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Abstract

The field of prosthetics has witnessed remarkable progress in recent years. Advances
in robotics and sensor technologies have ushered in the era of bionic limbs, exem-
plified by the modular prosthetic limb. These prosthetics not only mimic lifelike
appearances but also feature numerous degrees of freedom (DOF), enabling them to
replicate nearly all human arm and hand movements effectively. This represents a
significant advancement for individuals with above-elbow or more severe upper limb
amputations. However, the challenge persists in effectively controlling the multiple
joints of a prosthetic arm, as the full potential of these functions cannot be realized
unless users can control the device easily, quickly, and reliably. This discrepancy
results in a growing gap between control methods and hardware improvements.

The lack of controllability is particularly pronounced in the case of transhumeral
amputees, who experience the loss of all forearm and wrist muscles. Furthermore,
they encounter the intricate challenge of managing the additional DOF associated
with the elbow joint. This is crucial for accurately positioning the hand and ori-
enting it to grasp objects, as well as coordinating the movements of various arm
joints during reaching activities. Compounded by the constraint of providing elec-
tromyography (EMG) signals solely from the upper arm, transhumeral amputees
face hurdles in utilizing the myoelectric control approach for a multi-functional pros-
thesis. While targeted muscle reinnervation (TMR) offers a potential solution by
transferring residual arm nerves controlling missing distal muscles and joints to com-
partments of remaining muscles, this introduces complexities. The resulting control
becomes slow, sequential, and counter-intuitive, primarily due to the unavailability
of physiologically appropriate muscles in the process.

Advanced practices such as osseointegration, brain-computer interface (BCI),
and neuromusculoskeletal implants have emerged to enhance the controllability that
transhumeral amputees can exert over their prosthetic devices. These innovative ap-
proaches integrate surgical reconstruction procedures with implanted electrodes and
a long-term stable neuromusculoskeletal interface to attach the prosthetic arm to
the body directly. These techniques hold the potential to offer superior control and
intuitive sensory feedback through direct nerve stimulation. However, the clinical
implementation of these efforts faces challenges due to the absence of a safe and
long-term stable bidirectional interface between implanted electrodes and external
prosthetic limbs. Besides requiring highly invasive and specialized surgeries, optimiz-
ing these strategies necessitates advanced signal processing techniques, along with
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the development of decoding and classification algorithms for sensorimotor signals.
The recruitment of willing subjects and extensive training requirements present yet
another limitation.

This thesis presents three contributions centered on the prediction of elbow joint
motion during arm-reaching movements for transhumeral prosthesis control, with
the goal of bridging the gap between control methods and hardware advancements.
Our approach involved using residual shoulder motion-based, non-invasive, intuitive,
and easily acquired joint angular data signals as control input and training data for
our predictive models. We harnessed the predictive capabilities of artificial neural
networks (ANNs) to automate elbow joint motion during target-reaching tasks.

In the initial study of this thesis, the aim was to enhance the control of tran-
shumeral prostheses by concentrating on a synergistic approach for the simultaneous
control of two DOFs of the elbow joint, with a focus on transferability across mul-
tiple users. For transhumeral amputees, a highly accurate and transferable predic-
tive model is imperative, as individual calibration or personalized learning methods
prove ineffective due to the inability to provide the necessary data. We introduced
synergy-space neural networks as a transferable model for predicting elbow joint
motion based on residual shoulder motion. Synergies, observed to be repeatable
and shared across subjects in similar tasks, were systematically analyzed for inter-
joint coordination during reaching movements. We then explicitly incorporated only
the most significant synergy components in the learning process, facilitating more
precise and efficient training of the ANN and leveraging the shared nature of these
synergies to enhance model transferability. The implementation and evaluation of
this method were presented, including discussions on its learnability and robustness
for transferability to amputee users. The study involved 14 able-bodied subjects,
focusing on arm-reaching movements in the horizontal plane. We tested 36 training
strategies for each of the 14 subjects, comparing the synergy-space and conventional
neural network learning approaches. The results were evaluated using Pearson’s
correlation method, root mean square error (RMSE), and the analysis of variance
(ANOV A) test. The offline cross-subject analysis indicated that the synergy-space
neural network exhibited approximately 40% less variation in the RMSE, demon-
strating its superior robustness to inter-individual variability. This finding holds
promise for the development of a synergistic and generalized control strategy appli-
cable to transhumeral prostheses and other rehabilitation applications.

As the second contribution of this thesis, we introduced an innovative motion-
cloning strategy using deep reinforcement learning (DRL). Given that the first part
of this thesis relied on ANNs to identify and model the synergistic coordination be-
tween the shoulder and elbow joints, a critical challenge is associated with obtaining
sufficient human motion data collected from different subjects across various activ-
ities of daily living (ADL) and conditions. For instance, changes in target height
can alter reaching motion, but conducting human experiments for all conditions
is impractical. Leveraging the demonstrated ability of DRL algorithms to gen-
erate human-like synergistic motion in humanoid agents for redundancy handling
and movement optimization, we introduced a DRL-based motion cloning framework
utilizing a 7-DOF robot arm model in a mujoco simulation to generate synthetic
motion data. This study unveiled the potential of synthetically generated motion



data using a DRL-based simulation to accurately replicate human-like synergistic
arm movements and its effectiveness in training predictive models capable of accu-
rately predicting actual human arm movements. We explored various configurations
of training motion data, including synthetic, real, and hybrid datasets, to train dif-
ferent ANNs and evaluated their performance by comparing predicted elbow joint
motion with real motion data recorded from human subjects during reaching move-
ments. Through our analysis, we confirmed that synthetic motion data closely
resembles the characteristics of motion data obtained from human subjects and ef-
fectively captures the synergistic patterns of arm-reaching movements, enabling the
training of an accurate predictive model. Our evaluations affirm the ability of the
ANN trained using synthetic motion data to predict natural elbow motion across
multiple subjects accurately. Moreover, motion data augmentation using synthetic
motion data can not only supplement limited data availability but also diversify the
training data, contributing to improved generalization. These findings have signifi-
cant implications for creating comprehensive synthetic motion dataset resources for
diverse arm movements and advancing strategies for automated prosthetic elbow
motion.

In the final phase of this thesis, we introduced a framework for the real-time
prediction and evaluation of elbow joint motion during extensive arm-reaching ac-
tivities. Given the challenges associated with clinical trials on amputee subjects,
we developed a virtual reality (VR)-based platform that enables subjects to inter-
act with a 3D workspace and perform reaching tasks with the full range of arm
motion. Subjects can conveniently wear sensors on their body using adjustable
straps to actively engage with the virtual workspace, controlling the movements
of a humanoid actor to perform arm-reaching tasks without the need for any spe-
cial preparations. Our experiments and validation were conducted in the virtual
workspace, initially employed for data acquisition from healthy human subjects and
later to verify the efficacy of the trained ANN predictive models. Arm-reaching
motion data from six healthy subjects were used to train ANN models, and their
performance was initially assessed offline across all subjects to test motion predic-
tion accuracy and robustness to inter-individual variability. In the conclusive phase,
we validated the performance of the predictive models on an amputee participant,
a right-arm transhumeral amputee, who successfully executed reaching movements
in the virtual workspace. Simultaneously, the ANN model predicted the motion of
his amputated elbow in real-time. Despite the participant’s lack of prior experience
with the task or familiarity with the apparatus, our synergy-spaced approach-based
ANN predictive model enabled the successful execution of reaching movements to-
ward all target points in the virtual workspace. This successful validation of an
amputee subject performing reaching movements toward target points in a virtual
workspace demonstrates the potential efficacy of our approach. These findings have
significant implications for creating comprehensive virtual workspaces with diverse
arm movements, covering various activities for validating and advancing strategies
in transhumeral prosthesis control.



Dedication

In loving memory of my dear father...

To my beloved parents and cherished siblings. Thank you for your
unwavering love, guidance, and support at every step of my journey.
With gratitude for the countless moments of encouragement and the

freedom to follow my heart, I am forever grateful.

Inna Lillahi wa Inna Ilayhi Raji’un. [2:156]
Indeed we belong to Allah, and verily to HIM we shall return. [2:156]



Contents

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Motor Synergies . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.2 Residual Limb Motion Strategy . . . . . . . . . . . . . . . . . 10

1.1.3 Artificial Neural Network (ANN) . . . . . . . . . . . . . . . . 11

1.1.4 Deep Reinforcement Learning (DRL) . . . . . . . . . . . . . . 16

1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2.1 General Objectives . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2.2 Specific Objectives . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3.1 Human Motor Synergy Studies . . . . . . . . . . . . . . . . . 22

1.3.2 Automatic Prosthetic Elbow Control Strategy Using Residual
Limb Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.3.3 Motor Synergy in Deep Reinforcement Learning . . . . . . . . 27

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2 Synergy-Space Recurrent Neural Network 32

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.1.1 Transfer Learning Framework for Transhumeral Amputees . . 33

2.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.1 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . 35



Doctoral Thesis Contents

2.2.2 Experimental Protocol . . . . . . . . . . . . . . . . . . . . . . 37

2.2.3 Kinematic Synergy Extraction . . . . . . . . . . . . . . . . . . 38

2.2.4 LSTM Training . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.5 Analysis Strategy . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3.1 Personalized LSTM Models Evaluation . . . . . . . . . . . . . 47

2.3.2 Cross-Subject Evaluation . . . . . . . . . . . . . . . . . . . . . 49

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 Deep Reinforcement Learning-Based Synthetic Motion Cloning 54

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.1 Experiment Protocols . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.2 Human Subject Motion Data Acquisition: Real-Data . . . . . 56

3.2.3 Deep Reinforcement Learning (DRL)-Based Motion Cloning:
DRL-Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.4 Convolutional Long Short-Term Memory (CNN-LSTM) Neu-
ral Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.5 Analysis Strategy . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3.1 Motion Data Augmentation: Cross-Subject Evaluation . . . . 70

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 Real-Time Prediction of the Elbow Joint Motion During Extensive
Arm-Reaching Activities 75



4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.1 Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.2 Data Acquisition and Experiment Protocols . . . . . . . . . . 77

4.2.3 Synergy-Space Neural Network Training . . . . . . . . . . . . 79

4.2.4 Analysis Strategy . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3.1 Personalized Models Evaluation: 3DOF vs 6DOF . . . . . . . 85

4.3.2 Generic Models: Off-Line Evaluation . . . . . . . . . . . . . . 88

4.3.3 Generic Models: Validation on Amputee User . . . . . . . . . 91

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 Conclusion and Future Work 97

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Bibliography 109

A Achievements 110

Achievements 110

A.1 Journals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

B Copyright Notice 111

Copyright Notice 111

Acknowledgements 112



List of Figures

1.1 Levels of upper limb amputations [3]. . . . . . . . . . . . . . . . . . . 2

1.2 The Modular Prosthetic Limb, human like robotic arm having numer-
ous sensors in the upper arm and hand with 26 DOF and 17 DOC
[13]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 The experimental setup, as illustrated in [44], encompassing five dis-
tinct sectors (frontal, right, left, horizontal, and up) for upper limb
reaching tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 An unrolled simple recurrent neural network [55]. . . . . . . . . . . . 13

1.5 Vanishing gradient problem in recurrent neural network [55]. . . . . . 14

1.6 The repeating module in an LSTM with the “gates” mechanism [56]. 14

1.7 The Fundamental Reinforcement Learning (RL) framework, where
an agent engages with the environment through interactive actions.
Consequently, the agent obtains feedback about the environmental
state triggered by its actions, along with rewards for each action,
facilitating the adaptation of the agent’s behavior over time. . . . . . 16

1.8 Experimental results from [60]. Hand trajectories from start to end-
point (A) and phase portraits showing the relationship between shoul-
der and elbow joint angles (C) for infants at 19 (a), 29 (b), and 42
(c) weeks of age. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.9 Experimental setup and conditions in [37] for fast-reaching movement
control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.10 Synergy analysis of human walking as performed in [39]. In (A), the
weights Wi represent spatial synergy components, and the basic pat-
terns are denoted as activation signals Ci, as explained in preceding
sections. (B) illustrates various walking phases in a baby. . . . . . . . 24

1.11 The experimental setup in [53] for pointing at various targets provided
by WAM arm in 3D. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25



List of Figures Doctoral Thesis

1.12 The experimental setup in [64] for reaching movements with initial
and final postures towards the target with the ME-mode ( myoelectric
control) and with the A-mode (automatic elbow control). . . . . . . . 26

1.13 Simulated robotic agent configurations from [65]. The left arm rep-
resents vertical tracking for a 2-D line using a 3-DOF planar arm,
while the right arm represents horizontal tracking for 3-D circular
trajectories using a 7-DOF arm. . . . . . . . . . . . . . . . . . . . . . 28

1.14 Experimental simulation results from [65] presenting R2 accuracy
curves for all checkpoints are overlaid in different colors, depicting
performance under both DRL and PDRL control. . . . . . . . . . . . 28

1.15 Illustration of the joint synergies extraction process in [40] utilizing
PCA decomposition on action signals (blue) obtained from the policy
π at specific training checkpoints. In this example, three spatiotem-
poral synergies are depicted by the matrices W1, W2, and W3, along
with their corresponding activation coefficients C1, C2, and C3. The
linear combination of Wi and Ci results in the reconstruction of the
action signals (red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1 Illustration of the idea of this study: (a) a simplistic representation
of direct estimation method; (b) the proposed synergy-space neural
network method. Here, SHθx, SHθy, and SHθz are the shoulder
kinematics, and FAθx and FAθy represent the forearm orientations.
The PCA blocks symbolize the process of synergy extraction, where
W represents the synergistic components and C is the correspond-
ing activation signal matrix. The predictive model is the trained
RNN that outputs the predicted activation signals Cp, with the cross-
operator representing the matrix multiplication of the incoming values. 34

2.2 Neuron pro sensor placements for capturing the required motion data:
(a) subjects wearing neuron sensors; (b) green spots marking the
placements of the sensors for the upper body mode of neuron pro
because only arm movement data are required. . . . . . . . . . . . . . 36

2.3 Experimental setup for the target reaching tasks: (a) target grid with
a subject’s right hand at the start point; (b) complete experimental
setup for the target reaching tasks. . . . . . . . . . . . . . . . . . . . 37

2.4 The first five rows represent the shoulder and elbow joints’ angular
values normalized between −1 and +1. It comprises the source data
(solid black curves) of subject one and its reconstructions using all five
synergies (red dotted curves) and only two synergies (green dotted
curves). The last two rows represent the corresponding activation
signals C (C1 and C2 in the case of two synergies). . . . . . . . . . . 39



Doctoral Thesis List of Figures

2.5 Example of the kinematic synergies of subject 1. (a) The spatial syn-
ergies extracted from the training data. The notations SHθx, SHθy,
SHθz, FAθx, and FAθy indicate the axis of the degree of freedom.
(b) Bar plot showing the importance of each principal component in
explaining the variance in the source data. . . . . . . . . . . . . . . . 39

2.6 Input dataset creation: 10 previous time-steps data are combined and
provided as the input x(t) to the LSTM model to predict the output
Cp(t) at the current time step t. . . . . . . . . . . . . . . . . . . . . . 41

2.7 Sample of the joint angular value plots of the actual vs. estimated
forearm motions using two synergies, one synergy, and direct estima-
tion learning methodologies for one of the tested scenarios of subject
5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.8 Results of the forearm motion estimations (FAθx and FAθy) for
all tested scenarios for subjects 1, 2, and 8, where each bar repre-
sents the calculated RMSE. The bars are first divided into M1, M2,
and M3 based on the number of LSTM hidden layers in the model.
The golden, blue, and gray bars represent the errors in the estimations
when using two synergies, one synergy, and direct estimation learning
approaches, respectively. The number inside the bar represents the
number of inputs to the LSTM model (Table 2.1), whereas the error
bar represents the standard deviation of estimation error values. . . . 46

2.9 The box plot shows RMSE values for each subject’s cross-subject
evaluation. The box size represents the range of 75% of the val-
ues, and the solid vertical golden line inside the box represents the
median, with the black diamond marker indicating the mean value.
Outliers are represented by circular markers, and the whiskers show
the maximum and minimum values. A smaller box size represents
minor variation in results and better transferability. . . . . . . . . . . 49

3.1 The designed experimental protocol for arm reaching movements in
the horizontal plane: (a) The target points are arranged in a circular
pattern. The center point (red) represents the initial neutral/rest
position, and the outer points (blue) numbered 1 to 8 indicate the
target points to be reached. The arrow depicts the outline of the
desired center-out-center reaching movement to be performed. (b)
An illustration of a subject with the target grid in the horizontal
plane, demonstrating the positions of the target points relative to the
participant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 Experimental setup for capturing arm reaching motion data from hu-
man subjects. (a) A human subject wearing the neuron pro motion
capture system and performing the reaching motion on the target
grid in the horizontal plane, with the desired target point projected
on the front screen. (b) Illustration of axis neuron pro software with
a real-time 3D model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



List of Figures Doctoral Thesis

3.3 The simulated anthropomorphic 7-DOF robot arm and the target
points in the MuJoCo simulation environment showcasing the setup:
(a) Isometric view of the simulated robot arm with the joints and a
description of the DOFs. (b) The simulated robot arm in a neutral
pose, with target points arranged horizontally. (c) The simulated
robot arm tracking a moving point (red) to reach and touch a desig-
nated target point (yellow). . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 CNN-LSTM model architecture. . . . . . . . . . . . . . . . . . . . . . 62

3.5 The Unity 3D simulated environment for estimated motion anima-
tion: (a) Isometric view showcasing the arrangement of target points
horizontally in a circular configuration, with the humanoid actor po-
sitioned in a standing stance. (b) Front view of the humanoid actor
in a neutral pose, with the middle finger’s fingertip at the center
point. (c) Illustration of the humanoid actor’s arm reaching towards
a designated target point (yellow). . . . . . . . . . . . . . . . . . . . . 65

3.6 Confusion matrices illustrating the Pearson’s correlation coefficients
obtained by comparing the motion datasets with the averaged human
motion data from all six subjects. Each confusion matrix presents
Pearson’s correlation comparison for reaching movements toward a
specific target point. The 3-DOF shoulder and 2-DOF elbow joint
angular values (Sx, Sy, Sz, Ex, and Ey) are compared. The correlation
values are displayed within small boxes, with lighter colors (yellow)
indicating stronger correlations and darker colors (green, purple, etc.)
representing weaker correlations. The columns labeled S1 to S6 depict
the comparison with motion data from each subject, while the last
column (DRL) compares the generated synthetic motion data. . . . . 66

3.7 Prediction performance analysis for both the DRL-Model and the
Human-Avg-Model for one of the subjects. The top row illustrates
the elbow pronation–supination angle Eθx, while the bottom row
represents the elbow flexion–extension angle Eθy. The line graph
visually represents the joint angle variation during reaching move-
ments toward each target point. The original joint angles are dis-
played in black, the DRL-Model estimations are shown in blue, and
the Human-Avg-Model estimations are depicted in red. The adja-
cent bars correspond to Pearson’s correlation coefficient values for
each comparison, while the overall RMSE value is depicted in the bar
graph in the last column, with the error bar representing the standard
deviation of estimation error values. . . . . . . . . . . . . . . . . . . . 67

3.8 Bar graph representing the overall RMSE values obtained by com-
paring the estimated elbow joint angular values to the original val-
ues for reaching movements towards all target points, using both the
DRL-Model (shown in blue) and the Human-Avg-Model (shown in
red) across all participating subjects. The error bar represents the
standard deviation of estimation error values. . . . . . . . . . . . . . 68



Doctoral Thesis List of Figures

3.9 Comparison of the target reaching error for motion predictions of the
DRL-Model and the Human-Avg-Model. The polar charts present the
target reaching error for each point across all subjects for the DRL-
Model in blue and the Human-Avg-Model in red, where the radial
axis indicates the scale of the position error measured in centimeters. 69

3.10 Box plot of the RMSE values comparing the predicted and actual
elbow joint angles obtained from the cross-subject evaluation of the
Hybrid-Model in blue and Human-Sparse-Model in red. The box size
represents the range encompassing 75% of the values, with the solid
vertical golden line inside indicating the median. A black diamond
marker denotes the mean value. Circular markers represent outliers;
the whiskers indicate maximum and minimum values. Smaller box
sizes, along with lower mean and median RMSE values, indicate bet-
ter performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1 Virtual Reality (VR) platform architecture: The Neuron Pro system
processes motion data, which is then relayed to the Python module.
The module serves a dual role, saving the data into a file for future
reference and transmitting it to the Unity 3D simulation for real-time
visualization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Experimental Setup for Extensive Arm-Reaching Movements: A hu-
manoid actor sits on a chair in a virtual 3D workspace. Target points
for reaching are denoted by numbered blue spheres, while a small red
sphere indicates the rest/start point. (a) An illustration of the wide
workspace with target points spanning the extensive reaching range
(green-shaded region) for the subject’s right arm movements. (b) An
isometric view of the humanoid actor and the target points in the
virtual workspace. (c) A side view of the humanoid actor with the
right hand in a rest/starting pose. (d) A front view of the humanoid
actor within the virtual workspace. . . . . . . . . . . . . . . . . . . . 78

4.3 Synergy-Space Neural Network training strategy for CNN-LSTM . . . 80

4.4 Performance Analysis of Predictive Models: Comparing the 3DOF-
P-Model and 6DOF-P-Model for one of the healthy subjects. The
top row depicts the elbow’s pronation-supination angle Eθx, while
the bottom row illustrates the elbow’s flexion-extension angle Eθy.
The line graph visually represents the variation in joint angles during
reaching movements toward each target point. Original joint angles
are displayed in black, the estimations from the 3DOF-P-Model are
presented in blue, and the estimations from the 6DOF-P-Model are
depicted in orange. The adjacent bars represent the corresponding
Pearson’s correlation coefficient values for each comparison, with the
overall (RMSE) value displayed in the bar graph in the last column. 87



List of Figures Doctoral Thesis

4.5 The Box Plot Illustrates the RMSE Values for the 3DOF-P-Model
and the 6DOF-P-Model Across All Subjects. The box size signifies
the range encompassing 75% of the values, while the solid horizontal
black line within the box denotes the median, and the black diamond
marker indicates the mean value. Circular markers mark outliers, and
the whiskers extend to display the maximum and minimum values.
Smaller box sizes and lower RMSE values correspond to improved
prediction accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.6 Performance Analysis for Offline Assessment of the Generic Models.
(a) G-Model. (b) G-Model-AVG. The top row depicts the elbow’s
pronation-supination angle Eθx, while the bottom row illustrates the
elbow’s flexion-extension angle Eθy. The line graph visually repre-
sents the variation in joint angles during reaching movements toward
each target point. Original joint angles are displayed in black, the
estimations from the 3DOF-Model are presented in blue, and the es-
timations from the 6DOF-Model are depicted in orange. The adjacent
bars represent the corresponding Pearson’s correlation coefficient val-
ues for each comparison, with the overall (RMSE) value displayed
in the bar graph in the last column. . . . . . . . . . . . . . . . . . . . 89

4.7 Fingertip Tracking Comparison for Offline Assessment of the Generic
Models. (a) G-Model. (b) G-Model-AVG. Each line plot represents
the tracking of fingertip position along the x-y plane toward individual
target points (depicted in green) for each subject. Fingertip track-
ing for the subject’s original motion is presented in black, while that
for the predicted motion by the 3DOF-G-Model-AVG and 6DOF-G-
Model-AVG is shown in blue and orange, respectively. The calculated
Pearson’s correlation coefficient “r ” is visualized as a bar graph ad-
jacent to the plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.8 Modified Virtual Reality (VR) platform architecture for Validation
on Amputee User: The Neuron Pro system processes motion data
and communicates with the Python CNN-LSTM module. The mod-
ule receives the user’s available joint angular motion data, while the
generic CNN-LSTM models simultaneously predict the correspond-
ing elbow joint angles. These predicted angles are then transmitted
to the Unity 3D simulation for real-time reaching movements toward
the target points in the virtual workspace. . . . . . . . . . . . . . . . 91

4.9 Validation with Amputee User: A right-arm transhumeral amputee
actively executing reaching movements towards target points (de-
picted as blue spheres) within the virtual workspace in real-time.
The target point disappears upon contact with the humanoid actor’s
finger. (a) Rest/Starting Pose. (b) Reaching Target Point 2. (c)
Reaching Target Point 4. (d) Reaching Target Point 5. (e) Reaching
Target Point 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92



4.10 Fingertip Tracking Comparison for Real-Time Assessment of the Generic
Models. Each line plot represents the tracking of fingertip position
along the x-y plane toward individual target points (depicted in green)
for the amputee subject. Fingertip tracking for all healthy subjects
averaged motion is presented in black, while that for the predicted
motion by the 3DOF and 6DOF generic models is shown in blue and
orange, respectively. The calculated Pearson’s correlation coefficient
“r ” is visualized as a bar graph adjacent to the plots. . . . . . . . . . 93



List of Tables

1.1 Training loop of the SAC algorithm. . . . . . . . . . . . . . . . . . . 19

2.1 Training Scenarios based on No. of Inputs. . . . . . . . . . . . . . . . 43

2.2 Interpretation of Pearson Correlation Coefficient. . . . . . . . . . . . 44

2.3 Pearson’s correlation coefficients ”r ” for Model M2 with 6 inputs. . . 48

2.4 Descriptive statistics of RMSE values obtained for different learning
methodologies using model M2 scenarios only. . . . . . . . . . . . . . 48

2.5 ANOVA summary table for the results using model M2 scenarios only. 48

2.6 Descriptive statistics of the RMSE values obtained for different learn-
ing methodologies during cross-subject evaluation using model M2
with 6 inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.7 ANOVA summary table for the cross-subject evaluation using model
M2 with 6 inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.8 Post hoc Tukey HSD test results for the cross-subject evaluation using
model M2 with 6 inputs. . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.9 Descriptive statistics of the RMSE values obtained for different learn-
ing methodologies during cross-subject evaluation using model M2
with 2 inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.10 ANOVA summary table for the cross-subject evaluation using model
M2 with 2 inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.11 Post hoc Tukey HSD test results for the cross-subject evaluation using
model M2 with 2 inputs. . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1 Percentage breakdown of sparse models’ cross-subject evaluation per-
formance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



Doctoral Thesis List of Tables

4.1 Percentage breakdown of improvement comparing 3DOF-P-Models
and 6DOF-P-Models. . . . . . . . . . . . . . . . . . . . . . . . . . . 88



Chapter 1

Introduction

As you begin reading, try raising your hand and performing the most unusual
gesture you can imagine. Observe how this simple act requires little effort. Much
like this, we seamlessly execute intricate arm movements in our daily lives, often
without conscious consideration.

