

the larger number of cores suggests the higher cache hit rate, as expected from

Equation (6.3). Under this situation, various configurations of a many-core vec-

tor processor are evaluated. The number of cores sharing a cache is set to 1, 2,

4, 8, 16, and 32, and the cache associativity is set to 4, 8, 16, and 32. The other

123

6.2. Motivation

configurations correspond to the configuration described in Section 6.4.1.

The results of the preliminary evaluation are depicted in Figure 6.4, where

the vertical axis represents the cache hit rate and the horizontal axis indicates

the number of cores sharing a single cache and the associativity. As the number

of cores sharing a cache increases, the theoretical cache hit rate also increases,

as shown in the figure. However, the cache hit rate of the set-associative cache

with the LRU replacement policy becomes significantly low when there is a large

number of cores sharing a single cache and low associativity. This is due to

conflict misses occurring when multiple cores simultaneously access the same

set during the stencil calculation. To effectively share data among vector cores

using a shared cache, it is necessary to reduce the number of conflict misses. It

is also important that the cache mechanism can achieve a high hit rate in order

to realize latency tolerance for vector processors.

124

6.2. Motivation

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1c
or

e
2c

or
es

4c
or

es
8c

or
es

16
co

re
s

32
co

re
s

1c
or

e
2c

or
es

4c
or

es
8c

or
es

16
co

re
s

32
co

re
s

1c
or

e
2c

or
es

4c
or

es
8c

or
es

16
co

re
s

32
co

re
s

1c
or

e
2c

or
es

4c
or

es
8c

or
es

16
co

re
s

32
co

re
s

4-way 8-way 16-way 32-way

C
ac

he
 h

it
ra

te

Number of cores that share the cache / associativity

Set-associative Cache+LRU Theoretical

Figure 6.4: The cache hit rate when the number of cores sharing the same cache
and the number of the associativity are changed

125

6.3. Skewed Multi-banked Cache for Many-core Vector Processors

6.3 Skewed Multi-banked Cache for Many-core

Vector Processors

Skewed-associativity [76] is an effective method of eliminating conflict misses

without increasing associativity. This chapter proposes a skewed cache for many-

core vector processors in order to reduce the number of conflict misses on vector

load/store data in a shared cache. A skewed cache eliminates conflict misses

by allocating blocks to sets using a hashing function for each way. Figures 6.5

and 6.6 demonstrate the difference between a 2-way set-associative cache and a

2-way skewed cache.

In Figure 6.5, the set-associative cache allocates addresses D1, D2, and D3 to

the same set. As a result, if the blocks of these addresses are stored in this order,

the block of D1 inserted first will be evicted when the block of D3 is inserted,

leading to a conflict miss. In contrast, in Figure 6.6, the hashing function f0 for

way 0 and the hashing function f1 for way 1 independently generate different

set indices, resulting in these addresses being indexed to different sets. This

means that the block of D3 is stored in a different set from that of D1, allowing

the block of D1 to be avoided and resulting in no conflict miss.

To achieve a high cache hit rate on the skewed cache, the hashing function

and replacement policy are crucial. The hashing function plays a key role in the

skewed cache’s ability to avoid set conflicts, and therefore, it should output non-

biased values to prevent blocks from being placed in the same set and causing

conflict misses. It is also desirable to be able to easily create various hashing

functions based on a single rule to produce different outputs for each way.

The replacement policy is also important. One challenge with the skewed

cache is that it is difficult to implement the Least Recently Used (LRU) policy

126

6.3. Skewed Multi-banked Cache for Many-core Vector Processors

𝑓𝑓

Tag Data

𝑓𝑓(𝐷𝐷1)
= 𝑓𝑓 𝐷𝐷2
= 𝑓𝑓(𝐷𝐷3)

𝐷𝐷1,𝐷𝐷2,𝐷𝐷3Way 0 Way 1

Tag Data

Figure 6.5: The 2-way set-associative.

𝑓𝑓0 𝑓𝑓1

𝐷𝐷1,𝐷𝐷2,𝐷𝐷3

𝑓𝑓1(𝐷𝐷1)

𝑓𝑓1(𝐷𝐷2)

𝑓𝑓1(𝐷𝐷3)

𝑓𝑓0(𝐷𝐷1)

𝑓𝑓0(𝐷𝐷2)

𝑓𝑓0(𝐷𝐷3)

Way 0 Way 1

Tag Data Tag Data

Figure 6.6: The 2-way skewed-associative.

with a higher associativity of three or more. This is because LRU generally de-

termines which block to evict based on the insertion order of blocks in the set. In

the case of the set-associative cache, replacement candidates are always chosen

from the same set, and the evicted block is selected from among them. There-

fore, it is necessary to maintain the insertion order within the sets. However,

the skewed cache selects replacement candidates from different sets based on

the address of the block and the hashing function. As a result, the insertion or-

der within the sets cannot determine whether the blocks were recently used or

not. If absolute timestamps are added to every block, it is possible to implement

LRU for the skewed cache, but this would require an impractical hardware cost.

127

6.3. Skewed Multi-banked Cache for Many-core Vector Processors

6.3.1 Hashing Functions

6.3.1.1 XOR-based Hashing Function

A XOR-based hashing function is used when proposing skewed-associativity [76,

77, 78]. The following equation calculates the set index:

index = σw(A2)⊕ A1 mod nset, (6.4)

where A1 and A2 are fields of an address as shown in Figure 6.7. The bit lengths

of A1 and A2 are log2(nset), and σw represents a w-bit circular shift operation,

where w generally represents the way ID for each way. The ⊕ symbol denotes

the bit-wise exclusive OR operator. For instance, the hashing function for way 0

is A2 ⊕ A1 mod nset, and that for way 1 is σ1(A2)⊕ A1 mod nset.

The XOR-based hashing function has the advantage of simplicity in imple-

mentation and the ability to satisfy the requirements for skewing. It spreads

blocks that may be mapped to the same set in one way across other sets of the

other ways, and it prevents two blocks with the same higher bits (A2 or tag field

in Figure 6.7) from being mapped to the same set.

However, the XOR-based hashing function is known to suffer from certain

stride patterns called the pathological behavior [79]. For example, if nset is 16,

A1 is fixed, and A2 varies as a stride of 8, the XOR-based hashing function will

generate the sequence of set indices 1,9,1,9,...,1,9. This problem also occurs even

when w changes. Furthermore, if either A1 or A2 is 0 or 1111...111, the outputs

always become the same value regardless of w. Therefore, this dissertation ex-

amines another hashing function for the skewed cache.

128

6.3. Skewed Multi-banked Cache for Many-core Vector Processors

Tag

𝐴1𝐴2

Bank

offset

Block

offset

Address:

Set Index

Figure 6.7: The bit field of hashing function of the given address

6.3.1.2 Odd-multiplier Displacement Hashing Function

This dissertation investigates the Odd-Multiplier Displacement Hashing Func-

tion (oDisp) [79] as an alternative to the XOR hashing function. The oDisp has

been shown to be a more uniform hashing function than those based on XOR.

It is expected to result in fewer conflict misses, even in the cases where access

patterns include strides of a particular length. The set index can be expressed

as follows:

index = (o× A2 + A1) mod nset, (6.5)

where o is an odd number chosen specifically for each way.

