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Abstract

Structure-from-motion (SfM) and visual simultaneous localization and mapping (SLAM),
which seek to address the issues of localization and 3D reconstruction, have been utilized
in real-world applications for an extended period. These techniques play a vital role in
numerous applications, including indoor sweeping machines and mobile robots, unmanned
aerial vehicles (UAVs), self-driving cars, virtual reality (VR), and augmented reality (AR).
For instance, robots utilize these methods to determine their position in an unfamiliar envi-
ronment and generate a map. In recent years, with the rapid advancement of deep learning
and computer vision, new approaches based on deep neural networks (DNNs) have been
developed for SfM and visual SLAM, yielding tremendous success.

Although visual simultaneous localization and mapping (SLAM) has achieved a cer-
tain level of success, numerous challenges remain. Specifically, the expanding range of
applications requires reliable operation indoors and outdoors, regardless of weather, illu-
mination, seasonal changes, or extreme environments such as low light conditions at night.
The key to addressing these issues lies in the development of robust visual odometry (VO)
techniques that can function in these challenging situations, such as VO utilizing a robust
image-matching method. On the other hand, advances in image sensor technology have en-
abled the recording of incoming light with over eight bits (e.g., 14 bits). However, standard
RAW image processing on many cameras cannot fully exploit the information contained in
all bits of RAW signals. This limitation arises due to the need for adaptability in diverse
scenarios with varying lighting conditions and the requirement to reduce the number of
bits in order to compress image file size. Previous studies have demonstrated that the use
of RAW images can yield significantly better results than RGB in image processing tasks
such as image denoising and enhancement. With the advancement of hardware, the direct
utilization of RAW images in downstream tasks is becoming increasingly promising.

In the first part of this work, we are interested in fully utilizing such high-precision
information to match extremely low-light scene images that conventional methods cannot
handle. For extremely low-light scenes, even if some of their brightness information is
present in the low bits of RAW format images, standard image processing pipelines for
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cameras fail to properly utilize it. As was recently demonstrated by Chen et al., convolu-
tional neural networks (CNNs) can learn to produce images with a natural appearance from
such RAW format images. To investigate the feasibility and efficacy of utilizing informa-
tion stored in RAW format images for image matching, we have created a new dataset called
MID (matching in the dark). Using this dataset, we experimentally evaluated combinations
of eight image-enhancing methods and eleven image-matching methods comprising classi-
cal/neural local descriptors and classical/neural initial point-matching methods. The results
show the advantage of using RAW format images and the strengths and weaknesses of the
aforementioned component methods. They also suggest that there is potential for further
research in this area.

In the second part of this work, we investigate the potential of utilizing the information
stored in RAW images of low-light scenes to improve performance for downstream tasks
related to 3D reconstruction. We observe that standard image enhancers are designed to
produce images that appear the most natural, which may not necessarily be the best im-
ages for downstream tasks. To explore the potential of RAW images, we introduce a novel
dataset comprising multi-view RAW images of extremely low-light scenes along with cor-
responding long-exposure versions and ground-truth depth. To the best of our knowledge,
this is the first dataset created for 3D reconstruction that includes low-light RAW images.
Existing datasets for image matching do not contain dark RAW format images of low-light
scenes, whereas those that do include RAW format images do not meet the requirements
for training image-matching models, such as a lack of relevant images, intrinsic/extrinsic
parameters, and ground truth scene depths. In addition, we propose a novel image en-
hancer called SuperISP that enhances low-light RAW images to produce favorable inputs
for downstream tasks. We further evaluate our method on two typical downstream tasks,
namely image matching and monocular depth estimation, and demonstrate the advantage
of SuperISP compared to other image enhancement methods.

Finally, in the third part of this work, we focus on the flexible use of image-matching
models in a related field, namely visual localization. Advanced visual localization ap-
proaches address two distinct problems: image retrieval and six degree-of-freedom (DoF)
camera pose estimation. Given a query image of the current view, these approaches first
identify relevant candidates by performing image retrieval in a database, then perform local
feature matching between the query image and relevant candidates to establish point cor-
respondences while imposing the epipolar constraint and estimating the six DoF camera
pose of the query image. Since these two problems can be conflicting at the feature level,
previous studies have attempted to reconcile them. We propose a method that satisfies all
requirements by addressing the feature-level conflicts for improved visual localization. The
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HF-Net proposed by Sarlin et al. integrates two models for visual localization using model
distillation. However, distillation can harm localization accuracy, particularly in challeng-
ing situations such as night-time scenes. Experimental results show the effectiveness of our
method compared to existing methods.
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Chapter 1

Introduction

This chapter gives an introduction about the problem we will discuss throughout this

dissertation. We introduce an overview of background to illustrate the territory of the prob-

lem in Sec. 1.1. To encourage more understanding, we include the preliminary knowledge

related to our study in Sec. 1.2. Lastly in this chapter, the outline of each individual chapter

is described in Sec. 1.3.

1.1 Background

1.1.1 Image Matching

Matching two or more images of a scene is at the core of fundamental computer vision

problems, including image retrieval [6, 8, 9], 3D reconstruction [10–13], visual localiza-

tion [14–19], and SLAM [20–22]. Despite decades of research, image matching remains

unsolved in the general, wide-baseline scenario. Image matching is a challenging problem

with many factors that need to be taken into account, e.g., viewpoint, illumination, occlu-

sions, and camera properties. The main object of image-matching is to identify correspond-

ing points in two or more images. Give images of the same scene, features of detection and

description are extracted from each image, establish initial matching of the corresponding

points between the images, then obtain final matching results while imposing the epipo-

lar constraint on them and removing outliers. Finally, these determined correspondences

are used for estimating geometric transformations between images, such as homography

estimation and 6 DoF (Degree-of-Freedom) camera pose estimation. In short, the stan-
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dard approach of image matching encapsulates two steps, i.e., image feature detection and

description and feature matching. There are many classical methods that do not rely on

learning data. As with other computer vision problems, deep neural networks (DNN) have

been applied to each step in recent years; see Sec. 1.2.

Image Feature Detection and Description This step’s algorithm typically follows a

detect-then-describe approach, which starts by extracting low-level features from the im-

age, such as edges, corners, and blobs, by a detector, denoted as keypoints or interest points

commonly. Then, a descriptor provides a compact representation for each patch around the

keypoints. It has therefore been traditionally approached with sparse methods with local

features, such as SIFT [8], SURF [23], and ORB [24], .etc. The local features provided by

this step are typically expected for providing robustness or invariance against effects such

as scale, rotation, or viewpoint changes. Due to requirements to improve such problems,

recent efforts have moved towards holistic, learnable end-to-end solutions [2, 25–27].

Feature Matching The purpose of feature matching is to establish corresponding points

between images. A typical approach is to perform the NN (Nearest Neighbor) or FLANN

(Fast Library for Approximate Nearest Neighbors) [28] search in the descriptor’s space for

obtaining initial correspondences across images, with an optional ratio-test step for filtering

out unreliable matches [8], and RANSAC for outlier removal. Morden’s approaches for

feature matching and robust estimation tend to be learned by DNNs [29, 30]. Recently,

transformers have been applied to learn robust matchers and led to state-of-the-art results,

e.g. SuperGlue [3] and LoFTR [31].

To meet the needs of practical applications in the real world, advanced image-matching

methods are required to cope with kinds of challenging conditions, such as appearance

changes, illumination changes, and noise. Recent studies [2, 26, 27] show significant ad-

vantages of learning-based methods in dealing with this problem. Figure 1.1 shows an

example of a comparison between typical traditional and learning-based image-matching

methods under noise conditions.
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(a)

(b)

(c)

Figure 1.1: Comparison between image-matching methods; traditional: (a) RootSIFT [1];
and learning-based: (b) SuperPoint [2] and (c) SuperPoint+SuperGlue [3]. Point corre-
spondences judged as inliers are shown in green lines.
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1.1.2 Image Enhancement

Image enhancement technology is a commonly used way in digital image processing,

which can improve image quality, highlight the useful information in the image according

to people’s actual needs, and suppress the redundant information in the image. So it has

applications in many computer vision fields, which aim to provide high-quality images.

Image enhancement methods are expected to cope with complex illumination conditions,

external noises, and environmental disturbances such as ambient pressure and temperature

fluctuations. Numerous image enhancement methods have been proposed over the last

decades. Besides basic image processing such as histogram equalization, there are many

methods based on different assumptions and physics-based models, etc., such as global

analysis and processing based on the inverse dark channel prior [32,33], the wavelet trans-

form [34], the Retinex model [35], and illumination map estimation [36]. Recently, deep

learning-based methods have dominated the image enhancement community [37–44].

In addition, the advancement of image sensors allows them to record incoming light

with more than eight bits (e.g., 14 bits), and the unprocessed data from the camera is first

stored in a RAW image. The standard approach to obtaining RGB images is to convert

RAW images to RGB vair an Image Signal Processor (ISP). Although many optimization

processes or enhancement methods are included in camera ISPs, this transformation pro-

cess irreversibly converts RAW images with high-precision information into RGB images

with lower-bit space and causes information loss. As a result, RGB images do not keep

the complete information in RAW images, especially the information existing in the lower

bits. This limitation arguably comes from the conflict between versatility against various

lighting conditions and reducing the number of bits. To deal with more severely underex-

posed images, recent studies applied proposed learning-based methods that directly convert

a low-light RAW image to a good-quality RGB image [5, 45, 46]. These methods can han-

dle more severe image noise and color distortion emerging in underexposed images than

the previous methods. Figure 1.2 shows the illustration of the RAW-format image and a

comparison between RAW and RGB. Figure 1.3 shows an example of the output of RAW

image-based enhancer, i.e., SID [5].
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Channels Bit Data Size Color Gradation

RGB 3 8 big 256

RAW 1 14 small 16348

Incoming light

Filter layer

Sensor array

Resulting pattern

(a) (b)

(c)

Figure 1.2: (a) The Bayer arrangement of color filters on the pixel array of an image sensor;
(b) Profile/cross-section of the sensor; (c) Comparison between RAW and RGB. (Image
source: https://en.wikipedia.org/wiki/Bayer_filter)

(a) Camera output with ISO 8,000 (b) Camera output with ISO 409,600 (c) Result of SID from RAW data of (a)

Figure 1.3: An example of extreme low-light imaging with SID. Dark indoor environment.
The illuminance at the camera is < 0.1 lux. The Sony α7S II sensor is exposed for 1/30
second. (a) Image produced by the camera with ISO 8,000. (b) Image produced by the
camera with ISO 409,600. The image suffers from noise and color bias. (c) The result of
SID applied to the raw sensor data from (a).
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1.1.3 Visual Localization

Visual localization is the problem of estimating the 6 Degree-of-Freedom (DoF) camera

pose from which a given image was taken relative to a reference scene representation. Ro-

bust and accurate visual localization is a fundamental capability for numerous applications,

such as autonomous driving, mobile robotics, or augmented reality. It remains, however,

a challenging task, particularly for large-scale environments and in presence of significant

appearance changes. The approaches to visual localization can be summarized as below:

Visual localization using 3D maps. Most existing approaches to visual localization mostly

rely on estimating correspondences between 2D keypoints in the query and 3D points in

a sparse model using local descriptors. The map is usually composed of a 3D point cloud

constructed via Structure-from-Motion (SfM) where each 3D point is associated with one

or more local feature descriptors. The query pose is then obtained by feature matching

and solving a Perspective-n-Point problem (PnP). However, the direct matching methods

are either robust but intractable on mobile [47–49], or optimized for efficiency but frag-

ile [50]. In both cases, the robustness of classical localization methods is limited by the

poor invariance of hand-crafted local features [51, 52].

Image-retrieval-based localization. Visual localization in large-scale urban environments

is often an image retrieval problem. The location of a given query image is predicted by

transferring the geotag of the most similar image retrieved from a geotagged database [6,

53–58]. This approach scales to entire cities thanks to compact image descriptors and effi-

cient indexing techniques [59–65] and can be further improved by spatial re-ranking [66],

informative feature selection [60, 67] or feature weighting [56, 58, 68, 69]. Most of the

above methods are based on image representations using sparsely sampled local invariant

features. While these representations have been very successful, outdoor image-based lo-

calization has recently also been approached using densely sampled local descriptors [57]

or (densely extracted) descriptors based on convolutional neural networks [6, 55, 70, 71].

However, all the above methods are not competitive in terms of accuracy because they

output only an approximate location of the query, not an exact 6-DoF pose.
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Visual localization using a hierarchical approach. Tackling the visual localization prob-

lem in a hierarchical manner encapsulates the advantages of both approaches [18], which

can achieve efficient and accurate visual localization results even on large-scale databases.

Prior retrieval allows feature matching to be restricted to a reasonable range rather than

globally. It firstly saves computational resources and makes large-scale visual localization

on mobile possible. Secondly, limiting feature matching to relevant frames can reduce the

number of outliers of feature matching, thus increasing the probability of successful lo-

calization. Sarlin et al. distillate the NetVLAD network (the teacher) into a smaller one

for prior retrieval. In the part of feature matching, they used hand-crafted descriptors [18].

Recent features emerging from convolutional neural networks (CNN) exhibit unrivaled ro-

bustness at low computing costs [2, 72, 73]. Taira et al. applied learning-based features

to camera pose estimation of the visual localization problem, but in a dense, expensive

manner [17]. Recently, HF-Net integrated NetVLAD and a learned sparse descriptor [19]

by model distillation that simultaneously predicts keypoints as well as global and local

descriptors for accurate 6-DoF localization.

1.2 Preliminaries

To facilitate understanding, we provide an overview of the relevant background knowl-

edge in this section.

1.2.1 Epipolar Geometry

Epipolar Constraints For example, epipolar constraints of a pair of matched feature

points from two images are illustrated in Figure 1.4. If there are several pairs of such

matching points, the camera motion between the two frames can be recovered through the

correspondence between these two-dimensional image points.

As shown in Figure 1.4, our goal is to find the motion between two frames, i.e., I1,

I2. Define the motion from the first frame to the second frame as R, t, and the centers

of the two cameras as O1, O2. Now, consider that there is a feature point p1 in I1, which

corresponds to the feature point p2 in I2, obtained through feature matching. If the matching

is correct, it means that they are indeed the projection of the same point. Now we need some
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Figure 1.4: Example of epipolar constraints.

terms to describe the geometric relationship between them. First, the line
−−→
O1p1 and the line

−−→
O2p2 will intersect at the point P in the 3D space. The three points O1, O2, and P can

determine a plane, and it is called the epipolar plane. The intersection of the line of O1O2

and the image plane I1, I2 is e1, e2, respectively. The e1, e2 is called epipoles, and O1O2 is

called the baseline. We call the intersecting line l1, l2 between the polar plane and the two

image planes I1, I2 as the epipolar line.

From the first frame, the ray
−−→
O1p1 represents the possible spatial locations where a pixel

may appear since all points on the ray will be projected to the same pixel. Meanwhile, sup-

pose we don’t know the location of P . When we look at the second image, the connection
−−→e2p2 (i.e., the epipolar line in the second image) is the possible projected positions of the

point P , as well as the projection of the ray
−−→
O1p1 in the second image. Now, since we

have determined the pixel location of p2 through feature matching, we can infer the spatial

location of P and the camera movement, as long as the feature matching is correct. If there

is no feature matching, we can’t determine where the p2 is on the epipolar line. At that

time, we must search on the epipolar line l2 to obtain the correct match.

Now, let’s look at the geometric relationship algebraically. Define the spatial position

of P in the first frame to be:

P = [X, Y, Z]T (1.1)

Once camera intrinsics are known, we can obtain the pixel positions of the two pixels p1,

p2 as bellow:

s1p1 = KP, s2p2 = K(RP+ t) (1.2)
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where K is the camera intrinsic matrix, and R, t are the camera motions between two

frames. Specifically, they are R21 and t21, i.e., transformation from the first frame to the

second. We can also write them in Lie-algebra form.

Sometimes, we use homogeneous coordinates to represent pixels. When using homo-

geneous coordinates, a vector will be equal to itself multiplied by any non-zero constant.

This is usually used to express a projection relationship. e.g., s1p1 and p1 form a projec-

tion relationship, and they are equal in the sense of homogeneous coordinates. We call this

equal up to a scale, denoted as:

sp ≃ p (1.3)

Then, the relationship between two projections can be written as:

p1 ≃ KP, p2 ≃ K(RP+ t) (1.4)

Now, define:

x1 = K−1p1, x2 = K−1p2 (1.5)

Here, x1, x2 are the coordinates on the normalized plane of two pixels. Substituting to the

above equation, we get:

x2 ≃ Rx1 + t (1.6)

Left multiply both sides by t∧ . Recalling the definition of ∧, this is equivalent to the outer

product of both sides with t:

t∧x2 ≃ t∧Rx1 (1.7)

Then, left multiply xT
2 on both sides:

xT
2 t

∧x2 ≃ xT
2 t

∧Rx1 (1.8)

On the left side, t∧x2 is a vector orthogonal to both t and x2. So its inner product with x2

will get 0. Since the left side of the equation is strictly zero, it is also zero after multiplying

by any non-zero constant, so we can turn ≃ back to the usual equal sign. Therefore, we

have a concise equation:

xT
2 t

∧Rx1 = 0 (1.9)
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Substituting the p1, p2 again, we have:

pT
2K

−T t∧RK−1p1 = 0 (1.10)

Both equations are called epipolar constraint, which is famous for its conciseness. Geomet-

rically, it means O1, P , O2 are coplanar. The epipolar constraint encodes both translation

and rotation. We define two matrices: Fundamental matrix F and essential Matrix E from

this equation:

E = t∧R, F = K−TEK−1, xT
2Ex1 = pT

2Fp1 = 0 (1.11)

The epipolar constraint gives the spatial relationship of two matching points concisely.

Therefore, the camera pose estimation problem can be summarized as the following two

steps:

1. Find E or F based on the pixel positions of the matched points.

2. Find R, t based on E or F.

Since E and F only differ from the camera internal parameters, and the internal parameters

are assumed to be known in SLAM problem, so the simpler form E is often used in practice.

Let’s take E as an example to introduce how to solve the above two problems.

Essential Matrix By definition, the essential matrix E = t∧R. It is a matrix of 3 × 3

with 9 unknown variables. From the structure of E, there are the following points worth

noting:

• The essential matrix is defined by the epipolar constraint. Since the epipolar con-

straint is the constraint of an equal-to-zero equation, after multiplying E by any non-

zero constant, the constraint is still satisfied. We call this E’s equivalence under

different scales.

• According to E = t∧R, it can be proved that the singular value of the essential matrix

E must be in the form of [σ, σ, 0]T . This is called internal properties of essential

matrix [74].
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• On the other hand, since translation and rotation each have 3 degrees of freedom,

t∧R has 6 degrees of freedom. But due to the equivalence of scales, E actually has

5 degrees of freedom.

The fact that E has 5 degrees of freedom indicates that we can use at least 5 pairs of points

to solve E. However, the internal property of E is nonlinear, which could cause trouble in

the estimation. Therefore, it is also possible to consider only its scale equivalence and use

8 pairs of matched points to estimate E. This is the classic eight-point-algorithm [75, 76].

The eight-point method only uses the linear properties of E, so it can be solved under the

framework of linear algebra. Let’s take a look at how the eight-point method works.

Consider a pair of matched points, their normalized coordinates are x1 = [u1, v1, 1]
T ,

x2 = [u2, v2, 1]
T . According to the polar constraints, we have:

(u2, v2, 1)


e1 e2 e3

e4 e5 e6

e7 e8 e9




u1

v1

1

 = 0 (1.12)

We rewrite the matrix E in the vector form:

e = [e1, e2, e3, e4, e5, e6, e7, e8, e9]
T (1.13)

Then the epipolar constraint can be written in a linear form related to e:

[u2u1, u2v1, u2, v2v1, v2u1, v1, 1] · e = 0 (1.14)

Analogously, we stack all the points into one equation and obtain a linear equation system
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(where ui, vi represent the i-th feature point):



u12u
1
1 u12v

1
1 u12 v12u

1
1 v12v

1
1 v12 u11 v11 1

u22u
2
1 u22v

2
1 u22 v22u

2
1 v22v

2
1 v22 u21 v21 1

...
...

...
...

...
...

...
...

...

u82u
8
1 u82v

8
1 u82 v82u

8
1 v82v

8
1 v82 u81 v81 1





e1

e2

e3

e4

e5

e6

e7

e8

e9



= 0 (1.15)

These eight equations form a linear equation system. Its coefficient matrix is composed

of 2D feature point positions, and its size is 8 × 9. e is located in the null space of this

matrix. If the coefficient matrix is of full rank (i.e., 8), then its null space dimension is 1,

meaning that e forms a line. This is consistent with the scale equivalence of e. If the matrix

composed of 8 pairs of matching points meets the condition of rank 8, then the elements of

E can be solved uniquely by the above equation.