For instance, when you are slicing a delicate piece of cake, you effortlessly ad-
just the pressure of your grip on the knife handle. Similarly, when you find a key
about to slip from your grasp just before unlocking a door, you instinctively respond
by tightening your hold. Remarkably, these actions happen without the need for
a conscious thought process such as, ‘The key is slipping; I must tighten my grip,’
or ‘I need to adjust my knife grip for precise slicing.’ This illustrates the intricacy
of the human arm, which possesses a multitude of degrees of freedom, presenting a
fascinating challenge for control. It is a powerful tool for both perceiving and inter-
acting with the environment, embodying a high level of sophistication in facilitating
physical as well as social interactions.

“Amputation" is a medical term that describes the surgical removal of all or a
portion of a limb or extremity, resulting in the absence of that limb. Such procedures
can be necessitated by trauma or diseases. However, it’s important to recognize that
not all instances of limb absence stem from acquired conditions; some individuals
are born with congenital absence or variations. Consequently, we can collectively
refer to this diverse population as individuals with limb absence (LA), encompassing
both those who have undergone amputations and those born with limb differences.

Approximately 2 million Americans, constituting 1 in 200 people, are living
with LA, with an additional 28,000,000 individuals at risk of amputation. The USA
witnesses around 185,000 amputations annually, and this figure is projected to more
than double by 2050 [1]. Among those with LA, roughly 3% are affected by upper
extremity amputations. Recent data highlights that trauma-induced upper limb
loss occurs at a rate of 3.8 cases per 100,000 people. When examining trauma-
related upper limb amputations, the loss of digits, especially a single finger, is the
most prevalent (2.8 cases per 100,000). Beyond this, the distribution of upper limb
amputations follows with trans-radial (47%) and trans-humeral levels (25%) being
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Figure 1.1: Levels of upper limb amputations [3].

the next most frequent, while elbow disarticulations are the least common (2.1%)
[2].

The foremost cause of upper limb amputations, accounting for approximately
80% of cases, is trauma, with factors like traffic accidents being predominant, fol-
lowed by complications stemming from diseases such as cancer, tumors, and diabetes
[4]. The classification of upper extremity amputations encompasses a range of levels,
including forequarter, shoulder disarticulation, transhumeral, elbow disarticulation,
transradial, wrist disarticulation, and transcarpal, illustrated in Figure 1.1. In broad
terms, these can be categorized into two groups: (1) Below-Elbow, also known as
Transradial amputation, affecting the region between the elbow and wrist, and (2)
Above-Elbow, also referred to as Transhumeral amputation, involving the area be-
tween the shoulder and elbow. Regardless of the specific level, the absence of an
upper limb can be profoundly impactful on both the individual and their family due
to its effects on social and physical functioning [5].

Upper limb amputations at any level significantly impede the performance of the
activities of daily living (ADLs), whether at home, work, or in social settings, with
proficiency decreasing as the level of amputation rises. Specialized care is essential
to address the multifaceted challenges presented by the population with upper limb
Absence (ULA). A prosthesis is a device designed to replace a missing body part
or limb, aiming to assist users in performing daily tasks and ultimately enhancing
their overall quality of life.
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1.1 Background

The journey of prosthetic users is defined by the possibilities and constraints of
a device designed to facilitate their ADLs. In particular, perceiving a bionic hand
as a functional and naturally integrated limb is fundamental to encouraging the
consistent use of the device and reducing the risk of abandonment. Research has
delved into understanding the needs of upper limb prosthesis users [4][6][7], seeking
to establish guidelines and enhance current prosthetic solutions based on user sat-
isfaction and their desired ADLs. Broadly, user requirements can be distilled into
intuitive control, user-friendliness, and sensory feedback. Additionally, investiga-
tions have explored users’ proficiency in controlling prosthetic devices [8] and the
development of user-driven prosthetic arm designs [9] tailored to excel in specific
workplace scenarios.

We have witnessed significant advancements in upper limb prosthetic technology,
evolving from the early use of hooks to body-powered mechanical systems and now to
the present era of bio-inspired robotic systems. Remarkable progress has been made,
particularly for below-elbow amputees, with a wide array of advanced prosthetic
solutions available in the market. These range from simple yet robust open-close
gripper designs to sophisticated bionic hands equipped with individually activated
joints for each finger [10], offering precise control to accomplish a multitude of tasks.

Individuals with higher levels of amputation, such as transhumeral amputees,
face a unique challenge in finding prosthetic solutions that can provide them with
a multi-functional upper limb. Thanks to the strides made in robotics and sensor
technologies, we are now capable of developing sophisticated, state-of-the-art upper
extremity prostheses such as the DEKA arm [11] and the Modular Prosthetic Limb
(MPL) [12][13]. Notably, these prostheses not only exhibit a lifelike appearance
(see figure 1.2) but also boast numerous degrees of freedom (DOF). This extensive
range of motion empowers these devices to replicate nearly all human arm and
hand movements effectively, marking a potential breakthrough for individuals with
above-elbow or more severe upper limb amputations.

But the problem is that “Function” does not equal “Functionality”. It is essential
to understand that having an abundance of functions does not necessarily translate
to enhanced functionality. Even the most intricate prosthetic devices, equipped with
numerous functions, might not offer practical benefits to users if they cannot access
and utilize these functions swiftly, effortlessly, and consistently. This gap between
prosthetic hardware’s capabilities and control methods has been widening over the
years, posing a significant challenge for advancements in prosthetic technology.
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Figure 1.2: The Modular Prosthetic Limb, human like robotic arm having numerous
sensors in the upper arm and hand with 26 DOF and 17 DOC [13].

The current challenge lies in bridging the gap between prosthetic devices and
their users. This limitation in control strategies arises from the discrepancy between
the number of control signals an amputee can provide and the available functions in
the prosthesis. Degrees of Freedom (DOF) represent the number of independently
operable functions within a system, while Degrees of Control (DOC) indicate the
number of functions controllable by the user. For instance, consider the Modular
Prosthetic Limb (MPL) with 26 DOF but only 17 DOC. This means that while the
MPL offers 26 distinct joint movements, the user can execute these through just 17
distinct control commands.

In the realm of Myoelectric control, a widely used Electromyography (EMG)-
based approach for prosthetic arms [14], the number of input signals the user pro-
vides is consistently fewer than the DOC. Even the commercially available prosthetic
elbows, such as the Dynamic Arm [15] and the ErgoArm [16], are also controlled
via myoelectric signals. This challenge is even more pronounced for transhumeral
amputees, yielding complex control schemes when they have to control an entire
prosthetic limb. They can only provide EMG signals from their upper arms to man-
age a prosthesis with multiple active degrees of freedom, including a powered elbow,
wrist, and hand.

Advanced signal processing techniques like pattern recognition for EMG signals
have been developed to address these issues. These techniques can identify activa-
tion patterns to classify a greater number of distinct commands based on differences
in muscular activities associated with the same myoelectric control inputs [14][17].
Surgical innovations, such as Targeted Muscle Reinnervation (TMR), have also been
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employed to enhance users’ control capabilities over a prosthesis. TMR involves relo-
cating residual nerves that have lost their function due to amputation to reinnervate
new target muscle sites [14]. While pattern recognition and TMR control schemes
provide transhumeral amputees with improved control over multi-functional pros-
thetic limbs, they often result in slow, sequential, and unnatural control because
the physiologically appropriate muscles are not available. These counter-intuitive
control strategies and limited functionality cause the development of compensatory
strategies and the high rejection rate of these devices [18][19].

For many transhumeral amputees, the challenge of effectively controlling an
active elbow prosthesis is compounded by the need to coordinate reaching tasks,
adding an extra layer of complexity to control schemes. So far, finding an intuitive
and functional control strategy for managing multi-joint prostheses in transhumeral
amputees remains a significant hurdle. Beyond the issue of available residual mus-
cles, myoelectric control faces constraints stemming from factors like skin impedance,
electrode placement, and muscle fatigue. These factors collectively impact the qual-
ity of EMG signals used as control inputs. Thus, relying solely on myoelectric control
strategies seems insufficient. Numerous investigations have explored alternative ap-
proaches, including those based on myokinetic signals [20] utilizing residual kinetic
activity of the limb, ultrasound signals [21], and mechanomyography [22], which
leverages muscle contraction-induced vibrations as control signals. Drawing insights
from the study of the Central Nervous System (CNS) and human motor control
abilities, bio-inspired approaches have also been employed to develop more natural
and intuitive control strategies [23].

When it comes to tasks like target reaching or controlling the prosthetic elbow
joint motion for transhumeral amputees, the ultimate goal is for the prosthetic device
to seamlessly integrate with the human body. The residual limb motion strategy
[24][25] is a promising approach to achieving automatic control of the prosthetic
elbow joint by leveraging the natural coordination between joints. Studies on Joint
Coordination approaches have provided evidence of recurring patterns in joint kine-
matics during grasping or reaching tasks in upper limb movements. For instance,
correlations have been found between elbow flexion and humeral inclination during
reaching [26] and between hand azimuth and movement direction during grasping
[27]. Additionally, research has indicated that coordination in joint kinematics can
vary depending on the task [28][29], suggesting the need to tailor the upper limb
control scheme for different tasks, such as reaching tasks in horizontal and vertical
planes. It’s worth noting that the relationship between human upper limb kinemat-
ics is inherently nonlinear, and there has been promising progress in modeling this
relationship using various Artificial Neural Network (ANN) architectures [30][31][32].

In this thesis, our aim has been to investigate strategies that enhance the intu-
itive control of prosthetic elbows for transhumeral prosthesis users. Our approach
centers around refining the estimation of elbow joint motion through the utilization
of residual shoulder motion, thereby enabling automatic control of the prosthetic el-
bow. The initial study within this thesis delves into the application of synergy-space
neural networks as a promising motion estimation technique for replicating natural
elbow motion. It addresses the challenge of effectively transferring the predictive
model to amputee users. To accomplish this, we have developed a more robust model
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that incorporates Kinematic Synergies and Recurrent Neural Networks (RNNs) to
advance towards a more natural and intuitive control scheme.

In the second study of this thesis, we explored synthetic motion generation to
enhance the predictive models’ performance. We leveraged the powerful learning
capabilities of the deep reinforcement learning (DRL) algorithm to replicate human
arm reaching motions. Our approach addresses the need for extensive human mo-
tion data, encompassing various subjects and activities of daily living (ADL) tasks,
to train these predictive models effectively. To achieve this, we employ synthetic
motion data, which enriches and diversifies the training dataset used for refining
the predictive model when combined with real motion data obtained from human
subjects.

Finally, in the third study of this thesis, we crafted a predictive model tailored
for the real-time estimation of prosthetic elbow joint motion during far-reaching
movements of the arm within a simulated 3D environment.

This section introduces the background of several concepts used in this thesis,
including the motor synergy concept and its calculation, and the residual limb mo-
tion strategy. The knowledge of ANNs and DRL necessary to understand this thesis
is also explained in this section.

1.1.1 Motor Synergies

Human beings possess a remarkable ability to orchestrate intricate and efficient
movements, leveraging the dynamics of their complex musculoskeletal system. The
challenge of controlling and constantly fine-tuning numerous degrees of freedom
(DOF) within this system poses a significant computational hurdle. To navigate
the inherent redundancy in the musculoskeletal structure and generate voluntary
movements, the central nervous system (CNS) must synchronize the activation of
numerous muscles, each comprised of thousands of motor units. This begs the
question: How does the CNS manage the intricacies of this intricate, nonlinear
relationship between adjustments in DOF settings and their resulting effects?

Neuroscience research has firmly established the concept of motor synergies
within the central nervous system (CNS) [33][34][35]. This concept streamlines con-
trol by amalgamating multiple degrees of freedom (DOF), significantly alleviating
the CNS’s computational burden. This concept has several interpretations, but the
most common one involves the CNS employing a considerably smaller set of vari-
ables to govern a large group of muscles. As a result of the co-activation of these
muscles, which employs fewer neural commands, referred to as motor synergies, the
electromyography (EMG) activities of these muscles tend to be both spatially and
temporally correlated, known as Muscle Synergies. Simultaneously, this coordinated
muscle activation fosters a degree of synchronization among closely related joints,
resulting in coupled angular movements in various joints, referred to as Kinematic
Synergies [36].
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Recent findings by d’Avella [37] suggest that the CNS approaches movement
generation and control in a task-dependent manner, signifying that synergies act as
a bridge between task-level objectives (e.g., reaching and grasping an object) and
execution-level commands (e.g., muscle identification and activation) necessary to
achieve those objectives. Consequently, to address redundancy, the CNS identifies
and manipulates the task-relevant degrees of freedom while considering all task con-
straints. This surplus of DOF enables the CNS to flexibly utilize degrees of freedom
that align with the task’s requirements [38], resulting in sophisticated and syner-
gistic motion generation. This may elucidate how humans can naturally execute
complex, energy-efficient movements with minimal conscious effort.

The concept of synergies has played a pivotal role in explaining a wide spec-
trum of motor behaviors, as evidenced by numerous investigations. For instance,
a study in [39] meticulously analyzed locomotor step cycles in neonates, toddlers,
preschoolers, and adults to elucidate the progression from rudimentary to sophisti-
cated movements during development. Their findings showcased the ability to repli-
cate EMG profiles by amalgamating two to four fundamental patterns (i.e., muscle
synergies) encompassing the activity of twelve muscles, reflecting bilateral muscle
activation. Notably, two of these fundamental patterns were consistently identified
across all subjects, indicating that these locomotor primitives persist throughout
development. This suggests a degree of shared synergies among individuals per-
forming similar tasks, potentially valuable in developing a generalized control model
for prostheses using data from able-bodied subjects.

Intriguingly, the authors in [40] took a unique approach by documenting the
emergence of motor synergies in simulated multi-joint robotic agents. In a simu-
lated environment, these agents underwent training to learn running skills via deep
reinforcement learning algorithms and were assessed based on performance-energy
indices. The joint-space synergy analysis of the trained agents revealed the devel-
opment of motor synergies, even though synergy constraints were never explicitly
incorporated into the reward function. These results underscore the inherent energy
efficiency associated with synergistic movements.

Synergies during Human Arm Movements

Daily activities, such as reaching for objects within our immediate surround-
ings, demand a precise orchestration of limb movements. This process of control-
ling directional limb movements involves a series of intricate operations, specifically
sensorimotor transformations, essentially translating the visual information of the
target’s location on the retina into activation patterns for the relevant muscles that
guide the limb toward the target. However, not all of the arm’s mechanical de-
grees of freedom (DOF) are fully engaged during actual movements, like reaching
for and grasping an object. This underutilization is due to the inter-joint coupling
effect caused by the correlated electromyography (EMG) activities of different arm
muscles, commonly referred to as muscle synergies.
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Figure 1.3: The experimental setup, as illustrated in [44], encompassing five distinct
sectors (frontal, right, left, horizontal, and up) for upper limb reaching tasks.

In terms of kinematics, redundancy emerges in human arm-reaching movements
because, for any given hand position, there exists an infinite array of possible arm
postures. Likewise, numerous sets of muscle activation patterns can sustain each of
these arm postures, introducing redundancy at the muscular level. Consequently,
determining the optimal arm posture for a desired hand position exemplifies a re-
dundancy challenge routinely navigated by the central nervous system (CNS). The
CNS often accomplishes this by generating reproducible behaviors, underpinning the
concept of synergies [41]. This underscores the goal-oriented approach of the CNS,
favoring the coupling of DOFs rather than their independent control, ultimately
yielding more natural and energetically efficient motion.

Extensive research efforts have delved into the examination of muscle and kine-
matic synergies within the human arm during a wide spectrum of movements [37][42]
[43]. A particularly comprehensive analysis was conducted by d’Avella in [44], where
they systematically characterized the muscle synergies involved in healthy arm move-
ments across various upper limb reaching tasks encompassing sectors such as the
horizontal plane, upward motions, frontal movements, and both left and right di-
rections within the peripersonal workspace, as depicted in Figure 1.3. Even amid
these highly diverse upper limb movements, it was remarkable that the original elec-
tromyography (EMG) envelopes could be effectively reconstructed using a reduced
set of muscle synergies. Notably, these synergies exhibited a level of repeatability
and were shared, to some extent, among sectors and across different subjects.

In their study [41], the authors conducted an analysis of kinematic synergies ob-
served in various arm postures during unrestricted, natural human arm movements.
This investigation involved the calculation of inter-joint coupling, examining both
untrained and rapid catching movements. In these catching exercises, participants
were instructed to intercept a ball thrown toward them along sixteen different tra-
jectories. Remarkably, the findings revealed that only three synergies were necessary
to effectively capture 90% of the variance in the recorded data, despite accounting
for ten joint angles, including 7 degrees of freedom (DOF) of the arm and 3 of the
shoulder girdle. A similar outcome was also observed in [45], where joint angular
velocities during reaching motions were analyzed.
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These results provide compelling evidence that a reduced number of kinematic
synergies, although potentially sacrificing some precision, can aptly represent and
reconstruct the natural reaching movements of the human arm.

Extracting Synergies

Over the past few decades, extensive research has uncovered motor primitives,
commonly referred to as synergies, at multiple levels, including electromyographic,
kinetic, and kinematic domains. Typically, the identification of these components
has relied on unsupervised learning algorithms such as independent component anal-
ysis (ICA), principal component analysis (PCA), and non-negative matrix factor-
ization (NMF), among others. The formalization of synergy extraction methods has
been presented in works by various authors [46][47][48]. The fundamental process
for extracting synergies can be distilled into the following key steps:

• Data Acquisition and Preprocessing:
Collect and preprocess data during the execution of complex behaviors.

This data can encompass various types, such as EMG activity or joint angles,
depending on whether muscle or kinematic synergies are being investigated.

• Computational Analysis:
Utilize computational techniques like PCA or NMF to discern the set of

synergies inherent in the recorded data.

• Evaluation:
Assess whether combinations of these synergies effectively capture and

replicate the observed data.

Our study employed spatial synergies derived from angular movement data of
the arm’s joints. The concept of inter-joint coordination during human arm reaching
movements suggests that a set of degrees of freedom (DOF) may exhibit simulta-
neous covariations. These movement primitives are known as Spatial Synergies,
assuming that the ratios of signals characterizing different DOFs remain constant
over time [46]. The spatial synergy decomposition is represented as equation 1.1.1,
where xl(t) denotes the source signals of individual DOF at time point t in trial
number l, and N signifies the total number of spatial synergy components. The
variables wn represent the spatial patterns of the kinematic synergies, assumed to
remain consistent across trials, while cln(t) represents the corresponding activation
signals that vary for each trial.

xl(t) =
N∑
n=1

wn · cln(t) + residuals (1.1.1)
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We can represent equation 1.1.1 in a simplified matrix form as 1.1.2 by excluding
the residuals term. In this representation, X represents the source signals,W defines
the synergy components, and C constitutes the corresponding activation signals
matrix.

X = W · C (1.1.2)

For our computational analysis, we employed Principal Component Analysis
(PCA), one of the most extensively utilized algorithms for solving equation 1.1.2.
The central concept behind PCA is to minimize the reconstruction error E, as
defined in equation 1.1.3, concerningW and C, with ∥·∥F representing the Frobenius
Norm. All computations were carried out in Python using the “scikit-learn” library.

E2 = ∥X −W · C∥2F (1.1.3)

1.1.2 Residual Limb Motion Strategy

A promising control scheme for transhumeral prostheses is rooted in the residual
limb motion strategy. This approach capitalizes on the natural relationships between
joints in the human arm to automatically control the prosthetic elbow joint [49].
Upper limb prostheses for transhumeral amputees are designed with numerous DOFs
to mimic the mobility of a human arm. Consequently, these prostheses can execute
a wide range of movements through a myriad of joint configurations, similar to a
healthy limb. However, the challenge lies in selecting the most natural kinematic
solution.

Research into healthy arm movements has revealed that natural motions are
task-centered. Instead of individually controlling each joint or muscle, the empha-
sis is placed on the object or hand’s motion [27]. Furthermore, Studies have also
indicated evidence of coordinated joint movements, particularly the coupling of the
shoulder and elbow joints in the upper limb [50]. Thus, coupling joint motions in
a transhumeral prosthesis to replicate a human-like control strategy holds promise.
The concept was initially introduced in [51], where a mechanical system was devel-
oped to link wrist rotation and elbow flexion to residual limb motion. This demon-
stration illustrated that the residual limb mobility of a transhumeral amputee could
be harnessed to automatically operate the elbow joint.

Establishing the coordination relationship between joints, like predicting elbow
motion based on shoulder kinematics, opens the door to more intuitive control strate-
gies. The function governing elbow motion in relation to shoulder kinematics is in-
herently nonlinear, and various regression tools have been explored to approximate
it. Among these tools, artificial neural networks (ANNs) have consistently shown
their prowess in achieving superior prediction results [30], [52]. However, it’s impor-
tant to note that ANNs demand a diverse and substantial amount of motion data
for effective model training.
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In many studies, camera-based motion capture systems have been employed to
collect training data. However, this approach has limitations in the context of pros-
thetic users, as it is often impractical to use such systems outside a controlled labo-
ratory environment. Previously, goniometers were used for kinematic data recording
[31][32].

Fortunately, the advent of inertial measurement units (IMUs), highly accurate
embedded motion sensors, has opened up new possibilities. These IMUs allow for
the implementation of upper limb coordination-based automatic prosthesis control
strategies without being bound by specific working environments.

1.1.3 Artificial Neural Network (ANN)

Various studies have explored the application of different artificial neural net-
work (ANN) architectures for deciphering inter-joint coordination during human
arm movements. In one instance, the authors in [53] utilized a radial basis func-
tion network (RBFN)-based neural network, while [54] employed a time-delayed
adaptive neural network (TDANN) to estimate distal joint angles. ANNs are com-
putational models inspired by the workings of biological neural networks, allowing
them to “ learn” how to perform tasks or model relationships between variables solely
through examples, without the need for explicit task-specific programming.

A prominent neural network model is the feedforward neural network, which
propagates signals in a unidirectional manner, moving from the input layer through
the hidden layers to the output layer. Each layer comprises interconnected units or
nodes known as “Neurons” or “Perceptrons.” These neurons receive inputs, compute
their internal states, and pass information to the next layer until the final desired
output is computed.

The information flow from neurons in layer l − 1 to the kth neuron in the sub-
sequent layer l can be mathematically expressed as in equation (1.1.4). Here, wlkj
represents the weight associated with neuron j in layer l − 1 for the incoming kth

node in layer l, and bl−1
k is the bias for the kth neuron in layer l − 1. The variable

n denotes the total number of nodes in layer l − 1, and σ represents the activation
function. Activation functions, such as Step, Sigmoid, or tanh, define the output of
a node based on the given input values.

alk = σ(wlk1a
l−1
1 + wlk2a

l−1
2 + · · ·+ wlkna

l−1
n + bl−1

k ) (1.1.4)

Building on this concept, the computational process of a neural network for
generating output in response to a given task can be summarized as follows:

(i) Calculate the weights w for the information received from the previous layer
and add the bias b.

(ii) Apply the activation function σ to the result from step (i) and transmit the
output value to the next layer.
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(iii) Iterate through steps (i) and (ii) until reaching the final output layer.

The above process is commonly referred to as the “ learning” or “training” of the
neural network. During this phase, the neural network automatically determines the
weights and bias parameters necessary for calculating the output. ANNs rely on a
critical component known as the “ loss function” to achieve the best output results.
This function assesses how accurately the neural network models the provided data.
There are several types of loss functions, including mean squared error (MSE), mean
absolute error (MAE), and root mean squared error (RMSE), among others, used
for this purpose.

If the predicted values significantly differ from the actual results, the loss func-
tion outputs a high error value. The neural network seeks to optimize the weight and
bias parameters throughout the learning process to minimize this loss and provide
the most accurate results. This optimization is carried out by various algorithms
and methods that modify parameters like weights, bias, and learning rate. One
commonly used optimization method is gradient descent. It computes the gradient
of the parameters, indicating the direction in which the loss function decreases the
most, and adjusts the parameters accordingly (either increasing or decreasing their
values).

Equations (1.1.5) and (1.1.6) illustrate the updating rules for weights w and
bias b, where η represents the learning rate, and L is the loss function. Since data
is typically randomly selected from the training dataset in mini-batches, stochastic
gradient descent (SGD) is often preferred. Recent developments have introduced
other optimization methods, such as Momentum, Adagrad (an adaptive gradient
method), and Adam, to enhance the training process further.

w = w − η ∂L
∂w

(1.1.5)

b = b− η∂L
∂b

(1.1.6)

The purpose of loss functions and optimization algorithms is to train neural net-
works efficiently. However, they can sometimes lead to a common problem known
as “overfitting.” Overfitting occurs when the loss function for the training dataset
reaches a very low value, but the neural network performs poorly when presented
with new, real-world input data. Essentially, the neural network has memorized
the training examples instead of learning to generalize to novel situations, which
is the primary objective of neural network training. To combat overfitting, various
techniques such as “weight decay” and “dropout” are employed. Dropout, for in-
stance, enhances generalization by randomly deactivating nodes, or neurons, along
with their connections in the neural network layers during the learning process.

12



Doctoral Thesis 1.1. Background

Recurrent Neural Network (RNN)

The feedforward neural network featured a straightforward configuration where
neurons in each layer were weighted, and the resulting sums were passed on to the
next layer. During this forward propagation, no consideration was given to the order
of input data, rendering it unsuitable for processing time-series data. In contrast,
the recurrent neural network (RNN) is specifically designed to handle sequential
or time-series data. The information flow in an RNN still follows a unidirectional
path, similar to a feedforward neural network. However, the key distinction lies in
the consistent structure of each layer within the RNN (as depicted in Figure 1.4).

