% AW
Doctoral Thesis

W EHE
Thesis Title

Prior Knowledge-free Robot Navigation

in Dynamic Environments

through Deep Reinforcement Learning

AL R % R % B L% oF 78 B
Graduate School of Engineering,

TOHOKU UNIVERSITY

B /Department: Robotics

FEEZ/ID No: COTD9122

K4 /Name: Wei ZHU

TOHOKU UNIVERSITY
Graduate School of Engineering

Prior Knowledge-free Robot Navigation
in Dynamic Environments
through Deep Reinforcement Learning

(PRI L % I = BN BRE FIC 3510 2 ORI AR B K o b =2 3 V1
W5 5 50

A dissertation submitted for the degree of
Doctor of Philosophy (Engineering)

Department of Robotics
by
Wei ZHU

July 7, 2023

Prior Knowledge-free Robot Navigation in Dynamic
Environments through Deep Reinforcement
Learning

Wei Zhu

Abstract

The advancement in robotics and autonomous systems has led to an increase in
the demand for intelligent agents that can navigate through dynamic environments
safely and efficiently. However, developing a collision-free navigation system for au-
tonomous agents that can operate in dynamic environments is a challenging task.
The system needs to be able to perceive its environment, make decisions based on
sensory input and history of actions taken, and adjust its behavior in response to
changes in the environment. Traditional methods for collision avoidance rely on
global maps, fully known obstacle states, and accurate state predictions, which may
not be practical for dynamic environments. Deep reinforcement learning (DRL) has
emerged as a promising solution to address this challenge. DRL combines deep neu-
ral networks with reinforcement learning to learn collision-free policies by interacting
with the environment. The system learns from its experience by receiving feedback
in the form of rewards or penalties and updates its policy accordingly. However, it is
time-consuming to learn from exploratory interactions, especially when observations
are high-dimensional raw sensor data, definitions of rewards or penalties are sparse,
and navigation targets are positioned in a broad scope. In addition, complex ob-
servations may require colossal neural networks, which requires powerful hardware
and possibly results in prolonged even unsuccessful training. Because of the limited
training samples collected from simulation environments, it is prohibitively chal-
lenging to transfer pre-trained navigation policies into other environments which
have not been explored. Moreover, the ideal assumptions in simulation, such as
fully known obstacle states including shape, size, number, position, and speed, pose
challenges for real-world implementation.

The final objective of this thesis is to enhance the collision avoidance capability
of real-world mobile robots in dynamic environments using learning efficient DRL
frameworks without the ideal assumptions or heavy neural networks. To progres-
sively accomplish this objective, we developed four DRL models step by step to learn
collision-free navigation policies in different scenarios. In addition, we employed con-
ventional controllers, domain randomization, system identification, and localization
algorithms to cater to practical applications. To evaluate the proposed approaches,
a set of experiments was conducted on a variety of simulated environments and real
scenarios with dynamic obstacles. The experiments demonstrate that the proposed
approaches outperform traditional methods in terms of collision avoidance and nav-
igation efficiency. Moreover, the proposed navigation systems are shown to adapt
effectively to changes in the environment, making it suitable for practical applica-

tions. More specifically, the dissertation comprises four main bodies that are ordered
based on the complexity of the task at hand.

First, we present a Hierarchical DRL-based (HDRL) navigation structure which is
able to learn to avoid obstacles from a single-frame LiDAR scan and can adapt to
unknown static environment configurations in Chapter 2. Our hierarchical frame-
work has prominent sampling efficiency and sim-to-real transfer ability for fast and
safe navigation. Specifically, the low-level DRL policy enables the robot to move
toward the target position and keep a safe distance to obstacles simultaneously. The
high-level DRL policy is supplemented to further enhance the navigation safety. For
both policies, we select a waypoint located on a traversable path from the robot to
the ultimate goal as the sub-goal to reduce the state space and avoid sparse reward.
Moreover, the path is generated based on a local map and existing map-based path
planners, which can significantly improve the sampling efficiency, safety, and gen-
eralization ability of the proposed DRL framework. Additionally, a target-directed
representation for the action space can be derived based on the sub-goal to improve
the motion efficiency and reduce the action space. Finally, we deploy the navigation
strategy on a wheel-legged biped robot and a quadruped robot to show the potential
of our method to navigate robots in unknown real environments.

In Chapter 3, the task becomes more challenging by mixing static and dynamic
obstacles. We present a Sampling Efficient DRL framework for Dynamic Naviga-
tion (SEDN) directly using multi-frame LiDAR scans. To accelerate DRL training
and simulate LiDAR scans, we specially designed a kinematics-based simulator. The
navigation policy learned in this simulator can be directly transferred into a physics-
based Gazebo simulator and real-world scenarios where we utilize a quadruped robot
mounted with a LIDAR sensor. Moreover, because of the rich information from con-
secutive LiDAR scans and prominent representation capability of deep learning, the
policy acquired from a specific environment can be generalized into diverse environ-
ments that have never been explored. Because the robot motion is highly coupled
with dynamic surroundings, we transform the center of the previous LiDAR scans
into the center of the current LiDAR scan to individually extract surrounding mo-
tion features. To further enhance sampling efficiency, we integrate optimal reciprocal
collision avoidance (ORCA) to generate auxiliary action alternatives. Our method
has been extensively tested through numerous ablations and real-world implemen-
tations, which have unequivocally demonstrated its remarkable learning efficiency,
superior generalization ability, and strong adaptability in real-world scenarios.

While our study in Chapter 3 presents a straightforward end-to-end navigation solu-
tion, its practical applicability in real-world situations is limited because the margins
of obstacles in reality differ significantly from those used in our simulations. More-
over, the robot depends on external localization systems, which further restricts
its practicality. Additionally, the research in Chapter 3 requires imitation learn-
ing and supervised samples, which may result in sub-optimal navigation policies.
Therefore, to enable realistic and practical applications in human society, our third
research in Chapter 4 integrates human detection and robot localization modules
to form an autonomous navigation system. Furthermore, we have implemented a
model-based and sampling-efficient DRL framework to develop a navigation policy
solely from image observations, without relying on supervised samples. Specifically,

we create a collision-free Navigation system in diverse Pedestrian scenarios using a
Dreamer-based motion planner (NPD). Our DRL framework can completely learn
from zero experience via a model-based DRL with the advantage of efficient sam-
pling. The robot and humans are first projected onto an occupancy map, which is
subsequently decoded into a low-dimensional latent state. Moreover, we leverage
recurrent neural networks to accumulate environment information from sequential
occupancy maps. In addition, a predictive dynamic model in the latent space is
jointly created to dream effective interaction episodes in the long-term horizon,
which can efficiently optimize the navigation policy. Additionally, we leverage the
techniques of system identification, domain randomization, clustering, and LiDAR
SLAM for practical deployment. Our approach has been rigorously compared with
state-of-the-art baselines, with results consistently showing superior performance.
Furthermore, our extensive real-world experiments provide compelling evidence for
the efficacy of our method in modeling complex, reciprocal human relations and
successfully navigating robots among pedestrians

Finally, in Chapter 5, we further optimize the navigation strategy which offers sev-
eral advantages that stem from the combination of the studies in Chapter 3 and 4.
The robot can Learn to Navigate in Dynamic environments using Normalized LiDAR
(LNDNL) scans. Specifically, the DRL-based navigation model enables fast and sta-
ble learning, lightweight computation, and strong adaptability. Instead of relying on
consecutive laser scans, we leverage long short-term memory (LSTM) to extract sur-
rounding motion features from egocentric and sequential LiDAR scans. Because we
replace the image observation utilized in Chapter 4, our neural networks in Chapter
5 become significantly compact and lightweight, which can notably reduce training
time and usage of hardware resources. Additionally, we employ a model-free DRL
framework to handle deviated human motion models, rather than the previously
used Dreamer algorithm in Chapter 4. Instead of directly using raw LiDAR scans in
real-world scenarios mentioned in Chapter 3, we firstly obtain obstacle positions by
an improved clustering algorithm derived from the study in Chapter 4. Accordingly,
we are able to normalize the obstacles as circles and rectangles. Subsequently, we
can re-generate LiDAR scans from the normalized obstacles, which enhances the
generalizability of sim-to-real implementations. We have extensively evaluated our
combined navigation strategy through simulation ablations and practical implemen-
tations, which demonstrate its notable improvement over the methods mentioned in
Chapter 3 and 4.

The findings of this research contribute to the field of end-to-end robot navigation
in dynamic environments by providing a robust and adaptive navigation system
for autonomous agents. The proposed approach has the potential to be applied
to various domains, including autonomous driving, robotics, and unmanned aerial
vehicles. The proposed approach can also be extended to other related problems,
such as multi-agent collision avoidance, which is an important topic in robotics and
autonomous systems.

Contents

1.5

Table of contents i
List of Figures \4
List of Tables xi
1 Introduction 1
1.1 Background 1
1.2 Motivation and Objectives 2
1.3 Stateof the Art 5
1.3.1 Navigation System 6

1.3.2 Map-based Navigation 6

1.3.3 Trajectory-based Navigation 7
1.3.4 DRL-based Navigation 7
1.3.5 Summary of State-of-the-art Navigation Strategies. 10

1.4 Approaches and Contributions 11

1.4.1 Navigation in Static Environments with a Single-frame LiDAR

SCan ... 11
1.4.2 Navigation in Dynamic Environments with Multi-frame Li-

DAR Scans 12
1.4.3 Navigation in Social Environments with Sequential Occupa-

tion Mapso 13
1.4.4 Navigation in Social Environments with Sequential LiDAR

Scans 14
Thesis Organization 15

Contents Doctoral Thesis

2 Navigation in Static Environments with a Single-Frame LiDAR

Scan 18
2.1 Introduction 18
2.2 Related Work 20
2.3 Hierarchical DRL Framework 22
2.3.1 Problem Formulation 23
2.3.2 Low-level DRL, 23
2.3.3 High-level DRL 26
2.3.4 Selection of Sub-goal 27
2.4 Experiments 28
2.4.1 Auxiliary Implementation Tools 28
2.4.2 Training Environment Settings 29
2.4.3 Simulation Evaluations 31
2.4.4 Sim-to-Real Transfer 35
2.5 Conclusions 35

3 Navigation in Dynamic Environments with Multi-Frame LiDAR

Scans 37
3.1 Introduction 37
3.2 Related Worko 39
3.3 Approach 40
3.3.1 Deep Reinforcement Learning 41
3.3.2 Simulation Environment 42
3.3.3 Elements of the DRL Model 44
3.3.4 Improvement of Sampling Efficiency 46
3.3.5 SEDN Algorithm 46
3.4 Experiments 48
3.4.1 Training 49

i

Doctoral Thesis Contents

3.4.2 Model Revision 50
3.4.3 Evaluation 52
3.4.4 Implementation in Physics based Environments 95
3.5 Conclusions 58

4 Navigation in Social Environments with Sequential Occupation Maps 59

4.1 Introduction 59
4.2 Related Work oo 62
4.2.1 Navigation System 62
4.2.2 Motion Planning among Pedestrians 62
423 Dreamero e 63
4.3 Approach 63
4.3.1 Problem Formulation 64
4.3.2 World Modelo 64
4.3.3 Motion Planner 0oL 68
4.3.4 Algorithm Summary 69
4.3.5 Complete Navigation System 70
4.4 Experiments 71
4.4.1 Simulation 71
4.4.2 Real Implementations 76
4.5 Conclusions 76

5 Navigation in Social Environments with Sequential LIDAR Scans 83

5.1 Introductiono 83
5.2 Related Work 86
5.2.1 Robot Simulators 86
5.2.2 Robot Navigation in Stable Environments 86
5.2.3 Robot Navigation in Dynamic Environments 87

il

Contents Doctoral Thesis

5.3 Approach 88
5.3.1 Simulator 88

5.3.2 Obstacle Normalization 90

5.3.3 Algorithm Framework 91

5.4 Experiments 95
5.4.1 Simulation Ablation 95

5.4.2 Generalizability Validation 97

5.4.3 Real Implementation 97

5.4.4 Limitations L Lo 98

5.5 Conclusions L 99

6 Conclusions and Future Work 103
6.1 Summary 103
6.2 Future Work 105
Bibliography 107
Acknowledgements 119

v

List of Figures

1.1

1.2

1.3

1.4

1.5

1.6

Practical application scenarios of mobile agents. A and B are au-
thorized by IEEE [3,4]. C and D are from Momenta and Waymo
websites, respectively.o

Types of navigation strategies. A, B, and C, authorized by IEEE
[13—15|, represent the map-based, trajectory-based, and DRIL-based
navigation strategies, respectively.

Structure of a complete autonomous navigation system. This figure
is authorized by Journal of Field Robotics [16]..

Navigation in stable environments. The observation of A is raw im-
ages whereas B’s observation is LIDAR scans. A and B are authorized
by IEEE [41,43].

Navigation in dynamic environments. The observation of A and B
is humans’ fully known states including position, speed, and size
whereas C and D directly map raw sensor observations such as im-
ages and LiDAR scans into navigation actions. A-D are authorized
by IEEE [49,54,55,61].

Thesis organization. Chapter 2 serves as the foundation for Chapters
3 and 4. The studies in Chapter 3 and 4 concentrate on the navi-
gation of robots in environments that are highly dynamic, whereas
the the research in Chapter 2 represents a fundamental experiment
in deploying a DRL-based navigation policy in static environments
with unknown initial configurations. By leveraging the strengths of
studies in Chapter 3 and 4, our final work in Chapter 5 represents a
significant advancement and results in a further improved outcome.

16

List of Figures

Doctoral Thesis

2.1

2.2

2.3

24

2.5

2.6

2.7

Hierarchical DRL framework. The low-level DRL policy is used for
fast motion while the high-level DRL strategy is aimed at safe ob-
stacle avoidance. Both the low- and high- level DRL policies have
the same deep neural network structure and share the identical state
input including a 37-dimension laser scan, robot’s linear and angular
velocities (v and w), and the position of the sub-goal in the robot
frame (r and #). Differently, the low-level DRL policy outputs five
specific actions while the high-level DRL policy produces two abstract
choices, one of which projects to the low-level DRL policy.

Training environment. The Turtlebot mobile robot moves at 10Hz
control frequency in a rectangle with 10 x 10m size. The laser sensor,
with 10Hz scanning frequency, is installed on the top of Turtlebot.
The left figure visualizes the Gazebo simulation environment while
the right figure displays the occupation map pre-built with the SLAM
algorithm. oo

The comparison of the training efficiency. 100 tests are executed
every 40 thousand training steps. The test results include successful
navigation, collision and time out that is the robot does not reach the
final goal within a given time. The top figure shows the success rate
while the bottom figure illustrates the collision rate.

Path visualization. The paths of LLDRL are similar to those of HDRL
but the path five of LLDRL enters the fatal collision area. The paths
of the baseline CDRL illustrate the inefficient motion of rotation in
place while the paths of the baseline DDRL display the vibrant jitter
which degrades the motion efficiency.

New environments. Neither the two environments are explored with
the proposed DRL framework. Al and B1 display Gazebo scenarios
while A2 and B2 are corresponding occupation maps built with the
SLAM algorithm. Compared with the training environment shown in
Figure 2.2, the obstacles in these two environments are much more
dense and exhibit more complex topological structure, such as the
obstacle cluster.

Successful navigation paths in two novel worlds totally different from
the training environment. L.

Sim-to-real transfer in diverse scenarios with different robot plat-
forms. The localization for the wheeled bipedal robot is based on
the wheel odometer and the Kalman filter while the quadruped robot
relies on the external motion capture because the embedded odometer
drifts heavily.

29

vi

Doctoral Thesis

List of Figures

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Overview of our approach. First, the centers of the previous three
laser scans are transformed into the center of the current laser scan.
Next, these four laser scans and the goal positionin the robot frame
are combined as the observations of the DRL model. The action has
three options. One choice is generated from the DRL model. Mean-
while, the fully known states, including human sizes, positions, and
speeds, are fed into ORCA to generate another action. In addition,
a random action is integrated for broad exploration. The final action
is selected from these three alternatives to balance exploration and
exploitation.

Raw laser scans and center transformation in training environments.
The left top frame displays the initial states and the right top frame
shows the intermediate motion. There is a total of 1800 laser scan
beams, and a few are shown in these two sub-figures. The bottom
figure illustrates the center transformation of the previous three laser
scans. The endpoints of previous laser scan beams are transformed
into the frame of the current laser scan. Note that although the di-
rection of the laser sensor is constant in training environments, it
changes in the real world because the robot’s initial pose is randomly
set and the robot’s motion heavily drifts. Therefore, we require fur-
ther coordinate transformation in real-world scenarios.

Network structure. For each unit except the laser scan and the goal
position, the left text represents the network operation, and the right
tuple is the output dimension after operation.

Physics-based experiment environments. The top image displays the
Gazebo environment and the bottom two figures show the real-world
scenario. In Gazebo, surrounding motions are generated by ORCA.
In the real world, we transform the 3-D LiDAR point cloud into a
2-D laser scan. We utilize external motion capture system to localize
the robot because the quadruped robot’s odometer drifts heavily.

Training process. The result of each training episode is either suc-
cessful navigation, collision, or running overtime. We illustrate the
success rate in the top figure and the collision rate is shown in the
bottom figure. We evaluated the model 100 times every 1000 training
episodes.

Hybrid scenarios with both dynamic and static obstacles. The circles
are dynamic objects while the yellow rectangles are static barriers
with random positions. The side length of the rectangle varies from
0.3 to 0.4m during training.o

Training process of revised SEDN baselines. We omit SEDN-DDPG-
Simple and SEDN-SAC-Simple because their success rates are zero
at all times.

48

vil

List of Figures

Doctoral Thesis

3.8

3.9

3.10

3.11

3.12

3.13

4.1

4.2

4.3

4.4

Generalization in various scenarios with different human numbers.
The trajectories of humans and the robot are represented by succes-
sive circles with the same time interval. The motion of humans is
generated using ORCA with the robot invisible. The red line rep-
resents the discrete trajectory of the robot and other lines are the
trajectories of humans. L.

Simplified and original network structures. The left figure illustrates
the simplified network structure whereas the right figure shows our
original network structure with CNNs.

Network structure of SAC with a CNN decoder.
Network structure of DDPG with down-sampled sensor data.

Gazebo scenarios with the motion area 4x4m. G1 has three dynamic
objects, whereas one obstacle is static in G2. Adding one smaller
dynamic object into G1 and G2 yields G3 and G4, respectively.

Real environments with 2.4x3.4m accessible rectangle area. R1 and
R2 have one human with a cross and toward motion, respectively.
Two humans randomly walk in R3, while one dynamic human and
one static obstacle are included in R4. R5 has three moving humans.

Framework of Dreamer-based motion planner with image observation.
The multi-layer perceptron (MLP) is used for learning and inference.
The encoder network (Enc) comprises convolutional neural networks
(CNNs), while the decoder network (Dec) is constructed using trans-
posed CNNs. To propagate historical information, recurrent neural
networks (RNNs) are employed in the dynamics module.

Image observation with the position information of humans and the
robot. e

Complete autonomous navigation system. The robot localization and
human extraction are executed at 10Hz due to the limitation of sen-
soring frequency. We plan the motion at the speed level every 0.2s
while the level of robot gait generation corresponding to the desired
speed is run at 500Hz.

Learning ablations. At certain time step, we evaluate the policy 100
times and calculate the corresponding success rate of collision-free
and target-reaching navigation. Group one include two baselines,
CADRL and LSTM_RL, which have a stable learning process while
the training of another two baselines in Group two, SARL and RGL,
vibrates intensely. EGO and LSTM_EGO in Group three can not
reach a high success rate of crowd navigation and their learning is
extremely unstable. oo

o4

o6

57

Doctoral Thests List of Figures

4.5 Baselines with fewer positive samples. METHOD has 2000 positive
episodes whereas the experience pool of METHOD?* is initialized by
50 positive episodes. 79

4.6 Complex environments. (a) The red circles represent moving humans
whose number changes from 1 to 4 whereas the rectangles stand for
static obstacles whose number is variable from 1 to 3 and side length
ranges from 0.3m to 0.4m. The robot with an inflation area is il-
lustrated by the blue circle. (b) The number and shape of moving
humans and static obstacles are same as those illustrated in (a). We
specially designed a LiDAR scan environment to train LSTM_EGO,
where the LiDAR scan is composed by 1800 beams to comprehen-
sively detect surrounding objects.o 80

4.7 Training in complex environments. 80

4.8 'Trajectory visualization. The red circle represents the human, the
blue is the robot, and the green stands for the goal. The object
moves at the direction that the circle opacity increases. The top two
figures shows the scenarios with one human, the middle two humans,
and the bottom three humans. 81

4.9 Learning process with stochastic configurations in simulation. Dif-
ferent from the training for comparison, this training is executed in
stochastic environments with variable human numbers and distribu-
tions to learn a more generalized navigation policy. NPD considers
the robot’s collision margin as a circular shape, whereas NPD-CM
uses a more accurate collision margin that is a circumscribed rectan-
gle around the physical robot. RGL’s learning is omitted because its
success rate is zero at all times.o 82

4.10 Robot collision margin is a rectangle whereas humans are represented
by circles. 82

5.1 Specially designed simulator. To illustrate our approach, we repre-
sent dynamic humans as circles and static obstacles as rectangles.
The goal is a green solid circle without a collision margin. Our robot
is equipped with an ego-centric LIDAR sensor, and we use representa-
tive scenes (a) and (b) for simulation ablations, and selective frames
(c) and (d) for real-world implementations. To ensure fair compari-
son with other baselines, the robot’s initial location in (a) and goal
position in (b) remain fixed in all training and testing episodes. How-
ever, in (c¢), we randomly set the robot’s initial location to generalize
real-world situations. The goal position in (d) remains fixed as it is
relative to the robot’s frame. We handle both moving and steady ob-
stacles of varying shapes, sizes, and numbers in both simulation and
real scenes. Due to the slower motion of our real robot platform, the
real scenes are smaller (2.8 x6m) than the simulation scenes (10x10m)
with a larger motion area. Lo 89

1X

List of Figures

Doctoral Thesis

5.2

2.3

5.4

2.5

0.6

5.7

2.8

Obstacle clustering. The upper figure shows a raw LiDAR scan
whereas the bottom one illustrates the clustering result. The target
obstacles are bounded by boxes.o

Structure of LNDNL. We only require a multi-layer perceptron (MLP)
to pre-process a single-frame LiDAR scan. The inputs of our policy
networks include history information h;, a processed LiDAR scan [;,
and the goal position g; in the robot frame. The action-value function
q; is represented by a MLP with the inputs of hy, l;, ¢¢, and a;. The
policy network projects hy, [, and ¢; into next action a;yq.

Network structure. A|B: A is a variable or network unit and B repre-
sents its dimension. MLP|AxBx.... MLP is a multi-layer perceptron
and AxBx... denotes layer units.

Extensive simulation ablations with respect of learning efficiency. (a)
The baselines, CADRL, LSTM_RL, SARL, and RGL assume fully ob-
servable states, including human number, size, shape, position, and
velocity. (b) The states in the baselines, EGO, SEDN, and NPD are
partially observable. In addition, EGO and SEDN directly use con-
tinuous LiDAR scans whereas NPD leverages sequential occupation
INADS. « v e e e e e e e e e e e

Training process in more challenging environments.

Training process in real-world scenarios. NPD-1(2) and LNDNL-1(2)
represent the training results in Reall(Real2). LNDNL-3 illustrates
the learning process in Real3.

Shots of real-world experiments.

List of Tables

1.1

1.2

2.1

2.2

3.1

3.2

4.1

4.2

4.3

5.1

5.2

5.3

Summary of state-of-the-art navigation strategies 11

Summary of the studies from Chapter 2to5 17

The comparisons of the success rate of target reaching and the motion
efficiency. The average goal reaching time used to imply the motion
efficiency is calculated only from the tests where all five methods
succeed in the target reaching. 31

Average speed (unit: cm/s) of each path for the proposed method
and the move_base approach. 31

Comparison in terms of success rate and collision rate in 500 random
tests. We omit SEDN-SAC-Simple and SEDN-DDPG-Simple because
neither of them can achieve collision-free and target-reaching navigation. 52

Comparison with different policies deployed in various human scenar-
ios. The two values in one unit represent the success and collision
rates, respectively.o 53

Final Evaluation. 500 random tests are executed with the best neural
networks saved during the training. 73

Test results with fewer positive samples. 73

Quantitative analysis when adding uniform noises to the human ac-
tion originally generated by ORCA. 74

Reward parameters used in simulation ablation and real implementation 95

Final Evaluation. 500 random tests are executed with the best neural
networks saved during the training.o L 96

The influence of obstacle density and type. 500 random tests are
executed for each scenario. oL 97

el

Chapter 1

Introduction

1.1 Background

Autonomous navigation systems have gained significant attention and popularity
recently, as they offer multiple advantages, including enhanced efficiency, safety, and
intelligence. The development of autonomous navigation systems can be traced back
to the 1980s when researchers began exploring the use of artificial intelligence and
machine learning algorithms to enable autonomous robot navigation. Since then,
there has been significant progress in the development of autonomous navigation
systems, including the use of advanced sensors, including LiDAR, cameras, and
radar, as well as the development of advanced algorithms that enable real-time
decision making [1]. As shown in Figure 1.1, the promising potential of these systems
have encouraged their widespread use in various sectors [2] such as indoors [3], open
fields [4], busy roads [5|, and high-speed ways [5]. The aging population, labor
shortages, and the need for non-contact services during the pandemic have further

fueled the research and development of autonomous mobile robots.

Although significant strides have been made in the advancement of autonomous nav-
igation systems, there are still numerous obstacles that must be surmounted. One
of the most pressing challenges is the ability of these systems to function effectively
in complex and dynamic environments. Accomplishing this necessitates integrating
a diverse array of sensors and creating sophisticated algorithms capable of managing
the intricacies of real-world settings. Designing navigation systems for socially aware
robots, in particular, is an exceptionally intricate undertaking. It involves address-
ing a wide variety of issues, including mapping and localization, human detection

and behavior analysis, social norms, and decision-making and planning [6].

1.2. Motivation and Objectives Doctoral Thests

Figure 1.1: Practical application scenarios of mobile agents. A and B are authorized
by IEEE [3,4]. C and D are from Momenta and Waymo websites, respectively.

Various types of algorithms, such as map-based |7, 8], trajectory-based [9, 10|, and
DRL-based [11,12], have been extensively developed to generate navigation strate-
gies for both small service mobile robots and large unmanned vehicles in relatively
stable or highly dynamic environments. These algorithms aim to ensure safe, effi-
cient, and comfortable operation of these mobile agents in a range of environments,
including human societies and the wilderness. This dissertation aims to explore the
benefits of these navigation algorithms through a comprehensive analysis. By com-
bining these algorithms, this study seeks to uncover their full potential and enhance

their effectiveness.

1.2 Motivation and Objectives

Map-based |7, 8] robot navigation strategies enable autonomous collision-free and
target-reaching motion planning in unstructured environments. By using maps to
guide their movements (shown in Figure 1.2-A), robots can achieve higher levels of
precision and accuracy in their operations. Moreover, map-based navigation systems
can be scaled up or down to accommodate different unstructured environments, mak-
ing them adaptable to a wide range of applications. However, map-based robot nav-
igation systems rely heavily on the accuracy and completeness of maps, which may
not always be available or up-to-date. In addition, map-based navigation systems
may struggle in environments that are constantly changing or where unexpected

obstacles arise.

Doctoral Thesis 1.2. Motivation and Objectives

i
.

OOSK.
it

s
‘e

¢ | . |

' Three
Branch 1: =i
 tomes

(3x512) 5322 3,162 256

Branch 3: “ “ Relative Goal
| J

)

-

Branch 4: % “» Current Velocity
=
() 128
- -
(SWL;%‘Q‘”- (boo) 5642 SGE41 33322 512 256

Figure 1.2: Types of navigation strategies. A, B, and C, authorized by IEEE [13-15],
represent the map-based, trajectory-based, and DRL-based navigation strategies,
respectively.

As an alternative, trajectory-based navigation strategies [9,10| can be map-free and
quickly adapt to constantly changing obstacles. Trajectory planning takes into ac-
count the surrounding obstacles and plans the path accordingly (shown in Figure
1.2-B), which helps in avoiding collisions and ensuring safety. With a pre-planned
trajectory, the robot’s movement becomes more predictable, and this can be ad-
vantageous in scenarios where accuracy and repeatability are crucial. Moreover,
trajectory-based navigation can be adapted to various types of robots and environ-
ments. Nevertheless, trajectory-based navigation relies heavily on accurate sensor
data to create a precise path, and any errors or inaccuracies in the sensor data can
lead to navigation failures. Additionally, if the estimation of the obstacle trajectory
is incorrect, it could lead to a fatal crash and cause the robot’s planned trajectory

to deviate from its desired direction. Furthermore, detecting and tracking mov-

1.2. Motivation and Objectives Doctoral Thests

ing obstacles requires complicated techniques, which rely on powerful hardware and
degrade real-time performance. At the meanwhile, online optimization of robot
trajectory is time consuming, which further results in response delay. Fixed opti-
mization methods may also cause frozen motions especially in the environments with
dense moving objects. Moreover, short-sighted planning horizon used for trajectory

optimization may bring about unnatural motions.