The next question is how to recover the movement of the camera R, t according to the

estimated essential matrix E. This process is obtained by singular value decomposition

(SVD). Let the SVD decomposition of E be:

E = UΣVT (1.16)

where U, V are orthogonal matrices, and Σ is the singular value matrice. According to the

internal properties of E, we know that Σ = diag(σ, σ, 0) . In SVD decomposition, for any
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(a) (b) (c) (d)

Figure 1.5: We get four solutions when decomposing the essential matrix.

E, there are two possible t, R:

t∧1 = URZ(
π

2
)ΣUT , R1 = URT

Z(
π

2
)VT

t∧2 = URZ(−
π

2
)ΣUT , R2 = URT

Z(−
π

2
)VT

(1.17)

Among them, RZ(
π
2
) represents the rotation matrix obtained by rotating 90◦ along the Z

axis. Since E is equivalent to E, taking the minus sign for any t will also get the same

result. Therefore, when decomposing from E to t, R, there are a total of four possible

solutions.

Figure 1.5 shows the four solutions obtained by decomposing the essential matrix. We

know the projection (red) of the space point on the camera (blue line) and want to solve the

camera’s motion. In the case of keeping the red point unchanged, four possible situations

can be drawn. Fortunately, only in the first solution, P has positive depths in both cameras.

Therefore, we can substitute any points into the four solutions and check the depth’s sign

to determine which solution is correct.

If we use the internal properties of E, then it has only five degrees of freedom. So at

least five pairs of matched points can be used to solve the camera motion [77,78]. However,

this approach is more complicated. Since there are usually dozens or even hundreds of

matching points for engineering realization, it is often not helpful to reduce from 8 pairs to

5 pairs. To keep it simple, we only introduce the basic eight-point method here. There is one

remaining problem: E solved by linear equations may not satisfy the internal properties,

i.e., its singular value is not necessarily in the form of σ, σ, 0. At this time, we will
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deliberately adjust the Σ matrix to look like the above. The usual procedure is to perform

SVD decomposition on the E obtained by the eight-point method. Assume the singular

value matrix is Σ = diag(σ, σ, 0), and σ1 ≥ σ2 ≥ σ3. We may take:

E = Udiag

(
σ1 + σ2

2
,
σ1 + σ2

2
, 0

)
VT (1.18)

This is equivalent to projecting the calculated essential matrix onto the manifold where E

is located. A simpler approach is to take the singular value matrix as diag(1, 1, 0), due to

E’s scale equivalence, so it is also reasonable.

1.2.2 3D – 2D: Perspective-n-Point

PnP (Perspective-n-Point) is a method to solve 3D to 2D motion estimation. It describes

how to estimate the camera’s pose when the n 3D space points and their projection positions

are known. As mentioned earlier, the 2D-2D epipolar geometry method requires eight or

more point pairs (take the eight-point method as an example), and there have problems

with initialization, pure rotation, and scale. However, if the 3D position of one of the

feature points in the two images is known, then we need at least three pairs (and at least

one additional point to verify the result) to estimate the camera motion. The 3D position

of the feature point can be determined by triangulation or the depth map of an RGB-D

camera. Therefore, in binocular or RGB-D visual odometry, we can directly use PnP to

estimate camera motion. While in the monocular case, initialization must be conducted

before using PnP. The 3D-2D method does not require epipolar constraints and can obtain

better motion estimation in a few matching points. It is the most important pose estimation

method.

There are many ways to solve PnP problems, for example, P3P [79], direct linear trans-

formation (DLT), EPnP (Efficient PnP) [80], UPnP [81], etc. In addition, non-linear opti-

mization can be used to construct a least-square problem and iteratively solve it, which is

commonly called bundle adjustment.

Direct Linear Transformation Consider such a problem: we know the 3D positions of

a point set and their projections in the camera, now we want to find the camera’s pose. This

problem can be used to solve the camera pose when a given map and image are given. If the
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3D point is regarded as a point in another camera coordinate system, it can also solve the

two cameras’ relative motion problem. We will start with simple questions. Consider a 3D

spatial point P , its homogeneous coordinates are P = (X, Y, Z, 1)T . In the image I1, it is

projected to the feature point x1 = (u1, v1, 1)
T (expressed as the normalized homogeneous

coordinates). At this time, the pose of the camera R, t is unknown. We define the 3 × 4

augmented matrix [R|t], encoding rotation and translation information. We will write its

expanded form as follows:

s


u1

v1

1

 = [R|t]



X

Y

Z

1


, [R|t] =


t1 t2 t3 t4

t5 t6 t7 t8

t9 t10 t11 t12

 (1.19)

Eliminate s with the last row to get two constraints:

u1 =
t1X + t2Y + t3Z + t4
t9X + t10Y + t11Z + t12

, v1 =
t5X + t6Y + t7Z + t8
t9X + t10Y + t11Z + t12

(1.20)

To simplify the representation, define T as a row vector:

t1 = (t1, t2, t3, t4)
T , t2 = (t5, t6, t7, t8)

T , t3 = (t9, t10, t11, t12)
T (1.21)

Now we have:

tT1P− tT3Pu1 = 0, tT2P− tT3Pv1 = 0 (1.22)

Please note that t is the variable to be determined. As you can see, each feature point

provides two linear constraints on t. Assuming there are a total of N feature points, the
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following linear equations can be constructed:



PT
1 0 −u1PT

1

0 PT
1 −v1PT

1

...
...

...

PT
N 0 −uNPT

N

0 PT
N −vNPT

N




t1

t2

t3

 = 0 (1.23)

Since t has a total dimension of 12, the linear solution of the matrix T can be achieved by

at least six pairs of matching points. This method is called Direct Linear Transform (DLT).

When the matching points are greater than 6 pairs, methods such as SVD can also be used

to find the least-square solution of the overdetermined equation.

In the DLT solution, we directly regard the T matrix as 12 unknowns, ignoring the

correlation between them. Because the rotation matrix R ∈ SO(3), the solution obtained

by DLT does not necessarily satisfy the SE(3) constraint. It is just a general matrix. The

translation vector is easier to handle. It belongs to the vector space. For the rotation matrix

R, we must look for the best rotation matrix to approximate the matrix block of 3 × 3 on

the left of T estimated by DLT. This can be done by QR decomposition [82, 83], or it can

be calculated like [84, 85]:

R← (RRT )−
1
2R (1.24)

This can be seen as reprojecting the result from the matrix space onto the SE(3) manifold

and converting it into two parts: rotation and translation.

What needs to be mentioned is that our x1 here uses normalized plane coordinates and

neglects the influence of the intrinsic matrix K. This is because K is usually assumed to be

known. Even if the intrinsic parameters are unknown, PnP can still be used to estimate the

three quantities K, R, t. However, due to the increase in the number of unknown variables,

the result’s quantity may be worse.

P3P P3P is another way to solve PnP. It only uses 3 pairs of matching points and requires

less data. P3P requires establishing geometric relationships of the given 3 points. Its input
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Figure 1.6: The P3P problem.

data is 3 pairs of 3D-2D matching points. Define 3D points as A, B, C, 2D points as a,

b, c, where the point represented by the lowercase letter is the projection of the point on

the camera image plane represented by the corresponding uppercase letter, as shown in

Figure 1.6. Also, P3P needs a pair of verification points to select the correct one from the

possible solutions (similar to epipolar geometry). Denote the verification point pair as D -

d and the principal camera point as O. Suppose that A, B, C are in the world coordinate

frame, not the camera coordinate. Once the coordinates of the 3D point in the camera

coordinate system can be calculated, we get the 3D3D corresponding point and convert the

PnP problem to the ICP problem. Obviously, there is a relationship between triangles:

∆Oab−∆OAB, ∆Obc−∆OBC, ∆Oac−∆OAC (1.25)

Consider the relationship between Oab and OAB. Using the law of cosines, there are:

OA
2
+OB

2 − 2.OA.OB.cos ⟨a, b⟩ = AB
2

OB
2
+OC

2 − 2.OB.OC.cos ⟨b, c⟩ = BC
2

OA
2
+OC

2 − 2.OA.OC.cos ⟨a, c⟩ = AC
2

(1.26)

17



Divide all the above three equations by OC
2

on both sides, and consider x = OA/OC,

y = OB/OC, we get:

x2 + y2 − 2xy · cos ⟨a, b⟩ = AB
2
/OC

2

y2 + 12 − 2y · cos ⟨b, c⟩ = BC
2
/OC

2

x2 + 12 − 2x · cos ⟨a, c⟩ = AC
2
/OC

2

(1.27)

Let v = AB
2
/OC

2
, uv = BC

2
/OC

2
, wv = AC

2
/OC

2
, then we have:

x2 + y2 − 2xy · cos ⟨a, b⟩ − v = 0

y2 + 12 − 2y · cos ⟨b, c⟩ − uv = 0

x2 + 12 − 2x · cos ⟨a, c⟩ − wv = 0

(1.28)

Please distinguish the known from the unknown quantities in these equations. Since we

know the positions of the 2D points in the image, the 3 cosine angles cos ⟨a, b⟩, cos ⟨b, c⟩,
cos ⟨a, c⟩ can be calculated. Meanwhile, u = BC

2
/AB

2
, w = AC

2
/AB

2
can be calcu-

lated by the coordinates of A, B, C in the world frame. Transforming to the camera frame

does not change the ratio. The x and y are unknown and will change as the camera moves.

Therefore, the equations are quadratic equations about two unknowns x, y. Analytically

solving the equations is complicated and requires Wu’s elimination method. It will not

be introduced here. Interested readers could refer to the literature [79]. Analogous to the

case of decomposing E, this equation may get 4 solutions at most. Still, we can use the

verification points to select the most probable solution and get the 3D of A, B, C in the

camera frame. Then, based on the 3D - 3D point pair, the camera movement R, t can be

calculated.

Solve PnP by Minimizing the Reprojection Error Other than the linear method, we

can also construct the PnP problem as a nonlinear least-square problem about reprojection

errors. The linear method mentioned above is often divided into many steps, such as es-

timating the camera pose first and then the point’s position. While nonlinear optimization

treats them as optimization variables and optimizes them together. This is a very general

solution method. We can use it to optimize the results given by PnP or ICP. This type of

problem, putting the camera and 3D points together to minimize, is generally referred to as
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Bundle Adjustment (BA).

We can build a bundle adjustment problem in PnP to optimize the camera pose. Suppose

we have n 3D space points P and their projection p, we want to calculate the pose R, t of

the camera. Suppose the coordinates of a point are Pi = [Xi, Yi, Zi]
T , and their projected

pixel coordinates are ui = [ui, vi]
T . According to 1.2.1, the relationship between the 2D

pixel position and the 3D spatial position is:

si


ui

vi

1

 = KT



Xi

Yi

Zi

1


(1.29)

This equation includes a conversion from homogeneous coordinates to non-homogeneous

coordinates implicitly. Or we can also use RP+ t. Now, due to the unknown camera pose

and the noise of the observation points, there is a residual in the equation. Therefore, we

sum up the residuals, construct a least-square problem, and then minimize it to find the

most possible camera pose:

T∗ = argmin
1

2

n∑
i=1

∥ui −
1

si
KTPi∥

2

2

(1.30)

The residual term is the error of the projected position and the observed position, which

is called the reprojection error. With homogeneous coordinates, this error has three dimen-

sions. However, since the last dimension of u is 1, the error of this dimension is always

zero, so we normally use non-homogeneous coordinates. Therefore, the error has only 2

dimensions. As shown in Figure 1.7, we know that p1 and p2 are projections of the same

space point P through feature matching, but we don’t know the pose of the camera. In the

initial value, there is a certain distance between the projection of P p̂2 and the observed p2.

So we adjusted the pose of the camera to make this distance smaller. However, since this

adjustment needs to consider many points, the goal is to reduce the overall error, and the

error of each point usually can not be exactly zero.

Using Lie algebra, we can construct an unconstrained optimization problem on the
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Figure 1.7: The reprojection error.

manifold, easily solved using optimization algorithms such as the Gauss-Newton method

and Levenberg-Marquardt method. However, we need to calculate the derivative of each

error term with respect to the optimization variable, which is also the linearization:

e(x+∆x) ≈ e(x) + JT∆x (1.31)

The form of JT is worth discussing. Definitely, we can use numerical derivatives, but if we

can derive an analytical form, we will prefer the analytical derivatives. Now, e is the pixel

coordinate error (2d) and x is the camera pose (6d), JT is a matrix of 2 × 6. Let’s derive

the form of JT .

First, define the coordinates of the space point in the camera frame as P′, and take out

the first 3 dimensions:

P′ = (TP)1:3 = [X ′, Y ′, Z ′]T (1.32)

Then, the camera projection model with respect to P′ is:

su = KP′ ⇒


su

sv

s

 =


fx 0 cx

0 fy cy

0 0 1




X ′

Y ′

Z ′

 (1.33)
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Use the third row to eliminate s (actually it is the distance of P′), we get:

u = fx
X ′

Z ′ + cx, v = fy
Y ′

Z ′ + cy (1.34)

When we find the error, we can compare the u, v here with the measured value to find

the difference. After defining the intermediate variables, we left multiply T by a distur-

bance quantity δξ, and then consider the derivative of the change of e with respect to the

disturbance quantity. Using the chain rule, it is:

∂e

∂δξ
= lim

δξ→0

e(δξ ⊕ ξ)− e(ξ)

δξ
=

∂e

∂P ′
∂P ′

∂δξ
(1.35)

Here ⊕ refers to the disturbance left multiplication in Lie algebra. The first item is the

derivative of the error with respect to the projection point. The relationship between the

variables in E.q. 1.34, and it is easy to get:

∂e

∂P ′ = −

 ∂u
∂X′

∂u
∂Y ′

∂u
∂Z′

∂v
∂X′

∂v
∂Y ′

∂v
∂Z′

 = −

 fx
Z′ 0 −fxX′

Z′2

0 fy
Z′ −fyY ′

Z′2

 (1.36)

The second term is the derivative of the transformed point with respect to the Lie algebra.

we get:

∂(TP )

∂δξ
= (TP)

⊙
=

 I −P′∧

0T 0T

⇒ ∂(P ′)

∂δξ
= [I,−P′∧] (1.37)

Multiply these two items together, we get the 2× 6 Jacobian matrix:

∂(e)

∂δξ
= −

 fx
Z′ 0 −fxX′

Z′2 −fxX′Y ′

Z′2 fx +
fxX′2

Z′2 −fxY ′

Z′

0 fy
Z′ −fyY ′

Z′2 −fy − fyY ′2

Z′2
fyX′Y ′

Z′2
fyX′

Z′

 (1.38)

This Jacobian matrix describes the first-order derivative of the reprojection error with re-

spect to the left perturbation model. We keep the negative sign in front of it because the

error is defined by the observed value minus the predicted value. It can also be reversed

and defined in the form of the predicted value minus the observed value. In that case, just
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remove the negative sign in front. Besides, if the definition of se(3) is a rotation followed

by translation, just swap the first 3 columns and the last 3 columns of this Jacobian matrix.

On top of optimizing the pose, we want to optimize the spatial position of the feature

points. Therefore, we also need to discuss the derivative of e with respect to the space point

P. Fortunately, this derivative matrix is relatively easy. Still using the chain rule, there are:

∂e

∂P
=

∂e

∂P ′
∂P ′

∂P
(1.39)

The first item has been deduced before, and the second item is defined as:

P′ = (TP)1:3 = RP+ t (1.40)

So only R is left in the derivative:

∂e

∂P
= −

 fx
Z′ 0 −fxX′

Z′2

0 fy
Z′ −fyY ′

Z′2

R (1.41)

We have derived the two Jacobian matrices of the observation camera equation with re-

spect to the camera pose and feature points. They are very important to provide gradient

directions in the optimization and guide the iteration of optimization.

1.2.3 Deep Neural Network

A Deep Neural Network (DNN) is a type of artificial neural network that is composed

of many layers of interconnected nodes. These layers allow the network to learn and repre-

sent complex patterns in data, and they make it possible for the network to perform highly

accurate predictions on new data. Deep neural networks are widely used in many applica-

tions, such as image recognition, natural language processing, and even self-driving cars.

They are also at the heart of many recent advances in artificial intelligence and machine

learning. The process of training a deep neural network involves adjusting the weights

of the connections between the nodes in order to improve the network’s ability to make

accurate predictions. This is done using a variety of algorithms and techniques, such as

backpropagation and stochastic gradient descent. One of the key advantages of deep neural
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networks is that they are highly flexible and can be applied to a wide range of problems.

They can learn to make predictions on data that is structured or unstructured, and they

can be fine-tuned to perform well on specific tasks. Additionally, deep neural networks

are able to learn from large amounts of data, which allows them to make highly accurate

predictions.

The development of deep neural networks can be traced back to the 1940s and 1950s,

the Artificial Neural Network (ANN) was introduced firstly by Frank Rosenblatt in 1958 [86].

Early DNNs had so many problems that they needed to be more challenging to apply in

practice, such as the difficulty of training, poor generalizability, a limited amount of data,

etc. David et al. proposed Multi-Layer Perception (MLP) and training strategy with Back-

ward Propagation (BP) [87]. It was significant progress in artificial neural networks that

allowed the ANN to learn effectively from its error. It becomes a core idea in any neural

network up to now. Moreover, MLPs learn to recognize the patterns from the data using

one perceptron for each input, which is quite expensive and more easily leads to overfitting

problems. It is especially different from applying to process data with a grid-like structure,

such as an image. Yann [88] proposed the Convolutional Neural Network (CNN) for better

utilizing neural networks to process data of images which leads to a significant develop-

ment in computer vision fields. CNNs are composed of multiple layers of interconnected

nodes, and they are able to learn and represent complex patterns in data by adjusting the

weights of the connections between these nodes; see Sec. 1.2.3.

With the booming development of IT technology, deep neural networks have become

a powerful tool for solving many complex problems in artificial intelligence and machine

learning. They have contributed to many recent breakthroughs in these fields, and they are

likely to continue to play a key role in the future development of AI and machine learning.

This section introduces the background knowledge about DNNs involved in this dis-

sertation, including components of the Neuron in DNN, the convolutional neural network,

and the transformer.

Components of the Neuron in DNN

The neuron is an individual and fundamental unit of a neural network. The components

of a neuron are similar to those of a biological neuron. A DNN neuron consists of a set

of inputs, weights, a bias term, normalization, and an activation function. Mathematically,
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Figure 1.8: Example of (a) Neuron and (b) Neural network.

given an input x : xi ∈ x where i ∈ [1, n], the output y of a neuron is denoted as:

y = G(N (
n∑

i=1

wi · xi + b)) (1.42)

where wi denotes weights, b denotes bias, N denotes normalization function, and G de-

notes activation function. Figure 1.8 shows an example of a neuron and a neural network.

Normalization in DNN. Appling normalization can improve the performance and stability

of training deep learning models. It normalizes the output of each neuron in a layer so that

they have a mean of zero and a standard deviation of one. This helps to prevent the inputs to

the next layer from becoming too large or too small, which can cause the model to become

unstable or perform poorly.

Batch normalization is widely used in training CNN models. It performs normalization

in the batch size dimension, which can be denoted as:

x̂ =
x− µ
σ

, y = γx̂+ β (1.43)

where x is input, µ and σ are mean and standard deviation (std) of x in mini-batch. γ and

β are scale and shift parameters that are learnable.

Layer normalization is similar to batch normalization, but instead of normalizing the

outputs of each neuron based on the statistics of the current batch of data. It is applicable

in the situation of input data with unequal lengths, such as texts, which be widely used in

24



(a) (b) (c)

Figure 1.9: Activation Function; (a) Sigmoid (b) TanH and (c) ReLU.

transformers.

Activation Function. A activation function is used to introduce non-linearity into the net-

work, allowing the model to learn and make more complex decisions. The most commonly

used activation function is the rectified linear unit (ReLU), which returns the input if it is

positive, and returns zero if it is negative. Other common activation functions include the

sigmoid function, which outputs a value between 0 and 1, and the hyperbolic tangent func-

tion, which outputs a value between -1 and 1. The choice of activation function can have a

significant impact on the performance of the network, so it is important to select the right

one for the task at hand.

Convolutional Neural Network

The default input to a convolutional neural network is an image, which allows us to en-

code specific properties into the network structure, making our feedforward function more

efficient and reducing a large number of parameters. It is a deep neural network with a

convolutional structure, which can reduce the amount of memory occupied by the deep net-

work. Its three key operations, one of which is the local perceptual field, the other is weight

sharing, and the third is the pooling layer, effectively reduce the number of parameters of

the network and alleviate the overfitting problem of the model. A standard convolutional

neural network is composed of three main parts, i.e., convolution layer, pooling layer, and

fully connected layer.