Figure 1.4: An unrolled simple recurrent neural network [55].

RNN excels in processing data that evolves over time, as it has the ability to
memorize past information and leverage it for accurate predictions. Equation (1.1.7)
represents the general computation for the output in an RNN, where ht denotes the
output at a specific time t, computed based on the input xt and the previous output
ht−1, which encapsulates past information. In this context, h is referred to as the
hidden state, as it retains information from previous states within the hidden layers.

ht = tanh (ht−1Wh + xtWx + b) (1.1.7)

However, there’s a downside to simple RNNs known as the “vanishing gradient
problem.’ This issue emerges as time-series data gets longer. When we’re using
backpropagation, a common method for adjusting the network during training, the
gradient (which guides how much we update the network’s weights) gets multiplied
by the weight matrix each time it flows through an RNN layer.

This multiplication causes the gradient to shrink exponentially. Consequently,
the initial layers in the network don’t get updated effectively during each training
session (refer to figure 1.5).
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Figure 1.5: Vanishing gradient problem in recurrent neural network [55].

Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) neural networks, a unique type of RNN,
excel at handling long-term dependencies. LSTMs incorporate internal mechanisms
known as “gates” (refer to figure 1.6) that effectively manage information flow,
thereby mitigating the vanishing gradient problem. Another crucial distinction is
the presence of a “cell state” (C) within LSTMs, which hold essential information
from the past to the present. This cell state is carried throughout the entire chain
of LSTM layers, and gates are the exclusive means of updating or adding vital
information to it.

Figure 1.6: The repeating module in an LSTM with the “gates” mechanism [56].
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The computation begins with a crucial decision: what information should be
retained in the cell state and what should be discarded. To accomplish this, the
“forget gate” comes into play, employing a sigmoid function that evaluates both the
current input and the output from the previous layer ht−1. This operation yields an
output value between 0 and 1. The result is then multiplied by the existing previous
cell state Ct−1. A multiplication of 1 signifies the retention of all past information,
while a multiplication of 0 effectively erases everything irrelevant.

Next, we determine what information should be updated in the cell state. This
involves combining the output from the “input gate” with the tanh function layer,
which is also calculated based on the current input xt and the previous output ht−1.
The new cell state, Ct, results from the combined effects of the forget gate, input
gate, and the tanh function layer, as expressed in equation (1.1.11).

The entire process is mathematically detailed in equations (1.1.8 to 1.1.11),
whereW represents the weights, b signifies the bias, σ denotes the sigmoid function,
while ft, it and C̃t represent intermediate values.

ft = σ (Wf · [ht−1, xt] + bf ) (1.1.8)

it = σ (Wi · [ht−1, xt] + bi) (1.1.9)

C̃t = tanh (WC · [ht−1, xt] + bC) (1.1.10)

Ct = ft ∗ Ct−1 + it ∗ C̃t (1.1.11)

Ultimately, the output of the current layer, ht, is determined by processing the
filtered cell state. This involves two key steps: first, applying the tanh function, and
then multiplying the result by the output from the “output gate.” The mathematical
representation of this process is provided in equations (1.1.12) and (1.1.13).

ot = σ (Wo · [ht−1, xt] + bo) (1.1.12)

ht = ot ∗ tanh (Ct) (1.1.13)

In this study, our goal is to train a neural network capable of predicting the ex-
tracted activation signals based on shoulder kinematics. Since both of these datasets
are time-series data, it’s crucial to employ a model well-suited for handling such tem-
poral information. Given our discussed characteristics, we have chosen to build our
neural network model using the Long Short-Term Memory (LSTM) architecture.
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1.1.4 Deep Reinforcement Learning (DRL)

In the second chapter of this thesis, we delve into the creation of synthetic motion
data using the Deep Reinforcement Learning (DRL) algorithm. DRL represents the
fusion of deep learning techniques with reinforcement learning theory [57]. It’s a
framework that enables an agent to engage with its environment and adjust its
actions based on the feedback it receives. DRL has successfully solved previously
considered insurmountable problems using traditional approaches [58]. In our study,
we take advantage of the phenomenon of synergy emergence observed during the
DRL learning phase of a humanoid arm agent. This enables us to learn and replicate
human-like reaching movements of the arm. To provide a solid foundation for the
concepts explored in the following chapters, this subsection offers an explanation of
the essential background of DRL.

A reinforcement learning (RL) algorithm can be mathematically described as an
infinite-horizon Markov decision process (MDP), which is formally defined by the
tuple (S,A, p, r). In this tuple, the state space S and the action space A are both
continuous, and we have the state transition probability p : S × A × S → [0,∞),
representing the probability density of transitioning to the next state st+1 ∈ S given
the current state st ∈ S and action at ∈ A. Additionally, r : S × A → R signifies
the reward bestowed by the environment at each transition. The symbol ρπ denotes
the trajectory distribution that results from following a policy π(at|st). The visual
representation of the fundamental RL framework is illustrated in Figure 1.7.

Figure 1.7: The Fundamental Reinforcement Learning (RL) framework, where an
agent engages with the environment through interactive actions. Consequently, the
agent obtains feedback about the environmental state triggered by its actions, along
with rewards for each action, facilitating the adaptation of the agent’s behavior over
time.

In Reinforcement Learning (RL), we employ two fundamental metrics to assess
the utility of states and actions within the agent’s interaction with the environment.
The Value Function denoted as V π(s) and expressed in Equation (1.1.14), quantifies
a state’s value based on the expected Eτ∼π [R(τ)] achievable through a trajectory
τ initiated from the state s, following the policy π. Correspondingly, to gauge
the effectiveness of an action a within a given state s, we utilize the Q function,
Qπ(s, a), as depicted in Equation (1.1.15). The Q function provides insight into the
anticipated return Eτ∼π [R(τ)] stemming from the trajectory τ commencing at state
s and action a while adhering to policy π.
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V π(s) = Eτ∼π [R(τ)|s0 = s] (1.1.14)

Qπ(s, a) = Eτ∼π [R(τ)|s0 = s, a0 = a] (1.1.15)

To derive the accurate value function V ∗(s) and the precise Q function Q∗(s, a),
the Bellman equations come into play. These equations facilitate the refinement of
the value function V π(s) and the Q function Qπ(s, a), as demonstrated in Equation
(1.1.16) and Equation (1.1.17), respectively.

V π(s) = Ea∼π,s′∼P [r(s, a) + γV π(s′)] (1.1.16)

Qπ(s, a) = Es′∼P
[
r(s, a) + γEa′∼π[Qπ(s′, a′)]

]
(1.1.17)

In DRL, the two functions V π(s) and Qπ(s, a) are frequently estimated using
neural networks with specific parameter sets. These estimated functions are denoted
as Vψ(s) and Qϕ(s, a), where ψ and ϕ represent the parameters of their respective
neural networks.

For the research conducted in this thesis, it was imperative to select a DRL algo-
rithm capable of addressing the intricate task of manipulating an anthropomorphic
7-DOF robotic arm agent. In pursuit of this goal, Soft Actor-Critic (SAC) [59] is
chosen being the state-of-the-art DRL algorithm.

Soft Actor-Critic (SAC) Algorithm

SAC stands for “Soft Actor-Critic”, a stochastic DRL algorithm designed to
acquire a policy πθ(at|st) that links an agent’s state to a probability distribution of
actions, from which an action is selected to optimize the objective functions. SAC
is distinctive in its approach: it learns a policy by concurrently maximizing the
expected Q values and the expected entropy of the policy, H(πθ(at|st)), with the
latter weighted by a temperature parameter α, as depicted in Equation (1.1.18).
The entropy of the policy, H(πθ(at|st)), can be mathematically expressed as shown
in Equation (1.1.19).

Jπ(θ) = Est∼ρπθ

[
Eat∼πθ [Qϕ(st, at) + α ·H(πθ(at|st))]

]
(1.1.18)

H(πθ(at|st)) = −log(πθ(at|st)) (1.1.19)

Maximizing the expected entropy, as highlighted in [59], results in a policy that
offers a diverse range of action choices, all leading to roughly equivalent rewards in a
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given state. Their research demonstrates that this enhances exploration, accelerates
learning, and significantly diminishes sub-optimal solutions.

The cost function used to update the Qϕ function is expressed in Equation
(1.1.20), where Vϕ(st) corresponds to the V function outlined in Equation (1.1.21).
Here, ϕtrag represents the parameters for the target networks.

JQ(ϕ) = E(st,at,st+1)∼ρπθ

[
1

2

(
Qϕ(st, at)−

(
r(st, at) + γVϕtrag(st+1)

))2
]

(1.1.20)

Vϕ(st) = Eat∼ρπθ [Qϕ(st, at) + α ·H(πθ(at|st))] (1.1.21)

Lastly, the temperature parameter α is automatically fine-tuned to maintain
the policy entropy, H(πθ(at|st)), at a level approximately equal to the user-defined
target entropy, Htarg. The cost function for adjusting the temperature is formulated
as shown in Equation 1.1.14.

J(α) = Eat∼ρπθ [−αlog(πθ(at|st))− αHtarg] (1.1.22)

The detailed training process of the SAC algorithm is depicted in the algorithm
loop presented in 1.1.
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Table 1.1: Training loop of the SAC algorithm.

Algorithm: Soft Actor-Critic (SAC)
1: Initialize policy parameters θ, Q function parameters ϕ1; ϕ2,

an empty replay buffer D, the update frequency f , the number updates n,
learning rates λQ, λθ, λα

2: Set target parameters equal to main parameters ϕtarg1 ← ϕ1, ϕtarg2 ← ϕ2

3: Repeat
4: Observe the current state s and sample an action a ∼ πθ(·|s)
5: Execute a in the environment
6: Observe the next state s

′
, the reward r, and the terminal signal d

7: Store (s, a, r, s
′,d) in the replay buffer D

8: If s
′
is terminal (d is true), reset the environment state.

9: if iteration iter modulo f then
10: for n times do
11: Sample a batch of transitions, B = (s, a, r, s

′,d) from D
12: Update Q functions by one step of gradient descent using:

ϕi ← ϕi − λQ▽ϕi JQ(ϕi) for i = 1, 2
13: Update the policy by one step of gradient ascent using:

θ ← θ + λθ ▽θ Jπ(θ)
14: Update temperature α with:

α← α− λα▽α J(α)
15: Update target networks with:

ϕtargi ← ρϕtargi + (1− ρ)ϕi for i = 1, 2
16: end for
17: end if
18: until convergence
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1.2 Research Objectives

1.2.1 General Objectives

This research aims to develop and evaluate an intuitive control strategy based
on the residual limb motion approach for the simultaneous control of two DOFs
in a transhumeral prosthesis during reaching movements: the elbow pronation-
supination angle and elbow flexion-extension angle. The thesis comprises three
primary chapters, each with distinct objectives that are interconnected. The gen-
eral objectives are:

• Conduct a synergistic analysis of human arm reaching movements and inte-
grate the most significant synergy components into the learning process of an
ANN to construct the synergy-space neural network. This aims to improve
the predictive model’s transferability for amputee users.

• Develop a motion-cloning framework capable of generating human-like syner-
gistic arm-reaching motions using a physics simulation and DRL-based arm
manipulation. Evaluate the effectiveness of the cloned motion data to enhance
and diversify the limited training data for training the ANN in predicting nat-
ural elbow motion. This addresses the challenge of obtaining sufficient training
data for effective ANN training.

• Create a real-time interactive touching simulation using Unity 3D and inte-
grate head movements into the predictive model for real-time estimation of
the elbow joint motion during extensive arm-reaching activities. The objec-
tive is to improve the predictive model’s performance by incorporating head
movements as an additional input signal.

1.2.2 Specific Objectives

• Investigate motor synergy concepts and review related literature on synergy.

• Explore residual limb motion concepts and relevant research.

• Utilize a non-invasive method to record motion data during reaching move-
ments through an inertial measurement unit (IMU) sensor-based motion cap-
ture system.

• Conduct a kinematic synergy analysis of human arm movements during reach-
ing tasks.

• Apply the residual limb motion approach to predict elbow joint motion during
reaching movements using LSTM neural networks.

• Integrate extracted synergies from reaching movements into the learning pro-
cess to implement the synergy-space neural network.
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• Validate the proposed methodology’s effectiveness in predicting elbow joint
motion and improving model transferability across diverse subjects.

• Examine concepts of Deep Reinforcement Learning (DRL) and explore energy-
efficient motion learning research.

• Develop a DRL-based simulation framework for generating synthetic human-
like arm reaching motion.

• Compare and analyze the similarity between DRL-based synthetic motion data
and actual human subject motion data for similar reaching tasks.

• Showcase the effectiveness of cloned motion data in training ANN models to
accurately predict natural elbow motion across various subjects.

• Demonstrate the benefits of motion data augmentation by combining real and
cloned datasets to enhance model robustness and diversify training data.

• Study Unity 3D and virtual reality (VR) simulation concepts.

• In the final phase of the thesis, create a real-time interactive touching simula-
tion in Unity 3D, utilizing the Neuron Pro motion capture system and Oculus
VR headset.

• Incorporate head movement data as an additional signal to enhance predictive
model training for far-reaching movements.

• Assess the predictive model’s real-time performance in estimating elbow joint
motion during far-reaching activities.

• Highlight the efficacy of the proposed methodology.
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1.3 Related Work

The advancement of robust computing resources and sophisticated signal pro-
cessing techniques has ushered in a remarkable era in prosthetic manipulation, repre-
senting a significant leap toward realizing the ultimate prosthetic device. However,
several critical challenges must be overcome before these advancements can truly
benefit the broader amputee population. With the background of several key con-
cepts explained in the previous section, this section introduces works closely aligned
with the themes of this thesis.

1.3.1 Human Motor Synergy Studies

Considering that the concept of motor synergy originates from human studies,
it’s valuable to delve into related research on motor synergy within human motor
control. In one notable study [60], researchers examined the hand movements of
infants at various developmental stages as they reached for and grasped toys. This
investigation indirectly shed light on the development of motor synergies as infants
grew and learned. Figure 1.8 visually illustrates the characteristic movements of
infants at ages 19, 29, and 42 weeks, spanning the pre-reaching, early-reaching, and
stable-reaching phases of development.

Initially, as seen in Figure 1.8a(A), infants exhibit rather erratic and indirect
movements when reaching for objects during their first few months of life. How-
ever, with age and practice, their reaching and grabbing actions become faster and
smoother, reducing the high variability observed during early reaches, as seen in Fig-
ure 1.8c(A). Furthermore, the coordination between the shoulder and elbow joints
during early reaches, as depicted in Figure 1.8a(C), is notably poor and inconsistent.
However, as they transition into a stable reaching period, the phase portrait reveals
a more synchronized relationship between the shoulder and elbow joint angles, as
illustrated in 1.8c(C). This alignment signifies that the motion of the shoulder and
elbow becomes tightly coupled. These findings suggest that infants enhance their
motor control proficiency through repetitive practice, gradually acquiring motor
synergies that facilitate more efficient and coordinated movements.

In [37], the authors delved into the spatiotemporal organization of muscle pat-
terns during fast-reaching movements, a study closely related to the themes of this
thesis. Their investigation involved recording electromyographic (EMG) activity
in up to 19 shoulder and arm muscles during point-to-point movements. These
movements encompassed trajectories between a central location and one of eight
peripheral locations arranged in either the sagittal or frontal plane, as depicted in
Figure 1.9. The study examined these movements under varying conditions, such as
different loads on the hand (experiment 1, see Figure 1.9 (a), (b)) and different fore-
arm postures (experiment 2, see Figure 1.9 (d)). They also explored more intricate
reaching movements (experiment 3, see Figure 1.9 (f), (g)), including continuous
reversals from one central or peripheral position to another and movements from
one peripheral position through the central position to another.
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(a) Pre-reaching period (b) Early-reaching period (c) Stable reaching period

Figure 1.8: Experimental results from [60]. Hand trajectories from start to endpoint
(A) and phase portraits showing the relationship between shoulder and elbow joint
angles (C) for infants at 19 (a), 29 (b), and 42 (c) weeks of age.

Figure 1.9: Experimental setup and conditions in [37] for fast-reaching movement
control.
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Figure 1.10: Synergy analysis of human walking as performed in [39]. In (A), the
weightsWi represent spatial synergy components, and the basic patterns are denoted
as activation signals Ci, as explained in preceding sections. (B) illustrates various
walking phases in a baby.

The study aimed to determine if synergies could effectively reconstruct muscle
patterns observed during point-to-point movements. The findings highlighted that
the intricate muscle patterns involved in reaching movements could be represented
by a small number of combinations of components, underscoring the role of low
dimensionality in simplifying motor control. This phenomenon closely aligns with
the concept of motor synergies in human motion when executing various tasks.

In [39], the authors employed PCA to investigate synergy development in hu-
man learning processes, as depicted in Figure 1.10. Additionally, the discussions
in [33] regarding the role of muscle synergies in simplifying motion generation bear
relevance to this thesis. Furthermore, studies in [61][62] explored the relationship be-
tween muscle synergies, performance, and energy consumption. Although this thesis
focuses on the analysis of arm joint angular kinematic motion data rather than EMG
and muscle synergies, the foundational concepts explored in these studies underpin
the approach adopted here.
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1.3.2 Automatic Prosthetic Elbow Control Strategy Using
Residual Limb Motion

It is widely acknowledged that distal joint motion, such as elbow movement, can
be effectively approximated using either upper arm electromyography (EMG) signals
or proximal joint kinematics, like shoulder motion. Numerous studies have employed
both methods to devise control strategies for transhumeral prostheses, demonstrat-
ing satisfactory performance in various reaching tasks. Our study advances the field
by enhancing the residual limb motion strategy for automatic prosthetic elbow joint
control, with a particular emphasis on leveraging shoulder kinematics.

In a related study [53], researchers successfully predicted elbow angular veloci-
ties based on shoulder kinematics during 3D pointing movements. To collect motion
data, they employed both camera-based motion capture and an IMU sensor. Par-
ticipants were instructed to point at various targets presented by a WAM arm robot
while seated in an upright position, as depicted in Figure 1.11. The study utilized a
radial basis functions network (RBFN) based regression algorithm to establish the
connection between shoulder kinematics and elbow angular velocities.

Figure 1.11: The experimental setup in [53] for pointing at various targets provided
by WAM arm in 3D.
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Furthermore, another investigation [49] compared myoelectric control and auto-
matic control strategies for prosthetic elbow motion. The research uncovered that
myoelectric control often led to significant compensatory trunk movements by users
to adjust the final position of the end-effector. Conversely, the joint coordination
strategy reduced the need for such compensatory movements.

Additionally, findings from a study [63] in which reaching movement data was
recorded from a healthy subject indicate that overall estimation accuracy can be
enhanced by using a combination of both signals as input. When compared to using
upper arm EMG signals alone, predictions based on shoulder kinematics performed
better. However, it’s essential to note that the impact of prolonged EMG signal
usage on ANN performance remains to be fully explored, as the quality of EMG
signals tends to deteriorate over time due to factors like muscle fatigue, electrode
placement, and skin impedance. In some cases, acquiring quality EMG signals may
necessitate invasive surgical procedures like TMR.

The authors in [64] delves into the empirical evaluation of automatic prosthetic
elbow control in the context of a reaching task, drawing comparisons with traditional
myoelectric control. Six transhumeral amputees, including three with osseointe-
grated devices, participated in the study. The task was successfully accomplished
within physiologically acceptable margins of error for both control methods. No-
tably, automatic elbow control substantially mitigated trunk compensatory move-
ments and reinstated a more physiologically aligned coordination between shoulder
and elbow movements, as depicted in Figure 1.12.

Figure 1.12: The experimental setup in [64] for reaching movements with initial and
final postures towards the target with the ME-mode ( myoelectric control) and with
the A-mode (automatic elbow control).
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It was observed through kinematic assessment that amputation and the use
of prosthetic devices led to deviations in shoulder movements compared to typical
physiological shoulder kinematics. Participants reported that the automatic elbow
control strategy was intuitive, underscoring the potential value of automated pros-
thetic elbow motion.

However, in the case of the residual limb motion strategy, creating an inter-
joint coordination model necessitates data from healthy subjects, as it’s challenging
to record such data from transhumeral amputees. One potential solution involves
constructing a generic model by amalgamating inter-joint coordination data from
multiple healthy subjects. Additionally, it’s noteworthy that many studies employ
artificial neural networks (ANNs) for their inter-joint coordination models without
extracting prior information from the kinematic data of arm movements. The pri-
mary focus of the first study in this thesis is to bridge this gap, enhancing the
model’s transferability to amputee users.

1.3.3 Motor Synergy in Deep Reinforcement Learning

While the motor synergy concept is primarily explored in the context of human
subjects, several studies have demonstrated its applicability and significance in op-
timal robotics control. This concept extends to the coordination of multiple robotic
joints, which is essential for achieving optimal task performance.

In their study [65], the authors conducted experiments utilizing Deep Rein-
forcement Learning (DRL) algorithms to manage full-dimensional arm manipulation
within a simulation environment. Their objective was to investigate the relationships
between motion error, energy consumption, and the emergence of synergy during
the learning process, shedding light on the mechanisms underlying the utilization of
motor synergy. Notably, synergy information was not explicitly incorporated into
the reward function; instead, synergy naturally emerged in conjunction with feed-
forward control, mirroring human motion learning processes. Two types of DRL
controls were examined: a simple DRL approach and a hybrid "PDRL" method,
which combined a Proportional-Derivative (PD) controller with a DRL controller.
These control schemes were applied to both a 3-DOF planar robotic arm for tracking
a 2-D line and an anthropomorphic 7-DOF robotic arm for horizontal tracking of
a 3-D circular trajectory, allowing for an analysis of motion behaviors during the
learning process, as illustrated in Figure 1.13.

Figure 1.14 displays the R2 curves at various training checkpoints for the 7-DOF
agent. In this representation, the purple and blue curves represent the early training
phase, while the green and red curves correspond to the later stages of training for
the DRL and PDRL methods, respectively. As training progresses, the synergy
level within the curves tends to increase for DRL and PDRL. This is evidenced
by the convergence of fewer synergy components to achieve higher R2 accuracy, as
exemplified by the orange arrows in Figure 1.14. This observation underscores the
tendency for motion to become more synergetic throughout the learning process.
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Figure 1.13: Simulated robotic agent configurations from [65]. The left arm repre-
sents vertical tracking for a 2-D line using a 3-DOF planar arm, while the right arm
represents horizontal tracking for 3-D circular trajectories using a 7-DOF arm.

Figure 1.14: Experimental simulation results from [65] presentingR2 accuracy curves
for all checkpoints are overlaid in different colors, depicting performance under both
DRL and PDRL control.

The authors of [40] conducted an investigation into joint-space synergy analysis
of multi-joint running agents within simulated environments. They employed two
cutting-edge deep reinforcement learning algorithms, Soft Actor-Critic (SAC) and
Twin Delayed Deep Deterministic Policy Gradients (TD3), to train robotic agents
from the OpenAI Gym library [66]. Specifically, they worked with three agent
variants: HalfCheetah (HC), Heavy HalfCheetah (HeavyHC) with twice the weight,
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and FullCheetah (FC). Each variant was trained with 15 different random seeds for
both algorithms, accumulating a total of 3 million training time steps. Their study
delved into the exploration of joint synergies within simulated robotic agents trained
using these DRL algorithms, as depicted in Figure 1.15.

In [40], the authors successfully bridged two distinct domains of research: the
human motor synergy concept and Deep Reinforcement Learning (DRL) for robotics.
Their work unveiled intriguing connections between these domains. Notably, the
synergy-related metrics highlighted SAC’s superior learning capabilities compared
to TD3. This finding suggests that embracing the synergy concept could be pivotal
when designing new DRL algorithms for robotics. Integrating synergy constraints
can expedite robotic agents’ learning process, resulting in enhanced performance
and energy efficiency.

As far as we are concerned, there is a lack of closely related work concerning the
use of DRL algorithms for generating synthetic motion data and investigating its
application in predicting real human motion. In the second study of this thesis, we
delve into DRL-based motion cloning, with a particular emphasis on its utilization
for enriching and expanding the dataset for training neural networks to predict
actual human arm reaching motions.

Figure 1.15: Illustration of the joint synergies extraction process in [40] utilizing
PCA decomposition on action signals (blue) obtained from the policy π at specific
training checkpoints. In this example, three spatiotemporal synergies are depicted by
the matrices W1, W2, and W3, along with their corresponding activation coefficients
C1, C2, and C3. The linear combination of Wi and Ci results in the reconstruction
of the action signals (red).
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1.4 Outline

This dissertation is organized into five chapters as follows.

Chapter 1: Introduction

In Chapter 1, we start by providing a concise overview of the motivation behind
this thesis. After that, we discussed some important ideas we’ll use throughout the
thesis. We then proceed to discuss relevant previous research for the studies con-
ducted in this thesis. Finally, we outline both the overarching and specific objectives
of our research.

Chapter 2: Synergy-Space Recurrent Neural Network

Chapter 2 introduces the first study of this thesis, where we developed a synergy-
space neural network as a transferable model for estimating forearm motion using
residual shoulder movements during horizontal reaching tasks. This study proposes
a novel approach that explicitly merges kinematic synergies with the learning system
to overcome the limitations of conventional predictive models.

The primary objective was to establish a more robust and adaptable control
strategy. Synergies, known for their repeatability and shared characteristics across
similar tasks and subjects, served as a pivotal element. Thus, we extracted syner-
gistic insights from movement data, selectively incorporating the most significant
synergy components into the learning process. This strategic integration not only
streamlines and enhances the training of the artificial neural networks (ANNs) but
also capitalizes on the shared nature of these synergies, ultimately boosting model
transferability. The study’s results demonstrated our approach’s effectiveness as a
transferable decoder, accommodating variations between individuals and offering a
more versatile model for controlling transhumeral prostheses.