Unlike manually programmed robots, such as model predictive motion planners
commonly used in trajectory-based navigation strategies, DRL-based navigation
approaches [11,12] enable robots to learn and make decisions on their own in an end-
to-end manner (shown in Figure 1.2-C), making them more flexible in responding
to changes in the environment. Meanwhile, interactive learning mechanism enables
robots to learn from their mistakes and improve their performance over time, making
them more efficient at their tasks. With the significant development of big models
such as ChatGPT that everlastingly improve their own generalizability and accuracy,
we can envision that a generalized and practical DRL-based navigation model will
be come into being. One significant advantage of DRL-based navigation methods
is their model-free nature. This is particularly useful when dynamic models are
highly complex and difficult to obtain with accuracy. However, DRL algorithms
can sometimes overfit to a specific environment, which means that they may not
perform well in new or unfamiliar environments. Moreover, the performance of
robots trained with deep reinforcement learning heavily depends on the quality and

quantity of data used during training.

Motivated by the advantages and disadvantages of the existing studies mentioned
above, we developed four navigation algorithms to handle different scenarios. The
objective of this thesis is to improve the ability of mobile robots to avoid collisions
and reach targets using DRL. The goal is achieved by introducing different navi-
gation frameworks in specific scenarios. To make the proposed frameworks more
practical and applicable in real-world scenarios, several additional techniques are
employed. These include conventional motion planners, domain randomization, sys-
tem identification, and localization algorithms. These techniques are used to improve
the performance of the DRL algorithms and to ensure that the robots are able to
operate successfully in different environments and conditions. To be more precise

and specific, we have outlined our detailed objectives as follows:

e Our motion planning method adopts a hierarchical DRL framework and lever-
ages map-based navigation techniques. By integrating these approaches, we
aim to enhance navigation performance in unknown environments. Specif-

ically, our method aims to improve generalizability, learning efficiency, and

4

Doctoral Thesis 1.3. State of the Art

optimality, enabling it to adapt to a wide range of scenarios and improve

navigation efficiency.

e In environments that are constantly changing, we are able to make navigation
decisions based on continuous LiDAR scans without the need for maps or
explicit dynamic models. To enhance the learning efficiency of our complex
neural networks, we have integrated a trajectory-based navigation algorithm
that aids in sampling during training. As a result, our approach allows for
more effective mapping of LiDAR scans to navigation decisions, even in highly

dynamic environments.

e To enhance the transferability of our approach from simulation to the real
world, we represent the surrounding objects as circles or rectangles in a pixel
image. Then, we employ a model-based DRL algorithm to optimize the naviga-
tion policy from sequential image observations, thereby improving the learning

efficiency and freeing our approach from dependence on supervised samples.

e The networks responsible for image processing are intricate and their abil-
ity to plan effectively is compromised when dealing with large motion areas.
Moreover, continuous LiDAR scans neglect long-term environment interac-
tions. Our final objective is to develop a lightweight neural networks that can
capture long-term surrounding variations and efficiently optimize navigation
policies in highly dynamic environments without relying on maps, supervised

samples, or dynamic models.

1.3 State of the Art

We have undertaken a comprehensive study of a navigation system that encom-
passes perception, prediction, decision-making, planning, and robot control. Our
primary objective is to design navigation strategies based on DRL that are effective
in dynamic environments. To achieve this, we have integrated traditional motion
planners, cutting-edge machine learning techniques, and approaches for environment
perception from raw sensor data. This enables us to not only learn viable navigation

strategies but also implement them in real-world scenarios with maximum efficiency.

1.8. State of the Art Doctoral Thesis

%

00

Deep Learning Deep Learning Al-based Sep
(or Classical) (or Classical) (or Classical) Lg?f ?;'; gﬂl;s:)d N Autonomous
Perception and High-Level Path Behavior Arbitration 5 Vehicle

o : : Motion Controllers
Localization Planning (low-level path planning)

A A A A

Safety Momitor

Figure 1.3: Structure of a complete autonomous navigation system. This figure is
authorized by Journal of Field Robotics [16].

1.3.1 Navigation System

A complete navigation system shown in Figure 1.3 integrates perception, decision,
planning, and control modules, which are broadly researched and developed for
autonomous driving vehicles [16-18]. However, these modules are studied separately
in both industry and academia. Although there are several mature and open-source
solutions, such as Apollo! and Autoware?, publicly accessible navigation systems
among pedestrians are rare in the community of service robots. In this thesis, we
construct a complete navigation system, in which the perception and control modules
are derived from mature methods and decision and planning are achieved by novel

DRL-based motion planners.

1.3.2 Map-based Navigation

Traditional non-learning map-based methods [19,20] require a pre-built global map
for path planning (shown in Figure 1.2-A), which can be cumbersome to maintain
maps when the environment frequently changes. Moreover, if the environment is
large the final goal is far from the robot, searching global paths will be prolonged.
Once the global map is known, various path planning techniques can generate a
global path from the initial robot position to the final goal, such as the A-star algo-
rithm [21] and the rapidly-exploring random tree (RRT) method [22]. Alternatively,
a local planner can be used to generate velocity commands and handle certain dis-
turbances, such as moving, removing, or adding obstacles. One commonly used
strategy, the dynamic window approach (DWA) and its variations are widely used
for obstacle avoidance [23,24|. However, global planners are unable to generate op-

timal paths because they search for a feasible path from the map using a heuristic

Thttps://github.com /chrislgarry /Apollo-11
2https://github.com /autowarefoundation /autoware

6

Doctoral Thesis 1.3. State of the Art

method. Additionally, local planners require careful tuning for cost weights involv-
ing collision, path following, motion speed, etc. For certain simple situations, path
tracking methods can be used to follow the path without collision concerns, provided
that the environment remains static and the global path avoids all obstacles [25,26].
The methods mentioned above assume that a global map is already known, which is
impractical when the environment frequently changes. One alternative is to update
the map in real-time while navigating in partially-known surroundings [27]. This
approach solves the problem of time-consuming offline map building but comes at

the expense of degraded safety and optimality of navigation.

1.3.3 Trajectory-based Navigation

Trajectory-based navigation strategies have the ability to produce collision-free and
optimal trajectories based on current and future states of surrounding obstacles
(shown in Figure 1.2-B), whether static or moving [28]. Two commonly used ap-
proaches that operate on a one-step trajectory planning basis are reciprocal velocity
obstacle (RVO) [29] and optimal reciprocal collision avoidance (ORCA) [30], which
can generate safe actions for each moving agent, based on a reciprocal assumption.
However, since these methods only consider one-step motion, they tend to result
in short-sighted and unnatural behaviors. On the other hand, multi-step trajectory
planning methods [31-33] online optimize the robot’s trajectory over a long horizon
by predicting the trajectories of surrounding obstacles. However, these methods
heavily rely on the accurate and complete knowledge of the states of surround-
ing objects and their future states, which is often difficult to obtain in real-world
scenarios. In addition, online optimization is time-consuming, which may degrade

real-time performance.

1.3.4 DRL-based Navigation

Deep reinforcement learning. Deep reinforcement learning (DRL) is a subfield
of machine learning that combines deep learning and reinforcement learning tech-
niques to enable machines to learn and make decisions in complex and dynamic
environments. In recent years, there have been significant advancements in the field
of DRL, leading to state-of-the-art performance on many challenging tasks. One of
the major breakthroughs in DRL has been the development of the Deep Q-Network
(DQN) algorithm [34]. DQN uses a deep neural network to approximate the Q-value

function, which estimates the expected future reward for each possible action in a

7

1.8. State of the Art Doctoral Thesis

given state. This algorithm has been successful in playing a variety of Atari games

at a superhuman level. Our first two studies in Chapter 2 and 3 also leverage the
DQN framework.

Another major advancement in DRL has been the development of policy gradient
algorithms. These algorithms directly optimize the policy function, which maps
states to actions, using gradient descent. One popular algorithm in this category
is the deep deterministic policy gradient (DDPG) algorithm [35], which has been
shown to achieve state-of-the-art performance on a range of complex environments,
including robotics and game-playing tasks. The DRL frameworks used in our last
two studies in Chapter 4 and 5 are founded on the actor-critic network structure
initially introduced in the DDPG algorithm.

Furthermore, there has been a growing interest in DRL research on model-based
methods, which learn a model of the environment and then use it to plan actions [36].
This approach can be more sample-efficient than model-free methods, which directly
learn the optimal policy without explicitly modeling the environment. Model-based
algorithms such as Model Predictive Control (MPC) and World Models have shown
promising results in various domains. Our study in Chapter 4 leverages a model-
based DRL approach with image observations, namely Dreamer. The Dreamer
algorithm is a reinforcement learning agent that addresses long-horizon tasks from
images purely by latent imagination [37], which yields a large number of achieve-
ments in simulated environments, such as Atari games and MuJoCo robots [37-40].
Conversely, we focus more on real implementations of collision-free and socially
aware robot navigation by leveraging the key idea of the Dreamer algorithm. A
map is created to represent complex scenarios with variable human numbers and
random initial states. A dynamic model with a map as a unique observation is
learned to represent social relationships among humans. The learned model can fa-
cilitate learning complex behaviors, thereby enabling the robot to learn an optimal

navigation policy without any prior experience.

Navigation in stable environments. In stable environments, DRL-based nav-
igation policies can generate collision-free and target-reaching trajectories in both
simulations and real-world scenarios that resemble the training environment. For ex-
ample, a pioneering study [41] trained a policy in simulation, where an abundance of
visual data enabled optimization of the navigation strategy (shown in Figure 1.4-A).
The resulting policy was then directly deployed in a similar real-world setting. Simi-
larly, another state-of-the-art approach [42] successfully transferred a learned policy
to novel scenarios by approximating the reward function using a linear combination

of learned features. In addition to vision-based DRL navigation policies that are

Doctoral Thesis 1.3. State of the Art

Real time

Target) New

State

—_—

—_

State Act

Training

State S;
Laser Asychronous
x|10 Deep RL Action a,

Velocity S| = - Velocity
U2 = v, |2
Target L
pil2 '

RN
"N W]
]

e

W)

T

target 3

Figure 1.4: Navigation in stable environments. The observation of A is raw images
whereas B’s observation is LIDAR scans. A and B are authorized by IEEE [41,43].

sensitive to light intensity, LiDAR sensors (shown in Figure 1.4-B) are also widely
used to gather environmental information [43-45]. However, the complexity of en-
vironments poses a challenge for efficient sampling and learning, leading to a need
for improved efficiency. To address this issue, some studies aim to improve sampling
efficiency through demonstration learning [46] or model-based DRL [47]|. Neverthe-
less, the generalization capability of model-based DRL and demonstration learning
is limited due to its reliance on specific environments and supervised datasets. Fur-
thermore, transferring DRL-based navigation frameworks from simulation to the
real world remains a significant challenge because real-world uncertainties cannot

be accurately represented in simulation.

Navigation in dynamic environments. With the rapid development of deep
learning, researchers and engineers are focusing on learning-based methods, wherein
DRL-based navigation algorithms are attractive because of their promising represen-
tation and optimization capabilities [48-60]. Collision avoidance DRL (CADRL) [4§]
is a pioneering study in the use of DRL for social navigation. However, its value
function neglects the social relationships among pedestrians, as it only considers the
robot’s full state and one pedestrian’s observable state. LSTM_RL [49] improves
upon CADRL by leveraging LSTM to represent pairs of the robot’s state and all
pedestrians’ states, but its ability to capture reciprocal relationships is limited since
pairs are ordered by distance and then fed into LSTM networks (shown in Figure
1.5-A). Socially aware RL (SARL) [53] and relational graph learning (RGL) [54] rep-
resent state-of-the-art extensions to CADRL and LSTM_RL by using self-attention

mechanisms and graph convolutional networks (shown in Figure 1.5-B), respec-

9

1.8. State of the Art Doctoral Thesis

Distance
+ heading
to goal

J—l

a Policy V, a Policy —V,

* * * d) D-step Planning *’ *
N dm b
wor L0 e
< p)
a) Relational Graph Learning b) State Value Prediction|
— ! (@
feature
* *
§ c) Human Motion Prediction

Figure 1.5: Navigation in dynamic environments. The observation of A and B is
humans’ fully known states including position, speed, and size whereas C and D di-
rectly map raw sensor observations such as images and LiDAR scans into navigation
actions. A-D are authorized by IEEE [49, 54, 55,61].

tively, to capture interactions and reason about relations between agents. How-
ever, these methods assume fully known pedestrian information and require massive
positive datasets for learning, leading to degraded performance in real-time settings.
EGO [55] (shown in Figure 1.5-C) and LSTM_EGO [61] (shown in Figure 1.5-D) of-
fer a more direct mapping of raw sensor data to navigation actions, but open-source
solutions for replicating their results are scarce. Moreover, it is time-consuming
for training because of high-dimensional observations. Because simulation can not
represent all real-world scenarios, sim-to-real transfer of these approaches is chal-

lenging.

1.3.5 Summary of State-of-the-art Navigation Strategies

Table 1.1 summarizes the pros and cons of state-of-the-art navigation strategies. Our
goal is to comprehensively leverage the advantages of existing navigation techniques

and diminish their downsides.

10

Doctoral Thesis 1.4. Approaches and Contributions

Table 1.1: Summary of state-of-the-art navigation strategies

Strategy Pros Cons
sensitive to dynamic obstacles,
Map- accurate, explainable, time-consuming to
based repeatable, robust. maintain maps and

search global paths

adaptive to dynamic sensitive to state
Trajectory- environments, estimation and prediction,
based explainable. time-consuming for

online optimization.

DRL-based, map-free, model-free limited generalizability,
static offline optimization. low learning efficiency,
environments sim-to-real gap.
DRL-based, map-free, model-free, ideal assumption,
dynamic offline optimization, sim-to-real gap,
environments, handle social rely on
fully observable interactions. imitation learning.
DRL-based, fully end-to-end, limited adaptability,
dynamic little prior knowledge, sim-to-real gap,
environments, handle social low learning
partially observable interactions. efficiency.

1.4 Approaches and Contributions

This thesis presents our findings on the research and development of robot navi-
gation in dynamic environments using DRL. Our study consists of four progressive
investigations, each with unique approaches and significant contributions, which are

described below.

1.4.1 Navigation in Static Environments with a Single-frame
LiDAR Scan

We present a hierarchical DRL (HDRL) framework with prominent sampling effi-
ciency and sim-to-real transfer ability for fast and safe navigation. On the one hand,
the low-level DRL policy enables the robot to move toward the target position and
keep a safe distance to obstacles simultaneously. On the other hand, the high-level

DRL policy is supplemented to further enhance the navigation safety. Both the lev-

11

1.4. Approaches and Contributions Doctoral Thesis

els leverage a single-frame LiDAR scan to detect surrounding obstacles. To reduce
the state space and avoid sparse reward, we select a waypoint located on the path
from the robot to the ultimate goal as the sub-goal. Moreover, the path is generated
based on either a local or a global map, which can significantly improve the sampling
efficiency, safety, and generalization ability of the proposed DRL framework. Addi-
tionally, a target-directed representation for the action space can be derived based
on the sub-goal to improve the motion efficiency and reduce the action space. In
order to demonstrate the eminent sampling efficiency, motion performance, obsta-
cle avoidance, and generalization ability of the proposed framework, we implement
sufficient comparisons with the non-learning navigation methods and DRL-based

baselines.

The main contributions of this work are: (1) creating a hierarchical DRL framework
that can comprehensively consider fast and safe navigation; (2) introducing a sub-
goal which is able to improve the sampling efficiency and generalization ability for
the DRL model; (3) deploying the simulated policy on physical robots in the real

world; (4) making our project publicly accessible.

1.4.2 Navigation in Dynamic Environments with Multi-frame
LiDAR Scans

We present a Sampling Efficient DRL framework for Dynamic Navigation (SEDN)
directly using raw LiDAR scans. To accelerate DRL training and simulate LiDAR
scans, we specially design a kinematics-based simulator. The navigation policy
learned in this simulator can be directly transferred into a physics-based Gazebo
simulator and real-world scenarios. Moreover, the policy acquired from a specific
environment can be generalized into diverse environments that have never been
explored. Because the robot motion is highly coupled with dynamic surroundings,
we transform the center of the previous LiIDAR scans into the center of the current
LiDAR scan to individually extract surrounding motion features. To further enhance
sampling efficiency, we integrate optimal reciprocal collision avoidance (ORCA) to
generate auxiliary action alternatives. Various experiments against state-of-the-art
baselines and sim-to-real implementations demonstrate that our approach has a high

success rate of dynamic navigation, superior generalizability, and efficient sampling.

The main contributions of this study are summarized as follows:

e We create a kinematics-based simulator integrated with a LiDAR sensor. The

navigation policy learned from this simulator can be directly transferred into

12

Doctoral Thesis 1.4. Approaches and Contributions

physics-based simulators and physical environments. Moreover, we can gener-

alize the policy to various scenarios having significant differences.

e We utilize consecutive raw-sensor data to individually extract the latent mo-
tion features of surrounding objects with various numbers and shapes. There-
fore, our end-to-end and straightforward strategy can release the assumption

of fully known environments and be generalized into diverse environments.

e The sampling efficiency is significantly improved by bringing in ORCA-assisted

action space.

e Various validations in diverse simulation environments are performed and sim-
to-real implementations are realized to demonstrate the generalizability and

practicality of the proposed navigation framework.

1.4.3 Navigation in Social Environments with Sequential Oc-

cupation Maps

We propose a Navigation system in diverse Pedestrian scenarios using a Dreamer-
based (NPD) motion planner for collision-free and target reaching tasks. Our RL
framework can completely learn from zero experience via a model-based DRL which
can efficiently optimize navigation policy from sequential occupation maps. More
specifically, the robot and humans are first projected onto an occupation map, which
is subsequently decoded into low-dimensional latent state. A predictive dynamic
model in the latent space is jointly created to efficiently optimize the navigation
policy. Additionally, we leverage the techniques of system identification, domain
randomization, clustering and LiDAR SLAM for practical deployment. Simulation
ablations and real implementations demonstrate that our motion planner outper-
forms state-of-the-art methods, and that the navigation system can be physically

implemented in the real world.

The contributions of this study are summarized as follows.

e A complete and publicly accessible autonomous navigation system among
pedestrians is developed. We precisely obtain the robot pose using a LiDAR
SLAM algorithm, and extract humans via a clustering approach. Moreover, we
plan robot motion using a model-based DRL framework to avoid pedestrians

and reach a target with a high success rate and navigation efficiency.

13

1.4. Approaches and Contributions Doctoral Thesis

e We propose a Dreamer-based motion planning algorithm that can efficiently
obtain an optimal motion planner and be generalized to arbitrary human num-

ber, variable human speed, and complex human relationships.

e We reproduce several state-of-the-art algorithms for more comprehensive ab-
lation and ensure they are open-sourced. Additionally, sufficient sim-to-real
experiments are implemented using domain randomization and system identi-

fication techniques.

1.4.4 Navigation in Social Environments with Sequential Li-
DAR Scans

We develop an efficient, versatile, and reliable DRL framework that enables the
robot to Learn to Navigation in Dynamic environments using Normalized LiDAR
(LNDNL) scans. Our approach utilizes LSTM to accumulate and propagate long-
term surrounding motion features from sequential LiDAR scans taken from the ego-
centric perspective. To expedite the training process, we have developed a simulator
that can efficiently generate LiDAR scans and configure obstacles using limited
hardware resources. Unlike other approaches that rely on continuous raw sensor
observations and require large convolutional neural networks (CNNs) to decode, we
leverage a lightweight LSTM unit to extract sequential motion features over a long
time horizon. To minimize the sim-to-real discrepancies, we have normalized the
shapes of real-world obstacles to make them consistent with the limited shapes in
our simulator. Moreover, we have conducted extensive simulations and real-world
implementations to demonstrate the advantages of our navigation strategy, including

improved learning efficiency, versatility, repeatability, and practicality.

The contributions of this study are summarized as follows.

e We have developed a specialized simulator that can efficiently generate LIDAR
observations. This simulator allows for the incorporation of numerous objects

in motion, each with their own distinct shapes.

e To enable seamless transfer of simulations to the real world, we ensure that col-
lision margins of real-world obstacles are normalized. Our approach involves
using clustering techniques to localize and frame obstacles from 3D point-
clouds. Additionally, we re-generate 2D LiDAR scans from the normalized

obstacles to be consistent with simulated settings.

14

Doctoral Thests 1.5. Thesis Organization

e We present a navigation framework that employs a combination of LSTM and
DRL to translate sequential LiDAR observations into robot actions from an
ego-centric perspective. This framework features lightweight networks, making

it feasible for implementation on compact and onboard computers.

e To showcase the benefits of our approach, we compared it with state-of-the-art
baselines. Additionally, we conducted extensive real experiments to highlight

the potential of sim-to-real transfer.

1.5 Thesis Organization

Our thesis is composed of four parts, as depicted in Figure 1.6. These parts are
organized according to the level of task complexity and step-by-step improvements

of navigation performance and algorithm framework.

Chapter 2 presents a preliminary investigation into robot navigation in static envi-
ronments with initially unknown configurations, utilizing a DRL-based navigation
policy in both simulated and real-world scenarios. To improve learning efficiency,

we leverage existing path planners and local maps to generate traversable sub-goals.

To deal with dynamic environments without relying on maps, Chapter 3 explores a
more complex navigation setting where obstacles are highly dynamic and observa-
tions are consecutive LiDAR scans. In contrast to the static environment assumed
in Chapter 2, objects in this setting are consistently moving. Moreover, the study
in Chapter 3 does not rely on global or local maps. To efficiently obtain an effective
navigation policy, we leverage supervised samples and imitation learning to initialize

neural networks.

Chapter 4 introduces an advanced DRL framework capable of efficiently optimiz-
ing navigation policy without prior knowledge such as the supervised samples and
imitation learning required in Chapter 3. The observations in Chapter 4 are sequen-
tial occupation maps rather than continuous LiDAR scans whose time horizon is
short. However, the massive neural networks used to auto-encode images result in
prolonged learning iterations and degraded repeatability. Moreover, the occupation
map is limited in relatively small motion areas because we are unable to infinitely
enlarge image resolution when taking the observation dimension and network scale

into consideration.

To address these limitations, Chapter 5 proposes a lightweight, efficient, versatile,

15

1.5. Thesis Organization Doctoral Thesis

ious three LIDAR i
previous three Li scans Net3 — _n DenselS|Linear
o |
1 | low-level
= Input(S1)[37 *
¢ > L] W [l)rn.\c]l:;\liz‘]u
} 7 v e | e
+¢ccmer transform 1
4 l Dense]256/Relu [Dense|128|Relu
current ® goal thZTNcIA
LiDAR Dense|10[Tanh !
< L Netl ¥ Input(S2)|4
x scan 1\ Feaures(F)|10 }—
robot
ik | L
- Chapter 2: Navigation in static environments with a single-frame
goal position global states
LiDAR scan
| DRL Model | I Random I I ORCA I

’n

v

Iupdme
| Action H Environment |

update

Chapter 3: Navigation in dynamic
environments with multi-frame
LiDAR scans

spxid 871

SAqeLIBA 7§

32 classes

Chapter 4: Navigation in social environments with sequential

occupation maps

° °
LiDAR LiDAR g
scan f Goal scan kb Goal
" location h location
e - . e

'\. ’\. Chapter 5: Navigation in social

o
' environments with sequential
MLP MLP LiDAR scans

Aty

ay —>
hy —

Policy Policy

a: hes qt+1

Figure 1.6: Thesis organization. Chapter 2 serves as the foundation for Chapters
3 and 4. The studies in Chapter 3 and 4 concentrate on the navigation of robots
in environments that are highly dynamic, whereas the the research in Chapter 2
represents a fundamental experiment in deploying a DRL-based navigation policy in
static environments with unknown initial configurations. By leveraging the strengths
of studies in Chapter 3 and 4, our final work in Chapter 5 represents a significant
advancement and results in a further improved outcome.

and repeatable DRL-based navigation strategy for highly dynamic environments by
combining the strengths of the studies in Chapter 3 and 4. We leverage LSTM to
deal with long-term LiDAR observations. In Chapter 3, the obstacle shapes in the
real world are notably different from those in simulation where we assume obstacles

to be circles or rectangles. To deal with this sim-to-real discrepancy, we normalize

16

Doctoral Thests 1.5. Thesis Organization

Table 1.2: Summary of the studies from Chapter 2 to 5

Chapter Task Observations Limitations
5 Navigation in Single-frame Static obstacles,
static environment LiDAR scan existing path planner.
3 Navigation in Multi-frame Imitation learning,
dynamic environment LiDAR scans short observations,

sim-to-real gap.

4 Navigation in Sequential Heavy networks,
social environment occupation maps limited motion area.
5 Navigation in Sequential B
social environment LiDAR scans

the shapes of real-world obstacles to be consistent with simulated objects.

In summary, we list the task of each chapter, as well as its observations and lim-
itations in Table 1.2. Finally, Chapter 6 summarizes the findings of the previous
chapters and outlines possible future research directions for DRL-based robot nav-
igation. Several videos demonstrating the achieved results have been published
during this work and are listed at the end of the thesis. Furthermore, we make

our projects accessible to the public by releasing them as open-source and providing
links to the code alongside our video list.

17

Chapter 2

Navigation in Static Environments
with a Single-Frame LiIDAR Scan

This chapter incorporates material from the following publication:

W. Zhu and M. Hayashibe, “A hierarchical deep reinforcement learning frame-
work wth high efficiency and generalization for fast and safe navigation,” IFEE
Transactions on Industrial Electronics, vol. 70, no. 5, pp. 4962-4971, 2023, doi:
10.1109/T1E.2022.3190850.

2.1 Introduction

For autonomous navigation issues, mobile robots are required to get close to the
target and keep safe distance to obstacles. To this end, either the traditional non-
learning map-based methods, such as dynamic window approach (DWA) [23|, or
the state-of-the-art deep reinforcement learning (DRL) frameworks (3,43, 44, 55],
need comprehensive evaluation criteria that can balance the importance of obstacle
avoidance and target reaching. It is however challenging to adjust the weights of
the factors used in these criteria. Therefore, we propose a hierarchical DRL-based
motion planner that can comprehensively take these criteria into consideration and
achieve fast and safe navigation. Moreover, the motion planner acquired by the DRL
framework is able to generate a novel and optimal navigation policy by interacting
with environments whereas the traditional non-learning approaches are inclined to
make mobile robots move along the pre-established trajectories which may be non-

optimal with respect of path length and motion efficiency.

18

Doctoral Thesis 2.1. Introduction

The representation for the action space, state space, and immediate reward function
of DRL frameworks can make a significant difference to the sampling efficiency and
generalization ability. For the DRL-based navigation, the action space is generally
composed by linear and angular velocities [43,44]. However, randomly generating
either continuous or discrete velocities during the DRL training process may degrade
the sampling and learning efficiency. Furthermore, the navigation environments are
generally complicated because of the diversified locations, sizes, and shapes of ob-
stacles, the time-varying robot states, and the different goal positions. Therefore,
it is especially difficult to represent the state space and reward function for DRL
frameworks. For instance, the data from either LiDAR or vision sensors used to
detect obstacles have high dimensions and broad ranges [55]. When the final goal
is far from the mobile robot, the reward function would be extremely sparse, which
makes it prohibitively difficult to fully explore the environment. Furthermore, the
complex obstacle distribution between the robot and the final goal makes it challeng-
ing to reasonably and comprehensively define the reward function. Even though the
well-learned navigation policy can be successfully deployed on the same or similar
environments as the training scenarios, it is tremendously difficult to generalize the

policy into more variant environments.

To improve the sampling efficiency and generalization ability of the DRL model, we
select a waypoint (namely sub-goal) which is close to the robot and located on a
feasible path from the robot to the final goal. The definitions of DRL elements are
based on the sub-goal rather the final goal. More specifically, the path is planned
using either a fully-known global map or a real-time local map that is updated and
maintained with the simultaneous localization and mapping (SLAM) algorithm [62].
Since the mobile robot explores the environment during the DRL training, it is
reasonable and natural to update a map for path generation, thus to select an
accessible waypoint for reducing the representation complexity of DRL elements.
Since we only consider the neighboring surroundings around the robot and encourage
the robot to move toward an accessible sub-goal, the generalization ability of the
DRL framework is significantly improved. Based on the sub-goal, we define a target-
directed representation for the action space that can further improve the motion

efficiency for navigation and the sampling efficiency for the DRL model.

It is generally challenging for sim-to-real transfer even though the DRL-based navi-
gation methods have achieved some real applications [43,44, 55| because simulation
environments are far different from real scenarios. The real mobile robots used
to validate the proposed DRL framework are a wheeled bipedal robot [63] and a
quadruped robot, whose dynamics are completely different from the dynamics of

the differential mobile robot used in the simulation. In order to achieve the sim-to-

19

2.2. Related Work Doctoral Thesis

real transfer, we add noises to the action during the training to learn a policy that
can deal with uncertainties and fine-tune the acceleration for both the simulated and
real mobile robots because of their dynamic differences. Additionally, we also add
mild noises to the action during validations in case of the frozen motion in certain

extreme situations.

The main contributions of this work are: (1) creating a hierarchical DRL framework
that can comprehensively consider fast and safe navigation; (2) introducing a sub-
goal which is able to improve the sampling efficiency and generalization ability for
the DRL model; (3) deploying the simulated policy on physical robots in the real

world; (4) making our project open-sourced on the website!.