Convolution Layer. The convolution layer is the first layer of CNN and is responsible for

applying a set of filters to the input data to extract features. This is done by sliding the

filters across the input data and computing the dot product between the values in the filter
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Target pixel

Figure 1.10: Illustration of the convolution layer. K denotes a learnable convolution kernel
with size of 3× 3.

and the input data at each position. This results in a set of feature maps that represent the

output of the filters at each position in the input data. These feature maps are then fed as

input to the next layer of the network. The convolution layer is an essential part of a CNN

and is critical for its ability to extract meaningful features from images. Figure 1.10 shows

an illustration of the convolution layer.

Pooling Layer. Similar to the Convolutional Layer, the Pooling layer is responsible for

reducing the spatial size of the Convolved Feature. This is to decrease the computational

power required to process the data through dimensionality reduction. Furthermore, it is

useful for extracting dominant features which are rotational and positional invariant, thus

maintaining the process of effectively training the model.

There are two types of Pooling: Max Pooling and Average Pooling. Max Pooling re-

turns the maximum value from the portion of the image covered by the Kernel. On the other

hand, Average Pooling returns the average of all the values from the portion of the image

covered by the Kernel. Max Pooling also performs as a Noise Suppressant. It discards the

noisy activations altogether and also performs de-noising along with dimensionality reduc-

tion. On the other hand, Average Pooling simply performs dimensionality reduction as a
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Figure 1.11: Types of pooling layer.

noise-suppressing mechanism. Hence, we can say that Max Pooling performs a lot better

than Average Pooling. Figure 1.11 shows the two types of pooling layers.

Fully Connected Layer. Fully connected (FC) layer is a linear approximation module that

takes all elements in the input into account. This module obtains the input and applies

the linear equation by its learnable parameters, i.e., weight and bias, to approximate the

output. The input and output can be a vector of any dimension. Suppose the input x =

{x1, x2, . . . , xm} is the vector of m dimensions and the output y contains n dimensions,

the calculation is

y = WTx+ b =



w1,1x1 + w2,1x2 + · · ·+ wm,1xm + b1

w1,2x1 + w2,2x2 + · · ·+ wm,2xm + b2

...

w1,nx1 + w2,nx2 + · · ·+ wm,nxm + bn


where x is the input, W ∈ Rm×n is the weight parameter, and b ∈ Rn is the bias parameter.

The special case of the FC layer when n = 1 is the linear regression model.

Stacking multiple FC layers increases the ability to approximate the value. However,

naively stack the layers has an issue in mathematical aspect. It is necessary to apply the ac-

tivation function between each layer. The detail will be described in the following section.
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Transformer

The transformer was introduced in 2017 [89], which is used in the field of NLP at first.

It is based on the idea of using self-attention mechanisms to process input data, allowing

the network to learn dependencies between different parts of the input without the need for

recursion or convolution. This makes it well-suited for natural language processing tasks,

where the order and context of words in a sentence can be important for understanding the

meaning of the sentence. Recently, the application of transformer is applied extended to

computer vision fields and achieved state-of-art performances. The self-attention mecha-

nisms allow the model to learn to focus on the most relevant features of the image. Vision

transformers are mainly working based on transformer encoders which are composed of a

Multi-Head Attention Module (MHA) and MLP.

Self-Attention. Self-attention operates on a set of input tokens, which are mapped to a set

of query Q, K key, and V value vectors. The attention weights are then computed as the

dot product of the query and key vectors, normalized by the square root of the key vector

length. The final output is computed as the weighted sum of the value vectors, using the

attention weights as the weights. This allows the model to focus on different parts of the

input when computing the output.

In practice, we compute the attention function on a set of queries simultaneously,

packed together into a matrixQ. The keys and values are also packed together into matrices

K and V . Q, K, and V are learned from input data, respectively. We compute the matrix

of outputs as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1.44)

where dk is a scaling factor.

Multi-Head Attention. Instead of performing a single attention function with Q, K, and

V , it is beneficial to linearly project the Q, K, and V h times with different, learned lin-

ear projections, respectively. Multi-head attention allows the model to jointly attend to

information from different representation subspaces at different positions. With a single

attention head, averaging inhibits this.

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O

headi = Attention(QWQ
i , KW

K
i , V W

V
i )

(1.45)
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(a) (b) (c)

Figure 1.12: Illustration of the transformer; (a) Structure of transformer encoder, (b) Self-
Attention, and (c) Multi-Head Attention

where the projections are parameter matrices WQ
i , WK

i , W V
i and WO.

1.2.4 Deep Metric Learning

Deep Metric Learning is a method of learning a transformation of input data into a

feature space so that samples are separated into classes based on their distance (metric)

or similarity. The goal of distance learning is to increase the distance between negative

samples while decreasing the distance between positive samples. With the development of

deep learning, various deep distance learning methods have been proposed that combine

deep learning and distance learning. Typical learning methods, such as contrastive loss and

triplet loss are widely used for training deep-learning models of numerous computer vision

tasks, such as classification, image-matching, and image retrieval.

Contrastive Loss. The contrastive loss was proposed for dimensionality reduction in

2006 [90] and the typical network structure used with it is the Siamese network [91]. When

a positive pair is an input, the network is trained to minimize the distance, and when a neg-

ative pair is an input, the network is trained to maximize the distance. The loss function is

as follows:
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LContrastive = (1− Y )
1

2
(D)2 + (Y )

1

2
max(0,m−D)2

D(xai , x
b
i) = ∥f(xai )− f(xbi)∥2

(1.46)

where xai and xbi denote the i-th input image pair, Y denotes the label of the pair, labeled

0 for positive pairs and 1 for negative pairs. m denotes the margin which is a hyperparam-

eter of a positive constant. According to the above equation, positive pairs are trained to

D = 0 in the case of positive pairs, and D > m in the case of negative pairs. However, it

would be inappropriate to apply a constant margin to all negative pairs, since the distances

within or between classes vary from class to class and can vary widely.

Triplet Loss. Triplet loss addresses the issue of margins in contrastive loss because a

margin is applied to the relative distance. Negative pairs in the trio of input images and

apply the margin to the relative distance between the positive and negative pairs. In other

words, while the contrastive loss trains the negative pair to be further away than the distance

of the margin m, the triplet loss trains the negative sample to be further away than the

distance of the positive sample by more than the distance of the margin m. Triplet loss is to

learn the distance from the negative sample to be more than the distance from the positive

sample. At the same time, the positive samples can be attracted to the negative samples and

try to leave the negative samples. It is a widely used distance learning method in current

studies.

In previous studies, several slightly different equations were used as loss functions for

triplet loss, the most commonly cited of which seems to be Wang et al. [92]. Their loss

function is expressed by the following equation:

LTriplet = max(0, D2(xai , x
p
i )−D2(xai , x

n
i ) +m) (1.47)

where xai , xpi , and xni denote the standard for sample pairs of anchor, positive, and negative

images. It was called Hinge loss, but in recent research, a similar expression is often

referred to as triplet loss. FaceNet [93] proposed triplet loss as the loss function that is

minimized based on the above equation. In the equation below, the minimum loss is set to

30



(a) (b)

Figure 1.13: Illustration of neural networks trained with (a) Contrastive loss and (b) Triplet
loss

zero.

LTriplet =
N∑
i

[∥f(xai )− f(x
p
i )∥22 − ∥f(xai )− f(xni )∥22 +m]+ (1.48)

Note that the above two losses use normalized features to compare distances between

samples. Figure 1.13 shows the illustration of neural networks trained with the above two

losses, respectively.

1.3 Outline of the Dissertation

There are many challenges in the applications of visual SLAM or SfM. As the essen-

tial component in Visual Odometry (front-end) of visual SLAM or SfM, a robust image-

matching approach is a key to overcoming these challenges. In this dissertation, we focus

on the image-matching problem, aiming to widen the frontier of SfM and visual SLAM

applications, as well as to improve downstream components such as visual localization.

Specifically, we developed a robust image-matching pipeline for extremely low-light envi-

ronments. To achieve this purpose, we presented two databases for evaluation and model
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training. In addition, we proposed a method that unified related tasks, i.e., image retrieval

and image-matching, for better visual localization. This dissertation also includes analyses

in many aspects. The outline of the content is described in what follows.

In Chapter 2, we experimentally evaluate and verify the gain of utilizing high-precision

information recorded in RAW images to match extremely low-light scene images. For ex-

treme low-light scenes, even if some of their brightness information exists in the RAW for-

mat images’ low bits, the standard raw image processing on cameras fails to utilize them

properly. To promote further studies, we create a dataset for image-matching evaluation

which include multi-level underexposure low-light RAW images, aiming at widening their

application field toward lower-light scenes. Using this dataset, we experimentally evaluate

several existing component methods for image-matching applied for camera pose estima-

tion. They further provide the strengths and weaknesses of the above component methods,

also showing that there is room for further improvement.

In Chapter 3, we are interested in better better-utilizing information in low-light RAW

images for downstream tasks related to 3D reconstruction, since the standard image en-

hancers are designed to yield images that appear the most natural, which should differ

from the best image for downstream tasks. However, the existing database does not meet

the above requirements, i.e., existing datasets for 3D reconstruction don’t contain dark

RAW images of low-light scenes; on the other hand, existing datasets containing RAW

images don’t meet the requirements for training downstream task models, e.g., lack of

relevant images, intrinsics/extrinsics and ground truth of depth information. To promote

further studies, we collected a new dataset for 3D reconstruction which include low-light

RAW images, MID-V2. In addition, we introduce a novel enhancer for RAW image pro-

cessing, SuperISP, designed/trained to utilize the information stored in RAW images of

low-light scenes to yield better performance for downstream tasks related to 3D recon-

struction. Then, we experimentally evaluate the SuperISP on two typical downstream tasks

related to 3D reconstruction. The SuperISP achieves better performance on the two down-

stream tasks than other enhancers that aim to obtain a high visual quality image.

In chapter 4, we focus on the flexible use of image-matching models in visual local-

ization. Advanced visual localization approaches work with both global and local image

features. i.e., the former is used to retrieve relevant frames, and the latter is used for local

feature matching for 6 Degree-of-Freedom (DoF) camera pose estimation. However, exist-
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ing studies are struggling to unify these two tasks due to conflicts at the feature level. For

better visual localization, we propose a novel model which unifies local and global features

for visual localization. In this model, we solve the feature-level conflict based on the atten-

tion mechanism of a transformer. The results show the advantage of our method compared

to existing methods.

Finally, in Chapter 5, we summarize the content and provide the conclusion of this

dissertation. Furthermore, we state the open problem and the possible future work.
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Chapter 2

Matching in Low-light Scenes

Leveraging RAW Images

2.1 Introduction

Structure-from-motion (SfM) [94,95] and visual SLAM (simultaneous localization and

mapping) [96, 97] have been used for real-world applications for a while. The mainstream

methods use point correspondences between multiple views of a scene. They first detect

keypoints and extract the descriptor of the local feature at each keypoint [8, 24, 98, 99].

They then find initial point correspondences between images and eliminate outliers from

them, finally estimating the geometric parameters such as camera poses, etc.

SfM and visual SLAM have the potential to widen their application fields. One impor-

tant target is the application to extremely low-light environments, such as outdoor scenes at

night under moonlight or indoor scenes with insufficient illumination. Making it possible

to use SfM and visual SLAM in these environments is essential for real-world applications,

such as autonomous vehicles that can operate at night.

Owing to the advancement of image sensors, they can record incoming light with more

than eight bits (e.g., 14 bits). However, standard raw image processing employed on many

cameras cannot make full use of the information existing in the lower bits of the sensor sig-

nal; it reduces mosaic artifacts on the sensor signal, adjusts the white balance and contrast,

and then converts the processed signal into the standard format of eight-bit RGB images

(we will refer to this raw image processing as RIP in this paper). This limitation arguably
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comes from the requirement for versatility against all sorts of scenes with various lighting

conditions in addition to reducing the number of bits. In extreme low-light scenes, even

when some details of the scenes’ brightness are stored in the low bits of their RAW signals,

the standard RIP often yields mostly black images. The study of SID (see-in-the-dark) [5]

well proves such limitation of the image pipeline, in which the authors show that a CNN

can learn to convert such RAW-format images of dark scenes into brightened images with

a natural appearance.

It is very likely that we can do the same with SfM and visual SLAM applied to low-

light scenes, i.e., extracting the information present in the lower bits of the RAW signals

to make SfM/visual SLAM work. The question is how to do this. It is noteworthy that the

goal is not to generate natural looking bright images as SID does but to achieve the optimal

performance for SfM and visual SLAM.

There are potentially several directions to achieve the goal. One is to develop a key-

point detector and a feature descriptor that work directly on the RAW-format images. Even

if keypoint detectors and descriptors are not good enough, it could be possible to attain

the necessary level of matching performance by strengthening the subsequent steps in

the pipeline. Recently, CNNs have been applied to these steps, leading to promising re-

sults, such as outlier removal in the initial correspondences [29,30] and establishing initial

matching [3]. In parallel to these, the application of image enhancement methods for RAW-

format low-light images in a pre-processing stage of image matching could be useful, e.g.,

SID [5] and others [45, 46]. Methods for more general image restoration would be applied

to the RAW-format images [100, 101].

As above, we can think of multiple different approaches to making SfM and visual

SLAM methods applicable to low light environments. To promote further studies, we need

a dataset to evaluate the above approaches in a multi-faceted fashion. Aiming at widening

their application field toward lower-light scenes, it is necessary to examine how underex-

posed the image will be that each approach can deal with. There is currently no dataset that

can be used for this purpose. Considering these, we create a dataset having the following

features:

• To examine each method’s limit with underexposed images, we acquire multiple

RAW-format images at each scene’s position with 48 = (6 shutter speeds×8 ISO settings)

exposure settings ranging from extreme to mildly underexposure settings. The cam-
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era is mounted on a tripod while capturing all the images.

• We additionally provide long-exposure images, using which as the ground truth, one

can evaluate image restoration methods on the task of estimating it from one of the

underexposed images.

• The current standard for the evaluation of image matching methods is to measure the

accuracy of the downstream task, i.e., the estimation of geometric parameters, as was

pointed out in recent studies [102]. Therefore, we acquire images from two positions

to form stereo pairs for each scene along with their ground truth relative pose. To

obtain the ground truth pose, we capture a good quality image with a long-exposure

setting for each scene position.

• The dataset contains diverse scenes consisting of 54 outdoor and 54 indoor scenes.

Using this dataset, we experimentally evaluate several existing component methods for

the SfM pipeline, i.e., detecting keypoints and extracting descriptors [8], finding initial

point correspondences, and removing outliers from them [3, 29, 103]. We choose classical

methods and learning-based methods for each. We also evaluate the effectiveness of image

enhancement, including classical image-enhancing methods with/without denoising [104],

and a CNN-based method [5, 105]. The results show the importance of using the RAW-

format images instead of using the processed images by the standard RIP. They further

provide the strengths and weaknesses of the above component methods, also showing that

there is room for further improvement.

2.2 Related Work

2.2.1 Matching Multi-view Images

Matching multi-view images of a scene is a fundamental task of computer vision, and

its research has a long history. It generally performs the following steps: detecting key-

points/computing local descriptors, establishing initial point correspondences, and remov-

ing outliers to finding correct correspondences. A baseline of this pipeline, built upon

traditional methods, consists of SIFT [8], SURF [23], etc. for detecting interest points and
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extracting their local descriptor, nearest neighbor search in the descriptor’s space for ob-

taining initial correspondences across images, with an optional ‘ratio test’ step for filtering

out unreliable matches [8], and RANSAC for outlier removal [103, 106].

A recent trend is to use CNNs to detect keypoints and/or extract local descriptors. Early

studies attempted to learn either keypoint detectors [107–109], or descriptors [110–114].

In contrast, in recent studies, researchers have proposed end-to-end pipelines [2, 25–27,

115, 116] that can perform the two at once. Despite the success of CNNs in many com-

puter vision tasks, it remains unclear that these learning-based methods have surpassed the

classical hand-crafted methods. In parallel to the developments of methods for keypoint

detectors and descriptors, several recent studies have developed learning-based methods

for initial point matching and outlier removal [3, 29].

2.2.2 Datasets for Image Matching

There are many datasets created for the research of image matching [107, 117–122].

Many recent studies of image matching employ HPatches [123]. There are also a number

of datasets for visual SLAM and localization/navigation [4, 124–127].

Some of these datasets provide challenging cases, including illumination changes, match-

ing daylight and nighttime images, motion blur in low-light conditions, etc. However, all

these datasets provide only images in the regime where the standard RIP can successfully

yield RGB images with a well-balanced brightness histogram. This is also the case with a

recent study [128] that analyzes image retrieval under varying illumination conditions. Our

dataset contains the images of very dark scenes all in a RAW-format with 14-bit depth. In

fact, while we have verified the authors’ findings in [128] with 8-bit images converted from

our RAW-format images using the standard RIP, they do not hold in the case of directly

using the RAW-format images, as we will show later.

There are also many evaluation methods for image matching, which are developed aim-

ing at a more precise evaluation [117,118,129–131]. A recent study has introduced a com-

prehensive benchmark for image matching [102]. As in this study, the current trend is to

focus on the downstream task; the accuracy of the reconstructed camera pose is chosen as

a primary metric for evaluation. Following this trend, our dataset provides the ground truth

for the relative camera pose between every stereo image pair.

38



2.2.3 Image Enhancement

There are many image-enhancing methods that improve the quality of underexposed

images. Besides basic image processing such as histogram equalization, there are many

methods based on different assumptions and physics-based models, etc., such as global

analysis and processing based on the inverse dark channel prior [32,33], the wavelet trans-

form [34], the Retinex model [35], and illumination map estimation [36]. These methods

are proven to be effective for images that are mildly underexposed.

To deal with more severely underexposed images, Chen et al.proposed a learning-based

method that uses a CNN to directly convert a low-light RAW image to a good quality RGB

image [5]. Creating a dataset containing pairs of underexposed and well-exposed RAW

images (i.e., the SID dataset), they train the CNN in a supervised fashion. Their method

can handle more severe image noise and color distortion emerging in underexposed images

than the previous methods. For the problem of enhancing extreme low-light videos, Chen

et al.extended this method while creating a dataset for training [45]. In parallel to these

studies, Wei et al.have developed a model of image noises, making it possible to synthesize

realistic underexposed images [46]. They demonstrated that a CNN trained on the synthetic

dataset generated by their model performs denoising equally well or even better than a CNN

trained on pairs of real under/well-exposed images.

While these studies aim sorely at image enhancement, our study considers the problem

of matching images of extremely low-light scenes. Our dataset contains stereo image pairs

of multiple scenes; there are 48 low-light RAW images with different exposure settings and

one long-exposure reference image for each camera position of each scene. It is noteworthy

that they include much more underexposed images than the datasets of [5, 45].

2.2.4 Datasets for Image Matching

There are many datasets created for the research of image matching [107, 117–122].

Many recent studies of image matching employ HPatches [123]. There are also a number

of datasets for visual SLAM and localization/navigation [4, 124–127].

Some of these datasets provide challenging cases, including illumination changes, match-

ing daylight and nighttime images, motion blur in low-light conditions, etc. However, all

these datasets provide only images in the regime where the standard RIP can successfully
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yield RGB images with a well-balanced brightness histogram. This is also the case with a

recent study [128] that analyzes image retrieval under varying illumination conditions. Our

dataset contains the images of very dark scenes all in a RAW-format with 14-bit depth. In

fact, while we have verified the authors’ findings in [128] with 8-bit images converted from

our RAW-format images using the standard RIP, they do not hold in the case of directly

using the RAW-format images, as we will show later.

There are also many evaluation methods for image matching, which are developed aim-

ing at a more precise evaluation [117,118,129–131]. A recent study has introduced a com-

prehensive benchmark for image matching [102]. As in this study, the current trend is to

focus on the downstream task; the accuracy of the reconstructed camera pose is chosen as

a primary metric for evaluation. Following this trend, our dataset provides the ground truth

for the relative camera pose between every stereo image pair.

2.2.5 Image Enhancement

There are many image-enhancing methods that improve the quality of underexposed

images. Besides basic image processing such as histogram equalization, there are many

methods based on different assumptions and physics-based models, etc., such as global

analysis and processing based on the inverse dark channel prior [32,33], the wavelet trans-

form [34], the Retinex model [35], and illumination map estimation [36]. These methods

are proven to be effective for images that are mildly underexposed.