The first study of this thesis was presented in a paper entitled “Synergy-Space
Recurrent Neural Network for Transferable Forearm Motion Prediction from Resid-
ual Limb Motion”, which was accepted for Sensors.

Chapter 3: Deep Reinforcement Learning-Based Synthetic Motion Cloning

Chapter 3 outlines the methodology for generating synthetic motion data us-
ing a DRL-based framework. This study introduces an innovative motion-cloning
strategy to address the challenge of obtaining substantial training data required to
effectively train an ANN. Our approach leverages the capabilities of DRL algorithms
to replicate natural and human-like motion in simulated humanoid agents. We col-
lected real motion data from human subjects as they performed multi-directional
arm-reaching tasks in the horizontal plane. Using a physics simulation and DRL-

30



Doctoral Thesis 1.4. Outline

based arm manipulation, we generated synthetic motion data that emulated similar
arm-reaching tasks.

Subsequently, we trained ANNs using various configurations of training motion
data, including DRL, real, and hybrid data sets. Our evaluation results demonstrate
the effectiveness of the cloned motion data in training the ANN to accurately predict
natural elbow motion across multiple subjects. Additionally, the augmentation of
motion data by combining real and cloned motion data sets showcases improved
ANN robustness by supplementing and diversifying the limited training data.

The second study of this thesis was presented in a paper entitled “Transhumeral
Arm Reaching Motion Prediction through Deep Reinforcement Learning-Based Syn-
thetic Motion Cloning”, which was accepted for Biomimetics.

Chapter 4: Real-time estimation of far-reaching movements

Chapter 4 focuses on the real-time prediction of elbow joint motion during arm-
reaching movements. This study introduces a VR-based interactive framework for
the real-time validation and evaluation of predictive models. The primary objective
is to address challenges associated with clinical trials for testing transhumeral pros-
thesis control strategies on amputee subjects. We developed a 3D virtual workspace
with a humanoid actor, enabling amputee subjects to easily control its movements
by strapping on a few sensors on their body. This setup allows them to perform
reaching tasks with the full range of arm motion. Our experiments and validation
were conducted in the virtual workspace, initially utilized for data acquisition from
healthy human subjects, and later employed to validate the efficacy of trained ANNs
on an amputee subject.

Our evaluation results underscore the effectiveness of the trained ANN and the
VR platform. We successfully demonstrated a right-arm transhumeral amputee ex-
ecuting arm-reaching movements in the virtual workspace. Despite the participant’s
lack of prior experience with the task or familiarity with the apparatus, our ANN
model accurately predicted the motion of his amputated elbow in real-time. This
capability enabled the subject to successfully reach and touch all target points in the
virtual workspace. These findings bear significant implications for creating compre-
hensive virtual workspaces encompassing diverse arm movements, covering various
activities. This approach proves valuable for validating and advancing strategies in
transhumeral prosthesis control.

Chapter 5: Conclusion and Future Work

Finally, chapter 5 provides a summary of the key findings from the preceding
chapters. It also outlines the primary contributions of this thesis and offers insights
into potential areas for future research.
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Chapter 2

Synergy-Space Recurrent Neural
Network

2.1 Introduction

Amputation of the upper limb at any level can considerably affect an individual’s
ability to perform the activities of daily living (ADLs). The proficiency for such
activities decreases with higher amputation levels [4]. The general requirements of
prosthetic users can be primarily summarized as intuitive control, ease of use, and
sensory feedback [6], [7]. With the advancements in robotics and sensor technologies,
very sophisticated and state-of-the-art upper extremity prostheses such as the DEKA
arm [11] and modular prosthetic limb [12] are currently available. However, one of
the persistent drawbacks is the interface between the prosthetic device and the
user, attributable to the growing gap between the control methods and hardware
improvements for prosthesis development.

In the myoelectric control domain, which is the most widely used control ap-
proach for prosthetic arms [14], the number of input signals a user can provide is
always less than the degree of control (DOC). The DOC refers to the number of
functions of a prosthetic device controllable by the user. Hence, this issue is even
more critical for the case of transhumeral amputees as they can only provide elec-
tromyography (EMG) signals from the upper arm. However, they must control a
prosthesis with numerous active degrees of freedom (DOFs), such as a powered el-
bow, wrist, and hand. As feasible solutions, surgical innovations such as targeted
muscle reinnervation (TMR) [14] and advanced signal processing techniques, such
as pattern recognition [17], have been employed to classify more significant numbers
of distinct commands from residual muscle activities.

Although such measures allowed transhumeral amputees better control over their
multifunctional prosthetic arms, the control was slow, sequential, and unnatural as
physiologically appropriate muscles were unavailable. Such counter-intuitive control
strategies and a lack of functionality are often the reasons for the high rejection rates
of these devices [18], [19]. Furthermore, the calibration requirements and signal
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sensitivity issues associated with EMG-based control also challenge its continuous
daily use.

Numerous investigations have been conducted to explore alternative solutions,
such as those based on myokinetic signals [20] using the residual kinetic activity of
the limb, ultrasound signals [21], mechanomyography [22] using vibrations caused
by muscle contractions as the control signals, and the residual limb motion strategy
[24], [25]. Bio-inspired learning approaches based on studying the central nervous
system (CNS) and human motor control abilities have also been employed to develop
more natural and intuitive arm control strategies [23].

Concerning the target reaching task or control of the prosthetic elbow joint
motion in transhumeral amputees, the ideal case would involve the prosthetic device
acting as a natural extension of the human body. A promising scheme to achieve
this is automatically controlling the prosthetic elbow joint based on the natural
relationships between the arm joints. Analyses of such joint coordination approaches
have shown evidence that recurrent patterns exist in the joint kinematics for upper
limb movements while performing reaching or grasping tasks. For example, between
the elbow flexion and humeral inclination during reaching [26], between the hand
azimuth and movement direction during grasping [27], as well as a variety of many
other arm movements in ADLs [67]. These patterns are referred to as synergies.

In the present study, we have also focused on a synergistic method for intuitive
control of the prosthetic elbow joint for transhumeral amputees. The majority of
previous such motion-based approaches using residual limb motion rely on ANNs
[30], [68] to identify and model the shoulder–elbow kinematic relationship, as induc-
tive learning (IL) applied in [32] and radial basis function networks (RBFNs) used in
[31], [69]. The ANN is typically trained to map the shoulder kinematics (provided as
input) to the elbow or forearm kinematics (provided as output) through supervised
learning. To the best of our knowledge, in such previous approaches, no prior syn-
ergistic information is extracted from the motion data used for training the ANNs.
This type of approach, in simplistic terms, can be represented as in Figure 2.1a and
is hereafter referred to as “direct estimation”. However, the direct estimation method
has a limitation due to its sensitivity to inter-individual variability. As a result, the
performance of the model drops significantly when applied across multiple users,
making it less suitable for generalization and transferability.

2.1.1 Transfer Learning Framework for Transhumeral Am-
putees

This paper presents the concept of the synergy-space neural network, whereby
we explicitly combine the kinematic synergies with the learning system to address
the limitation of the direct estimation method, aiming for a more robust and trans-
ferable control strategy. Synergies have been observed to be repeatable and shared
across similar tasks and subjects. Therefore, we extract the synergistic information
from the movement data and incorporate only the most significant synergy compo-
nents in the learning process, enabling more precise and efficient training of the ANN
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Figure 2.1: Illustration of the idea of this study: (a) a simplistic representation of
direct estimation method; (b) the proposed synergy-space neural network method.
Here, SHθx, SHθy, and SHθz are the shoulder kinematics, and FAθx and FAθy rep-
resent the forearm orientations. The PCA blocks symbolize the process of synergy
extraction, whereW represents the synergistic components and C is the correspond-
ing activation signal matrix. The predictive model is the trained RNN that outputs
the predicted activation signals Cp, with the cross-operator representing the matrix
multiplication of the incoming values.

while taking advantage of the shared nature of these synergies enhancing the trans-
ferability of the model. The idea is to train the ANN to predict the corresponding
activation signals (see Equation (2.2.1)), which estimates the forearm motion when
combined with the extracted synergy matrix. Because the ANN is trained using the
most significant synergy components, the synergy-space neural network can learn
particular features common to the arm movement tasks, allowing for better cross-
subject transferability. In addition, using a smaller number of synergy components
aids the ANNs in learning good policies by reducing the dimensionality of the state
space. Lastly, being a synergistic approach, it allows for the kinetically natural and
energy-efficient motion estimation of the arm movements.

Figure 2.1b illustrates the overall workflow of the proposed synergy-space neural
network approach. We first extract the spatial synergy components and their corre-
sponding time-varying activation signals from the source data (see Equation (2.2.1))
using the principal component analysis (PCA). Long short-term memory (LSTM),
a particular type of recurrent neural network (RNN), is then trained to predict the
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extracted time-varying activation signals based on input shoulder kinematics. Fi-
nally, the forearm motions are estimated using Equation (2.2.2), where the extracted
activation signals C are replaced with the LSTM-predicted signals Cp. Introduced
by Hochreiter and Schmidhuber [70], the reason for using LSTM is its ability to
learn long-term dependencies. LSTMs have internal mechanisms called gates that
regulate the flow of information to handle the vanishing gradient problem in RNNs,
making them very suitable for time-series prediction such as motion data or, in
our case, time-varying activation signals. This paper proposes and evaluates the
synergy-space neural network for forearm motion estimation, comparing its perfor-
mance with the direct estimation approach. The contributions made in this paper
are as follows:

• The implementation of the proposed synergy-space neural network as a trans-
ferable model for forearm motion estimation using residual shoulder kinematics
during horizontal reaching movements.

• Personalized LSTMModels Evaluation: To validate the proposed methodology
and its better learning capability through a detailed comparison between the
performance of the synergy-space neural network and the direct estimation
approach.

• Cross-Subject Evaluation: To demonstrate the strength of the synergy-space
neural network as a transferable decoder, indicating its ability to handle inter-
individual variabilities.

The remainder of this paper consists of the following sections:
Section 2.2 explains the materials and methods employed to achieve our objec-

tives, describing the experimental protocol, synergy extraction, LSTM training and
analysis, and evaluation strategy. Section 2.3 demonstrates the validity of the pro-
posed method through the experimental results. Section 2.4 discusses the findings
and limitations. Lastly, Section 2.5 concludes this paper and gives future direction.

2.2 Materials and Methods

2.2.1 Data Acquisition

Fourteen healthy right-handed subjects (thirteen males and one female) volun-
teered for this investigation. The subjects were 20–28 years old, with no known
upper limb neuromuscular disorders. All subjects had given informed consent prior
to participation in this experiment.

To record the motion data of a subject’s arm movements during reaching tasks,
we used Perception neuron pro, an inertial measurement unit (IMU) sensor-based
full-body motion capture system. Although the accuracy of this system is inferior
to that of optical cameras, it is possible to capture motions without spatial con-
straints from anywhere within the communicable range of the device. The device
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uses individual sensors called neurons, each housing an IMU, attached to different
body parts (Figure 2.2a). We used a total of eight sensors. Figure 2.2b shows the
placement of each neuron—three on each arm (placed on the forearm, upper arm,
and shoulder) and one each on the chest and lower back. The subjects can quickly
wear the sensors using straps so that no additional preparations, such as special
clothes, are necessary.

(a) (b)

Figure 2.2: Neuron pro sensor placements for capturing the required motion data:
(a) subjects wearing neuron sensors; (b) green spots marking the placements of the
sensors for the upper body mode of neuron pro because only arm movement data
are required.

The sensor system communicates with the axis neuron pro software that pro-
cesses raw motion data to formulate a 3D skeletal model in real time. Motion in-
formation from the developed skeletal model, such as the position and angle of each
joint, can be obtained at a sampling frequency of 120 Hz. In our experiments, the
data under consideration were the three shoulder orientation angles along X, Y, and
Z axes, i.e., internal–external rotation, flexion–extension, and abduction–adduction
of the shoulder joint, and two forearm orientation angles, i.e., pronation–supination
and flexion–extension of the elbow joint; hereafter, these are referred to as SHθx,
SHθy, and SHθz and FAθx and FAθy, respectively.
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2.2.2 Experimental Protocol

Bearing in mind that the purpose of a prosthetic device is to assist the user with
their ADLs, we designed the workspace based on a routine activity by considering
the user’s everyday environment instead of constrained movements in a laboratory
or restricted environment. Reaching for objects placed on a table is a common
scenario in daily life, which also targets arm movements in the horizontal plane only,
specifically on the top surface of a table. A 40 cm × 40 cm target grid (Figure 2.3a)
with a start/rest point and 8 numbered points was placed in a horizontal position on
the surface of a table. The target numbered point to be reached was projected on the
screen in front of the subject. The timing and color of the displayed numbers were
controlled automatically to produce more consistent and regular movements, based
on which the subjects had to perform the required reaching tasks. The subjects
were provided instructions at the beginning of the experiments and allowed time
to familiarize themselves with the environment. Therefore, no verbal commands or
communications were required during the experiments, thus making the procedures
easier to follow. Eight healthy subjects participated in these behavioral experiments.
They were tasked with performing reaching movements to explore the top surface of
a table placed before them while sitting straight on a chair, as shown in Figure 2.3b.
All the subjects performed two sets of tasks, and kinematic data were acquired for
the reaching movements of only the right arm as follows:

(a) Conventional Direct Estimation
Method

(b) Synergy-Space Neural Network
Method

Figure 2.3: Experimental setup for the target reaching tasks: (a) target grid with
a subject’s right hand at the start point; (b) complete experimental setup for the
target reaching tasks.

• Dataset 1: with multiple (15 times) repetitive reaching movements toward
each target point.

• Dataset 2: with reaching movements toward random target points (35 move-
ments in total).
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Dataset 1 with multiple repetitive movements was first used to extract the kine-
matic synergies and later as the training data for the neural network. Afterward,
dataset 2, with reaching movements toward random target points, was used to cross-
validate the trained neural network.

2.2.3 Kinematic Synergy Extraction

PCA has been used in numerous studies to investigate natural movements, such
as catching [41] or reaching[45] tasks, where it was successful in representing the
observed physiological complexities using fewer numbers of principal components
(PCs) or synergies. One reason for this is that when capturing variances, the PCA
uses a more intuitive method to exploit the coupling of the DOFs. Another im-
portant reason is that it considers linear correlations among the DOFs, which can
be regarded as the minimal model of inter-joint coupling, i.e., a linear approach to
explaining complex behaviors.

In this study, we performed a synergistic analysis using PCA as we are work-
ing with kinematic synergies. Dataset 1 was first segmented to acquire the data
of interest, i.e., one individual reaching movement from the onset of the reaching
motion until returning to the start/rest point (as in Figure 2.4). We then averaged
the segmented data over the 15 trials for the same reaching movement, e.g., for
target point 7. The averaged data were then low-pass filtered using a sixth-order
Butterworth filter with a cutoff frequency of 10 Hz to remove motion artifacts and
finally normalized to translate the angular values within the range of −1 to +1.
For each subject, this averaged, filtered, and normalized dataset X (2.2.1) was ob-
tained comprising submatrices xmj (tmax) with joint angular values during reaching
motions. Here, m = 8 represents the total number of target points for the reaching
tasks, j = 5 is the number of DOFs or joint angles under consideration, and tmax
refers to a particular sample time for which the joints’ angular values were obtained.
The X having size j × (m ∗ tmax) is fed to the PCA algorithm, which then provides
the PCs. Each PC is a synergy representing the covariation of the joint angular
configurations. The total number of PCs or synergy components ”N” (1.1.1) is
equal to the number of DOFs or joint angles under consideration, which is equal to
five here. Figure 2.5a represents the extracted kinematic synergy component matrix
(graphical representation) for one of the subjects.

X =


x11(tmax) · · · x41(tmax) · · · x81(tmax)
x12(tmax) · · · x42(tmax) · · · x82(tmax)

...
. . .

...
. . .

...
x15(tmax) · · · x45(tmax) · · · x85(tmax)

 (2.2.1)

We retained the minimum of the most significant PCs that explain at least
> 85% of the total variance. Figure 2.5b presents the variations of the PCs for
subject 1. We can observe that the first synergy accounts for more than 75% of the
variance, and the sum of the first two synergies can account for more than 90% of
the overall variance in the source data.

38



Doctoral Thesis 2.2. Materials and Methods

0 200 400
1

0

1

SH
x

Reaching at 7

0 200 400
1

0

1
Reaching at 3

0 200 400
1

0

1
Reaching at 1

0 200 400
1

0

1
Reaching at 2

0 200 400
1

0

1
Reaching at 8

0 200 400
1

0

1

SH
y

0 200 400
1

0

1

0 200 400
1

0

1

0 200 400
1

0

1

0 200 400
1

0

1

0 200 400
1

0

1

SH
z

0 200 400
1

0

1

0 200 400
1

0

1

0 200 400
1

0

1

0 200 400
1

0

1

0 200 400
1

0

1

FA
y

0 200 400
1

0

1

0 200 400
1

0

1

0 200 400
1

0

1

0 200 400
1

0

1

0 200 400
1

0

1

FA
x

Actual Measured Data using 5 Synergies using 2 Synergies

0 200 400
1

0

1

0 200 400
1

0

1

0 200 400
1

0

1

0 200 400
1

0

1

0 200 400
Samples [n]

2

0

2

C1

0 200 400

2

0

2

0 200 400

2

0

2

0 200 400

2

0

2

0 200 400

2

0

2

0 200 400
Samples [n]

2

0

2

C2

0 200 400
Samples [n]

2

0

2

0 200 400
Samples [n]

2

0

2

0 200 400
Samples [n]

2

0

2

0 200 400
Samples [n]

2

0

2

Source Data Reconstruction

Figure 2.4: The first five rows represent the shoulder and elbow joints’ angular
values normalized between −1 and +1. It comprises the source data (solid black
curves) of subject one and its reconstructions using all five synergies (red dotted
curves) and only two synergies (green dotted curves). The last two rows represent
the corresponding activation signals C (C1 and C2 in the case of two synergies).

0.5 0.0 0.5
Synergy1

SH x

SH y

SH z

FA y

FA x

0.5 0.0 0.5
Synergy2

 

 

 

 

 

0.5 0.0 0.5
Synergy3

 

 

 

 

 

Kinematic Synergies Matrix

0.5 0.0 0.5
Synergy4

 

 

 

 

 

0.5 0.0 0.5
Synergy5

 

 

 

 

 

(a)

PC1 PC2 PC3 PC4 PC5
Principal Components (PC)

0

10

20

30

40

50

60

70

80

90

%
 a

ge
 o

f E
xp

la
in

ed
 V

ar
ia

nc
e

Subject 1

(b)

Figure 2.5: Example of the kinematic synergies of subject 1. (a) The spatial syn-
ergies extracted from the training data. The notations SHθx, SHθy, SHθz, FAθx,
and FAθy indicate the axis of the degree of freedom. (b) Bar plot showing the im-
portance of each principal component in explaining the variance in the source data.
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Following our set criteria, it suggests that we can adequately approximate the
original data using only the first two synergies that capture a large portion of the
variance. Thus, the subject’s original movements can be reconstructed with an
acceptable loss in accuracy.

Figure 2.4 also represents the difference in the reconstructed data for one of the
subjects when represented using all five synergies (shown in red) and when using
only two synergies (shown in green). It can be seen that the red curve is an exact
match for the original movement data (shown in black). In contrast, the green curve
still represents the original data reasonably accurately. The last two rows show the
activation signals C (in blue) in the case of two synergies, i.e., C1 and C2. Based on
these observations, using the synergy-space neural network approach, it is plausible
to use only the first two synergies to estimate the forearm motions.

2.2.4 LSTM Training

In the present work, we trained a neural network to predict the extracted ac-
tivation signals based on shoulder kinematics. As both sets of data are time-series
signals, it is necessary to use an ANN that suitably processes the time-series or
sequential data. Different ANN architectures have been employed in various studies
to determine inter-joint coordination during human arm movements. The authors
in [53] used a radial basis function network (RBFN)-based neural network, whereas
[54] used a time-delayed adaptive neural network (TDANN) to estimate the distal
joint angles. In this study, we used LSTM, a particular type of RNN capable of
handling long-term dependencies. LSTMs have internal mechanisms called gates
that regulate the flow of information to handle the vanishing gradient problem in
RNNs, thus making them very suitable for multivariate time-series forecasting.

We used python’s machine learning library, Keras, to implement the LSTM
model. There are various parameters in the neural network, and the estimation
accuracy may change depending on the settings of these parameters. Therefore, we
first tested the learning efficiency and estimation accuracy of the LSTM model by
varying the parameters, such as the batch input size, number of LSTM hidden layers,
number of nodes in each layer, and number of training epochs. These parameters
affect the learning and estimation efficiencies of the model. The batch size controls
the number of samples shown to the network before the weight updates are applied.
If the input batch size is large, the model can quickly process the entire training
dataset; however, it can overlook certain features during training that might be
crucial to learning.

On the other hand, we can increase the complexity and expressiveness of the
model by optimizing the number of LSTM hidden layers and the number of neurons
in each layer. Even in the case of using only a single hidden layer, the LSTM model
can learn the characteristics of the time-series data. The efficiency can be improved
by stacking multiple layers. However, if the model is made more complex than
necessary, the training may not be effective. Similarly, if we increase the number
of nodes, the model requires more time for learning with no significant change in
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Figure 2.6: Input dataset creation: 10 previous time-steps data are combined and
provided as the input x(t) to the LSTM model to predict the output Cp(t) at the
current time step t.

accuracy. The same is also true for the number of training epochs. Estimating
the time-varying activation signals is classified as a regression problem, so we use
the mean squared error (MSE) as the loss function and Adam as the optimization
function, as has been widely used in similar studies.

Lastly, to avoid the overfitting problem, a dropout rate of 10% is used in each
layer, whereby 10% of the neurons are dropped randomly. Supervised learning is
then carried out, where the neural network develops the regression model based
on the input–output pairs. As for the training data, at a single time step, we can
apply a total of six inputs to the model: the SHθx, SHθy, and SHθz angle of the
shoulder joint and their respective derivatives SHθ̇x, SHθ̇y, and SHθ̇z (i.e., shoulder
joint angular velocities). It is also possible to input multiple time-step data to the
LSTM model at a time using the last few time-step data to predict the output for
the current time step. This can improve the estimation accuracy at the cost of
increasing calculations. We used the ten previous time-step data as inputs to the
model (Figure 2.6). The model outputs were the activation signals, which in the
case of two synergies are C1p and C2p.

2.2.5 Analysis Strategy

In the present work, we compared the performances of the synergy-space neural
network approach, where the shoulder kinematics are mapped to synergistic acti-
vation signals, with the direct estimation approach, wherein the neural network is
used to map the shoulder kinematics to the forearm kinematics. To thoroughly in-
vestigate this comparison, we devised a comprehensive strategy to train and test 36
different LSTM models for each subject and analyze the performances. The devised
strategy was based on the following criteria.
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Learning Methodology

First, we devised a scenario based on our proposed learning methodology for the
LSTM model. This defines the approach chosen for training the network, that is,
either synergy-space or direct estimation. Three strategies were devised based on
the number of synergistic components used and the learning approach.

• Synergy-Space estimation using 2 synergies components:
In this case, we first extract the synergies W and their corresponding

activation signals C from the reaching motion data considering five DOFs of
the arm, i.e., SHθx, SHθy, SHθz, FAθx, and FAθy. Subsequently, we train
the LSTM model to predict two activation signals C1 and C2 based on the
shoulder kinematics provided as inputs. The predicted activation signals C1p
and C2p are then used along with the synergy matrix W to estimate the
required forearm motions.

• Synergy-space estimation using 1 synergy component:
In this case, we extracted the synergies W and their corresponding activa-

tion signals C from the reaching motion data considering only two DOFs of the
forearm, i.e., FAθx and FAθy. We then trained the LSTM model to predict
only one of the activation signals C1, providing the shoulder kinematics as the
input. Finally, the predicted activation signal C1p and the synergy matrix W
are used to estimate the required forearm motions.

• Direct estimation:
For direct estimation, no prior information or synergistic components are

extracted from the reaching motion data recorded during arm movements.
The LSTM model is directly trained to predict FAθx and FAθy angles of the
elbow joint based on the input shoulder kinematics.

Number of LSTM Hidden Layers

As noted previously, a single layer of LSTM can learn the necessary features
of the time-series data. By stacking multiple layers of LSTMs, this ability can be
enhanced. Thus, to verify the appropriate number of hidden layers for our task, we
tested three scenarios with varying numbers of hidden LSTM layers in our model.
For each learning methodology mentioned earlier, we constructed and trained three
different models, namely M1, M2, and M3, having one, two, and three hidden LSTM
layers, respectively.
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Number of Inputs

As previously mentioned, we can apply a total of six inputs to our model, rep-
resented by SHθx, SHθy, SHθz, SHθ̇x, SHθ̇y, and SHθ̇z. However, various combi-
nations of these signals can also be used as inputs. This consideration was based on
the fact that the level of residual limb movement control would vary for the user de-
pending on the severity of the amputation. In addition, wearing a prosthetic socket
can limit the range and types of movements the user can perform. In many cases,
the shoulder internal rotation motion is the most difficult to perform for amputees.
The other reason was to test whether there is any advantage to using shoulder joint
angular velocities as the inputs. We created four different training scenarios with
different numbers of inputs to the LSTM models. The combined and total numbers
of inputs for each scenario are shown in Table 2.1.

Table 2.1: Training Scenarios based on No. of Inputs.

No. of Inputs
Signal Combination

SHθx SHθy SHθz SHθ̇x SHθ̇y SHθ̇z

2 ✓ ✓
3 ✓ ✓ ✓
4 ✓ ✓ ✓ ✓
6 ✓ ✓ ✓ ✓ ✓ ✓

Note: ✓cell means signal used as input

2.2.6 Evaluation

Root Mean Squared Error (RMSE)

For the evaluation of the trained LSTM model, the estimated forearm orienta-
tion angles (i.e., pronation–supination FAθx and flexion–extension FAθy angles of
the elbow joint) were compared to the actual forearm orientation angles captured
using the neuron pro system. Figure 2.7 presents a sample of the continuous signal
plot comparing the actual vs. estimated forearm motions during one of the scenar-
ios tested for subject 5. To assess the performance of the joint angle estimations,
the standard metric used is the root mean squared error (RMSE) [54] as given in
Equation (2.2.2), where x̂t is the predicted joint angle, xt is the actual joint angle
at data point t, and N is the total number of data points.

