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Northeast Thailand is the majority rice cultivated area in Thailand, however its

rice yield per hectare is lower than other rice cultivated regions. Soil salinity, derived

from underground salt rock and accumulated by human activity, was considered the

major rice yield limitation factor. This study focused on evaluating rice productivity

related to salinity conditions and the application of UAV in Khon Kaen Province,

Northeast Thailand. The field investigations were conducted from 2016 to 2019 in

farmer fields in severe, moderate, and slight soil salinity classes determined by the

Land Development Department of Thailand. The soil salinity on the basis of the

electric conductivity of saturated soil extract (ECe) was not consistent with salinity

soil classification by LDD, it seemed related with precipitation. Consequently, soil

salinity affects on rice yield is not as serious as our initial imaginary. However,

plenty of rainfall may have alleviated soil salinity and rice yield reduction in other

years, causing differences in rice yield that were not significant among soil salinity

classes. Using RGB images collected from UAV can efficiently estimate rice yield

and rice growth, the medium of October around heading and flowering stage is

the best stage to estimate rice yield by using RGB images-based vegetation index.

Additional, using RGB images with machine learning method is also quite efficient

to detect salinity conditions even in a very small farm.

Keywords:salinity, rice yield, soil moisture content, precipitation, UAV, RGB im-

ages, SVM, rice growth
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Chapter 1

General

1.1 General introduction

1.1.1 soil salinity

Soil salinity was defined as a high concentration of soluble salt in soil. It was the

biggest agriculture problem associated with reducing crop productivity, correspond-

ing a large economic lost with an annual global income loss of US$27.3 billion [1].

935 million ha area is affected by salt in the world [2]. Especially in arid and semi-

arid region with more than 70% of this total salt-affected area, such as northeastern

Asia, middle-East countries [3]. Moreover, it is expanding at the rate of 1-2 million ha

per year [4] and the expanding speed tend to increase because of climate change [5].

The causes of soil salinity are general classified into primary and secondary salin-

ity (fig1.1) [6]. The majority of salt-affected soils develop through primary salinity,

which is a natural process occurring over an extended period of time due to the pres-

ence of saline rock materials or sediment [7]. Initially, chemical weathering processes

release soluble salts from these parent materials [8]. These salts are then transported

by water (surface streams or groundwater) and strong winds to arid and semi-arid

regions, where low rainfall, high evaporation, and poor natural percolation cause

the concentration of soluble salts to increase gradually, resulting in their deposi-

tion as secondary minerals in the soil [9].On the other hand, secondary salinity is
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attributed to human activities, particularly unsuitable irrigation, fertilization prac-

tices, and certain salt production industries. Poor water quality and inefficient agri-

cultural management have led to saline damage in about 25% of the world’s irrigated

areas [10]. In regions like North Africa, Australia, and the Middle East, the extent of

salt-damaged irrigation areas exceeds 50% [1]. In some water-scarce regions, farm-

ers resort to using poor-quality water, including saline water, to meet crop water

requirements, leading to approximately 18 million hectares of land being irrigated

with strongly saline water worldwide [11], exacerbating soil salinity.Excessive irri-

gation with saline water, especially in areas with restricted soil drainage, raises the

water table and causes subsequent evaporation of soil water, resulting in elevated

soil salinity levels [12]. Additionally, the misuse and overuse of inorganic fertilizers

contribute significantly to soil salinity buildup [13] [14]. These chemical fertilizers

can alter soil pH, affect the availability of certain ions, and ultimately increase soil

salinity [15]. Proper management and understanding of the causes of soil salinity are

essential for sustainable agricultural practices and to mitigate the negative impacts

on crop productivity and soil health.

FIGURE 1.1: Soil salinity mechanisms

Soil salinity is typically assessed by measuring the electrical conductivity (EC) of

soluble salt concentrations in the soil water. The primary soluble mineral salts in-

clude cations such as sodium (Na+), calcium (Ca2+),magnesium (Mg2+), potassium

(K+), and anions like chloride (Cl−), sulfate (SO42−), bicarbonate (HCO3−), carbon-

ate (CO32−), and nitrate (NO3−).The widely accepted standard for defining saline
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soil is based on the electrical conductivity of the soil extract obtained from a satu-

rated paste (ECe) at 25 degrees Celsius, which should be equal to or exceed 4 deci

Siemens per meter (dS m−)[16]. However, obtaining the soil saturation extract from

soil paste can be challenging and often relies on the experience of the personnel con-

ducting the measurement. To address this, field investigations commonly measure

the EC of extracts using different soil-to-water ratios (1:5, 1:2.5, 1:1) as alternative

approaches to assess soil salinity.

1.1.2 Soil salinity impacts on rice

The impact of salinity on plants can be broadly categorized into two types of stress:

osmotic stress and ionic stress (figure 1.2). In the early stages of exposure to high

salinity, the concentration of salt outside the root inhibits water uptake, cell expan-

sion, and lateral bud development [17]. As salinity persists, the accumulation of ions

exceeds the plant’s tolerance threshold, leading to wilting and death of leaves and

a subsequent decrease in the activity of essential cellular processes, including pho-

tosynthesis [18].The response of crops to salinity varies depending on the species.

Generally recognized soil salinity and its effects on crop plants are given in (table

1.1)
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FIGURE 1.2: Plant respond under salinity stress

TABLE 1.1: Criteria for classifying salinity of soils and crops growth
based on FAO

Saline soil levels ECe (dS m−1) Effect on crops

None saline 0-2 Salinity effects negligible

Slightly saline 2-4 Yield of sensitive crops

may be restricted

Moderately saline 4-8 Yield of many crops are

restricted

High saline 8-16 Only tolerant crops

satisfactorily

Very highly saline >16 Only a few very tolerant

crops yield satisfactorily

Rice is the most sensitive salinity response cereal [17], specifically, at the early

vegetative and later reproductive stages [19]. Rice salinity tolerance varied with
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genotypes because of additive gene effects [20]. A previous research revealed that

rice is more resistant at reproductive and grain filling stage than germination and

vegetative stages [21]. However, some research also reported that low salinity level

can increase the resistant of rice to higher and lethal salinity levels [22]. According

to previous researches, salinity is the second type of stress and is the most predomi-

nant hindrance to rice production after drought [23]. Previous studies indicated that

the negative affection of soil salinity to rice can be described through the piecewise

linear salt tolerance equation [24].

Yr = 100 − b ∗ (ECe − a)

where Yr represents the relative rice yield, ECe is electri cal conductivity of the sat-

uration extract (dS m−1 ), a is the salinity threshold (dS m−1 ) and b is the slope

expressed as % per dS m−1.

Besides, previous studies showed that most rice were cultivated under the mod-

erate saline (ECe 4-8 dS m−1) and highly saline (8-16 dS m−1) soils [25]. Under this

saline condition, rice production was reduced significantly with an almost 50% re-

duction [26][27]. Considering rice’s vulnerability to salinity stress, it becomes crucial

to explore and implement strategies that can enhance its tolerance and productivity

under saline conditions. Efforts to develop salt-tolerant rice varieties through breed-

ing and genetic research are vital for ensuring food security and sustaining rice pro-

duction in regions affected by salinity. Additionally, adopting proper agricultural

practices and management techniques tailored to salinity-prone areas can further

mitigate the negative impact of salinity on rice cultivation.

1.1.3 Remote sensing in soil salinity mapping

Regular and accurate monitoring of soil salinity is essential to mitigate its adverse

effects on agriculture and the environment. However, traditional monitoring tech-

niques are time-consuming, labor-intensive, and limited to specific locations for rela-

tively short durations. To overcome these limitations and make informed decisions,
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the adoption of advanced procedures and techniques for soil salinity monitoring

becomes crucial [28].Remote sensing (RS) technology has proven to be effective for

salinity mapping, as demonstrated in numerous previous studies [29][30]. RS im-

agery is particularly well-suited for mapping the surface expression of salinity [31].

Often, a sparse cover of vegetation can serve as an indicator of salinity in many cases.

The global aim of such endeavors is to assess and map soil salinity,leading to a better

understanding of the problem. This,in turn, allows for the timely and reliable provi-

sion of information, enabling the implementation of necessary solutions to prevent

an increase in salinization in new areas or to reduce salinization in existing areas.