To deal with more severely underexposed images, Chen et al.proposed a learning-based

method that uses a CNN to directly convert a low-light RAW image to a good quality RGB

image [5]. Creating a dataset containing pairs of underexposed and well-exposed RAW

images (i.e., the SID dataset), they train the CNN in a supervised fashion. Their method

can handle more severe image noise and color distortion emerging in underexposed images

than the previous methods. For the problem of enhancing extreme low-light videos, Chen

et al.extended this method while creating a dataset for training [45]. In parallel to these

studies, Wei et al.have developed a model of image noises, making it possible to synthesize

realistic underexposed images [46]. They demonstrated that a CNN trained on the synthetic

dataset generated by their model performs denoising equally well or even better than a CNN

trained on pairs of real under/well-exposed images.
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While these studies aim sorely at image enhancement, our study considers the problem

of matching images of extremely low-light scenes. Our dataset contains stereo image pairs

of multiple scenes; there are 48 low-light RAW images with different exposure settings and

one long-exposure reference image for each camera position of each scene. It is noteworthy

that they include much more underexposed images than the datasets of [5, 45].

2.3 Dataset for Low-light Image Matching

2.3.1 Design of the Dataset

We built a dataset of stereo images of low-light scenes and named it the MID (Matching

In the Dark) dataset. It contains stereo image pairs of 54 indoor and 54 outdoor scenes (108

in total). We used a high-end digital camera to capture all the images; they are recorded

in a RAW format with 14-bit depths. Figure 2.1 shows example scene images. For each

of the 108 scenes, we captured images from two viewpoints with 49 different exposure

settings, i.e., 48 exposure settings in a fixed range plus one long exposure setting to acquire

a reference image. Note that most of the images are so underexposed that the standard RIP

cannot yield reasonable RGB images from them.

Some of the 48 images of each scene captured with the most underexposed settings

are so underexposed that they appear to store only noises; it will be impossible to perform

image matching using them, even if we try every one of the currently available methods.

Nevertheless, we keep these images in the dataset to assess the lower limit of exposure to

which image matching and restoration methods work, not only existing methods but those

to be developed in the future. We designed the dataset primarily to evaluate image matching

methods in low-light conditions, but the users can also evaluate image-enhancing methods.

Our 48 images of each scene contain more severely underexposed ones than any existing

datasets for low-light image enhancement (e.g., [5]).

2.3.2 Detailed Specifications

The dataset contains 10,584 (= 108(scenes)× 2(stereo)× (48 + 1)(exposure settings))

images in total. They are of 6, 720×4, 480 pixels and in a RAW format of 14 bits per pixel;
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Figure 2.1: Example stereo image pairs (long exposure versions) of four indoor scenes
(upper two rows) and four outdoor scenes (lower two rows).

its Bayer pattern is RGGB. We used Canon EOS 5D Mark IV with a full-frame CMOS

sensor and EF24-70mm f/2.8L II USM to capture these images.

For each scene, we set up the camera in two positions to capture stereo images. For each

position, we mounted the camera on a sturdy tripod while capturing 49 images. We first

captured a long-exposure image, which serves as a reference image; we use it to compute

the ground-truth camera poses of the stereo pair, as will be explained in Sec. 2.3.3. To

capture the reference image, we choose exposure time from the range of 10 to 30 seconds,

while fixing ISO to 400.

We then captured the low-light images in 48 different exposure settings that are combi-

nations between six exposure times and eight ISO values. The exposure time is chosen from

the range of [1/200, 1] seconds for the indoor scenes and [1/200, 0.5] seconds for the out-

door scenes. The ISO value is chosen from {100, 200, 400, 800, 1600, 3200, 6400, 12800}.

The indoor scene images were captured in closed rooms with regular lights turned off;

the illuminance at the camera is in the range of 0.02 to 0.3 lux. The outdoor scene images

were captured at night under moonlight or street lighting. The illuminance at the camera is

in the range of 0.01 to 3 lux.
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2.3.3 Obtaining Ground Truth Camera Pose

To compare various image matching methods with different local descriptors and key-

point detectors, we need to evaluate the accuracy of the camera poses estimated from their

matching results. We consider stereo matching in our dataset, and an image matching

method yields the estimate of the relative camera pose between the stereo images. To ob-

tain its ground truth, we use the pairs of the reference images to perform image matching,

from which we estimate the relative camera pose for each scene. Following [132], we use

it as the ground truth after manual inspection along with correction, if necessary, which we

will explain later.

The detailed procedure for obtaining the ground truth camera pose for each scene is as

follows.

We first convert the two reference images in the RAW format into RGB space1. We

then covert each RGB image into grayscale and compute keypoints and their descriptors

using the difference of Gaussian (DoG) operator and the RootSIFT descriptor [1]. We next

establish their initial point matches using nearest neighbor search with Lowe’s ratio test [8]

with a threshold of 0.8.

We then estimate the essential matrix by using the 5-point algorithm with the pretrained

neural-guided RANSAC (NG-RANSAC) [29]. We employed the authors’ implementation

for it. We employ NG-RANSAC over conventional RANSAC, since we found in our ex-

periments that it consistently yields more accurate results. Calibrating the camera with

the standard method using a planar calibration chart, we decompose the estimated essential

matrix and obtain the relative camera pose (i.e., translation and rotation) between the stereo

pair.

As mentioned above, we performed a manual inspection of the estimated essential ma-

trix, ensuring they are reliable enough to be used as the ground truths. We did this by

checking if any image point on the paired images satisfies the epipolar constraint given by

the estimated essential matrix. To be specific, we manually select a point on either left or

right image and draw its epipolar line on the other image.

We then visually check if the corresponding point lies on the epipolar line with a devia-

tion less than one pixel. We chose a variety of points having different depths for this check.

1Following [5], we used rawpy (https://pypi.org/project/rawpy/), a python wrapper for libraw that
is a raw image processing library (https://www.libraw.org/)
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Figure 2.2: Images of a scene captured from the same camera pose that are converted from
their RAW-format originals by three conversion methods. (a) RIP-HistEq. (b) Direct-
BM3D. (c) SID. See text for these methods.

If an estimated essential matrix fails to pass this test, we either remove the scene entirely or

manually add several point matches to get a more accurate estimate of the essential matrix

and perform the above test again. All the scenes in our dataset have passed this test.

2.4 Matching Images in Low-light Scenes

This section discusses what methods are applicable to matching low-light images in our

dataset. We evaluate those in our experiments.

2.4.1 Conversion of RAW Images to RGB

As there is currently no image matching method directly applicable to RAW-format

images, we consider existing keypoint detectors and local descriptors that receive grayscale

images. To cope with the low-light condition, we plug image enhancement methods before

keypoint detectors and local descriptors, which we will describe later.

It is first necessary to convert RAW-format images into RGB/grayscale images. We

have two choices here. One is to use the standard RIP that converts RAW to RGB. As

mentioned in Sec. 2.1, the standard RIP often fails to make use of brightness information

stored in the lower bits of RAW signals of dark scenes, due to the requirement for versa-

tility against a variety of scenes with different illumination conditions and also the limit

of computational resources available to on-board RIP. To confirm its limitation, we evalu-
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Figure 2.3: The pipelines of two image-enhancing methods. (a) Direct-HistEq or Direct-
CLAHE. (b) SID.

ate this standard-camera-pipeline-based conversion in our experiment; we use the LibRaw

library using rawpy, a Python image processing module.

The other choice is to do the conversion without using the standard RIP. We will explain

this below, because it is coupled with the image enhancement step.

2.4.2 Image Enhancement

Thus, we consider two methods, i.e., using the standard RIP for the RAW-to-RGB

conversion and directly using RAW-format images. For each, we consider three different

image enhancing methods.

Conversion by standard camera pipeline

When using the standard RIP to convert RAW images, we consider applying the follow-

ing four methods to its outputs: none, a classical histogram equalization, a contrast limited

adaptive histogram equalization (CLAHE), and a CNN-based image enhancement, MIR-

Net [105]. We choose MIRNet because it is currently the best image-enhancing method

applicable to RGB/grayscale images. Figure 2.2(a) shows examples of the standard RIP

with histogram equalization. We will refer to the four methods as standard RIP, RIP-
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HistEq, RIP-CLAHE, and RIP-MIRNet in Sec. 3.5.

Direct Use of RAW-format Images

We consider two approaches. One is to use standard image processing methods to

convert RAW to RGB/grayscale images; see Fig. 4.2(a). For this, we employ the follow-

ing simple approach. Given a Bayer array containing the input RAW data, we first apply

black level subtraction to it and then split the result into four channels; the pixel values

are now represented as floating point numbers. We then take the average of the two green

channels to obtain an RGB image and convert it to grayscale using the OpenCV function

cvtColor. Next, we perform histogram equalization or CLAHE to improve the bright-

ness of the image. We map the brightness in the range [m − 2d,m + 2d], where m is the

average brightness and d is the mean absolute difference from m to each pixel value, to

the range [0, 255]. Finally, we quantize the pixel depth to 8 bits. We will call this method

Direct-HistEq or Direct-CLAHE.

We optionally apply denoising to the converted image at the final step. We employ

BM3D [104] with a noise PSD ratio of 0.08 in our experiments. The resulting image will

be transferred to the second step of image matching. Figure 2.2(b) shows examples of the

converted images by the method. We will call this method Direct-BM3D.

In parallel to the above, we consider a CNN-based image enhancing method that di-

rectly works on RAW-format images; see Fig. 4.2(b). We employ SID [5], a CNN trained

on the task of converting an underexposed RAW image of a low-light scene to a good qual-

ity image. It is designed to receive the RAW data of an image and output an RGB image.

We calculate the amplification ratio of SID using shutter speed and ISO values between the

underexposed and the reference images. As the output of SID is twice as large as others, we

downscale the image size by 2 : 1 and then convert it into grayscale for image matching;

see Fig. 2.2(c). We used the pretrained model provided by the authors , which is trained on

the SID dataset. We call this method SID in what follows.

2.4.3 Image Matching

We consider matching a pair of images of a scene here. It is to establish point correspon-

dences between images while imposing the epipolar constraint on them and estimate the

46



camera pose (., a essential or fundamental matrix) encoded in the constraint. The standard

approach to the problem is to first extract keypoints and their local descriptors from each

input image, establish initial matching of the keypoints between the images, and finally

estimate the camera pose from them.

There are at least several methods for each of the three steps. There are many classical

methods that do not rely on learning data. As with other computer vision problems, neural

networks have been applied to each step. They were first applied to the first step, ., keypoint

detectors [107] and descriptors [110, 112–114], to name a few. The next was the third step

of robust estimation [29, 30]. Recently, SuperGlue [3] was proposed, which deals with the

step of establishing initial point correspondences.

2.5 Experiments

We experimentally evaluate the combinations of several methods discussed in Sec. 2.4

using our dataset.

2.5.1 Experimental Configuration

Compared Methods

We choose both classical methods and neural network-based methods for each step of

image matching. As for keypoint detection and local descriptors, we choose RootSIFT [1]

and ORB [24] as representative classical methods; we consider ORB because it has been

widely used for visual SLAM. We use their implementation of OpenCV-3.4.2. We use

SuperPoint 2 [2], Reinforced SuperPoint 3 [133], GIFT 4 [134], R2D2 5 [27], and RF-Net
6 [135] as representative neural network-based methods. Furthermore, we employ L2-Net
7 [136] and SOSNet 8 [137] as hybrid methods of classical and neural-based methods; they

compute local descriptors based on the SIFT keypoints and neural networks. For them, we

use the authors’ implementation and follow the settings recommended in their papers.
2https://github.com/magicleap/SuperPointPretrainedNetwork
3https://github.com/aritra0593/Reinforced-Feature-Points
4https://github.com/zju3dv/GIFT
5https://github.com/naver/r2d2
6https://github.com/Xylon-Sean/rfnet
7https://github.com/ubc-vision/image-matching-benchmark
8https://github.com/ubc-vision/image-matching-benchmark
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Figure 2.4: Angular errors of the camera pose estimated by several methods for a scene
from images with 6 × 8 different exposure settings. The number of cells with an error
lower than a specified threshold quantifies the robustness of the method.

As for outlier removal of point correspondences, we choose RANSAC and NG-RANSAC

[29]. We use the OpenCV-3.4.2 implementation of RANSAC with threshold = 0.001,

probability = 0.999, and maxIters = 10, 000 with the five point algorithm and use the

authors’ code for the latter. For obtaining initial point correspondences, we use the nearest

neighbor search and also SuperGlue 9 [3]. We apply Lowe’s ratio test [8] with a threshold

of 0.8 to RootSIFT, L2-Net, SOSNet, and RF-Net.

To summarize, we compare the following eleven methods: SP: Superpoint + NN +

RANSAC, RSP: Reinforced SuperPoint + NN + RANSAC, GIFT: GIFT + NN + RANSAC,

SP + SG: SuperPoint + SuperGlue + RANSAC, R2D2: R2D2 + NN + RANSAC, RF: RF-

Net + NN + RANSAC, L2: L2-Net + NN + RANSAC, SOS: SOSNet + NN + RANSAC,

RS: RootSIFT + NN + RANSAC, RS + NG: RootSIFT + NN + NG-RANSAC, ORB:

ORB + NN + RANSAC. As for image enhancers, we use the eight methods explained

in Sec. 2.4.2., i.e., standard RIP, RIP-HistEq, RIP-CLAHE, RIP-MIRNet, Direct-

HistEq, Direct-CLAHE, Direct-BM3D, and SID. We combine these eight image en-

hancers with the above eleven image matching methods and evaluate each of the 88 pairs.

We resize the output images from each image enhancer to 960 × 640 pixels and feed it to

the image matching step.

9https://github.com/magicleap/SuperGluePretrainedNetwork
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Figure 2.5: The normalized numberNτ of the exposure settings (the vertical axis) for which
the estimation error of each method is lower than threshold τ (the horizontal axis). Each
panel shows the means and standard deviations over 54 indoor scenes for the eleven image
matching methods for an image-enhancing method.

Evaluation

We compare these methods by evaluating the accuracy of their estimated relative cam-

era pose. We apply each pair of an image enhancer and an image matching method to the

stereo images of each scene. We consider only pairs of stereo images with the same ex-

posure setting; there are 48 pairs per each scene. Thus, we have 48 estimates of relative

camera pose for each scene.

To evaluate the accuracy of these estimates, we follow the previous work [3, 29, 30].

Specifically, we measure the difference between the rotational component of the ground

truth camera pose and its estimate, as well as the angular difference between their transla-

tional components. We use the maximum of the two values as the final angular error. Figure

2.4 shows examples of the results. Each of the colored 6 × 8 matrices indicate the above

angular errors of one of the compared methods for a scene and the 48 exposure settings.

We are interested in how robust each method will be for underexposed images. To

measure this, we count the exposure settings (out of 48) for which each method performs

well. To be specific, denoting the above angular error of i-th exposure setting by ei (i =

1, . . . , 48), we set a threshold τ and count the exposure settings with an error lower than τ as

Nτ =
∑48

i=1 1(ei < τ), where 1(True) = 1 and 1(False) = 0. We normalize Nτ dividing

by the total number of exposure settings. As shown in Fig. 2.4, the angular error decreases

roughly in a monotonic manner from well-exposed toward underexposed settings. Thus, a

larger Nτ means that the method is more robust to underexposure.
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Figure 2.6: Visualization of the matching results for one of the 54 indoor scenes. Point
correspondences judged as inliers are shown in green lines. The combination of three
matching methods and the four image enhancing methods are applied to two image pairs
with different levels of exposure (i.e., ‘Easy’ and ‘Hard’).

2.5.2 Results

Figure 2.5 shows the results for the indoor scenes; see Fig. 11 in the supplementary for

the outdoor scenes. Table 2.1 shows the mean of Nτ with τ = 5◦ over 54 scenes for indoor

and outdoor scenes, i.e., the values of the curve in Fig. 2.5 and Fig. 11 at the error threshold

τ = 5◦. It can be used as a summary of Fig. 2.5 and Fig. 11. We can make the following

observations.

First, the overall comparison of the image enhancers indicates the following: i) Using

the standard RIP to convert RAW-format images to 8-bit RGB images before enhancing and

matching is inferior to the direct use of RAW-format images. This shows that the standard

RIP cannot utilize the information stored in the low bits of the RAW signals. This fact

forms a basis for our dataset.

Next, the overall comparison of the image matching methods yields the following: ii)

SP and its variants are clearly better than the other methods. For example, SP and GIFT

outperform RS and R2D2 in all cases. This may somewhat contradict previous reports

[102, 133] that while SP is superior to SIFT in the homography-based evaluation using the

HPatches dataset, the superiority is not observed in the evaluation with non-planar scene
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matching. Additionally, iii) SP+SG performs the best in many cases. However, the gap

to other methods considerably differs between the indoor and the outdoor scenes. For the

outdoor scenes, the gap to the second-best methods tends to be large, whereas, for the

indoor scenes, it is not so large.

The comparison within standard-camera-pipeline-based enhancers indicates the follow-

ing. iv) The results of the standard RIP (without any enhancement) are the worst. Compar-

ing RIP-HistEq and RIP-MIRNet, the former is comparable or even better than the latter.

This agrees with the results reported in the recent study of Jenicek and Chum [128], where

the authors use 8-bit RGB images outputted from the standard RIP.

Finally, the comparison within the enhancers using RAW-format images shows the fol-

lowing. v) For the outdoor scenes, the four enhancers show similar performance in many

cases. When used with SP+SG, both BM3D and SID perform better than Direct-HistEq

and Direct-CLAHE; the two show the best performance. For the indoor scenes, while there

is a similar tendency, SID shows a good margin with others only when used with SP+SG. It

is noteworthy that the superiority of SG depends on the chosen image enhancer, regardless

of whether they are applied to indoor or outdoor scenes; this tendency cannot be predicted

sorely from the performance of SP.

We conclude that if we use SG, we should choose SID for the image enhancer, which

achieves the best performance; if we do not, we should use BM3D since it achieves good

performance overall. This conclusion differs from that with the standard-camera-pipeline-

based enhancers (i.e., (iv)), which is another evidence that the proposed dataset offers what

is unavailable in the previous datasets providing only low-bit depth images. Figure 2.13

shows the visualization of a few matching results for an indoor scene.

2.6 Summary and Discussion

This paper has presented a dataset created for evaluating image matching methods for

low-light scene images. It contains stereo images of diverse low-light scenes (54 indoor and

54 outdoor scenes). They are captured with 48 different exposure settings, including from

mildly to severely underexposed ones. The dataset provides ground truth camera poses to

evaluate image matching methods in terms of the accuracy of estimated camera poses.

We have reported the experiments we conducted to test multiple combinations of exist-
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ing image-enhancing methods and image-matching methods. The results can be summa-

rized as follows.

• The direct use of the RAW-format images shows a clear advantage over the standard

RIP. Using the standard RIP yields only suboptimal performance, as it cannot utilize

information stored in the lower bits of RAW-format signals. Moreover, when using

the standard RIP, using classical histogram equalization or the state-of-the-art CNN-

based image-enhancing method does not make a big difference, as reported in [128].

• SuperPoint and its variants work consistently better than RootSIFT.

• SID is the best image enhancer when using SuperPoint+SuperGlue. Otherwise,

BM3D and SID perform equally well and better than the sole use of histogram equal-

ization.

While the above is our conclusion about the combinations of currently available meth-

ods, we think there remains much room for improvement. For instance, we manually chose

the range of 14-bit RAW signal and converted it into 8-bit images, and applied Superpoint

to them. It is observed that the manual method yields significantly better results than the

image enhancers tested in this paper, showing that none of the tested methods can choose

the best range in the 14-bit RAW signals for image matching; see Sec. B in the supplemen-

tary for details. The standard image enhancers are designed to yield images that appear the

most natural, which should differ from the best image for image matching. We will explore

this possibility in a future study.

2.7 Appendix

2.7.1 Distinction from Existing Datasets

Figure 2.7 shows example images of our dataset and RobotCar [33]. Most of our images

are darker than the darkest one of RobotCar. The standard raw image processing yields

mostly black images from them. Nevertheless, one can derive sufficient info from their

RAW signals, when treating them properly.
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Figure 2.7: Comparison between RobotCar [4] and our dataset.

(a) (b)

(c) (d)

dR: 13.05    dT: 41.50 dR: 15.10    dT: 71.41

dR: 1.71      dT: 17.43 dR: 0.34    dT: 3.68

Figure 2.8: Matching results of SP with (a) Direct-HistEq, (b) Direct-BM3D, (c) SID,
and (d) Images obtained by manual adjustment of brightness range in 14-bits RAW signals.

2.7.2 Performance Comparison to a Manual Adjustment

Figure 2.8 shows the results of using SuperPoint with the three image-enhancing meth-

ods and the result obtained by using SuperPoint on a manually converted 8-bit image from

the same RAW image. To be specific, we manually chose the range of 14-bit RAW signal

and converted it into an 8-bit image. The values of ‘dR’ and ‘dT’ indicate the rotation and

translation errors for each method. It is observed that the manual method yields signifi-

cantly better results than others and indicates that there is stil much room for improvement.

2.7.3 All Samples of Scene Images in the Dataset

Figures 2.9 and 2.10 show all samples of indoor and outdoor scenes in our dataset,

respectively. All images are obtained from the long exposure RAW-format images by the

standard RIP.
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2.7.4 More Results of Image Matching

Figure 2.11 shows the normalized number Nτ of the exposure settings for which the

estimation error is lower than threshold τ averaged over 54 outdoor scenes.

