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Abstract

The market for investment trusts of large-scale portfolios, including in-
dex funds, continues to grow, and high-dimensional volatility estimation
is essential for assessing the risks of such portfolios. However, multivari-
ate volatility models suitable for high-dimensional data have not been
extensively studied. This paper introduces a new framework based on the
Spatial AR model, which provides fast and stable estimation, and demon-
strates its application through simulations using historical data from the
S&P 500.

1 Introduction

In high-dimensional multivariate GARCH modeling, the paramount challenge is
to construct a model that is both expressive and feasible in terms of the number
of parameters that can be effectively estimated. Many models impose strong
constraints to facilitate estimation; however, these constraints do not necessarily
reflect the true nature and volatility characteristics of the actual data.

Traditionally, volatility matrix estimation has been attempted using two
main approaches. The first approach involves a natural extension of ARCH
by Engle [1] and GARCH models by Bollerslev [2], including the VECH model
by Bollerslev, Engle, and Wooldridge [3], BEKK model by Engle and Kroner
[4], and Constant Conditional Correlation (CCC) model by He and Teräsvirta
[5]. The second approach attempts to simplify modeling by reducing the orig-
inal data, with Factor-ARCH by Ding [6] and Orthogonal-GARCH models by
Alexander [7] being prime examples.

However, each approach has its problems when estimating the volatility of
high-dimensional data involving hundreds of dimensions. In models like the
VECH and BEKK, the number of parameters increases exponentially with di-
mensionality, making estimation exceedingly difficult. Even more parsimonious
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models, such as the CCC process, are highly restrictive. Its relaxed counterpart,
the Dynamic Conditional Correlation (DCC) model by Engle [8], frequently in-
volves the cumbersome computation of large matrix determinants. Additionally,
models utilizing factors often struggle to adequately capture the variability in
high-dimensional data with large sample sizes using only a few factors. More-
over, volatility matrices estimated using a factor model in high dimensions al-
most invariably lack positive definiteness.

This paper introduces a robust and fast method for estimating high-dimensional
volatility matrices using a Spatial Autoregressive (SAR) model combined with
Lasso. Specifically, it focuses on the relationships between variables, removing
conditional correlations with the SAR model before estimating volatility with
the GARCH model. Furthermore, we present a flexible extension to models
utilizing neural networks.

2 SAR + Volatility Framework

2.1 Notation

In the field of multivariate volatility modeling, we consider the volatility matrix
in a context where past information has been observed. Specifically, there is
interest in the conditional covariance matrix at time t, given the information
available up to time t− 1, which is typically denoted by Ft−1. Let rt be a ran-
dom vector representing stock returns at time t. Based on this understanding,
multivariate volatility models are represented as follows:

rt = μ+ εt

εt|Ft−1 ∼ N(0, Vt)

In most cases, μ is assumed to be zero. The primary focus in this area is how
to model Vt

The famous univariate GARCH(p,q) model, which we are going to utilize
later, is described as:

rt = μ+ εt, εt|Ft−1 ∼ N(0, σ2
t )

σ2
t = α0 +

p∑

k=1

αkε
2
t−k +

q∑

�=1

β�σ
2
t−�

This paper utilizes the GARCH model to estimate Vt, elaborating on how the
model accounts for the dynamic nature of volatility based on historical data and
how it can be adapted to capture the complexities of multivariate time series. By
employing the GARCH model framework, we aim to provide a robust method
for estimating the conditional variances that are crucial for accurate financial
forecasting and risk management.
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2.2 SAR GARCH

The key assumption of the Spatial Autoregressive GARCH model is the follow-
ing:

Assumption 1 The structure of conditional correlations among stocks can be
represented by the SAR model, and these relationships are sparse:

rt = Wrt + ut, Wii = 0 (1)

It would be intuitively natural to assume that any given stock is related to
a few others while unrelated to many. Under this assumption, we can estimate
volatility for each univariate separately, significantly reducing the number of
parameters.