By leveraging remote sensing techniques, it becomes feasible to address soil salinity

challenges more efficiently and make informed decisions to safeguard agricultural

productivity and the environment.

Normally,remote sensing technology can be divided into to two types based on

the platform: the one is satellite-based remote sensing and the other one is UAV-

based technology. Satellite-based technology has provided cost-effective, fast, quan-

titative information on saline soil in a relative large scale, such as in county, district

and city[32][33]. The most commonly used multispectral satellite remote sensing

data source for soil salinity estimation was Landsat with 16-day revisit period due

to free accessory and the relative higher resolution of 30m [34][35]. While, sentinel-

2 has a higher resolution of 10-20 m and a shorter revisit period with 5 days [36].

Compared with sentinel-2 and Landsat, MODIS data is also commonly used due to

its own advantages of smaller time granularity to capture salinity dynamics [37]. The

NIR and SWIR of these data source are considered effective to distinguish the spec-

trum of saline soil [38] [39].The limitations of these satellite remote sensing methods

can be attributed but not limited to the relatively low resolution. Some hyperspec-

tral and resolution satellite-based data resource can solve these disadvantages, but it

may limit their large scale applications due its high cost. Besides, radar microwave

satellite-based imagery, such as sentinel-1 backscatter data, is also effective to esti-

mate soil salinity [40] [41], which currently has showed its advantages in soil mois-

ture retrieval [42]. UAV-based remote sensing technology integrate the power of

GPS position, telemetry, remote control, and advanced remote sensing techniques
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to achieve the intelligent and swift acquisition, processing, and analysis of the high-

resolution imagery data. According on the spectral characteristics of soil salinity.

A lot of salinity indices such as Salinity Index 1-Salinity Index 6 (SI1-SI6) and the

normalized difference salinity index (NDSI) have been established [43] [44]. The

research concluded that the recognition effect of the integrated band (covering the

visible-near-infrared band and the combined band in the infrared spectral range) is

superior to that of the independent band, and most of the vegetation index can be

used as an estimation index of soil salinity content to reflect soil salinity indirectly

[45] [46]. Additional, a lot of algorithm such as multilinear regression method, par-

tial least squares regression (PLSR), support vector machine (SVM), Random forest

(RF) and convolutional neural network (CNN) were used to quantitative estimation

soil salinity. However, the soil salinity sensitive of different indices has strong re-

gionality [47] [48].

1.1.4 Climate change impacts on soil salinity in agricultural areas

In the past several hundred years, climate change has been noticed in a lot fields,

especially in agriculture because it is significant impact soil properties, surface wa-

ters and stream waters which is important for agriculture [49] [50]. It was defined

by increasing atmospheric CO2; increasing air temperature; abrupt and large var-

ied in daily, seasonal and annual temperature; intensive rainfall events; changes in

wet and dry cycles and so on. previous study indicated that the climate change can

affect primarily rainfall, potential evapotranspiration and temperature [51]. In ad-

dition, increased global temperature can also raise ocean levels and will bring more

extremely weather conditions. Droughts and flooding are expected to increase in fre-

quency and intensity. Hot dry areas are expected to become hotter and drier, some

wet areas wetter, cold areas will be colder. Changes in the frequency and intensity

of rainfall, temperature and other extreme weather events will impact agricultural

productivity, with the negative affection [52].

Climate change patterns influence the salinization process. Abundant or limited

rainfall can be significant impacts on soil salinity in the root zone [53] [54]. Abun-

dant rainfall raises the water table, this results in the accumulation of salinity at or
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near the soil surface during the dry portion of the year when insufficient rainfall

is available to leach the salts from the root zone. On the contrary, during the rare

rainfall year, water moves upward from the shallow water table due to ET. As a

consequence of changes in climate patterns, salt accumulation is most likely to hap-

pen in irrigated agricultural areas around the world subjected to extended drought

conditions where shallow water tables and fine textured soil exist and in areas sub-

jected to extensive rainfall where salinity accumulates due to upslope recharge and

downslope discharge or where shallow water tables and fine-textured soils exist.

1.2 Purpose of study

To evaluated soil salinity impacts on rice growth and productivity using UAV RGB

images. There are three purposes in this study: (1) Investigate salinity condition and

yearly change of severe salinity condition in rainy season in study area; (2) Assess

the impact of salinity on rice productivity;(3) Assess the application of UAV technol-

ogy in detecting salinity conditions and yield estimation.

1.3 Organization of thesis

In chapter 2, the field investigations for rice yield and soil salinity conditions in rainy

season over three years was demonstrated. To evaluate soil salinity, ECe of soils were

measure. And the relationship between rice yield and ECe was also examined. In

chapter 3, to assess rice growth and yield using UAV, VIs was calculated from RGB

images, k-means clustering method was employed to group rice growth, and the re-

lationship between VIs and rice yield at different rice growth stage was also verified.

Chapter 4 demonstrated the very severe salt-damaged area change with years over

4 years, none vegetated areas were assumed to the severe salt-damaged areas, ma-

chine learning method (SVM) method was used to detect the none vegetated areas

on RGB images. Finally, Chapter 5 summarizes all analysis results and discussed the

effects of salinity on rice growth and productivity.
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Chapter 2

Rice production in farmer fields in

soil salinity classified areas in khon

kaen, northeast Thailand.

2.1 Introduction

Soil salinity is a major agricultural problem in global crop production [55], and it

has accounted for approximately 20% of the world’s cultivated area [56]. Further-

more, soil salinity is expected to increase because of climate change in the future, and

some researchers have reported that serious salinization may increase up to 50% of

all arable land by 2050 [57]. Most salinity-affected soil areas are located in Africa

and Asia, especially in southeastern Asia [58]. For example, in Northeast Thailand,

approximately 17% of the land is affected by salt [59]. The resource of salinity is

an underground salt rock in Northeastern Thailand [60]. Moreover, soil salinity has

accumulated from human activities, such as irrigation, deforestation, and salt man-

ufacture [61]. To evaluate the soil salinity situation in Northeast Thailand, the Land

Development Department (LDD) classified soil salinity into four classes according

to the salty crust in the dry season: class 1 “very severely” (salt crust > 50%), class

2 “severely” (salt crust 10–50%), class 3 “moderately” (salt crust 1–10%), and class 4

“slightly” (salt crust < 1%).

Rice is the most important crop in Northeast Thailand [62]. The cultivated area
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occupies more than 50% of the total rice cultivated area in Thailand, but the yield per

hectare is the lowest among regions [63]. Although poor soil fertility and low water

availability are the major constraints of production with extensive management [64],

soil salinity has caused serious problems in some areas [65].

Rice is highly sensitive to salinity compared with other crops [66]. The responses

to salinity are often represented by indicators such as NaCl concentration and elec-

tric conductivity (EC) [67][68]. The electric conductivity of saturated soil extract

(ECe) is one of the representative indicators and is used to describe salinity levels by

the USDA [69]. Maas and Grattan [70] pointed out that rice yield is significantly re-

duced by soil salinity over 3 dS m−1 ECe. However, the above-mentioned soil salin-

ity classes classified by LDD do not correspond to ECe and rice productivity. The

soil salinity conditions in relation to rice production have also been insufficiently

reported [71]. Therefore, we conducted field investigations to evaluate salinity con-

ditions and rice production in salt-affected areas in Khon Kaen province, Northeast

Thailand. We selected the study area based on the soil salinity classification by LDD.

The salinity condition was evaluated on the basis of ECe. Based on the analysis of the

relationship between salinity condition and rice production, we discussed the classi-

fication method of salinity level and further strategies to alleviate salinity damage.

2.2 Materials and Methods

2.2.1 Study area

The study area (Figure 2.1), located in Khon Kaen, Northeast Thailand, is character-

ized as having a tropical savanna climate with two seasons (rainy and dry seasons)

with an average annual precipitation of approximately 1100 mm. In this area, jas-

mine rice (KDML 105), is widely cultivated. Farmers plant rice once a year in the

rainy season, sow rice in June or July, and harvest in early or mid-November. We

conducted field investigations from August to November every year from 2017 to

2019.
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(a) (b)

(c) (d)

FIGURE 2.1: The investigated fields and locations on Google Maps.
(a) Class 2. (b) Class 3. (c) Class 4. (d) Locations of study areas in
Khon Kaen. Lines are the boundaries of the districts.