In addition, the oDisp has a low hardware cost. According to Equation (6.5),

the set index is obtained by adding an arbitrary odd number multiplied by A2 to

A1 and taking the remainder with respect to the number of sets. This multipli-

cation can be implemented using a single logical shifter and two adders, rather

than a dedicated multiplier. Moreover, it is easy to vary the output of the hash-

ing function for each way by using different odd numbers. Therefore, the index

of the oDisp can be simplified as follows:

index = ((A2 ≪ w) + A2 + A1) mod nset, (6.6)

129

6.3. Skewed Multi-banked Cache for Many-core Vector Processors

where w is the way number and ≪ denotes a logical left-shift operation.

6.3.2 Replacement Policies

6.3.2.1 Not Recently Used Not Recently Written

There have been several investigations on replacement policies for skewed caches.

Seznec et al. [52] proposed the Not Recently Used Not Recently Written policy

(NRUNRW), which is based on the Not Recently Used (NRU) approach. The

flow of NRUNRW is depicted in Algorithm 6. This policy uses a single bit per

cache block, referred to as the Recently Used bit (RU), to identify a non-recently

used cache block for eviction. If no such block can be identified based on the

RUs of the candidate blocks, the policy will select a clean block among the can-

didates. The RUs of all cache blocks are reset at intervals when the number of

cache requests reaches one-fourth of the total number of cache blocks.

While NRUNRW has the advantage of requiring minimal hardware resources,

Seznec [78] found that its performance falls short of that of the Least Recently

Used (LRU) policy due to the randomness introduced by the RU resetting. Thus,

this dissertation will also examine an alternative replacement policy for skewed

caches.

6.3.2.2 Static Re-Reference Interval Prediction

To achieve a hit rate comparable to that of the Least Recently Used (LRU) policy

at a practical hardware cost, the proposed skewed cache employs the Static Re-

Reference Interval Prediction (SRRIP) policy [80] as its replacement strategy.

SRRIP, which is an extension of the Not Recently Used (NRU) policy, is able

to deliver hit rates similar to those of LRU with a simple algorithm and low

hardware requirements. The flow of SRRIP is illustrated in Algorithm 7. This

130

6.3. Skewed Multi-banked Cache for Many-core Vector Processors

Algorithm 6 The flow of NRUNRW policy.
Require: Candidates
Ensure: An evicted block

1: if counter > (the number of blocks / 4) then
2: Reset RU of all blocks
3: Set counter 0
4: else
5: Increment counter
6: end if
7: if Cache hits then
8: Set RU of the hit block to 1
9: else if Cache misses then

10: g1 :=Candidates.where(RU is 0)
11: g2 :=Candidates.where(RU is 1 and clean)
12: g3 :=Candidates.where(RU is 1 and dirty)
13: if g1 is not empty then
14: Return one randomly from g1
15: else if g2 is not empty then
16: Return one randomly from g2
17: else if g3 is not empty then
18: Return one randomly from g3
19: end if
20: end if

policy assigns an m-bit Re-Reference Prediction Value (RRPV) to each cache

block, which is used to predict when the block will be re-referenced. SRRIP

takes advantage of the higher reusability of recently hit blocks compared to

newly inserted blocks, allowing them to remain in the cache while other blocks

are replaced. As a result, only recently hit blocks tend to be retained in the

cache.

SRRIP is particularly suitable for use in skewed caches, as the RRPVs of each

block can be used to predict the re-reference interval of a block independently

of the RRPVs of other blocks in the same set. This enables the selection of an

evicted block even when replacement candidates come from different sets, as is

the case in skewed caches.

131

6.3. Skewed Multi-banked Cache for Many-core Vector Processors

Algorithm 7 The flow of SRRIP policy
Require: Candidates
Ensure: An evicted block

1: if Cache hits then
2: Set RRPV of the hit block to 0
3: else if Cache misses then
4: while True do
5: for c in Candidates do
6: if c.RRPV is 3 then
7: Return c
8: end if
9: end for

10: Increment RRPVs of all candidates
11: end while
12: end if

132

6.4. Evaluation

6.4 Evaluation

6.4.1 Experimental Environment

To assess the impact of the skewed cache on the performance of many-core vector

processors, this section conducts experiments using a simulator developed based

on the gem5 simulator [59], which is a general-purpose architecture simulator.

The simulator takes as input an instruction trace data obtained from the SX-

ACE vector supercomputer, and uses it to simulate the utilization of hardware

resources within the processor and calculate various performance metrics.

The simulation of the many-core vector processor is implemented using pseudo

cores, which only issue requests to the memory system. This allows for the ef-

ficient simulation of many-core vector processors. In the stencil calculation tar-

geted in this study, it is assumed that parallelization occurs in the outermost

loop of Algorithm 5 discussed in Section 6.2.2.2. Therefore, the widths speci-

fied for the pseudo cores correspond to the amount of data processed in a single

iteration along the z-axis. The calculation space is set to 2048x2048x512.

Table 6.1 presents the system configurations for the many-core vector proces-

sor. The total number of cores is set to 32, based on trends in the development

of many-core vector processors, and the configuration of each core is based on

that of the NEC SX-ACE [18]. The Bytes/Flop (B/F) value of the system used

for evaluation is set to 0.125, reflecting the increasing gap between computing

capability and memory performance and the corresponding trend towards lower

B/F values in newer generation vector processors (e.g. SX-ACE and SX-Aurora

TSUBASA have B/F values of 1.0 and 0.5, respectively).

Several parameters influence the performance of the multi-banked cache

memory. The associativity is varied between 4, 8, 16, and 32, and the number of

133

6.4. Evaluation

Table 6.1: Configurations of the simulation

Base architecture NEC SX-ACE
Total number of core 32

Number of cores sharing a same cache 1, 2, 4, 8, 16, 32
Main memory bandwidth 256GB/s

Total cache size (size per bank) 32MB (128KB)
Associativity 4, 8, 16, 32

Cache block size 128Bytes
MSHR (Target) [81] 8 (8)

System B/F 0.125 B/F

cores sharing a single cache is set to 1, 2, 4, 8, 16, and 32. The total capacity and

the total number of banks are both fixed at 32MB and 256 banks, respectively.

The total capacity is kept constant to focus on the effect of the shared cache,

while the total number of banks is held constant to maintain equal bandwidth

across all configurations.

In addition to the proposed skewed cache, this study also evaluates the per-

formance of a conventional set-associative cache for comparison. The Not Re-

cently Used Not Recently Written (NRUNRW), Least Recently Used (LRU), and

Static Re-Reference Interval Prediction (SRRIP) policies are used as replace-

ment policies for the skewed cache. In the evaluation, SRRIP is implemented

using two bits for the Re-Reference Prediction Value (RRPV), which has been

shown to achieve performance comparable to that of LRU [80]. Since it is chal-

lenging to implement LRU in a realistic hardware cost for skewed caches, LRU

is implemented in this study by judging the insertion order of blocks based on

the absolute timestamps assigned to them.