To calculate the RMSE value, we used the “mean_squared_error” metric from
the scikit-learn library for python and applied the square root. In the case of multiple
outputs, this metric gives an average value of the RMSE.

RMSE =

√√√√ 1

N

N∑
t=0

(x̂t − xt)2 (2.2.2)
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Figure 2.7: Sample of the joint angular value plots of the actual vs. estimated
forearm motions using two synergies, one synergy, and direct estimation learning
methodologies for one of the tested scenarios of subject 5.

Pearson Correlation Coefficient

Pearson’s correlation method analyzes the linear relationship between two vari-
ables and provides a coefficient value as a measure of the correlation strength.
The Pearson correlation coefficient is denoted by r and can have a value between
+1 and −1. Table 2.2 presents the detailed interpretation of the Pearson correlation
coefficient.

Table 2.2: Interpretation of Pearson Correlation Coefficient.

Range of r Degree of Relationship

−1.0 ≤ r ≤ −0.7 A strong negative linear relationship
−0.7 ≤ r ≤ −0.3 A distinct negative linear relationship
−0.3 ≤ r ≤ −0.1 A weak negative linear relationship
−0.1 ≤ r ≤ +0.1 Not a linear relationship
+0.1 ≤ r ≤ +0.3 A weak positive linear relationship
+0.3 ≤ r ≤ +0.7 A distinct positive linear relationship
+0.7 ≤ r ≤ +1.0 A strong positive linear relationship

We used the “corrcoef” function from python’s NumPy library, which uses the
actual and estimated values of forearm orientation angles (as in Figure 2.7) to com-
pute the Pearson correlation coefficient.
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Analysis of Variance (ANOVA) Test

To statistically verify the differences between the results obtained using the
synergy-space neural network and direct estimation methods, we performed the
analysis of variance (ANOVA) test. The ANOVA compares three or more popula-
tions to ascertain whether the variability between group means is larger than the
variability in the observations within the groups. A significance level or threshold is
chosen, and a p-value less than the threshold is interpreted as evidence of the differ-
ence between the population means. In this study, the p-value indicates significant
differences between the learning strategies’ results.

To show the pertinence of each learning methodology, we perform the ANOVA
test using the RMSE values obtained by comparing the estimated and actual forearm
motions for the various LSTM models trained using the synergy-space and direct
estimation approaches. We chose a significance level of 0.05, one of the standard
choices. Suppose the calculated p-value is less than the threshold. In that case, the
statistically significant ANOVA is followed up with the Tukey HSD (honest signifi-
cant difference), a post hoc test pinpointing which learning methodology exhibits a
statistically significant difference.

Cross-Subject Analysis

As discussed previously, one of the characteristics of the synergies is that they
are shared among similar tasks to some extent. This suggests that a generalized
or transferable control model can be developed based on the synergy-space neural
network approach using the data recorded from healthy subjects. Therefore, cross-
subject testing was performed to test this assumption for the robustness of the
learning methodologies.

For the case of the synergy-space method, we performed the cross-subject analy-
sis using, for example, subject A’s input data fed to the LSTM models trained using
the other subjects’ data and then employing subject A’s synergy matrix for the fore-
arm motion prediction. However, for the case of the direct estimation method, the
cross-subject analysis was performed using, for example, subject A’s input data fed
to the LSTM models trained using the other subjects’ data for subject A’s forearm
motion prediction.

The evaluations were performed by calculating the RMSE values to compare the
estimated motions with the actual measured values. For the cross-subject analysis,
we used model M2 with six inputs (i.e., best-case scenario) and model M2 with two
inputs (i.e., worst-case scenario). The ANOVA was then performed to statistically
verify the difference between the cross-subject results based on the synergy-space
and direct estimation approaches.
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2.3 Experimental Results

In this study, we trained and evaluated 36 different LSTM models for each of
the 14 subjects. The training strategy was devised based on three different learning
methodologies. We constructed 3 separate LSTM models and trained each model
using 4 different combinations of the input signals (i.e., 3× 3× 4 = 36).

The acquired RMSE values of the estimated forearm motions (FAθx and FAθy)
for some subjects are shown as bar plots in Figure 2.8. It was observed that, overall,
there are no significant differences in the results based on the learning methodology.
This suggests that even with the reduced state-space representation, the synergy-
space neural network is capable of keeping the performance similar to that of the
direct estimation method. However, we see notable differences when using combi-
nations of two and three inputs, implying that shoulder internal–external rotations
(SHθz) as the input significantly increase the estimation accuracy, which is the case
in all the training scenarios. On the other hand, the joint angular velocities as the
inputs provided a minor increase in the accuracy, as is visible when comparing the
RMSE values based on the number of inputs 2 and 4 and also 3 and 6. However,
no marked differences were observed in the performance based on the number of
hidden LSTM layers among the models M1, M2, and M3. These observations are
valid for all the subjects included in the study.
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Figure 2.8: Results of the forearm motion estimations (FAθx and FAθy) for all tested
scenarios for subjects 1, 2, and 8, where each bar represents the calculated RMSE.
The bars are first divided into M1, M2, and M3 based on the number of LSTM
hidden layers in the model. The golden, blue, and gray bars represent the errors
in the estimations when using two synergies, one synergy, and direct estimation
learning approaches, respectively. The number inside the bar represents the number
of inputs to the LSTM model (Table 2.1), whereas the error bar represents the
standard deviation of estimation error values.
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Regarding the minor differences for all the trained scenarios for each subject in
the study, we obtained three general result types. First, similar to subject 1 (Fig-
ure 2.8), the synergy-space method (using 2 synergies) produced the lowest RMSE
values with an overall RMSE and standard deviation value of 10.88◦ and 2.09◦, re-
spectively, for all the tested scenarios. Second, similar to subject 2 (Figure 2.8),
we obtained almost similar RMSE values having some variations from an overall
RMSE and standard deviation value of 7.55◦ and 1.16◦, respectively, for all the
learning methodologies. Lastly, similar to subject 8 (Figure 2.8), the direct esti-
mation method had the lowest RMSE values with an overall RMSE and standard
deviation value of 3.99◦ and 1.47◦, respectively, for all the tested scenarios. We only
selected the scenarios trained using model M2 for further analyses, i.e., with two
hidden LSTM layers, as it produced the best overall results.

2.3.1 Personalized LSTM Models Evaluation

To evaluate the personalized LSTM models and compare the different learning
methodologies, we used the LSTM model M2, which has two hidden LSTM layers
and six inputs (Table 2.1). The average RMSE values obtained for the estimated
FAθx and FAθy were 4.24◦ and 9.75◦, 6.08◦ and 9.86◦, and 5.84◦ and 7.40◦ for the
two-synergy, one-synergy, and direct estimation methods, respectively.

We first employed Pearson’s correlation coefficient to quantify the estimation
performance of the different learning methodologies. Table ?? shows a mostly strong
positive linear correlation (+0.7 ≤ r ≥ +1.0) for the personalized LSTM models.
Furthermore, even for the few cases of a distinct or weak linear relation (highlighted
cells in Table 2.3), the trend is similar for all the learning methodologies, suggesting
a similar overall performance.

To show the pertinence of each learning methodology, we calculated the p-value
using the ANOVA between the results of the training strategies using the RMSE
values of the estimated forearm motions. The statistical ANOVA test associated
with the RMSE values obtained for the three learning methodologies is reported in
Table 2.4. The ANOVA provided evidence that there was no statistically significant
difference, F (2, 39) = 1.705, p = 0.195. The summary of the ANOVA test results is
shown in Table 2.5. As the p-value corresponding to the F Statistic is greater than
the threshold value of 0.05, this is interpreted as there is no significant difference
between the population means and eliminates the need to perform any post hoc
or multiple comparison corrections test, such as the Tukey HSD. Thus, we can
say that the three training strategies tend to produce similar RMSE values, and
there is no significant difference between their performances for subject-specific or
personalized LSTM models. This further validates that the proposed synergy-space
approach for mapping the inter-joint coordination for each subject’s personalized
ANN models performs on par with the direct estimation method even with reduced
dimensionality.
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Table 2.3: Pearson’s correlation coefficients ”r ” for Model M2 with 6 inputs.

Subject No.

Learning Methodology

Direct Estimation 1 Synergy 2 Synergies

FE PS FE PS FE PS

1 0.91 0.75 0.91 0.78 0.94 0.75
2 0.95 0.89 0.92 0.89 0.96 0.90
3 0.96 0.60 0.89 0.86 0.92 0.70
4 0.96 0.71 0.91 0.70 0.97 0.71
5 0.98 0.90 0.98 0.89 0.98 0.92
6 0.97 0.83 0.93 0.76 0.95 0.84
7 0.90 0.86 0.89 0.86 0.92 0.89
8 0.97 0.38 0.93 0.67 0.96 0.51
9 0.94 0.63 0.96 0.51 0.94 0.57
10 0.91 0.31 0.92 0.29 0.88 0.34
11 0.93 0.56 0.96 0.28 0.94 0.45
12 0.98 0.80 0.98 0.83 0.97 0.81
13 0.96 0.35 0.92 0.30 0.94 0.42
14 0.96 0.70 0.92 0.57 0.95 0.65

Note: FE = flexion–extension, PS = pronation–supination. Highlighted cells mark weak correla-
tion.

Table 2.4: Descriptive statistics of RMSE values obtained for different learning
methodologies using model M2 scenarios only.

Learning Methodology Count Sum Average Variance

Direct Estimation 14 86.756 6.197 4.672
1 Synergy 14 107.930 7.709 7.335
2 Synergies 14 108.972 7.784 7.748

Table 2.5: ANOVA summary table for the results using model M2 scenarios only.

Source of Variation SS df MS F Statistic p-
Value

F Critical

Between Methodologies 22.452 2 11.226 1.705 0.195 3.238
Within Methodology 256.826 39 6.585

Total 279.278 41

Note: SS = Sum of Squares, df = Degrees of Freedom, MS = Mean Square.
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2.3.2 Cross-Subject Evaluation

With transhumeral amputees, the target application of this study, it is impos-
sible to measure the elbow joint or forearm motion information. Therefore, testing
the transferability of the trained predictive models is crucial.

Figure 2.9 shows a box plot summarizing the RMSE values for each subject’s
cross-subject evaluations using the LSTM model M2 with six inputs. The box size
reflects the range where 75% of the sample values lie, with a smaller box size indi-
cating less variation in the estimation performance. The results demonstrate that
the synergy-space neural network, particularly when using two synergies, exhibits
stronger robustness to inter-individual variability compared to the direct estimation
method. This may be attributed to the shared nature of the synergies across simi-
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Figure 2.9: The box plot shows RMSE values for each subject’s cross-subject evalu-
ation. The box size represents the range of 75% of the values, and the solid vertical
golden line inside the box represents the median, with the black diamond marker
indicating the mean value. Outliers are represented by circular markers, and the
whiskers show the maximum and minimum values. A smaller box size represents
minor variation in results and better transferability.
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Table 2.6: Descriptive statistics of the RMSE values obtained for different learning
methodologies during cross-subject evaluation using model M2 with 6 inputs.

Learning Methodology Count Sum Average Variance

Direct Estimation 196 2157.122 11.006 42.696
1 Synergy 196 2025.910 10.336 19.789
2 Synergies 196 1895.985 9.673 18.365

Note: Highlighted cells mark the least values of average and variance

Table 2.7: ANOVA summary table for the cross-subject evaluation using model M2
with 6 inputs.

Source of Variation SS df MS F Statistic p-
Value

F Critical

Between Methodologies 173.962 2 86.981 3.227 0.040 3.011
Within Methodology 15765.78 585 26.950

Total 15939.74 587
Note: SS = Sum of Squares, df = Degrees of Freedom, MS = Mean Square.

Table 2.8: Post hoc Tukey HSD test results for the cross-subject evaluation using
model M2 with 6 inputs.

Group Pair Q Statistic p-Value Q Critical

Direct Estimation vs. 1 Synergy 1.805 0.411
Direct Estimation vs. 2 Synergies 3.593 0.030 3.323

1 Synergy vs. 2 Synergies 1.788 0.418

lar tasks and subjects, which enables the network to learn features common to the
human arm’s reaching task. The descriptive statistics associated with the RMSE
values obtained for the cross-subject testing are reported in Table 2.6, where the
proposed synergy-space RNN exhibited an average reduction of 50% in the variation
in the RMSE compared to the direct estimation method (highlighted cells in Ta-
ble 2.6). These results demonstrate the effectiveness of the proposed synergy-space
RNN in achieving better transferability during the cross-subject evaluation.

To statistically verify whether the difference in learning methodologies affected
the performance during the cross-subject evaluations, we again calculated the p-
values using the ANOVA between the results using the RMSE values of the es-
timated forearm motions. The ANOVA yielded a statistically significant effect,
F (2, 585) = 3.227, p = 0.040. Table 2.7 shows the summary of the ANOVA test
results. As the p-value corresponding to the F Statistic is lower than the threshold
value of 0.05, this suggests that the performance of one or more learning method-
ologies is significantly different. We further evaluated the nature of the differences
between the three population means, i.e., to check which learning methodology tends
to perform differently from the others.
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The statistically significant ANOVA was followed-up with the Tukey HSD (hon-
est significant difference), a post hoc test pinpointing which learning methodology
exhibits a statistically significant difference. The post hoc Tukey HSD test re-
sults are reported in Table 2.8. The p-values corresponding to the Q Statistic are
lower than 0.05 in the cases when comparing the direct estimation method with
the synergy-space neural network approach (when using two synergies), suggesting
a significant difference in the performance of the two approaches.

Similar results were also obtained for the cross-subject evaluations using the
LSTM model M2 with two inputs only, presented in Tables 2.9–2.11. Even when
using only two inputs (considering limited shoulder internal rotation motion (Ta-
ble 2.1)) the proposed synergy-space method had about 40% less variation in the
RMSE compared to the direct estimation method (highlighted cells in Table 2.9).
The evaluation of the cross-subject analysis suggests that the synergy-space ap-
proach is more robust and may provide the possibility of developing a transferable
model for prosthesis control.

Table 2.9: Descriptive statistics of the RMSE values obtained for different learning
methodologies during cross-subject evaluation using model M2 with 2 inputs.

Learning Methodology Count Sum Average Variance

Direct Estimation 196 2792.539 14.248 41.462
1 Synergy 196 2646.628 13.503 24.561
2 Synergies 196 2440.454 12.451 23.557

Note: Highlighted cells mark the least values of average and variance

Table 2.10: ANOVA summary table for the cross-subject evaluation using model
M2 with 2 inputs.

Source of Variation SS df MS F Statistic p-Value F Critical

Between Methodologies 319.32 2 159.661 5.347 0.004 3.011
Within Methodology 17468.05 585 29.860

Total 17787.37 587
Note: SS = Sum of Squares, df = Degrees of Freedom, MS = Mean Square.

Table 2.11: Post hoc Tukey HSD test results for the cross-subject evaluation using
model M2 with 2 inputs.

Group Pair Q Statistic p-Value Q Critical

Direct Estimation vs. 1 Synergy 1.907 0.370
Direct Estimation vs. 2 Synergies 4.602 0.003 3.323

1 Synergy vs. 2 Synergies 2.695 0.138
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2.4 Discussion

We have proposed and evaluated the synergy-space neural network for tran-
shumeral prosthesis control. By explicitly incorporating kinematic synergies into
the model, our approach addresses the limitations of traditional ANNs and provides
a more robust and superior transferability across different subjects. Our rigorous
evaluation of the model has shown promising results, demonstrating its potential.

We evaluated the performance of the proposed synergy-space approach for per-
sonalized LSTM models and compared it to the direct estimation method. The re-
sults of Pearson’s correlation method and the ANOVA analysis indicate that the
proposed method performs comparably to the direct estimation method, with no
significant difference in performance. However, the proposed approach still per-
forms well, even with the reduction in dimensionality, suggesting its efficient and
better learning capabilities for personalized LSTM models.

In the various tested scenarios, we observed that using shoulder internal–external
rotations (SHθx) as the input significantly increases the estimation accuracy of the
LSTM models, which was typical for all the learning methodologies. It can be
because the shoulder rotation is coupled to the forearm rotation; however, we have
already extracted the kinematic synergies from the subjects’ arm motion data corre-
sponding to the five DOFs of the arm, including the shoulder and forearm rotations
(i.e., SHθx and FAθx). It seems not associated with the joint coordination issue
and is more concerned with learning the LSTM model. An additional input (i.e.,
SHθx) provides an additional parameter to the LSTM model during the supervised
training/learning, and probably a more unique feature compared to using the joint
angular velocities (i.e., SHθ̇y and SHθ̇z). Therefore, it improves the model’s accu-
racy.

The synergy-space approach demonstrated its superiority during the cross-subject
evaluation as a more robust and transferable learning methodology. It showed more
minor variations in the estimation accuracy when using one subject’s motion data
and extracted the synergy matrix for forearm motion estimation using the person-
alized LSTM models of the other thirteen subjects. However, one of the limitations
of this study for the actual implementation on amputee users will be obtaining the
subject-specific synergy matrix. This is because, as mentioned earlier, amputee
users cannot provide the necessary motion information.

Based on the properties of synergies being repeatable and shared across similar
tasks and subjects, one practical solution can be to create a generalized synergy
matrix based on the data of all the able-bodied participants and use it for amputee
users’ forearm motion prediction. Another possibility would be to use motion data
from the user’s healthy arm to generate a synergy matrix for the amputated arm.
As the synergy matrix represents the inter-joint coordination, the LSTM model
needs to learn a simplified relation between the shoulder kinematics and the acti-
vation signals. That means effectively extracting synergies can significantly affect
performance.
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This first investigation of the proposed synergy-space neural network demon-
strates its potential as a robust and transferable predictive model, which was suc-
cessfully confirmed through the cross-subject evaluation results. This finding can
contribute toward creating a synergistic and generalized control strategy for tran-
shumeral prostheses and other rehabilitation applications.

2.5 Conclusions

The primary aim of this study was to improve the control of transhumeral pros-
theses, focusing on their transferability across users. A highly accurate transferable
predictive model is necessary for transhumeral amputees because individual cali-
bration or personalized learning methods cannot be used effectively as they cannot
provide the required data.

In this research, we proposed the synergy-space neural networks, as a transfer-
able model, to predict the joint angles of the forearm motion based on the residual
shoulder motion. We presented the implementation and evaluation of the proposed
method, discussing its learnability and robustness for transferability to amputee
users. The study was conducted with able-bodied subjects, focusing on reaching
movements of the arm in the horizontal plane only. We compared the synergy-
space neural network approach with the direct estimation method, using the actual
and estimated joint angular values for the performance evaluation. In the best-
case scenario, average RMSEs of 9.75◦ and 4.24◦ were achieved using the synergy-
space method (using 2 synergies) for the flexion–extension (FAθy) and pronation–
supination (FAθx) angles of the forearm motion. Consequently, we verified that for
the case of personalized predictive models, even with a reduced state space, the pro-
posed synergy-space neural network approach produced results similar to the direct
estimation method.

We investigated the transfer learning ability of the proposed model through
cross-subject analysis. The results indicate that the synergy-space neural network
exhibited superior learning capabilities compared to the traditional direct estima-
tion method during cross-subject evaluations. This highlights the strength of our ap-
proach as a transferable decoder, demonstrating its ability to handle inter-individual
variabilities and providing a more generalized model for transhumeral prosthesis con-
trol.

In the future, we can send the output of predicted joint angles from the pro-
posed model to a transhumeral prosthesis for real-time control. As a next step, this
approach would be extended to incorporate reaching motions in three-dimensional
space. The ultimate goal in the future is to develop a framework for the real-time
estimation of forearm motions to further test and improve the proposed approach,
such that it can be employed on actual transhumeral prostheses that allow users to
control the device intuitively.
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Chapter 3

Deep Reinforcement
Learning-Based Synthetic Motion
Cloning

3.1 Introduction

In recent decades, significant progress has been made in the development of
advanced prosthetics [11], [12] aimed at restoring lost limb function with multiple
active degrees of freedom (DOF). However, despite the improvements in robotics and
sensor technologies, there is a growing gap between control methods and hardware
improvements, resulting in a rejection rate as high as 40% [71]. This disparity
becomes even more pronounced in the case of transhumeral amputees.

The lack of intuitive controllability remains a primary challenge in enabling
transhumeral amputees to control a multi-functional prosthesis, which includes a
powered hand, wrist, and elbow, replicating various functions of a human arm.
A significant control objective is the execution of elbow joint motion and wrist
pronation–supination during target reaching tasks. Currently, commercially avail-
able prosthetic elbows are controlled through electromyographic (EMG) signals,
which results in complex control schemes and the development of compensatory
strategies involving large trunk and shoulder displacements [72]. However, the my-
oelectric control strategy lacks intuitiveness since the physiologically appropriate
muscles are unavailable, necessitating highly invasive surgeries such as targeted
muscle reinnervation (TMR) to overcome these limitations [73]. Furthermore, an
analysis of the manipulation strategies employed by prosthetic users [74] suggests
that body-powered devices tend to offer more intuitive control compared to myo-
electric devices. It has been observed that myoelectric devices often make routine
tasks more cumbersome and time-consuming to perform [75]. As an alternative, bio-
inspired and human motor-control-based techniques have been developed to achieve
more natural control of multiple DOFs [23], [76].
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Recent studies have focused on enhancing the intuitive control of prosthetic
elbow joints by leveraging movement synergies that govern coordinated joint move-
ments in the upper limb [77]–[79]. Previous studies have revealed that human move-
ments can be effectively characterized by a reduced set of primitive components
known as motor synergies [37], [80]. It has also been observed that similar move-
ments performed by different individuals exhibit shared synergies, indicating the
reusability of motor synergy patterns [81], [82]. Researchers in [83] have successfully
demonstrated the generalization ability of movement synergies for new targets in
multi-directional scenarios.

Building upon this concept, recent studies such as [31], [84] have showcased the
effectiveness of controlling wrist pronation–supination and elbow flexion–extension
through remaining shoulder movements, which participants have found intuitive.
This approach combines the residual limb motion strategy with the predictive capa-
bilities of ANNs, harnessing the inherent movement synergies between the shoulder
and elbow joints. As a result, it enables independent and simultaneous control of the
multi-DOF prosthesis. In particular, radial basis function network (RBFN) mod-
els have proven effective in capturing intricate inter-joint coordination patterns in
various ADLs [53], [85]. Additionally, ANNs and fuzzy logic methodologies have
been successfully applied for classifying and predicting prosthetic arm motions [86].
Moreover, the combination of EMG and shoulder orientation data has also been
explored to estimate distal arm joint angles [54].

However, one of the crucial challenges associated with this strategy revolves
around the acquisition of a sufficient amount of training data from human experi-
ments, as this approach relies on ANNs to identify and model the intricate coordi-
nation between the shoulder and elbow joints. This necessitates providing extensive
training data to the network during the learning process. Obtaining such training
data involves expensive motion capture equipment and a lengthy, repetitive process
where subjects perform numerous repetitions of the desired ADLs. The quantity
and quality of the motion data obtained also significantly impact the performance
of the ANN, as there are certain levels of motion variations among different human
subjects.

This study presents an innovative motion-cloning strategy to address the chal-
lenge of acquiring a substantial amount of training data for effective training of
ANN. Our approach leverages the capabilities of DRL algorithms to create natural
and human-like motion in simulated humanoid agents [87]. We introduce a DRL-
based motion cloning framework that utilizes a 7-DOF robot arm model in a mujoco
simulation to generate synthetic motion data. Furthermore, we explored the use of
the synthetic motion data obtained from DRL simulation (hereafter referred to as
DRL-Data) to train different ANNs and demonstrate the effectiveness of DRL-Data
in accurately estimating the arm motion of human subjects by comparing it with
their actual motion data (hereafter referred to as Real-Data). Moreover, the integra-
tion of Real-Data and DRL-Data through motion data augmentation demonstrated
the enhanced robustness of the trained ANNs. This approach addresses the challenge
of limited motion data availability by supplementing and diversifying the training
data, thereby improving the ANN’s ability to generalize across different subjects.
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The fundamental concept behind the proposed framework is that the simulated
robot arm has the ability to learn and replicate a wide range of desired movements.
We can utilize the extracted motion data from the shoulder and elbow joints from
the simulated arm to effectively supplement and diversify the training data for the
ANN. To the best of our knowledge, our study represents the first successful demon-
stration of employing learning–synthetic motion data to estimate actual human arm
movements.

This paper is organized as follows. Section 3.2 presents our proposed framework,
including details of the experimental protocols and the implementation of DRL
simulation. The ANN training strategy and the method employed for performance
evaluation are also described in this section. The results are presented in Section
3.3 and discussed in Section 3.4. Finally, we draw conclusions and discuss future
works in Section 3.5.

3.2 Materials and Methods

3.2.1 Experiment Protocols

This study focuses on estimating the elbow joint motion and wrist pronation–
supination during arm reaching movements, spanning across multiple directions in
the horizontal planes. We designed our experiment by drawing inspiration from the
investigation carried out in [37], which explored arm reaching movements towards
target points arranged in a circular manner. We created a target grid consisting of
eight points positioned along the circumference of a circle with a diameter of 0.5 m,
as depicted in Figure 3.1a.

The experimental task involves a reaching movement starting from a resting
position at the center point, then reaching and touching the selected outer target
point, and finally returning to the center point. A brief pause at the center point
precedes the repetition of the process to reach the next target. This movement task
is referred to as the center-out-center reaching task. Throughout the experiments,
the participants were instructed to perform center-out-center reaching movements
towards all eight target points within the horizontal plane, as illustrated in Figure
3.1b.