Precipitation data were obtained from the meteorological station in the Banphai,

Meteorological Department, which is the nearest meteorological station to the study

area. Precipitation in the investigated period varied from year to year (Figure 2.2).

The amounts in 2018 and 2019 were less than half of that in 2017. The amounts were

similar between 2018 and 2019, but the patterns were different: the rainfall level was

high in June and July in 2018 but high in August and September in 2019.
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FIGURE 2.2: Rainfall during the investigated period from 2017 to
2019. The data were obtained from the meteorological station in
Banphai.

2.2.2 Field Investigations

Field investigations were conducted in classes 2 and 3 in 2017 and 2018. The areas

followed the classification of the LDD [72]. Since farmers in class 3 did not plant rice

in 2019, due to the drought correct in June and July 2019 following crop failure in

2018, we conducted an investigation in class 4. The investigations were divided into

2 measurements: one was the weekly measurement of soil salinity, and the other was

rice yield measurement. The weekly measurement of soil salinity was conducted at

14 and 6 points in 7 and 3 fields in class 2 and class 3 in 2017, 10 and 10 points in

5 and 5 fields in class 2 and class 3 in 2018, and 5 and 5 points in 5 and 5 fields in

class 2 and class 4 in 2019, respectively (Figure 2.1). The points were selected to rep-

resent the classification area. We tried to investigate the same fields for 3 years but

failed because some fields were not planted. The measurement was conducted from

August 29 to November 5, from September 11 to November 6, and from October 8

to November 13 in 2017, 2018, and 2019, respectively. The rice yield measurement

was conducted at 34 and 14 points in class 2 and class 3, 19 and 19 points in class 2

and class 3, and 30 and 26 points in class 2 and class 4, respectively, which included

the points of the weekly measurement of soil salinity. The points were selected to
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compensate for the weekly measurement points. The rice was harvested for mea-

surement on November 5 in 2017, November 6 in 2018, November 8 in class 4, and

November 13 in class 2 in 2019, respectively.

2.2.3 Weekly Measurement of Soil Salinity

A soil solution sampler (DIK-301B, Daiki Rika Kogyo Co., Ltd., Saitama,Japan) was

installed at 10 cm depth at each weekly measurement point to collect soil solution.

A total of 10 mL of soil solution was collected weekly for EC measurement (ECs).

When the soil solution was not extracted due to drought, 450 g of soil sample was

collected from the surface to 12 cm depth around the weekly measurement point

(within a radius of 1 m). The soil was subjected to EC 1:5, ECe, and moisture content

measurements.

2.2.4 Rice Yield Measurement

Rice plants were harvested in a circle with an area of 1 m2 at each point. The yield

was determined with rough grain calibrated with a moisture content of 14%. A total

of 450g of soil sample was collected from surface to 12 cm depth and subjected to

EC 1:5 and ECe measurements. Soil salinity level was classified by ECe based on US

Salinity Laboratory Staff [69]: NS (none saline): 0–2 dS m−1; LS (low salinity): 2–4

dS m−1; MS (mild salinity): 4–8 dS m−1; HS (high salinity): 8–16 dS m−1; SS (severe

salinity): >16 dS m−1.

2.2.5 Soil Measurement

The moisture content of soil samples was determined by the ratio of the soil weight

before drying and after drying. Air-dried soil samples were passed through a 2 mm

sieve. EC of saturated paste (ECe) was determined using the methods outlined by

the USDA [69]. The saturated paste was prepared by adding distilled water to 350

g soil samples and stirred until saturation. The saturated paste was left for 24 h for

equilibration. The saturated paste extracts were obtained by using a Bucher Funner

and applying suction. A 1:5 soil–water suspension was prepared to determine EC

1:5 by adding 50 g of distilled water to 10 g of air-dried soil. ECe, EC 1:5, and soil
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solution EC (ECs) were determined by an EC meter (FiveEasyTM Plus EC meter

FEP30, Mettler Toledo, Greifensee, Switzerland).

2.2.6 Conversion of soil Solution EC and EC 1:5 to ECe

ECe had strong linear relationships with soil EC 1:5 and ECs (Figure 2.3). Although

EC 1:5 in class 4 in 2019 had a lower ECe, and the regression lines with 0 intercepts

were applied to convert EC 1:5 and ECs to ECe in this study.
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(a)

(b)

FIGURE 2.3: Comparison between ECe, EC 1:5, and ECs. (a) The
relationship between soil ECe and EC 1:5. (b) The relationship
between soil ECe and ECs.
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2.3 Results

2.3.1 Dynamics of Soil ECe and SMC among Classes from 2017 to 2019

The dynamics of soil ECe varied among years (Figure 2.4). A higher ECe was ob-

served in the drought year 2018. ECe was rather stable in 2017 and 2019. The aver-

age ECe in class 2 was higher than that in class 3, but ECe in class 2 was not always

higher than that in class 3 in some fields. Class 4 showed a relatively higher ECe than

class 2, especially on 8 and 14 October 2019. Soil moisture content (SMC) was obvi-

ously lower in class 3 than in class 2 in 2018. An SMC decrease, which was unable

to extract soil solution, rarely occurred in 2017 and 2019. Although the relationship

was not clear, ECe tended to increase under low SMC after 10 October 2018.

(a) (b)

(c) (d)

FIGURE 2.4: Dynamics of soil ECe in 2017 (a), 2018 (b), 2019 (c), and
dynamics of soil moisture content (SMC) in 2018 (d).

The average ECe of the weekly measurement at each measurement point showed

large variation only in 2018 (Figure 2.5). The ECe in class 2 was significantly higher

than that in class 3 in 2018. However, a significant difference was not observed

between class 2 and class 3 in 2017, or between class 2 and class 4 in 2019.
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FIGURE 2.5: Box plot of average ECe of soil samples in the
investigated period from 2017 to 2019. Diamond-shaped markers are
outliers. The number of samples was 14 and 16 in class 2, class 3 in
2017; 10 and 10 in class 2, class 3 in 2018; 5 and 5 in class 2, class 4 in
2019, respectively. * significant at a probability level of 0.05 by the
Mann–Whitney U test.

Soil ECe at harvest has a linear positive relationship with average ECe of weekly

measurement (Figure 2.6). Accordingly, the soil ECe at harvest was used to classify

the soil salinity level in the following analysis.

FIGURE 2.6: The relationship between average ECe of soil samples
during the investigated period and ECe at harvest from 2017 to 2019.
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2.3.2 Effect of soil ECe and Moisture on Rice Yield

Figure 2.7 shows the relationship between rice yield and ECe at harvest. An ex-

tremely low rice yield (<100 g m−2) was observed where ECe was higher than 10 dS

m−1 in class 2 in 2018. The extremely low rice yield was also observed where ECe

was lower than 6 dS m−1 in class 3 in 2018. The fields that showed low rice yield

in class 3 in 2018 corresponded to those that had a low SMC (Figure 2.4). Except for

the extremely low rice yield, rice yield varied among points and did not show any

tendency against ECe.

FIGURE 2.7: The relationship between rice yield and ECe at harvest
from 2017 to 2019.

2.3.3 Rice Yield Based on Salinity Level at Harvest

The rice yield measurement showed that yield reduced only in class 3 in 2018, and

was not significantly different between classes in 2017 and 2019 (Figure 2.8). The

lower yield in class 3 in 2018 might have been caused by the low SMC (Figure 2.4).

Rice yield varied in a large range even at the none saline and low soil salinity level

(Figure 2.9). However, the median yield tended to decrease with increasing salinity

levels. Analysis of covariance showed that the effects of salinity levels and year were

significant but that of class was not significant (Table 2.1).
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FIGURE 2.8: Box plot of rice yield among classes from 2017 to 2019.
Diamond-shaped markers are outliers. ** significant at a probability
level of 0.01 by the Mann–Whitney U test .
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(a)

(b) (c)

FIGURE 2.9: Box plots of rice yield based on salinity level among
classes in 2017(a); 2018 (b); 2019 (c). Diamond-shaped markers are
outliers. NS (no saline): 0–2 dS m−1; LS (low salinity): 2–4 dS m−1;
MS (mild salinity): 4–8 dS m−1; HS (high salinity): 8–16 dS m−1; SS
(severe salinity): >16 dS m−1.