2.2 Related Work

There is a large body of work on navigation for wheeled mobile robots, using either
LiDAR or vision sensors [64,65]. For traditional non-learning map-based methods
[19,20], a pre-built global map is required for path planning. However, mapping is
generally cumbersome when environments frequently change. When the global map
is already known, a plenty of path planning literature can either produce a global
path from the initial robot position to the final goal such as the A-star algorithm
[21] and the rapidly-exploring random tree (RRT) method [22], or yield a local
planner that can generate velocity commands and handle certain disturbances such
as moving, removing or adding obstacles. Among the local planners, the dynamic
window approach (DWA) as well as its variations is widely leveraged for obstacle
avoidance [23,24]. Nevertheless, the commonly-used global planners are unable to
generate optimal paths because they search a feasible path from the map via a
heuristic method. Moreover, the local planners need careful tuning for the coupled
factors involving the cost weights of collision, path following, motion speed, etc.. For
certain simple situations, if the environment does not change and the global path
avoids all obstacles, some path tracking methods can be directly used to follow the
path without the concern of collision [25,26]. The aforementioned methods assume
that a global map is already known, which is impractical when frequently changing
the environment. One alternative is to simultaneously update a map in real time
and navigate in the partially-known surroundings |27], which solves the problem of
off-line time-consuming map building process at the expense of degrading the safety
and optimality of navigation. Another solution is completely free of maps. In [28],

a motion planner can generate collision-free action by the current and predicted

Thttp://wiki.ros.org/move_base

20

Doctoral Thesis 2.2. Related Work

motion states of surrounding obstacles. For dynamic environments, the optimal
reciprocal collision approach (ORCA) [30] and its extensions [66,67| can ensure safe

navigation but rely heavily on the overall information of the surroundings.

Recently, deep learning, especially DRL-based approaches have been widely applied
for map-free navigation because of the powerful representation capability of deep
neural networks and the strong exploration, interaction and self-learning ability
of reinforcement learning (RL). In [4], a deep neural network structure is used to
predict future relevant events, such as collision and terrain properties. The off-line
gathered data with LiDAR and IMU sensors are required to update the deep neural
networks. Similar collision prediction method is leveraged for safe navigation in [68].
However, collecting supervised data is arduous and it is challenging to generalize
the prediction model in completely different scenarios because the off-line data are

generally gathered from specific environments.

To improve the generalization ability and avoid manually collecting supervised data,
researchers are focusing on autonomous interaction with environments and self-
learning approaches, especially on RL frameworks. As a pioneering study [41], the
DRL training is firstly implemented in simulation, where a great deal of vision data
can be gathered to optimize the navigation strategy, then the simulated policy is
directly deployed in the real world with similar settings as the simulation. A similar
study [42] successfully transfers the learned policy into novel scenarios by approxi-
mating the reward function with a linear combination of learned features. Besides
the vision-based DRL navigation policies which are sensitive to light intensity, Li-
DAR sensors are also broadly leveraged to gather environment information [43-45].
One crucial problem for these DRL frameworks is the inefficient sampling and learn-
ing because of the complexity of environments. Therefore, some studies are aimed for
improving the sampling efficiency. For instance, prior demonstrations [46| are com-
monly leveraged to improve sampling efficiency and model-based RL frameworks [47]
are practical to accelerate learning. However, the generalization capability is dete-
riorated because of the dependency on specific environments. Furthermore, it is
still challenging to transfer the DRL-based navigation frameworks from simulation
to the real world because the uncertainties in real scenarios can not be accurately
represented in simulation. Moreover, most of real applications utilize wheeled mo-
bile robots with stable motion properties [41,43,44]. Some sim-to-real applications
are implemented on humanoid robots with omni-directional motion ability [69, 70].
However, it is rare to deploy the DRL-based navigation policy on wheel bipedal
robots with unstable motion characteristics [63]. In this work, we achieved the sim-
to-real transfer on a physical wheeled bipedal robot with unstable motion and a

quadruped robot.

21

2.8. Hierarchical DRL Framework Doctoral Thesis

High
Level ‘ Q(an)|5 }%‘{ Dense|5|Linear
Q| v Wy

- 0 k0 ‘ Q(az)]2 F{ Dense|2|Linear

(=}

1 | low-level
Input(S1)[37 ‘

Dense|64[Relu

Si37

Netl | Net3

fi

£ goal

robot o sub-go: Dense|256[Relu Dense|128[Relu

a| v | w Dense|256/Relu Dense|128[Relu
0 | 000 J

Qs 1]005 Dense|10|Tanh ‘
2 10.10 | 40
3
4

Net2 | Net4

I
015 N Input(S>)|4
0.20 Features(F)|10 '7

Figure 2.1: Hierarchical DRL framework. The low-level DRL policy is used for fast
motion while the high-level DRL strategy is aimed at safe obstacle avoidance. Both
the low- and high- level DRL policies have the same deep neural network structure
and share the identical state input including a 37-dimension laser scan, robot’s linear
and angular velocities (v and w), and the position of the sub-goal in the robot frame
(r and). Differently, the low-level DRL policy outputs five specific actions while
the high-level DRL policy produces two abstract choices, one of which projects to
the low-level DRL policy.

Low Netl

Level

2.3 Hierarchical DRL Framework

We are aimed to propose a deep reinforcement learning approach with high training
efficiency and generalization ability in respect to different surroundings and robot
platforms for fast and safe navigation in complex environments. To this end, a two-
layer DRL framework shown in Figure 2.1 is constructed, wherein the low-level DRL
policy is responsible for producing quick motion while the high-level DRL policy is
supplemented to further improve safety of obstacle avoidance. Because we choose
the sub-goal which is a waypoint located on the path from the robot to the final
goal, the observation space of RL is significantly narrowed. Moreover, the path is
generated via traditional global path planning approaches which take consideration
of both obstacles and the final goal position, the sampling space is therefore further
reduced. Thanks to the introduction of the sub-goal, the training efficiency of our
DRL framework is far higher than pure DRL methods. Besides the reduction of
observation space, the scope of exploratory action is narrowed because the deep
neural networks only output discrete linear velocity while the angular velocity is
proportional to the orientation of the sub-goal in the robot frame. Additionally,
the proposed DRL framework has great generalization ability not only for various
environments but also for different robot platforms for three reasons: (1) a sub-goal
located on a feasible path is selected to represent the DRL elements; (2) one part of

observation is a high dimensional laser scan whose features are extracted via deep

22

Doctoral Thesis 2.8. Hierarchical DRL Framework

neural networks; (3) the actions are generalized linear and angular velocities which

are further transformed into actuator commands.

2.3.1 Problem Formulation

For the navigation task in environments with dense obstacles, the mobile robot
needs to make decisions to avoid obstacles and reach targets according to the states
of the robot as well as the surrounding information gathered by attached sensors.
We formulate this task as a Markov decision process (MDP) defined by a tuple
< S, AT, R,v>. S is the state space including the states of the robot, surrounding
obstacles, and the target position in the robot frame. A stands for the action
space which is composed of the linear and angular velocities of the mobile robot. T
represents the state transition, that is the next state s’ is generated by the current
action a and state s. Such a state transition is implied by a physical simulator
Gazebo. R, with the actual value r, denotes the immediate reward after executing
a in s, which is related to the distance from the robot to its surrounding obstacles
and the distance from the robot to the target point. 7 is the discount factor that
indicates the changing reward in the time domain. The goal of this task is to acquire

a policy 7 to maximize the expectation of the long-term cumulative reward V;(s):

7 = argmaxV,(s),

Va(s) = Ex Z’Yk’i”wkﬂ‘st = 3] (2.3.1)
k=0
= Zw(a|s)QW(s,a),
acA

where Q is the action-value function. We leverage Deep Q-learning networks (DQNs)

to formulate this optimization problem [34].

2.3.2 Low-level DRL

State space. Unlike the existing researches which use sparse laser scan as one
part of state space, such as ref. [43] utilizes a 10-dimensional laser scan and ref. [44]
selects a 13-dimensional laser scan, we choose a dense 37-dimensional laser scan s; to
extensively perceive surroundings. Moreover, instead of directly using this scan like
ref. [43,44|, we pre-process it with deep neural networks, then 10 abstract features

are extracted so as to generalize surroundings. For the feature extraction, we utilize

23

2.8. Hierarchical DRL Framework Doctoral Thesis

deep neural networks to map the relatively high-dimension raw laser scan to a low-
dimension feature vector which can indicate the abstract obstacle features with the
possibly authentic collision information. In fact, we can increase the dimensions of
the raw laser scan with more details at the expense of more complex neural networks
and longer training time. Moreover, rather than directly reaching the final goal, the
robot is required to move close to the waypoint (namely sub-goal) one by one and
gradually arrive at the ultimate goal location. Consequently, we define another part
of the state space as the distance r from the sub-goal to the robot and the sub-goal
orientation 6 relative to the moving direction of the robot. In this case, the state
space can be tremendously narrowed. Finally, we regard the current linear and
angular velocities v and w of the robot as the third part of state because they are
likely to predict future states of the robot. Therefore, the ultimate state s is defined
as follows:

s ={s|37,r,0,v,w} € S. (2.3.2)

To reduce the state space thus to improve training efficiency of DRL, we add certain
constraints for these state elements. Firstly, the robot only needs to take close
obstacles into consideration for local motion planning, so the maximum range of
each laser scan beam is set as [,.. Secondly, the maximum distance is defined as
max With details introduced in Section 2.3.4 and the orientation of the sub-goal 0 is
free on the whole 2D plane. Finally, the ranges of v and w are limited according to

the definition of the action space.

Action space. For the DRL-based navigation, the actions are generally either con-
tinuous or discrete linear and angular velocities of mobile robots [43,44]. Randomly
generating these two velocities during the trial and error process may cause ineffi-
cient and invalid sampling, thereby degrading the learning efficiency of DRL models.
To improve the sampling efficiency, we propose a target-directed representation form
for the actions, which is defined by two parts. (1) The angular velocity w is un-
related to the action space of DRL but proportional to the sub-goal orientation 6,
which is represented as follows:

w = kb, (2.3.3)

with k being a positive control gain. Such a traditional P controller can exclude one
action variable from the DRL model, thereby exponentially reducing the exploratory
action space for the DRL framework. Moreover, the motion orientation of the mobile
robot is directed to the sub-goal, thus to significantly improve the motion efficiency

and avoid certain invalid angular velocities. (2) The action space of RL only consists

24

Doctoral Thesis 2.8. Hierarchical DRL Framework

of five non-negative discrete linear velocities which is defined as follows:
a; € {0,0.05,0.1,0.15,0.2}m/s € A;. (2.3.4)

We assume the robot does not move backward and the maximum translation speed
is 0.2m/s for the mobile robots we use in simulation and real worlds. Please note
that we will decrease the maximum translation speed for the wheeled bipedal robot
for stable motion and balance keeping. In this work, we define the action as discrete
choices. Please note that continuous action can be beneficial for more smooth motion
but an action network is required such as the deterministic deep policy gradient
(DDPG) algorithm [71] and the soft-actor-critic (SAC) framework [72]. The discrete
action is commonly used in the value-based reinforcement learning frameworks such
as the DQN algorithm we utilize in this work. Although the discrete action may
cause less smooth motion, the network framework is more simple. We choose the
discrete action space only for simplicity. We think the continuous action can also

work for the navigation task.

Reward function. The navigation objective is to simultaneously avoid obstacles
and move close to the target point. Let r, be the minimum distance from the robot
to its surrounding obstacles which is measured by the laser sensor. Let r; be the
current distance from the robot to the sub-goal and r,_; be the last distance. Let

r. be the collision distance. Then, we define the reward function R; as below:

Ry = Ri. + Ry, + Ru (2.3.5)

—200 To < Te (2.3.6a)

Ri.= ¢ —=0.05r./r, 71¢ <76 < lnax (2.3.6Db)

0 To > lmax (2.3.6¢)

By, = { 0 Te > T, (2.3.7a)
180(ry—1 — 1) T <1 (2.3.7b)

0 a; = 0.1,0.15,0.2 (2.3.8a)

e = { 401 -a@) @ =0,0.05 (2.3.8b)

Ry is the low-level collision reward, R, represents the goal distance reward, and 2,
stands for the action reward. On the one hand, if the robot collides with obstacles,
a large punishment with -200 will be given. Furthermore, we also mildly punish
the behavior which leads to approaching obstacles. On the other hand, a positive
reward will be obtained if the robot gets closer to the sub goal. To avoid rotation

in place or slow motion, we discourage small linear velocities. To summarize, the

25

2.8. Hierarchical DRL Framework Doctoral Thesis

definition of reward function can simultaneously encourage the robot to move close

to the sub-goal as fast as possible and keep safe distance from obstacles.

Neural networks. Instead of directly using the 37-dimensional laser scan, we
firstly process it with a three-layer neural network framework displayed in Figure
2.1 to extract a low-dimensional feature vector which can potentially describe the
information about the free and occupied space. Then, we combine this feature
vector with other four state elements in (2.3.2) to construct a new input for another
three-layer neural network framework shown in Figure 2.1, which finally outputs five
Q values corresponding to the five discrete linear speeds. During the training, the
discount factor v is 0.99, the learning rate « is set as 0.0001, and the batch size is

64, respectively.

2.3.3 High-level DRL

When we evaluated the pre-learned low-level policy, we found that the robot tended
to collide with obstacles if the orientation of the sub-goal 6 is far from zero. We
think such a situation is caused by the long turning arc length corresponding to
the large 6. For safer navigation, we replenish a high-level DRL framework that
can learn a policy to avoid such collisions while keeping the motion efficiency of the

low-level DRL framework.

State space, neural networks and action space. The description of the high-
level DRL framework for the state space and neural networks is identical to that of
the low-level framework while the definition of action space is different. The low-
level policy is learned in advance and then regarded as one possible action for the
high-level DRL policy. Moreover, we individually select the first element from the
low-level DRL action space (2.3.4) as the other element to further improve the safety
of obstacle avoidance. Therefore, the action space of the high-level DRL framework
is summarized as below:

an € {0,1} € Ay, (2.3.9)

If ap, = 0, the linear velocity is zero. When a; = 1, the linear velocity is generated
by the pre-learned low-level policy. In both cases, the angular velocity is same as
(2.3.3). Although the case of a;, = 0 may degrade the motion efficiency because the
robot only rotates in place, it enables the robot to avoid the collisions caused by

certain large turning arc length.

Reward function. Because the high-level policy is aimed for safer navigation while

keeping the motion efficiency of the low-level policy, we therefore define the reward

26

Doctoral Thesis 2.8. Hierarchical DRL Framework

function as below:

Ry = Rpe + R (2.3.10)
—200 To < T¢ (2.3.11a)
Rpe= < =121, /1y 1e <7y < lnax (2.3.11b)
0 To > lnax (2.3.11¢)
0 apb=1,r. <71, (2.3.12a)

Rha =
—re ap=0,r.<r, (2.3.12b)

Ry, is the high-level collision reward while Ry, represents the action reward. Same
as the R; defined in (2.3.5), we heavily punish the behavior which causes collisions.
But differently, we magnify the factor from 0.05 to 1.2 so as to further make the
robot get far from obstacles. The action reward in (2.3.12) is used for avoiding
possible long-time rotation in place and frozen motion, thereby maintaining the

motion efficiency of the low-level policy.

2.3.4 Selection of Sub-goal

One of the key contributions in this work is the selection of sub-goal. Most of
navigation studies with DRL are final-goal directed [43,44,55], that is the state space
S and the immediate reward R are related to the final goal, which causes several
serious flaws. Firstly, if the final goal is far from the robot, it will be extremely
difficult to thoroughly explore all possible state space because covering the whole
state space generally requires prohibitively long interaction with the environment.
Secondly, it is challenging to reasonably define the reward function for two main
reasons. (1) The large exploration space may cause exceptionally sparse reward
distribution, thereby seriously influencing the sampling efficiency. (2) Most of studies
directly define the reward function based on the straight line length from the robot
to the final goal while ignoring the possible effects of the obstacles between the robot
and the final goal. We also found that the robot tended to collide with obstacles
when using such kind of reward functions. Thirdly, directly using final goal may
potentially increase the representation complexity of the action space A because the
policy networks, which generally project states into actions, are required for actor-
critic (AC) based RL frameworks. In this case, the sampling efficiency is further

deteriorated.

To effectively solve these problems, we select a sub-goal which is close to the robot
rather than directly using the final goal. Instead of discarding past laser scans like

how most of studies do [43,44, 55|, we utilize these historic laser data to update

27

2.4. FEzxperiments Doctoral Thests

a grid occupation map with the SLAM algorithm [62]. Then we can generate a
global path from the robot to the final goal using global path planners. The path
is generally non-optimal because of the non-fully explored surroundings but feasible
for the local utilization. Therefore, we can select a waypoint which is close to the
robot from this path at the beginning of each training iteration. Through moving
close to the waypoint one by one, the robot can successfully reach the final target.
Because both the SLAM algorithm and the path planning method are general for
diversified environments, the proposed hierarchical DRL framework can be directly
applied in the new scenarios which are never explored ahead during the training.
Besides, the waypoint significantly narrows the state space and avoids the sparse

reward, which enables fast learning for the DRL model.

2.4 Experiments

To validate the predominant sampling efficiency, fast motion and eminent success
rate of target reaching, and high generalization in respect of different robot platforms
and surroundings for the proposed hierarchical DRL framework, we respectively
implemented corresponding experiments and compared with existing approaches,

with the overall video shown on the website?.

2.4.1 Auxiliary Implementation Tools

To avoid frequently updating and resetting a non-fully-known global map during the
training process, we assume that the global map is already off-line built utilizing the
SLAM algorithm with the ROS gmapping package®, and then we can on-line plan a
global path with the ROS A-star package* and select a waypoint close to the robot
as the sub-goal for improving the sampling efficiency. After training, we testified
that the learned policy could be successfully deployed as well in the environments
without off-line pre-built global maps. For instance, all real implementations are
free of off-line global maps, thus our method can be quickly deployed in various
real worlds without pre-building global maps by manual operations. In simulation,
we obtain the odometer information with Gazebo-ROS APIs while it is collected
with the internal wheel odometry when operating the wheel bipedal robot, and the

external motion capture system for the quadruped robot, respectively. For the wheel

Zhttps://youtu.be/S95BQDEITEOD
3http://wiki.ros.org/gmapping
4http:/ /wiki.ros.org/nav_core

28

Doctoral Thesis 2.4. FExperiments

(a) Gazebo visualization (b) Occupation map

Figure 2.2: Training environment. The Turtlebot mobile robot moves at 10Hz
control frequency in a rectangle with 10 x 10m size. The laser sensor, with 10Hz
scanning frequency, is installed on the top of Turtlebot. The left figure visualizes
the Gazebo simulation environment while the right figure displays the occupation
map pre-built with the SLAM algorithm.

odometry, we leverage the ROS extended Kalman filter (EKF) package® to reduce
the drift by fusing the IMU data and the wheel odometer information. For the
traditional non-learning based comparison method, we utilize the ROS move_base

package!..

2.4.2 Training Environment Settings

We use Gazebo as the physical simulator. The size, shape, and location of obsta-
cles are randomized in a 10x10m enclosed rectangle shown in Figure 2.2. At the
beginning of each training iteration, the robot pose and the final goal position are
randomly chosen from the free space of the global map to explore the environment as
thoroughly as possible. The laser sensor, with 901 beams ranging from —m /2 to /2
rad relative to the translation direction of the robot, is attached on the top of the
robot. All 901 laser beams are used for updating the minimum distance (r,) from
the robot to its surrounding obstacles and building a global map with the SLAM
algorithm. 37 evenly spaced laser beams are selected for composing the state space
of the DRL model. We assume that the global map is already off-line built with the
SLAM algorithm, and then we can on-line plan a global path and select a waypoint
close to the robot as the sub-goal for improving the sampling efficiency. The control
frequency is 10Hz which is the maximum sampling frequency of the real LiDAR
sensor we use in the real world. The high-level and the low-level DQN policies are

executed at 10Hz. Empirically, we update the sub-goal every 2 seconds. Moreover,

Shttp://wiki.ros.org/robot _localization

29

2.4. FEzxperiments Doctoral Thests

= LLDRL
—— LLADRL
—— PDRL

o
o

<
'S

success rate

0.2

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
training steps (10"4)

(a) Success rate

1.0 P N P et
z - ~.
Pz / s ~—
H -
- \ I}
]
0.8 ‘y"] \ PNy
AN o\ 1 ! \ I —
\ A 1 ! \ !
o VN A] / v
2 ! Vo PN /! \
£ 0.6 / \ ! ! / Y
N 1 \ L \ 1,0 ~J N/
5 ! \ \ \ v
% / \ 1
= ! \ /
= /
3 0.4 ! / == LLDRL
/
\ N
VAN ---- LLADRL
[NS
\7 £ (s ——"
02 ¥ PDRL
” -
0.0 e, =T N —————__ _ 7 N~
4

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
training steps (10°4)

(b) Collision rate

Figure 2.3: The comparison of the training efficiency. 100 tests are executed every
40 thousand training steps. The test results include successful navigation, collision
and time out that is the robot does not reach the final goal within a given time.

The top figure shows the success rate while the bottom figure illustrates the collision
rate.

the global path is also updated every 2 seconds because we only partially know the
global environment.

For better comparison with baselines, we train all DRL frameworks 800 thousand
steps. Because the control frequency is 10Hz, the theoretical time scale is about
22 hours. However, the real training time is around 7 days because the simulation
is paused after each step for updating the deep neural networks. We found that
updating policy cost tens of milliseconds while pausing and restarting the Gazebo
took prohibitively long time (about half second), which is the major reason of the
time-consuming training. Besides, unlike Mujoco, the Gazebo simulation can not
be accelerated even runs with more time than the theoretical time because of the

computer hardware limitations, which is another reason of the long-time training.

30

Doctoral Thests 2.4. FEzxperiments

Table 2.1: The comparisons of the success rate of target reaching and the motion
efficiency. The average goal reaching time used to imply the motion efficiency is
calculated only from the tests where all five methods succeed in the target reaching.

HDRL LLDRL MB CDRL DDRL
success rate (%) 100 93 100 70 87
average time (s) 28.0 29.7 344 1172 654

Table 2.2: Average speed (unit: cm/s) of each path for the proposed method and
the move_base approach.

P1 P2 P3 P4 P5 Average

HDRL 18.7 17.6 17.6 18.8 184 18.2
MB 15.8 135 124 16.6 134 14.3

2.4.3 Simulation Evaluations

Firstly, to validate the prominent sampling efficiency of the proposed low-level DRL
(LLDRL) framework, we implemented a pure DRL (PDRL) baseline as the com-
parison. PDRL directly uses the final goal to represent the state space and the
reward function. Moreover, to verify the significant effect of the action definition of
our method, we introduced another DRL-based baseline which is similar to LLDRL
except that the angular velocity is set as a discrete set, namely LLADRL, rather
than the equation (2.3.3) utilized in the proposed approach. Because the goal is far
from the robot, PDRL can not directly utilize the angular velocity defined in (2.3.3).
Instead, the angular velocity is discretized as —mw/2+ /64 rad/s with i =0, 1, .., 6.
The linear velocity choice is same as the action space (2.3.4). Therefore, the action
choices of PDRL are 35. The training result is shown in Figure 2.3, where LLDRL
only needs around 120 thousand training steps to reach a stable and high success
rate of navigation while PDRL can only achieve 14% success rate even after 800
thousand training steps. Meanwhile, the LLADRL method yields the worst result,

only with 2% success rate.

Secondly, we demonstrated that the proposed hierarchical DRL (HDRL) framework
could encourage fast motion and boost the success rate of target reaching by com-
paring with the traditional move_base!. (MB) navigation method, another two
DRL-based baselines namely CDRL and DDRL respectively, and LLDRL. CDRL
originates from [43] with continuous linear and angular velocities while DDRL is
derived from [44] where the angular velocity is discrete and the linear velocity keeps

constant. We tested these five frameworks 100 times in the same environment as

31

2.4. FEzxperiments Doctoral Thests

(d) CDRL (e) DDRL

Figure 2.4: Path visualization. The paths of LLDRL are similar to those of HDRL
but the path five of LLDRL enters the fatal collision area. The paths of the baseline
CDRL illustrate the inefficient motion of rotation in place while the paths of the
baseline DDRL display the vibrant jitter which degrades the motion efficiency.

the training one shown in Figure 2.2(a). The comparison results are shown in Table
2.1, where HDRL achieved the highest success rate while taking the shortest average
motion time. During the testing, we found that the robot tended to rotate in place
when using the baseline CDRL, which caused the lowest success rate and took the
longest average time for successful target reaching. The phenomenon of rotating
in place also happened in [43]. We think that it is because of the action space of
2-dimensional continuous velocity that makes it difficult to quickly acquire a stable
policy. The baseline DDRL achieved relatively higher success rate and shorter mo-
tion time due to the relatively simple action space, but it brought about frequent
jitter on the down side, which degraded the motion efficiency and the target reaching
performance. Additionally, the success rate was increased to 100% from 93% when
using HDRL, which demonstrated that the high-level DRL policy did play a sig-
nificant role for performance improvement. Even though MB achieved 100% target
reaching, its motion efficiency was obviously lower than HDRL. We think that the
move_base method excessively emphasizes the collision avoidance and path tracking

at the expense of motion efficiency while our method acquires a novel and optimal

32

Doctoral Thesis 2.4. FExperiments

o~

+
I'T \ SN~

Figure 2.5: New environments. Neither the two environments are explored with the
proposed DRL framework. A1l and B1 display Gazebo scenarios while A2 and B2 are
corresponding occupation maps built with the SLAM algorithm. Compared with the
training environment shown in Figure 2.2, the obstacles in these two environments
are much more dense and exhibit more complex topological structure, such as the
obstacle cluster.

motion policy during the training and learning process. For further visualizing com-
parisons, we selected five paths for each framework shown in Figure 2.4. The paths
in Figure 2.4(d) displayed the phenomenon of rotation in space and the paths in
Figure 2.4(e) were less smooth than those paths in Figure 2.4(a)-2.4(c). The initial
turning arc length of the paths in Figure 2.4(b) was generally longer than that of
the paths in Figure 2.4(a), which caused one failure shown in Figure 2.4(b). The
average motion speed of these five paths for HDRL and MB is shown in Table 2.2,
which demonstrated that our method could generate faster motion than the tradi-
tional move_base approach even though both achieved smooth and safe navigation

at the similar level.

Thirdly, the generalization ability in respect to various environments were proved
by deploying the proposed hierarchical DRL policy in two completely diverse and
complex scenarios (shown in Figure 2.5) which had never been used for the DRL
training before. We implemented 100 tests for each environment. The success
rate of target reaching in the environment A was 99% and B reached 100%. We
visualized 10 paths for each scenario displayed in Figure 2.6. At the beginning of
some paths, the curvature radius was very small in order to quickly avoid collision
and keep motion efficiency because the initial orientation of the sub-goal deviated

hugely from the moving direction of the robot. However, we still found that the

33

2.4. FExperiments Doctoral Thests

4 2 0 12 4 4 20 2 4
x/m x/m
(a) Paths in environment A (b) Paths in environment B

Figure 2.6: Successful navigation paths in two novel worlds totally different from
the training environment.

Figure 2.7: Sim-to-real transfer in diverse scenarios with different robot platforms.
The localization for the wheeled bipedal robot is based on the wheel odometer and
the Kalman filter while the quadruped robot relies on the external motion capture
because the embedded odometer drifts heavily.

robot collides with the obstacle at the very beginning in the environment A. We
think the initial location of the robot is so close to obstacles that there is no enough

time and distance space for collision avoidance.

34

Doctoral Thesis 2.5. Conclusions

2.4.4 Sim-to-Real Transfer

Finally, we implemented the hierarchical DRL framework on a physical wheeled
bipedal robot and a quadruped robot to validate the capability of sim-to-real trans-
fer and generalization ability in respect to different robot platforms shown in Figure
2.7. The wheeled bipedal robot is developed by HEBI robotics® and we installed
a Velodyne LiDAR sensor under the robot chassis. We use the quadruped robot
from unitree”, with the LiDAR sensor attached on the robot head. Because the
dynamics of the bipedal robot [73] is completely different from that of the wheeled
mobile robot used in simulation, we separately trained a hierarchical DRL frame-
work. More specifically, we still utilized the wheeled mobile robot for the training
in simulation. Differently, the action space of the low-level DRL framework was
reduced to three choices (0.0, 0.05, 0.1)m/s since the small linear velocity is ben-
eficial for the balancing control of the bipedal robot. Moreover, we supplemented
acceleration limitations for the linear and angular velocities because of the motion
constraints of the wheeled bipedal robot. For the quadruped robot with the stable
motion property, we directly deployed the simulated policy in the real world with-
out any fine-tuning. As shown in Figure 2.7, we tested the simulated DRL policy
in diverse real scenarios with different robot platforms, where the global maps were
initially unknown and simultaneously updated with the SLAM algorithm in real
time. Thanks to the partially-known global map, a rough path from the robot to
the final goal was planned and updated on-line. Based on this path, a sub-goal close
to the robot was selected for the proposed DRL policy. Additionally, we performed
another five practical experiments in more realistic scenarios to further demonstrate
the generalization ability in the physical world, with the video shown on the web-

site8.

2.5 Conclusions

We presented a hierarchical deep reinforcement learning framework for navigation
issues, with the low-level DRL policy being aimed for fast and safe navigation, and
the high-level DRL strategy for further enhancing safety. The proposed frame-
work demonstrated the eminent advantages in terms of high sampling efficiency.
Moreover, the framework was able to achieve fast and safe navigation in diverse

environments because we directly utilized the sub-goal close to the robot rather

Shttps://www.hebirobotics.com/
"https://www.unitree.com /
8https://youtu.be/FSm-EamibPI

35

2.5. Conclusions Doctoral Thesis

than the ultimate goal and proposed a target-directed representation for the action
space based on the sub-goal. Additionally, our method could be deployed on differ-
ent robot platforms even with complex dynamics and be transferred to real worlds

without globally known maps.