3.2.2 Human Subject Motion Data Acquisition: Real-Data

Six right-handed individuals (five males and one female) with no known upper
limb neuromuscular disorders volunteered as participants for this study. The age
range of the subjects was between 20 and 28 years old. Before the experiment, all
participants provided informed consent to participate in the research.
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(a) (b)

Figure 3.1: The designed experimental protocol for arm reaching movements in the
horizontal plane: (a) The target points are arranged in a circular pattern. The center
point (red) represents the initial neutral/rest position, and the outer points (blue)
numbered 1 to 8 indicate the target points to be reached. The arrow depicts the
outline of the desired center-out-center reaching movement to be performed. (b) An
illustration of a subject with the target grid in the horizontal plane, demonstrating
the positions of the target points relative to the participant.

To acquire arm motion data from the participants, we implemented an experi-
mental setup as depicted in Figure 3.2. The participants were instructed to execute
center-out-center reaching movements with their right arm while standing. A num-
ber was displayed on a screen in front of the subjects, indicating the specific target
point to be reached (Figure 3.2a). The timing of the movements was controlled pas-
sively through automatic color changes at fixed intervals. The green color indicated
the start of the reaching movement towards the outer target point, and it remained
green for 2 seconds. A display of red color indicated the return to the center point
and the waiting phase, as it remained red for 5 seconds. The process was repeated
for the next movement once the color turned green again.

We employed neuron pro, an inertial measurement unit (IMU)-sensor-based full-
body motion capture system, to capture the participants’ motion data. While this
system’s accuracy may be lower than that of optical-camera-based motion capture
systems, it offers the advantage of capturing motions without spatial constraints
from any location within the device’s communicable range. The neuron pro system
includes the axis neuron pro software (Figure 3.2b), which processes raw IMU data
and generates a real-time 3D skeletal model. This skeletal model provides valuable
motion information, including the position and angle of each joint, which can be
saved for further analysis.
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The participants were instructed to perform only four repetitions of the center-
out-center reaching movements for each target point, resulting in a relatively small
amount of collected data. We conducted the experiment twice per subject, recording
two sets of motion data, one each for training and testing purposes. The motion
data of interest included the angles of the right arm’s 3-DOF shoulder joint (rotation
(Sθx), flexion (Sθy)), and abduction (Sθz) and 2-DOF elbow joint (pronation (Eθx)
and flexion (Eθy)) during the reaching movements toward the targets. These joint
angles were saved and utilized for cross-validation testing of the trained ANNs to
assess the effectiveness of the DRL-Data approach.

(a)

(b)

Figure 3.2: Experimental setup for capturing arm reaching motion data from human
subjects. (a) A human subject wearing the neuron pro motion capture system and
performing the reaching motion on the target grid in the horizontal plane, with the
desired target point projected on the front screen. (b) Illustration of axis neuron
pro software with a real-time 3D model.
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3.2.3 Deep Reinforcement Learning (DRL)-Based Motion
Cloning: DRL-Data

The model-based approach, which involves mathematical optimization for ad-
dressing high-dimensional or redundancy problems in robotics, requires prior knowl-
edge of robot dynamics and the operating environment. In contrast, DRL presents a
promising model-free strategy that learns an effective policy through iterative trial-
and-error interactions with the environment without relying on dynamic parameters
such as mass, inertia, or even the model itself. An essential aspect is designing a
suitable reward function, as DRL algorithms enable robotic agents to learn opti-
mal actions by maximizing cumulative rewards within their virtual environment.
In a related study [40], quantitative evidence was provided to demonstrate that
deep learning, like humans, also exhibits motor synergy, enabling robotic agents to
achieve energetically efficient and natural human-like motion.

To generate synthetic motion data according to the predefined experimental
protocols, we utilized MuJoCo [88], a widely used simulation engine in the DRL
research community for studying multi-joint mechanical systems. We created an
anthropomorphic 7-DOF robotic arm agent consisting of three sequentially con-
nected modules: a 3-DOF shoulder joint with abduction, flexion, and rotation, a
2-DOF elbow joint with flexion and pronation, and a 2-DOF wrist joint with ab-
duction and flexion, mimicking a human arm’s configuration. This arrangement,
depicted in Figure 3.3a, replicates the total DOFs of a real human arm, considering
the forearm’s axial rotation as part of the elbow joint articulation along with elbow
bending. The arm’s endpoint is positioned at the fingertip of the middle finger.

3-DOF Shoulder Joint

(S𝜭x, S𝜭y, S𝜭z)

2-DOF Elbow Joint

(E𝜭x, E𝜭y)

2-DOF Wrist Joint

Fingertip

Target Points

(a) (b) (c)

Figure 3.3: The simulated anthropomorphic 7-DOF robot arm and the target points
in the MuJoCo simulation environment showcasing the setup: (a) Isometric view of
the simulated robot arm with the joints and a description of the DOFs. (b) The
simulated robot arm in a neutral pose, with target points arranged horizontally.
(c) The simulated robot arm tracking a moving point (red) to reach and touch a
designated target point (yellow).
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Our study utilizes the advanced soft actor–critic (SAC) algorithm [59] for syn-
thetic motion generation. In the DRL domain, tasks are typically represented
as infinite-horizon Markov decision processes (MDP), characterized by the tuple
(S,A, p, r). Here, S denotes the continuous state space, A represents the possible
action space, and p : S × A × S → [0,∞) defines the probability density of tran-
sitioning from the current state st ∈ S to the next state st+1 ∈ S given the action
at ∈ A. Additionally, r : S × A → R is the reward function, providing a scalar
reward at each transition. The trajectory distribution induced by a policy π(at|st)
is denoted by ρπ. The SAC algorithm is a cutting-edge stochastic DRL technique
that learns a policy π(at|st) aiming to maximize not only the rewards but also the
expected entropy Eρπ [H(π(·|st))], weighted by an entropy term α as expressed in
Equation (3.2.1). This maximization of expected entropy enhances the exploration
of diverse behaviors during training, accelerating learning and significantly reducing
sub-optimal solutions.

πSAC = E(st,at)∼ρπ [r(st, at) + α ·H(π(·|st))] (3.2.1)

To make the 7-DOF robot arm learn the reaching motion toward the target
points, it is assigned a task to track and follow a moving point. The trajectory
of the moving point adheres to the prescribed center-out-center reaching task out-
lined in the experimental protocols. Starting at the center point, the moving point
commences a linear movement towards a designated target in yellow (Figure 3.3b),
aiming to reach and touch it, followed by a return to the center point. A brief pause
occurs at the center point before the moving point transitions to the next target,
ensuring that all eight target points are periodically reached during the training
phase. Utilizing the SAC algorithm, the policy is learned to enable the robot arm’s
endpoint (the fingertip of the middle finger) to accurately track the moving target
(as depicted in Figure 3.3c). The objective is to minimize the position error between
the endpoint and the moving target in the task space while ensuring energy-efficient
motion.

The reward function used during training is defined as in Equation (3.2.2) and
has three terms with constant coefficients b, c, and d carefully chosen through exper-
imentation to maximize performance potential. The position error errorp quantifies
the distance between the moving point’s position and the current fingertip position
computed from the state. This component enables the robot arm to effectively learn
the center-out-center reaching motion. The ∥. ∥ notation represents the Euclidean
Norm and captures the total energy cost associated with each action at. By mini-
mizing this term, the robot arm is encouraged to optimize energy usage, generating
synergistic motion that closely resembles human-like behavior. Furthermore, the
palm orientation error “erroro” ensures proper palm orientation during the reach-
ing motion, aligning with the observations made during the human motion data
acquisition experiments, where the palm of the hand consistently faced downwards.

r (st,at) = −b · errorp − c · ∥at∥2 − d · erroro (3.2.2)
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The training involved learning the reaching movements towards the target points
in the horizontal plane over 200,000 steps. Upon completion, the robot arm’s learned
motion was simulated within the MuJoCo environment, where it successfully exe-
cuted the center-out-center reaching tasks for all target points. Subsequently, syn-
thetic motion data were extracted from the robot arm during the target reaching
movements, comprising 3-DOF shoulder joint angles (i.e., rotation, flexion, and ab-
duction) and 2-DOF elbow joint angles (i.e., pronation and flexion). These joint
angles are hereafter referred to as Sθx, Sθy, Sθz, Eθx and Eθy, respectively, consti-
tuting our motion dataset. We acquired the DRL-Data containing four repetitions
of reaching movements per target point, later used as the training dataset for the
ANNs.

3.2.4 Convolutional Long Short-TermMemory (CNN-LSTM)
Neural Network

This study employed convolutional long short-term memory (CNN-LSTM) neu-
ral networks to train a neural network model capable of recognizing shoulder–elbow
coordination and predicting elbow joint angles based on shoulder kinematics input.
The CNN-LSTM architecture combines the strengths of both convolutional neural
networks (CNNs) and long short-term memory (LSTM) recurrent neural networks
(RNNs), which have shown promising results in various time series prediction or
classification tasks. Recent studies, such as human activity recognition in [89], have
explored combining CNN and LSTM layers to enhance performance. This combina-
tion is motivated by the idea that LSTM’s performance can be limited by the quality
of the input features it receives [90]. We improve the overall feature representation
by incorporating CNN layers, which are adept at reducing input frequency variance
and extracting meaningful features. The LSTM layers then capture temporal depen-
dencies within the extracted features. Additionally, our approach integrates CNN
and LSTM layers within a unified architecture, allowing optimized training for all
layers.

We utilized Python’s machine learning library, Keras, to implement our CNN-
LSTM model. Following the methodology outlined in [53], our CNN-LSTM network
was trained to establish the relationship between shoulder and elbow joint angles
during target reaching movements. The training process involved supervised learn-
ing, where the CNN-LSTM developed a regression model using input–output pairs.
Specifically, the CNN-LSTM received the shoulder joint angles (Sθx, Sθy and Sθz)
as input and was trained to predict the corresponding elbow joint angles (Eθx and
Eθy).

To achieve high prediction accuracy, we fine-tuned the hyperparameters of the
CNN-LSTM network, including the number of nodes and hidden layers. We found
that a CNN-LSTM network with a single one-dimensional CNN layer, two LSTM
layers, each containing 256 nodes, and a final dense layer along with the Adam
optimization function yielded efficient results (Figure 3.4). This configuration al-
lowed the network to effectively capture features from the input data and model the
temporal dependencies necessary for accurate estimation.
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Figure 3.4: CNN-LSTM model architecture.

3.2.5 Analysis Strategy

To assess the effectiveness of the DRL-Data, we trained various CNN-LSTM
models using different input data configurations. In particular, we tested two dif-
ferent scenarios:

Sufficient Human Motion Data Availability

In the first scenario, we evaluated how well the DRL-Data could be used for pre-
dicting the elbow joint motion of a human arm during reaching movements across
different subjects. We developed two CNN-LSTM models for performance com-
parison: the DRL-Model and the Human-Avg-Model. The Human-Avg-Model was
trained using an averaged motion dataset from five human subjects, making it suit-
able for the sufficient data scenario. On the other hand, the DRL-Model was solely
trained on synthetic motion data. We then evaluated the performance of both mod-
els using a new motion dataset from a sixth subject. Below are the details of the
trained CNN-LSTM models:

• DRL-Model:
DRL-Model was trained with synthetic motion data generated from a

DRL simulation without using any human joint angle information. Its purpose
was to evaluate how well the decoder based only on DRL-Data could predict
elbow joint motion in human arms during reaching movements across different
subjects.

• Human-Avg-Model:
Six distinct Human-Avg-Models were trained using averaged motion data

obtained by combining the motion data from five human subjects. Each
Human-Avg-Model excluded the motion data from one of the six subjects,
which was later utilized for testing the model. These Human-Avg-Models
served as the gold standard for performance comparison given that the pre-
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dictive model trained using motion data from multiple human subjects’ can
capture typical features of human reaching motion from Real-Data.

• Performance Assessment:
The efficacy of the trained CNN-LSTM models (DRL-Model and Human-

Avg-Model) was tested using real motion data captured via the neuron pro mo-
tion capture system. For example, to validate the Human-Avg-Model, which
was trained on averaged motion data from subjects two to six (S2–S6), sub-
ject one’s (S1) motion data were employed. Subsequently, subject one’s (S1)
motion data were also used to test the DRL-Model. For comprehensive per-
formance evaluation, the predicted elbow joint motion angles from both CNN-
LSTM models were compared with the original elbow joint motion data of
subject one (S1) and quantified using the root mean squared error (RMSE)
(Section 3.2.6), a key metric for performance assessment. This iterative test-
ing procedure was replicated using the motion data of each subject to ensure
thorough performance evaluation across multiple subjects.

Limited Human Motion Data Availability

In the second scenario, we focused on exploring the potential enhancement of
performance and efficiency in a CNN-LSTM model through motion data augmen-
tation by the integration of DRL-Data with Real-Data. For comparison purposes,
we trained two types of CNN-LSTM models: the Hybrid-Model and the Human-
Sparse-Model. This scenario is considered a limited data scenario as we utilized
motion data from a single human subject with a constraint. To elaborate, for train-
ing the Human-Sparse-Model, the motion data comprised one repetition of reaching
movements towards only four out of the eight target points (specifically, target points
1, 3, 5, and 7).

Conversely, the Hybrid-Model was trained using an augmented motion dataset.
We combined the motion data from the same human subject as before and enriched
it with DRL-Data consisting of reaching movements towards an additional set of
four target points (target points 2, 4, 6, and 8), thereby diversifying the training
dataset.

To comprehensively assess the performance of both CNN-LSTM models, we
evaluated their ability to predict reaching motions towards all eight target points
utilizing new motion data from five different subjects, employing a cross-subject
evaluation strategy. Details of the trained CNN-LSTM models are as follows:

• Hybrid-Model:
Six distinct Hybrid-Models were trained using the augmented motion

dataset, which combined the motion data from only one human subject, hav-
ing one repetition of reaching movements toward four target points, and the
DRL-Data, with one repetition of reaching movements toward four additional
target points (eight target points in total). The aim was to investigate the
potential of the DRL-Data to supplement and diversify the limited training
data, thereby enhancing the performance of the CNN-LSTM model.
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• Human-Sparse-Model:
Six separate Human-Sparse-Models were trained, each using motion data

from only one human subject, with the limitation of having only one repe-
tition of reaching movements towards the specified four target points. This
Human-Sparse-Model establishes a baseline for performance comparison and
evaluation of the corresponding Hybrid-Models.

• Performance Assessment:
The effectiveness of the augmented motion data was assessed through a

comparative analysis of the predictive capabilities of the Hybrid-Model and
Human-Sparse-Model. This validation process was conducted using real mo-
tion data encompassing reaching movements toward all eight target points,
employing a cross-subject methodology. To illustrate, if subject one’s (S1)
motion data were utilized to train the Human-Sparse-Model and augmented
motion data from subject one (S1 + DRL) were employed for training the
Hybrid-Model, then the performance of both models was evaluated using a
cross-subject approach, involving motion data from subjects two to six (S2–
S6). The root mean squared error (RMSE) (as described in Section 3.2.6)
between the predicted and original elbow joint angular values was computed,
serving as a performance assessment metric.

3.2.6 Evaluation

To evaluate the quality of the synthetic motion data and assess the perfor-
mance of the CNN-LSTM models in predicting elbow joint angles, we employed well-
established metrics such as Pearson’s correlation coefficient and root mean squared
error (RMSE) [52]. By utilizing Pearson’s correlation coefficient, we could assess
the degree of linearity between the predicted joint angles and the actual values, pro-
viding insights into the model’s ability to capture the underlying synergistic patterns
in the data, whereas the RMSE metric enables us to gauge the overall accuracy
and precision of the CNN-LSTM models’ estimations.

Pearson Correlation Coefficient

Pearson’s correlation method examines the linear relationship between two vari-
ables and quantifies the strength of their correlation. The resulting coefficient,
denoted as “r”, ranges between −1 and +1, offering insights into the extent and
direction of the correlation. Table 2.2 presents the detailed interpretation of the
Pearson correlation coefficient.

To compute the Pearson correlation coefficient, we employed the “corrcoef” func-
tion available in Python’s NumPy library, which uses the subject’s original elbow
joint angles and the CNN-LSTM estimated elbow joint angles to compute the Pear-
son correlation coefficient.
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Root Mean Squared Error (RMSE)

For performance evaluation, we compared the estimated elbow joint angles (i.e.,
pronation–supination Eθx and flexion–extension Eθy) with the subject’s original el-
bow joint angles obtained during the reaching movements captured using the neuron
pro system, using the root mean squared error (RMSE) metric as defined in the
Equation (2.2.2). Here, x̂t is the predicted joint angle and xt is the actual joint angle
at data point t. The total number of data points is represented by N .

Target Point Reaching Error: Unity 3D Simulation

To evaluate the accuracy of the predicted arm movements in reaching the target
points, we utilized a Unity 3D simulation. This simulation was designed to ani-
mate the motion data predicted by the CNN-LSTM model. The Unity simulation
replicated the setup of the human subject motion data acquisition experiment, fea-
turing a humanoid actor in a standing position with target points arranged in the
horizontal plane (as shown in Figure 3.5).

(a) (b) (c)

Figure 3.5: The Unity 3D simulated environment for estimated motion animation:
(a) Isometric view showcasing the arrangement of target points horizontally in a
circular configuration, with the humanoid actor positioned in a standing stance.
(b) Front view of the humanoid actor in a neutral pose, with the middle finger’s
fingertip at the center point. (c) Illustration of the humanoid actor’s arm reaching
towards a designated target point (yellow).

The joint angles from each subject’s original motion data and the corresponding
predicted elbow joint angles from both the DRL-Model and the Human-Avg-Model
were used for the animation. This allowed the humanoid actor to visualize the arm
reaching movements toward all the target points. The target point reaching error
of both the CNN-LSTM models was determined relative to the actual arm reaching
movements of each human subject toward the specified target points animated in
the Unity 3D simulation. The Unity-based evaluation provided valuable insights
into the performance of the CNN-LSTM models through the visualization of the
predicted arm reaching motions.
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3.3 Results

In this section, we present the analysis results of our proposed DRL-based syn-
thetic motion cloning approach. Firstly, we demonstrate that the generated DRL-
Data accurately replicate synergistic human-like motion and exhibit joint angular
movement patterns similar to those observed in human subjects during arm reach-
ing motions. Next, we showcased the effectiveness of the DRL-Model, a CNN-LSTM
model trained using the DRL-Data as input, in predicting the elbow joint motion of
different human subjects. The DRL-Model achieves comparable performance to the
gold-standard Human-Avg-Model. Most notably, our cross-subject evaluation reveals
that motion data augmentation through the combination of Real-Data and DRL-
Data can improve the performance of sparse CNN-LSTM models (Hybrid-Model) in
scenarios with limited data availability.

Starting with the quality assessment of the synthetic motion data, our analysis
focused on evaluating the correlation between the DRL-Data and the averaged hu-
man motion dataset from all six subjects, which served as the benchmark for this
comparison. Figure 3.6 illustrates the results through a confusion matrix, present-
ing the Pearson’s correlation coefficient obtained by comparing all of the motion
datasets, including the Real-Data for each human subject and the DRL-Data.
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Figure 3.6: Confusion matrices illustrating the Pearson’s correlation coefficients ob-
tained by comparing the motion datasets with the averaged human motion data
from all six subjects. Each confusion matrix presents Pearson’s correlation compar-
ison for reaching movements toward a specific target point. The 3-DOF shoulder
and 2-DOF elbow joint angular values (Sx, Sy, Sz, Ex, and Ey) are compared. The
correlation values are displayed within small boxes, with lighter colors (yellow) in-
dicating stronger correlations and darker colors (green, purple, etc.) representing
weaker correlations. The columns labeled S1 to S6 depict the comparison with mo-
tion data from each subject, while the last column (DRL) compares the generated
synthetic motion data.

Figure 3.6 comprises individual confusion matrices demonstrating Pearson’s cor-
relation comparison for reaching movements towards target points, specifically the
target points numbered 4, 5, and 6. The columns labeled S1 to S6 depict the com-
parison with motion data from each subject sequentially, while the final column
presents the comparison with the generated DRL-Data. Variations in Pearson’s cor-
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relation values can be observed due to the subjects’ inherent individual differences
in reaching motion. However, the overall trend highlights the consistency among all
participants and the DRL-Data, indicating a shared movement pattern. The sim-
ilarity between the Pearson’s coefficient values of the DRL-Data and those of any
other human subject’s motion data suggests that the synthetic dataset generated
by our DRL-based motion cloning framework can be considered as an additional
subject within the experiment.

The next step involved evaluating our framework’s effectiveness in predicting
elbow motion during actual human arm reaching movements. To achieve this, we
utilized the synthetic motion data as the training dataset for a CNN-LSTM network
called the DRL-Model (see Section 3.2.5). As the DRL-based motion cloning frame-
work aimed to replicate human-like motion, we expected the performance of the
DRL-Model to be comparable to that of the Human-Avg-Model (see Section 3.2.5),
which was trained using the averaged human motion dataset. Although slight vari-
ations in performance were expected due to the artificially generated nature of the
DRL-Data, we anticipated that it would capture the essence of reaching movement
synergistic patterns to effectively train the DRL-Model. After training both models,
we employed them to predict the elbow joint angles (Eθx and Eθy) during reaching
motions performed by actual human subjects. Their shoulder joint angles (Sθx,
Sθy and Sθz) served as input for the estimation process (see Section 3.2.4). Sub-
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Figure 3.7: Prediction performance analysis for both the DRL-Model and the
Human-Avg-Model for one of the subjects. The top row illustrates the elbow
pronation–supination angle Eθx, while the bottom row represents the elbow flexion–
extension angle Eθy. The line graph visually represents the joint angle variation
during reaching movements toward each target point. The original joint angles are
displayed in black, the DRL-Model estimations are shown in blue, and the Human-
Avg-Model estimations are depicted in red. The adjacent bars correspond to Pear-
son’s correlation coefficient values for each comparison, while the overall RMSE
value is depicted in the bar graph in the last column, with the error bar represent-
ing the standard deviation of estimation error values.
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sequently, the estimated elbow joint angular values were compared to the subjects’
original elbow joint angular values to analyze performance.

Figure 3.7 displays the results of the prediction performance analysis for both
the DRL-Model and the Human-Avg-Model for one of the subjects. The line graph
illustrates the variation in the joint angles (elbow pronation–supination Eθx and
flexion–extension angle Eθy) during reaching movements towards each target point,
while the adjacent bars indicate the corresponding Pearson’s correlation coefficient
values compared to the subject’s original joint angular variation. Additionally, as
depicted in the bar graph in the last column, we computed the overall RMSE value
by comparing the estimated and original joint angular values for all target points
along with the error bar representing the standard deviation of the estimation error
values. As suggested by similar Pearson’s correlation coefficient values and slight
differences in overall RMSE values in Figure 3.7, both the DRL-Model and the
Human-Avg-Model exhibited comparable performance.

The bar graph in Figure 3.8 presents the overall RMSE values obtained for the
prediction of elbow joint motion across all six participating subjects. Since the
Human-Avg-Model was trained using an averaged human motion dataset as input,
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Figure 3.8: Bar graph representing the overall RMSE values obtained by comparing
the estimated elbow joint angular values to the original values for reaching move-
ments towards all target points, using both the DRL-Model (shown in blue) and the
Human-Avg-Model (shown in red) across all participating subjects. The error bar
represents the standard deviation of estimation error values.
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it is expected to have good prediction results. Although the DRL-Model with an
overall average RMSE value of 5.14◦ exhibits slightly lower performance compared
to the Human-Avg-Model with an overall average RMSE value of 4.03◦, the results
demonstrate its successful prediction of elbow joint angles with sufficient accuracy
for all subjects.

This highlights the effectiveness of synthetic motion data in training a neu-
ral network model for predicting natural human motion. Notably, for testing the
DRL-Model, human motion data are used as input, which differs entirely from the
synthetic motion dataset used for training. However, it still achieves reasonable
accuracy in predicting elbow joint motion for all subjects. This highlights the ro-
bustness of the DRL-Model in accommodating inter-subject variability.

Furthermore, we analyzed the target point reaching error associated with the
predicted elbow joint motion for both the DRL-Model and the Human-Avg-Model.
For this evaluation, we utilized a Unity 3D simulation with a humanoid actor, as
detailed in Section 3.2.6. This animation process involved visualizing not only the
predicted motion data generated by both the DRL-Model and the Human-Avg-Model
but also the subject’s original motion data. During the simulation, we tracked the
position of the middle finger’s fingertip as the humanoid actor executed the reaching
movements toward each designated target point. The target point reaching error
was determined relative to the actual arm reaching movements for each individual
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Figure 3.9: Comparison of the target reaching error for motion predictions of the
DRL-Model and the Human-Avg-Model. The polar charts present the target reach-
ing error for each point across all subjects for the DRL-Model in blue and the
Human-Avg-Model in red, where the radial axis indicates the scale of the position
error measured in centimeters.
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subject, as animated in the Unity 3D simulation.

Figure 3.9 presents a comparison of the target reaching error based on the pre-
dictions made by the DRL-Model and the Human-Avg-Model, illustrated on polar
charts. The predicted motion data from both the DRL-Model and the Human-Avg-
Model demonstrated the successful reaching of most target points with reasonable
accuracy across all subjects. Although there were slight variations in a few cases,
the overall trend of final position errors was similar for both models, with an average
overall mean value of 3.03 cm for the DRL-Model and 1.75 cm for the Human-Avg-
Model, respectively.

It is important to note that the humanoid actor in the simulation solely relied on
shoulder and elbow joint angular data to animate the reaching movements without
incorporating compensatory movements such as trunk and shoulder displacements.
In real scenarios, slight compensatory movements could further enhance the accuracy
of the target point reaching error. These results further validate the effectiveness
of our DRL-based synthetic motion data in accurately predicting the elbow joint
motion during natural human movements.