TABLE 2.1: ANCOVA result for rice yield by year, salinity, and class.

Source F Value p Value

Year 6.41 0.002 **

Salinity level 10.41 0.002**

Class 1.74 0.189

** Significant at a probability level of 0.01.
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2.4 Discussion

Soil salinity varied from year to year, which seemed to be associated with precipi-

tation. The low precipitation in August and September of 2018 decreased SMC and

increased ECe, which caused significant differences in ECe between classes 2 and 3.

However, abundant rainfall alleviated ECe, which resulted in no significant differ-

ence among classes. The LDD defined classes based on salt crust in the dry season,

but the results in this study suggest that another classification is required for rice

production in the rainy season. Precipitation is generally more than potential evap-

otranspiration in the rainy season, but in 2018 it was less [73]. Including climate data

is necessary for the classification. Yang et al. [74] reported that no vegetation areas

due to severe salt damage were partly distributed in class 2. The detailed mapping

of soil salinity is also required [75].

The soil salinity level based on soil ECe suggested that rice yield was damaged

by soil salinity (Figure 2.9). ECe could be a candidate indicator of soil salinity map-

ping for rice production if the value was predictable in the rainy season. However,

rice yield varied in a large range even at the same salinity level, obscuring the re-

lation between rice yield and ECe (Figure 2.4).This fact, on the contrary, implies

that farmer management could alleviate salinity damage. Farmers can obtain higher

yields even at high and severe salinity levels. Since farmers partly applied irrigation

water with a small water pump, effective irrigation may directly reduce the salin-

ity level in addition to drought. Cost and water availability are the major limiting

factors in the region[76][77]. Development of salinity level management with water-

saving culture is recommended. The salinity level of irrigation water also needs to

be checked [78]. Since the attainable rice yield of KDML 105 is 450 g m−2[79][80],

the yield can be improved. Proper nutrient management may be necessary because

low soil fertility due to light-textured soil is generally considered a yield constraint

[81]. The authors also observed severe lodging in some locations due to excess stem

growth. Control of rice growth is also recommended. Homma et al. [64] suggested

that optimization of fertilizer application produces higher productivity by reducing

fertilizer at the earlier planted field and increasing fertilizer at the later planted field.

Nutrient management based on leaf color may be effective[82].
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Although the expansion of severely salt-damaged areas was not observed [74],

increases in soil ECe are predicted in the study area in the future [73]. Higher poten-

tial evaporation under global warming conditions may produce more severer salin-

ity conditions [83, 84]. Several attempts were tested to alleviate soil salinity [85, 86].

Since deforestation is one of the major causes that enhances the salinity problem in

the region, ecological management is also considered for the countermeasures [87,

88]. One of the major countermeasures is reducing the groundwater level in the dry

season by tree planting. The lower groundwater level is expected to prevent salinity

movement from the deep soil layer to the surface. However, a strategy has not been

developed to reach a solution. Under this situation, the spatial and temporal evalu-

ation of salinity conditions is primarily recommended. The evaluation may provide

a local solution to continue rice production in the salinity classified area.

2.5 Conclusions

This study conducted field investigations to evaluate rice production in relation to

salinity conditions, where the LDD classified soil salinity. Soil salinity in terms of

ECe was affected by the precipitation amount and was not always consistent with

the classes by LDD. The salinity level based on ECe was a more suitable indicator to

evaluate the salinity damage of rice. These results suggest that the spatial and tem-

poral evaluation of salinity conditions based on ECe is required for rice production.

Large yield variation even at high and severe salinity levels suggests that rice yield

can be improved by farmer management. Since deterioration of salinity conditions

is anticipated under future climate change, further investigation is recommended to

alleviate salinity damage for rice production.
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Chapter 3

Evaluate rice growth and

production in farmer fields under

salinity stress by Unmanned Aerial

Vehicle (UAV) RGB images in

Khon, Kaen, Northeast Thailand.

3.1 Introduction

Improve crop production, satisfied the increasing demand for agricultural products

with expansion of world population, is one of the greatest challenges of 21st cen-

tury [89]. Rice, a staple food for more than 3 billion people, is an import crop for

global food security [90]. Timely and accurate rice estimation are vital for precision

management, policy and marketing decisions [91]. A traditional way of collect rice

yield data involved labor-intensive and time-consuming field surveys and destruc-

tive sampling at various scales, which often resulted in significant uncertainties [92].

Alternatively, certain rice yield estimation models have been developed to provide

accurate estimates while saving time [93]. However, model needs to calibrated with
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a lot parameters, such as soil property, phenological period, fertilizer application

and so on [94].

With development of technology, remote sensing has been became possible to

predict rice yield, and satellite-based remote sensing has achieved a high level of

prediction accuracy [95] [96]. however, the low resolution, high cost, and easy ef-

fected by weather condition during the rice growth period of satellite-based remote

sensing limit data acquirement [97]. Moreover, many previous studies reported that

satellite-based remote sensing can only provide a high accuracy of rice yield predic-

tion at a large scale such as country, province or county [98] [99], but they are not

possible to describe the detailed yield variation at a relatively small scale especially

the average rice farm size is relatively smaller in northeast Thailand than other coun-

tries [100]. The recent increase in availability of unmanned aerial vehicles (UAV)

are potential to increase temporal image data acquisition with high spatial resolu-

tion. The vegetation index (VIs ) calculated from UAV-based images have proven to

be well-established method for rice prediction. [101] used the VIs calculated from

UAV-based RGB images to assess wheat yield from the heading stage to the mature

stage. However, most researchers were focus on employ multispectral or hyperspec-

tral UAV platform to rapidly estimate crop yield [102]. The previous paper reported

that normalized difference vegetation index (NDVI) is highly related with the grain

yield in wheat at the filling stage [103] [104]. The combination of Vis, calculated

from RGB and multispectral images, were also utilized to assess yield in barley at

the booting stage [105]. These mentioned studies proved that use of appropriate VIs

can predict yields compared to traditional methods more efficiently.

Since using of multispectral and hyperspectral images are difficult to apply in

the real farm cultivation due to the high cost and difficult utilizations. RGB images

has advantages in budget with the acceptable accuracy.The objectives of this study

including :1) estimate rice growth by using VIs from RGB images in salinity condi-

tions; 2) estimate the relationship between rice productivity and VIs at different rice

growth stage;3) make spatial rice yield distribution map on basis of RGB images.
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3.2 Materials and Methods

3.2.1 Study area

The study area and sampling points are the same with chapter 1 (2.1) in class 2, class

3 in 2018, class 2 and class 4 in 2019,respectively.

3.2.2 RGB images collection and Mosaic

The collection of RGB image data using UAVs was conducted on various dates, in-

cluding September 10th, 19th, and 26th, October 3rd, 10th, 17th, 26th, and 31st in

2018 for class 2 and class 3. Additionally, data collection took place on October 8th,

14th, and 21st, November 8th in 2019 for class 2 and class 4. The data collection

spanned from the heading stage to the harvesting stage. The heading stage is a

crucial growth phase in rice production as it signifies the transition from vegetative

to reproductive growth and is highly sensitive to temperature [106]. Details about

the characteristics and configurations of the aerial data acquisition by UAV can be

found in Table (3.1). The RGB images were captured using UAVs (3.1), namely "DJI

Phantom3 advanced " and "DJI Mavic Pro," equipped with RGB cameras in the re-

spective years of 2018 and 2019. To mitigate the impact of time of day and solar

elevation angle on passive reflectance sensor measurements [107], the RGB image

data collection using UAV was conducted around noon, between 11:00 am and 1:00

pm, on cloud-free and sunny days. The UAV flew at an altitude of 50 meters above

ground level, ensuring an 85% forward and side overlap rate. The image processing

software ’Pix4D mapper’ (Pix4D, Lausanne, Switzerland) was employed to generate

omosaic images from the RGB data.The mosaic images were used to do georeference

based on google map.Initially, the RGB bands were converted into normalized forms

using the following Equation:
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R = r/(r + g + b)

G = g/(r + g + b)

B = b/(r + g + b)

where r,g,b are the original RGB digital values. Then, the original values are con-

verted into values that range from 0 to 1, so that the normalized values can better

represent the quantitative analyses in remote sensing domains.