These advantages were demonstrated by sufficient simulation comparisons and real
implementations. Firstly, the sampling efficiency was validated by comparing with
the pure DRL model. Secondly the motion efficiency and the collision avoidance
safety were confirmed via comparing with the commonly-used move_base approach
and another two DRL-based baselines. Finally, the generalization ability with re-
spect to environments and robot platforms was affirmed through deploying the hier-
archical DRL policy on novel and complicated environments using a wheeled mobile
robot, a wheeled bipedal robot with complicated dynamics and a quadruped robot.
For our current work, we assume that the environment is static, we therefore will
try to extend our method in the dynamic environments with crowded pedestrians

in the following chapters.

36

Chapter 3

Navigation in Dynamic
Environments with Multi-Frame
LiDAR Scans

This chapter incorporates material from the following submission:

W. Zhu and M. Hayashibe, “Sampling efficient deep reinforcement learning

)

for dynamic navigation with raw laser scans,” revision and preparation for re-

submission.

3.1 Introduction

Industry 4.0 envisions that robots and humans can cooperate with each other in har-
mony. This trend promotes the research and development of autonomous driving
vehicles and unmanned mobile platforms in human environments. Nevertheless, it
is a challenge to create a fully autonomous navigation system in dynamic surround-
ings. For one thing, it is difficult to precisely detect and recognize moving objects,
such as humans, pets, and vehicles. For another thing, accurately predicting their
future states, such as position, orientation, and speed, is significantly challenging.
Most non-learning navigation algorithms, such as path planning approaches [31] and
optimal reciprocal collision avoidance (ORCA) [30], and deep reinforcement learning
(DRL)-based navigation studies [48,49,52-54,74] require fully known information of
dynamic objects. However, it is extraordinarily difficult to obtain this information

in real environments because of complex and reciprocal motions of dynamic objects.

37

8.1. Introduction Doctoral Thesis

Moreover, some DRL-based approaches assume that the number of moving objects
must be consistent in training and testing scenarios, which restricts their general
applications. In contrast, directly leveraging raw-sensor data can release this re-
striction [55,56,75-77]. Nevertheless, the raw-sensor data, such as visions and laser
scans, exponentially enlarge the observation space of DRL. Consequently, it becomes

challenging to obtain feasible navigation policies with colossal observations.

To learn a feasible and generalized navigation policy in diverse environments, mil-
lions of pieces of data are required. However, operating real robots to collect samples
is impractical and time-consuming. Therefore, simulators are essential to generate
training data quickly and safely. Nevertheless, commonly used commercial physics-
based simulators lack vision and LiDAR sensors, such as MuJoCo. Moreover, some
sensor-integrated simulators can only run in real time and are unable to accelerate
data collection, such as Gazebo. Furthermore, random sampling during DRL train-
ing may take a long time and even fail in acquiring a feasible navigation policy owing
to colossal exploration space, sparse reward, and so forth. In addition, sim-to-real
transfer is a crucial issue for DRL-based navigation policies because of discrepancies
between simulations and real-world scenarios. Although a plenty of studies have
been successfully applied in simulations, real-world implementations are filled with

challenges.

In this study, we aim to efficiently learn a navigation policy in a specially designed
simulator consisting of dynamic objects and laser scans. Although the training
environment has a constant human number, the policy learned from the specific
environment can be directly generalized into other scenarios with different human
numbers. Such a generalizability is associated with that our method does not rely
on specific human states, such as position and speed, but extracts humans’ motion
features from consecutive laser scans. Additionally, the policy obtained from the
specially developed simulator can be directly transferred into a physics-based Gazebo
simulator and physical environments. In addition, we significantly improve sampling
efficiency by defining ORCA-assisted action space. The main contributions of this

study are summarized as follows:

e We create a kinematics-based simulator integrated with a laser sensor. The
navigation policy learned from this simulator can be directly transferred into
physics-based simulators and physical environments. Moreover, we can gener-

alize the policy to various scenarios having significant differences.

e We utilize consecutive raw-sensor data to individually extract the latent mo-

tion features of surrounding objects with various numbers and shapes. There-

38

Doctoral Thesis 8.2. Related Work

fore, our end-to-end and straightforward strategy can release the assumption

of fully known environments and be generalized into diverse environments.

e The sampling efficiency is significantly improved by bringing in ORCA-assisted

action space.

e Various validations in diverse simulation environments are performed and sim-
to-real implementations are realized to demonstrate the generalizability and

practicality of the proposed navigation framework.

Our project is publicly accessible at https://github. com/zw199502/RLDynamicNav.

3.2 Related Work

Navigation in static and dynamic environments. Navigation in static envi-
ronments has been maturely studied, whereas it is a challenge to design generalized
motion planners in dynamic scenarios. For one thing, ROS-based navigation pack-
ages' can maturely deal with motion planning problems in static and unstructured
environments. However, global or local maps are required to plan collision-free
and goal-reaching trajectories. Conversely, end-to-end DRL frameworks that uti-
lize raw-sensor data [4, 41,43, 44,46, 78-80| are prevailing owning to their mapless
property and promising representation and self-learning capabilities. For another
thing, dealing with dynamic environments is a prohibitive challenge. In regulated
dynamic scenarios with explicit motion features, rule-based trajectory-planning al-
gorithms are safe and efficient [81]. However, it is extraordinarily difficult to develop
a safe and generalized navigation policy in dynamic environments without obviously

regulated patterns.

Non-learning based dynamic navigation. Two commonly used approaches,
reciprocal velocity obstacle (RVO) [29] and optimal reciprocal collision avoidance
(ORCA) [30], can safely generate an action for each moving object based on a re-
ciprocal assumption. Trajectory-planning-based methods [31-33| can release this
assumption by optimizing robot trajectories with fully known information of sur-
rounding objects, such as their size, position, and velocity. However, both reciprocity
and trajectory based motion planners rely heavily on fully known states of surround-

ing objects, which are cumbersome to accurately obtain in real-world scenarios.

Thttp://wiki.ros.org/navigation

39

3.83. Approach Doctoral Thests

Machine learning based dynamic navigation. Owing to the powerful detection
and prediction capabilities of deep learning, researchers have focused on obtaining
the size, position, and speed of moving objects at first. Subsequently, optimal navi-
gation trajectories can be planned via this rich information [83,84]. However, deep
learning models may fail in other scenarios because of notable differences between
unexplored and supervised datasets. Furthermore, planning algorithms may not be
optimal with respect to safety, efficiency, and route distance. In contrast, DRL-
based navigation frameworks can optimize and generalize navigation policies via
trial-and-error. Among these frameworks, collision avoidance deep reinforcement
learning (CADRL) [48], socially aware (SA)-CADRL [74], and GA3C-CADRL [49]
pioneer DRL-based navigation in dynamic environments. Meanwhile, SARL [53],
relational graph learning (RGL) [54], and decentralized structural (DS)-RNN [85]
can acquire optimal navigation strategies by extracting latent relations between hu-
mans and robots through attention mechanism. Nevertheless, these DRL models
assume that overall information, such as human size, shape, position, and speed, is
prior knowledge during simulation training. However, this information is difficult
to obtain in real-world scenarios because detecting and tracking humans, and esti-
mating their current and future states is time-consuming and results in inaccuracy.
Furthermore, the human number in training and evaluation environments should
be consistent, which limits their generalizability in diverse human environments.
Conversely, directly leveraging raw-sensor data can overcome these limitations. For
instance, a generative adversarial imitation learning (GAIL) [86] DRL model is lever-
aged to clone the dynamic navigation policy generated from expert demonstrations
with only raw RGB-D image observations [75]. However, owing to the generaliz-
ability restriction of imitation learning, only relatively simple real implementations
are realized in this study. Similarly, another study [76] utilizes a depth camera to
obtain surrounding point cloud information, which is further processed to extract
surrounding motion features and optimize the navigation policy. Additionally, Li-
DAR sensors can perform in the same way as cameras [55,56]. However, because
of prohibitively high dimension of raw-sensor data, obtaining a feasible navigation

policy may take a long training time, or even be impractical.

3.3 Approach

We firstly describe a specially designed environment that integrates laser scans for
DRL training, then introduce the key elements of our DRL model, and finally illus-

trate how we improve the sampling efficiency of DRL training. Figure 3.1 shows the

40

Doctoral Thests 8.8. Approach

previous three Laser scans

/| current 00

/| Laser

| scan TS]\
: robot
+ |
goal position global statesl

DRL Model Random ORCA

update
H Environment

Reward [€——

Figure 3.1: Overview of our approach. First, the centers of the previous three laser
scans are transformed into the center of the current laser scan. Next, these four laser
scans and the goal positionin the robot frame are combined as the observations of
the DRL model. The action has three options. One choice is generated from the
DRL model. Meanwhile, the fully known states, including human sizes, positions,
and speeds, are fed into ORCA to generate another action. In addition, a random
action is integrated for broad exploration. The final action is selected from these
three alternatives to balance exploration and exploitation.

overview of our approach.

3.3.1 Deep Reinforcement Learning

For the navigation task in environments with dynamic obstacles, the mobile robot
needs to make decisions to avoid moving objects and reach a target according to
surrounding dynamic information gathered by attached sensors such as LiDAR and
camera. We formulate this task as a Markov decision process (MDP) defined by a
tuple < S, A, T, R,v >. S is the state space, including the target position in the
robot frame and consecutive laser scans. A stands for the action space, which is
composed of X and Y velocities of omni-directional mobile robots. T represents the
state transition, that is the next state s’ is generated by given current action a and

state s. Such a state transition is implied by a kinematics-based simulator specially

41

3.83. Approach Doctoral Thests

developed in this study. R, with the actual value r, denotes the immediate reward
after executing a in s. We relate it to the distance from the robot to surrounding
obstacles and the distance from the robot to a target point. v is a discount factor.
The goal of navigation task is to figure out a policy 7 to maximize the expectation

of a long-term cumulative return V(s):

7 = argmaxV,(s),

s

Va(s) = Ex | > 7 ripnsl S = 8] (3.3.1)
=Y w(als)Qx(s,a),

acA

where Q is the action-value function. We utilize the Deep Q-learning networks
(DQN) [34] algorithm to iteratively update the action-value function and optimize

navigation policy:

Q(Sy, Ay) <Q(Sy, Ap) + a[Rypr+

(3.3.2)
’YméiXQ(St—l—l; a) - Q(Su At)]a

where « is a step size parameter.

3.3.2 Simulation Environment

Simulation plays a significant role in generating sufficient data for optimizing DRL-
based policy on robots, especially mobile platforms with complex mechanisms and
safety issues, such as quadruped [87] and quadrotor [88| robots. However, the com-
monly used physical simulation engines either lack sensors, such as MuJoCo, or
cannot accelerate sampling, such as Gazebo. Therefore, we aim to create an envi-
ronment that can simulate moving objects and laser scans, and significantly speed
up data collection. Consequently, the navigation policy in dynamic scenarios can
be straightforwardly and swiftly optimized in the laser sensor integrated and accel-

erated simulator.

Two frames of the simulation environment are shown in Figure 3.2. Similar to the
simplifications in existing studies [53], humans and the robot are represented by
circles with variable radius. The moving objects are assumed to be omnidirectional
agents with a maximum X/Y speed of 1m/s. Although the human number is kept
at 5, and humans’ radius is fixed at 0.3m during training, the final learned policy

can be generalized into environments with different obstacle numbers, inconsistent

42

Doctoral Thests 8.8. Approach

Yr2 Pra

Figure 3.2: Raw laser scans and center transformation in training environments.
The left top frame displays the initial states and the right top frame shows the in-
termediate motion. There is a total of 1800 laser scan beams, and a few are shown
in these two sub-figures. The bottom figure illustrates the center transformation
of the previous three laser scans. The endpoints of previous laser scan beams are
transformed into the frame of the current laser scan. Note that although the di-
rection of the laser sensor is constant in training environments, it changes in the
real world because the robot’s initial pose is randomly set and the robot’s motion
heavily drifts. Therefore, we require further coordinate transformation in real-world
scenarios.

sizes and variable shapes of moving objects. Humans are randomly located around a
circle with a radius of 4m. The i-th human moves back and forth, from the position
(xgi) , ygi)) and the position (—xgi), —ygi)). Meanwhile, human motions are generated
by ORCA. In addition, the robot is invisible to humans; otherwise, it will be difficult
to differentiate whether our motion planner is effective or whether humans avoid the

robot.

For state-of-the-art DRL-based crowd navigation algorithms [48, 52-54, 74|, the
states of all humans, including human number, size, position and speed, are as-
sumed to be fully known in simulations. However, these states are derived from
raw-sensor data such as RGB-D images and laser scans in the real world. The cum-
bersome processing of raw-sensor data may cause inaccurate human detection and
state estimation due to sensor limitations, mutual blocking, and algorithm flaws.
Furthermore, the human number in training and evaluation scenarios must be same
because of the input dimension immutableness of neural networks. Consequently,
the application of the learned RL policy is restricted in specific human scenarios.
Conversely, using direct raw-sensor data as the input can effectively eliminate this

restriction. Nevertheless, simulating raw-sensor data is difficult because of high di-

43

3.83. Approach Doctoral Thests

mensionality. We aim to update an 1800D, 360° laser scan with the robot’s motion
to match the Velodyne LiDAR sensor used in the real world. Although we only dis-
play the intersection between the laser scan and the circles shown in Figure 3.2, any
straight lines can also be included in the environment. Therefore, moving objects
are not only limited to circles, but to all shapes. To accelerate calculation, we create
a C language library to generate laser scans. We found that simulating one laser
scan only took 2ms, which was approximately 30 times faster than the case of using
Python. Furthermore, the center transformation shown in Figure 3.1 and Figure
3.2 was also achieved with C language. The total time for processing laser scans in
each simulation step was approximately 11ms, which significantly accelerated DRL

training.

Instead of using original laser scans, we transform the centers of previous laser
scans to individually extract surrounding motion features, shown in Figure 3.2.
Specifically, we have four consecutive laser scans and their centers are different
because the robot is moving. For each of the previous three laser scans, we can
calculate the end point position of each beam in the world frame. Next, we transform
these end points into the local frame of the current laser scan. Subsequently, we are
able to obtain a new laser scan that has the same center as that of the current laser
scan. Therefore, we can exclude the robot motion and only represent the human
motion with the transformed laser scans. We then feed the transformed laser scans

into our DRL model to individually extract the motion features of humans.

3.3.3 Elements of the DRL Model

States. The states s; are composed of two parts s; = [si, s{]: four center trans-

R™% and the goal position in the robot frame s{ € R2.

formed laser scans s! €
We represent the goal position in the form of polar coordinates, s{ = [r,,0,]. To
extract the features of human motions, we utilize four consecutive laser scans with
a dt = 250ms time interval between two neighboring frames. In contrast to one
pioneering study directly using original consecutive laser scans [56] and another one
slightly processing original laser scans to guarantee that all scans start from a fixed
direction [55], we transform the centers of previous laser scans into the center of
the current laser sensor shown in Figure 3.2. Consequently, we can decouple robot’s

motion and independently extract surrounding motion features.

Actions. We define the action space as a set of 81 discrete speed pairs. Because
the robot motion is assumed to be omnidirectional with a maximum X/Y speed of
Im/s, we discretize the X/Y speed as —1.0 + 0.25¢ with ¢ = 0,1, ..., 8. Pairing the

44

Doctoral Thests 8.8. Approach

Laser scan (7200) Goal position (2)
v v
Reshape (1800, 4, 1) Concatenate (66)
N A
Conv2d (3, 179, 32) Dense (64) Dense (128)
v) N
Pooling2d (3, 35, 32) Dense (128) Dense (64)
v A N
Conv2d (3, 34, 32) Dense (128) Dense (32)
v A i
Pooling2d (2, 17, 32) Flatten (1088)
| A

Figure 3.3: Network structure. For each unit except the laser scan and the goal
position, the left text represents the network operation, and the right tuple is the
output dimension after operation.

X-and Y-speeds forms the final action space. Note that the holonomic assumption
can be released by further planning the linear and angular velocities for differential

mobile robots, which is verified in the experiment section.

Rewards. The two fundamental navigation goals in dynamic environments are
collision-free and target-reaching; therefore, the reward function is defined by two
parts:

R(s:) = Ri(sy) + Ry(s), (3.3.3)

where R;(s}) represents the collision penalty, and R,(s]) denotes the goal-reaching
award. Let r be the robot radius, dt be the time of one simulation step, d;, be
the minimum range of the current laser scan, and d. be the comfortable threshold
distance from the robot center to the human circle rim. Subsequently, R;(s!) is
defined as:

_10 dmin S r
Ri(sh) =< —05-dt - (d, — duin) 7 < dunin < d. - (3.3.4)
0 dmin > dc

The second case in (3.3.4) enables the robot to maintain a safe distance from humans,
thus avoiding possible collisions ahead. Let r/_; be the last distance from the goal

to the robot, and r{ be the present distance, we can define R,(s?) as:

; 1.0 r <r
Ry(s)) = . (3.3.5)
0.01-(rf y—7r)) rl>r

The last case in (3.3.5) encourages the robot to get close to the goal, thus avoiding

a possibly invalid exploration.

45

3.83. Approach Doctoral Thests

Network structure. We leverage the DQN algorithm [34] to model the dynamic
navigation, with the network structure illustrated in Figure 3.3. First, a 64-D fea-
ture vector, which can be regarded as a certain prediction for future human states,
is extracted from a concatenated 7200-D laser scan through convolutional neural
networks (CNNs). Next, the feature vector concatenates the goal position to create
a new low-dimension state for another deep neural network. Finally, 81-D Q values
that correspond to the aforementioned discrete action space are derived from the
dimension reduced state. An action alternative, shown in Figure 3.1, is selected

from the index corresponding to the maximum @ value.

3.3.4 Improvement of Sampling Efficiency

Because of the prohibitively enormous state space and the relatively large action
space, completely random sampling during DRL training may take a long time and
even fail to obtain a feasible navigation policy. To improve sampling efficiency,
ORCA is integrated to generate samples to fill the experience pool of the DQN
model. More specifically, the robot knows all humans’ global states and its own
states, including the radius, position, and X/Y speed. Therefore, an alternative
action can be derived by ORCA using this fully known information. However, col-
lisions still occur although using the mature ORCA approach because the robot is
invisible to humans. To further avoid collisions, a random disturbance is added to
the action produced by ORCA, which yields the second alternative action to ex-
plore possibly better decisions. The third action is output from the DQN model
for exploitation. The final action is selected from these three alternatives (shown in
Figure 3.1) at different probabilities to balance exploration and exploitation. Addi-
tionally, the probability of selecting the ORCA-generated action decreases, whereas
the probability of choosing the action produced by our DRL model becomes larger
during training. Moreover, the experience pool of the DQN model is initialized by
ORCA. In addition, the neural networks are pre-trained at a relatively high learning

rate by replaying the initial experiences to further increase sampling efficiency.

3.3.5 SEDN Algorithm

We summarize our Sampling Efficient deep reinforcement learning for Dynamic Nav-
igation (SEDN) as Algorithm 1. In training, the maximum capacity of the experience
pool EP,, is 10° for the off-policy RL framework. We first set the learning rate as
a1 = 0.001 and pretrain the DRL model T; = 2000 times to initialize the deep

46

Doctoral Thesis

3.83. Approach

Algorithm 1: SEDN algorithm

Prefill: Use ORCA to prefill the experience pool with a maximum capacity

EX,,;

Pretrain: Pretrain the DRL model Ty times with a learning rate aq;
episode <— 0;

while

end

episode < EP,, do

Randomize the initial human positions;
done < False;
while not done do

if EP; < episode then
‘ p1 = €s — (€5 — €.)/ EP 4 * episode;
else
‘ D1 = €e;
end
pe = Random(0, 1);
if P2 < P1 then
Generate action with ORCA;
Add noise to the action;
else
‘ Generate action with the DRL model,;
end
Interact with the environment and update done;

end
if collision or target reaching then

Add the episode data to the eperience pool;

end
Train the DRL model Ts times with a learning rate as;
episode < episode + 1;

47

3.4. FExperiments Doctoral Thests

Gazebo
Environment

L
Real
Environment [

Figure 3.4: Physics-based experiment environments. The top image displays the
Gazebo environment and the bottom two figures show the real-world scenario. In
Gazebo, surrounding motions are generated by ORCA. In the real world, we trans-
form the 3-D LiDAR point cloud into a 2-D laser scan. We utilize external motion
capture system to localize the robot because the quadruped robot’s odometer drifts
heavily.

neural networks. Then, we repeat the trial and error for EP,, = 2 % 10* episodes.
After each episode, we train the model Ty = 20 times with a smaller learning rate
as = 0.0001. We decay the exploration factor from e, = 0.8 to ¢, = 0.03 within

EP,; = 1.6 x 10* episodes to progressively balance exploration and exploitation.

3.4 Experiments

We first trained the DRL model in a specially designed simulator with laser scans.
Subsequently, we compared our navigation framework with the EGO baseline that
similarly utilized raw laser scans [55]. In addition, we revised our model to yield
another 6 baselines to explain the motivations of our DRL motion. Moreover, 4
state-of-the-art approaches that assume fully known environments were reproduced
to demonstrate our method is straightforward and can perform as well as even better
than these methods with ideal assumptions. Meanwhile, the generalizability with
respect to variable human numbers was verified by executing the trained model in
different human scenarios. Besides, our method could deal with hybrid environments
with static and dynamic obstacles. We further validated the transfer capability of
our navigation framework by directly deploying the learned policy in a physics-based
Gazebo simulator and various real-life scenarios without retraining and fine-tuning.

The physics-based experimental environments are shown in Figure 3.4.

48

Doctoral Thests 3.4. FEzxperiments

0.8

success rate
o
(=2

e
=

0.2

0.0

0 1 2 3 4 5 6 7 & 9 10 11 12 13 14 15 16 17 18 19 20
training episodes (10"3)

(a) Success rate

N — = SEDN
\ ---- EEGO
0.8 Nees ~--- EGO

---- WSEDN

(=]
N
I
[

collision rate

1N
'S

0.2 7l i
0.0 ===z’
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

training episodes (10"3)

(b) Collision rate

Figure 3.5: Training process. The result of each training episode is either successful
navigation, collision, or running overtime. We illustrate the success rate in the top
figure and the collision rate is shown in the bottom figure. We evaluated the model
100 times every 1000 training episodes.

3.4.1 Training

To verify the high sampling efficiency and superior navigation performance of our
method, we reproduced a pioneering baseline — EGO [55], for comparison. Because
the EGO algorithm is not publicly accessible, we reproduced it according to the
aforementioned definitions in Section 3.3. The state space of EGO is four consec-
utive laser scans without center transformation. EGQO’s action space is same as
our method’s. Because EGO does not have ORCA-assisted samples, its success rate
shown in Figure 3.5 is zero at all times. Subsequently, we enhanced EGO’s sampling
efficiency by integrating ORCA, namely EEGO. As shown in Figure 3.5, EEGO’s
peak success rate is significantly increased to 90%. Additionally, we weakened our
method by removing ORCA-assisted samples, namely WSEDN. As shown in Figure
3.5, WSEDN’s success rate is decreased to 84% and becomes notably unstable, which
further indicates that ORCA-assisted samples can significantly improve learning ef-

ficiency. Moreover, EGO can rarely realize successful navigation. Comparatively,

49

3.4. FExperiments Doctoral Thests

O
2 — Y

‘ D
\r/?

0 2 1 ¥ 2 0 3 i
x/m x/m

(a) Scene 1 (b) Scene 2

Figure 3.6: Hybrid scenarios with both dynamic and static obstacles. The circles
are dynamic objects while the yellow rectangles are static barriers with random
positions. The side length of the rectangle varies from 0.3 to 0.4m during training.

WSEDN is able to improve the success rate to 84%), which qualitatively demonstrates

that the center transformation for laser scans can improve navigation performance.

In summary, EEGO and SEDN, with maximum success rates of 90% and 95%, no-
tably outperformed EGO-0% and WSEDN-84%, respectively. This qualitative and
quantitative analysis verifies that the ORCA-assisted sampling is able to enhance
learning efficiency. Although EEGO can progressively improve the success rate of
dynamic navigation, its stable success rate is approximately 80%, while the one for
SEDN is approximately 94%, which further validates that the center transformation

can improve dynamic navigation.

3.4.2 Model Revision

Firstly, we removed the CNN shown in Figure 3.3 to simplify our network structure,
namely SEDN-Simplified. Secondly, we replaced our DQN framework with soft actor
critic (SAC) — SEDN-SAC. Thirdly, we down-sampled the raw laser scan from 1800D
to 60D and leveraged the deep deterministic policy gradient (DDPG) algorithm
similar to an existing study [78]. We removed the CNN because of the low-dimension
observation. We name this baseline SEDN-DDPG-Simple. Based on SEDN-DDPG-
Simple, we substitute DDPG with SAC to create the fourth baseline — SEDN-SAC-
Simple. Our fifth and sixth baselines are related to environment settings. To explore
the effect of reward definition, we removed the goal distance reward in (3.3.5) to
generate more sparse reward — SEDN-Sparse. Finally, we constructed a hybrid
environment with both static and dynamic obstacles shown in Figure 3.6 — SEDN-

Hybrid. The corresponding training processes of these six baselines are shown in

50

Doctoral Thests 3.4. FEzxperiments

== SEDN

—— SEDN-SAC
—— SEDN-Hybrid
—— SEDN-Sparse

0.81 —— SEDN-Simplified

oS
>

success rate

S
kS

0.2

0.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
training episodes (10"3)

(a) Success rate

— = SEDN
SEDN-SAC

-~ SEDN-Hybrid

‘ -~ SEDN-Sparse

081 ---- SEDN-Simplified

e

collision rate

S
=

0.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
training episodes (10°3)

(b) Collision rate

Figure 3.7: Training process of revised SEDN baselines. We omit SEDN-DDPG-
Simple and SEDN-SAC-Simple because their success rates are zero at all times.

Figure 3.7.

As shown in Figure 3.7, the performance of SEDN-Simplified is significantly de-
graded. We conclude that CNNs can extract latent and intrinsic features from high-
dimension data, which motivates us to choose complex neural networks. Meanwhile,
SEDN-SAC yields less efficient training because its peak success rate is 77% while
the original method reaches 94%. We have to mention that the SAC algorithm is
able to perform as well as the DQN approach via carefully tuning hyper-parameters
and network structures. The motivation of selecting the DQN framework is that
DQN has relatively simpler network structures and fewer hyper-parameters. SEDN-
DDPG-Simple and SEDN-SAC-Simple result in zero success rate at all times. We
think that dense sensor data are required to detect small moving objects. When the

reward function becomes sparse, the success rate can still reach 88% but is slightly

o1

3.4. FExperiments Doctoral Thests

Table 3.1: Comparison in terms of success rate and collision rate in 500 random
tests. We omit SEDN-SAC-Simple and SEDN-DDPG-Simple because neither of

them can achieve collision-free and target-reaching navigation.

Policy Success Rate Collision Rate
*ORCA [30] 0.43 0.57
EEGO [55] 0.83 0.08
*RGL [54] 0.83 0.03

*CADRL [48] 0.94 0.06
*SARL [53] 0.88 0.08
SEDN 0.94 0.06
SEDN-Simplified 0.66 0.24
SEDN-SAC 0.77 0.23
SEDN-Sparse 0.88 0.09
SEDN-Hybrid 0.88 0.11

*assume fully known environments

lower than that of the dense reward. We can imply that dense reward is able to
improve navigation performance. Although we mix rectangular obstacles, our laser
scan simulator is still able to detect surroundings. Moreover, the proposed method
can deal with hybrid scenarios (4 moving objects and 2 static obstacles) with a high
success rate (88%). Additionally, we found that most of the failure cases occurred
when the robot collided with moving objects instead of static ones, which further

indicates that our method is able to handle static barriers.

3.4.3 Evaluation

We reproduced four open-source baselines, namely, ORCA [30], SARL [53], RGL
[54], and CADRL [48]. These state-of-the-art baselines assume fully known infor-
mation including human number, size, position, and speed. Moreover, ORCA is
a non-learning multi-agent motion planner. The original ORCA algorithm is able
to achieve an 100% success rate because each agent adopts same motion rules and
all agents try to avoid each other. For a fair comparison, we assume the robot is
invisible to humans, that is the robot actively avoids humans and humans do not
avoid the robot. This is why the revised ORCA method frequently fails as shown
in Table 3.1. In addition, we implemented another baseline - EEGO, directly using

laser scans [55] similar to our observation space. We implemented 500 tests for each

52

Doctoral Thests 3.4. FEzxperiments

Table 3.2: Comparison with different policies deployed in various human scenarios.
The two values in one unit represent the success and collision rates, respectively.

Policy ORCA [30] EEGO [55] SEDN
human number success rate / collision rate
3 0.68/0.32 0.96/0.02 0.97/0.02
4 0.56/0.44 0.90/0.05 0.97/0.03
6 0.34/0.66 0.76/0.13 0.92/0.07
7 0.31/0.69 0.72/0.14 0.88/0.10
8 0.27/0.73 0.66/0.17 0.82/0.14

baseline, with the comparison results shown in Table 3.1. Our method quantita-
tively outperforms or behaves as well as these 5 baselines in terms of the success

rate of dynamic navigation.