3.3.1 Motion Data Augmentation: Cross-Subject Evalua-
tion

To assess the impact of integrating DRL-Data with Real-Data on the perfor-
mance of our predictive models, we developed CNN-LSTM models, namely the
Human-Sparse-Model and Hybrid-Model (see Section 3.2.5), representing a scenario
with limited training data availability. Subsequently, we conducted a cross-subject
evaluation by utilizing the sparse model of one subject to predict the elbow joint
motion of all other participating subjects. This approach accounts for the inherent
inter-subject variability, providing valuable insights into the robustness and trans-
ferability of the trained predictive models.

Figure 3.10 presents the RMSE values obtained from the cross-subject evalua-
tion of the Hybrid-Model and the Human-Sparse-Model, represented as a box plot.
The box size indicates the range encompassing 75% of the sample values, with the
solid vertical golden line inside representing the median. A black diamond marker
indicates the mean value. Smaller box sizes and smaller mean and median values
indicate less variation in the prediction results and better overall performance.

The results depicted in Figure 3.10 demonstrate that the Hybrid-Model had
improved performance for all six subjects, as indicated by its smaller box size along
with the lower mean RMSE values compared to the Human-Sparse-Model. This can
also be observed from the percentage breakdown of the performance improvement
presented in Table 3.1. The overall cross-subject results show that the Hybrid-Model
had an overall average RMSE value of 5.72◦, whereas the Human-Sparse-Model had
an overall average RMSE value of 6.35◦ with an overall average improvement of
about 10% in the prediction performance.
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Figure 3.10: Box plot of the RMSE values comparing the predicted and actual elbow
joint angles obtained from the cross-subject evaluation of the Hybrid-Model in blue
and Human-Sparse-Model in red. The box size represents the range encompassing
75% of the values, with the solid vertical golden line inside indicating the median. A
black diamond marker denotes the mean value. Circular markers represent outliers;
the whiskers indicate maximum and minimum values. Smaller box sizes, along with
lower mean and median RMSE values, indicate better performance.

These findings highlight the potential of integrating DRL-Data with Real-Data
to enhance the overall performance and robustness of the predictive model. Aug-
menting the subject’s data with the additional synthetic motion data enriches the
training dataset’s diversity, contributing to improved model performance.

3.4 Discussion

We propose a DRL-based motion cloning framework for the synthetic motion
generation of arm reaching movements. The synthetic motion data effectively sup-
plement and diversify the training motion data, addressing the challenge of acquiring
large motion datasets from human subjects for training a predictive model. Our eval-
uation results showcase the efficacy of cloned motion data in accurately predicting
natural human elbow joint movements. Furthermore, motion data augmentation
demonstrated the enhanced performance of the predictive model across multiple
subjects in the case of the decoder based on human experiments.
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We assessed the quality of the cloned motion data (DRL-Data) generated through
our DRL simulation by examining its correlation with the averaged human motion
data and comparing the results to that of Real-Data obtained from all participating
subjects. Pearson’s correlation coefficient analysis revealed a strong similarity be-
tween the cloned DRL-Data and the motion data from the other subjects, albeit with
slight variations in correlation values due to the inherent inter-individual variabil-
ity. These results highlight that the synthetic dataset generated by our DRL-based
motion cloning framework can be considered as an additional subject within the
experiment. Such findings provide compelling evidence supporting the effectiveness
of our DRL-based motion cloning framework in successfully synthesizing human-like
synergistic motion.

We used synthetic motion data to train a predictive model, the DRL-Model,
and evaluated its performance against the Human-Avg-Model (used as the gold
standard), which was trained using the averaged human motion data from all the
participating subjects. We employed metrics such as Pearson’s correlation coeffi-
cient and RMSE values to measure the linearity and average difference between
the estimated and actual joint angular values. Both predictive models exhibited a
similar performance, as evidenced by comparable Pearson’s correlation coefficient
values and minor differences in overall RMSE values. This indicates that the syn-
thetic motion data successfully captured the essential reaching movement synergistic
patterns, enabling the effective training of the DRL-Model. Notably, the DRL-Model
was tested using human motion data as input, which uniquely differs from the syn-
thetic motion data used for training. Nonetheless, it accurately predicted the elbow
joint motion across all subjects, demonstrating the robustness of the DRL-Model in
accommodating inter-subject variability.

We also conducted a visual analysis of the predicted motion using a Unity 3D
simulation, where a humanoid actor animated the reaching movements toward all
target points. We calculated the target reaching error to assess the accuracy of the
estimations. The results demonstrated that both the DRL-Model and the Human-
Avg-Model successfully reached the target points with reasonable accuracy. While
there were slight variations in a few cases, both models produced similar overall
target reaching errors. It is important to note that the humanoid actor in the
simulation solely relied on shoulder and elbow joint angular data to animate the

Table 3.1: Percentage breakdown of sparse models’ cross-subject evaluation perfor-
mance.

Model Mean RMSE
Value

Human-Sparse-Model

Mean RMSE
Value

Hybrid-Model

Percentage
Improvement

S1 8.63 7.03 18.48%
S2 5.56 5.50 1.22%
S3 5.29 4.95 6.34%
S4 5.13 4.92 4.01%
S5 6.75 5.90 12.58%
S6 6.77 6.05 10.61%
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reaching movements without incorporating compensatory movements. Therefore,
the target reaching errors can be further improved in real scenarios by incorporating
slight compensatory movements such as trunk and shoulder displacements.

Finally, we investigated the impact of integrating DRL-Data with the Real-
Data for training purposes to enhance the performance of the predictive models.
We trained predictive models with sparse training data, namely Human-Sparse-
Model and Hybrid-Model, and evaluated their prediction accuracy through a cross-
subject evaluation. The results reveal that the Hybrid-Model outperformed the
Human-Sparse-Model, demonstrating improved performance in all six subjects, as
indicated by the smaller box plot size and lower overall average RMSE values. These
findings highlight the potential of integrating DRL-Data with Real-Data, leading to
the predictive model’s enhanced overall performance and robustness. The training
dataset becomes more diverse by augmenting the subject’s data with additional
synthetic motion data, contributing to improved model performance.

In this study, we explored synthetic motion generation with a specific focus
on fundamental horizontal-plane reaching movements and its utilization in motion
data augmentation to improve the predictive model’s performance. Looking ahead,
our research trajectory entails an in-depth exploration of the domain of synthetic
motion data generation. We are striving to enhance the accuracy and diversity of
the synthetic dataset through the implementation of advanced DRL techniques to
encompass a broader range of dynamic movements and scenarios.

3.5 Conclusions

This study unveils the potential of synthetically generated motion data using a
DRL-based motion learning approach to accurately replicate human-like synergis-
tic arm movements and their effectiveness in training predictive models capable of
accurately predicting actual human arm movements.

We present a novel DRL-based motion cloning framework designed explicitly
for synthesizing motion data for arm reaching movements. Through our analysis,
we confirmed that the synthetic motion data closely resemble the characteristics of
motion data obtained from human subjects and effectively capture the synergistic
patterns of the arm reaching movements, enabling the training of an accurate pre-
dictive model. Our trained model demonstrates the ability to predict elbow joint
motion across diverse human subjects, achieving an overall average RMSE value of
5.14◦ and accurately reaching the target points. Notably, our results highlight the
significant advantages of integrating synthetic motion data with actual motion data
from human subjects during training, enhancing the performance and robustness of
the predictive models in a cross-subject evaluation setting, with an overall average
RMSE value of 5.72◦.

This initial investigation showcases the potential of the proposed DRL-based
motion cloning framework in successfully synthesizing and leveraging synthetic mo-
tion data to enhance the accuracy and reliability of predictive models in capturing
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natural human-like movements. Our evaluations yield compelling evidence, affirm-
ing the ability of the cloned motion data to accurately predict natural elbow motion
across multiple subjects. Moreover, the cloned motion data can supplement limited
data availability and diversify the training data, contributing to improved gener-
alization. These findings have significant implications for creating comprehensive
synthetic motion dataset resources for diverse arm movements and advancing auto-
mated prosthetic elbow motion strategies.
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Chapter 4

Real-Time Prediction of the Elbow
Joint Motion During Extensive
Arm-Reaching Activities

4.1 Introduction

Over the years, significant progress has been made in the design and control of
prosthetic arms. However, a fundamental challenge persists for transhumeral am-
putees when utilizing a prosthesis, specifically in the intricate control of its multiple
joints. Navigating the prosthetic elbow and wrist joints to position the hand accu-
rately and coordinating these joint movements while reaching for objects remains a
highly challenging task.

Transhumeral amputees experience the loss of all forearm and wrist muscles [3].
Furthermore, they must control the crucial elbow joint to effectively manage the
multiple degrees of freedom (DOFs) inherent in a prosthetic arm. Various advanced
practices have emerged to enhance the controllability that transhumeral amputees
can exert over their prosthetic devices. Techniques such as targeted muscle reinner-
vation (TMR) [91], [92], a surgical procedure involving the transfer of residual arm
nerves to alternative muscle sites, facilitate access to neural control information for
the arm, which is compromised by amputation. Following reinnervation, these tar-
geted muscles generate an electromyogram (EMG) on the skin’s surface, measurable
and providing additional signals for enhanced control.

Osseointegration [93] and neuromusculoskeletal implants [94] represent a new
era in human-machine integration, where the prosthetic arm is directly anchored to
the skeleton. This innovative approach combines surgical reconstruction procedures
with implanted electrodes and a long-term stable neuromusculoskeletal interface for
prosthesis control [95]. This skeletal interface facilitates bidirectional communication
between the external prosthesis and internal neuromuscular interfaces, offering the
potential for feedback to users, such as tactile sensations. These advancements can
improve task performance closer to the abilities of a healthy human.
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Despite their advantages, the testing and evaluation of these control strategies
are challenging and expensive. They necessitate complex and highly invasive surg-
eries, expertise for which is available at only a few medical institutions with special-
ized specialists. Additionally, the optimization of these strategies requires advanced
signal processing techniques, as well as the development of decoding and classifica-
tion algorithms for sensorimotor signals [96], [97]. Obtaining willing subjects and
extensive training requirements poses yet another limitation.

This study presents an alternative, non-invasive, and easily accessible approach
based on residual shoulder motion data for predicting and evaluating elbow joint
motion in transhumeral prosthesis control. Our proposed method capitalizes on the
natural synergistic coordination between the arm joints [98], [99] and entails the
development of artificial neural network (ANN)-based predictive models to control
the pronation-supination (Eθx) and flexion-extension (Eθy) angles of the elbow joint
during extensive arm reaching motions.

To overcome the challenges associated with clinical trials, we have developed a
virtual reality (VR)-based interactive framework for real-time validation and eval-
uation of the predictive models. Amputee users can wear sensors on their bodies
to control a humanoid actor in a virtual workspace, requiring minimal preparation
for testing the control strategy. The overarching concept involves creating a plat-
form for initially acquiring motion data from healthy subjects that are used to train
predictive models for transhumeral prosthesis elbow control and subsequently val-
idating their efficacy on amputee subjects. We can readily modify and adapt the
experimental setup as the experiments for arm-reaching movement tasks occur in a
virtual workspace. In this study, we demonstrate the real-time prediction of elbow
joint motion during extensive arm-reaching activities, successfully validated with a
right arm transhumeral amputee user.

This paper is organized as follows. Section 4.2 presents our proposed framework,
including details on the experimental protocols and the implementation of virtual
workspace. The ANN training strategy and the method employed for performance
evaluation are also described in this section. The results are presented in Section
4.3 and discussed in Section 4.4. Finally, we draw conclusions and discuss future
works in Section 4.5.

4.2 Materials and Methods

4.2.1 Apparatus

This study is centered on the real-time prediction of elbow joint motion, specifi-
cally with applications in transhumeral prosthesis control. To achieve this objective,
we have developed a Virtual Reality (VR) platform that allows subjects to interact
with a 3D workspace and perform the reaching tasks with the full range of arm
motion. The fundamental framework of this VR platform is visually illustrated in
Figure 4.1.
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Figure 4.1: Virtual Reality (VR) platform architecture: The Neuron Pro system
processes motion data, which is then relayed to the Python module. The module
serves a dual role, saving the data into a file for future reference and transmitting
it to the Unity 3D simulation for real-time visualization.

The VR platform has three elements. We employed the Perception Neuron
Pro system to capture how a subject’s arm moves while they reach for targets
in VR. This system utilizes Inertial Measurement Unit (IMU) sensors for motion
capture. While the precision of this system may be somewhat lower when compared
to optical camera-based alternatives, it has the advantage of working without any
restrictions in terms of where you can use it. Subjects can conveniently wear the
sensors using adjustable straps, eliminating the need for any additional preparations.
The sensor system interfaces with the Axis Neuron Pro software, facilitating the real-
time processing of raw motion data and the construction of a dynamic 3D skeletal
model.

The motion data from the constructed skeletal model, including joint positions
and angles, is subsequently relayed to an intermediary Python module. This module
operates on a dual front: it saves the angular data of the joints for future reference
while simultaneously facilitating the transmission of this dataset to the Unity 3D
simulation for real-time visualization. As part of this integrated system, subjects
can actively control the movements of the humanoid actor’s arms, torso, and head,
effectively immersing them in the realm of virtual reality.

4.2.2 Data Acquisition and Experiment Protocols

Our study involved the voluntary participation of six individuals, all right-
handed, comprising four males and two females, alongside one participant with a
transhumeral amputation of the right arm. The healthy subjects, aged between 20
and 28, exhibited no documented upper body neuromuscular disorders, while the
amputee participant was 30 years old. Before their involvement in the experiments,
all subjects provided informed consent.
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This study is centered on the real-time prediction of the pronation-supination
and flexion-extension angles of the elbow joint during extensive arm-reaching ac-
tivities within a three-dimensional workspace. Our virtual environment features a
seated humanoid actor positioned on a chair, with the target points to be reached
being distinctly marked as blue spheres, as depicted in Figure 4.2. Our experimental
design explores the full range of arm-reaching motions, tasking subjects with reach-
ing eight designated target points distributed across a spacious right-arm workspace,
as illustrated in Figure 4.2a. To actively engage with this virtual reality setting and
perform the necessary reaching tasks, participants use the Neuron Pro motion cap-
ture system and the Oculus Quest VR headset to control the actions of the humanoid
actor in real-time.

(a) (b)

(c) (d)

Figure 4.2: Experimental Setup for Extensive Arm-Reaching Movements: A hu-
manoid actor sits on a chair in a virtual 3D workspace. Target points for reach-
ing are denoted by numbered blue spheres, while a small red sphere indicates the
rest/start point. (a) An illustration of the wide workspace with target points span-
ning the extensive reaching range (green-shaded region) for the subject’s right arm
movements. (b) An isometric view of the humanoid actor and the target points in
the virtual workspace. (c) A side view of the humanoid actor with the right hand
in a rest/starting pose. (d) A front view of the humanoid actor within the virtual
workspace.
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The experimental task involves the subjects seated straight on a chair and per-
forming a sequence of reaching movements, commencing from a resting position
marked by a distinctive red sphere, wherein the right arm is positioned in a rest
stance, with the shoulder joint in a downward orientation and the elbow joint bent
at a 90◦ angle, as depicted in Figure 4.2c. Subsequently, subjects are directed to
reach and contact a designated blue target sphere, which is set to disappear upon
the humanoid actor’s fingertip contact. Following the target sphere’s disappearance,
participants must return to the central point and return the arm to the rest position.
This process is followed by a brief pause at the rest point before initiating the next
cycle to reach the subsequent target sphere. This movement task is referred to as
the "center-out-center" reaching task. Throughout the experimental sessions, par-
ticipants received instructions to execute the center-out-center reaching movements
encompassing all eight target points within the virtual workspace.

We captured the natural arm movements of our healthy subjects, along with
their head orientation while they performed these arm-reaching tasks and subse-
quently used this data to train various ANN models. These models were designed
to predict elbow joint motion during similar reaching tasks, a critical aspect of tran-
shumeral prosthesis control. In our experimental framework, the primary focus was
on collecting data related to the orientation angles of the shoulder joint, encom-
passing internal-external rotation (Sθx), flexion-extension (Sθy), and abduction-
adduction (Sθz) movements. Additionally, we recorded orientation angles of the
elbow joint, covering pronation-supination (Eθx) and flexion-extension (Eθy). Fur-
thermore, we monitored three head orientation angles: pitch (vertical movement
Hθx), yaw (horizontal movement Hθy), and roll (rotational motion Hθz). Here-
after, these joint angles will be referred to as Hθx, Hθy & Hθz for the head, Sθx,
Sθy & Sθz for the shoulder, and Eθx & Eθy for the elbow, respectively.

4.2.3 Synergy-Space Neural Network Training

The subsequent phase of our investigation involved training our ANN models
to predict elbow joint motion during similar arm-reaching tasks as carried out in
the experiment. This predictive framework relied on the kinematic data obtained
from the shoulder joint. For this purpose, we implemented the synergy-space neural
network strategy as detailed in a prior research study [77]. This strategy uniquely
leveraged the principle of synergy, capitalizing on the inherent coordination observed
among arm joints during reaching movements. The core objective was to facilitate
the accurate prediction of elbow joint motion, characterized by both energy efficiency
and human-like movements.

In contrast to the conventional approach of supervised training for ANNs, this
method introduces a novel sequence of steps (Fig. 4.3). Initially, it explicitly ex-
tracts the inherent synergistic elements and time-varying activation signals from the
source data, as depicted in Equation (4.2.1), through the application of Principal
Component Analysis (PCA). Subsequently, the ANN’s learning process integrates
the most pertinent synergy components. This integration aims to refine the ANN
training, capitalizing on the shared nature of these synergies, thereby augmenting
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the model’s overall transferability. Ultimately, the prediction of elbow joint motions
is achieved using Equation (4.2.2), in which the initially extracted activation signals,
denoted as C, are substituted with the ANN-predicted signals, designated as Cp.

xl(t) =
N∑
n=1

wn · cln(t) + residuals (4.2.1)

X = W · C (4.2.2)

Convolutional Long Short-Term Memory (CNN-LSTM) Neural Network

To train a synergy-space neural network model to predict elbow joint motion for
transhumeral prosthesis control, we employed convolutional long short-term memory
(CNN-LSTM) neural networks. Recent investigations, exemplified by the study
on human activity recognition presented in [89], have explored combining CNN
and LSTM layers to enhance predictive performance. This fusion of networks is
rooted in the recognition that the quality of the input can constrain LSTM’s efficacy
features it receives, as indicated in [90]. Including CNN layers, adept at reducing
input frequency variance and distilling salient features, greatly enhances the overall
feature representation. Subsequently, LSTM layers capture temporal dependencies
embedded within these extracted features.

The CNN-LSTM architecture combines the inherent advantages of both CNN
and LSTM layers. These neural network components have previously demonstrated
remarkable efficacy in various time series prediction and classification tasks. No-
tably, in our approach, we unify the functionality of CNN and LSTM layers within
a single cohesive architecture, facilitating optimized training across all layers.
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Figure 4.3: Synergy-Space Neural Network training strategy for CNN-LSTM
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Our CNN-LSTM model was implemented using the Python machine-learning
library Keras. The architecture features a single one-dimensional CNN layer, com-
plemented by two LSTM layers comprising 256 nodes. A concluding dense layer,
along with the Adam optimization function, was included in the configuration (see
Fig. 4.3). This design facilitated the network’s proficiency in feature extraction from
the input data and the modeling of essential temporal dependencies, ultimately en-
hancing the accuracy of the estimation process.

The training process adhered to a supervised learning paradigm, in which the
CNN-LSTM was made to formulate a regression model based on the input-output
pairs to estimate the time-varying activation signals. Subsequently, in conjunction
with the extracted synergy matrix, these predicted activation signals are utilized
to predict the angular movements associated with elbow joint pronation-supination
and flexion-extension as depicted in Figure 4.3.

4.2.4 Analysis Strategy

Our analytical methodology involved training various CNN-LSTM models, each
rooted in distinct training data configurations. In particular, we trained 3-DOF
CNN-LSTM models that exclusively incorporated the joint angular data from the
three DOFs of the shoulder joint (Sθx, Sθy & Sθz) as its input. Additionally, we
developed 6-DOF CNN-LSTM models, which utilized composite joint angular data
input, combining three DOFs related to head orientation angles (Hθx, Hθy & Hθz)
and the three DOFs of the shoulder joint angles (Sθx, Sθy & Sθz).

This classification was driven by the investigation into whether the integration of
head orientation information could yield improvements in the predictive capabilities
of the CNN-LSTM models. Given the spatial distribution of the target points across
a wide workspace, it was observed that subjects often altered their head orientation
to focus on the target points during reaching tasks visually. Therefore, using head
orientation data can prove to be useful for training the predictive models. Details
of the different CNN-LSTM models trained in our study:

Personalized CNN-LSTM Models (P-Models)

Firstly, we conducted an assessment to ascertain whether the incorporation of
head orientation data yields enhancements in the predictive capabilities of the CNN-
LSTM models. We specifically developed personalized CNN-LSTM models, hence-
forth referred to as P-Models, which were trained using the motion dataset unique
to each individual healthy human subject. These models are labeled as "personal-
ized" since they are exclusively trained and tested using the motion data of a single
subject, rendering the predictive model inherently individualized to that specific
subject.

81



4.2. Materials and Methods Doctoral Thesis

We developed two distinct CNN-LSTM models for each subject to facilitate a
comprehensive comparison: the 3DOF-P-Model and the 6DOF-P-Model. Given the
participation of six healthy subjects in our experiments, we consequently trained
a total of 12 P-Models (comprising both the 3DOF and 6DOF versions for each
subject). This comprehensive approach allowed us to effectively gauge the utility of
integrating head orientation information in the training of predictive models. Details
of the trained personalized CNN-LSTM models are provided below:

• 3DOF-P-Model:
We conducted training for six unique 3DOF-P-Models, with each model

being developed using the motion data exclusively acquired from an individual
human subject. The 3DOF-P-Model is characterized by its sole utilization of
joint angular data from the three DOFs of the shoulder joint (Sθx, Sθy & Sθz)
as the exclusive training input for the predictive model.

• 6DOF-P-Model:
A total of six individual 6DOF-P-Models were trained, using the motion

data acquired from an individual human subject. The 6DOF-P-Model stands
out for its integration of the three DOFs associated with head orientation
angles (Hθx, Hθy & Hθz) with the three DOFs the shoulder joint angles (Sθx,
Sθy & Sθz) as the combined training input for the predictive model.

• Performance Assessment:
We evaluated how well the P-Models performed by testing each model with

the specific subject’s motion data and then compared the predicted elbow joint
angles (Eθx & Eθy) to the subject’s actual elbow joint angles.

Generic CNN-LSTM Models (G-Models)

The primary goal of this study was to create a real-time prediction platform
for elbow joint motion during extensive reaching tasks, specifically geared for tran-
shumeral prosthesis control. We developed a set of generic CNN-LSTM models to
achieve this objective, referred to as G-Models. These models were trained using the
collective motion data sets obtained from the six participating subjects. The term
"generic" is aptly applied since this single predictive model is designed to predict the
elbow joint motion for diverse subjects, as it has been trained using data from many
subjects. Furthermore, our training methodology was reinforced by implementing
the synergy-space neural network strategy [77]. This synergistic methodology was
employed to enhance the robustness and adaptability of the predictive model in ac-
commodating inter-individual variabilities commonly encountered during reaching
movements.

In this particular context, we extended our exploration by developing distinct
variations of the G-Models, each founded on specific input data configurations. More
precisely, two categories of G-Models were trained: the simple generic model G-
Model and the averaged generic model G-Models-AVG. This categorization stemmed
from our interest in investigating whether using averaged motion data alone could
effectively create a generic predictive model.
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This was motivated by the recognition that the quantity of motion data em-
ployed for training directly impacts the computational resources and time required
for the predictive model’s training process. So, with this, we examined whether the
amalgamation of motion data from all subjects into a consolidated dataset of refined
reaching movements toward all target points could present a pragmatic solution for
mitigating the computational and time requirements inherent to the training of pre-
dictive models. Details of the trained generic CNN-LSTM models are as follows:

• G-Model:
We created two simple generic CNN-LSTM models, G-Models, trained

using two different input data configurations: the 3-DOF and 6-DOF setups,
as detailed in Section 4.2.4. In the training of each G-Model, we utilized
motion data sets encompassing contributions from all six healthy subjects who
participated in the study. Each subject’s dataset included a single iteration
of reaching movements directed at all the designated target points within the
virtual workspace. Consequently, the collective training dataset comprised six
iterations of reaching movements for each target point.

• G-Model-AVG:
Two averaged generic CNN-LSTMs, G-Models-AVG, were trained based

on the 3-DOF and 6-DOF input data configuration (as described in Section
4.2.4). In the training process for each G-Model, we leveraged an averaged mo-
tion dataset formed by pooling motion data from all six participating healthy
subjects. The collective training motion dataset comprised a single iteration
of refined and averaged reaching movements directed at all the specified target
points within the virtual workspace.

• Performance Assessment:
In the case of the generic models, we conducted both offline and real-time

testing. For the offline assessments, we utilized the recorded motion data from
the healthy participants as input for the predictive models. In contrast, the
real-time testing involved an individual with a right arm transhumeral ampu-
tation who actively controlled the humanoid actor and executed the target-
reaching tasks within the virtual workspace. Firstly, the amputee subject’s
successful reaching and touching of the target points in the virtual workspace
was considered an accurate prediction of the elbow joint angles. Secondly,
given that the amputee participant could not provide direct data on their ac-
tual elbow joint angles, we resorted to tracking and comparing the fingertip
motions of both healthy and amputee participants during the reaching move-
ments to evaluate model performance.

4.2.5 Evaluation

To comprehensively evaluate and assess the performance of the CNN-LSTM
models in their ability to predict elbow joint angles, we utilized established evalua-
tion metrics, including the root mean squared error (RMSE) and Pearson’s corre-
lation coefficient.
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Root Mean Squared Error (RMSE)

The RMSE metric is a valuable indicator for assessing the overall accuracy
and precision of the elbow joint angles predicted by the CNN-LSTM models. We
conducted a comparative analysis between the estimated elbow joint angles, specifi-
cally pronation-supination Eθx and flexion-extension Eθy, and the subject’s original
elbow joint angles obtained during the recorded reaching movements, as captured
by the neuron pro system. This comparison was made using the (RMSE) metric,
defined in Equation (4.2.3), where x̂t represents the predicted joint angle and xt
represents the actual joint angle at data point t. The total number of data points
is denoted by N .