(a) (b)

FIGURE 3.1: The UAV:(a) DJI Phantom3 advanced;(b) DJI Mavic pro.

TABLE 3.1: Characteristics and configuration of UAV utilization for
data collection.

Source 2018 2019

Flight time 11:00 am 13:00 pm 11:00 am 13:00 pm

Flight date 10,19,26 Sep,3,10,17,26

Oct,8 Nov

08,14,21 Oct,8 Nov

Flight altitude 50 m 50 m

overlap rate 85% 85%
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3.2.3 Calculation of VIs

Based on previous researches [108] [91], numerous vegetation indices (VIs) have

been proposed to effectively correlate with rice yield and growth. In this study, we

selected the Excess Greenness Index (ExG) as the VI of interest, which is calculated

based on the red (R), green (G), and blue (B) bands of the spectral data. ExG is widely

utilized in remote sensing applications and has demonstrated its effectiveness [109]

[110]. For monitor the growth conditions of rice, the ExG at each stage was calcu-

lated and the average value in 1 m2 was obtained. The ExG index is defined by the

following equation.

ExG = 2 ∗ G − R − B

3.2.4 Algorithm of K-means cluster

The K-means clustering technique was employed to assess the rice growth condi-

tions. K-means clustering [111]is an unsupervised and straightforward algorithm

used to classify data into k clusters (c1, c2, c3, ..., ck), each represented by its cen-

troid. It aims to minimize the squared Euclidean distance between the data points

and their respective cluster centroids, enabling the segmentation and classification

of the dataset. we used the elbow method [112] to find the optimized number of

clusters to be 3, 3, and 2 in class 2, class 3 in 2018 and class 2 in 2019. The key pa-

rameter for this algorithm is the number of clusters, denoted as ’k’. Determining the

optimal value of ’k’ is crucial, as it greatly impacts the performance of K-means clus-

tering. One approach to identifying the optimal value of ’k’ is the elbow method.

By fitting the model with different ’k’ values, a curve can be plotted representing

the loss (sum of squared distances) against the number of clusters considered. This

curve typically takes the form of an elbow [112]. The point of the elbow on the curve

indicates the optimal number of clusters, as the loss does not decrease significantly

beyond that point. Analyzing this elbow point helps in determining the suitable

number of clusters for the given dataset.
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3.2.5 Analysis of rice yield

The procedure of statistical analysis is summarized by the flowchart in figure (3.2).

The linear relationships function built in Python was used to understand the rela-

tionships between the average VI and rice yield at each sampled point, and then the

coefficient of determination (R2) was obtained. The R2 for different VIs at different

growth stages were acquired and compared with each other. The difference in R2

showed the regression ability of the VI, and the higher the R2, the more precise the

results will be.

FIGURE 3.2: Experiment methodology and procudure of statistical
analysis in this study

3.3 Results

3.3.1 Estimating rice growth based on vegetation index by using UAV

RGB images.

In the 2018 class 2 dataset, the ExG values were grouped into three clusters, each

cluster has their own characteristics (3.3). In cluster 1, the ExG values remained

relatively stable but were lower compared to the other clusters. Cluster 2 demon-

strated a correlation with rice growth, showing an increase during the vegetative

growth stage from September to October. It reached their peak in mid-October and
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remained saturated, gradually decreasing before the harvest. On the other hand,

cluster 3 displayed a decreasing trend in ExG values towards the harvest.The box

plots presented here illustrate the ECe values and rice yield across different clusters

(3.4). It appears that the ECe values did not show significant differences among the

clusters. However, the rice yield in cluster 2 was relatively higher compared to clus-

ter 1 and cluster 3. Overall, these findings suggest that the ExG values in cluster 2

align with the growth stages of rice, while cluster 1 and cluster 3 exhibit different

patterns. The ECe values do not seem to vary significantly across the clusters, but

there is a noticeable difference in rice yield, with cluster 2 displaying higher yields

compared to the other clusters.

FIGURE 3.3: ExG of sampling points based on characteristic of
k-means cluster in class 2 in 2018.
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(a)

(b)

FIGURE 3.4: Boxplot of ECe (a) and yield (b) among clusters in class
2 in 2018.
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In the 2018 class 3 dataset, the ExG values were also classified into three clusters

(3.5) . Cluster 1 exhibited relatively lower values compared to cluster 2 and clus-

ter 3, remaining relatively stable around 0. Cluster 2 showed an increasing trend

in ExG values leading up to the harvest, with the peak observed at the end of Oc-

tober. Cluster 3 displayed a narrower range of ExG values, ranging from 0 to 0.1.

The box plot analysis of ECe did not indicate any significant differences among the

clusters (3.6). However, when considering rice yield, it was observed that cluster 2

had higher yields compared to cluster 1 and cluster 3.

FIGURE 3.5: ExG of sampling points based on characteristic of
k-means cluster in class 3 in 2018.
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(a)

(b)

FIGURE 3.6: Boxplot of ECe (a) and yield (b) among clusters in class
3 in 2018.
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The ExG dataset from class 2 in 2019 can be divided into two clusters (3.7). Both

clusters exhibited maximum values in mid-October and gradually decreased leading

up to the harvest. The ECe values in cluster 2 were slightly lower than those in

cluster 1. Additionally, the rice yield in cluster 2 was higher compared to cluster

1(3.8).

FIGURE 3.7: ExG of sampling points based on characteristic of
k-means cluster in class 2 in 2019.
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(a)

(b)

FIGURE 3.8: Boxplot of ECe (a) and yield (b) among clusters in class
2 in 2019.
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3.3.2 The relationship between rice yield and ExG on different rice growth

stage.

The coefficient of determination for the relationship between rice yield and ExG at

different stages of rice growth is presented in (Figure 3.9). In the vegetative growth

stage of rice, the coefficient of determination (R2) tends to increase. However, it de-

creases before harvest towards the end of October and the beginning of November.

The highest R2 values were observed in October, with the peak occurring in mid-

October when rice was around the heading and flowering stage for class 2 in both

2018 and 2019. It is important to note that this change in R2 was not observed in

class 3 in 2018. Instead, in class 3 of 2018, the R2 tended to increase towards harvest,

with the highest value observed at the end of October.

The figure (3.10) displays the relationship between ExG and yield with the best

R2 values achieved on 10th October in class 2 in 2018, 31st October in class 3 in 2018,

14th October in class 2 and in class4 in 2019, respectively. These linear regression

equations, derived from the analysis, were subsequently utilized to generate a rice

yield map in the subsequent analysis.
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(a)

(b)

FIGURE 3.9: The R2 of the relationship between yield and ExG on
different rice growth stage in 2018 (a) and 2019 (b).
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(a)

(b)

FIGURE 3.10: The relationship between rice yield and ExG on the
best R2 date in 2018 (a) and 2019 (b).
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3.3.3 Rice yield map based on RGB images.

The figure (3.11) illustrated the spatial variation in rice yield, Interestingly, signifi-

cant differences was observed in rice yield even among nearby paddies. Moreover,

within the same paddies, there was also noticeable variation in yield. In class 3, most

of rice in paddies were damaged, especially, in the blue rectangle. The rice yield dis-

tribution map for the year 2019 reveals that rice yield in class 4 is generally more

stable and higher compared to class 2. Notably, the yellow rectangle represents an

area where rice yield is consistently low in both 2018 and 2019. This suggests that

salinity could be a significant factor contributing to the decline in rice yield at these

specific locations.
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(a) (b)

(c) (d)

FIGURE 3.11: Rice yield map based on RGB images in class 2 in 2018
(a),in class 3 in 2018 (b),in class 2 in 2019 (c) and class 4 in 2019 (d).

3.4 Discussions

Many previous studies have used UAVs to monitor crop growth indicators, focusing

on monitoring a single indicator at a certain stage [113][114]. To test the applicability

of using UAV imagery for rice growth detection, commonly used ExG was selected

to detect the different rice growth at different locations. The VI (ExG) had great po-

tential in assessing and monitoring the growth of condition of rice, which is agreed
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with the previous studies where the VI had been proven to have great potential abil-

ities in agriculture [115] [116].The ExG from different growth stage were the indica-

tors representing the real- time growth stage condition. Some researchers also used

UAV equipped with hyperspectral cameras, multispectral cameras, and lidar [117]

[118] [119]. Although such monitoring may reflect the growth status of the vegeta-

tion better than using RGB camera, it was not easy to popularize and apply due to

its high cost. In contrast, the researchers in this study used RGB images captured by

UAVs at different rice growth stages. By calculating corresponding VIs from these

images, they successfully estimated rice growth indicators. This approach proved to

be straightforward for analysis, applicable to rice growth in the field, cost-effective,

and provided rapid and reasonably accurate assessments of rice growth conditions.