Although CADRL has the same success rate as our method shown in Table 3.1, it
relies heavily on prior knowledge of human number, size, position, and speed. In real
worlds, it is a challenge to precisely obtain these human states owing to complex
uncertainties. Moreover, CADRL, SARL, and RGL require that human number
in training and evaluation environments should be consistent. The DRL models
of CADRL, SARL, and RGL are required to be retrained when human number
changes, which restricts the generalizability with respect of diverse human scenar-
ios. Conversely, our method releases this ideal assumption by directly leveraging
consecutive laser scans. We can straightforwardly extract surrounding motion fea-
tures from raw-sensor data. Therefore, our DRL model can be directly generalized
to variable scenarios with different human numbers without retraining or fine-tuning
once it is optimized in a specific environment. Compared with the baselines requir-
ing fully known environments, our approach is more straightforward because we
directly project the raw-sensor data to the robot action, excluding cumbersome hu-
man detection, tracking, and speed estimation. We first train our DRL model in
an environment with 5 humans. Subsequently, the learned policy can be directly
deployed in environments with 3, 4, 6, 7, and 8 humans, which further demonstrates
the straightforward advantage of our approach. The video is shown on our website?.
The representative trajectories of humans and the robot are illustrated in Figure
3.8. We also compare our method with another 2 baselines that are independent
of human numbers, with the results illustrated in Table 3.2. 500 validations were
executed for each environment, and our method outperformed the baselines in terms

of both the success and collision rate.

Zhttps:/ /youtu.be/wL3-diEXMes

23

3.4. Ezperiments Doctoral Thests

5.0 5.0
== robot_trajectory

robot_trajectory

25

0.0

y/m

=5.0 -25 0.0 25 5.0 =50 -25 0.0 25 5.0
x/m x/m

(a) Success rate (b) Collision rate

5.0 5.0
robot_trajectory

robot_trajectory

25 2.5

y/m

0.0

y/m

0.0

50 -5.0
=5.0 -2.5 0.0 25 5.0 =5.0 -25 00 25 5.0

(c) Success rate (d) Collision rate

5.0 5.0
robot_trajectory

robot_trajectory

25 25

y/m

0.0 0.0

y/m

=50 -2.5 0.0 25 5.0 =5.0 25 0.0 25 5.0

(e) Success rate (f) Collision rate

Figure 3.8: Generalization in various scenarios with different human numbers. The
trajectories of humans and the robot are represented by successive circles with the
same time interval. The motion of humans is generated using ORCA with the robot
invisible. The red line represents the discrete trajectory of the robot and other lines
are the trajectories of humans.

Moreover, we revised our model and environment settings to create another 6 base-
lines mentioned in Section IV-B, with the results shown in Table 3.1. For one thing,
when we changed our DRL model such as simplifying the network structure (shown
in Figure 3.9) and choosing an advanced RL algorithm — Soft Actor-Critic (SAC)
(shown in Figure 3.10), the navigation performance was not improved. For another

thing, when we dowm-sampled sensor data (shown in Figure 3.11), we could rarely

54

Doctoral Thests 3.4. FEzxperiments

Goal position (2)

Concatenate (66)

Simplified ‘ Laser sc\ell,n (7200) H Goal p\ol/sition) ‘

‘ Reshape (1800, 4, 1) H Concatenate (66) |

‘ Dense (64) H Dense (128) ‘ ‘ Conv2d (3, 179, 32) H Dense (64) H Dense (128) ‘
A

‘ Dense (128) l ‘ Dense (64) ‘ ‘ Pooling2d (3, 35, 32) ‘ ‘ Dense (128) ‘ ‘ Dense (64) ‘
£ J T v

‘ Dense (128) H Dense (32) ‘ ‘ Conv2d (3, 34, 32) H Dense (128) H Dense (32) ‘

v 1 i i
Laser scan (7200) ﬁ ‘ Pooling2d (2, 17, 32) ‘ ‘ Flatten (1088) ‘

Figure 3.9: Simplified and original network structures. The left figure illustrates
the simplified network structure whereas the right figure shows our original network
structure with CNNs.

SAC Networks
Goal position (2) :
Laser scan (7200) with Decoder

\
Reshape (1800, 4, 1) Concatenate (66) > Concatenate (68)
v v V
Conv2d (3, 179, 32|relu) || Dense (64|relu) Dense (256[relu) Dense (256|relu)
v 4 ¥ A
Pooling2d (3, 35, 32) Dense (128|relu) Dense (256[relu) Dense (256[relu)
v i 1 1
Conv2d (3, 34, 32|relu) Dense (128|relu)
Dense (64|relu) Dense (64|relu)
v L 7 7
Pooling2d (2, 17, 32) Flatten (1088)
| /]\ Dense (2[tanh) Dense (1|linear)

(o]

Figure 3.10: Network structure of SAC with a CNN decoder.

obtain a feasible navigation strategy. An interesting result is that the navigation
behavior was not significantly degraded when we chose a sparse reward and hybrid
environments. These exploratory results demonstrate that our original DRL-based

navigation framework is superior and robust to environment variations.

3.4.4 Implementation in Physics based Environments

Because the maximum side speed of the omnidirectional quadrupedal robot (shown
in Figure 3.4) is 0.3m/s, we reduce the action space from {—1.0 4+ 0.25i} with i =
0,1,...,9t0 {—0.340.15} with = 0, 1, ..., 6. In addition, because the motion area is

a relatively small rectangle with a length of 3.4m and a width of 2.4m, we reduce the

25

3.4. FExperiments Doctoral Thests

‘ Laser scan (240=60x4) |

DDPG Networks
Goal position (2)

eI

Concatenate (242) H Concatenate (244) ‘

Dense (256|relu) Dense (256|relu)

Dense (256|relu)

Lo |

Dense (256]|relu)

Dense (64|relu) Dense (64|relu)

Dense (2]tanh)

Dense (1|linear)

oo]

Figure 3.11: Network structure of DDPG with down-sampled sensor data.

Figure 3.12: Gazebo scenarios with the motion area 4x4m. G1 has three dynamic
objects, whereas one obstacle is static in G2. Adding one smaller dynamic object
into G1 and G2 yields G3 and G4, respectively.

human number from 5 to 3 and initialize these humans around a 2m-radius circle.
Owing to the speed limitation of the robot, the human’s maximum X/Y speed is
correspondingly decreased to 0.3m/s. Otherwise, the robot will not have enough
time to avoid fast humans. We retrained our DRL-based navigation model because
environment settings significantly changed. The success rate in 500 tests could still
reach 96% despite the changes of environment settings, which demonstrates that our

DRL-based navigation model can be generalized into diverse environments.

Although we optimize our navigation policy in a kinematics-based simulator, the
simulated policy can be directly deployed in both a physics-based Gazebo simulator

and the real world without any retraining or fine-tuning. Figs. 3.12 and 3.13 illus-

96

Doctoral Thesis 3.4. Ezperiments

Figure 3.13: Real environments with 2.4x3.4m accessible rectangle area. R1 and
R2 have one human with a cross and toward motion, respectively. Two humans
randomly walk in R3, while one dynamic human and one static obstacle are included
in R4. R5 has three moving humans.

trate various Gazebo scenarios and real-world scenarios with diverse shapes, sizes,
numbers, and motions of obstacles. Moreover, we can replace omnidirectional mo-
bile robots with differential wheeled robots. More specifically, we can calculate the
desired waypoint according to the X/Y speeds output from our DRL-based naviga-
tion policy. Subsequently, we can plan robot’s linear and angular velocities via the

follow the carrot (FTC) algorithm?® to direct the robot toward the waypoint.

In addition to the policy transfer from a kinematics-based simulator to another
physics-based simulator, the sim-to-real transfer is implemented in various environ-
ments. In real scenarios, we deploy our simulated navigation policy on a quadruped
robot, Unitree-A1* equipped with a Velodyne LiDAR sensor, as shown in Figure 3.4.
We found that the actual speed generated by the official controller was significantly
different from that of the desired command. Therefore, we use the system identifi-
cation technique to calibrate the desired speed command to be consistent with the
actual speed. Although the motion and laser scan are 2D in the simulator whereas
the locomotion and LiDAR data are 3D in the real world with complex uncertainties,
the policy acquired from the simulator can be successfully implemented in physics-
based environments, with the video shown on our website?. Note that we only test
our method in a small area because of the limitation of the external motion capture

system. Additionally, the humans’ motions are slow due to the speed limitation of

3http://wiki.ros.org/asr_ftc_local planner
4https://www.unitree.com/products/al/

57

3.5. Conclusions Doctoral Thesis

the quadruped robot. Although our method could behave well in certain scenarios,
it also failed because our simulation training could not cover all patterns of human
motions. Therefore, our future study will focus on improving the generalizability in

the real world.

3.5 Conclusions

We presented a sampling-efficient deep reinforcement learning framework for dy-
namic navigation with direct raw laser scans. A kinematics-based simulator with
a high running speed was specially developed to simulate laser scans and acceler-
ate DRL training. The dynamic navigation policy optimized in this simulator can
be directly deployed in a physics-based Gazebo simulator and real-world scenarios.
Sufficient transfer implementations demonstrate the effectiveness of our specially
designed simulator and the sim-to-real transfer capability of our DRL-based naviga-
tion framework. Our end-to-end navigation strategy is straightforward because we
directly utilized raw consecutive laser scans. Additionally, we transformed the cen-
ter of previous laser scans into the center of the current laser sensor to individually
extract surrounding motion features. Comparison results demonstrated that center
transformation could improve dynamic navigation. To further increase sampling
efficiency and quickly acquire a superior navigation policy, we integrated ORCA
to generate assistive samples for model training. Sufficient simulation comparisons
demonstrated that our approach could achieve faster learning, better navigation

performance, and superior generalizability with respect to diverse environments.

Although we achieved some sim-to-real cases, the success rate was not high enough
for real industrial applications. One reason is that our simulation can not cover
all motion patterns of dynamic obstacles. Therefore, one of our future efforts is
to improve sim-to-real performance. Besides, our future study will focus on the
dynamic navigation using non-holonomic mobile robots because of their universality
in the human society. In addition, we need to further improve the generalizability
with respect to hybrid dynamic environments having humans, vehicles, and more

irregular obstacles.

58

Chapter 4

Navigation in Social Environments

with Sequential Occupation Maps

This chapter incorporates material from the following accepted paper:

W. Zhu and M. Hayashibe, “Autonomous navigation system in pedestrian sce-
narios using a dreamer-based motion planner,” IEEE Robotics and Automation
Letters, accepted, 2023.

4.1 Introduction

Autonomous driving systems are becoming prevalent in human society because of
their promising prospects of high efficiency, safety, and intelligence. Additionally,
an aging society, labor shortages, and noncontact services during the pandemic
promoted the research and development of autonomous mobile robots in hospitals,
restaurants, hotels, etc. [2]. However, socially aware robot navigation is a highly
complex task because it involves mapping and localization, human detection and

behavior analysis, social rules, and decision and planning [6].

On one hand, the modules of perception and motion planning are separately studied
by autonomous driving companies and research institutes [17]; thus, human—vehicle
interaction is not considered. Moreover, the surrounding humans are individually
detected and tracked, and their motions are independently analyzed; therefore, the
reciprocal relationships among pedestrians are excluded. On the other hand, state-
of-the-art algorithms proposed by academia assume that states such as human num-

ber, position, and speed are fully known and simply focus on motion planning, which

29

4.1. Introduction Doctoral Thests

limits their generalizability and hinders sim-to-real transfer [10,51,52,89].

In the earlier stages, rule-based motion planners played a dominant role in crowd
navigation. Two pioneering approaches include optimal reciprocal collision avoid-
ance (ORCA) [30] and the social force model (SFM) [90]. However, their one-step
planning framework resulted in short-sighted, unsafe, and unnatural behaviors [53].
To plan motion over a long horizon, an intuitive strategy is to first predict hu-
man trajectories based on a model and subsequently select an optimal path for
robots [91,92]. Nevertheless, human motion models generally focus on individuals,

ignoring the social relationships among pedestrians.

Recently, crowd navigation has switched to learning-based methods because of their
prominent capability of representing the latent features of human—human and human—
robot interactions and planning optimal navigation paths at a long time-scale. The
collision avoidance with deep reinforcement learning (CADRL) algorithm [48] and
its extension, socially aware CADRL (SA-CADRL), are the main algorithms used
in the field of learning-based crowd navigation. These approaches feed all human
states, such as positions and speeds, into deep neural networks (DNNs) to extract
the implicit reciprocal motion features of humans, which are further fed into deep
reinforcement learning (DRL)-based policy neural networks to learn an optimal mo-
tion planner. However, these two methods are not generalized to human numbers;
thus, DNNs need to be redefined and retrained when the human number changes.
Therefore, a subsequent algorithm, long short-term memory reinforcement learning
(LSTM_RL), leverages LSTM to represent the relational motion features of humans
to allow arbitrary human numbers [49,50]. Because the inputs of LSTM neural net-
works are sorted by the distance between the robot and each human in descending

order, the relationship among humans is not reciprocal.

To comprehensively describe the reciprocal relationship among pedestrians, the at-
tention mechanism and graph convolutional network (GCN) are broadly embedded
in DRL-based crowd navigation [51-54]. However, the aforementioned navigation al-
gorithms assume fully known human states, including human number, position, and
speed, and rely heavily on imitation learning and colossal positive datasets collected
by rule-based methods such as ORCA, which may result in an early sub-optimum.
Moreover, precisely tracking humans and estimating their speeds is difficult in the
real world owing to various uncertainties; thus, sim-to-real transfer is a crucial chal-

lenge for these methods.

To let go of the assumption of fully known human information in simulations, directly

using raw sensor data is a promising alternative [55-57,61,93|. The reciprocal

60

Doctoral Thests 4.1. Introduction

relationship among pedestrians is extracted from consecutive raw sensor data such as
high-dimensional LiDAR scans with DNNs. However, direct handling of raw sensor
data is inefficient. Consequently, imitation learning and colossal positive datasets
are required to initialize DNNs. In addition, the lack of open-source solutions limits

further development and comprehensive ablation.

Our study addresses these shortcomings in a comprehensive manner. First, we only
detect humans and obtain their positions while excluding human tracking and speed
estimation. After localizing the robot and humans, we create an RGB map that can
be maturely processed using autoencoder algorithms to represent the instant rela-
tionship between humans and the robot. Accordingly, our algorithm can free the
assumption of fully known environments and improve generalizability with respect
to the human number and speed. In addition, inspired by the Dreamer approach, a
model-based RL to address long-horizon tasks from images purely by latent imagi-
nation [37], we create a dynamic model with recurrent neural networks (RNNs) to
accumulate history information and predict future states over a long horizon, thus
reducing the probability of local optima. Moreover, the dynamic model can facilitate
policy learning via the model-based DRL framework; thus, we can completely learn
an optimal navigation policy without any imitation learning or a massive dataset.

The contributions of this study are summarized as follows.

e A complete and publicly accessible autonomous navigation system among
pedestrians is developed. We precisely obtain the robot pose using a LiDAR
SLAM algorithm, and extract humans via a clustering approach. Moreover, we
plan robot motion using a model-based DRL framework to avoid pedestrians

and reach a target with a high success rate and navigation efficiency.

e We propose a Dreamer-based motion planning algorithm that can efficiently
obtain an optimal motion planner and be generalized to arbitrary human num-

ber, variable human speed, and complex human relationships.

e We reproduce several state-of-the-art algorithms for more comprehensive ab-
lation and ensure they are open-sourced. Additionally, sufficient sim-to-real
experiments are implemented using domain randomization and system identi-

fication techniques.

The code of the whole project is publicly available at https://github.com/zw199502/
navigation_among_pedestrians and the video is shown at https://youtu.be/
KM2WPp(BfrI.

61

4.2. Related Work Doctoral Thests

Ot

é@%
(@)

Ot41

mﬁ Seus

—
™
®

=
=
[
@

o

hi i1

hi_1 j=| Dynamies x| .
- St St+1

a1
0 ‘-(— Ot+1 ‘-(_
t B g * B 32 classes

Figure 4.1: Framework of Dreamer-based motion planner with image observation.
The multi-layer perceptron (MLP) is used for learning and inference. The encoder
network (Enc) comprises convolutional neural networks (CNNs), while the decoder
network (Dec) is constructed using transposed CNNs. To propagate historical infor-
mation, recurrent neural networks (RNNs) are employed in the dynamics module.

SI[qELIeA TE

4.2 Related Work

4.2.1 Nayvigation System

A complete navigation system integrates perception, decision, planning, and control
modules, which are broadly researched and developed for autonomous driving vehi-
cles [17,18|. However, these modules are studied separately in both industry and
academia. Although there are several mature and open-source solutions, such as
Apollo! and Autoware?, publicly accessible navigation systems among pedestrians
are rare in the community of service robots. In this study, we construct a complete
navigation system, in which the perception and control modules are derived from
mature methods and decision and planning are achieved by a novel Dreamer-based

motion planner.

4.2.2 Motion Planning among Pedestrians

In the early stage, rule-based motion planners constituted mainstream crowd nav-
igation, such as ORCA [30], SFM [90], and trajectory-prediction-based path opti-
mization [91,92]. With the rapid development of deep learning, researchers and
engineers are focusing on learning-based methods, wherein DRL-based navigation
algorithms are attractive because of their promising representation and optimization
capabilities [48-60]. CADRL [48] is a pioneering study in the use of DRL for so-

Thttps://github.com /chrislgarry /Apollo-11
2https://github.com /autowarefoundation /autoware

62

Doctoral Thests 4.8. Approach

cial navigation. However, its value function neglects the social relationships among
pedestrians, as it only considers the robot’s full state and one pedestrian’s observ-
able state. LSTM_RL [49] improves upon CADRL by leveraging LSTM to represent
pairs of the robot’s state and all pedestrians’ states, but its ability to capture re-
ciprocal relationships is limited since pairs are ordered by distance and then fed
into LSTM networks. Socially aware RL (SARL) [53] and relational graph learning
(RGL) [54] represent state-of-the-art extensions to CADRL and LSTM_RL by using
self-attention mechanisms and graph convolutional networks, respectively, to cap-
ture interactions and reason about relations between agents. However, these meth-
ods assume fully known pedestrian information and require massive positive datasets
for learning, leading to degraded performance in real-time settings. EGO [55] and
LSTM_EGO [61] offer a more direct mapping of raw sensor data to navigation ac-
tions, but open-source solutions for replicating their results are scarce. We propose
an open-source Dreamer-based motion planner that can learn completely from zero

experience and release the ideal assumptions of fully known environments.

4.2.3 Dreamer

The Dreamer algorithm is a reinforcement learning agent that addresses long-horizon
tasks from images purely by latent imagination [37], which yields a large number of
achievements in simulated environments, such as Atari games and MuJoCo robots
[37—40]. Conversely, we focus more on real implementations of collision-free and
socially aware robot navigation by leveraging the key idea of the Dreamer algorithm.
A map is created to represent complex scenarios with variable human numbers and
random initial states. A dynamic model with a map as a unique observation is
learned to represent social relationships among humans. The learned model can
facilitate learning complex behaviors, thereby enabling the robot to learn an optimal

navigation policy without any prior experience.

4.3 Approach

We first illustrate the formulation of the problem of navigation among pedestrians
with model-based RL and subsequently describe the details of the model creation and
navigation policy learning using the Dreamer algorithm. In addition, we introduce
a completely autonomous navigation system with perception, planning, and control

modules. Figure 4.1 shows the overview of the Dreamer-based motion planner.

63

4.8. Approach Doctoral Thests

4.3.1 Problem Formulation

We formulate the problem of crowd navigation as a partially observable Markov
decision process (POMDP) defined by a tuple (S,H, A, P,R,O,~), where S rep-
resents the stochastic state space, H is the deterministic history feature space, A
denotes the action space, P is the state transition model, R represents the instant

reward space, O is the observation space, and + is a discount factor.

The unique observations are the sequenced RGB images (o, 0441, -+ , 0111), each of
which illustrates the instantaneous positions of humans and the robot. We decode
the high-dimensional image o;,, into the stochastic latent state s;,, using consid-
erably fewer variables. In addition, historical state information is accumulated as
deterministic feature hy, .. Given action a,,,, stochastic state s;;,, and hidden in-
formation h ., the next state sy, and accumulated feature h;y .1 can be derived
from the state transition model P. Given policy 7, we can represent the expectation

of the value function starting from state s;,, as follows:

Z 7i1Tt+7+i] ; (4.3.1)
i—1

where 1, ,; is the instant reward in state s;,,;. The goal is to determine policy

U7T<St+7') = Err

7* to maximize the value function.

4.3.2 World Model

Observation. Instead of directly using fully known pedestrian states, including
the human number, position, and speed [48,51-54|, or clumsily dealing with raw
sensor data [55,56], we create a map using only the position information of humans
and the robot. Therefore, we can reduce the uncertainties of human tracking, speed
estimation, and trajectory prediction; generalize our method; and maturely process
high-dimensional image observations via representation learning. Figure 4.2 depicts
the image observation with the shape (128,128, 3). Let the size of the motion area
be L x L. Thus, the image resolution is I, = L/128.

The image has three RGB channels, with the R channel representing humans and
the B channel depicting the robot. We assume that the human is a circle with radius
rn, and the human circle is projected as deep red pixels with the value p, = 255,
as shown in Figure 4.2. The pixel value p, is zero when the pixel is not occupied

by a human. Similarly, the robot is assumed to be a circle with radius r,, which is

64

Doctoral Thests 4.8. Approach

0 20 40 60 80 100 120

Figure 4.2: Image observation with the position information of humans and the
robot.

represented by deep blue pixels with a value p, = 255. By contrast, we inflate the
robot circle to define an uncomfortable zone between the robot and humans. The
blue pixel value p, decreases when the pixel is far from the robot rim, and becomes
zero when the pixel is outside the uncomfortable area. Note that the G channel
is not used to represent the goal position in our current work because we fix the
robot goal and randomize the robot’s initial position, which is reasonable because

the positional relation between the robot and the goal is relative.

Reward and discount factor. The reward function is defined according to the
image observation. We first add the R and B channels together to yield a new 2D
matrix m,. If any value of m, is equal to 510, a collision occurs, the reward is the
minimum r, = —0.6, and the discount factor v is zero. In addition, the reward
becomes r, = —0.1 when the robot rim is outside the motion area, and v remains
zero. Another case of zero 7 is when the goal distance d, from the robot is less
than the threshold d,, that is, when the robot reaches the target. The reward is the
maximum 7, = 1.0. If the robot does not collide with humans, reach the target, or
stay outside the motion area, v is ¥ = 0.99, and the reward is a combination of the
goal distance and the uncomfortable index. The maximum in m, is m['** and the

uncomfortable index is defined as d,, = (m}*** — 255)/255. In summary, the reward

a J—

65

4.8. Approach Doctoral Thests

function and discount factor are defined as follows:

(0.6,0) if collision,
(—0.1,0) else if outside,
(r,7) = (4.3.2)
(1.0,0) else if reaching,
(0 8-d,/L—0.6-d,0.99) else.

Action. We utilize a quadruped robot, which is an omnidirectional mobile robot.
Accordingly, we define the action as two orthogonal velocities v, and v,. Addi-
tionally, v, and v, are continuous instead of discrete, as defined in state-of-the-art
approaches [48,51-54]; therefore, we can generate smoother motions in the physical

world.

Autoencoder. We leverage autoencoder technology [94] to reduce the dimension
of the image observation and extract the motion features of humans and the robot
from sequenced observations. As illustrated in Figure 4.1, we first encode the image
observation o; with convolutional neural networks (CNNs) to extract the feature ¢
which is an intermediate vector. Next, we project the combination of ¢; and deter-
ministic history information h; onto the posterior latent state §; with a multi-layer
preceptor (MLP). Subsequently, we concatenate h; and §; and decode the concate-
nation to restore the observation image o; with transposed CNNs. The autoencoder

is summarized as follows:

qy = EQ(Ot), (433&)
81 ~ p5(qr, he), (4.3.3b)
6t ~ pg(ét, ht), (433(3)

where 6 denotes the weights of the world model network. The loss function of

autoencoder can be derived from the likelihood probability represented as below:

59;;57)— log(044+|0t1+)- (4.3.4)

Because motion planning is executed in the latent state space, while the reward r,
and discount factor v; are defined in the original observation space, we need another
two networks composed by MLP to predict 7; and #4; from the concatenated h; and

§t:

Fo ~ Dy(8e, hu), (4.3.5a)
Fe ~ Py (81, he). (4.3.5b)

66

Doctoral Thests 4.8. Approach

Similar to the loss function (4.3.4), another two additional loss functions can be

obtained as follows:

L5 2 10g(rpr | Frar), (4.3.6a)
LE=10g(Yesr 147 (4.3.6h)

State transition model. It is prohibitively challenging to construct a state tran-
sition model in the original observation space with high dimensions; therefore, we
model the motions of humans and the robot in the latent state space. We utilize the
categorical latent variables to represent the latent state with 32 classes multiplied by
32 variables (shown in Figure 4.1), based on the fact that categorical distributions
can naturally capture multi-modal uncertainty of stochastic state transition [95].
Given the posterior latent state §;, action a;, and history motion information h;, the
next latent state 5;,1 and the next hidden history information h;,; can be predicted

using a gated recurrent unit (GRU) neural network as shown in Figure 4.1:

hivr = fo(Se, ar,), (4.3.7a)
§t+1 ~ pg(ht+1). (437b)

where fy which is composed by a GRU and pj constructed by a MLP correspond
to the dynamics shown in Figure 4.1. The prior distribution ;. is required to be
similar to the posterior distribution s;, derived from the autoencoder model; thus,
the fourth loss function can be defined as the Kullback—Leibler (KL) divergence:

L357= — BKL (304 150-), (4.3.8)
where [is a constant factor weighing the KL divergence loss.

Overall loss function. Given an episode obtained from the interaction between
humans and the robot, we select a sequence starting from time step ¢t and ending at
t+ K, where K is a constant. We fill zero to elongate the episode when its length is
less than K + 1 because of early collision, outside motion, or target reaching. The

overall loss function along the sequence is represented as follows:

Lar=E,,

K
S [cﬁfg” + L gl .cgf)]] . (4.3.9)

=1

All world model networks, including (4.3.3a), (4.3.3b), (4.3.3c), (4.3.5a), (4.3.5b),
(4.3.7a) and (4.3.7b), are jointly updated using this single overall loss function.

67

4.8. Approach Doctoral Thests

4.3.3 Motion Planner

The state transition model in compact latent space enables trajectory prediction in
the long horizon without high-dimensional image observation, which results in a low
memory footprint and speedy predictions of thousands of imagined trajectories in
parallel [37]. As shown in Figure 4.1, starting from the latent state $;,, and history
information h;, ., a considerable number of episodes with H horizon can be swiftly
generated. Consequently, we can efficiently leverage imagined episodes to optimize

the navigation policy.

For the imagination process, we create an actor network and a critic network using
MLP to map the current latent state and historic motion information into the action

and value function, respectively:

dt.}rT ~ pg(gt'i‘T’ Bt+T)7 (4310&)
Vpyr ~ pZ(EH-Ta higr), (4.3.10Db)

where ¢ and v denote the weights of the actor and critic networks, respectively.
Additionally, the reward 7., and discount factor ¥;,, are predicted using (4.3.5a)
and (4.3.5b), respectively. With the imagined episode having a long horizon, we
can evaluate the value function with a multi-step RL framework because it yields a

better unbiased estimation than the one-step RL algorithm [96]:

h—1
vil5)= By s ey | D (") + 30" 0u(sn) |
1=1,2,--- ,H,
(4.3.11)
h =min(k +i,t + 7+ H),
H-1
’U)\< Z)\n 1)\HﬁlvH(S,Q),
n=1

where A is another discount factor that weighs the value function, and s ranges from
t+7tot+ 7+ H. We have two objectives: to determine a policy to maximize the
value function, and to minimize the error between the estimated value function and
the predicted value from the critic network. Therefore, the weights of the critic and

actor networks can be updated as follows:

t+T+H
minE(y, (Z Sl — o <sm>|\>, (43.12)

K=t+T1
t+7+H
max B, p,) (> w(&)) , (4.3.12D)
K=t+T1

68

Doctoral Thests 4.8. Approach

Hymean

where 07" is the mean of the distribution vj.

4.3.4 Algorithm Summary

Algorithm 2: Dreamer-based Motion Planner

T+ 0;

Initialize experience buffer D with random episodes;
Update T according to the buffer size;

Initialize weights, 0, 1) and ¢ via pre-training;
while T' < T,,,,. do

t<0,v <7 1r <0, h <0, a; < O;

o; < env.reset();

episode < [(04, 74, ar, 1))

while t < t,,4. and v > 0 do

qr = Ee(Ot);

st ~ Dy(ars he);

Aty1 ™~ p;(st, hi);

0141, g1, Vi1 < env.step(agir);

hipr < fo(se, as, hy);

episode.append([(01, o1, arr1, Yev1)]);
t+—1t+1;

Select B batches of sequenced data from D;
Fill 0 until B = {(o;, 77, ar, 77) } 05,
Update the world model with the batches;
Imagine episodes at H horizon from (s, h;);
Update the motion planner with the episodes;
end

Add episode to D;

T+ T+t

end

In the simulation, we assume that the human motion is generated by ORCA [30].
Additionally, the robot is assumed to be invisible to humans; otherwise, it will be
difficult to differentiate whether our motion planner is effective or whether humans
avoid the robot. The simulation is reset when collision, outside motion, target reach-
ing, or timeout occurs. When the episode length is greater than ¢,,,,, it is terminated
as a timeout. We use the step function to update the positions of humans and the
robot and obtain the instant reward and discount factor. Simulation interaction
samples are collected to update the world model. We subsequently utilize the world
model to imagine episodes in the latent space, which are used to update the motion
planner. Next, a motion planner is used to generate new simulation episodes. We
alternately update the world model and motion planner until a stable navigation

policy is acquired. This algorithm is summarized in Algorithm 2.