134

6.4. Evaluation

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1c
or

e
2c

or
es

4c
or

es
8c

or
es

16
co

re
s

32
co

re
s

1c
or

e
2c

or
es

4c
or

es
8c

or
es

16
co

re
s

32
co

re
s

1c
or

e
2c

or
es

4c
or

es
8c

or
es

16
co

re
s

32
co

re
s

1c
or

e
2c

or
es

4c
or

es
8c

or
es

16
co

re
s

32
co

re
s

4-way 8-way 16-way 32-way

C
ac

he
 h

it
ra

te

Number of cores that share the cache / associativity

Set-associative+LRU Skewed+oDisp+LRU Skewed+oDisp+NRUNRW
Skewed+oDisp+SRRIP Theoretical

Figure 6.8: Cache hit rate result with the same hashing function, oDisp, except
set-associative cache

6.4.2 Evaluation Results and Discussion

6.4.2.1 Cache Hit Rate

Figures 6.8 and 6.9 show the cache hit rates for the conventional cache and

the skewed cache with various replacement policies and hashing functions. In

these figures, the vertical axis represents the cache hit rate, and the horizontal

axis represents the number of cores sharing a cache and the associativity of the

cache.

Figure 6.8 presents the cache hit rates for different replacement policies. To

better compare the performance of these policies, the odd-multiplier displace-

ment hashing function is used. The hit rates of the proposed skewed cache with

135

6.4. Evaluation

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1c
or

e
2c

or
es

4c
or

es
8c

or
es

16
co

re
s

32
co

re
s

1c
or

e
2c

or
es

4c
or

es
8c

or
es

16
co

re
s

32
co

re
s

1c
or

e
2c

or
es

4c
or

es
8c

or
es

16
co

re
s

32
co

re
s

1c
or

e
2c

or
es

4c
or

es
8c

or
es

16
co

re
s

32
co

re
s

4-way 8-way 16-way 32-way

C
ac

he
 h

it
ra

te

Number of cores that share the cache / associativity

Set-associative+SRRIP Skewed+XOR+SRRIP Skewed+oDisp+SRRIP Theoretical

Figure 6.9: Cache hit rate result with the same replacement policy, SRRIP

SRRIP are very close to the theoretical hit rates for each configuration. SR-

RIP closely follows the theoretical values only when the associativity is 4-way

or 8-way, although the hit rates for higher associativities are slightly lower than

those of LRU. When the cache is 4-way or 8-way, the number of hits for the

skewed cache with SRRIP is improved by up to 70% and 60% compared to the

set-associative cache, respectively. In the case where 32 cores share a 16-way

cache, the number of hits increases by approximately 50%.

In contrast, the cache hit rate significantly decreases for low associativity in

the set-associative cache. In particular, when the associativity is 4-way, 8-way,

or even 16-way and the number of cores sharing the cache is high, the difference

between the set-associative cache and the theoretical hit rates becomes notice-

able. This is due to the relatively regular memory access patterns in the stencil

calculation. In the evaluation, the stencil calculation is parallelized as described

136

6.4. Evaluation

in Section 6.2.2.2. Each core sends memory access requests for the z-iteration

assigned to it. However, differences in these requests can be primarily distin-

guished by the tag field of their addresses, leading to requests being indexed to

the same set in the set-associative cache and resulting in conflict misses. On

the other hand, the skewed cache can avoid conflict misses because it uses a

larger range of an address field, including part of the tag field, allowing it to

distinguish the difference in the z-iteration on the address to determine the set.

As a replacement policy for the skewed cache, the hit rate of LRU is almost

equal to the theoretical value. When LRU is applied, the skewed cache can

maintain a higher hit rate than the set-associative cache or a high hit rate equal

to the skewed cache with SRRIP. This is because the skewed cache with LRU is

based on timestamps, allowing blocks to be replaced optimally. Although its

implementation requires significant hardware costs, it is possible to eliminate

more conflict misses than SRRIP regardless of the associativity. It is also worth

noting that NRUNRW has a low hit rate in all the cases. This is because all

RUs are reset at each fixed access interval, causing randomly selected evictions

every interval and leading to necessary blocks suffering from random eviction.

When the number of cores that share a single cache exceeds 16 and the as-

sociativity is set to 32-way, both SRRIP and LRU exhibit a decrease in cache

hit rate. This can be attributed to two factors. First, a high associativity re-

duces the number of sets per way, increasing the likelihood of conflict misses

by repeatedly selecting the same set. Second, the implementation of the oDisp

hashing function in the skewed cache, as shown in Equation (6.6), may also con-

tribute to the decrease in hit rate for larger values of the number of ways, as the

calculation of the index for these larger values is not affected by the shifted A2

when it exceeds the bitfield length of A2. It is worth noting that the miss rates

137

6.4. Evaluation

for SRRIP are slightly lower than those of LRU, because SRRIP is approaching a

more random replacement strategy, and resulting in an increase in misses when

encountering numerous replacement candidates that have the same RRPVs at

high associativity.

As depicted in Figure 6.9, the hit ratio of the skewed cache with varying

hashing functions is evaluated, using SRRIP as the replacement policy for both

the skewed cache and the set-associative cache. The results show that both

hashing functions generally achieve high cache hit rates, but the XOR-based

hashing function exhibits a decline in hit rate for extremely high associativity

and large numbers of cores sharing a single cache. This decline can be attributed

to two factors. First, the skewed cache with the XOR-based hashing function is

prone to a specific access pattern known as pathological behavior, as mentioned

in Section 6.3.1.1, which is suspected to contribute to the observed degradation

in the hit rate, particularly in the cases of 16-way caches shared by 16 or 32

cores. Second, the implementation of the XOR-based hashing function may also

contribute to the decline in the hit rate for larger values of the number of ways,

as the bit rotation used in the function leads to the recalculation of the same

index for these larger values. In contrast, the oDisp hashing function is able to

handle such access patterns and maintain a stable, high hit rate. It is worth

noting that the set-associative cache with SRRIP experiences a similar decline

in the hit rate as the set-associative cache with LRU, as shown in Figure 6.8,

due to the same underlying cause.

6.4.2.2 Performance

Figure 6.10 compares the performance of the set-associative cache based on LRU

with the proposed skewed cache using oDisp and SRRIP, which has been shown

138

6.4. Evaluation

0

1

2

3

4

5

6
1c

or
e

2c
or

es
4c

or
es

8c
or

es
16

co
re

s
32

co
re

s

1c
or

e
2c

or
es

4c
or

es
8c

or
es

16
co

re
s

32
co

re
s

1c
or

e
2c

or
es

4c
or

es
8c

or
es

16
co

re
s

32
co

re
s

1c
or

e
2c

or
es

4c
or

es
8c

or
es

16
co

re
s

32
co

re
s

4-way 8-way 16-way 32-way

N
or

m
al

iz
ed

 fl
op

s

Number of cores that share the cache / Associtivity

Set-Associative Cache+LRU Skewed Cache+oDisp+SRRIP

Figure 6.10: Performance comparison of the conventional set-associative cache
and the proposed skewed cache

to achieve a high hit rate with a reasonable implementation cost. The vertical

axis in the figure represents the performance normalized to the case in which

each core has a private set-associative cache, and the horizontal axis denotes

the number of cores sharing a single cache and the associativity.

First of all, the skewed cache demonstrates superior performance compared

to the conventional set-associative cache, particularly when the associativity is

low. This is due to the skewed cache’s ability to eliminate conflict misses effec-

tively. It has been shown that SRRIP can achieve nearly ideal cache hit rates in

the skewed cache at reasonable implementation costs. Additionally, the oDisp

hashing function enables the skewed cache to avoid performance degradation

caused by conflict misses.

As seen in Figure 6.10, the proposed cache outperforms the set-associative

cache when the associativity is low. Specifically, in the case of 16 cores sharing a

4-way cache, the skewed cache exhibits a six-fold improvement in performance

over the set-associative cache. However, when the associativity is sufficient,

139

6.4. Evaluation

there is little difference in performance between the skewed and set-associative

caches, as both are able to effectively reduce conflict misses.