Consequently, it offered valuable guidance and suggestions for field management

decisions. However, using UAV RGB images to monitor rice growth has its limita-

tions, such as being limited to smaller-scale monitoring due to the UAVs’ flight time

constraints [120]. For broader applications, satellite remote sensing images would be

required. However, satellite images have lower spatial resolution compared to UAV

images and can be affected by weather changes, making it challenging to achieve

precise agricultural guidance at the plot level. Thus, future research should explore

the integration of the advantages of both UAV and satellite remote sensing images

to effectively monitor crop growth [121] [122].

The application of k-means clustering methods allowed for the grouping of sim-

ilar rice growth situations into distinct classes, leading to improved precision agri-

culture practices. In the year 2018, the different rice growth patterns in class 2 and

class 3 were successfully detected. Notably, a delay in maximum ExG was observed

in class 3 during that year. Surprisingly, rice growth variations were even evident

within the same classes.Further analysis of the ECe values within the different ExG

groups revealed that soil salinity did not appear to have a direct correlation with rice

growth in 2018. In contrast, based on the author’s field investigation in 2018, it was

found that water availability emerged as the primary limiting factor for rice growth

[123].Interestingly, the distribution of irrigation practices within class 2 and class 3

resulted in micro variations in rice growth. Notably, comparing rice yield across dif-

ferent ExG groups, higher yields were observed when the changes in ExG aligned
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with the healthy rice leaf expansion trend. This trend involved gradual increases in

leaf area during the vegetative growth stage, followed by a decrease before harvest

due to leaf withering and yellowing [124]. These findings suggest that precise man-

agement of water resources and considering the health and growth patterns of rice

leaves are critical factors for optimizing rice yield. The k-means clustering approach,

combined with the evaluation of ExG and other growth indicators, can offer valuable

insights for tailoring agricultural practices and achieving better crop productivity in

rice farming.

These years, a lot of researchers are focus on rapidly predict crop yield in real

time based on RS data. Many VIs have been proved efficient for predicting crop

yield, such as NDVI and EVI2, in grain yield prediction in wheat [125], barley [126],

maize [127] and soybean [128]. However, there are few reports describing crop yield

prediction based on UAV system, especially, in RGB camera. In this study, the rela-

tionships between rice grain yield and the VIs (ExG) from RGB images were tested

at different growth stages based on images taken by a UAV. Results showed that ExG

of heading and flowering stage had a higher correlation with rice grain yield. This

result was consistent with the previous report that the heading and flowering stage

could provide higher prediction accuracy when using RS to predict rice yield[129]

and [130] also successfully predicted rice yield using reflectance measured at the

flowering stage. Thus, the flowering stage may be the best period and the boundary

point for the estimation of rice grain yield.The heading and flowering stage around

the medium of October has the highest ExG, which can well reflectance the maxi-

mum photosynthetic and yield potential [131]. [132] used the maximum VIs to es-

timate wheat yield. At the early rice growth stages, rice paddies were merged by

stand water, water can affect ExG value easily. At the maximum VIs stages, VIs can

be easily saturated due to the high level of vegetation coverage [133]. In the later

growth stages, the appearance of the rice panicle, the increase in yellow leaves and

leaves withering enhances the difficulty of yield prediction.

The rice yield map based on RGB images exhibited inconsistencies across classes

and years, which did not align with the findings of the field investigation in chapter

2. The rice yield map demonstrated variations in yield among different classes and

even within the same class. These results suggest that assessing rice yield through
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field investigation becomes more challenging due to the significant yield variations,

even when locations are in close proximity.Interestingly, the field investigation [123]

indicated that rice yield in class 3 was significantly lower than in class 2 in 2018.

However, this study observed a larger-scale damage to rice yield in class 2 compared

to class 3. Further analysis of the rice yield map in class 2 for the years 2018 and

2019, which experienced different rainfall patterns, revealed the presence of similar

lower-yield locations. This finding suggests that the reduced rice yield in class 2

might be attributed to salinity-related issues.These results emphasize the complexity

of understanding rice yield variations and the importance of considering multiple

factors such as salinity, rainfall, and local conditions when interpreting rice yield

maps. The combination of remote sensing data and field investigation can provide

a more comprehensive understanding of the factors influencing rice yield, helping

farmers and researchers make informed decisions to improve agricultural practices

and mitigate yield losses.

3.4.1 Conclusion

UAVs have become a new platform for acquiring high spatiotemporal resolution

images used for precision agriculture. The multi-temporal VIs was explored for rice

growth detection and the single stage VI was explored for rice grain yield estimation

based on RGB images from UAV. This study has demonstrated that RGB images

acquired are reliable for rice growth and grain yield estimation.

The heading and flowering stage was proved as the best growth stage for grain

yield estimation with VI from a single stage for RGB images. However, the yield

estimation models and method should be further examined with more datasets. In

addition, some new technology such as machine learning method and some yield-

related agronomic parameters such as LAI and crop growth period can be further

analyzed and integrated with UAV datasets to improve rice grain yield prediction

accuracy.
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Chapter 4

Yearly change in severely damaged

areas in paddy fields in khon

kaen,northeast Thailand.

4.1 Introduction

Soil salinity, which affects crop production due to the accumulation of toxic ions

and the inhibition of water and nutrient absorption [134], is considered a serious

global problem in terms of food security [135]. Northeast Thailand is a severely salt-

affected region; more than 3.3 million ha are estimated to be salt- affected in the area

[136]. The soil salinity is derived from underground salt rock in Northeast Thailand

[137]. Accordingly, the groundwater has a considerable effect on salinity, further

complicating the situation [138][139]. Some studies have reported the expansion of

salt-affected areas [140], but the details of these expansions are still unknown.

Rice is a major agricultural product in Northeast Thailand. Rice paddy fields oc-

cupy more than half of the agricultural land, but their production levels are both low

and unstable [141][142]. Since irrigation facilities have not yet been developed, most

rice production is conducted under rainfed conditions. Precipitation shows yearly

and spatially large variations, frequently causing drought and flooding. Compared

with drought and flooding, the salinity problem for rice produc tion is rather local-

ized [143]. However, since some farmers are starting to abandon their paddy fields
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due to severe salinity, the problem has become one of the major issues affecting rice

production in Northeast Thailand [144] [145].

Based on the situation described above, we conducted field investigations to

evaluate salinity conditions in relation to rice production in Ban Phai district, Khon

Kaen province in Northeast Thailand, which is one of the most severely salt-affected

regions. One accompanying papers in this special issue analyzed soil salt accumula-

tion by simulating soil water movement [139]. We also analyzed spectral reflectance

of salinity affected fields to evaluate salinity conditions at a regional scale with satel-

lite remote sensing [146]. This report focused on yearly changes in rice production

and salinity conditions. In particular, the yearly movement of severely salt-damaged

areas in paddy fields was evaluated on the basis of RGB images taken by unmanned

aerial vehicles (UAVs).

4.2 Materials and methods

4.2.1 Study area

The investigation site Figure( 2.1) was located in Ban Phai district, Khon Kaen province

in Northeast Thailand. The area is classified as having a tropical savanna climate and

has 2 seasons (a rainy and a dry season). The rainy season starts in May and ends

in October. Precipitation data were collected from the meteorological station in Ban

Phai, Meteorological Department, Thailand. Since irrigation facilities have not been

developed in the study region, rice was planted only in the rainy season under rain-

fed condi- tions. The soil salinity level was officially classified into 5 classes (class

1 corresponds to very severely salt-affected soils; class 5 corresponds to non-salt-

affected soils) by the Land Development Department, Thailand (Wichaidit, 1995;

Katawatin and Sukchan, 2012). The investigation site was classified as class 2, com-

prising severely salt-affected soils. Some farmers continued to plant rice in the study

region, but others had abandoned their paddy fields due to the severe salinity con-

ditions.
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FIGURE 4.1: The investigated fields on Google Maps. Circles show
the investigated points for soil EC and rice yield in Figure 3 and 4,
respectively. Rhombuses show the soil sampled points to support
non-vegetated/vegetated analysis in Figure 5 and 6. EC and depth
of ground water were measured with the field router.