69

4.8. Approach Doctoral Thesis

Original LiDAR Scan (10Hz) Robot Localization and Human Extraction (10Hz) Image Observation (5Hz)

he = fo(ar-1,5¢-1, he-1)
q: = Eg(0,)
s ~ p8(qe, he)
ag ~ p$ (se, he)

| ("'A!i
e Motion Planner (5Hz)

Gait Control (500Hz) Command Calibration (5Hz)

Figure 4.3: Complete autonomous navigation system. The robot localization and
human extraction are executed at 10Hz due to the limitation of sensoring frequency.
We plan the motion at the speed level every 0.2s while the level of robot gait gen-
eration corresponding to the desired speed is run at 500Hz.

4.3.5 Complete Navigation System

As stated in existing studies, wheeled mobile robots can localize themselves with the
wheel odometer [48,51-54|, which however drifts heavily with the increase in mo-
tion time. External motion capture systems are commonly used to precisely obtain
the robot position and orientation [50|. Nevertheless, such systems are expensive
and impractical in a real human society. A navigation system without any accurate
and internal localization module is incomplete and cannot be applied to society.
Additionally, these studies have not focused on publicly accessible real-world imple-
mentations, such as human detection, speed estimation, and trajectory prediction.
Conversely, we leverage the LiDAR odometry and mapping (LOAM) SLAM algo-
rithm [97] to accurately localize the robot. In addition, we extract humans using
a clustering approach [98]. Because we can obtain the sequenced position informa-
tion of humans and the robot, we can extract the latent motion feature using our
algorithm without individually estimating the human speed and future trajectory.
Because our algorithm directly outputs two orthogonal velocities v, and v,, we need
to further match v, and v, to the speed command of the quadruped robot? used for
practical implementations. We found that the actual speed generated by the official
controller was significantly different from that of the desired command. Therefore,
we use the system identification technique to calibrate the desired speed command
to be consistent with the actual speed [70]. We made our system (shown in Figure

4.3) open-source for easier deployment in the autonomous navigation community.

3https://m.unitree.com /products/al/

70

Doctoral Thests 4.4. FExperiments

4.4 Experiments

We used three simulation scenarios: Simulation one is for a comprehensive compar-
ison, Simulation two is designed to verify the generalizability of our method, and
Simulation three is constructed for sim-to-real transfer. Subsequently, we directly
deployed the policy learned in Simulation three into various real scenarios without

any retraining or fine-tuning.

4.4.1 Simulation

Training for comparison. The side length of the motion area is L = 10m. Similar
to the original settings of RGL [54], we assume a human number fixed at 5, human
radius r, = 0.3m, and each human is randomly initialized around a circle with a
radius of 4m. The initial position is (mg), y((]i)), and the goal is (—xéi), —y(()i)). The
i-th human moved back and forth from these two positions with a preference speed
of 1m/s. Additionally, reciprocal motion among humans is generated by ORCA [30]
with the robot being invisible. The robot radius was r, = 0.3m and the maximum
values of v, and v, were both 1m/s. For a fair comparison, we assumed that the
robot moves from (-4.0, 0.0)m to (4.0, 0.0)m. We reproduced 9 popular baselines:
the first is A-Star algorithm for relatively static environments [21], one is Dynamic
Window Approach (DWA) [23| which is maturely used for service robots, another
non-learning method is called ORCA [30], whereas the other 6 are learning-based
approaches, called CADRL [48], LSTM_RL [49], SARL [53], RGL [54], EGO [55],
and LSTM_EGO [61] respectively.

A-Star is broadly used for path planning in relatively static environments. We
select the waypoints on the planned path to guide the robot motion. Because of
the highly dynamic environments, A-Star’s success rate is 42% (shown in Table 4.1)
although we fine-tune parameters. DWA generally assumes that obstacles are static
at each planning step. In this study, we extend it to adapt to dynamic environments.
More specifically, we calculate the planning cost along multiple time steps in the
future and obstacles’ positions are predicted based on their velocities at present
time step. The modified DWA method yields a high success rate (95%) shown in
Table 4.1. However, it still causes failures because it assumes constant velocity for
prediction. As another none-learning approach, ORCA assumes that the agent’s
states, including shape, size, position, and speed, are fully known. Based on this
information, it generates an optimal collision-free action in one step. However,

this one-step planning approach may result in short-sighted, unsafe, and unnatural

71

4.4. FExperiments Doctoral Thests

behaviors. For a fair comparison, the robot is invisible to humans; otherwise, it is
difficult to differentiate whether the robot tries to avoid humans or humans actively
avoid the robot. This revision results in frequent failures (shown in Table 4.1)

because the reciprocal assumption is violated.

In contrast, DRL-based crowd navigation algorithms, which utilize a value function
that can represent accumulated return over a long horizon, have become increasingly
popular due to their ability to address these issues. For example, CADRL was a
pioneering study in this area, but its value function only considered the pair of the
robot and one human, making it unable to represent relational interactions among
humans. As a result, LSTM_RL was developed to pair the robot with all humans,
but it still only captures partial interactions because it sorts the pairs by distance
before feeding them into the LSTM networks. To more comprehensively repre-
sent social interactions among humans, SARL utilizes a self-attention mechanism to
capture interactions within pedestrians, while RGL embeds a graph convolutional
network to reason about relations between agents and compute interactions between
them. However, these methods all require fully known human states. In contrast,
EGO and LSTM_EGO can handle both static and dynamic obstacles of different
shapes, sizes, and numbers, as they directly map raw sensor data to navigation ac-
tions. EGO uses continuous LiDAR scans, while LSTM_EGO uses one frame of
LiDAR scan and embeds LSTM to deal with sequential scans. However, a downside
of these methods is the difficulty of efficiently learning a feasible navigation policy.
While the other four have open-source solutions, publicly accessible resources for
EGO and LSTM_EGO are rare. Therefore, we specially created a simulator that
could generate 2D LiDAR scans and constructed neural networks for policy learn-
ing. We named our method navigation among pedestrians with a Dreamer-based
motion planner (NPD). The learning processes of the six methods are illustrated in
Figure 4.4, and the final evaluation is shown in Table 4.1. Please note that Figure
4.4 displays the success rate of 100 evaluation episodes. Each episode may result in
success, collision, overtime, or outside motion. Our analysis revealed that when the
success rate was at or above 90%, the number of collision cases decreased to less
than 5, sometimes even to 1, whereas most of the cases were overtime. Notably,
in overtime cases, the robot was very close to the target. We hypothesized that
the image resolution may have contributed to this phenomenon. As the robot was
approaching the target, we reclassified the overtime cases as success in the final 500

tests.

Because baselines CADRL, LSTM_RL, SARL, and RGL initialized the neural net-
works with imitation learning and fill the experience pool with a large number of

positive samples ahead of the training, they could swiftly learn a feasible navi-

72

Doctoral Thests 4.4. FExperiments

Table 4.1: Final Evaluation. 500 random tests are executed with the best neural
networks saved during the training.

Method SR NT (s) AT (s)
A-Star 0.42 15.85 5.0e-4
*DWA 095 11.94 2.6e-3
*ORCA-Ideal 0.92 12.32 5e-5
*ORCA 0.47 10.83 5e-5
*CADRL 0.80 12.40 0.035
*LSTM_RL 097 10.95 0.067
*SARL 0.98 10.75 0.060
*RGL 0.97 11.22 0.067
EGO 0.54 12.67 1.5e-3
LSTM_EGO 0.52 15.08 7.5e-4
NPD(ours) 0.99 11.15 3.3e-3

*These methods require fully known human information.

SR: success rate; NT: navigation time; AT: action time

Table 4.2: Test results with fewer positive samples.

Method Success Rate average time (s)
CADRL 0.80 12.40
CADRL* 0.59 12.00
LSTM_RL 0.97 10.95
LSTM_RL* 0.98 10.67
SARL 0.98 10.75
SARL* 0.99 10.66
RGL 0.97 11.22
RGL* 0.52 15.28

*Fewer positive samples

gation policy. Although EGO’s initialization was same, its learning was notably
unstable and it could only reach a success rate of 0.54. The initial data settings
of LSTM_EGO were same as ours, however, its success rate was 0.52, significantly
lower than our method’s. In addition, LSTM_EGO required the longest navigation
time, averaging 15.08s. We found that the success rates of all the baselines which
require prior initialization became zero at all times when we removed imitation learn-
ing and the massive positive dataset. Therefore, we excluded the training results
of these baselines without positive samples. Nevertheless, we present the results of
these baselines with fewer positive samples (50 episodes) in Figure 4.5 and Table

4.2. The results show that reducing positive samples does not significantly affect

73

4.4. FExperiments Doctoral Thests

Table 4.3: Quantitative analysis when adding uniform noises to the human action
originally generated by ORCA.

Method/Noise 0.05 0.10 0.15 0.20
RGL 0.98 098 097 097
NPD(ours) 0.96 0.95 0.97 0.94

the learning performance of LSTM_RL and SARL. However, the learning efficiency
of CADRL and RGL deteriorates with the reduction of positive samples.

Comparatively, our method could completely learn from zero experience and yielded
a stable convergence and high success rate, which indicates that our method does
improve learning efficiency. As shown in Table 4.1, our approach quantitatively ei-
ther outperformed or behaved similar as the other six learning baselines with respect
to both the success rate and average navigation time. We found that the failure of
our method initially occurred when two of the humans closely surrounded the robot.
Additionally, the collision occurred within five time steps of 1 second. We believe
that this short sequence results in the most of the remaining 1% failures. Although
ORCA requires a short navigation time, it produced the lowest success rate, whereas
our method was able to adequately balance the navigation time and success rate.
Because our final goal is to deploy the navigation policy on real robot platforms,
real-time performance should be another evaluation factor. The time used to gen-
erate an action when given observations is referred to action time. ORCA’s action
time was only tens of microseconds because ORCA is a non-learning approach. How-
ever, CADRL, LSTM_RL, SARL, and RGL required tens of milliseconds to derive
an action because they only have a value network and need to inquire each action
choice to obtain the best one. On the contrary, EGO, LSTM_EGO, and NPD(ours)
have both an actor network and a critic network, therefore, they are able to quickly
access an optimal action from the actor network. Because the planning frequency
in the real world is 5Hz, our method’s action time (3.3e-3) is acceptable for real im-
plementations. The aforementioned test assumes that human motions follow ORCA
rules. To verify the generalizability of the trained policy with respect to human
motion modals, we deviated the human action originally generated using ORCA by
adding uniform noises. Additionally, we used RGL as a benchmark for comparison,
and the results are presented in Table 4.3. Since the maximum speed of humans
is 1.0m/s, we added uniform noises with the bounds of 0.05, 0.1, 0.15, and 0.2, re-
spectively. We tested each case 500 times and observed that RGL outperformed our
method slightly. However, our method demonstrated the ability to handle deviated
human motions. Additionally, we found an interesting result that the performance
with higher noise (0.15) was slightly better than that with lower noise (0.05), which

74

Doctoral Thests 4.4. FExperiments

could be a topic of future exploration.

Training for generalizability verification. we trained our model in a more
challenging navigation scenario (shown in Figure 4.6) to further verify the general-
izability of our approach. Similar to the scenario shown in Figure 4.2, the motion
area is 10x10m. Differently, the obstacle number in the revised environment is up
to 7, which makes the training scenario denser and more complicated. Moreover, the
number of moving humans changes from 1 to 4. Additionally, we add rectangular
static obstacles whose number is variable from 1 to 3 and side length ranges from
0.3m to 0.4m. Baselines CADRL, LSTM_RL, SARL, and RGL assume that the
obstacles are circles and their number is fixed during the whole training, whereas
baselines EGO and LSTM_EGO are independent of obstacle number and shape.
We choose LSTM_EGO as the ablation simply because it is a more recent study.
The training process is depicted in Figure 4.7. Although the environment becomes
complex, our method can still reach a 93% success rate, significantly outperforming
LSTM_EGO whose success rate is below 40% at all times.

Training for policy transfer.

To enable sim-to-real transfer, we leveraged the domain randomization technique to
improve the generalizability of the simulated navigation policy. Because the maxi-
mum sideward speed of the real quadruped robot was 0.27m/s, we first constrain the
maximum v, as 0.27m/s and the maximum v, 0.3m/s. Note that we did not enlarge
the forward speed v, for slow and stable motion in our small real scenarios with a
size 3 x 3m. Different from the simulation configurations considered for comparison,
we narrowed the motion area to L = 6m, and the human number changed from
1 to 3. Additionally, we randomized the initial robot position while keeping the
goal fixed at (1.0,0.0). Moreover, the initial human position was randomized over
the entire motion area, while the human goal was distributed around the margin of
the motion area. The preference speed of humans ranges from 0.15m/s to 0.3m/s.
For RL-based baselines, obtaining a feasible navigation policy is challenging if the
environment significantly changes. Moreover, certain baselines, such as CADRL
and SARL, do not allow variable human numbers during training. Although we
introduced a large number of stochastics, our algorithm could produce stable policy
optimization while LSTM_EGO failed in obtaining a feasible navigation policy, as
shown in Figure 4.9. The trained policy achieved a 95% success rate in the final
evaluation with 500 random settings. Figure 4.8 shows six representative episodes

with different human numbers and complex human motions.

In addition to comparing with the learning-based baselines LSTM_EGO and RGL,

75

4.5. Conclusions Doctoral Thests

we conducted ORCA as another ablation. We found that ORCA could significantly
improve navigation success rate from 0.47 to 0.98 when human number was de-
creased from 5 to 3. Although ORCA (0.98) outperformed our method (0.95) in
simulation, we found that the robot was inclined to move outside of the specific area
in real scenarios. The possible reason may be inaccurate human tracking and speed
estimation. Conversely, our method only needs human positions, without consider-
ing the errors of human tracking and speed estimation, therefore, our approach is

able to proficiently deal with various real-world scenarios.

To align the robot collision margin with the actual robot platform, we replaced
the inflated circular margin with a rectangular one (shown in Figure 4.10). This
modification enabled us to match the collision margin of the simulated robot with
that of the real robot platform. The collision margin has a length and width of 0.5m
and 0.3m, respectively, identical to the collision margin of our real robot platform.
The corresponding learning is illustrated in Figure 4.9, which indicates that our

method can deal with different robot collision margins.

4.4.2 Real Implementations

We deployed the policy learned from the simulation on a quadruped robotic platform
equipped with a Velodyne VLP-16 LiDAR. The tests are shown in the attached
videos. Although the human number changed from 1 to 3 and human motions are
diversified, our simulated navigation policy could be directly transferred into real
scenarios without any retraining or fine-tuning, which shows the potential of our
method to model complex reciprocal human relations and navigate robots among

pedestrians in the real world.

4.5 Conclusions

This paper presented an autonomous navigation system with a Dreamer-based mo-
tion planner. We let go of the assumption of fully known human states and only
utilized the human position information. The human positions and robot location
were projected onto a image. From the sequenced image observations, we extracted
reciprocal relationships among pedestrians through representation learning. In ad-
dition, we created a state transition model using the extracted latent information to
imagine episodes for reinforcement learning. Sufficient simulation ablations demon-

strated that our method could learn from zero experience with high efficiency and

76

Doctoral Thests 4.5. Conclusions

outperformed state-of-the-art algorithms. In addition, we leveraged the techniques
of system identification, domain randomization, clustering, and LiDAR SLAM to
enable sim-to-real transfer. Adequate real implementations illustrated the potential
of our method to model complex reciprocal human relations and navigate the robot
among pedestrians in the physical world. Our future study will focus on accurate

human detection, precise robot localization, and universal navigation policy.

7

4.5. Conclusions

Doctoral Thesis

KA A A NARCA L v e Ay

success rate
o
(o))

o
~

—— NPD(ours)
CADRL
- LSTM_RL

o
o

o
<

2 4 6 8 10
time steps (10"5)

(a) Group one: CADRL and LSTM_RL

success rate

—— NPD(ours)
SARL
- RGL

time steps (10"5)
(b) Group two: SARL and RGL

1.0
0.8
(]
706 —— NPD(ours)
% e EGO
20 I (0 | 1 — LSTM_EGO
0.2,
.... AR f.\'_'
0.01 LNV
0 2 4 6 8

time steps (105)
(¢) Group three: EGO and LSTM_EGO

Figure 4.4: Learning ablations. At certain time step, we evaluate the policy 100
times and calculate the corresponding success rate of collision-free and target-
reaching navigation. Group one include two baselines, CADRL and LSTM_RL,
which have a stable learning process while the training of another two baselines in

Group two, SARL and RGL, vibrates intensely. EGO and LSTM_EGO in Group
three can not reach a high success rate of crowd navigation and their learning is

extremely unstable.

78

Doctoral Thesis

4.5. Conclusions

Figure 4.5: Baselines with fewer positive samples.

h0 ,.J\N'"".fvv""“f‘""”"" Ty
oyl
FAKTY
058 ;M
i
I i
= HTVRAY
0.6 i
8
S
3
204
02 CADRL
~—~ CADRL*
4 6 8 10
time steps (1075)
(a) CADRL
1.0

success rate

0.2

AT
AN
AU

\
s AT

"\\"‘r"'

s
§

PN S
Pt AT

LSTM_RL
-— LSTM_RL*

4 6
time steps (10"5)

(b) LSTM_RL

8 10

success rate

SO

A AT M NN

SARL
————— SARL*
0.0
4 6 8 10
time steps (10"5)
(c) SARL
1.0
0.8
2056 heo o A
0. BS VAT
- oY B -'l”il \'r_.' WAt e b
§ ,;‘/“,I“,’,” 1At [N LAY “;{I;jk\./,.\i’)‘ “,‘%;v
204 I f
7] /
il
ii
021
RGL
oo -—— RGL*
4 6 8 10
time steps (10"5)
(d) RGL

METHOD has 2000 positive

episodes whereas the experience pool of METHOD* is initialized by 50 positive

episodes.

79

4.5. Conclusions Doctoral Thesis

(N

-4 -2 0 2 4
x/m

(a) NPD environment (b) LSTM_EGO environment

Figure 4.6: Complex environments. (a) The red circles represent moving humans
whose number changes from 1 to 4 whereas the rectangles stand for static obstacles
whose number is variable from 1 to 3 and side length ranges from 0.3m to 0.4m.
The robot with an inflation area is illustrated by the blue circle. (b) The number
and shape of moving humans and static obstacles are same as those illustrated in
(a). We specially designed a LiDAR scan environment to train LSTM_EGO, where
the LiDAR scan is composed by 1800 beams to comprehensively detect surrounding
objects.

S
o

LSTM_EGO

success rate

0.4 —— NPD(ours)
0.2
//\\ /\
/ A A /N A
0.0 Y NN Y A~
0 2 4 6 8 10

time steps (10"5)

Figure 4.7: Training in complex environments.

80

Doctoral Thesis

4.5. Conclusions

3.0

—3.03 0

-1.5 0.0

x/m

1.5 3.0

(a) one human - case (1)

3.0

=3.0 -15 0.0

x/m

1.5

(c) two human- case (1)

3.0

-1.5 0.0

x/m

L5

(e) three humans - case (1)

3.0

0.0

y/m

-3.0

=3.0 -1.5 0.0

x/m

1.5

(b) one human - case (2)

3.0

3.0

/m
e
(=3

e/

-1.5 0.0

x/m

(d) two humans - case (2)

3.0

L5

3.0

y/m

0.0

=3.0 -1.5 0.0

x/m

(f) three human - case (2)

1.5

3.0

Figure 4.8: Trajectory visualization. The red circle represents the human, the blue
is the robot, and the green stands for the goal. The object moves at the direction
that the circle opacity increases. The top two figures shows the scenarios with one
human, the middle two humans, and the bottom three humans.

81

4.5. Conclusions Doctoral Thesis

LSTM_EGO
0.8/ —— NPD(ours)
----- NPD-CM(ours)

«"-é 0.6
¢
% 0.4

0.2

0.0

0 2 4 6 8 10
time steps (10"5)

Figure 4.9: Learning process with stochastic configurations in simulation. Different
from the training for comparison, this training is executed in stochastic environ-
ments with variable human numbers and distributions to learn a more generalized
navigation policy. NPD considers the robot’s collision margin as a circular shape,
whereas NPD-CM uses a more accurate collision margin that is a circumscribed
rectangle around the physical robot. RGL’s learning is omitted because its success
rate is zero at all times.

120

80

60

40

20

0 20 40 60 80 100 120

Figure 4.10: Robot collision margin is a rectangle whereas humans are represented
by circles.

82

Chapter 5

Navigation in Social Environments
with Sequential LiIDAR Scans

This chapter incorporates material from the following paper which is under re-

view:

W. Zhu and M. Hayashibe, “Learn to navigate in dynamic environments with

normalized LiDAR scans,” under review.

5.1 Introduction

Self-driving cars have garnered significant interest and research over the years, and
recent advances in machine learning, artificial intelligence, and computer vision have
resulted in highly sophisticated autonomous driving vehicle technology. Tech giants,
including I'T and car manufacturers, have invested substantial resources in develop-
ing self-driving car prototypes and testing them on public roads [99]. These vehicles
hold the potential to offer significant benefits such as improved safety, reduced traf-
fic congestion, increased energy efficiency, and greater mobility for individuals who
cannot drive. However, concerns surrounding the safety and security of self-driving
cars, as well as their impact on employment in the transportation sector, remain
a point of contention. Although outdoor self-driving cars have yet to be produced
on a massive scale, service mobile robots are already making their presence felt in
closed environments within human societies. These robots are being deployed across
various industries, including healthcare, hospitality, retail, and logistics, to improve

efficiency, reduce costs, and enhance customer experiences [100]. However, safely

83

5.1. Introduction Doctoral Thesis

and efficiently navigating service mobile robots in human-rich and highly dynamic

environments remains an exceedingly difficult task.

Map-based navigation strategies have been widely utilized for mobile robots in sta-
ble environments [101,102]. Various studies have employed high-resolution maps to
search for global paths via efficient planning algorithms, such as A-Star (A*) [103]
and rapidly-exploring random tree (RRT) [104]. Local motion planners, such as
dynamic window approach (DWA) [23| and directional approach [105], are subse-
quently executed to track the paths and avoid obstacles. However, maintaining
global maps can be time-consuming, especially in environments that undergo con-
sistent changes. Furthermore, local motion planners can be sensitive to moving

obstacles, particularly in environments with a high human presence.

To reduce the time and effort required for map maintenance, map-free and end-
to-end DRL navigation methods have become increasingly popular in the research
literature [106]. However, early studies [4, 41,43, 44,46, 78-80| were limited to rel-
atively stable environments where obstacles were static, and testing configurations
did not significantly deviate from the training settings. More recent studies have
focused on using DRL to navigate agents in highly dynamic environments, but they
assume that other moving agents’ states, including size, shape, number, and speed,
are fully known [48,49,52-54,74]. Obtaining these states with accuracy in real-world
scenarios can be particularly challenging, which has limited the practical applica-
tions of these cutting-edge approaches. Alternatively, directly mapping continuous
raw sensor observations to robot actions is an appealing navigation strategy that
eliminates the need for assuming fully known environments [55,56,61, 75-77]. Nev-
ertheless, commonly used simulators which can generate raw sensor observations
can not significantly accelerate running, such as Gazebo [107] and V-REP [108].
Moreover, sim-to-real transfer is a significant challenge for these approaches, as
simulation settings cannot fully replicate real-world situations. Furthermore, im-
plementing navigation policies that demand large networks on small mobile robots

with limited computational resources presents a significant challenge.

Our study comprehensively addresses the shortcomings by employing the following
techniques. Firstly, we designed a simulator that is equipped with a LiDAR sensor,
which significantly accelerates running during DRL training. Secondly, to simulate
real-world scenarios, we assume that dynamic humans have a fixed circle shape, and
static obstacles are rectangles with variable sizes. However, since the contours of
real-world obstacles are notably different from the shapes of simulated objects, we
normalized the collision margins of real-world obstacles as circles with a fixed radius

or rectangles with variable sizes. We accomplished this by employing clustering

84

Doctoral Thesis 5.1. Introduction

algorithms to localize and frame moving humans or static obstacles, and obtain
their centroids and circumscribed cuboids in 3D space. We can then normalize
obstacles as circles or rectangles on a 2D plane. Subsequently, we can re-generate
2D LiDAR scans according to the normalized obstacles. Thirdly, instead of using
tens of continuous LiDAR scans [55] or high-dimensional depth images [61] which
require colossal networks to extract latent features, we leverage long-short term
memory (LSTM) to process ego-centric sequential LIDAR scans, which reduces the
consumption of hardware resources and enables deployment on small mobile robots.
We name our approach Learn to Navigate in Dynamic environments with Normalized

LiDAR scans (LNDNL). In summary, our main contributions are outlined as follows.

e We have developed a specialized simulator that can efficiently generate LiDAR
observations. This simulator allows for the incorporation of numerous objects

in motion, each with their own distinct shapes.

e To enable seamless transfer of simulations to the real world, we ensure that col-
lision margins of real-world obstacles are normalized. Our approach involves
using clustering techniques to localize and frame obstacles from 3D point-
clouds. Additionally, we re-generate 2D LiDAR scans from the normalized

obstacles to be consistent with simulated settings.

e We present a navigation framework that employs a combination of LSTM and
DRL to translate the sequential normalized LiDAR observations into robot
actions from an ego-centric perspective. This framework features lightweight
networks, making it feasible for implementation on compact and onboard com-

puters.

e To showcase the benefits of our approach, we extensively compared it with
state-of-the-art baselines. Additionally, we conducted extensive real experi-

ments to highlight the potential of sim-to-real transfer.

Our project is open-sourced at https://github.com/zw199502/LSTM_EGO and at-
tached videos are shown at https://youtu.be/Eiyp8VSEjWo.

85

5.2. Related Work Doctoral Thesis

5.2 Related Work

5.2.1 Robot Simulators

In order to obtain a significant number of samples for Deep Reinforcement Learn-
ing (DRL) training in an efficient and safe manner, it is essential to use simulators
that incorporate dynamic models, rich scenarios, and sensors. Several simulators
such as MuJoCo [109], its extensions such as DMC [110] and Robomimic [111], are
available that can significantly accelerate the sampling process. However, generating
ego-centric sensor observations using these simulators is a challenging task. On the
other hand, simulators like Gazebo [107] and V-REP [108] are powerful physics-based
simulators that integrate various sensors like LIDAR and RGB-D camera. However,
these simulators are not able to significantly speed up the running process, which
may result in several days of DRL training. In comparison, Isaac Gym [112] and
iGibson [113] can quickly generate image and LiDAR observations and support par-
allel computations. However, the drawback of these simulators is that they require
powerful hardware resources, making them limited to small mobile robots equipped
with compact and onboard computers. In our study, we developed a specialized sim-
ulator that can efficiently generate LiDAR observations. Furthermore, this simulator

has the capability to customize the quantity, shapes, and movements of obstacles.

5.2.2 Robot Navigation in Stable Environments

Map-based navigation techniques have found widespread application in various in-
dustrial scenarios, such as robotics logistics in hotels [114] and restaurants [13].
These methods plan robot motion using global maps, which can be time-consuming
to maintain, particularly in consistently changing environments. In contrast, DRL-
based navigation strategies can be map-free, as they are end-to-end approaches that
directly map sensor observations to robot actions [4,41,43,44,46,78-80]. However,
they face challenges in terms of generalization and sim-to-real transfer. Moreover,
both map-based non-learning and map-free DRL-based motion planners are sensi-
tive to dynamic obstacles, which limits their usefulness in environments that are
rich in human activity. Our work aims to address this limitation, particularly in
scenarios that are densely populated with pedestrians, by developing approaches

that can handle highly dynamic environments.

86

Doctoral Thesis 5.2. Related Work

5.2.3 Robot Navigation in Dynamic Environments

One approach to navigate robots in dynamic environments is by estimating the
current states of surrounding moving obstacles, including their position, shape, size,
and speed, and predicting their future trajectories. This intuitive method enables
the online optimization of a collision-free robot trajectory using model-based motion
planners [14]. However, predicting trajectories is a complex task as it involves object
tracking and intricate interactions between moving objects. Additionally, modeling
complex interactions is challenging, and the online optimization approaches that
rely on complex models, such as model predictive control (MPC)-based motion

planners [115], can be time-consuming.

DRL-based motion planners in dynamic environments are becoming increasingly
popular due to their ability to optimize navigation policies offline, eliminating the
need for trajectory prediction through the sequential decision-making mechanism
of reinforcement learning [96]. In fully observable environments, where the num-
ber, shape, size, and speed of obstacles are completely known, DRL-based nav-
igation strategies can directly map observations to robot actions without relying
on dynamic models or explicit trajectory prediction. The collision avoidance DRL
(CADRL) algorithm [48] was a pioneering study that paired the robot with each
moving object and defined a value function estimating the value of each individ-
ual pair. However, this pairing strategy neglected interactions among surrounding
moving objects, which prompted further research to focus on including social in-
teractions among dynamic agents. For instance, recurrent neural networks such as
LSTM networks [49] were used to accumulate motion information from all pairs,
which were ordered by the distance between the robot and each obstacle and then
fed into LSTM networks. The output of LSTM networks is further set as a latent
state vector for DRL-based value networks, named LSTM_RL. Recently, attention
mechanisms [53] and graph convolutional networks (GCNs) [54] have been widely
applied to capture social relationships among pedestrians. These two algorithms
are named socially aware (SA)RL and relational graph learning (RGL) respectively.
Despite the success of these approaches in simulations, where fully observable states
can be obtained quickly and easily, deploying them in the real world is challenging

due to the difficulty in accurately estimating these states.