Figure 2.12 shows the average angular errors of the camera pose estimated by the com-

pared 88 methods (i.e., eight image enhancers with eleven image matching methods) over

all scenes for each of the 6× 8 exposure settings.

2.7.5 Visualization of Matching Results

Figure 2.13 and 2.14 show examples of the visualization of the matching results by the

88 methods for an indoor and an outdoor scene, respectively.
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Table 2.1: Averaged numberNτ over 54 scenes of exposure settings for which each method
yields a better result than error threshold = 5◦. Extracted from Fig. 2.5 and Fig. 2.11 in the
supplementary. ‘R-’ means ‘RIP-’ and ‘D-’ means ‘Direct-.’

Indoor

RIP R-HistEq R-CLAHE R-MIRNet D-HistEq D-CLAHE D-BM3D SID

SP 0.223 0.421 0.275 0.381 0.548 0.540 0.596 0.583

RSP 0.190 0.379 0.277 0.365 0.523 0.523 0.581 0.577

GIFT 0.238 0.427 0.338 0.390 0.552 0.550 0.602 0.583

SP + SG 0.219 0.400 0.292 0.404 0.548 0.544 0.585 0.619

R2D2 0.113 0.317 0.192 0.229 0.388 0.383 0.483 0.421

RF 0.138 0.154 0.152 0.192 0.256 0.275 0.346 0.358

L2 0.027 0.323 0.077 0.227 0.442 0.415 0.444 0.394

SOS 0.029 0.333 0.077 0.229 0.438 0.429 0.440 0.392

RS 0.025 0.317 0.071 0.210 0.423 0.404 0.410 0.369

RS + NG 0.023 0.288 0.073 0.202 0.404 0.398 0.388 0.363

ORB 0.029 0.210 0.056 0.125 0.267 0.238 0.296 0.238

Outdoor

RIP R-HistEq R-CLAHE R-MIRNet D-HistEq D-CLAHE D-BM3D SID

SP 0.233 0.379 0.269 0.352 0.460 0.475 0.502 0.500

RSP 0.215 0.363 0.277 0.335 0.435 0.448 0.494 0.477

GIFT 0.254 0.375 0.321 0.358 0.475 0.477 0.506 0.492

SP + SG 0.302 0.419 0.365 0.410 0.525 0.527 0.577 0.575

R2D2 0.104 0.240 0.163 0.188 0.267 0.277 0.373 0.321

RF 0.160 0.146 0.183 0.202 0.225 0.244 0.323 0.325

L2 0.052 0.331 0.096 0.258 0.410 0.423 0.427 0.406

SOS 0.054 0.325 0.096 0.256 0.417 0.413 0.423 0.402

RS 0.046 0.317 0.094 0.242 0.410 0.413 0.404 0.406

RS + NG 0.048 0.296 0.102 0.229 0.388 0.392 0.396 0.375

ORB 0.069 0.213 0.094 0.144 0.265 0.233 0.277 0.217
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Figure 2.9: Samples of all image pairs (long exposure versions) of the indoor scenes.
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Figure 2.10: Samples of all image pairs (long exposure versions) of the outdoor scenes.
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Figure 2.11: The normalized number Nτ of the exposure settings (the vertical axis) for
which the estimation error of each method is lower than threshold τ (the horizontal axis).
Each panel shows the means and standard deviations over 54 outdoor scenes for the eleven
image matching methods for an image-enhancing method.
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Figure 2.12: Average angular errors of the camera pose estimated by the 88 methods (i.e.,
eight image enhancers with eleven image matching methods) over all the 54 scenes for each
of the 6 × 8 exposure settings. (I) RIP. (II) RIP-HistEq. (III) RIP-CLAHE. (IV) RIP-
MIRNet. (V) Direct-HistEq. (VI) Direct-CLAHE. (VII) Direct-BM3D. (VIII) SID.
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Figure 2.13: Visualization of the matching results for one of the 54 indoor scenes. Point
correspondences judged as inliers are shown in green lines. The combination of eleven
matching methods and the eight image enhancing methods are applied to two image pairs
with different levels of exposure (i.e., ‘Easy’ and ‘Hard’).
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Figure 2.14: Visualization of the matching results for one of the 54 outdoor scenes. Point
correspondences judged as inliers are shown in green lines. The combination of eleven
matching methods and the eight image enhancing methods are applied to two image pairs
with different levels of exposure (i.e., ‘Easy’ and ‘Hard’).
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Chapter 3

Better Utilizing RAW Images of

Low-light Scene

3.1 Introduction

Coping with complex lighting, especially extreme low-light conditions, has always

been an important and challenging topic for computer vision tasks related to 3D recon-

struction. Such as Structure-from-motion (SfM) or visual SLAM. Although, to a limited

extent, we can widen their application fields by improving the generalizability of the model

to low-light conditions. However, the essence of this issue is how to obtain high-quality

images for downstream tasks.

The advancement of image sensors allows them to record incoming light with more

than eight bits (e.g., 14 bits), and the unprocessed data from the camera is first stored in a

RAW image. The standard approach to obtaining RGB images is to convert RAW images

to RGB vair an Image Signal Processor (ISP). Although many optimization processes or

enhancement methods are included in camera ISPs, this transformation process irreversibly

converts RAW images with high-precision information into RGB images with lower-bit

space and causes information loss. As a result, RGB images do not keep the complete

information in RAW images, especially the information existing in the lower bits. This

limitation arguably comes from the conflict between versatility against various lighting

conditions and reducing the number of bits.

In extreme low-light environments, such as outdoor scenes at night under moonlight or
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indoor scenes with insufficient illumination, even when some details of the scenes’ bright-

ness are stored in the low bits of their RAW signals, camera ISPs often yield mostly black

images. Although many physical settings can be adjusted to obtain brighter images in

modern cameras, e.g., opening the aperture, extending exposure time, using higher ISO, or

using flash; however, each option is a trade-off. For example, increasing exposure time or

using a bigger aperture can introduce blur, high ISO can amplify noise, and flash does not

work in open scenes.

Recently, CNNs have been widely applied to various computer vision tasks, leading

to promising results. The study of SID (see-in-the-dark) [5] shows that a CNN can learn

to convert such RAW images of low-light scenes into brightened images with a natural

appearance. It is very likely that we can skip the camera ISP and directly use the informa-

tion present in RAW images to gain downstream models applied to low-light scenes. The

question is how to do this. It is noteworthy that the goal is not to generate natural-looking

bright images as SID does but to achieve the optimal performance for downstream tasks.

Potentially, we can develop downstream task models that work on RAW images di-

rectly. In parallel to these, another idea is that we can add some priors during the training

of the image enhancement model to induce the model to produce images that are favorable

for downstream tasks. However, there are currently few RAW image datasets that we can

use to train downstream task models, especially for 3D reconstruction. Specifically, exist-

ing datasets containing RAW images [5, 7, 138] don’t meet the requirements for training

models for 3D reconstruction, such as image matching and monocular depth estimation.

For instance, lack of co-visibility image pairs of one scene, camera intrinsics, and ground

truth of depth information.

To promote further studies, we need a dataset that can support model training for more

computer vision tasks, including 3D reconstruction. Aiming to widen their application

field toward lower-light scenes, the dataset must include underexposed images of various

degrees. There is currently no dataset that can be used for this purpose. Considering these,

we collected a new dataset, MID-v2. The characteristics of this dataset are as follows:

• We provide data of several indoor and outdoor low-light scenes. For each scene, we

selected multiple viewpoints to capture. And we provide a set of RAW images for

each viewpoint. The camera is mounted on a tripod while capturing all the images,

so that each group of images corresponds strictly.
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• There are 12 dark RAW images captured in each set with exposure settings ranging

from extreme to mildly underexposure settings. And we additionally provide one

long-exposure image in each set, using which as the ground truth.

• We provide ground truths of intrinsics, extrinsics, and depth for each set, which is ob-

tained from a powerful Structure-from-Motion (SfM) and Multi-View Stereo (MVS)

pipeline using long-exposure images.

Even though we have such a dataset, as mentioned above, implementing the down-

stream task methods on such low-light RAW images is still a problem. In this paper, we

introduce a novel enhancer for RAW image processing, SuperISP, designed/trained to uti-

lize the information stored in RAW images of low-light scenes to yield better performance

for downstream tasks related to 3D reconstruction. It is trained jointly with a weakly su-

pervised signal about feature extraction. Specifically, we consider the global and spatial

invariance of the features extracted from the CNN encoder and use it as a weakly super-

vised signal to train the SuperISP. Then, we experimentally evaluate the SuperISP on two

typical downstream tasks related to 3D reconstruction. The SuperISP achieves better per-

formance on the two downstream tasks than other enhancers that aim to obtain a high visual

quality image.

3.2 Related Work

3.2.1 Datasets for 3D Reconstruction

There are many datasets created for the research of 3D reconstruction, which include

ground truth of depth. Some of them are created based on SfM pipelines [139–142], and

also some are based on RGB-D cameras [143–146], or LiDARs [147, 148]. However,

few datasets include samples of low-light scenes. Compared to these datasets, our dataset

provides the images of very dark scenes all in a RAW with 14-bit depths. On the other hand,

there are also a number of datasets created for visual SLAM and localization/navigation

[4,124,126,127,148]. Some of these datasets provide challenging cases of low-light scenes.

However, all these datasets provide only images and omit ground truth of depths.
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3.2.2 Low-light image enhancement

Generally, the image enhancement technique improves the visual quality of the low-

quality low-light images. It supports further high-level computer vision tasks to extract

valuable information from the captured images. Numerous low-light image enhancement

methods have been proposed over last decades, which can be roughly grouped into tradi-

tional and deep learning-based methods.

Traditional Methods. The most intuitive and simplest way is to linearly adjust the

value rage or execute a nonlinear Gamma correction on inputs. Based on the retinex the-

ory [149], several models were proposed for low-light image enhancement. For instance,

SSR [150] first uses the Gaussian blurred input as its illumination map, and then removes

the estimated illumination from the input as its final result. MSR [151] extends SSR [150]

by fusing the results of multiple Gaussian blur functions with different variances.

Deep learning-based Methods. Recently, deep learning-based methods have domi-

nated the image enhancement community [37–44]. MSR-Net [152] integrates the MSR

mechanism into a deep neural network and uses the BM3D [153] for denoising. SID [5]

creates a dataset containing pairs of underexposed and well-exposed RAW images, which

are used to train a CNN model in supervised fashion. SID [5] can handle more severe image

noise and color distortion emerging in underexposed images than the previous methods.

3.2.3 3D Reconstruction tasks

Image matching. Matching multi-view images of a scene is a fundamental computer

vision task, which firstly detects keypoints / computes local descriptors, then establish ini-

tial point correspondences, and finally remove outliers to find the correct correspondences.

The traditional methods consist of SIFT [154], SURF [155], e.t.c. With the deep learn-

ing developing, numerous methods [2, 25, 105, 108–110, 112, 115, 116, 156] are proposed

to use Convolutional Neural Networks (CNNs) to detect keypoint or extract local detec-

tors. Moreover, Several studies [3, 29] are proposed for initial point matching and outlier

removal.

Depth estimation. The current depth estimation methods can be roughly grouped into

supervised and self-supervised methods. As supervised methods, combining local pre-

dictions [157, 158], non-parametric scene sampling [159], through to end-to-end super-
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vised learning [160–162] have been explored. The supervised methods require ground

truth depth during training. However, this is challenging to acquire the sufficient ground

truth in the real-world. Consequently, the various self-supervised approaches are pro-

posed [163, 163–169]. Here, the model is given a set of images as inputs, either in the

form of stereo pairs or monocular sequences. By hallucinating the depth for a given image

and projecting it into nearby views, the model is trained by minimizing the image recon-

struction error.

3.3 Dataset of Low-light Scenes for 3D Vision Tasks

3.3.1 Overview of Dataset

We created a dataset of low-light scenes for 3D vision tasks, named as MID-V2 (Match-

ing In the Dark V2). It contains multi-view images of eight indoor and five outdoor scenes

that can be used to reconstruct the scenes with SfM/MVS. We selected static scenes without

moving objects to ensure an ideal setting for SfM/MVS.

Each scene contains between 34 and 572 multi-view images (127 on average).We used

a high-end digital camera with a lens with minimum distortion to capture all the images;

they are recorded in a RAW format with 14-bit per pixel. For each of the viewpoints, we

capture a set of images with 13 different exposure settings, i.e., 12 underexposed settings in

a fixed range plus one long exposure setting to acquire a reference image. We selected these

underexposure settings so that the captured images cannot be converted to normal-quality

RGB images by standard camera ISPs.

We create the depth map for each viewpoint of each scene using a state-of-the-art

SfM/MVS software, providing it as a ground-truth depth map as a part of the dataset;

see Sec. 3.3.3 for details. It also contains the intrinsics and extrinsics of the camera at each

viewpoint.

Figure 3.1 shows example images of two indoor and outdoor scenes with their depth

maps. Users can train and evaluate methods for 3D vision tasks such as SfM/MVS, image

matching, image-enchancement, etc. using this dataset.
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Figure 3.1: Examples of stereo image pairs (long exposure versions) and the corresponding
ground truth depth maps.

3.3.2 Detailed Specifications

The dataset contains 19,032 images (17,568 underexposed + 1,464 long exposure) in

total. They are of 6,720 × 4,480 pixels and in a 14 bpp RAW format; its Bayer pattern is

RGGB. We used Canon EOS 5D Mark IV with a full-frame CMOS sensor and EF24-70mm

f/2.8L II USM to capture these images.

We set up the camera for each scene in multiple viewpoints to capture stereo images.

For each view, we mounted the camera on a sturdy tripod while capturing 13 images. We

first captured a long-exposure image, which serves as a reference image. We set the expo-

sure time to 20 seconds while fixing ISO to 400 and the aperture to f/8.0. We then captured

low-light images at 13 different exposure settings, combining six different exposure times

and eight different ISO values. The exposure time is chosen from the range of [1/200, 0.5]

seconds and the ISO value is chosen from {100, 200, 400, 800, 1600, 3200, 6400}.

The indoor scene images were captured in closed rooms at night with regular lights

turned off; the illuminance at the camera is in the range of 0.02 to 0.3 lux. The outdoor

scene images were captured at night under moonlight or streetlights. The illuminance at

the camera is in the range of 0.01 to 3 lux.
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Table 3.1: The composition of MID-V2 dataset.

Indoor Outdoor

Scn-1 Scn-2 Scn-3 Scn-4 Scn-5 Scn-6 Scn-7 Scn-test Total Scn-1 Scn-2 Scn-3 Scn-4 Scn-test Total

Views 150 149 71 41 42 34 99 75 661 572 79 100 127 112 990

Depth maps 150 107 55 40 40 22 88 67 569 516 79 98 117 112 922

Images 1,950 1,937 923 533 546 442 1,287 975 8,593 7,436 1,027 1,300 1,651 1,456 12,870

3.3.3 Obtaining Ground Truths

As mentioned above, MID-V2 dataset contains the camera intrinsics / extrinsics and

the scene depth maps at each viewpoint of each scene. To estimate them with the quality

of ground truth data, we employ a state-of-the-art commercial software for SfM/MVS to

estimate them using the reference long-exposure images.

We first convert the reference images in the RAW to high-quality RGB images to ob-

tain the best 3D reconstruction result. We use Adobe Lightroom, an image processing

software, to process each image with manual adjustments. Specifically, starting with au-

tomatically selected settings, we manually adjusted the brightness histogram to decrease

excessive highlights and shadows and minimize missing tones.

We then create a 3D model of each scene using the converted references in the RGB

format. We use RealityCapture to perform SfM to obtain sparse point clouds and camera

intrinsics/extrinsics and MVS to obtain dense depth maps seen at each viewpoint. The

sparse point cloud for each scene consists of 3D coordinates of keypoints and their camera

visibility. The software’s good performance was able to produce high-quality results;

see Figure 3.1. RealityCapture often fails to estimate scene depths in some local regions

or sometimes completely fails recover the depths over the entire image. We do not provide

depth maps for the latter viewpoints. Table 3.1 shows the detailed statistics of the dataset.

We completed capturing images at once for all the scenes but outdoor scene-1. For

outdoor scene-1, following MegaDepth [139], a dataset containing scene depths, we used

semantic filtering to process the obtained depth maps to ensure accuracy. That is, we first

detect transient objects in the scene, such as cars, using a pre-trained segmentation network,

PSPNet [170]. We then remove the estimated depths in their regions.
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3.4 SuperISP: ISP for 3D Reconstruction

3.4.1 Utilizing RAW Images of Low-light Scenes

There are several methods to convert an underexposure RAW image into an RGB-

format image, i.e., standard camera ISPs, classical image enhancers based on brightness

normalization [149, 151, 171], and modern learning-based image enhancers, such as SID

[5]. Previous studies [7] point out that standard camera ISPs cannot make full use of the

information stored in RAW data and are empirically shown to be inferior to the other two

approaches. The classical image enhances that use normalization operations, such as his-

togram equalization (abbreviated as HistEq in this paper) and Local Contrast Normalization

(LCN), work fairly well to brighten underexposure RAW images. However, they tend to

suffer from strong noises in the resulting images.

The CNN-based approaches enhance the RAW images, which provide a better signal-

to-noise ratio (SNR) than the classical methods. While many methods have been developed

following this approach, they are designed to achieve the highest visual quality. That is,

the networks are trained to make the output images as close to their reference image (long-

exposure image) as possible with supervised by L1 loss.

However, our goal here is to achieve good quality in 3D reconstruction, not high visual

quality. While there is some overlap between the two, there are also differences. As shown

in previous studies [7], SID and its variants do not show a clear advantage over the classical

approach using HistEq followed by denoising with BM3D.

3.4.2 Architectural Design

Based on the above consideration, we introduce a novel CNN-based enhancer for RAW

image processing, named SuperISP. SuperISP is designed/trained to utilize the information

stored in RAW images of low-light scenes to yield best 3D reconstruction. Example outputs

from SuperISP and SID are shown in Figure 3.2.

SuperISP consists of three components, i.e., normalization processing, denoiser and

channel attention fusion. The structure of SuperISP is shown in Figure 3.3.

Normalization. Given a Bayer RAW image X ∈ RH×W×1, we first perform black-

level subtraction and unpack it into four channels (RGGB) denoted as R ∈ RH
2
×W

2
×4.
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(a)

(b)

HardEasy Intermediate

Figure 3.2: Comparison of outputs between (a) SID [5] and SuperISP under easy, mild
intermediate and hard exposure settings.
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Figure 3.3: The framework of SuperISP. The Bayer Raw images are first performed “un-
packing” and Black Level Subtraction options to obtain the RGGB images, which then are
input into SuperISP. SuperISP consists of normalization, denoiser and channel attention
fusion. The outputs of SuperISP are used for the downstream tasks learning.

Then we process the R by using two kinds of normalization, i.e., histogram equalization

(HistEq) denoted asNH and local contrast normalization (LCN) denoted asNL. Formally:

TH , TL = NH(R),NL(R) (3.1)

where TH , TL ∈ RH
2
×W

2
×4, denotes the outputs ofNH andNL, respectively. It is worth

noting that the normalization operation used in SID [5] is that multiply an amplification

ratio to R, where the ratio is set to be the exposure difference between the input and refer-

ence images. However, it isn’t easy to estimate a suitable ratio in practice due to complex

lighting conditions and camera parameter settings. e.g., the brightness of an image depends

not only on the exposure time but also on ISO and aperture.

Denoiser. Since NH and NL output different noise distributions on TH and TL, we

design two denoisers for them, respectively. Specifically, we use two scaled-down versions
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(half-channels) of U-Net [157] as denoisers, denoted as UH and UL, respectively. Note

that the two denoisers perform denoise in a RAW-to-RAW manner, which is different from

SID [5] performing RAW-to-RGB manner. The output channels of UH and UL are H
2
×

W
2
× 4. Then UH(TH) and UL(TL) are concatenated as the input of the channel attention

fusion module. Formally:

P = Concat [UH(TH),UL(TL)] (3.2)

where P ∈ RH
2
×W

2
×8. In practice, these two denoisers are pre-trained on MID-V2 dataset

supervised by L1 loss, respectively.

Channel attention fusion. This module fuses information from UH(TH) and UL(TL).
The fused information is input to a pixel-shuffle module to generate the final output. For-

mally:

I = S(AC(P )) (3.3)

where I ∈ RH×W×3, AC denotes the channel attention layer and S denotes the operation

of efficient sub-pixel convolution with a stride of 1/3.

We end up with the output of SuperISP I . We keep the I have the three channels so

that it can be unified with downstream task models trained on RGB images. The difference

is that SuperISP does not compress it to 8-bit space.