4.2.2 Measurement

Yield measurements were conducted at 29, 34, 19 and 30 points in rice-planted

paddy fields in 2016, 2017, 2018 and 2019, respectively ( 2.1). Although the harvested

points varied from year to year because some fields were not planted based on the

farmers’ decision, the points were selected to represent the rice planted paddy fields

in the area. Rice plants were harvested in a 1 m2 circle at each point on November

12, 2016, November 5, 2017, November 6, 2018, and November 8, 2019. The grain

was threshed,and its weight was calibrated with its moisture content, which was

measured with a grain moisture meter (CD-6E, Shizuoka Seiki). Five hundred ml of

plow layer soils were collected uniformly from the surface to 12 cm depth at the 34,

19 and 30 harvested points in 2017, 2018 and 2019, respectively, at the same time that

the rice plants were harvested. The soil samples were ground and sieved in 2-mm

sieves after being air dried. The soil EC (soil:water = 1:5) was measured using an EC

meter (FiveEasyTM Plus EC meter FEP 30, Mettler Toledo).
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4.2.3 Analysis

RGB images were collected at the rice harvest, just after the rainy season ended, by

UAVs: a 3DR Soloon November 12, 2016, a DJI Phantom 4 on November 6, 2018, and

by a DJI Mavic pro on November 8, 2019. We tried to take RGB images on November

5 and 6, 2017, but failed due to strong winds. The flight height was 50 m at approxi-

mately 2 cm/pixel resolution. The images, synthesized by Photo- scan Professional

(Agisoft), were georeferenced by QGIS based on Google Maps. A 4.3-ha area, which

was common to the images in 2016, 2018 and 2019, was analyzed to evaluate the

non-vegetated/vegetated areas with a support vector machine (SVM) in scikit-learn

for Python [147]. One hundred buffers for non-vegetation and 100 buffers for veg-

etation were selected in each image. The representative non-vegetated/vegetated

area was determined with observation and recorded by GPS receiver (eTrex 20x,

Garmin). The non-vegetated/vegetated buffers were selected in each representative

area with checking the RGB image. The buffer was set at a 1-m × 1-m square to ob-

tain the minima, maxima, means and medians of R, G and B. Seventy five percent of

buffers were used for training, and the rest were used for validation. The image was

divided with 1-m × 1-m meshes and was then subjected to supervised classification

with SVM. The accuracies for the validation buffers were 0.88, 0.98 and 0.98 in 2016,

2018 and 2019, respectively. Soils were sampled uniformly from the surface to 12 cm

depth at 10 non-vegetated points and at 10 adjacent vegetated points on October 9,

2019 ( 2.1). The EC (soil:water = 1:5) for the sampled soil was measured using the

same method for soils at the rice harvesting points.

4.2.4 algorithm of SVM

Support Vector Machine (SVM) is a supervised, non-parametric statistical learning

technique initially proposed by Vapnik in 1979 [148]. SVM utilizes a set of labeled

data points and employs a training algorithm to identify a hyperplane that effec-

tively segregates the dataset into distinct predefined classes, aligning with the pro-

vided training examples. SVM has demonstrated its efficacy in various applications,

particularly excelling in scenarios characterized by limited data samples, nonlinear-

ity, and high-dimensional pattern recognition [149].The primary objective of SVM
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is to determine a decision surface, established by specific points within the training

dataset, known as support vectors. These support vectors play a pivotal role in the

SVM’s classification process, ensuring that all data points within the same class are

situated on one side of the decision surface. Moreover, SVM strives to maximize the

margin, which is the minimum distance between the decision surface and any data

point from either of the two distinct classes. This margin optimization is a funda-

mental aspect of SVM’s classification prowess.

Cohen’s kappa index was employed to estimate the accuracy of SVM classifica-

tion [150]. It was performed using information about several statistical evaluation

criteria such as true positive (TP), false positive (FP),true negative (TN), and false

negative (FN) [151], the kappa coefficient (K) is gained by measuring the ratio of

observed agreements (Pobs) and expected agreements (Pexp) as follows:

K = (Pobs − Pexp)/(1 − Pexp)

Where, Pobs= (TP+TN) represents the proportion of pixels that are correctly clas-

sified as non-vegetation or vegetation area. Pexp=(TP+FN)(TP+FP)+(FP+TN)(FN+TN)

is the proportion of pixels for which agreement is expected by change [150]. [152]

stated that Cohen’s kappa index is closer to 1 means the model and the reality is

more agreement.

4.3 Results and discussion

Precipitation varied from year to year( 4.2) . Rainfall was abundant in 2017 but

quite limited in 2018 and 2019. Although the amounts were similar between 2018

and 2019, the patterns were quite different: the precipita- tion level was high from

April to July in 2018 but high in May and August to September in 2019. In 2019,

some paddy fields near the investigation area were delayed for rice planting due to

inadequate rainfall in June and July and suffered from flooding due to heavy rainfall

in August and September. The precipitation level from August to October, which is
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the most important duration for rice production at the site, was 269 mm in 2018,

which was approximately half of the average (515 mm).

FIGURE 4.2: Precipitation from 2016 to 2019 in Banphai. The
numbers on the bars indicate precipitation amount between August
and October.

The soil EC in rice-planted paddy fields varied from year to year and seemed to

be associated with precipitation, especially from August to October(4.3). Although

the lowest ranges of soil EC were quite similar from year to year, the highest values

differed extensively.
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FIGURE 4.3: Box plot of soil EC (1:5,soil:water) of investigated
paddy fields from 2017 to 2019. The number of samples was 34,19
and 30 in 2017 ,2018 and 2019,respectively. The number to right of
each symbols the EC,which exceeded 2.0 dS m−1. Red symbols
indicate the EC where the rice yield was 0 g m−2.

The rice yield showed large variation and many fields showed quite low yield

(4.4. For example, one fourth of the fields recorded less than 54 g m–2 of yield in

2018.The average rice yield seemed to be associated with precipitation. Higher rice

yield was expected due to higher precipitation in 2017. However, the abundant rain-

fall caused farmers to plant paddy rice even in salinity fields (4.3), which decreased

the average yield. The abundant rainfall sometimes caused lodging due to excess

stem growth, which also decreased the average yield in 2017. The yearly variation

in rice yield was smaller than those in precipitation and soil EC. The effects of pre-

cipitation and then soil EC on rice production were probably alleviated by surface

water. Our preliminary analysis suggested that the classification of soil ECe (i.e.

the EC of the soil saturation extract) clearly categorized the effect of salinity on rice

production. A detailed analysis of the relationship between soil salinity and rice

production will be described in another report.
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FIGURE 4.4: Box plot of rice yield of investigated paddy fields from
2016 to 2019. The number of samples was 29,34,19 and 30 in
2016,2017,2018 and 2019,respectively.

The soil EC in the non-vegetated area (2.6 ± 3.5 dS m−1) was significantly higher

than that in the vegetated area (0.16 ± 0.11 dS m−1). Salt crusts were clearly ob-

served in RGB images in 2018 and 2019, although the images were taken just at the

beginning of the dry season (white areas in 4.5. The scarce precipitation in Octo-

ber in both years might enhance the appearance of salt crusts earlier in the season.

Non-vegetated areas occupied 11.4%, 14.6% and 10.0% of the analyzed area in 2016,

2018 and 2019, respectively. No clear tendency towards expansion of the non- veg-

etated areas was observed. The non-vegetated areas also did not show clear as-

sociations with precipitation or soil EC in rice-planted fields. Some non-vegetated

areas expanded from 2016 to 2019, while others were reduced (4.7). The reduction of

non-vegetated areas may suggest that the soil EC was partly alleviated by non-rice

planting. The localized differences in the trend of non-vegetated areas were likely

affected by groundwater. EC of ground water in the area was high and stable (44.8

± 1.2 dS m−1 from July 16, 2017, to October 6, 2018; data retrieved from [139]) and

shallow (–46 ± 8 cm, from August 1 to October 6, 2017; –196 ± 9 cm from February

1 to April 30, 2018; –75 ± 10 cm from August 1 to October 6, 2018), being the major

resource of salinity.
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FIGURE 4.5: RGB images for the investigated areas at rice harvest in
2016,2018 and 2019.