Consequently, employing DRL to directly map continuous raw sensor observations
into robot actions is a highly effective alternative. Surrounding motion features can
be derived from consecutive LiDAR scans [55,56,117], sequential images [61,118], or

multi-sensor observations [76]. In hybrid environments where dynamic humans and

87

5.83. Approach Doctoral Thests

static obstacles such as walls and boxes coexist, a feasible strategy is to combine
fully known human states and partially observable raw sensor data [116] as obser-
vations. Unfortunately, there are few open-source solutions available. In addition,
because of the requirement of large CNNs to be embedded into policy networks to
process high-dimensional observations, it is necessary to equip physical robots with
a powerful computer, which limits their deployment on small mobile robots with lim-
ited hardware resources. Moreover, simulated sensor observations cannot adequately
replicate real-world scenarios, posing a challenge in sim-to-real transfer. Our study
seeks to address these challenges by developing a lightweight network structure that
processes sequential LIDAR observations. Furthermore, we normalize real-world ob-

stacles to match the simulated settings, allowing for successful sim-to-real transfer.

5.3 Approach

We begin by introducing a customized simulator that can generate LiDAR observa-
tions, incorporating a wide range of moving obstacles that vary in shape and size.
We then outline a method for normalizing real-world obstacles to ensure consis-
tency with the simulator’s settings. Finally, we present an LSTM-DRL navigation
algorithm that can map sequential LIDAR observations, taken from the robot’s ego-

centric perspective, to collision-free and target-approaching robot actions.

5.3.1 Simulator

We aim to develop an end-to-end navigation algorithm that can directly translate
raw LiDAR observations into robot motions. However, to achieve this objective, an
efficient simulator is essential for generating training samples quickly. Unfortunately,
the currently available simulators have some drawbacks; they either lack ego-centric
sensors, are not efficient enough to accelerate running, or rely on expensive hardware.
Therefore, we have designed a specialized simulator (shown in Figure 5.1) that
can swiftly generate LiDAR scans with minimal calculations. In our simulator,
the robot emits 1800D beams to detect surrounding obstacles with shapes that
can be circles, rectangles, and straight margins. We assume that the motions of
dynamic obstacles are generated by the widely used optimal reciprocal collision
avoidance (ORCA) rule [30], which simulates collision-free motions for multi-agents.
To maintain the ORCA assumption, dynamic circle agents visualize static rectangle
obstacles as bounding circles. In contrast, the robot perceives its surroundings

according to their original outlines for more authentic perception..

88

Doctoral Thests 5.83. Approach

O
(a) Starting Simulation Scene (b) Ending Simulation Scene
: : O ‘§
(c) Starting Real Scene (d) Ending Real Scene

Figure 5.1: Specially designed simulator. To illustrate our approach, we represent
dynamic humans as circles and static obstacles as rectangles. The goal is a green
solid circle without a collision margin. Our robot is equipped with an ego-centric
LiDAR sensor, and we use representative scenes (a) and (b) for simulation ablations,
and selective frames (c) and (d) for real-world implementations. To ensure fair
comparison with other baselines, the robot’s initial location in (a) and goal position
in (b) remain fixed in all training and testing episodes. However, in (c), we randomly
set the robot’s initial location to generalize real-world situations. The goal position
in (d) remains fixed as it is relative to the robot’s frame. We handle both moving
and steady obstacles of varying shapes, sizes, and numbers in both simulation and
real scenes. Due to the slower motion of our real robot platform, the real scenes are
smaller (2.8x6m) than the simulation scenes (10x10m) with a larger motion area.

To generate each beam, we use a looping traversing algorithm. Initially, we calculate
all the intersections between the beam and all the obstacles in the environment.
Each beam is considered as a straight line, and we determine if it intersects with
any circular obstacle. We disassemble each rectangle obstacle into four straight lines,

and then calculate the possible intersections between the beam and all the straight

89

5.83. Approach Doctoral Thests

Far i
Static Stati
tatic
Obstacle Obstacle
/ Obstacle

T 4%

R o
= g

Human Standing a
Human Far
Obstacle

Figure 5.2: Obstacle clustering. The upper figure shows a raw LiDAR scan whereas
the bottom one illustrates the clustering result. The target obstacles are bounded
by boxes.

lines of the rectangle. Finally, we select the intersection point that is closest to the
robot and represent the beam up to that point. This method is straightforward,
but its complexity increases as the number of obstacles increases, which makes it
suboptimal. To speed up the calculations, we use the C programming language. We
test the computation time using CPU i7-10750H. Quantitatively, when there are 4
circles, 3 rectangles, and 4 margins in the environment, the calculation time is 5.8ms.
Conversely, when there is only one circle and one rectangle, the calculation time is
reduced to 4.8ms. Since our motion planning frequency is 5Hz, we can disregard the

generation time of LiDAR beams.

5.3.2 Obstacle Normalization

The studies which directly utilize raw real-world sensor observations [55,56] have the
challenge of sim-to-real transfer because simulated configurations can not represent

all real-world scenarios. To reduce the sim-to-real gap, it is necessary to normalize

90

Doctoral Thests 5.83. Approach

real-world obstacles in a manner consistent with simulated ones, given that our
simulator assumes obstacles as circles or rectangles. In this study, we leverage
an adaptive clustering technique [119] to individually extract obstacles from the
3D LiDAR pointclouds captured in the real world, as depicted in Figure 5.2. To
achieve this, we first remove unnecessary 3D points in the sensor frame, such as
the lower points, which are considered as ground, and the upper points, which
are assumed to be the ceiling. We also eliminate points that are far from the
sensor. Since our simulator generates beams in the world frame, we need to use
simultaneous localization and mapping (SLAM) algorithms [97] to locate the robot.
Subsequently, we further filter out unrelated points in the world frame. We define
a maximum forward and sideward distance, thereby refining the region of interest
(ROI) in the world frame, similar to the motion area illustrated in Figure 5.1-c.
Finally, we remove the points outside the ROI, and the remaining points are shown

in the bottom image of Figure 5.2, which are then used for clustering.

Intuitively, two points, p; and p; (i # j), belong to a same cluster C* if the distance
is within a threshold d:

pi €C* p; € C* if |Ipi — psll2 < d. (5.3.1)

In addition, if p,, € C* and p; € C*¥ (m # i), and p,, € C* and p; € C* (m # j);
then p,, € C*, p; € C* and p; € C*. If two adjacent points come from a same
obstacle, the distance between these two points increases if the obstacle is far from

the sensor. Therefore, we can define an adaptive threshold d as follows:
)
d=2-r-tan 2 (5.3.2)

where r is the distance from the point to the sensor and © is the vertical angular
resolution of the 3D LiDAR sensor. We frame each cluster and normalize it as a
circle or rectangle in the world frame as illustrated in Figure 5.1-c. Subsequently,

we re-generate LIDAR scans to reduce sim-to-real discrepancies.

5.3.3 Algorithm Framework

To capture dynamic motion features, DRIL-based policy networks generally utilize
continuous raw sensor observations as input [55,56]. However, this requires colossal
CNNs to decode high-dimensional observations, especially when collected over a
long time horizon [55]. Additionally, if the time horizon is short [56|, extracting

long-term motion features becomes challenging. To address these challenges, we

91

5.83. Approach Doctoral Thests

‘ ° °
LiDAR | LiDAR
sean <~ QN 0] /] Goal scan ‘ Goal
1 NN\ g location location
: ¢
g T——————
[-
| 5
| N, 8 | %
MLP MLP
2t
1,
a agy1
t —>
Polic Polic
hy — ¥ y

q: iy dt+1

Figure 5.3: Structure of LNDNL. We only require a multi-layer perceptron (MLP)
to pre-process a single-frame LiDAR scan. The inputs of our policy networks include
history information h;, a processed LiDAR scan [;, and the goal position g; in the
robot frame. The action-value function ¢; is represented by a MLP with the inputs
of hy, l;, g+, and a;. The policy network projects hy, l;, and g; into next action a;,q.

introduce LSTM as a lightweight method to accumulate and propagate historical

motion features (as illustrated in Figure 5.3).

We formulate the robot navigation in dynamic environments using raw sensor ob-
servations as a partially observable Markov decision process (POMDP) represented
by a tuple (S, A,T,R,0,(2,v). S is a set of states including history motion fea-
tures, ego-centric goal position, and pre-processed observations. A denotes a set
of actions composed by two orthogonal velocities of omnidirectional mobile robots.
T represents a set of conditional transition probabilities between states. R stands
for a reward function. O is a set of raw observations from sensors. (2 is a set of

conditional observation probabilities. v € [0, 1) represents a discount factor.

Network structure. At time ¢, we obtain the observation o, € O from the LiDAR
sensor. Subsequently, the raw high-dimensional observation is pre-processed by a
MLP to yield a low-dimensional latent vector [;. The state s; € S includes three
parts: history motion features h;, goal position in the robot frame ¢;, and ;. We
utilize an actor network to project s; into next action a;y; € A. In addition, we

map s; and a; € A into an action value function ¢; by a critic network. The overall

92

Doctoral Thests 5.83. Approach

P e Y T " m "TYHh——m— T T - —-—_—_—_ s s T

Actor Net 0¢/1800 Critic Net

A 4

MLP|512x512x512

A 4

LSTMJ512 <« 1,150 LSTM|512

T_ — _T

N A

MLP|512x512 MLP|512x512

A

A 4

a2 : qell

o o o o = =]

Figure 5.4: Network structure. A|B: A is a variable or network unit and B represents
its dimension. MLP|AxBx...: MLP is a multi-layer perceptron and AxBx... denotes
layer units.

networks (shown in Figure 5.4) are represented as follows:

Iy = folor),
s¢ = {le, hes gi
qt = fo(se, ar), (5.3.3)

a1 = fg(se),
hy = f@(ht—lalmgt)'

We leverage the twin delayed deep deterministic policy gradient (TD3) algorithm
[120] to optimize the weights ® = (0,1, ¢,¢) in Eq. (5.3.3). Different from the
original TD3 algorithm using fully observable states, we have another network fy
to pre-process high-dimensional LiDAR observations. As a consequence, both the
actor network and critic network receive the pre-processed data from fy. To keep
consistency, we only update 6 using the loss from the critic network while the 6*
used for actor network is a duplication of #. Additionally, we have anther LSTM
network f, to accumulate and propagate history motion features. Different from 0

singly updated according to the loss from critic network, two independent f - and

93

5.83. Approach Doctoral Thests

f, are separately embedded into the actor network and critic network, and ¢* and

@ are correspondingly updated.

Action, observation, and reward function. The action space comprises two or-
thogonal velocities of omnidirectional mobile robots. We set their bounds as 1.0m/s
in simulation and 0.3m/s in real-world situations. In addition, the velocities are
continuous instead of discrete values in state-of-the-art baselines [48,50,53,54|. The
observation at each time step is a 1800D ego-centric LiDAR scan and each beam
length ranges from bin t0 bax. Omin 10 bmax are slightly different in simulation and
real-world situations. The navigation goal is to avoid obstacles and reach a target.

Therefore, we define a reward function as follows:

¢

—Te if dy < d.,

1.0 else if ¢, < g,
v = h=9 (5.3.4)
we (ds — 1 —dy) elseif dy < d,,

| Wy - (9e-1 — 1) else.

r. is a positive constant less than 1. dy denotes the length of the shortest one of all
1800D LiDAR beams. d. defines a collision area. g; represents the distance between
the robot and the goal at time t. ¢, is a constant that defines a goal-reaching
area. r, stands for the robot radius. d, defines an uncomfortable area where the
robot is close to obstacles. w. and w, weighs the discomfort and goal approaching,

respectively.

Parameters. The learning rate of all networks is 3 x 107*. The discount factor
is 0.99. To guarantee a stable learning, target networks are simultaneously created
with source networks. Let ®* be the weights of target networks and ® represent the
weights of source networks. We update ®* using a momentum coefficient n = 0.005:
O* = (1 —n)d* + nd. We leverage the TD3 algorithm, which incorporates several
tricks into deep deterministic policy gradient (DDPG) [35] to avoid dramatically
overestimating action value function. One trick is the delayed update for actor net-
work. We update the action network once after every two updates of the critic
network. Another trick is to add noise to the action output from the target actor
network. We define the noise as a normal distribution with 0 mean and 0.25 stan-
dard deviation. At the meanwhile, we add the same noise to the action yielded from
the source actor network for exploratory interactions with environments. Because
we train our model in two different situations — simulation ablation and real imple-
mentation, the parameters in Eq. (5.3.4) are separately tuned to improve navigation

policy. In addition, the LIDAR parameters vary depending on the size of the motion

94

Doctoral Thests 5.4. Ezxperiments

Table 5.1: Reward parameters used in simulation ablation and real implementation

Tc dca Gr, Tr (m> du (m) We Wy bmin (m) bmax (m)
Sim 0.3 0.3 0.2 0.5 0.1 0.3 6.0
Real 0.4 0.25 0.2 0.5 0.3 0.26 4.0

area and the maximum speed of the robot. These parameters are list in Table 5.1.

5.4 Experiments

We conducted two sets of simulation ablations to demonstrate the superior perfor-
mance of our approach. The first group, named Sim1, consisted of seven baselines
executed in a relatively simple scenario that involved only dynamic circle humans
with a fixed number. The second group, named Sim2, consisted of two baselines
that were tested in a more challenging situation that mixed dynamic circle humans
and static rectangle obstacles whose number was changeable. We also implemented
two sets of training, named Reall and Real2 respectively, for real-world applications,
both of which included the baseline mentioned in the fourth chapter. Differently,
Reall only involved dynamic circle humans, while Real2 included hybrid obstacles
similar to those in Sim2. Since our study does not focus on classifying obstacles as
humans or not, we supplemented another training named Real3, which assumes all
obstacles have a fixed circular shape and are either dynamic or static. To enhance
sim-to-real transferability in a quadruped robot, we have made improvements to the

observation and action definition in Real3.

5.4.1 Simulation Ablation

To conduct a comprehensive comparison with the state-of-the-art baselines described
in the related work section, which includes CADRL [48], LSTM_RL [49], SARL [53],
and RGL [54], we designed a simple scenario that includes five moving humans in
a 10x10m area, named Siml. These baselines assume that humans are circular
in shape, their number remains constant during training, and their states, such as
velocities, are fully observable. We assume that the maximum velocity of all agents
is 1m/s to be consistent with the original settings of baselines. Furthermore, the
robot is assumed to be invisible to humans to guarantee that our navigation policy
plays the role of collision avoidance instead of that humans attempt to avoid the

robot. Although open-source implementations of these baselines are available, there

95

5.4. FExperiments Doctoral Thests

Table 5.2: Final Evaluation. 500 random tests are executed with the best neural
networks saved during the training.

Method SR NT AT NV
CADRL" 2 0.80 1240 0.035 0.27
LSTM_RLY2 097 10.95 0.067 0.87
SARL! 2 0.98 10.75 0.060 1.0
RGLY 2 0.97 11.22 0.067 0.38
EGO? 0.54 12.67 1.5e-3 1.9
SEDN? 0.94 11.20 1.5e-3 1.9
NPD 0.99 11.15 3.3e-3 106.3
LNDNL(ours) 0.99 9.28 7.5e-4 26.3

IThese methods require fully known human information.
2These methods require imitation learning and positive samples.
SR: success rate; NT: navigation time (s)

AT: action time (s); NV: network variables (10°)

are few open-source projects that utilize raw sensor observations. To address this,
we developed another baseline, called EGO, which was inspired by studies that map
continuous LiDAR scans to robot movements [55,56]. Additionally, we compared the
SEDN and NPD algorithms discussed in Chapters 3 and 4, respectively. Specifically,
SEND improves EGO by transforming the centers of all LIDAR scans into a same
location to individually extract surrounding motion features. NPD firstly projects
the robot and humans onto an occupation map, and then optimizes navigation
policy from sequential occupation maps through a model-based DRL algorithm. We
present the training process in Figure 5.5 and provide a quantitative analysis in
Table 5.2.

The results presented in Figure 5.5 show that our method exhibits significantly better
learning efficiency than EGO, SEDN, and NPD, and is slightly superior to CADRL,
LSTM_RL, SARL, and RGL. Notably, our method and NPD are not reliant on im-
itation learning or supervised samples, while other baseline approaches rely heavily
on these prior experiences. In Table 5.2, we demonstrate that our method achieves
the highest success rate and shortest average navigation time among 500 random
evaluations. We also introduce a new factor, action time, to measure real-time per-
formance. Action time refers to how long it takes for the policy network to generate
an action when provided with observations. CADRL, LSTM_RL, SARL, and RGL
require tens of milliseconds of action time because they only have a value network
and must inquire each state by repeatedly calculating the value network. However,

the advantage of these four baselines is that their network variables are notably

96

Doctoral Thests 5.4. Ezxperiments

Table 5.3: The influence of obstacle density and type. 500 random tests are executed
for each scenario.

1S0D 0S1D 2S0D 1S1D 0S2D 3S0D 2S1D 1S3D 0S3D
098 096 094 089 08 086 080 074 0.73
XSYD, X static obstacle(s) and Y dynamic obstacle(s).

fewer due to their simpler observations. Despite our network being comparatively
larger, it is still more lightweight than the study in Chapter 4, NPD. Additionally,
the action time of our network outperforms EGO and SEDN, even though they have
smaller networks. The advantages of a short action time and an acceptable network

scale enable sim-to-real transfer on compact robots with limited hardware resources.

5.4.2 Generalizability Validation

To test the generalization capability of our method, Sim2 presents more complex
environments than Siml. The motion area remains the same, but we increase the
maximum obstacle number to seven (shown in Figure 5.1-a), which includes a com-
bination of dynamic human circles (with a maximum of four) and static obstacles
(with a maximum of three), each with a side length ranging from 0.3 to 0.4m. Exist-
ing methods such as CADRL, LSTM_RL, SARL, and RGL assume that obstacles
are fixed circles with a predetermined number, which hinders their performance.
EGO, in particular, demonstrates notably inferior results. Thus, we chose SEDN
and NPD as our baselines for Sim2. As shown in Figure 5.6, our method achieved a
feasible navigation policy within 100K steps, while the baselines required over 200K
steps. Moreover, our method’s success rate remained stable around 0.99, while the
success rates of the baselines fluctuated between 0.8 to 0.95, indicating our method’s

superior generalizability to complex environments.

5.4.3 Real Implementation

We defined two real-world scenarios for practical implementation. In the first sce-
nario, motion area is narrowed to 6.0x2.8m, and a maximum of three obstacles are
present, resulting in a notably higher obstacle density (3/(6.0 x 2.8) = 0.18) than
in Sim2 (7/(10 x 10) = 0.07). In the second scenario, called Real2, the environment
is a mix of dynamic circle humans and static rectangle obstacles with side lengths
ranging from 0.3 to 0.6m (shown in Figure 5.1-c). Conversely, Reall includes only

dynamic circle humans, with their numbers ranging from one to three. The maxi-

97

5.4. FExperiments Doctoral Thests

mum velocity of all agents is decreased to 0.3m/s because of the motion constraint
of our robot platform. Because the baseline SEDN requires imitation learning and
a great number of supervised samples, we disregarded it as a baseline. Instead, we
chose NPD for comparison because it is able to learn from zero experience, which is
similar to the prior-experience-free characteristic of our approach. Figure 5.7 shows
the training process, and our method outperforms NPD in terms of learning effi-
ciency. We thought NPD’s colossal networks result in the time-consuming learning.
Additionally, our method shows stable training in both Reall and Real2 scenarios,
whereas NPD’s training fluctuates violently in Real2. However, the success rate of
our method in the real-world scenarios converges to 0.8 and peaks at 0.89, which is
lower than that of the simulated scenarios. This could be due to the dense environ-
ments, which make it harder for our method to navigate successfully. Specifically
in Real2, Table 5.3 illustrates how the obstacle density influences the success rate.
When obstacles are densely distributed in a narrow motion area, the success rate is

significantly degraded, especially when the percentage of dynamic obstacles is high.

We found that the real quadruped robot frequently and fiercely vibrated along the
sideward locomotion direction when we directly transferred the navigation policy
learned in Reall. To enable a more stable sideward locomotion, we designed an-
other real scenario, name Real3, and re-defined the observation and action space.
Specifically, in addition to the LiDAR scan and goal position g;, we added the last
action command a;_; as another state. Correspondingly, we concatenated g; and
a;—1 to replace g; shown in Figure 5.3 and 5.4. Moreover, the action space is a
variation with respect to a;,_; and its maximum forward value is 0.1m/s and side-
ward value is 0.05m/s to enable a stable velocity change between two adjacent time
times. In addition, the gait generator of the quadruped robot is unstable when the
sideward locomotion is fast. Therefore, we constrain the maximum sideward speed
as 0.15m/s. In contrast, the maximum forward speed is 0.3m/s. Please note that
the human motion has no constraints except that both the maximum sideward and
forward speeds are 0.3m/s. Despite of the robot locomotion constraints, our learn-
ing framework is able to obtain a feasible navigation strategy. The training process
is illustrated in Figure 5.7, where the peak success rate is 86%. The sim-to-real

transfer is shown in the attached videos, with the shots shown in Figure 5.8.

5.4.4 Limitations

Although our approach outperformed state-of-the-art baselines in both simulation

and real implementation, its performance was degraded when obstacles are dense in

98

Doctoral Thesis 5.5. Conclusions

environments. Moreover, we found that the movements of the real quadruped robot
was not smooth although we re-defined and constrained the action space, which
further resulted in inaccurate obstacle normalization. Our future studies will focus
on improving the stability of sim-to-real transfer and the learning performance of
real implementation. Additionally, the robot’s motion area is constricted because of
wired cables. We will mount an on-board computer to realize wireless and remote
control. Because of the relatively lightweight networks, we are able to deploy our

policy networks on compact devices.

5.5 Conclusions

This study presents a navigation strategy that directly projects sequential LiDAR
observations into robot actions through LSTM-DRL. To expedite training, we de-
veloped a simulator that can produce LiDAR scans and configure different types of
obstacles that vary in number, shape, and size. We also standardized the obstacles in
the real world to ensure consistency with simulated settings, facilitating sim-to-real
transfer. This was accomplished using an adaptive clustering technique and SLAM
algorithm to locate and frame obstacles from 3D LiDAR scans. Our method demon-
strated superior learning efficiency, navigation time and success rate, and real-time
performance through extensive simulation ablations. Moreover, sim-to-real transfer
highlighted the potential of our approach to guide robots through complex real-
world scenarios involving dynamic and static obstacles with variable shapes, sizes,
and movements. However, we observed a degradation in navigation performance
when we narrowed the motion area and the robot movements in the real-world were
not smooth. Therefore, our future studies will concentrate on enhancing real-world

implementations.

99

5.5. Conclusions

Doctoral Thesis

————— SARL —— LNDNL(Ours)

1.0

0.8

success rate
e
N

o
~

0.2

I"\ [/-,\.“_-\ i"\l\\l L MR
Ui A N Y 5 Y
A EA

LS} § I Aa
. A . A
TR IV AT AYY
AT TR
iov Y

i \A
o

4 6 8 10
time steps (10"5)

(a) Fully Observable States

1.0

0.8

success rate
o
o

o
b

0.2]

0.0+

4 6 8 10
time steps (10"5)
(b) Partially Observable States

Figure 5.5: Extensive simulation ablations with respect of learning efficiency. (a)
The baselines, CADRL, LSTM_RL, SARL, and RGL assume fully observable states,
including human number, size, shape, position, and velocity. (b) The states in
the baselines, EGO, SEDN, and NPD are partially observable. In addition, EGO
and SEDN directly use continuous LiDAR scans whereas NPD leverages sequential

occupation maps.

100

Doctoral Thesis 5.5. Conclusions

0.8 “\ ’MM;"/ M‘ I "‘, m»

éf 0.6 'N

|

2 0.44 ’{
0.2 ’ —— SEDN —— LNDNL(ours)
ool J —— NPD

0 2 4 6 8 10
time steps (10"5)

Figure 5.6: Training process in more challenging environments.

—— NPD-1 —— LNDNL-1(ours) ----- LNDNL-3(ours)
------------ NPD-2 -+ LNDNL-2(ours)

0.8

0.6

success rate

0.2

0.0

time steps (10"5)

Figure 5.7: Training process in real-world scenarios. NPD-1(2) and LNDNL-1(2)
represent the training results in Reall(Real2). LNDNL-3 illustrates the learning
process in Real3.

101

5.5. Conclusions Doctoral Thesis

Camera Record

Figure 5.8: Shots of real-world experiments.

102

Chapter 6

Conclusions and Future Work

6.1 Summary

In this dissertation, we have studied the robot navigation in diverse environments
through deep reinforcement learning (DRL). The aim of this dissertation is to en-
hance the collision avoidance capabilities of physical mobile robots operating in dy-
namic environments through DRL. In order to achieve this objective, we developed
four DRL models which were trained to learn collision-free navigation policies for dif-
ferent scenarios. Furthermore, to make the system applicable in practical situations,
we employed a combination of conventional controllers, domain randomization, sys-
tem identification, and localization algorithms. To evaluate the effectiveness of our
proposed approach, we conducted a series of experiments on various simulated envi-
ronments and real-world scenarios with dynamic obstacles. Our results indicate that
our approach surpasses traditional methods in terms of collision avoidance and navi-
gation efficiency. In addition, our proposed navigation systems were shown to adapt

well to changes in the environment, making them suitable for practical applications.

In Chapter 2, our proposed navigation structure, called the Hierarchical DRL-based
(HDRL) framework, can adapt to unknown environment configurations and is highly
efficient in terms of sampling. This framework is also capable of transferring sim-
ulated navigation to real-world situations. Our low-level DRL policy enables the
robot to navigate toward the target while keeping a safe distance from obstacles. In
addition, a high-level DRL policy is used to further improve navigation safety. To
reduce the state space and prevent sparse rewards, we select a waypoint along the
path from the robot to the final destination as a sub-goal. The path is generated

based on either a local or global map, which significantly enhances the sampling

103

6.1. Summary Doctoral Thests

efficiency, safety, and generalization capability of the proposed DRL framework.
Furthermore, by deriving a target-directed representation for the action space based
on the sub-goal, we can increase motion efficiency while reducing the action space.
Finally, we demonstrate the effectiveness of our navigation strategy by deploying it
on a wheel-legged biped robot and a quadruped robot in initially unknown environ-

ments.

The algorithm in Chapter2 assumed that obstacles would remain static after their
initial configuration of position and orientation. Progressively, in Chapter 3, we
faced a more difficult challenge of dealing with a combination of static and dy-
namic obstacles. To address this challenge, we developed a Sampling Efficient DRL
framework for Dynamic Navigation (SEDN), that utilizes continuous raw LiDAR
scans. To train the DRL policy efficiently and simulate LiDAR scans, we designed a
kinematics-based simulator. The learned navigation policy can be directly applied
into a physics-based Gazebo simulator and real-world scenarios, where we utilized a
quadruped robot equipped with a LiDAR sensor. We also demonstrated the policy’s
generalization ability across diverse environments that have never been explored be-
fore. Given the continuous raw LiDAR scans represent the coupled motions of the
robot and surrounding humans, we transformed the center of previous LiDAR scans
to the center of the current scan to individually extract surrounding motion fea-
tures. Additionally, we integrated optimal reciprocal collision avoidance (ORCA) to
generate auxiliary action alternatives to enhance the sampling efficiency. Through
various ablations and real-world implementations, our approach demonstrated re-
markable learning efficiency, superior generalization ability, and strong adaptability

in real-world scenarios.

Although the navigation strategy in Chapter 3 has yielded significant achievements
in dynamic environments, there are several drawbacks to be solved. Firstly, the prac-
tical application of the study in Chapter 3 is limited due to significant differences
in obstacle margins between simulations and real-world scenarios. Additionally, the
robot’s reliance on external localization systems further hinders its practicality. Fur-
thermore, the need for imitation learning and supervised samples in the study of
Chapter 3 may result in sub-optimal navigation policies. To address these limita-
tions, our further improved research in Chapter 4 integrates human detection and
robot localization modules to create an autonomous navigation system. We use a
model-based and sampling-efficient DRL framework to eliminate the need for su-
pervised demonstrations and enable realistic and practical applications in human
society. Our approach involves creating a collision-free Navigation system in diverse
Pedestrian scenarios using a Dreamer-based (NPD) motion planner. We leverage

system identification, domain randomization, clustering, and LiDAR SLAM tech-

104

Doctoral Thesis 6.2. Future Work

niques for practical deployment. Our approach outperforms state-of-the-art base-
lines in rigorous comparisons, with superior results consistently demonstrated. Our
extensive real-world experiments provide compelling evidence for the efficacy of our
method in modeling complex, reciprocal human relations, and successfully navigat-

ing robots among pedestrians.

We further improved our navigation strategy by combining the findings from our
second and third studies in Chapter 3 and 4. Our new approach has multiple advan-
tages, including faster and more stable learning, lower computational requirements,
and improved adaptability. Instead of relying on consecutive LiDAR scans, we use
long short-term memory (LSTM) to extract motion features from ego-centric and
sequential LIDAR scans. This allows us to reduce the size and complexity of our net-
works, which results in shorter training times and lower hardware requirements. We
also employ a model-free DRL framework to handle deviated human motion mod-
els, rather than the Dreamer algorithm used in Chapter 4. To make our approach
more practical for real-world scenarios, we use an improved clustering algorithm to
extract obstacle positions from raw LiDAR scans. We then normalize the obstacles
as circles and rectangles, which allows us to generate new LiDAR scans that are
more generalizable to real-world situations. We tested our new navigation strategy
extensively through simulations and practical implementations, and our results show

that it outperforms the methods used in Chapter 3 and 4.

Overall, this dissertation aims to present a robust and adaptable navigation system
for autonomous agents that can be applied to various domains, including robotics,
autonomous driving, and unmanned aerial vehicles, contributing to the field of end-
to-end robot navigation in dynamic environments. Furthermore, the proposed ap-
proach has the potential to address related issues such as multi-agent collision avoid-

ance, which is a critical topic in robotics and autonomous systems.