3.4.3 Weakly Supervised Training Strategy

Different from the previous image enhancement approaches, e.g., SID [5], in which, a

reconstruction loss is used to induce the output of model only look like the reference image,

this work aims to make the output of SuperISP good for downstream tasks learning. Con-

sequently, SuperISP is trained in a weakly supervised strategy. Our approach is illustrated

in Figure 3.4.

Given a pair of RAW image patches(X1,X2), SuperISP outputs a pair of images (I1, I2).

In this process, we first employ a reconstruction loss to supervise the distribution of I1 and

I2 similar with the reference images, i.e., long-exposure images.

Li
R(Ii, Gi) = w1 · L1(Ii, Gi) + w2 · SSIM(Ii, Gi) (3.4)
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Figure 3.4: SuperISP train strategy.

where Gi denotes the corresponding reference RGB image, L1(·) and SSIM(·) represent

the L1 loss and structural similarity index measure (SSIM) loss, respectively. w1 and w2

are weighting factors.

The output pair of SuperISP (I1, I2) and the reference image pair (G1, G2) are input

into an encoder F , i.e., ResNet-18 [172]. Then we obtain the feature maps of I1, I2, G1

and G2, denoted as F(I1),F(I2),F(G1) and F(G2). Specifically, we discard the last three

blocks of ResNet-18 [172]. Consequently, the channel of F(·) is H
16
× W

16
× 256. Then

the mean squared error (MSE) loss is applied between Ii and Gi, which aims to align the

feature maps between low-light images and long-exposure images. The loss function is

formulated as:

Li
F (F(Ii),F(Gi)) =MSE(F(Ii),F(Gi)) (3.5)

In practice, we detach the gradient of F(Gi) during the training process to eliminate

the ambiguity of feature alignment. Intuitively, the loss LF can be regarded as a global

supervision signal.

In order to supervise the generation of local features, we employ a cross matching loss

that emphasizes the spatial invariance of local features, which is important for 3D vision

tasks. Specifically, we perform a ranking loss, i.e., Average Precision (AP) loss [?, ?] to

train our model. C : I1 ↔ I2 is defined as the ground-truth correspondences between I1 and

I2. Specifically, if the pixel (i, j) of I1 corresponds to pixel (i′, j′) of I2, then Cij = (i′, j′).

Actually, C can be estimated by using the ground-truth depth maps and extrinsics of I1 and
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I2

If there are N corresponding local features between F(I1) and F(I2), i.e., Cn : I1 ↔
I2 ∈ N , the cross matching loss is defined as:

LM(F(I1),F(I2)) =
1

N

N∑
n=1

[1− AP (F(I1),F(I2), Cn)] (3.6)

where AP (·) denotes the ranking metric AP for N corresponding local features. The final

loss function is formulated as:

Ltotal = αLR + βLF + γLM (3.7)

α, β and γ are weighting factors. We use Ltotal supervise the SuperISP and encoder in the

end-to-end manner. As for the downstream tasks learning, we discard the encoder and use

the output I of SuperISP as the input of the downstream tasks directly.

3.5 Experimental Settings

We experimentally evaluate the proposed SuperISP and some other RAW enhancers on

two downstream tasks, i.e.,image matching and monocular depth estimation.

3.5.1 Datasets

We evaluate the image matching and monocular depth estimation on MID dataset [7]

and MID-V2 test set. Totally, the MID dataset [7] includes 108 scenes, i.e., 54 indoor

scenes and 54 outdoor scenes. MID-V2 test set includes 1 indoor scene and 1 outdoor

scene. As for one scene, the MID [7] contains RAW images captured from one pair of

viewpoints, and MID-V2 test set contains images captured from multi-viewpoints. As for

one viewpoint, the MID dataset [7] includes 48 images of different exposure settings, and

MID-V2 test set contains 13 images. Both of them include the ground truth of camera

poses and intrinsics that is used for evaluating image matching task. As for monocular

depth estimation, the existing evaluation datasets do not provide low-light RAW images,

therefore we perform the evaluation on MID-V2 test set. Specifically, the ground truth of

depth is obtained via SfM+MVS. The obtained depth cannot be used directly, because it
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is only up to an unknown scale factor. However, as mentioned in Eigen et al. [161], the

ratios of depths are preserved under scaling. Consequently, we can perform the evaluation

on such ambiguous depths after fine-tuning the model.

In the evaluation of image matching, we consider pairs of stereo images with different

exposure settings. We fix one image with a middle-level exposure setting (i.e., ISO: 400

Exposure time: 0.05 in MID [7] and ISO: 800 Exposure time: 0.025 in MID-V2 test set).

Then we perform image matching with the co-visible keypoints on its paired images taken

under all other different settings. We perform the image matching evaluation on all co-

visible viewpoints provided by the MID dataset [7]. However, In MID-V2 test set, in order

to provide the enough difference of viewpoint as that in MID [7], we randomly select 100

co-visible viewpoints to perform the evaluation for both the indoor and outdoor scenes. In

the evaluation of monocular depth estimation, all the images with depth ground truth are

used for evaluation.

3.5.2 Evaluation Metrics

Image Matching. We evaluate the image matching methods by measuring the camera

pose error between the results estimated by methods and the ground truth. Specifically, un-

der one of the exposure settings, we measure the rotational and the translational component

of camera pose. We use the maximum of the two values as the final angular error [?] under

the current exposure setting. We set a threshold τ and count all the exposure settings with

an error lower than τ , denoted as Nτ . We normalize Nτ as the final score, dividing by the

total number of exposure settings.

Monocular Depth Estimation. We adopt six evaluation metrics which are commonly

used in the previous work [139, 161, 173], i.e., Abs Rel, Sq Rel, RMSE, RMSE log,

δ<1.25, δ<1.252 and δ<1.253.

3.5.3 Compared methods

Conversion of RAW Images to RGB

The RAW images cannot be directly used for the downstream tasks. We select two

ways to convert RAW image to RGB images in order to compare with SuperISP.
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The first one is to use the camera ISP to convert RAW images to RGB images Specifi-

cally, we use the LibRaw library, i.e. rawpy, a Python image processing module.

The second one is to do the conversion plug image enhancement methods that work

on RAW images. Specifically, we consider two kinds of approaches, i.e., the traditional

method and the CNN-based method. In traditional method, we follow the work [153].

We first apply black-level subtraction to the Bayer RAW image, then perform HistEq

to improve the brightness, and split the result into RGGB. We further perform BM3D

denosie [153] with PSD ratio of 0.08 on each channel. The two green channels are then

merged into one to obtain the RGB image which pixel range is mapped into [0, 255]. Fi-

nally, we quantize the pixel depth to 8 bits. We name it as Hist-BM3D. In CNN-based

method, we consider a recent work SID [5]. We provide two kinds of SID model. (1)

The pre-trained SID model, denoted as SID. (2) Considering the domain shift between SID

dataset and ours, we retrain the SID model on MID-V2 train set. We name it as SID-R.

The difference in the implementation of the study [5] is that we calculate the amplification

ratio using shutter speed and ISO values between underexposed and reference images.

Image Matching

We compare five popular methods: SP-SG: SuperPoint [2] + SuperGlue [3] + RANSAC,

D2-Net: D2-Net [26] + Nearest Neighbor (NN) + RANSAC, LoFTR: LoFTR [31] +

RANSAC, D2-Net-f and LoFTR-f. “ *-f ” indicates that the method is respectively fine-

tuned by using the outputs RGB images provided by the enhancement methods (as men-

tioned in Sec 3.5.3). Because the ISP is difficult to yield significant RGB images, we only

use the outputs of the other four enhancement methods for finetuning, i.e., His-BM3D, SID,

SID-R and SuperISP. When we finetune the image mathching methods, the input images

are resized to 960× 640.

Monocular depth estimation

In practice, we adopt the method proposed in MegaDepth [139] which is trained in

supervised way by using ground truth depth obtained from SfM/MVS. We further use the

images provided by the enhancement methods as described in Sec. 3.5.3 (except ISP) to

finetune the model. All images are resized to 640× 480.
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Figure 3.5: Camera pose estimation results of SP-SG with SuperISP and SuperISP – LR,
respectively. “SuperISP – LR” means the SuperISP only supervised by LR.

3.5.4 Results Comparison

As for evaluation results for the image-matching task, Table 3.2 and Table 3.3 shows

the evaluation results on MID [7] and MID-V2 test set, respectively. We provide the mean

results of Nτ with τ = 5◦, 10◦ and 20◦ over indoor and outdoor scenes.

Second, when we compare the performance of different image matching methods, we

observe that (1) SP-SG and LoFTR, which cover the matching process, are clearly better

than D2-Net that only provide keypoint detection and description. Moreover, SP-SG and

LoFTR perform differently under the indoor and the outdoor scenes. Specifically, LoFTR

outperforms SP-SG under the indoor scene of MID [7], and is inferior to SP-SG under the

outdoor scenes of MID [7] and MID-V2 test set. It is because LoFTR is better suited for

the indoor scene which consist more indistinctive regions with low texture and repetitive

patterns. (3) The performance of D2-net obtains significant improvement after fine-tuning.

However, under all image enhancement methods, the performance of LoFTR turns bad after

fine-tuning. The reason is that MID-V2 training set provide more hard samples, which is

unfriendly to the LoFTR learning. Even so, we can still observe the advantage of SuperISP

compared to other methods.

Table 3.4 shows evaluation of monocular depth estimation task. We observe that Su-

perISP obtains the best or the second best performance on all metrics, even it is not designed

for the specific task. The observation is consistent with that in image matching task.
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Table 3.2: Camera pose estimation results on MID [7] dataset. The number Nτ with the
error threshold τ = 5◦, 10◦ and 20◦

.

Indoor

ISP Hist-BM3D SID SID-R SuperISP

5◦ / 10◦ / 20◦ 5◦ / 10◦ / 20◦ 5◦ / 10◦ / 20◦ 5◦ / 10◦ / 20◦ 5◦ / 10◦ / 20◦

SP-SG 0.1 / 0.2 / 0.5 36.2 / 40.5 / 45.0 53.5 / 58.5 / 63.1 48.7 / 52.2 / 56.2 56.1 / 61.2 / 67.0

D2-Net 0.0 / 0.0 /1.0 22.4 / 27.6 / 34.6 25.2 / 30.9 / 37.8 22.0 / 27.6 /34.2 27.9 / 34.0 / 41.2

D2-Net-f – 37.0 / 44.4 / 52.9 40.6 / 48.0 / 55.8 35.7 / 42.5 / 49.9 43.7 / 51.1 / 59.0

LoFTR 0.2 / 0.5 / 1.2 50.5 / 54.5 / 59.2 54.8 / 58.9 / 63.9 51.0 / 55.1 / 59.9 57.7 / 61.9 / 66.6

LoFTR-f – 45.8 / 50.1 / 55.3 50.1 / 55.2 / 60.5 48.5 / 53.0 / 57.2 55.5 / 59.9 / 64.8

Outdoor

ISP Hist-BM3D SID SID-R SuperISP

5◦ / 10◦ / 20◦ 5◦ / 10◦ / 20◦ 5◦ / 10◦ / 20◦ 5◦ / 10◦ / 20◦ 5◦ / 10◦ / 20◦

SP-SG 5.7 / 7.8 / 10.6 33.3 / 38.8 / 45.2 46.2 / 52.0 / 58.6 41.2 / 47.7 / 54.5 47.2 / 53.8 / 61.0

D2-Net 0.4 / 0.8 / 3.3 10.2 / 15.1 /22.6 13.3 / 18.9 / 26.9 11.3 / 17.0 / 24.9 10.6 / 16.4 / 24.7

D2-Net-f – 18.8 / 27.0 / 37.1 20.9 / 28.5 / 38.0 17.9 / 25.2 / 35.3 19.6 / 27.7 / 38.1

LoFTR 2.3 / 3.2 / 5.1 37.1 / 43.3 / 50.2 42.5 / 48.4 / 54.9 41.2 / 47.7 / 54.5 40.9 / 47.1 / 54.5

LoFTR-f – 30.6 / 36.5 / 43.2 32.5 / 38.7 / 46.1 30.2 / 36.8 / 43.8 34.9 / 41.9 / 49.7
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Table 3.3: Camera pose estimation results on test dataset. The number Nτ with the error
threshold τ = 5◦, 10◦ and 20◦.

Indoor

ISP Hist-BM3D SID SID-R SuperISP

5◦ / 10◦ / 20◦ 5◦ / 10◦ / 20◦ 5◦ / 10◦ / 20◦ 5◦ / 10◦ / 20◦ 5◦ / 10◦ / 20◦

SP-SG 0.1 / 0.2 / 0.3 19.5 / 23.1 / 27.4 22.3 / 27.3 / 32.9 24.5 / 29.1 / 34.3 27.5 / 32.5 / 38.0

D2-Net 0.0 0.2 0.9 5.3 / 7.3 / 10.8 4.7 / 7.5 / 12.0 5.9 / 8.7 / 13.1 5.5 / 8.6 / 13.2

D2-Net-f – 9.4 / 13.1 / 18.7 8.8 / 12.5 / 17.6 20.2 / 26.4 / 34.1 12.2 / 16.4 / 22.3

LoFTR 0.2 / 0.3 / 0.8 17.1 / 20.1 / 24.4 19.5 / 22.9 / 27.2 18.8 / 22.9 / 27.8 20.7 / 24.5 / 29.6

LoFTR-f – 11.8 / 14.8 / 18.6 12.0 / 14.9 / 18.9 18.6 / 22.2 / 26.3 18.5/ 22.2 /26.8

Outdoor

ISP Hist-BM3D SID SID-R SuperISP

5◦ / 10◦ / 20◦ 5◦ / 10◦ / 20◦ 5◦ / 10◦ / 20◦ 5◦ / 10◦ / 20◦ 5◦ / 10◦ / 20◦

SP-SG 39.2 / 44.1 / 50.5 75.4 / 79.8 / 84.1 81.8 / 84.8 / 88.0 83.3 / 87.2 / 90.6 83.8 / 87.2 / 90.4

D2-Net 6.5 / 10.1 / 15.9 29.1 / 37.2 / 46.4 37.5 / 45.1 / 53.4 37.0 / 44.2 / 52.5 32.1 / 39.5 / 48.7

D2-Net-f – 52.5 / 59.8 / 68.2 55.5 / 62.8 / 70.3 59.5 / 66.7 / 74.3 55.7 / 64.0 / 71.9

LoFTR 24.1 / 28.8 / 35.3 63.5 / 67.8 / 73.8 66.2 / 70.2 / 75.2 66.5 / 70.0 / 74.7 68.8 / 72.3 / 77.3

LoFTR-f – 57.8 / 62.5 / 68.8 56.8 / 60.7 / 66.1 62.9 / 67.4 / 73.1 66.7 / 70.8 / 76.8

Table 3.4: Monocular depth estimation results on MID-V2 test dataset. ”↓” means the
lower the better, ”↑” means the bigger the better.

Indoor

Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

Hist-BM3D 0.62 5.27 8.17 1.59 0.05 0.14 0.29

SID 0.68 6.06 8.80 2.07 0.02 0.07 0.16

SID-f 0.61 5.24 8.20 1.53 0.06 0.15 0.29

SuperISP 0.58 4.80 7.86 1.39 0.06 0.16 0.31

Outdoor

Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

Hist-BM3D 0.38 1.57 3.86 0.91 0.37 0.63 0.79

SID 0.40 1.60 3.97 1.48 0.34 0.59 0.74

SID-f 0.37 1.43 3.71 1.17 0.38 0.65 0.79

SuperISP 0.38 1.48 3.62 0.94 0.40 0.67 0.81
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Figure 3.6: Comparison of reconstructed detail. (a) SuperISP – LR (b) SuperISP

Figure 3.7: Camera pose estimation results of D2-net-f with different exposure settings.
Abscissa axis is the exposure settings from hard to easy.

3.6 Ablation study and Analysis

We analyze the importance of weakly supervised training to downstream task learning.

Specifically, We compare SuperISP and SuperISP – LR supervised only by LR. Experi-

mentally, we evaluate SP-SG on the the outdoor dataset of MID [7] with more detail τ . The

result is shown in Figure 3.8. We observe that the performance of SuperISP – LR shows

a “decrease” phenomenon. It further confirms that image enhancement methods that aim

to obtain a high visual quality image cannot better utilize information in low-light RAW

images for downstream tasks. Furthermore, the visualization results in the detail of output

images of different enhancers are given in Figure 3.6. We can observe that the SuperISP

tends to out an image with more apparent textures than it supervised only by LR.

We further evaluate the image enhancers on image matching task under different expo-

sure settings. The result is shown in Figure 3.9. To eliminate the possible effects for the
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image matching model caused by the domain shift of training data, we select D2-Net-f as

the baseline. Specifically, we evaluate the four enhancers on MID-V2 indoor test set. The

results show that the advantage of SuperISP is obvious in severe exposure settings. This

indicates the limitation of other enhancers that aim to obtain a high visual quality image.

Please refer to supplementary materials for more ablation studies, including more image

matching and monocular depth estimation results on other scenes and visualization results

of SuperISP and other image enhancers.

3.7 Summary and Discussion

This paper present a low-light RAW image dataset for 3D vision construction. The

dataset is captured with 13 different exposure settings, ranging from mildly to severely un-

derexposed. The dataset provides the ground truth of camera pose and depth. Moreover, we

propose an image enhancement method, SuperISP, which outperform the other enhancers

under two downstream tasks, i.e., image matching and monocular depth estimation.

We evaluate multiple combinations of image enhancement methods and task-specific

methods. The experimental results show that compared with other image enhancers, Su-

perISP obtains the best performances on two downstream tasks, which indicates that Su-

perISP exploits the information in low-light images and provides effective information for

downstream tasks.

Limitation. In this paper, we provide a large scale low-light RAW dataset, i.e. MID-V2.

Although it provides images from different viewpoints under multi scenes, The current

scale still cannot meet the needs of practical applications in the real world. Even so, MID-

V2 provides a reliable benchmark to the research of 3D reconstruction tasks under low-light

scene.
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3.8 Appendix

3.8.1 Implementation Details

As explained in Sec. 4.2, we apply two normalization methods to the RGGB inputs. For

the first one, HistEq, we perform the histogram equalization on each of the four channels,

so that output is in the range of [0,1]. For the second normalization, LCN, we employ the

PyTorch implementation1 that uses a Gaussian filter.

Then, we pre-train the two denoisers on our training set. The reference RAW images

(i.e., the long-exposure images) are used as the ground truth, for which the same normal-

ization as the RGGB patches is applied. We follow the training procedure of SID [10],

which uses image patches cropped randomly from the RGGB; the patches are resized to

512× 512.

We train SuperISP on image patches with the size of 256×256, randomly cropped from

the RGGB. Specifically, we first determine the corresponding image pairs using the sparse

3D point clouds derived from SfM. To do this, we compute the overlap between a pair of

images by counting the number of 3D points they share; then, we find the corresponding

image pairs if it exceeds a pre-defined threshold. Next, we randomly choose one of the

shared 3d points and crop the patches whose centers are its projections in the two images.

We also crop the corresponding patches from the reference RGB images and depth maps.

Note that the cropped patches have different sizes; the patch size for the RGB references

and the depth images is 512× 512.

To start the training, we initialize the parameters of the two denoisers with their pre-

trained weights, as explained in Sec. 4.2. We initialize the parameters of the CNN encoder

using pre-trained weights with ImageNet. We freeze its parameters in the first training

epoch and unfreeze them from the second epoch when the outputs of SuperISP become

relatively stable.

We pre-train the two denoisers and SuperISP on the training set of MID-V2, where we

employ the Adam optimizer. We set the learning rate to 10−3, batch size to 40. We update

the two denoisers for 200,000 iterations. For the training of SuperISP, we set the learning

rate to 10−4, batch size to 4, and train it for 20 epochs.

1https://github.com/shufanwu/SegNet-PyTorch/blob/master/lcn.py

80

https://github.com/shufanwu/SegNet-PyTorch/blob/master/lcn.py


3.9 Details of the Experimental Setting

As explained in Sec. 5, we first convert the RAW images to RGB in the experiment

using the image enhancers explained in Sec. 5.3.1. We further use these converted images

to evaluate several pre-trained downstream models directly or fine-tune them on the output

of each enhancer before evaluation.

Image matching. We use a brute-Force matcher to establish initial matching between

the images for D2-Net. Regarding the camera pose estimation, we adopt RANSAC as a

robust estimator for outlier removal with the five-point algorithm. We use the OpenCV-

4.5.5 implementation of RANSAC with threshold = 0.001, probability = 0.999, and

maxIters = 10, 000. For SuperGlue and LoFTR, we used the pre-trained models for

outdoor scenes that are provided by their authors. We fine-tune D2-Net and LoFTR on the

MID-V2 training set, where we use the implementations provided by the authors.