FIGURE 4.6: Non-vegetated/vegetated classification for the
investigated areas at rice harvest in 2016, 2018 and 2019. Red areas
are classified as non-vegetated areas. Yellow and light blue
rectangles are areas shown in Figure 7.
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FIGURE 4.7: Changes in vegetation in RGB images in 2016,2018 and
2019 representative areas indicated in Figure 6 (above:yellow
rectangle;below:light blue rectangle).

Some studies evaluated salinity-affected areas by utilizing satellite data [153].

The utilization of satellites is quite effective for wider regions, especially for eval-

uating large and severe salinity-affected areas, such as class1 areas. However, this

study showed that quite small pieces of non-vegetated area changed from year to

year, suggesting that the threshold of whether a plant can or cannot grow fluctu-

ates locally and yearly. Accordingly, quite a small change that could be evaluated

by UAV may be important for evaluating salinity levels in terms of rice produc-

tion. The authors tested satellite data to directly evaluate soil ECe, which is quite

important for evaluating the effects of salinity on crop production [154]. The com-

bination of soil chemical properties based on satellites with vegetation evaluations

based on UAVs would be an effective tool to evaluate the effects of salinity on crop

production in wider regions. [139] assessed the climate change impact of soil salt

accumulation by simulating soil water content and predicted that soil ECe would

increase in the future. Since this study did not suggest an increasing trend in soil EC

or non-vegetated areas, monitoring for longer durations would be necessary. Since

the trends of non-vegetated areas differed spatially, the evaluation of groundwater

movement is essential for predicting salinity levels at each location. The observation

that some areas had vegetation following a lack of vegetation imply that salinity
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levels can be alleviated by controlling groundwater, such as through reforestation

[155].

4.4 Conclusion

This study conducted field investigation to reveal present conditions in severely salt-

affected paddy field areas where some farmers had abandoned their paddy fields

due to the severe salinity. The variation in precipitation may be one of the major

factors affecting salinity conditions. However, while soil EC in the rice planted fields

apparently varied with precipitation, the effects on rice yields were not so obvious.

Standing water provably alleviated salinity damage.

Since some fields produced quite low yields, an increase in the abandonment

of fields is anticipated in the future. Analysis of non-vegetated/vegetated areas

were conducted to evaluate severe salt-damaged areas and to forecast the future

availability of areas for rice cultivation. However, increases in non-vegetated area

were not explicitly observed because some areas changed from non-vegetated to

vegetated. The increase or decrease in non-vegetated area geographically varied,

suggesting that groundwater is another factor affecting salinity conditions. Further

investi- gation is recommended to reveal the dynamics of salinity conditions and to

contribute to the improvements in rice production.
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Chapter 5

General

5.1 General discussion

This study assessed soil salinity during the rainy season based on the ECe value. The

findings revealed that the soil’s salinity condition during this period did not align

with the salt-affected classifications provided by local institutions in Thailand. This

observation echoed previous research [156], which highlighted significant variations

in salinity levels between dry and wet conditions, attributed to substantial salt con-

tent in the subsurface soil solution and water dissolution. Within the study area cat-

egorized as classes 2 to 4 by LDD, soil salinity displayed intricate patterns during the

unusually low rainfall year of 2018. Notably, salinity conditions in the severely salt-

affected class 2 area were significantly higher than those in the slightly salt-affected

class 3 area, consistent with LDD’s salt-affected classification. In class 2, ECe values

ranged from 2 to 13 dS m−1, whereas in class 3, they ranged from 0.5 to 5 dS m−1. In-

terestingly, abundant rainfall had a leveling effect on salinity conditions, with no sig-

nificant differences among the classes. In class 4, the ECe value was higher than that

in the severely salt-affected class 2 area. This outcome may be attributed to saline

water irrigation in the rice paddies of class 4 in 2019 [patcharapreecha1989studie].

As a result, given our discovery that the ECe value in non-vegetated areas is sig-

nificantly higher than in vegetated areas, in line with prior research indicating that

salinity conditions can be indirectly detected through vegetation growth [157], we

made the assume that non-vegetated areas represent severely salt-affected zones,

while vegetated areas are relatively less affected by salt. In this study, we employed
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a machine learning method known as Support Vector Machine (SVM) to distinguish

between vegetation and non-vegetation areas using RGB images collected by UAVs.

This approach offers an economical and swift means of assessing salinity conditions

within small, localized regions. Analyzing the changes in non-vegetated areas over

time, we observed that there was no consistent expansion trend in salinity over the

years, contrary to findings in a previous study [158]. Therefore, it appears impera-

tive to conduct longer-term monitoring. In northeastern Thailand, the average farm

size tends to be relatively small, often comprising several smaller subunits for var-

ious purposes. Although numerous researchers have attempted to create salinity

maps, their assessments have typically focused on visualizing regional-scale spatial

variations in salinity. Such an approach falls short in terms of formulating effective

management plans for these small, cultivated fields. Given the scarcity of salinity

distribution maps specific to small farms during the rainy season [159], our study

represents a fundamental step toward gaining a better understanding of the vari-

ability in soil ECe. Subsequently, it paves the way for the development of strategies

to manage salt-affected soils in precision agriculture, particularly in class 2, where

we observed a wide range of salinity levels.

The adverse effects of salinity on rice yield have led farmers to consider aban-

doning rice cultivation [160]. However, our investigation has revealed that the neg-

ative impact of salinity is not as severe as initially perceived from our images. Our

findings indicate that rice yield was only reduced in class 3 during the year 2018,

which was characterized by very low soil moisture content and relatively low salin-

ity levels. Interestingly, we observed that in some instances, higher rice yields were

achieved even under conditions of elevated salinity, suggesting that drought may be

the primary limiting factor for rice yield in our study area. This observation aligns

with a previous study by Jongdee [161], which reported yield losses ranging from

55% to 8% due to drought in different locations in northeast Thailand. Addition-

ally,[162] documented an overall 56% reduction in rice production during drought

years in the same region.Although we did not identify a significant linear relation-

ship between salinity and rice yield, it is evident that rice yield is adversely affected

when salinity levels are quite high. Furthermore, there is a tendency for rice yield

to decrease with increasing salinity levels. [163] similarly noted that approximately
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20% of rice yield reduction was attributable to salinity, while a substantial 87% re-

duction was linked to drought. Given our discovery that salinity conditions can be

alleviated by standing water during abundant rainfall years, effective water man-

agement is critically important for rice cultivation, especially in saline paddies. Fur-

thermore, the use of on-farm resources such as cow manure, compost, and green

manure represents environmentally sensitive approaches to mitigating soil salinity.

Some researchers have also proposed raising the height of paddy borders as an ef-

ficient strategy for enhancing rice yield under saline conditions, as this enables the

continuous submergence of rice paddies through rainwater capture [164].

The intricate nature of the paddies presented a formidable challenge when it

came to precisely estimating rice yield and assessing salinity conditions. Neverthe-

less, the application of UAV technology has proven to be a powerful tool in sur-

mounting this challenge. In our study, we harnessed this technology to great effect.

By analyzing the vegetation index derived from RGB images, we uncovered a re-

markably strong and significant linear relationship with rice yield, particularly dur-

ing the crucial heading and flowering stages of growth. This revelation suggests that

rice yield can be accurately estimated well before the actual harvest, a development

of considerable importance for agricultural planning and management.

5.2 General conclusion

This study has provided valuable insights into the dynamic interplay between soil

salinity, rice yield and the application of UAV in northeast Thailand. We began by in-

vesting soil salinity during rainy season, assessed through the ECe value, and found

that it was not always similar with salt-affected classification by LDD. Climate fac-

tor especially rainfall should be considered when we classify soil salinity condition.

Moreover, we used vegetation growth as an indirect indicator of salinity conditions

with SVM method and RGB images collected by UAVs. This cost-effective method

allowed us to assess salinity in small farm. Finally, we investigated rice yield lim-

itation factors in study area, and proved the relationship between vegetation index

from UAV RGB images and rice yield, allowing for accurate preharvest yield esti-

mation—an invaluable contribution to agricultural planning and management.
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