6.2 Future Work

There are several improvements and further investigations that can be done to the

studies carried out in this thesis.

The study presented in Chapter 5 has room for improvement. While the simulation
ablations showcase the advantages of our approach in terms of learning efficiency,
navigation performance, and hardware usage, the real-world implementation needs

to show better performance, particularly in terms of the success rate of collision-

105

6.2. Future Work Doctoral Thesis

free and target-reaching navigation. Additionally, the current implementation has
a small motion area with fewer than three obstacles, so our future research will
concentrate on navigating crowds in environments with a higher density of humans,
such as restaurants, hotels, and hospitals. To achieve our objective of enabling robots
to navigate seamlessly in human societies, we will explore new methods to optimize
our algorithms for human-robot interactions. This includes developing advanced
perception and learning techniques to ensure robots can detect and navigate around
humans and other obstacles accurately. Additionally, we plan to enhance our robot’s

ability to learn and adapt to new environments quickly.

A critical challenge that we face in all our studies is the transfer of simulation to
the real world. The motion area of our robot platform is constrained by the use of
wired cables for data transmission. To overcome this issue, we plan to remove these
cables and incorporate an on-board computer, enabling the robot to operate in a
larger workspace. Moreover, we plan to integrate state-of-the-art localization and
mapping techniques to enhance the robot’s ability to perceive and navigate through
dynamic environments. We aim to develop a robust and accurate system that can
detect and localize objects and obstacles in real-time. We also plan to explore
new methods to generate smoother and more stable locomotion in the real world.
This includes developing advanced control algorithms that can stably and smoothly
track the commands generated from DRL-based navigation policies. Finally, we will
evaluate our approach using real-world experiments and datasets to demonstrate

the effectiveness of our methods.

106

Bibliography

[1] X. Xiao, B. Liu, G. Warnell, and P. Stone, “Motion planning and control for
mobile robot navigation using machine learning: a survey,” Autonomous Robots,
vol. 46, pp. 569-597, 2022.

[2] S. Kim, J. Kim, F. B. Baiden, M. Giroux, and Y. Choi, “Preference for robot
service or human service in hotels? Impacts of the COVID-19 pandemic,” Inter-
national Journal of Hospitality Management, vol. 93, no. 102795, 2021.

[3] K. Wu, H. Wang, M. A. Esfahani, and S. Yuan, “Learn to navigate autonomously
through deep reinforcement learning,” IEEE Transactions on Industrial Electron-
ics, vol. 69, no. 5, pp. 5342-5352, 2022.

[4] G. Kahn, P. Abbeel, and S. Levine, “BADGR: An autonomous self-supervised
learning-based navigation system,” IEEE Robotics and Automation Letters, vol.
6, no. 2, pp. 1312-1319, 2021.

[5] Y. Cai, T. Luan, H. Gao, H. Wang, L. Chen, Y, Li, M. Sotelo, and Z. Li,
“YOLOv4-5D: An effective and efficient object detector for autonomous driving,”

IEEFE Transactions on Instrumentation and Measurement, vol. 70, no. 4503613,
pp- 1-13, 2021.

[6] R. Moller, A. Furnari, S. Battiato, A. Harma, and G. M. Farinella, “A survey
on human-aware robot navigation,” Robotics and Autonomous Systems, vol. 145,
no. 103837, 2021.

[7] H. Michael, A. S. Matveev, and A. V. Savkin, “Algorithms for collision-free nav-
igation of mobile robots in complex cluttered environments: a survey,” Robotica,
vol. 33, no. 3, pp. 463-497, 2015.

[8] R. Liu, J. Wang, and B. Zhang, “High definition map for automated driving:
Overview and analysis,” The Journal of Navigation, vol. 73, no. 2, pp. 324-341,
2020.

107

Bibliography Doctoral Thests

[9] T. Randhavane, A. Bera, E. Kubin, A. Wang, K. Gray, and D. Manocha, “Pedes-
trian dominance modeling for socially-aware robot navigation,” in IEEE Inter-
national Conference on Robotics and Automation (ICRA), 2019.

[10] K. D. Katyal, G. D. Hager, and C. M. Huang, “Intent-aware pedestrian pre-
diction for adaptive crowd navigation,” in IEEE International Conference on
Robotics and Automation (ICRA), 2020.

[11] H. Li, Q. Zhang, and D. Zhao, “Deep reinforcement learning-based automatic
exploration for navigation in unknown environment,” IEEFE Transactions on Neu-
ral Networks and Learning Systems, vol. 31, no. 6, pp. 2064-2076, 2020.

[12] K. Zhu and T. Zhang, “Deep reinforcement learning based mobile robot navi-
gation: A review,” Tsinghua Science and Technology, vol. 26, no. 5, pp. 674-691,
2021.

[13] C. S. Chen, C. J. Lin, and C. C. Lai, “Non-contact service robot development
in fast-food restaurants,” IEEFE Access, vol. 10, pp. 31466-31479, 2022.

[14] Y. Chen, F. Zhao, and Y. Lou, “Interactive model predictive control for robot
navigation in dense crowds,” IEEE Transactions on Systems, Man, and Cyber-
netics: Systems, vol. 52, no. 4, pp. 2289-2301, 2022.

[15] A. J. Sathyamoorthy, J. Liang, U. Patel, T. Guan, R. Chandra, and D.
Manocha, “DenseCAvoid: Real-time navigation in dense crowds using anticipa-

tory behaviors,” in IEEE International Conference on Robotics and Automation

(ICRA), 2020.

[16] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A survey of deep
learning techniques for autonomous driving,” Journal of Field Robotics, no. 37,
vol. 3, pp. 362-386, 2020.

[17] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A survey of autonomous
driving: Common practices and emerging technologies,” IEEE Access, vol. 8, pp.
58443-58469, 2020.

[18] D. Omeiza, H. Webb, M. Jirotka, and L. Kunze, “Explanations in autonomous
driving: A survey,” IEEE Transactions on Intelligent Transportation Systems,
vol. 23, no. 8, pp. 10142-10162, 2022.

[19] D. Filliat and J. Meyer, “Map-based navigation in mobile robots: 1. a review
of localization strategies,” Cognitive Systems Research, vol. 4, no. 4, pp. 243-282,
2003.

108

Doctoral Thests Bibliography

[20] Y. Wang and W. Chen, “Hybrid map-based navigation for intelligent
wheelchair,” in IEEE International Conference on Robotics and Automation

(ICRA), 2011.

[21] C. W. Warren, “Fast path planning using modified A* method,” in IEEE In-
ternational Conference on Robotics and Automation (ICRA), 1993.

[22] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach to single-
query path planning,” in IEEFE International Conference on Robotics and Au-
tomation (ICRA), 2000.

[23] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to collision
avoidance,” IEEE Robotics and Automation Magazine, vol. 4, no. 1, pp. 23-33,
1997.

[24] M. Missura and M. Bennewitz, “Predictive collision avoidance for the dynamic

window approach,” in International Conference on Robotics and Automation

(ICRA), 2019.

[25] H. Wang, C. Hu, W. Cui, and H. Du, “Multi-objective comprehensive control of
trajectory tracking for four-in-wheel-motor drive electric vehicle with differential
steering,” IEFFE Access, vol. 9, pp. 62137-62154, 2021.

[26] M. B. Radac and T. Lala, “Hierarchical cognitive control for unknown dynamic

systems tracking,” Mathematics, vol. 9, no. 21, article no. 2752, 2021.

[27] G. Oriolo, G. Ulivi, and M. Vendittelli, “Real-time map building and navigation
for autonomous robots in unknown environments,” IFEE Transactions on Sys-
tems, Man, and Cybernetics, Part B (Cybernetics), vol. 28, no. 3, pp. 316-333,
1998.

[28] D. H. Lee, S. S. Lee, C. K. Ahn, P. Shi, and C. C. Lim, “Finite distribu-
tion estimation-based dynamic window approach to reliable obstacle avoidance
of mobile robot,” IFEE Transactions on Industrial Electronics, vol. 68, no. 10,
pp- 9998-10006, 2021.

[29] J. Berg, M. Lin, and D. Manocha, “Reciprocal velocity obstacles for real-time
multi-agent navigation,” in IEEE International Conference on Robotics and Au-

tomation (ICRA), 2008.

[30] J. Berg, S. Guy, M. Lin, and D. Manocha, “Reciprocal n-body collision avoid-
ance,” Robotics Research, Springer, Berlin, Heidelberg, 2011, pp. 3-19.

[31] F. Belkhouche, “Reactive path planning in a dynamic environment,” [EEE
Transactions on Robotics, vol. 25, no. 4, pp. 902-911, 2009.

109

Bibliography Doctoral Thests

[32] J. Guzzi, A. Giusti, L. Gambardella, G. Theraulaz, and G. Caro, “Human-
friendly robot navigation in dynamic environments,” in IEEE International Con-
ference on Robotics and Automation (ICRA), 2013.

[33] H. Dong, C. Weng, C. Guo, H. Yu, and I. Chen, “Real-time avoidance strategy
of dynamic obstacles via half model-free detection and tracking with 2D lidar for
mobile robots,” IEEE/ASME Transactions on Mechatronics, vol. 26, no. 4, pp.
2215-2225, 2021.

[34] V. Mnih, K. Kavukcuoglu, D. Silver, et al., “Human-level control through deep
reinforcement learning,” Nature, no. 518, pp. 529-533, 2015.

[35] T. Lillicrap, J. Hunt, A. Pritzel, et al., “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiw:1509.02971, 2015.

[36] L. Kaiser, M. Babacizadeh, P. Milos, et al., “Model-based reinforcement learning
for atari,” arXw preprint arXiv:1905.00374, 2019.

[37] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi, “Dream to control: Learn-

ing behaviors by latent imagination,” in International Conference on Learning

Representations (ICLR), 2020.

[38] D. Hafner, T. Lillicrap, M. Norouzi, and J. Ba, “Mastering atari with discrete
world models,” in International Conference on Learning Representations (ICLR),
2021.

[39] M. Okada and T. Taniguchi, “Dreaming: Model-based reinforcement learning
by latent imagination without reconstruction,” in IEEE International Conference
on Robotics and Automation (ICRA), 2021.

[40] F. Deng, 1. Jang, and S. Ahn, “Dreamerpro: Reconstruction-free model-based

reinforcement learning with prototypical representations,” in International Con-

ference on Machine Learning (PMLR), 2022.

[41] Y. Zhu, R. Mottaghi, E. Kolve, et al., “Target-driven visual navigation in indoor
scenes using deep reinforcement learning,” in IEEFE International Conference on

Robotics and Automation (ICRA), 2017.

[42] J. Zhang, J. Springenberg, J. Boedecker, et al., “Deep reinforcement learning
with successor features for navigation across similar environments,” in IEEE/RS.J
International Conference on Intelligent Robots and Systems (IROS), 2017.

[43] T. Lei, G. Paolo, and M. Liu, “Virtual-to-real deep reinforcement learning:
Continuous control of mobile robots for mapless navigation,” in IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), 2017.

110

Doctoral Thests Bibliography

[44] E. Marchesini and A. Farinelli, “Discrete deep reinforcement learning for map-
less navigation,” in 2020 IEEE International Conference on Robotics and Au-
tomation (ICRA), 2020.

[45] C. Sampedro, H. Bavle, A. Ramos, et al., “Laser-based reactive navigation
for multirotor aerial robots using deep reinforcement learning,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2018.

[46] M. Pfeiffer, S. Shukla, M. Turchetta, et al., “Reinforced imitation: Sample
efficient deep reinforcement learning for mapless navigation by leveraging prior

demonstrations,” IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 4423-
4430, 2018.

[47] G. Kahn, A. Villaflor, B. Ding, et al., “Self-supervised deep reinforcement learn-
ing with generalized computation graphs for robot navigation,” in IEEE Inter-
national Conference on Robotics and Automation (ICRA), 2018.

[48] Y. F. Chen, M. Liu, M. Everett, and J. P. How, “Decentralized non-
communicating multiagent collision avoidance with deep reinforcement learning,”
in IEEFE International Conference on Robotics and Automation (ICRA), 2017.

[49] M. Everett, Y. F. Chen, and J. P. How, “Motion planning among dynamic,
decision-making agents with deep reinforcement learning,” in IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), 2018.

[50] M. Everett, Y. F. Chen, and J. P. How, “Collision avoidance in pedestrian-
rich environments with deep reinforcement learning,” IEFEE Access, vol. 9, pp.

10357-10377, 2021.

[51] Y. Chen, C. Liu, B. E. Shi, and M. Liu, “Robot navigation in crowds by graph
convolutional networks with attention learned from human gaze,” IEEE Robotics
and Automation Letters, vol. 5, no. 2, pp. 2754-2761, 2020.

[52] S. S. Samsani and M. S. Muhammad, “Socially compliant robot navigation in
crowded environment by human behavior resemblance using deep reinforcement
learning,” IEEFE Robotics and Automation Letters, vol. 6, no. 3, pp. 5223-5230,
2021.

[53] C. Chen, Y. Liu, S. Kreiss, and A. Alahi, “Crowd-robot interaction: Crowd-
aware robot navigation with attention-based deep reinforcement learning,” in
International Conference on Robotics and Automation (ICRA), 2019.

111

Bibliography Doctoral Thests

[54] C. Chen, S. Hu, P. Nikdel, G. Mori, and M. Savva, “Relational graph learning for
crowd navigation,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2020.

[55] J. Jin, N. M. Nguyen, N. Sakib, D. Graves, H. Yao, and M. Jagersand, “Map-
less navigation among dynamics with social-safety-awareness: A reinforcement

learning approach from 2D laser scans,” in IEEE International Conference on
Robotics and Automation (ICRA), 2020.

[56] T. Fan, P. Long, W. Liu, and Pan J, “Distributed multi-robot collision avoid-
ance via deep reinforcement learning for navigation in complex scenarios,” The
International Journal of Robotics Research, vol. 39, no. 7, pp. 856-892, 2020.

[57] X. Huang, H. Deng, W. Zhang, R. Song, and Y. Li, “Towards multi-modal
perception-based navigation: A deep reinforcement learning method,” IFEFE
Robotics and Automation Letters, vol. 6, no. 3, pp. 4986-4993, 2021.

[58] C. Arpino, C. Liu, P. Goebel, R. Martin, and S. Savarese, “Robot navigation
in constrained pedestrian environments using reinforcement learning,” in [EFE
International Conference on Robotics and Automation (ICRA), 2021.

[59] U. Patel, N. K. S. Kumar, A. J. Sathyamoorthy, and D. Manocha, “DWA-
RL: Dynamically feasible deep reinforcement learning policy for robot navigation
among mobile obstacles,” in IEEE International Conference on Robotics and

Automation (ICRA), 2021.

[60] A. J. Sathyamoorthy, U. Patel, T. Guan, and D. Manocha, “Frozone: Freezing-
free, pedestrian-friendly navigation in human crowds,” IEEFE Robotics and Au-
tomation Letters, vol. 5, no. 3, pp. 4352-4359, 2020.

[61] N. Yokoyama, Q. Luo, D. Batra, and S. Ha, “Benchmarking augmentation
methods for learning robust navigation agents: the winning entry of the 2021
iGibson challenge,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2022.

[62] T. Bailey and H. Whyte, “Simultaneous localization and mapping (SLAM):
Part I1,” IEEE Robotics and Automation Magazine, vol. 13, no. 3, pp. 108-117,
2006.

[63] R. Fahad, and M. Hayashibe, “Towards robust wheel-legged biped robot sys-
tem: Combining feedforward and feedback control,” in IEEE/SICE International
Symposium on System Integration (SII), 2021.

112

Doctoral Thests Bibliography

[64] A. Pfrunder, P. Borges, A. Romero, et al., “Real-time autonomous ground vehi-
cle navigation in heterogeneous environments using a 3D LiDAR,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2017.

[65] G. Desouza, and A. Kak, “Vision for mobile robot navigation: A survey,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 2, pp.
237-267, 2002.

[66] J. Berg, J. Snape, S. J. Guy, and D. Manocha, “Reciprocal collision avoid-
ance with acceleration-velocity obstacles,” in IEEE International Conference on
Robotics and Automation (ICRA), 2011.

[67] K. Guo, D. Wang, T. Fan, and J. Pan, “VR-ORCA: Variable responsibility
optimal reciprocal collision avoidance,” IEEE Robotics and Automation Letters,
vol. 6, no. 3, pp. 4520-4527, 2021.

[68] L. Zhang, R. Zhang, T. Wu, R. Weng, M. Han and Y. Zhao, “Safe reinforcement
learning with stability guarantee for motion planning of autonomous vehicles,”

IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 12,
pp. 5435-5444, 2021.

[69] K. Tsunekawa, F. Leiva, and J. Solar, “Visual navigation for biped humanoid
robots using deep reinforcement learning,” IEEFE Robotics and Automation Let-
ters, vol. 3, no. 4, pp. 3247-3254, 2018.

[70] W. Zhu, X. Guo, D. Owaki, K. Kutsuzawa and M. Hayashibe, “A survey of
sim-to-real transfer techniques applied to reinforcement learning for bio-inspired

9

robots,” IEEE Transactions on Neural Networks and Learning Systems, doi:
10.1109/TNNLS.2021.3112718.

[71] Y. Duan, X. Chen, R. Houthooft, et al., “Benchmarking deep reinforcement
learning for continuous control,” in International Conference on Machine Learn-
ing (ICML), pp. 1329-1338, 2016.

[72] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, “Reinforcement learning with
deep energy-based policies,” in International Conference on Machine Learning
(PMLR), 2017.

[73] F. Raza, W. Zhu, and M. Hayashibe, “Balance stability augmentation for wheel-
legged biped robot through arm acceleration control,” IEEE Access, vol. 9, pp.
54022-54031, 2021.

113

Bibliography Doctoral Thests

[74] Y. Chen, M. Everett, M. Liu, and J. How, “Socially aware motion planning
with deep reinforcement learning,” in 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2017.

[75] L. Tai, J. Zhang, M. Liu, and W. Burgard, “Socially compliant navigation
through raw depth inputs with generative adversarial imitation learning,” in 2018
IEEFE International Conference on Robotics and Automation (ICRA), 2018.

[76] J. Choi, K. Park, M. Kim, and S. Seok, “Deep reinforcement learning of nav-
igation in a complex and crowded environment with a limited field of view,” in
2019 International Conference on Robotics and Automation (ICRA), 2019, pp.
5993-6000.

[77] D. Dugas, J. Nieto, R. Siegwart, and J. J. Chung, "NavRep: Unsupervised
representations for reinforcement learning of robot navigation in dynamic human

environments,” in 2021 IEEFE International Conference on Robotics and Automa-

tion (ICRA), 2021.

[78] J. Jesus, J. Bottega, M. Cuadros and D. Gamarra, “Deep deterministic policy
gradient for navigation of mobile robots in simulated environments,” in Interna-
tional Conference on Advanced Robotics (ICAR), 2019, pp. 362-367.

[79] H. Shi, L. Shi, M. Xu, and K. Hwang, “End-to-end navigation strategy with
deep reinforcement learning for mobile robots,” IEEE Transactions on Industrial
Informatics, vol. 16, no. 4, pp. 2393-2402, 2020.

[80] Y. Zhu, Z. Wang, C. Chen, and D. Dong, “Rule-based reinforcement learning
for efficient robot navigation with space reduction,” IEEE/ASME Transactions
on Mechatronics, vol. 27, no. 2, pp. 846-857, 2022.

[81] A. Bolu and O. Korcak, “Path planning for multiple mobile robots in smart
warehouse,” in 2019 7th International Conference on Control, Mechatronics and

Automation (ICCMA), 2019, pp. 144-150.

[82] S. Mitsch, K. Ghorbal, D. Vogelbacher, and A. Platzer, “Formal verification of
obstacle avoidance and navigation of ground robots,” The International Journal
of Robotics Research, vo. 36, no. 12, pp. 1312-1340, 2017.

[83] C. I. Mavrogiannis, V. Blukis, and R. A. Knepper, “Socially competent nav-
igation planning by deep learning of multi-agent path topologies,” in 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2017.

114

Doctoral Thests Bibliography

[84] A. Mateusa, D. Ribeiroa, P. Miraldoab, and J. C. Nascimentoa, “Efficient and
robust pedestrian detection using deep learning for human-aware navigation,”
Robotics and Autonomous Systems, vol. 113, pp. 23-37, 2019.

[85] S. Liu, P. Chang, W. Liang, N. Chakraborty, and K. Driggs-Campbell, “De-
centralized structural-RNN for robot crowd navigation with deep reinforcement

learning,” in 2021 IEEE International Conference on Robotics and Automation
(ICRA), 2021.

[86] J. Ho and S. Ermon, “Generative adversarial imitation learning,” in Advances
in Neural Information Processing Systems (NIPS), 2016, pp. 4565-4573.

[87] J. Hwangbo, et al., “Learning agile and dynamic motor skills for legged robots,”
Science Robotics, vol. 4, no. 26, 2019.

[88] K. Kang, S. Belkhale, G. Kahn, P. Abbeel, and S. Levine, “Generalization
through simulation: Integrating simulated and real data into deep reinforcement
learning for vision-based autonomous flight,” in 2019 International Conference
on Robotics and Automation (ICRA), 2019.

[89] Q. Li, W. Lin, Z. Liu, and A. Prorok, “Message-aware graph attention networks
for large-scale multi-robot path planning,” IEEE Robotics and Automation Let-
ters, vol. 6, no. 3, pp. 5533-5540, 2021.

[90] G. Ferrer, A. Garrell, and A. Sanfeliu, “Robot companion: A social-force
based approach with human awareness-navigation in crowded environments,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2013.

[91] S. Paris, J. Pettre, and S. Donikian, “Pedestrian reactive navigation for crowd
simulation: A predictive approach,” Computer Graphics Forum, vol. 26, no. 3,
pp. 665-674, 2007.

[92] M. Kuderer, H. Kretzschmar, C. Sprunk, and W. Burgard, “Feature-based pre-
diction of trajectories for socially compliant navigation,” in Robotics: Science

and Systems (RSS), 2012.

[93] W. Zhu and M. Hayashibe, “A hierarchical deep reinforcement learning frame-
work with high efficiency and generalization for fast and safe navigation,” IEFEFE
Transactions on Industrial Electronics, vol. 70, no. 5, pp. 4962-4971, 2023.

[94] Y. Wang, H. Yao, and S. Zhao, “Auto-encoder based dimensionality reduction,”
Neurocomputing, vol. 184, pp. 232-242, 2016.

115

Bibliography Doctoral Thests

[95] M. Okada and T. Taniguchi, “DreamingV2: Reinforcement learning with dis-
crete world models without reconstruction,” in IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 2022.

[96] R. S. Sutton and G. B. Andrew, “Reinforcement learning: An introduction,"
MIT press, 2018.

[97] J. Zhang and S. Singh, “LOAM: Lidar odometry and mapping in real-time,” in
Robotics: Science and Systems (RSS), 2014.

[98] D. Matti, H. K. Ekenel, and J. P. Thiran, “Combining LiDAR space clustering
and convolutional neural networks for pedestrian detection,” in IEEE Interna-
tional Conference on Advanced Video and Signal Based Surveillance (AVSS),
2017.

[99] C. Badue, R. Guidolini, R. V. Carneiro, et al., “Self-driving cars: A survey,”
Expert Systems with Applications, vol. 165, no. 113816, 2021.

[100] G. A. Zachiotis, G. Andrikopoulos, R. Gornez, K. Nakamura, and G. Niko-
lakopoulos, “A survey on the application trends of home service robotics,” in

IEEE International Conference on Robotics and Biomimetics (ROBIO), 2018.

[101] J. Cheng, H. Cheng, M. Meng, and H. Zhang, “Autonomous navigation by mo-
bile robots in human environments: A survey,” in IEEE International Conference
on Robotics and Biomimetics (ROBIO), 2018.

[102] F. Rubio, F. Valero, and C. L. Albert, “A review of mobile robots: Concepts,
methods, theoretical framework, and applications,” International Journal of Ad-
vanced Robotic Systems, vol. 16, no. 2, 2019.

[103] C. Wang, L. Wang, J. Qin, et al., “Path planning of automated guided vehi-
cles based on improved A-Star algorithm,” in IEEE International Conference on

Information and Automation, 2015.

[104] 1. Noreen, A. Khan, and Z. Habib, “Optimal path planning using RRT* based
approaches: A survey and future directions,” International Journal of Advanced

Computer Science and Applications, vol. 7, no. 11, 2016.

[105] J. Minguez and L. Montano, “Nearness diagram navigation (ND): A new real
time collision avoidance approach,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2000.

. Dong, Z. He, C. Song, and C, Sun, review of mobile robot motion

106] L. D Z. He, C. S d C, S “A i f mobile robot i
planning methods: from classical motion planning workflows to reinforcement
learning-based architectures,” arXiv preprint arXiv:2108.13619, 2021.

116

Doctoral Thests Bibliography

[107] N. Koenig and A. Howard, “Design and use paradigms for Gazebo, an open-
source multi-robot simulator,” in IEEE/RSJ International Conference on Intel-

ligent Robots and Systems (IROS), 2004.

[108] E. Rohmer, S. P. N. Singh, and M. Freese, “V-REP: A versatile and scalable
robot simulation framework,” in IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), 2013.

[109] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine for model-
based control,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2012.

[110] Y. Tassa, Y. Doron, A. Muldal, et al., “Deepmind control suite,” arXiv preprint
arXw:1801.00690, 2018.

[111] A. Mandlekar, D. Xu, J. Wong, et al., “What matters in learning
from offline human demonstrations for robot manipulation,” arXiv preprint
arXiw:2108.03298, 2021.

[112] V. Makoviychuk, L. Wawrzyniak, Y. Guo, et al., “Isaac gym: High per-
formance gpu-based physics simulation for robot learning,” arXiv preprint
arXiw:2108.10470, 2021.

[113] B. Shen, F. Xia, C. Li, et al., “iGibson 1.0: A simulation environment for
interactive tasks in large realistic scenes,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2021.

[114] J. Lopez, D. Perez, E. Zalama, and J. Bermejo, “Bellbot - a hotel assistant
system using mobile robots,” International Journal of Advanced Robotic Systems,
vol. 10, no. 1, 2013.

[115] A. S. Lafmejani and S. Berman, “Nonlinear MPC for collision-free and
deadlock-free navigation of multiple nonholonomic mobile robots,” Robotics and
Autonomous Systems, vol. 141, no. 103774, 2021.

[116] L. Liu, D. Dugas, G. Cesari, R. Siegwart, and R. Dube, “Robot navigation in
crowded environments using deep reinforcement Learning,” in IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), 2020.

[117] H Chiang, A. Faust, M. Fiser, and A. Francis, “Learning navigation behaviors
end-to-end sith AutoRL,” IEEE Robotics and Automation Letters, vol. 4, no. 2,
pp. 2007-2014, 2019.

117

Bibliography Doctoral Thests

[118] B. Wang, Z. Liu, Q. Li, and A. Prorok, “Mobile robot path planning in dynamic
environments through globally guided reinforcement learning,” IEEE Robotics
and Automation Letters, vol. 5, no. 4, pp. 6932-6939, 2020.

[119] Z. Yan, T. Duckett, and N. Bellotto, “Online learning for 3D LiDAR-based hu-
man detection: experimental analysis of point cloud clustering and classification
methods,” Autonomous Robots, vol. 44, pp. 147-164, 2020.

[120] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approximation er-
ror in actor-critic methods,” in International Conference on Machine Learning

(PMLR), 2018.

118

Acknowledgements

I would like to express my immense gratitude to Professor Mitsuhiro Hayashibe, my
advisor, for the incredible opportunity to work at the Neuro-Robotics Lab and his
unwavering support and guidance during my three-year doctoral program. I would
also like to extend my heartfelt appreciation to Associate Professor Dai Owaki and
Assistant Professor Kyo Kutsuzawa for their invaluable feedback on my papers and
presentations. Additionally, I wish to express my sincere appreciation to Professor
Yongchun Fang, Associate Professor Xian Guo, Dr. Xuetao Zhang, and Dr. Haiming

Gao from my previous lab for their invaluable career advice.

I would like to give special thanks to Dr. Fahad Raza for his fundamental work in
teaching me how to operate the robot platform. Without his guidance, I would not
have been able to start my research, and I am grateful for the fantastic experience

of co-working with him.

My deep gratitude also goes to Taku Sugiyama, Shunsuke Koseki, and Yoshida
Takashi, who helped me immerse myself in Japanese culture and live a comfort-
able life in Japan. I am equally thankful for the support and camaraderie of my
colleagues at the Neuro-Robotics Lab, including Adam Zaki, Amged Elshiekh, Chu
Zheng, Christopher Herneth, Lucas Sulpice, Keli Shen, Jiazheng Chai, Orvin Demsy,
Atsushi Hamada, Jihui Han, Guanda Li, Yan Guo, Yuchen Wang, Tianjian Yuan,

Youchun Ma, Hannan Ahmed, and Chatrin Phunruangsakao.

I would also like to express my gratitude to my thesis committee members, Professor
Mitsuhiro Hayashibe, Professor Yasuhisa Hirata, Professor Kazuya Yoshida, and
Professor Xuebo Zhang, for their thoughtful questions and valuable comments on

my research project.

My parents deserve my most profound gratitude for their unwavering support in
all my endeavors. Finally, I would like to extend my warmest thanks to Hongyuan
Yu, Xuetao Zhang, Guanda Li, Yan Guo, Yoshida Takashi, and Amged Elshiekh for
their lasting friendship.

119