In Figure 6.10, there are instances where the performance of a cache shared

by 16 cores is higher than that of a cache shared by 32 cores, despite the latter

having a higher cache hit rate. This can be attributed to cache bank conflicts.

The multi-banked configuration of the many-core vector processor used in this

study causes memory access requests to be directed to specific cache banks based

on the memory address. Therefore, when multiple cores share a single cache, the

likelihood of accessing the same cache bank increases. Additionally, the write

buffer size and MSHR per bank in this configuration are 16 and 8, respectively.

As a result, when 32 cores share a cache, their requests may become concen-

trated on certain banks due to conflicts, which leads to shortages in the write

buffer or MSHR, resulting in performance degradation.

140

6.5. Conclusions

6.5 Conclusions

This chapter presents a skewed multi-banked cache for many-core vector proces-

sors. The skewed cache can prevent concurrently requested blocks from occupy-

ing the same cache set by using a hashed value of the block address to determine

the appropriate cache set for storing the block. The chapter discusses the im-

plementation of two key features of the skewed cache: the hashing functions

and the replacement policies. Three replacement policies (LRU, NRUNRW, and

SRRIP) and two hashing functions (XOR-based and oDisp) have been evaluated

for use in the skewed cache.

The evaluation results show that the skewed cache with SRRIP and oDisp

can increase the hit rate by up to 70% and produces results that are closest to

the theoretical upper bound of the shared cache hit rate. From the separate

evaluations of the hashing functions and replacement policies, it is found that

SRRIP achieves the highest hit rate with low hardware overhead, and oDisp

addresses the issues with the XOR-based hashing function. The evaluation re-

sults also reveal that the skewed cache can achieve a six-fold improvement in

performance over the conventional set-associative cache for stencil calculations.

By the mechanism proposed in this chapter, the cache can supply data to the

vector processor with a short latency by increasing the hit rate. This enables

the processor to be the latency tolerance.

141

Chapter 7

Conclusions

Processor performance can be classified into two types: computing performance

and memory performance. The computing capability refers to the number of

calculations per second that a processor execute. Thanks to advancements in

semiconductor technologies, the computing performance has steadily increased

over the previous decades. However, due to the end of Dennard’s scaling and

the stagnation of clock frequency, processors are required to improve computing

performance while reducing power consumption.

Vector instruction set is one of the promising solutions to satisfy these re-

quirements. Vector instruction set enables the processors to handle multiple

elements by one instruction. Since a compiler guarantees that the elements in

a vector are independent, the processors can achieve data-level parallelism by

processing the data in parallel by hardware.

Modern vector processors are designed to handle vector instructions, en-

abling to achieve high sustained performance, particularly in HPC applications.

Memory-intensive applications are well-suited to vector processors in the fields

of science and engineering, which rely on long vector lengths and high memory

142

bandwidth to improve computational capabilities. As these applications con-

tinue to evolve to satisfy the demands of improved accuracy and broader appli-

cability, the performance requirements for the vector processors are also rising.

In addition, new workloads such as graph processing and machine learn-

ing have emerged as commonplace applications. These new applications are

memory-intensive because they employ complicated data access patterns to solve

advanced algorithms. Because of this, the memory system has easily become a

limiting factor for these applications. High sustained performance for these ap-

plications has been desired for vector processors. However, the high memory

bandwidth of vector processors may be underutilized in some numerical simula-

tions and new applications due to latency, i.e., the time between issuing a vector

instruction and its completion.

Vector processors have traditionally not considered latency issues because

their vector processing mechanism allows them to hide latency through pipelined

data accesses. However, the latency has become a performance bottleneck due

to the following three reasons. First, as semiconductor manufacturing technolo-

gies improve computing capabilities, the time required for each vector operation

tends to decrease, diminishing the latency concealment capability of vector pro-

cessors. Second, the number of instructions that the processor can handle si-

multaneously may be inadequate for handling certain memory access patterns.

Vector instructions that handle irregular memory accesses often require multi-

ple instructions for a single access, leading to longer latencies than sequential

accesses. Finally, applications with irregular memory access patterns may not

utilize the cache system, as the data may not have locality and therefore cannot

be stored in the cache. These factors have led to a need for architectures that

make vector processors more tolerant of latency.

143

In Chapter 2, the importance of latency tolerance for vector processors is ex-

amined. The modern vector processors assumed in this dissertation are first

introduced. Second, this chapter defines the latency that this dissertation ad-

dresses. In order to realize high sustained performance, this dissertation focuses

on the latency of modern vector processors. “Latency” is defined as the time be-

tween the fetch of a vector instruction and the completion of the vector instruc-

tion. This chapter divides latency-related problems into four categories. First,

the latency due to dependencies among vector memory instructions caused by

indirect memory accesses is a factor that can degrade performance even with

sufficient bandwidth in the vector processor. Second, the latency that can be

hidden by the out-of-order execution mechanism is limited for applications with

a large number of instructions per loop, such as commonly run on the vector pro-

cessor. Third, the latency caused by the address translation required for every

memory access in the vector processor with virtual memory can be a bottleneck

for vector memory instructions. Finally, the memory access latency is closely

related to the cache hit ratio for the vector processor.

To solve the problems related to these latencies, this dissertation examines

two perspectives. The first perspective involves exploring various ways for mit-

igating the latencies, including both approaches to hiding latency and reducing

latency. From this perspective, one approach to hiding latency can be achieved

through out-of-order and speculative execution. Another approach to reducing

latency involves implementing features or adopting procedures that minimize

latency.

The second perspective to solving latency-related problems involves taking

144

into account both the core and memory architectures of modern vector proces-

sors. From this perspective, there are two approaches to mitigating latency-

related problems. The first approach is to design the processor to handle laten-

cies through out-of-order execution and virtual memory. The second approach

involves improving the memory architecture, including the design of the cache

system and a prefetching mechanism to solve latency-related problems.

These approaches from the two perspectives are discussed in the subsequent

chapters. Finally, Chapter 2 discusses previous work related to the discussion

and approaches in this dissertation.

Chapter 3 proposes an indirect memory access prefetcher for vector gather

instructions consisting of two prefetchers. The first prefetcher is the stream

list vector prefetcher that loads the data of the index array as sequential ac-

cesses. The second prefetcher is the indirect vector prefetcher that loads the

data of indirect memory accesses. The prefetching mechanism uses the index

values to load the data of the indirect memory access in advance. The prefetch

distance and prefetch degree are discussed for the prefetching mechanism to re-

alize performance improvement over several spatial localities of vector gather

instructions. The proposed mechanism realizes performance improvement of

the scale kernel with vector gather instructions by 2.1 times on the sequential

index array and 1.2 times on the random index array, respectively. By the pro-

posed mechanism, the latency of preceding dependent instructions is hidden by

prefetching.

Chapter 4 proposes a criticality-aware out-of-order mechanism for vector pro-

cessors. The proposed mechanism exploits ILP by prematurely dispatching sub-

sequent instructions that may cause pipeline stalling. The basic concept is that

the proposed mechanism retains the vector registers storing the results to avoid

145

occupying core-cache bandwidth redundantly. The proposed mechanism pre-

pares several queues to retain information of the vector registers. By using

these information, the proposed mechanism reorders vector instructions beyond

conventional out-of-order mechanism and keep the true dependencies of these

instructions. By realizing this concept, the vector processor can exploit ILP

without occupying core-cache bandwidth redundantly. The evaluation results

show that the proposed mechanism achieves up to 80% performance improve-

ments on several memory-intensive applications. By the proposed mechanism,

the vector processors can issue the instructions that cause long latency over the

conventional out-of-order mechanisms, solving the latency of issuing.