Assumption 2 The residuals of the SAR model ut are conditionally and cross-
sectionally uncorrelated, and follow a GARCH process.

ut|Ft ∼ N(0, St), St,ij = 0 if i �= j (2)

St,ii = α0 +

p∑

k=1

αku
2
t−k,i +

q∑

�=1

β�St−�,ii (3)

For estimating the volatility of residuals, the GARCH model is utilized. If
the volatility of the residuals is correctly estimated, the conditional covariance
matrix of {rt} can be obtained as follows:

Vt = (I −W )−1St[(I −W )−1]�

2.3 Extension Using Deep Learning

Here, we introduce a method for extending the SAR+GARCH framework using
deep learning. In order to capture the complex dependencies of time series,
LSTM(Hochreiter and Schmidhuber [9] Gers, Schmidhuber, and Cummins [10])
is employed. Let NN be a neural network we employ. Then the formulation of
the extended model using deep learning is as follows.

rt = Wrt + ut, Wii = 0

ut|Ft−1 ∼ N(0, St), St = diag(st)

st = sgarcht � snnt

sgarcht = α0 +α1 � ut−1 +α2 � sgarcht−1

log snnt = NN(
ut−1

sgarcht−1

)

The key idea here is that the important factors of volatility fluctuations can
be captured by the GARCH model, and neural networks are used as an aid to
capture nonlinear dependencies. GARCH model is extremely effective, and we
utilize it to the fullest extent.
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Figure 1: Brief Description of the Neural Network Structure

Figure 1 describe the structure of NN . In the neural network, the input is
first compressed to an appropriate dimension using two Affine Layers. Then,
complex dependencies are captured using an LSTM Layer, followed by another
Affine Layer to restore the dimensions to their original state.

3 Estimation

In this study, we repeatedly predict the volatility of the following day using
one month’s worth of data. Then we minimize the negative log likelihood. For
simplicity, we omit the constant term included in the negative log likelihood
and double its value as bellow.

Loss =
1

T

T∑

t=1

u�
t S

−1
t ut − 2 log |I −W |

Furthermore, we utilize mini-batch training to seek global minimum, where the
optimization method employed is Adam.

4 Empirical Example

To evaluate the performance of the proposed model, we conduct the experiments
using price data of 331 stocks included in the S&P 500. The test period from
June 22, 2018, to April 2, 2021, is divided into batches of 20 samples along
the timeline. Training is conducted using samples from T days immediately
preceding each test period, and losses of one to five periods ahead prediction
are calculated to compare multiple models. As benchmark models, we adopt the
Factor Model + POET(See Fan, Fan, and Lv [11], Fan, Liao, and Mincheva [12]
and Fan, Liao, and Mincheva [13] for the details.) and the univariate GARCH
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model. To observe the differences caused by the sample size of the training data,
experiments are conducted in three scenarios: T=250, T=1000, and T=3000.

Figure 2, Figure 3 and Figure 4 describe the mean loss of each test period
in each scenario. Here, SARNN refers to the neural network-based extended
model of the SAR GARCH model.

In the scenarios with T=250 and T=1000, both the SAR GARCH model
and the SARNN model outperform the two benchmark models. Under these
scenarios, the one-step-ahead forecasts of the two proposed models are almost
identical in performance. However, for the five-steps-ahead forecast, SARNN
shows exceptionally good performance. During shocks, sudden high-frequency
trading creates complex dependencies between stocks and past prices, making
multiple stepsd ahead predictions extremely challenging. However, the nonlin-
earity of SARNN is thought to have helped capture these relationships.

In the scenario with T=3000, the performance of the one- step-ahead fore-
cast remains good for both models. However, for the five-steps-ahead fore-
cast, SARNN’s performance significantly deteriorated during the shock. This is
thought to be due to the fact that there were no major shocks in the past 3000
samples, leading the highly expressive SARNN to overlearn the dependencies
during ordinary period and neglect the complex dependencies necessary for the
five-steps-ahead forecast.

5 Conclusion

In this paper, we introduced the SAR + volatility framework as a new method
for high-dimensional volatility estimation. This framework is a fast and stable
model that does not require frequent matrix inversion calculations during opti-
mization iterations. Additionally, the utilization of Lasso and neural networks
allows for stable predictions even when the sample size is not sufficiently large
compared to the dimension of the inputs.

The SAR GARCHmodel and its extension using neural networks, the SARNN
model, demonstrated superior performance over benchmark models in simula-
tions. Furthermore, it was found that with proper setting of the training data,
the SARNN model significantly outperforms others in multi-steps-ahead fore-
casting during financial shocks. This is believed to be due to the nonlinearity
of neural networks, which contributes to capturing the complex dependencies
between stocks or with past returns during shocks. We believe that the results
of this research can be applied to various issues, including the risk assessment
of large-scale portfolios, and will contribute to the development of the field of
finance.
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(a) One step ahead forecast (b) Five steps ahead forecast

Figure 2: Mean loss of each test period with T=250

(a) One step ahead forecast (b) Five steps ahead forecast

Figure 3: Mean loss of each test period with T=1000
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(a) One step ahead forecast (b) Five steps ahead forecast

Figure 4: Mean loss of each test period with T=3000
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