Monocular Depth Estimation. We fine-tune the pre-trained model provided by MegaDepth [32]

on the MID-V2 training set. It is worth noting that we adopted the loss function that com-

bines Ldata and Lgard; see [32] for details.

3.9.1 More Ablation Studies

We report experimental results for different scenes in the main paper. Figure 3.8 shows

the results of the pose estimation by SP-SG on the indoor dataset of MID [49] with a larger

set of τ ’s, which corresponds to Figure 5 of the main paper. Figure 3.9 shows the pose

estimation results of D2-net-f with different enhancers on the outdoor test dataset of MID-

V2, which corresponds to Figure 7 in the main paper.

3.9.2 More Examples of Scenes in the Dataset

Figures 3.10 and 3.11 show more examples of our dataset, including indoor and outdoor

scenes with ground truth depth maps. All images are obtained from the long exposure

RAW-format images by the Adobe Lightroom.
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Figure 3.8: Results of camera pose estimation by SP-SG with SuperISP and SuperISP –
LR. “SuperISP – LR” means the SuperISP trained with only LR.

Figure 3.9: Results of the camera pose estimation by D2-net-f with different exposure
settings. The abscissa represents exposure settings from hard to easy.

3.9.3 Visualization Results of Image Matching and Monocular Depth

Estimation

Figure 3.12 shows several examples of the results of image-matching by each of the

combinations of SP+SG and five image-enhancing methods. Figure 3.13 shows visualiza-

tion of the results of monocular depth estimation by the combinations of the fine-tuned

model and four enhancers.
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Figure 3.10: Examples of the indoor scenes in the MID-V2 dataset. The reference images
(long exposure versions) and the depth maps are shown.
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Figure 3.11: Examples of the outdoor scenes in the MID-V2 dataset. The reference images
(long exposure versions) and the depth maps are shown .
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Figure 3.12: Visualization of image matching for one indoor and one outdoor scenes. Point
correspondences judged as inliers are shown with green lines. The combination of SP+SG
and the five image enhancing methods are applied to three image pairs with different levels
of exposure (i.e., ‘Easy’, ‘Inter-’, and ‘Hard’).‘Inter-’ means ‘Intermediate’.
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Figure 3.13: Visualization of monocular depth estimation for one indoor and one outdoor
scenes. Note that black means near and white means far. The combination of the fine-tuned
model and the four image enhancing methods are applied to three images with different
levels of exposure (i.e., ‘Easy’, ‘Intermediate’, and ‘Hard’).
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Chapter 4

Unifying Local and Global Features for

Visual Localization

4.1 Introduction

Visual localization is a key component in computer vision tasks such as Structure-from-

Motion (SfM) or SLAM, which is a fundamental problem in numerous applications, such

as autonomous driving, mobile robotics, or augmented reality. This growing range of appli-

cations of visual localization calls for reliable operation in both large-scale changing indoor

and outdoor environments, irrespective of the weather, illumination, or seasonal changes.

Visual localization is the problem of estimating the 6 Degree-of-Freedom (DoF) camera

pose from which a given image was taken relative to a reference scene representation.

Advanced visual localization approaches are hierarchical, encapsulating image retrieval

problems and 6-DoF camera pose estimation [17, 19, 164]. i.e., given a query image of the

current view, related candidates are determined by performing image retrieval in a database;

then, perform local feature matching between the query image and related candidates to

establish point correspondences between 2D to 3D, solving a PnP and estimate 6 DoF

camera pose of the query image.

Naturally, two types of image features are needed to perform such a hierarchical visual

localization approach, i.e., global image features for retrieval and local image features for

image-matching. However, existing studies struggle to unify these two types of image

features. For instance, the image retrieval task also involves these two types of features for
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the two-stage retrieval strategy [174], i.e., global features are used for large-scale coarse

retrieval to get prior candidates, then re-rank it based on the number of inliers obtained

from local feature matching with geometry verification. However, such local features tend

to deviate from needs from 6-DoF pose estimation. Specifically, local features yielded by

a retrieval model always tend to be semantically rich and lose spatial invariance [175,176].

Moreover, retrieval models don’t provide key-point detection, so these local features lack

corresponding exact pixel coordinate information.

Most studies perform two models perform hierarchical visual localization. i.e., one for

image retrieval, such as NetVLAD [6], and another for image matching, such as SIFT [8] or

SuperPoint [2]. However, such a method is not competitive as far as efficiency is concerned

due to the absence of shared computing. In addition, it is difficult to trade-off efficiency

and accuracy in model selection. Specifically, accurate image retrieval can improve the

accuracy and efficiency of localization within a certain range. However, advanced image

retrieval models tend to be heavy to pursue higher accuracy, which causes an increase in

computational cost. Still, these improvements do not result in corresponding gains for

localization.

A recent study unifies global and local features for visual localization using multitask

distillation, i.e., HF-Net [19]. It uses a CNN that jointly estimates local and global features

with a shared encoder. Although it is improved in terms of computational efficiency by us-

ing a compression model, i.e., MobileNetVLAD (MNV). However, the accuracy decrease

after distillation, especially in challenging cases, especially at night scenes. One possible

reason is that they did not consider the conflict between the two tasks, i.e., image retrieval

and image-matching, at the feature level; see Figure 4.1. Specifically, learning global fea-

tures for image retrieval tends to induce features in the backbone to be more semantic

and less localizable, eventually making it more sparse. Conversely, learning local features

for image-matching emphasizes feature invariance, which leads the features to focus more

on local information and lacks global semantics. This issue has been demonstrated ear-

lier [174] but needs to be handled more appropriately.

Most recently, transformers have been used for feature extraction in computer vision

tasks and have led to state-of-the-art results [175, 177]. It benefits from the desirable prop-

erty of the self-attention mechanism, which can break through spatial constraints to estab-

lish global correlations, and aggregate task-relevant features naturally.
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(a) (b)

Figure 4.1: Illustration of the feature-level gap between the two tasks. i.e., (a) image
retrieval and (b) image matching. Where (a) and (b) are activation maps of local features
generated by NetVLAD [6] and SuperPoint [2], respectively.

In this paper, we propose a novel holistic model, SuperGF, which unifies global and

local features for visual localization. It works directly on the local features generated by the

image-matching model and aggregates to a global image feature, similar to BoW [178,179]

or Fisher Vector [180]. A transformer is adopted to perform feature aggregation, which

is more accurate and resource-friendly. It integrates global contextual information and

establishes global correlations between feature tokens by the self-attention mechanism;

thus, semantic cues can be learned automatically from local features of the image-matching

model. As a result, the transformer module can bridge the feature-level gap between the

two tasks and yield robust global features for image retrieval in an efficient manner. We

experimentally evaluate global features yield by SuperGF on several benchmarks. Then

we also assess the performance of visual localization using the holistic model combining

different kinds of local features. The results show the advantage of our model compared to

existing methods.

4.2 Related Work

4.2.1 Approaches for Visual Localization

The approaches of previous works on visual localization can be summarized as follow:

Structure-based Localization. Previous visual localization approaches mainly rely on es-

timating correspondences between 2D keypoints in the query and 3D points in a sparse

model using local descriptors. The map is usually composed of a 3D point cloud con-
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structed via Structure-from-Motion (SfM), where each 3D point is associated with one or

more local feature descriptors. The query pose is obtained by feature matching and solving

a Perspective-n-Point problem (PnP) [80]. However, direct matching methods tend to be

resource-intensive or fragile and challenging to apply in large-scale localization.

Image-based Localization. Visual localization in large-scale urban environments is often

approached as an image retrieval problem. Specifically, the location of a given query image

is predicted by transferring the geotag of the most similar image retrieved from a geotagged

database [6,53–58]. This approach scales to entire cities thanks to compact image descrip-

tors and efficient indexing techniques [1, 3, 26, 27] and can be further improved by spatial

re-ranking [174], informative feature selection [60,67] or feature weighting [56,58,68,69].

Image-based localization approaches have recently shown promising results in terms of ro-

bustness and efficiency but are not competitive in terms of accuracy [6, 181], which output

only an approximate location of the query, not an exact 6-DoF pose.

Hierarchical Localization. Hierarchical localization takes an approach, dividing the prob-

lem into a global, coarse search followed by a fine pose estimation. It shows advantages

in terms of efficiency and accuracy compared to the above two approaches, which can be

applied to large-scale. The intermediate retrieval step of hierarchical localization limits

the downstream feature matching to a reasonable range, which reduces the computational

cost significantly while improving the localization performance by reducing the influence

of feature repetition. [18] proposed to search at the map level using image retrieval and

localize by matching hand-crafted local features against retrieved 3D points. However, its

robustness and efficiency are limited by the underlying local descriptors and heterogeneous

structure. Taira et al.applied learning-based features to camera pose estimation but in a

dense, expensive manner [17]. Recently, HF-Net [19] integrated learning-based models

of image retrieval and image-matching, by model distillation that simultaneously predicts

keypoints as well as global and local descriptors for accurate 6-DoF localization.

4.2.2 Global and Local Image Features

Before the emergence of deep learning, hand-crafted local features, such as SIFT [8],

ORB [24], and SURF [23], are widely applied in computer vision fields such as image
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matching. Moreover, traditional aggregation methods [179, 180] are developed for gen-

erating global image features for image retrieval using these hand-crafted local features.

However, hand-crafted local features are limited in invariance due to only involving low-

level information.

Recent features emerging from convolutional neural networks (CNN) exhibit unrivaled

robustness at a low computing cost. However, it tends to be task-specific. Specifically,

task-specific local or global image features are generated using different models in an end-

to-end manner. Even though they achieve superior performances in their respective domain,

such as image retrieval [174, 175, 177, 182] or image matching [2, 3, 25–27], there are still

problems in unifying for multi-task.

More recently, transformers have been adopted for feature extraction in computer vision

fields and achieved state-of-art performances [175,177]. It benefits from the desirable prop-

erty of the self-attention mechanism, which can naturally aggregate task-relevant features.

Recent studies have applied transformers to each component method for visual localization,

i.e., image retrieval [175, 177, 183] and image matching [3, 31].

4.3 Unify Local and Global features for Visual Localiza-

tion.

4.3.1 Overview

SuperGF essentially plays the role of feature aggregation, i.e., aggregate local image

features used for image-matching, which are more localizable but lack semantics, into glo-

cal image features with rich semantic information used for image retrieval. Figure. 4.2

illustrates the framework of SuperGF.

Given an input image, local features are extracted by a detector and descriptor at first.

In practice, SuperGF is designed for both a hand-crafted descriptor and a learning-based

descriptor, i.e., SIFT [8] and SuperPoint [2], respectively. Moreover, we consider two

different forms of the descriptors separately, i.e., dense or sparse. Specifically, in the case

of the sparse version, only local descriptors where keypoints are taken into count. In the

case of the dense version, we adopt dense descriptors, i.e., dense SIFT or feature map

output by the encoder of SuperPoint.
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Figure 4.2: The framework of SuperGF. We provide two implementations of SuperGF, i.e.,
the dense version and the sparse version. The former works on dense local descriptors, such
as dense SIFT or feature maps output by the SuperPoint encoder. The latter works on sparse
local features used for image matching, i.e., keypoints (pi), descriptors (di), and confidence
scores (ri). The modules indicated by green baskets contain learnable parameters.

Then, we process the input of local features into tokens. In the case of the dense ver-

sion, we perform the local descriptors by a tokenizer consisting of a one-layer CNN with

downsampling operations. Then, we perform position embedding for these tokens. In the

case of the sparse version, the input of local features is a variable-length sequence. To

save computational costs, we downsample them by performing clustering. Before that,

we integrate three features of descriptors, keypoints, and confidence scores by performing

positional encoding.

Finally, these tokens generated by the previous step are input into the three layers of

the vision transformer encoder. And a global image feature is aggregated from the trans-

former’s output using a GeM pooling layer.

4.3.2 Local Feature Processing

Dense version. Given an input image I ∈ RH×W , the feature map of local descriptors of I

can be denoted as F ∈ R128×H
8
×W

8 . Let’s define F : ξ → RD×H
16

×W
16 to denote a CNN layer

encodes feature map F ∈ ξ into a feature with the shape of (D, H
16
, W
16
), then, the output of
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the tokenizer can be denoted as:

Traw = ReLU(F(F)) +P (4.1)

where Traw,P ∈ RD×H
16

×W
16 , P is the tokens of Position Embedding, D means the number

of channels of raw patch tokens, specifically, D = 512. Finally, the raw patch tokens

Traw is reshaped into a sequence of flattened 2D pattern (H
16
× W

16
, D) as input tokens for

transformer encoder layers. In practice, 7 × 7 convolutional kernel is used, and the stride

is 2.

Sparse version. Given an input image I ∈ RH×W , the sparse local features of I can be

denoted as di ∈ Ri×d: local descriptors, pi ∈ Ri×2: keypoints position, and ri ∈ Ri×1:

confidence scores. d = 128 when using SIFT, and d = 256 when using SuperPoint.

The initial representation ti ∈ Ri×d for each keypoint i combines its visual appear-

ance and location. We embed the keypoint position into a high-dimensional vector with a

Multilayer Perceptron (MLP) as:

ti = di +MLPenc(pi, ri) (4.2)

This encoder enables the graph network to later reason about both appearance and position

jointly, especially when combined with attention, called Positional Encoding.

Inspired by recent studies [183, 184], we propose a clustering module base on slot

attention, which takes an input of ti and outputs an ordered set of features of clusters,

denoted by ζ. Let the clustering module be represented by function Φ(•) : Ri×d → RN×D,

which can be defined as an iterative module:

Φ(•) = ζL, ζl = ϕ(•; ζl−1) (4.3)

where ϕ denotes the core function of the module applied L times, and ζ0 ∈ RN×D denotes

a set of learnable templates of clusters, which are initialized randomly. In practice, we set

N = 512 and L = 6. The final output is progressively formed by iterative refinement of

the templates and each token of ζ is a function of all input of ti.

The architecture of the core function ϕ is inspired by [89,185] and is composed of a dot-
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product attention function ψ, followed by an MLP. The function ψ receives three inputs,

i.e., key, value, and query, represented by K, Q, and V , respectively. The corresponding

input generates the K, Q, and V , passing through layer normalization and fed to three

linear projection functions that project them to dimensions dk, dq, and dv, respectively. In

practice, we set dk = dq = dv = D = 512,K and V are generated by ti, and Q is generated

by ζ. The functions ϕ and ψ is given by:

ϕ(•) = ψ(•) +MLP (ψ(•)), ψ(•) = α · V + ζl (4.4)

where α denotes the attention maps over ti. Thus, we have N attention maps in total. i.e.,

α ∈ Ri×N α can be calculated as follow:

α = NL1(softmax(
QK⊤
√
dk

)) (4.5)

where NL1 denotes L1 normalization.

4.3.3 Aggregate to Global Image Features

SuperGF employs vision transformer encoders to achieve feature aggregation, integrat-

ing global contextual information and establishing global correlations between feature to-

kens by self-attention mechanism, and semantic cues can be learned automatically from the

input of local features. In practice, we follow the implementation of the vision transformer

encoder, which consists of a stack of Multi-headed Self-Attention (MSA) and Multi-Layer

Perceptron (MLP) modules [89,185], and add skip-connection between two transformer en-

coders. Moreover, we discarded the operation of patch embedding and instead it by the op-

eration of the previous step; see Sec. 4.3.2. Let’s define the input as T0, where T0 denotes

the output of the previous step, i.e., Traw or ζL. Then define function Θn(•) : n ∈ [1, 4] to

denote the n-layer of vision transformer encoders. The output tokens Tout is given by:

Tn =
3∑

n=1

[Tn−1 +Θn(Tn−1)] ,

Tout =MLP (L(T3))

(4.6)
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where L denotes the layer normalization, In practice, we double the dimension of the input

in the MLP. Thus, Tout ∈ R(H
16

×W
16

)×1024 in the case of the dense version or Tout ∈ RN×1024

in the case of the sparse version. As a result, Tout tends to focus on task-relevant local

features.

Finally, Tout is aggregated to global image features by performing Generalized Mean

(GeM) pooling [], which is a flexible way to aggregate local features with a learnable

parameter p. The aggregated global image feature D is given by:

D = NL2(GeM(Tout, p)),

GeM(Tout, p) =

[
1

λ

λ∑
i=0

(T i
out)

p

] 1
p (4.7)

where D ∈ R1×1024,NL2 denotes L2 normalization, and λ denotes the special size of Tout,

i.e., λ = H
16
× W

16
in the case of the dense version and λ = N in the case of the sparse

version. In practice, we set p = 3 in parameter initialization.

4.3.4 Training Strategy

Loss Function

In most studies, image retrieval or Visual Place Recognition (VPR) is treated as a bi-

nary problem. Models are trained using pairs or triplets of image samples labeled as either

positive or negative with a metric learning loss, such as the triplet loss [186, 187] or a

contrastive loss [188]. However as mentioned in existing studies [181, 189], since the dis-

tribution of scenes in the real world is continuous, in the VPR task, the similarity between

images in VPR cannot be strictly defined in a binary fashion. Thus as we observed, in most

VPR datasets, there is a large ambiguity between the positive and negative samples of the

training data.

Moreover, VPR is essentially a problem of ranking, not classification. For training a

VPR model, metric learning losses distinguish between positive and negative samples by

defining a margin, which easily leads to a distance ambiguity. This results in the perfor-

mance being very sensitive to the loss settings so it is often difficult to achieve optimal

performance by optimizing a metric learning loss directly.
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Figure 4.3: Illustration of the training strategy. Each sample of training data includes a
batch composed of one query image IQ, one positive sample IP , and α + β negatives; of
these, α soft negative samples and β negative samples. i.e., I iN ∈ IN : i = [1, ..., α + β].
In practice, α = 2 and β = 100.

Considering the above, we adopt a listwise loss. i.e., Average Precision (AP) loss [27,

189, 190], to train our model. The AP loss train models by optimizing ranking results

directly. We follow the implementation of AP loss as Chen et al. [189]. As illustrated in

Fig. 4.3, after inference an image batch of [IQ, IP , IN ], we obtain global image descriptors

[DQ,DP ,DN ]. Then we calculate cosine similarities S = Si : i ∈ [1, α+β] between DQ

and DP ∪DN :

Si = sim(DQ,D
i) = D⊤

QD
i (4.8)

where Di ∈DP ∪DN , Si ∈ [−1, 1]. Let’s define the function AP (·) denotes the ranking

metric AP for DQ, The final loss function can be defined as:

LAP = 1− AP (S,S) (4.9)

where S ∈ [0, 1] denotes the label of image similarity scores between IQ and IP ∪ IN .

In the case of the sparse version, we further adopt an attention decorrelation loss which

aims at reducing the spatial correlation between attention maps. It makes the output of the

slot attention clustering module, i.e., ζ, as complementary as possible. Specifically, we

encourage them to attend to different local features, i.e., different locations of the image.
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Let’s define α = [α1, ..., αN ], The attention decorrelation loss is given by:

Lattn =
1

N(N − 1)

∑
i ̸=j

αi · αj

∥αi∥2 ∥αj∥2
(4.10)

where i, j ∈ {1, ..., N}. In practice, We train our sparse version model with the above two

losses jointly.

Training Setting

First, we aim to design robust global image descriptors that can be used for place recog-

nition for SuperPiont dependencies. So we fixed the SuperPoint encoder during the training

process. We perform image-level supervision using the AP loss. In practice, we adopt the

data annotation provided by Vallina et al.. [181] as the soft label, i.e, S for our model train-

ing, which represents Field-of-View (FoV) overlap between query and database images.

Specifically, for each query image, we split the database images into three kinds based

on FoV overlap, i.e., positive samples where S ∈ [0.5, 1], soft negative samples where

S ∈ (0, 0.5), and negative samples where S = 0. For each query image IQ, we compute the

AP loss between it with 105 images in the database, which contains 1 positive sample, 2 soft

negative samples and 100 negative samples. For each iteration of the training process, we

load 4 batches to compute loss and optimize the parameters of our model. We observe that

choosing more negative samples for each query image tends to result in better performance.

However, selecting too many negative samples takes up more computational resources and

provides limited gain to the model.

4.4 Experiments

We experimentally evaluate the proposed SuperGF on several benchmark datasets com-

pared with some state-of-the-art methods. We evaluate our method on two tasks, i.e., VPR

and visual localization. The former aims mainly to examine the performance of global im-

age features generated by SuperGF. We give the details of experimental settings, datasets,

evaluation metrics, and compared methods in the following.
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4.4.1 Implementation details

Model Settings. We set the latent embedding dimension of the transformer encoders as

512, and the hidden dimension of MLP blocks as 1024. We trained our model on the

MSLS training set with settings reported in Sec. 4.3.4. We selected 10,000 query samples

randomly from all sub-cities for one epoch and trained our model on 350 epochs in total.