Chapter 5 proposes an address coalescing method for vector instructions that

utilizes arithmetic vector units already built in the vector processor. The virtual

memory decouples the memory addresses handled by a process from the ac-

tual memory addresses, thereby preventing memory address conflicts between

processes. When a processor accesses memory, it is necessary to translate vir-

tual memory addresses to physical memory addresses. Since vector instructions

handle multiple elements in one instruction, multiple addresses must be trans-

lated. This translation may cause a long latency. The proposed method reduces

the number of translations by deduplicating the virtual addresses of vector in-

structions. The evaluation results show that the proposed method can achieve

an average 2x performance improvement in numerical applications and 1.08x in

graph applications. These results suggest that the proposed method can reduce

the latency for address translations of vector instructions.

Chapter 6 proposes a skewed cache for vector processors that prevents cache

blocks using the same cache set. The skewed cache uses a hash function to deter-

mine the set that is the place of the data in the cache. This mechanism prevents

146

the cache from using the same set for addresses, reducing cache misses due to

conflicts. This chapter discusses two components that affect the ability to reduce

conflict misses: the hashing function and the replacement policy. The evalua-

tion results show that the proposed mechanism can increase the number of hits

by up to 70% and marks excellent results very close to those of the theoretical

upper bound of the hit rate of the shared cache. By using the proposed mecha-

nism, the cache works efficiently, which significantly reduces the memory access

latency.

This dissertation presents four proposals that solve the latency-related prob-

lems of modern vector processors, enabling the development of latency-tolerant

vector processors. These proposals are expected to enable modern vector proces-

sors to achieve high sustained performance on memory-intensive applications

by realizing tolerance to latency. As a result, these solutions to latency-related

problems will be valuable for architects designing vector processors in the fu-

ture.

As future work, it may be worthwhile to evaluate all the proposed methods

combined together in a single vector architecture. It would also be interesting

to assess the effectiveness of the proposed methods applied to vector scatter in-

structions that perform writes using indirect memory accesses and are often

used vector gather instructions together, while this dissertation primarily fo-

cused on vector gather instructions with regard to indirect memory accesses.

147

Bibliography

[1] J. L. Hennessy and D. A. Patterson, Computer Architecture, Fifth Edition:

A Quantitative Approach. San Francisco, CA, USA: Morgan Kaufmann

Publishers Inc., 5th ed., 2011.

[2] K. Komatsu, S. Momose, Y. Isobe, O. Watanabe, A. Musa, M. Yokokawa,

T. Aoyama, M. Sato, and H. Kobayashi, “Performance Evaluation of a Vec-

tor Supercomputer SX-Aurora TSUBASA,” in SC18: International Confer-

ence for High Performance Computing, Networking, Storage and Analysis,

pp. 685–696, 2018.

[3] R. Egawa, K. Komatsu, Y. Isobe, T. Kato, S. Fujimoto, H. Takizawa,

A. Musa, and H. Kobayashi, “Performance and Power Analysis of SX-ACE

Using HP-X Benchmark Programs,” in 2017 IEEE International Conference

on Cluster Computing (CLUSTER), pp. 693–700, 2017.

[4] “Intel 64 and IA-32 Architectures Optimization Reference Manual.”

[5] N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole, G. Gabrielli,

M. Horsnell, G. Magklis, A. Martinez, N. Premillieu, A. Reid, A. Rico, and

P. Walker, “The ARM Scalable Vector Extension,” IEEE Micro, vol. 37, no. 2,

pp. 26–39, 2017.

148

[6] D. A. Patterson, “Latency Lags Bandwith,” Commun. ACM, vol. 47,

p. 71–75, oct 2004.

[7] D. A. Patterson and J. L. Hennessy, Computer Organization and Design,

Fifth Edition: The Hardware/Software Interface. San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc., 5th ed., 2013.

[8] R. Egawa, S. Momose, K. Komatsu, Y. Isobe, A. Musa, H. Takizawa, and

H. Kobayashi, “Early evaluation of the SX-ACE processor,” in Interna-

tional Conference for High Performance Computing, Networking, Storage

and Analysis (SC14), 2014.

[9] A. Onodera, K. Komatsu, S. Fujimoto, Y. Isobe, M. Sato, and H. Kobayashi,

“Optimization of the himeno benchmark for SX-Aurora TSUBASA,” in

Benchmarking, Measuring, and Optimizing (F. Wolf and W. Gao, eds.),

(Cham), pp. 127–143, Springer International Publishing, 2021.

[10] K. Komatsu, A. Onodera, E. Focht, S. Fujimoto, Y. Isobe, S. Momose,

M. Sato, and H. Kobayashi, “Performance and Power Analysis of a Vec-

tor Computing System,” Supercomputing Frontiers and Innovations, vol. 8,

no. 2, 2021.

[11] I. V. Afanasyev, V. V. Voevodin, V. V. Voevodin, K. Komatsu, and

H. Kobayashi, “Analysis of Relationship Between SIMD-Processing Fea-

tures Used in NVIDIA GPUs and NEC SX-Aurora TSUBASA Vector Pro-

cessors,” in Parallel Computing Technologies (V. Malyshkin, ed.), (Cham),

pp. 125–139, Springer International Publishing, 2019.

[12] T. Soga, A. Musa, K. Okabe, K. Komatsu, R. Egawa, H. Takizawa,

H. Kobayashi, S. Takahashi, D. Sasaki, and K. Nakahashi, “Performance of

149

SOR methods on modern vector and scalar processors,” Computers & Flu-

ids, vol. 45, no. 1, pp. 215–221, 2011. 22nd International Conference on

Parallel Computational Fluid Dynamics (ParCFD 2010).

[13] R. Egawa, K. Komatsu, and H. Kobayashi, “Designing an HPC Refactor-

ing Catalog Toward the Exa-scale Computing Era,” in Sustained Simula-

tion Performance 2014 (M. M. Resch, W. Bez, E. Focht, H. Kobayashi, and

N. Patel, eds.), (Cham), pp. 91–98, Springer International Publishing, 2015.

[14] R. Egawa, K. Komatsu, and H. Takizawa, “Designing an open database of

system-aware code optimizations,” in 2017 Fifth International Symposium

on Computing and Networking (CANDAR), pp. 369–374, 2017.

[15] K. Asifuzzaman, M. Abuelala, M. Hassan, and F. J. Cazorla, “Demystifying

the Characteristics of High Bandwidth Memory for Real-Time Systems,”

in 2021 IEEE/ACM International Conference On Computer Aided Design

(ICCAD), pp. 1–9, 2021.

[16] Y. Yamada and S. Momose, “Vector engine processor of NEC’s brand-new

supercomputer SX-Aurora TSUBASA,” in Intenational symposium on High

Performance Chips (Hot Chips2018), 2018.

[17] S. Y. Hou, W. C. Chen, C. Hu, C. Chiu, K. C. Ting, T. S. Lin, W. H. Wei,

W. C. Chiou, V. J. C. Lin, V. C. Y. Chang, C. T. Wang, C. H. Wu, and D. Yu,

“Wafer-Level Integration of an Advanced Logic-Memory System Through

the Second-Generation CoWoS Technology,” IEEE Transactions on Electron

Devices, vol. 64, no. 10, pp. 4071–4077, 2017.

150

[18] R. Egawa, K. Komatsu, S. Momose, Y. Isobe, A. Musa, H. Takizawa, and

H. Kobayashi, “Potential of a Modern Vector Supercomputer for Practi-

cal Applications: Performance Evaluation of SX-ACE,” J. Supercomput.,

vol. 73, no. 9, pp. 3948–3976, 2017.

[19] T. Soga, A. Musa, Y. Shimomura, R. Egawa, K. Itakura, H. Takizawa,

K. Okabe, and H. Kobayashi, “Performance evaluation of nec sx-9 using

real science and engineering applications,” in Proceedings of the Conference

on High Performance Computing Networking, Storage and Analysis, pp. 1–

12, 2009.

[20] A. Musa, T. Abe, T. Kishitani, T. Inoue, M. Sato, K. Komatsu, Y. Murashima,

S. Koshimura, and H. Kobayashi, “Performance Evaluation of Tsunami In-

undation Simulation on SX-Aurora TSUBASA,” in Computational Science

– ICCS 2019 (J. M. F. Rodrigues, P. J. S. Cardoso, J. Monteiro, R. Lam,

V. V. Krzhizhanovskaya, M. H. Lees, J. J. Dongarra, and P. M. Sloot, eds.),

(Cham), pp. 363–376, Springer International Publishing, 2019.

[21] F. D. P. Michels, L. M. Schnorr, and P. O. A. Navaux, “Investigating Oil

and Gas CSEM Application on Vector Architectures,” in Computational

Science and Its Applications – ICCSA 2022 Workshops (O. Gervasi, B. Mur-

gante, S. Misra, A. M. A. C. Rocha, and C. Garau, eds.), (Cham), pp. 650–

667, Springer International Publishing, 2022.

[22] S. Yoshida, A. Endo, H. Kaneyasu, and S. Date, “First experience of ac-

celerating a field-induced chiral transition simulation using the sx-aurora

tsubasa,” Supercomputing Frontiers and Innovations, vol. 8, p. 43–58, Aug.

2021.

151

[23] L. Solis-Vasquez, E. Focht, and A. Koch, “Mapping irregular computations

for molecular docking to the sx-aurora tsubasa vector engine,” in 2021

IEEE/ACM 11th Workshop on Irregular Applications: Architectures and

Algorithms (IA3), pp. 1–10, 2021.

[24] I. V. Afanasyev, D. I. Lichmanov, V. Y. Rudyak, and V. V. Voevodin, “Effi-

cient implementation of liquid crystal simulation software on modern hpc

platforms,” Supercomputing Frontiers and Innovations, vol. 8, p. 104–125,

Oct. 2021.

[25] A. Ungethüm, L. Schmidt, J. Pietrzyk, D. Habich, and W. Lehner, “Mas-

tering the nec vector engine accelerator for analytical query processing,” in

2021 IEEE 37th International Conference on Data Engineering Workshops

(ICDEW), pp. 60–65, 2021.

[26] M. Kumagai, K. Komatsu, F. Takano, T. Araki, M. Sato, and H. Kobayashi,

“Combinatorial Clustering Based on an Externally-Defined One-Hot Con-

straint,” in 2020 Eighth International Symposium on Computing and Net-

working (CANDAR), pp. 59–68, 2020.

[27] M. Kumagai, K. Komatsu, M. Sato, and H. Kobayashi, “Ising-based com-

binatorial clustering using the kernel method,” in 2021 IEEE 14th Inter-

national Symposium on Embedded Multicore/Many-core Systems-on-Chip

(MCSoC), pp. 197–203, 2021.

[28] I. V. Afanasyev, V. V. Voevodin, K. Komatsu, and H. Kobayashi, “Developing

an Efficient Vector-Friendly Implementation of the Breadth-First Search

Algorithm for NEC SX-Aurora TSUBASA,” in Parallel Computational Tech-

nologies, (Cham), pp. 131–145, Springer International Publishing, 2020.

152

[29] I. V. Afanasyev and V. V. Voevodin, “Developing Efficient Implementa-

tions of Connected Component Algorithms for NEC SX-Aurora TSUBASA,”

Lobachevskii Journal of Mathematics, vol. 41, pp. 1417–1426, Aug 2020.

[30] I. Afanasyev, A. Antonov, D. Nikitenko, V. Voevodin, V. Voevodin, K. Ko-

matsu, O. Watanabe, A. Musa, and H. Kobayashi, “Developing efficient im-

plementations of Bellman-Ford and Forward-Backward graph algorithms

for NEC SX-ACE,” Supercomputing Frontiers and Innovations, vol. 5, no. 3,

pp. 65–69, 2018. Publisher Copyright: © The Authors 2018.

[31] K. Murakami, K. Komatsu, M. Sato, and H. Kobayashi, “A processor se-

lection method based on execution time estimation for machine learning

programs,” in 2021 IEEE International Parallel and Distributed Process-

ing Symposium Workshops (IPDPSW), pp. 779–788, 2021.

[32] S. Williams, A. Waterman, and D. Patterson, “Roofline: An Insightful

Visual Performance Model for Multicore Architectures,” Commun. ACM,

vol. 52, pp. 65–76, Apr. 2009.

[33] “A64FX Microarchitecture Manual v1.7.”

[34] J. Power, M. D. Hill, and D. A. Wood, “Supporting x86-64 address transla-

tion for 100s of GPU lanes,” in 2014 IEEE 20th International Symposium

on High Performance Computer Architecture (HPCA), pp. 568–578, 2014.

[35] S. Ainsworth and T. M. Jones, “Software Prefetching for Indirect Memory

Accesses: A Microarchitectural Perspective,” ACM Trans. Comput. Syst.,

vol. 36, pp. 8:1–8:34, June 2019.

153

[36] M. A. Al Farhan and D. E. Keyes, “Optimizations of Unstructured Aerody-

namics Computations for Many-core Architectures,” IEEE Transactions on

Parallel and Distributed Systems, vol. 29, pp. 2317–2332, Oct 2018.

[37] S. Ainsworth and T. M. Jones, “An event-triggered programmable

prefetcher for irregular workloads,” SIGPLAN Not., vol. 53, pp. 578–592,

Mar. 2018.

[38] J. Dundas and T. Mudge, “Improving Data Cache Performance by Pre-

Executing Instructions under a Cache Miss,” in Proceedings of the 11th In-

ternational Conference on Supercomputing, ICS ’97, (New York, NY, USA),

p. 68–75, Association for Computing Machinery, 1997.

[39] O. Mutlu, J. Stark, C. Wilkerson, and Y. Patt, “Runahead execution: an

alternative to very large instruction windows for out-of-order processors,”

in The Ninth International Symposium on High-Performance Computer Ar-

chitecture, 2003. HPCA-9 2003. Proceedings., pp. 129–140, 2003.

[40] M. Hashemi and Y. N. Patt, “Filtered runahead execution with a runahead

buffer,” in 2015 48th Annual IEEE/ACM International Symposium on Mi-

croarchitecture (MICRO), pp. 358–369, 2015.