We adopted the AdamW optimizer and set the parameter of weight decay = 10−4 in train-

ing. We set an initial learning rate to 10−4 and it will finally decline to 10−6. We set the

input image size to 640× 480.

Experiment Settings for VPR. We perform the retrieval based on the L2 distance be-

tween global image features to obtain the prior candidates. We further perform geometry

verification by matching sparse descriptors provided by the front-end model, i.e., SIFT or

SuperPoint. In practice, given an image pair of the query and database, we obtain keypoints

and sparse local descriptors for both. Then, we perform feature matching to obtain initial

point correspondences, using Nearest Neighbor searching (NN) or SuperGlue [3]. Finally,

we estimate the homography with RANSAC as a robust estimator and re-rank the prior

candidates based on the number of inliers. We keep the top 100 candidates retrieved by

global image features and perform the geometry verification.

Experiment Settings for Localization. Firstly, a sparse reference model is built with SfM

using database images. Specifically, we adopt prebuilt reference models with COLMAP

using RootSIFT or SuperPoint, provided by [4] and [19]. They are each used in the case of

the corresponding descriptor employed in SuperGF to avoid the influence of using different

detectors on feature matching. For localization, given a query image, we retrieve the top-

n candidates from the database using global image features generated by SuperGF and

match them one by one. In practice, we adopt NN and also SuperGlue when SuperPoint

is selected. Then, we keep all matches where a corresponding 3D point is included in the

reference SfM model. Finally, we can lift them to 2D-3D matches, and the 6-DoF camera

pose of the query image is obtained by solving PnP with RANSAC.
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4.4.2 Evaluation Datasets

We evaluated our method on several public benchmark datasets: MSLS [191], Pitts30k

[58], Nordland [192] and Tokyo247 [57] for VPR; The RobotCar Seasons dataset [4] for

localization. All of these datasets contain different challenging appearance variations, such

as changes in day-night, weather, and season. More details of dataset usage are given in

Supplementary Material. All images are resized to 640× 480 while evaluation.

4.4.3 Metrics

As illustrated in Sec. 4.4.2, for VPR datasets, we use Recall@N metric, which com-

putes the percentage of query images that are correctly localized. A query image is con-

sidered retrieved successfully if at least one of the top N ranked reference images is within

a threshold distance from the ground truth location of the query image. Default threshold

definitions are used for all datasets [6, 177, 182].

For the localization dataset, i.e., the RobotCar Seasons dataset, we report the pose re-

call at position and orientation thresholds different for each sequence, as defined by the

benchmark [4].

4.4.4 Compared Methods

We experimentally compared SuperGF against several models on both VPR and visual

localization tasks with settings introduced in Sec. 4.4.1.

VPR methods. We compare methods in the VPR task considering both two approaches,

i.e., single-pass and two-stage retrieval. The former only uses global image features, and

the latter performs re-ranking with geometry verification additionally. For the experiment

of single-pass retrieval, we compare with a widely used baseline, i.e., NetVLAD [6], sev-

eral state-of-the-art CNN-based methods, including SFRS [176], ResNet50-GeM-GCL [181],

GeM-AP [189], and also two state-of-the-art transformer-based methods, i.e., SOLAR [175]

and TransVPR [177]. For the experiment of two-stage retrieval, we compare with DELG [174],

and two state-of-the-art methods, i.e., Patch-NetVLAD [182] and TransVPR. As mentioned

earlier in the paper, local features generated by all the above methods don’t support 6-DoF

camera pose estimation. In addition, we further compare with a strong hybrid baseline,
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NV-SP-SG, which re-ranks NetVLAD retrieved candidates by using SuperGlue matcher to

match SuperPoint local features.

Localization methods. Since image-based localization approaches lack accuracy, we only

consider localization approaches that can obtain 6-DoF camera poses; see Sec. 4.2.1. In

practice, we compare ours with two methods based on structure-based localization ap-

proaches, i.e., Active Search (AS) [49] and City Scale Localization (CSL) [47], hierarchi-

cal localization approach based on hybrid pipelines including NV+SIFT, NV+SP, and also

HF-Net [19]. NV+SIFT and NV+SP mean using global features extracted by NetVLAD

and local features extracted by SIFT or SuperPoint.

4.5 Results and Discussion

4.5.1 Single-pass Retrieval

Table 4.1 shows the experimental results for single-pass retrieval. We can make the

following observations.

First, the performance of single-pass retrieval only based on global image features is

highly relevant to the dataset, which denotes global features as a compact representation of

the entire image, which exhibits undesirable generalizability, especially for high-precision

retrievals, such as R@1 and R@5.

Next, in general, even if we do not use separate generated task-specific local features as

other methods do, i.e., we adopt local features designed for image-matching. Our method

based on learned local features, such as SuperGF-denseSP or SuperGF-sparseSP, can still

generate global image features on par with state-of-the-art retrieval models. It demonstrates

the advantages of the transformer in feature aggregation.

Finally, from the comparison between different implementations of our method, we can

observe that using learned local features for the aggregation, i.e., SuperGF-denseSP and

SuperGF-sparseSP, show significantly better results than using hand-craft local features,

i.e., SuperGF-denseSIFT and SuperGF-sparseSIFT. In addition, using dense local features

show better results than using sparse local features, especially for hand-craft local features.
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Table 4.1: Single-pass retrieval results with three metrics of recall, where ’R-’ means ’Re-
call’.

MSLS val MSLS challenge Pitts30k test Nordland test Tokyo247 test

Method R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

NetVLAD 47.7 62.8 70.9 30.7 41.9 46.4 82.1 91.4 93.8 12.5 21.4 26.1 57.1 72.1 77.1

SFRS 69.2 80.3 83.1 41.5 52.0 56.3 89.4 94.7 95.9 18.8 32.8 39.8 85.4 91.1 93.3

ResNet50-GeM-GCL 66.2 78.9 81.9 43.3 59.1 65.0 72.3 87.2 91.3 27.2 41.1 49.2 44.1 61.0 66.7

GeM-AP 64.1 75.0 78.2 33.7 44.5 49.4 80.7 91.4 94.0 11.8 18.4 22.7 11.4 22.9 30.5

SOLAR 78.3 87.2 89.6 45.2 60.5 69.3 85.4 92.6 94.8 36.6 51.3 58.8 76.2 84.4 88.3

TranVPR 70.8 85.1 89.6 48.0 67.1 73.6 73.8 88.1 91.9 15.9 38.6 49.4 – – –

SuperGF-DenseSP 72.8 81.5 85.2 50.8 66.0 71.6 68.4 82.5 87.3 58.4 78.6 85.5 23.2 37.8 46.0

SuperGF-SparseSP 71.3 81.3 85.0 48.2 65.3 70.4 60.2 77.6 83.1 57.1 75.4 82.0 25.7 39.4 44.4

SuperGF-DenseSIFT 60.2 72.8 75.3 39.7 56.2 63.9 53.2 71.6 78.1 35.6 50.7 56.7 14.7 26.8 36.3

SuperGF-SparseSIFT 49.7 67.5 74.4 11.2 22.7 37.5 37.7 59.1 69.2 15.5 30.5 38.4 8.6 15.9 21.0

4.5.2 Two-stage Retrieval

Table 4.2 shows the experimental results for two-stage retrieval. We can make the

following observations.

First, compared to single-pass retrieval, the robustness is significantly improved by

performing re-ranking based on geometry verification, which illustrates the importance of

spatial information for image retrieval, which is discarded by global image features.

Next, using sparse local features designed for image-matching for the re-ranking show

on par even better performance than using those task-specific local features. It is notewor-

thy that the former performs matching sparse local features, which is more competitive in

terms of efficiency than the latter, which performs matching local features densely.

Finally, our methods with the SuperGlue matcher, i.e., SuperGF-denseSP-SG and SuperGF-

sparseSP-SG, show state-of-the-art level performance compared to others.

4.5.3 Visual Localization

We report the pose recall at position and orientation thresholds different for each se-

quence, as defined by the benchmark [4]. Table 4.3 shows the localization results for the

different methods. We can make the following observations.

First, compared to methods that intermediate a retrieval step, structure-based methods,

i.e., AS and CSL, show competitive results on the dusk sequence, where the accuracy

tends to saturate. In the more challenging sequences, methods based on a hierarchical
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Table 4.2: Two-stage retrieval results with three metrics of recall, where ’R-’ means ’Re-
call’.

MSLS val MSLS challenge Pitts30k test Nordland test Tokyo247 test

Method R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

DELG 83.2 90.0 91.1 52.2 61.9 65.4 89.9 95.4 96.7 51.3 66.8 69.8 78.8 86.7 90.0

NV-SP-SG 78.1 81.9 84.3 50.6 56.9 58.3 87.2 94.8 96.4 29.1 33.5 34.3 71.2 82.0 78.8

Patch-NetVLAD 79.5 86.2 87.7 48.1 57.6 60.5 88.7 94.5 95.9 46.4 58.0 60.4 95.9 96.8 97.1

TransVPR 86.8 91.2 92.4 63.9 74.0 77.5 89.0 94.9 96.2 58.8 75.0 78.7 – – –

SuperGF-DenseSP 87.7 92.0 93.2 65.2 76.5 80.1 84.6 92.1 94.0 87.4 95.3 97.2 68.9 72.4 73.7

SuperGF-SparseSP 86.4 91.5 92.9 64.4 74.3 79.1 83.3 90.8 93.8 85.3 94.7 97.1 63.2 70.6 72.8

SuperGF-DenseSIFT 71.3 81.3 85.0 50.2 57.1 59.3 60.2 77.6 83.1 57.1 75.4 82.0 25.7 39.4 44.4

SuperGF-SparseSIFT 49.7 67.5 74.4 45.5 50.2 59.8 55.2 67.1 78.9 46.8 54.1 60.2 25.2 37.9 43.1

approach tend to work significantly better than structure-based methods, which suffer from

the increased ambiguity of the matches.

Next, in contrasting the two pipelines of NV+SIFT and NV+SP, we can observe that

NV+SIFT shows slightly better results than NV+SP on easy cases, such as dusk. In con-

trast, the NV+SP shows significantly better results than NV+SIFT in those challenging

cases, especially at night. It indicates that the SIFT descriptors perform better than Super-

Point on camera pose estimation in normal cases, but the conclusion is the opposite in the

situation of challenging cases. It is consistent with the findings of previous studies [7,102].

Finally, by comparing our method with baselines, we can observe that although the

two-stage localization fuses image retrieval and camera pose estimation, it is clear that the

latter plays a dominant role. Especially for simple cases, the use of SuperGF, which can be

regarded as a robust global feature, for retrieval has limited improvement for hierarchical

localization. But for challenging cases, we can observe the localization improvement using

SuperGF. Overall, by implanting SuperGF, our pipelines achieve state-of-art performance

on 6-DoF localization compared with others.

4.5.4 Latency and Memory

In real-world applications, latency and scalability are important factors that need to be

considered for real-time visual localization. We report the computational time and memory

requirements for compared methods of extracting glocal image features to process a single

query image; see Table 4.4. In practice, we unify the input image size as 480 × 640 for
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Table 4.3: Localization results on the RobotCar Seasons dataset. We report the recall [%]
at different distance and orientation thresholds, i.e., ∆t and ∆r, on different conditions.
i.e., dusk, sun, night, and night-rain.

dusk sun night night-rain

∆t@ .25 / .50 / 5.0 .25 / .50 / 5.0 .25 / .50 / 5.0 .25 / .50 / 5.0

Method ∆r@ 2 / 5 / 10 2 / 5 / 10 2 / 5 / 10 2 / 5 / 10

AS 44.7 / 74.6 / 95.9 25.0 / 46.5 / 69.1 0.5 / 1.1 / 3.4 1.4 / 3.0 / 5.2

CSL 56.6 / 82.7 / 95.9 28.0 / 47.0 / 70.4 0.2 / 0.9 / 5.3 0.9 / 4.3 / 9.1

NV+SIFT 55.6 / 83.5 / 95.3 46.3 / 67.4 / 90.9 4.1 / 9.1 / 24.4 2.3 / 10.2 / 20.5

NV+SP 54.8 / 83.0 / 96.2 51.7 / 73.9 / 92.4 6.6 / 17.1 / 32.2 5.2 / 17.0 / 26.6

NV+SP+SG 62.4 / 83.5 / 97.2 52.8 / 80.2 / 96.1 29.0 / 66.9 / 90.2 46.4 / 76.1 / 92.0

HF-Net 53.9 / 81.5 / 94.2 48.5 / 69.1 / 85.7 2.7 / 6.6 / 15.8 4.7 / 16.8 / 21.8

SuperGF-SparseSIFT 55.8 / 83.6 / 95.0 45.8 / 67.2 / 91.1 3.6 / 8.8 / 20.8 2.6 / 11.5 / 19.8

SuperGF-DenseSIFT 56.2 / 84.2 / 97.2 48.4 / 68.9 / 91.2 6.9 / 17.9 / 33.1 6.2 / 17.3 / 32.6

SuperGF-SparseSP 55.1 / 83.0 / 96.7 52.2 / 75.7 / 96.1 8.0 / 19.9 / 36.8 8.2 / 22.0 / 33.9

SuperGF-DenseSP 56.6 / 83.5 / 97.0 53.1 / 76.4 / 95.8 12.4 / 26.3 / 45.3 13.0 / 25.2 / 35.8

SuperGF-SparseSP-SG 64.2 / 84.3 / 98.5 54.2 / 81.5 / 97.1 33.6 / 69.9 / 92.6 49.2 / 78.1 / 92.4

SuperGF-DenseSP-SG 65.1/84.5/98.5 55.8/82.5/97.5 34.2/70.3/93.0 49.9/78.2/92.8

all methods. In the case of SuperGF-sparse, we randomly selected 100 images to generate

sparse local features for the test. SuperGF shows clear advantages in both terms than others.

Combining the results of previous sections, we can conclude that SuerGF uses minimal

resources but generates SOTA-level global image features for image retrieve and lead to

better performance of 6-DoF localization. In particular, the sparse version of SuperGF

causes a loss of retrieval accuracy to some extent, but it has obvious advantages in terms of

feature extraction efficiency. It is worth noting that SuperGF is affected by the adopted local

descriptor significantly. We prefer to use learning-based local features, such as SuperPoint,

joined with SuperGF. We tried to use SuperGF to generate global features for hand-craft

local features, i.e., SIFT, but the results were unsatisfactory. One possible reason is the

limited representative ability of the hand-craft local features, which only jointly low-level

information of images.
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Table 4.4: Comparisons of model size and latency. Latency is measured on an NVIDIA
TITAN RTX GPU.

Method Memory (MB) Extraction latency (ms)

NetVLAD 14.8 15.5

SFRS 149.0 16.4

ResNet50-GeM 23.5 11.1

SOLAR 56.2 19.5

SuperGF-dense 6.1 4.4

SuperGF-sparse 2.2 2.3

4.6 Summary and Conclusion

This paper has presented a novel method for global feature extraction, i.e., SuperGF.

It is transformer-based and designed for 6-DoF localization, which acts directly on local

features provided by descriptors of image-matching. The results show our method’s advan-

tages in terms of accuracy and efficiency.

We provide different implementations of SuperGF. i.e., different types of local features

with both learning-based and hand-craft descriptors. Users can choose different versions

according to their needs. Moreover, we encourage using the learning-based descriptor, i.e.,

SuperPoint, joint with SuperGF. In addition, if you pursue higher retrieval accuracy while

localization, e.g., using for loop closure, then the dense version is more suitable. For 6-DoF

localization alone, the sparse version is better in efficiency.
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Chapter 5

Conclusions

In this dissertation, we focus on the image-matching problem, aiming to widen the

frontier of SfM and visual SLAM applications. We are interested in fully using such

high-precision information in RAW images to match extremely low-light scene images

that conventional methods cannot handle. In Chapter 2, we presented a dataset created for

evaluating image matching methods for low-light scene images. Then, we have reported

the experiments we conducted to test multiple combinations of existing image-enhancing

methods and image-matching methods. The results show that The direct use of the RAW-

format images shows a clear advantage over the standard RIP. Using the standard RIP yields

only suboptimal performance, as it cannot utilize information stored in the lower bits of

RAW-format signals. Moreover, when using the standard RIP, using classical histogram

equalization or the state-of-the-art CNN-based image-enhancing method does not make a

big difference, as reported in [128]. We further conclude that SuperPoint [2] and its vari-

ants work consistently better than RootSIFT on such challenging conditions and SID [5] is

the best image enhancer when using SuperPoint+SuperGlue [3]. Otherwise, BM3D [104]

and SID perform equally well and better than histogram equalization.

Next, we consider better utilizing the information in RAW images under low-light

scenes. The current use of RAW images stops at the image enhancement stage, i.e., it yields

a high visual quality image but not for obtaining optimal performance for downstream

tasks. We aim to utilize the information stored in RAW images of low-light scenes to yield

better performance for downstream tasks of 3D reconstruction in Chapter 3. To promote

further study, we introduce a novel dataset that includes multi-view RAW images under

105



extremely low-light scenes, with corresponding long-exposure versions and ground-truth

depth. Moreover, we propose an image enhancement method, SuperISP, which outper-

forms the other enhancers under two downstream tasks, i.e., image matching and monoc-

ular depth estimation. We evaluate multiple combinations of image enhancement methods

and task-specific methods. The experimental results show that compared with other im-

age enhancers, SuperISP obtains the best performances on two downstream tasks, which

indicates that SuperISP exploits the information in low-light images and provides effective

information for downstream tasks.

Finally, for better visual localization, we presented a novel method for global feature

extraction in Chapter 3, i.e., SuperGF. It is transformer-based and designed for 6-DoF lo-

calization, which acts directly on local features provided by descriptors of image-matching.

The results show our method’s advantages in terms of accuracy and efficiency. We provide

different implantations of SuperGF. i.e., different types of local features with both learning-

based and hand-craft descriptors. Users can choose different versions according to their

needs. Moreover, we encourage using the learning-based descriptor, i.e., SuperPoint, joint

with SuperGF. In addition, if you pursue higher retrieval accuracy while localization, e.g.,

using for loop closure, then the dense version is more suitable. For 6-DoF localization

alone, the sparse version is better in efficiency.

In addition, there are remaining problems in the study of this field. Although we pro-

vide two datasets, as mentioned. The current scale still cannot meet the needs of practical

applications in the real world. Even so, we provide reliable benchmarks for the research of

3D reconstruction tasks under low-light scenes. Even deep learning technology has been

widely used in this field. Due to various limitations, only a few deep models can be used

for real-world applications. Finally, we hope our research will contribute to the community

and developments in other related fields.
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[1] R. Arandjelović and A. Zisserman. Three things everyone should know to improve

object retrieval. In Proceedings of Conference on Computer Vision and Pattern

Recognition, pages 2911–2918, 2012.

[2] D. DeTone, T. Malisiewicz, and A. Rabinovich. Superpoint: Self-supervised inter-

est point detection and description. In Proceedings of Conference on Computer

Vision and Pattern Recognition Workshops, pages 337–33712, 2018. https:

//github.com/magicleap/SuperPointPretrainedNetwork.

[3] P. Sarlin, D. DeTone, T. Malisiewicz, and A. Rabinovich. Superglue: Learning

feature matching with graph neural networks. In Proceedings of Conference on

Computer Vision and Pattern Recognition, pages 4937–4946, 2020. https://

github.com/magicleap/SuperGluePretrainedNetwork.

[4] W. Maddern, G. Pascoe, C. Linegar, and P. Newman. 1 year, 1000 km: The oxford

robotcar dataset. International Journal of Robotics Research, 36(1):3–15, 2017.

[5] C. Chen, Q. Chen, J. Xu, and V. Koltun. Learning to see in the

dark. In Proceedings of Conference on Computer Vision and Pattern

Recognition, pages 3291–3300, 2018. https://github.com/cchen156/

Learning-to-See-in-the-Dark.

[6] Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pajdla, and Josef Sivic.

Netvlad: Cnn architecture for weakly supervised place recognition. In Proceed-

ings of Conference on Computer Vision and Pattern Recognition, pages 5297–5307,

2016.

107

https://github.com/magicleap/SuperPointPretrainedNetwork
https://github.com/magicleap/SuperPointPretrainedNetwork
https://github.com/magicleap/SuperGluePretrainedNetwork
https://github.com/magicleap/SuperGluePretrainedNetwork
https://github.com/cchen156/Learning-to-See-in-the-Dark
https://github.com/cchen156/Learning-to-See-in-the-Dark


[7] Wenzheng Song, Masanori Suganuma, Xing Liu, Noriyuki Shimobayashi, Daisuke

Maruta, and Takayuki Okatani. Matching in the dark: A dataset for matching image

pairs of low-light scenes. In Proceedings of International Conference on Computer

Vision, pages 6029–6038, 2021.

[8] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International

Journal of Conflict and Violence, 60(2):91–110, 2004.
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