[41] A. Naithani, J. Feliu, A. Adileh, and L. Eeckhout, “Precise Runahead Exe-

cution,” in 2020 IEEE International Symposium on High Performance Com-

puter Architecture (HPCA), pp. 397–410, 2020.

[42] T. Ramirez, A. Pajuelo, O. Santana, and M. Valero, “Runahead Threads to

improve SMT performance,” in 2008 IEEE 14th International Symposium

on High Performance Computer Architecture, pp. 149–158, 2008.

154

[43] S. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, and M. Upton, “Continual

flow pipelines: achieving resource-efficient latency tolerance,” IEEE Micro,

vol. 24, no. 6, pp. 62–73, 2004.

[44] A. Hilton and A. Roth, “BOLT: Energy-efficient Out-of-Order Latency-

Tolerant execution,” in HPCA - 16 2010 The Sixteenth International Sym-

posium on High-Performance Computer Architecture, pp. 1–12, 2010.

[45] A. Deshmukh and Y. N. Patt, “Criticality Driven Fetch,” in MICRO-54:

54th Annual IEEE/ACM International Symposium on Microarchitecture,

MICRO ’21, (New York, NY, USA), p. 380–391, Association for Computing

Machinery, 2021.

[46] K.-A. Tran, A. Jimborean, T. E. Carlson, K. Koukos, M. Själander, and

S. Kaxiras, “Swoop: Software-hardware co-design for non-speculative,

execute-ahead, in-order cores,” in Proceedings of the 39th ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI

2018, (New York, NY, USA), p. 328–343, Association for Computing Ma-

chinery, 2018.

[47] J. Vesely, A. Basu, M. Oskin, G. H. Loh, and A. Bhattacharjee, “Observa-

tions and opportunities in architecting shared virtual memory for hetero-

geneous systems,” in 2016 IEEE International Symposium on Performance

Analysis of Systems and Software (ISPASS), pp. 161–171, 2016.

[48] S. Puthoor and M. H. Lipasti, “Compiler assisted coalescing,” in Proceed-

ings of the 27th International Conference on Parallel Architectures and

Compilation Techniques, PACT ’18, (New York, NY, USA), Association for

Computing Machinery, 2018.

155

[49] M. Sato, Y. Ishikawa, H. Tomita, Y. Kodama, T. Odajima, M. Tsuji,

H. Yashiro, M. Aoki, N. Shida, I. Miyoshi, K. Hirai, A. Furuya, A. Asato,

K. Morita, and T. Shimizu, “Co-Design for A64FX Manycore Processor and

Fugaku,” in SC20: International Conference for High Performance Comput-

ing, Networking, Storage and Analysis, pp. 1–15, 2020.

[50] M. K. Qureshi, D. Thompson, and Y. N. Patt, “The V-Way cache: demand-

based associativity via global replacement,” in 32nd International Sympo-

sium on Computer Architecture (ISCA’05), pp. 544–555, 2005.

[51] D. Sanchez and C. Kozyrakis, “The ZCache: Decoupling Ways and Asso-

ciativity,” in 2010 43rd Annual IEEE/ACM International Symposium on

Microarchitecture, pp. 187–198, 2010.

[52] A. Seznec and F. Bodin, “Skewed-associative caches,” in PARLE ’93 Parallel

Architectures and Languages Europe (A. Bode, M. Reeve, and G. Wolf, eds.),

(Berlin, Heidelberg), pp. 305–316, Springer Berlin Heidelberg, 1993.

[53] A. Musa, Y. Sato, T. Soga, K. Okabe, R. Egawa, H. Takizawa, and

H. Kobayashi, “A Shared Cache for a Chip Multi Vector Processor,” in Pro-

ceedings of the 9th Workshop on MEmory Performance: DEaling with Ap-

plications, Systems and Architecture, MEDEA ’08, (New York, NY, USA),

pp. 24–29, ACM, 2008.

[54] R. Egawa, Y. Funaya, R. Nagaoka, A. Musa, H. Takizawa, and

H. Kobayashi, “Design and early evaluation of a 3-D die stacked chip multi-

vector processor,” in 2010 IEEE International 3D Systems Integration Con-

ference (3DIC), pp. 1–8, 2010.

156

[55] R. Egawa, Y. Funaya, R. Nagaoka, Y. Endo, A. Musa, H. Takizawa, and

H. Kobayashi, “Effects of 3-D stacked vector cache on energy consumption,”

in 2011 IEEE International 3D Systems Integration Conference (3DIC),

2011 IEEE International, pp. 1–6, 2012.

[56] X. Yu, C. J. Hughes, N. Satish, and S. Devadas, “IMP: Indirect Mem-

ory Prefetcher,” in Proceedings of the 48th International Symposium on

Microarchitecture, MICRO-48, (New York, NY, USA), pp. 178–190, ACM,

2015.

[57] Intel Corporation., “Intel ®64 and IA-32 Architectures Software Developer’
s Manual V2.”

[58] S. Momose, T. Hagiwara, Y. Isobe, and H. Takahara, “The Brand-New Vec-

tor Supercomputer, SX-ACE,” in Proceedings of the 29th International Con-

ference on Supercomputing - Volume 8488, ISC 2014, (New York, NY, USA),

pp. 199–214, Springer-Verlag New York, Inc., 2014.

[59] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,

J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,

M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The Gem5 Simulator,”

SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7, 2011.

[60] O. Mutlu, H. Kim, and Y. Patt, “Techniques for efficient processing in runa-

head execution engines,” in 32nd International Symposium on Computer

Architecture (ISCA’05), pp. 370–381, 2005.

[61] G. Sohi, “Instruction issue logic for high-performance, interruptible, multi-

ple functional unit, pipelined computers,” IEEE Transactions on Comput-

ers, vol. 39, no. 3, pp. 349–359, 1990.

157

[62] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,

J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,

M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The Gem5 Simulator,”

SIGARCH Comput. Archit. News, vol. 39, p. 1–7, Aug. 2011.

[63] L.-N. Pouchet, “PolyBench/C 3.2.”

[64] M. A. Abella-González, P. Carollo-Fernández, L.-N. Pouchet, F. Rastello,

and G. Rodrı́guez, “PolyBench/Python: Benchmarking Python Environ-

ments with Polyhedral Optimizations,” in Proceedings of the 30th ACM

SIGPLAN International Conference on Compiler Construction, CC 2021,

(New York, NY, USA), p. 59–70, Association for Computing Machinery,

2021.

[65] H. Sato, Y. Takagi, and K. Sawaya, “High Gain Antipodal Fermi Antenna

with Low Cross Polarization,” IEICE Transactions on Communications,

vol. E94.B, no. 8, pp. 2292–2297, 2011.

[66] T. Tsukahara, K. Iwamoto, and H. Kawamura, “Evolution of material line

in turbulent channel flow,” pp. 549–554, 01 2007.

[67] K. Ariyoshi, T. Matsuzawa, and A. Hasegawa, “The key frictional parame-

ters controlling spatial variations in the speed of postseismic-slip propaga-

tion on a subduction plate boundary,” Earth and Planetary Science Letters,

vol. 256, no. 1, pp. 136–146, 2007.

[68] M.Sato, T.Kobayashi, Z.Zeng, G.Fang, and X.Feng, “High resolution GPR

system for landmine detection,” Proceedings of Int. Conf. Requirements and

Technologies for the Detection, Removal and Neutralization of Landmine

and UXO, Brussels, Belgium, pp. 548–553, September 2003.

158

[69] Y. Sasao and S. Yamamoto, “Numerical Prediction of Unsteady Flows

Through Turbine Stator-Rotor Channels With Condensation,” vol. 1, 01

2005.

[70] Y. Katoh, T. Ono, and M. Iizima, “Numerical simulation of resonant scat-

tering of energetic electrons in the outer radiation belt,” Earth, Planets and

Space, vol. 57, no. 2, pp. 117–124, 2005.

[71] I. Afanasyev, V. Voevodin, K. Komatsu, and H. Kobayashi, “VGL: a high-

performance graph processing framework for the NEC SX-Aurora TSUB-

ASA vector architecture,” Journal of Supercomputing, 2021.

[72] I. Afanasyev, V. Voevodin, V. Voevodin, K. Komatsu, and H. Kobayashi, “De-

veloping Efficient Implementations of Shortest Paths and Page Rank Algo-

rithms for NEC SX-Aurora TSUBASA Architecture,” Lobachevskii Journal

of Mathematics, vol. 40, pp. 1753–1762, Nov. 2019.

[73] V. Karakostas, J. Gandhi, A. Cristal, M. D. Hill, K. S. McKinley, M. Ne-

mirovsky, M. M. Swift, and O. S. Unsal, “Energy-efficient address transla-

tion,” in 2016 IEEE International Symposium on High Performance Com-

puter Architecture (HPCA), pp. 631–643, 2016.

[74] “SX-Aurora TSUBASA Architecture Guide Revision 1.1.”

[75] K. Komatsu, A. Onodera, E. Focht, S. Fujimoto, Y. Isobe, S. Momose,

M. Sato, and H. Kobayashi, “Performance and Power Analysis of a Vec-

tor Computing System,” Supercomputing Frontiers and Innovations, vol. 8,

p. 75–94, Aug. 2021.

159

[76] A. Seznec, “A Case for Two-way Skewed-associative Caches,” in Proceedings

of the 20th Annual International Symposium on Computer Architecture,

ISCA ’93, (New York, NY, USA), pp. 169–178, ACM, 1993.

[77] F. Bodin and A. Seznec, “Skewed associativity improves program perfor-

mance and enhances predictability,” IEEE Transactions on Computers,

vol. 46, no. 5, pp. 530–544, 1997.

[78] A. Seznec, “A New Case for Skewed-Associativity,” Research Report RR-

3208, INRIA, 1997.

[79] M. Kharbutli, Y. Solihin, and J. Lee, “Eliminating Conflict Misses Using

Prime Number-Based Cache Indexing,” IEEE Trans. Comput., vol. 54, no. 5,

pp. 573–586, 2005.

[80] A. Jaleel, K. B. Theobald, S. C. Steely, Jr., and J. Emer, “High Perfor-

mance Cache Replacement Using Re-reference Interval Prediction (RRIP),”

SIGARCH Comput. Archit. News, vol. 38, no. 3, pp. 60–71, 2010.

[81] D. Kroft, “Lockup-free Instruction Fetch/Prefetch Cache Organization,” in

Proceedings of the 8th Annual Symposium on Computer Architecture, ISCA

’81, (Los Alamitos, CA, USA), pp. 81–87, IEEE Computer Society Press,

1981.

160

Acknowledgements

First of all, I would like to express my deepest gratitude to my supervisor, Pro-

fessor Hiroaki Kobayashi, for his invaluable guidance and support throughout

the course of this project. His expertise and professionalism have been instru-

mental in helping me to complete this dissertation.

I would like to thank Professor Takafumi Aoki for his thoughtful review of

this dissertation and helpful comments. I would also like to thank Associate

Professor Kazuhiko Komatsu and Associate Professor Masayuki Sato, for their

valuable feedback and encouragement throughout this process.

I am grateful to my lab members for their camaraderie and assistance in the

lab. Their insights and hard work have contributed greatly to the success of this

project. I am also grateful to my family and friends for their love and support,

and for believing in me even when I had doubts.

Finally, I would like to thank all of the participants who generously gave

their time and energy to participate in this study. Your contribution is greatly

appreciated.

Thank you to all who have supported me to complete this dissertation.

161

	Introduction
	Introduction
	Objective of the Dissertation
	Organization of the Dissertation

	Importance of latency-tolerance for vector processor architectures
	Introduction
	Modern vector processors and their requirements
	Latency problems of vector processor
	Latency of preceding dependent instructions
	Latency of vector instruction stalling
	Latency of address translation
	Latency of memory access

	Latency-tolerant vector processor architectures
	Related work
	Studies of indirect memory accesses
	Studies of instruction stalling
	Studies of address translation
	Studies of vector cache

	Conclusions

	Indirect memory access prefetcher for vector gather instructions
	Introduction
	Motivation
	Indirect memory access prefetcher
	Vector gather instruction

	Vector gather prefetcher
	Stream list vector prefetcher
	Indirect vector prefetcher

	Evaluations
	Configurations of the vector processor
	Benchmark kernels
	Simulator
	Performance evaluation
	Parameter study
	Effect of the number of cache blocks

	Conclusions

	Criticality-aware out-of-order mechanism for vector instructions
	Introduction
	Motivation
	Runahead execution
	Problems to apply precise runahead execution for vector processors

	Criticality-aware out-of-order vector processor
	Challenges
	Consistency of the committing order
	Consistency of the register renaming order

	Mechanism overview
	Decoded instruction queue (DIQ)
	Stalling instruction cache (SIC)
	Pending commit queue (PCQ)
	Critical register aliasing table (CRAT)

	Behavior of criticality-aware vector processing
	Recognition of the stalling instruction chain in the normal mode
	Enter the critical mode
	Exit the critical mode
	Pipeline behaviors in the critical mode
	Contextualization of early-dispatched instruction in the normal mode

	Memory disambiguation

	Evaluation
	Experimental setup
	Applications
	Assumptions
	Area overheads
	Performance
	PolyBench case
	Practical application kernels
	Vector Graph Library

	Analysis of criticality-aware executed instructions
	Architectural sensitivity study

	Conclusions

	Page-address coalescing method of vector gather instructions
	Introduction
	Motivation
	Vector Gather Instruction
	Vector Gather Instruction with Virtual Memory

	Page-Address Coalescing for Vector Gather Instruction
	Idea to use existing vector arithmetic units for page-address coalescing
	Procedure of page-address coalescing
	Implementation
	Requirements for vector arithmetic unit
	Trade-off of the proposal

	Evaluations
	Experimental setup
	Applications
	Coalescing trial and performance
	Discussion on performance improvement
	TLB access reduction

	Conclusions

	Skewed multi-banked cache for many-core vector processors
	Introduction
	Motivation
	Many-core Vector Processors with Multi-banked Shared Cache
	Conflict Misses on The Many-core Vector Processor
	3D 7-point Stencil Calculation
	Stencil Calculation with A Shared Cache

	Preliminary Evaluation

	Skewed Multi-banked Cache for Many-core Vector Processors
	Hashing Functions
	XOR-based Hashing Function
	Odd-multiplier Displacement Hashing Function

	Replacement Policies
	Not Recently Used Not Recently Written
	Static Re-Reference Interval Prediction

	Evaluation
	Experimental Environment
	Evaluation Results and Discussion
	Cache Hit Rate
	Performance

	Conclusions

	Conclusions
	Bibliography
	Acknowledgements