RMSE =

√√√√ 1

N

N∑
t=0

(x̂t − xt)2 (4.2.3)

Pearson Correlation Coefficient

Through the application of Pearson’s correlation coefficient, we could gauge the
extent of linearity between the predicted joint angles and their actual counterparts.
This approach afforded valuable insights into the model’s capacity to capture the
inherent synergistic patterns within the dataset. Pearson’s correlation method, em-
ployed to examine the linear relationship between two variables and quantify the
strength of their correlation, yields a coefficient denoted as “r ”. This coefficient,
which ranges between −1 and +1, offers a comprehensive understanding of the cor-
relation’s magnitude and direction.

The Pearson correlation coefficient was computed using Python’s NumPy li-
brary’s “corrcoef” function. This function was applied to the subject’s actual elbow
joint angles and the predicted elbow joint angles derived from the CNN-LSTM mod-
els. In addition to its application in assessing model performance, we also utilized
this metric for comparative evaluations of fingertip tracking in both offline and
real-time scenarios, particularly concerning the performance of the generic models.

Fingertip Tracking

To assess the accuracy of the predicted reaching movements during real-time
tests, we made the decision to assess the similarity of these movements through the
tracking of the right hand’s fingertip of the humanoid actor. It’s important to note
that providing the original elbow joint angles for evaluation was impossible for the
transhumeral amputee subject in the real-time testing scenario. Consequently, our
evaluation involved the reanimation of the recorded joint angular data from each
subject’s original motion data and a comparison with the motion data predicted by
the generic CNN-LSTM models, specifically the G-Model and G-Model-AVG.

84



Doctoral Thesis 4.3. Experimental Results

The Unity simulation faithfully replicated the setup of the human subject arm
motion data acquisition experiment, with a humanoid actor seated upright on a
chair executing a sequence of reaching movements toward all the designated target
points within the 3D virtual workspace. The position of the actor’s right hand’s
middle finger was tracked and recorded throughout these movements.

In our evaluation, we utilized Pearson’s correlation coefficient metric to conduct
comparative analyses of fingertip tracking, enabling a comprehensive performance
assessment. This Unity-based evaluation facilitated quantitative assessments and
provided invaluable visual insights into the effectiveness of the generic CNN-LSTM
models in accurately predicting arm-reaching motions.

4.3 Experimental Results

In this section, we present the results of our proposed framework’s analysis for
real-time prediction and evaluation of elbow joint motion in a virtual workspace for
transhumeral prosthesis control. Firstly, we illustrate that integrating head orien-
tation information with shoulder joint angles during extensive arm-reaching move-
ments enhances the performance of predictive models. This enhancement is verified
through performance comparisons between models trained with 3-DOF and 6-DOF
input data configurations. Subsequently, we highlight the effectiveness of the G-
Model-AVG in predicting elbow joint motion across different human subjects—a
CNN-LSTM model trained using the averaged motion dataset from the recorded
reaching movements of all six participating healthy subjects. The G-Model-AVG
CNN-LSTM achieved similar performance accuracy to the simple generic model G-
Model while utilizing approximately three times fewer resources and training time.

Finally, as the primary objective of this study, we validated the platform with
a transhumeral amputee subject, showcasing the successful real-time predictive ca-
pability of the trained generic models. The amputee user reached and touched all
target points within the virtual workspace without needing prior training or fine-
tuning of the predictive model.

4.3.1 Personalized Models Evaluation: 3DOF vs 6DOF

Initiating our assessment with the effectiveness of incorporating the three DOFs
associated with head orientation angles (Hθx, Hθy & Hθz) along with the three
DOFs of shoulder joint angles (Sθx, Sθy & Sθz) as input for training the predictive
model, our analysis centered on comparing the accuracy of personalized models (see
Section 4.2.4), specifically the 3DOF-P-Model and 6DOF-P-Model, in predicting
elbow joint motion during actual human arm reaching movements. To achieve this,
each P-Model received the corresponding subject’s original recorded motion data as
input, enabling a direct comparison between the predicted and original elbow joint
angles.
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Observations from our experiments with healthy subjects’ data acquisition re-
vealed a consistent tendency among participants to adjust their head positions to
visually focus on the specific target point in the virtual workspace during reaching
tasks. We hypothesized that this coordinated head movement, synchronized with
arm motions, could be effectively leveraged for training predictive models. Following
the training of both the 3DOF-P-Model and 6DOF-P-Model personalized models
for all subjects, we applied them to predict elbow joint angles (Eθx & Eθy) during
reaching motions. Subsequently, we compared the estimated elbow joint angular val-
ues with the subjects’ original elbow joint angles to conduct a thorough performance
analysis.

The results of the prediction performance analysis for both the 3DOF-P-Model
(in blue) and 6DOF-P-Model (in orange) for one of the subjects are presented in Fig-
ure 4.4. The line graph illustrates the variation in the elbow joint angles (pronation-
supination Eθx and flexion-extension Eθy) during reaching movements toward each
target point. Simultaneously, the adjacent bars indicate the calculated Pearson’s
correlation coefficient “r ” values comparing the subject’s original (shown in black)
and predicted joint angular variation. Additionally, as depicted in the bar graph
in the last column, we computed the overall RMSE value by comparing the esti-
mated and original joint angular values for reaching movements toward all target
points. Based on the calculated r values, both models can predict the elbow joint
angles with sufficient accuracy. However, the significant difference in the overall
RMSE value in Figure 4.4 indicates that the 6DOF-P-Model exhibited superior
performance, suggesting the effectiveness of using head orientation data.

In Figure 4.5, the box plot illustrates the RMSE values derived from the pre-
diction results of both the 3DOF-P-Model and 6DOF-P-Model personalized models
across all six healthy human subjects. The box size delineates the range covering
75% of the sample values, while the solid horizontal black line signifies the median.
A black diamond marker denotes the mean value. Smaller box sizes and lower mean
and median RMSE values are indicative of reduced variation in the prediction re-
sults, reflecting superior overall performance.

The results illustrated in Figure 4.5 reveal the enhanced performance of the
personalized 6DOF-P-Model across all six healthy subjects. This improvement is
evidenced by the smaller box size and lower mean RMSE values of the box plot
compared to the 3DOF-P-Model. A detailed breakdown of performance improve-
ment is presented in Table 4.1, showcasing the 6DOF-P-Model with an overall mean
RMSE value of 4.35◦, while the 3DOF-P-Model recorded an overall mean RMSE
value of 5.67◦. This represents an average improvement of approximately 23.24% in
prediction performance. These findings underscore the potential of integrating head
orientation information with shoulder joint angular data during training, emphasiz-
ing its role in enhancing the predictive model’s overall performance.
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Figure 4.4: Performance Analysis of Predictive Models: Comparing the 3DOF-P-
Model and 6DOF-P-Model for one of the healthy subjects. The top row depicts the
elbow’s pronation-supination angle Eθx, while the bottom row illustrates the elbow’s
flexion-extension angle Eθy. The line graph visually represents the variation in joint
angles during reaching movements toward each target point. Original joint angles
are displayed in black, the estimations from the 3DOF-P-Model are presented in
blue, and the estimations from the 6DOF-P-Model are depicted in orange. The
adjacent bars represent the corresponding Pearson’s correlation coefficient values
for each comparison, with the overall (RMSE) value displayed in the bar graph in
the last column.
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mark outliers, and the whiskers extend to display the maximum and minimum val-
ues. Smaller box sizes and lower RMSE values correspond to improved prediction
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87



4.3. Experimental Results Doctoral Thesis

Table 4.1: Percentage breakdown of improvement comparing 3DOF-P-Models and
6DOF-P-Models.

Personalized
Model Subject

RMSE Value
3DOF-P-Model

RMSE Value
6DOF-P-Model

Percentage
Improvement

S1 5.76◦ 4.98◦ 13.58%
S2 3.78◦ 3.09◦ 18.40%
S3 6.69◦ 5.60◦ 16.26%
S4 5.91◦ 4.65◦ 21.34%
S5 6.43◦ 5.01◦ 22.05%
S6 6.02◦ 3.32◦ 44.81%

*Overall Mean 5.67◦ 4.35◦ 23.24%

4.3.2 Generic Models: Off-Line Evaluation

When contemplating an amputee, the feasibility of utilizing a predictive model
trained with the user’s own individual motion data to control the transhumeral
prosthesis’s elbow joint becomes impractical. In response to this challenge, we de-
veloped generic CNN-LSTM models (see Section 4.2.4), specifically the G-Model
and G-Model-AVG. These models were devised by transforming reaching motion
data recorded from healthy subjects into a training dataset meticulously adapted to
train predictive models suitable for a diverse range of individuals.

We initially conducted an offline evaluation to assess the predictive performance
of the generic CNN-LSTM models across different subjects. This involved providing
the G-Model and G-Model-AVG with recorded arm reaching motion data from all
six healthy subjects and analyzing the results of the predicted reaching motions.
The results of the prediction performance analysis for one of the subjects using both
the generic models are presented in Figure 4.6, showcasing the 3DOF-Model (in
blue) and the 6DOF-Model (in orange).

It can be observed from Figures 4.6a and 4.6b that both the G-Model and
G-Model-AVG were able to predict the elbow joint angle during the reaching move-
ments towards all the target points in the virtual space. Additionally, as suggested
by the similar Pearson’s correlation coefficient “r ” and the overall RMSE values in
Figure 4.6, both the generic models exhibited comparable performance.

Notably, in comparison to the G-Model, the G-Model-AVG was trained using
a smaller subset of training data obtained by averaging the recorded motion data
from all subjects. It demonstrated comparable performance while utilizing fewer
resources and less training time. These results suggest that an averaged motion
dataset still retains the required synergistic information and is sufficient for training
a reliable predictive model.

Furthermore, we compared the fingertip position tracking of the right arm’s
middle finger recorded during the reaching tasks. This fingertip tracking data was
obtained by visualizing each subject’s original and predicted motion data in the
Unity 3D simulation virtual workspace (see Section 4.2.5).
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(b)

Figure 4.6: Performance Analysis for Offline Assessment of the Generic Models. (a)
G-Model. (b) G-Model-AVG. The top row depicts the elbow’s pronation-supination
angle Eθx, while the bottom row illustrates the elbow’s flexion-extension angle Eθy.
The line graph visually represents the variation in joint angles during reaching move-
ments toward each target point. Original joint angles are displayed in black, the
estimations from the 3DOF-Model are presented in blue, and the estimations from
the 6DOF-Model are depicted in orange. The adjacent bars represent the corre-
sponding Pearson’s correlation coefficient values for each comparison, with the over-
all (RMSE) value displayed in the bar graph in the last column.

Figure 4.7 presents the results of the fingertip tracking comparison during reach-
ing movements for all six healthy subjects using both generic models, highlighting
the 3DOF-Model (in blue) and the 6DOF-Model (in orange). The line graph por-
trays the variation in the right arm’s middle finger’s fingertip position throughout
the reaching movements toward each target point (depicted in green). The fingertip
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Figure 4.7: Fingertip Tracking Comparison for Offline Assessment of the Generic
Models. (a) G-Model. (b) G-Model-AVG. Each line plot represents the tracking
of fingertip position along the x-y plane toward individual target points (depicted
in green) for each subject. Fingertip tracking for the subject’s original motion is
presented in black, while that for the predicted motion by the 3DOF-G-Model-AVG
and 6DOF-G-Model-AVG is shown in blue and orange, respectively. The calculated
Pearson’s correlation coefficient “r ” is visualized as a bar graph adjacent to the plots.

tracking is depicted along the x-y axis for simplicity. Concurrently, the adjacent bars
provide insight into the calculated Pearson’s correlation coefficient “r ” values, offer-
ing a comparison between the fingertip position tracking for the subject’s original
(depicted in black) and predicted arm-reaching movements.
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The predicted motion data from both generic models demonstrated effective
reaching movements toward all the target points in the virtual workspace. The com-
puted r values (Figures 4.7a and 4.7b)) indicate a reasonably accurate performance
across all subjects and exhibit comparable trends for both generic models. These
findings suggest that both the G-Model and G-Model-AVG display slight variations
in prediction accuracy across multiple subjects and are robust to inter-individual
variability. Notably, the simulation’s humanoid actor relied exclusively on shoulder
and elbow joint angular data to simulate reaching movements without integrating
compensatory actions like trunk and shoulder displacements.

4.3.3 Generic Models: Validation on Amputee User

Lastly, we conducted real-time validation of the generic models on an amputee
participant with a right arm transhumeral amputation. The amputee user actively
interacted with the virtual workspace, controlling the movements of the humanoid
actor in real-time through the Perception Neuron Pro sensor and the Oculus Quest
VR headset, as illustrated in the experimental setup presented in Figure 4.8. The
VR platform (see section 4.2.1) was slightly modified to integrate the generic CNN-
LSTM predictive models into the Python intermediate module. This enabled real-
time prediction of the user’s elbow joint angles, allowing the execution of reaching
movement tasks within the virtual workspace.

Overall, with no prior experience in the task or familiarity with the apparatus,
our synergy-spaced methodology-based generic CNN-LSTM predictive models en-
abled the disabled participant to successfully execute reaching movements towards
all the target points in the virtual workspace. Figure 4.9 illustrates the real-time

Amputee User with Neuron 
Pro Motion Capture and 

Oculus Quest VR Headset

Motion Data 
Acquisition, Prediction 

& Transmission

Python CNN-LSTM 
Module

Unity 3D Virtual 
Workspace

Motion 

Data Flow

Motion 

Data Flow

Generic
CNN-LSTM

Figure 4.8: Modified Virtual Reality (VR) platform architecture for Validation on
Amputee User: The Neuron Pro system processes motion data and communicates
with the Python CNN-LSTM module. The module receives the user’s available joint
angular motion data, while the generic CNN-LSTM models simultaneously predict
the corresponding elbow joint angles. These predicted angles are then transmitted to
the Unity 3D simulation for real-time reaching movements toward the target points
in the virtual workspace.
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Virtual Workspace – Side View Virtual Workspace – Front ViewAmputee User Real-Time Interaction

(a)

(b)

(c)

(d)

(e)

Figure 4.9: Validation with Amputee User: A right-arm transhumeral amputee ac-
tively executing reaching movements towards target points (depicted as blue spheres)
within the virtual workspace in real-time. The target point disappears upon con-
tact with the humanoid actor’s finger. (a) Rest/Starting Pose. (b) Reaching Target
Point 2. (c) Reaching Target Point 4. (d) Reaching Target Point 5. (e) Reaching
Target Point 8.
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interaction of the amputee participant with the virtual workspace, engaging in and
executing reaching movements.

The amputee subject reported a smooth interaction with the virtual workspace,
and the movement of the humanoid actor’s arm appeared to mimic natural arm
movements during the execution of reaching tasks. We compared the fingertip posi-
tion tracking recorded during the reaching tasks to assess the similarity between the
amputee user’s reaching motion prediction and the natural arm movements recorded
from healthy subjects. In this analysis, we compared the fingertip tracking during
real-time motion prediction for the amputee user with the averaged motion dataset
created from the recorded data of all healthy participants.

Figure 4.10 illustrates the results of the fingertip tracking comparison for real-
time predictions of reaching movements for the amputee subject using both the
G-Model and G-Model-AVG generic CNN-LSTM models. The 3DOF-Model is rep-
resented in blue, while the 6DOF-Model is depicted in orange. The line graph
captures the variation in the fingertip position of the right arm’s middle finger dur-
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Figure 4.10: Fingertip Tracking Comparison for Real-Time Assessment of the
Generic Models. Each line plot represents the tracking of fingertip position along
the x-y plane toward individual target points (depicted in green) for the amputee
subject. Fingertip tracking for all healthy subjects averaged motion is presented in
black, while that for the predicted motion by the 3DOF and 6DOF generic models
is shown in blue and orange, respectively. The calculated Pearson’s correlation co-
efficient “r ” is visualized as a bar graph adjacent to the plots.
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ing reaching movements toward each target point (depicted in green). The fingertip
tracking is presented along the x-y axis for clarity. Simultaneously, the adjacent bars
provide insights into the calculated Pearson’s correlation coefficient “r ” values, com-
paring the fingertip position tracking for the averaged reaching motion data from
all healthy subjects (depicted in black) with the predicted arm-reaching movements
for the amputee user.

In each scenario, the amputee user successfully reached and touched all the
target points in the virtual workspace. The calculated r values indicated a significant
correlation with the averaged reaching motion data in all instances, except for the
6-DOF-G-Model. This discrepancy was attributed to the humanoid arm’s failure to
properly return to the rest pose at the conclusion of the reaching tasks.

4.4 Discussion

We presented a residual shoulder motion-based prediction of the elbow joint
angle during extensive arm-reaching movements for transhumeral prosthesis control.
Our experiments and validation were conducted on a VR-based platform, initially
employed for data acquisition from healthy human subjects and later utilized to
verify the efficacy of the trained CNN-LSTM predictive models. Our evaluation
results highlight the effectiveness of incorporating head orientation information with
shoulder joint angular data as training inputs, enhancing the performance of the
predictive models. Moreover, training the predictive model with an averaged motion
dataset demonstrated comparable performance across multiple subjects, offering
efficiency gains in computing resources and training time while retaining essential
synergistic characteristics of reaching movements. Lastly, real-time evaluation with
a transhumeral amputee user successfully executing reaching tasks toward all target
points in the virtual workspace validates the potential of our methodology and the
VR-based platform.

We evaluated the integration of head orientation data (Hθx, Hθy & Hθz) with
residual shoulder joint angular motion data (Sθx, Sθy & Sθz) by training personal-
ized predictive models for each healthy subject: the 3DOF-P-Model and the 6DOF-
P-Model, featuring distinct input data configurations. The predictive performance
of these P-Models was scrutinized by comparing and correlating the results with
the original motion data obtained from each subject. Employing metrics such as
Pearson’s correlation coefficient “r ” and RMSE values, we gauged the linearity and
average difference between the estimated and actual joint angular values.

Pearson’s correlation coefficient analysis revealed a strong similarity between
the predicted and original motion data for individual subjects. However, the con-
siderable difference in overall RMSE values across all subjects underscored the
superior performance of the 6DOF-P-Model. These findings highlight the nuanced
coordination between head orientation and arm motion during extensive reaching
movements, emphasizing the effectiveness of integrating head orientation data to
enhance the accuracy of predictive models.
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We used arm-reaching motion data from all healthy subjects to train the generic
predictive models: the G-Model and the G-Model-AVG. Subsequently, we assessed
their performance across all subjects. Notably, the G-Model-AVG was trained using
the averaged human motion data from all participants, resulting in a model that
required approximately three times fewer computational resources and training time.

Both generic models demonstrated accurate predictions of elbow joint motion
across all subjects, showcasing their robustness in accommodating inter-subject vari-
ability. Their performance was similar, supported by comparable Pearson’s correla-
tion coefficient values and minor differences in overall RMSE values. This result
suggests that the averaged motion data from multiple subjects retained essential syn-
ergistic patterns of reaching movements, facilitating the effective training of generic
predictive models while concurrently reducing computational and timing require-
ments.

In the conclusive phase, we validated the performance of the generic models on
an amputee participant. The subject, a right-arm transhumeral amputee, interacted
with and controlled a humanoid actor by strapping on a few sensors on his body. He
executed reaching movements toward specified target points in a virtual workspace
while the generic model concurrently predicted the motion of his amputated elbow in
real-time. We conducted a visual analysis of the predicted motion and a comparative
examination of fingertip tracking during the target-reaching movements to assess the
accuracy of the predictions.

The results demonstrated the amputee user’s adeptness in reaching and touching
all designated target points in the virtual workspace without prior experience in the
task or familiarity with the apparatus. Although variations were observed in the
fingertip tracking comparison, the overall performance of both models remained
similar, substantiated by comparable Pearson’s correlation coefficient values. These
findings underscore the potential efficacy of a synergy-based arm joint coordination
strategy for predicting elbow joint motion and endorse the viability of VR-based
platforms for developing and validating transhumeral prosthesis control.

This study explored real-time prediction of elbow joint motion during extensive
arm-reaching activities within a 3D virtual workspace for transhumeral prosthesis
control. Moving forward, our endeavor is to elevate the precision and scope of elbow
joint motion prediction for transhumeral prosthesis, encompassing a more extensive
range of dynamic arm movements and scenarios within the VR-based platform.
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4.5 Conclusions

This study introduces the potential of synergistic movement data-based predic-
tion of elbow joint motion and the effectiveness of a virtual reality-based platform
for evaluating strategies for transhumeral prosthesis control.

We presented a framework for real-time prediction and evaluation of elbow joint
motion during extensive arm-reaching activities. Our analysis confirmed that inte-
grating head orientation data with shoulder joint angular data enhances predictive
model performance. The personalized predictive models, trained with combined
head orientation data, exhibited an average improvement of approximately 23.24%
in prediction accuracy. Our results also emphasize the advantage of using averaged
motion data from all healthy participants, which can offer comparable performance
while significantly reducing overall computational and training time. Lastly, success-
ful validation on an amputee subject performing reaching movements towards target
points in a virtual workspace demonstrates the potential efficacy of our approach.

These findings carry significant implications for creating comprehensive virtual
workspaces with diverse arm movements covering various activities for validating
and advancing strategies in transhumeral prosthesis control.
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Chapter 5

Conclusion and Future Work

5.1 Summary

In this thesis, three distinct studies have been conducted, stemming from the
initial objective of developing and evaluating an intuitive strategy for controlling
the elbow joint of a transhumeral prosthesis during arm-reaching movements. These
studies are interrelated and revolve around the concept of motor synergies, with the
aim of generating prosthetic elbow joint motion that closely resembles natural human
movement. We utilized residual shoulder motion-based, non-invasive, intuitive, and
easy-to-acquire joint angular data signals as control input and training data for our
predictive models.

Our methodology delves into the synergistic inter-joint coordination of the hu-
man arm during reaching movements, specifically focusing on simultaneously con-
trolling two degrees of freedom (DOFs) of the elbow joint. Leveraging synergy al-
lowed us to develop more transferable predictive models capable of operating across
multiple subjects with minimal loss in performance. The inclusion of DRL algo-
rithms was pivotal in our exploration, where we investigated the emergence of syn-
ergy to generate synthetic arm-reaching motion data. This supplementation aimed
to diversify and enrich the training data, ultimately enhancing the performance of
the predictive models. Lastly, we ventured into the realm of Unity 3D simulation
to create a virtual reality-based real-time interactive workspace to validate the ef-
fectiveness of our methodology through real-time elbow joint motion prediction for
a transhumeral amputee user.

In Chapter 2, with the aim of enhancing the controllability of a transhumeral
prosthesis, we conducted a study focusing on the transferability of control across
users. We introduced synergy-space neural networks as a transferable model for pre-
dicting elbow joint motion based on residual shoulder motion during arm-reaching
movements in the horizontal plane. We employed LSTM RNN to implement the pro-
posed synergy-space approach. This approach extracts synergistic information from
the motion data, explicitly incorporating only the most significant synergies into the
learning process of the predictive model. This facilitated more precise and efficient
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training of the predictive model. To validate the proposed approach and its efficient
learning capability, we conducted a detailed cross-subject evaluation between the
performance of predictive models trained using the synergy-space methodology and
those employing the conventional direct estimation methodology.

For the transferability analysis, we utilized RMSE, and the statistically signifi-
cant ANOVA was followed up with the Tukey HSD. The results indicated that the
proposed synergy-space method exhibited approximately 40% less variation in the
RMSE compared to the direct estimation method, showcasing its capability to man-
age inter-individual variabilities. This observation suggests that the synergy-space
neural network can capture specific features common to arm movement tasks, given
that the predictive model is trained using the most significant synergy components.
Furthermore, due to the shared nature of these synergies among different subjects
performing similar tasks, the synergy-space neural network demonstrated improved
cross-subject transferability. This underscores the potential of the proposed synergy-
space approach to develop a transferable model for prosthesis control.

In Chapter 3, our focus was on addressing the challenge of obtaining a substan-
tial amount of training motion data to effectively train predictive models, as large
quantities of human motion data collected from different subjects for various activ-
ities of daily living are required for this purpose. To overcome this, we introduced
a DRL-based motion cloning framework that employed a 7-DOF robot arm model
in a mujoco simulation to generate synthetic motion data. The underlying idea was
to enable the simulated robot arm to learn and replicate arm-reaching movements,
harnessing the capabilities of DRL algorithms to produce natural and human-like
motion in simulated humanoid agents. By extracting motion data from the shoulder
and elbow joints of the simulated arm, we could effectively supplement and diver-
sify the training data, thereby enhancing the predictive model’s ability to generalize
across different subjects.

Our analysis verified that the synthetic motion data closely mirrored the char-
acteristics of human arm motion data. Pearson’s correlation coefficient analysis
revealed a robust similarity between the synthetic motion data and the real mo-
tion data collected from human subjects. These findings underscore the effective-
ness of DRL-based synthetic motion data in capturing the synergistic patterns of
arm-reaching movements, essentially serving as an additional subject within the
experiment. We delved into the impact of integrating real motion data with syn-
thetic motion data, specifically for reaching movements towards new target points,
as part of the training process to enhance the performance of predictive models.
The results indicate that the predictive model trained using the augmented motion
dataset exhibited improved performance compared to the model trained solely on
real motion data when predicting motion toward new targets. This emphasizes the
potential of synthetically generated motion data through DRL-based simulation to
faithfully replicate human-like synergistic arm movements and underscores its role
in augmenting motion data to enhance the performance and robustness of predictive
models.
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In Chapter 4, our focus shifted towards the real-time prediction of elbow joint
motion and the validation of our proposed synergy-space approach on a transhumeral
amputee user. Up to this point, our work had primarily involved healthy subjects,
and the assessment of predictive models had been conducted offline using recorded
motion datasets. Recognizing the challenges inherent in clinical trials for tran-
shumeral prostheses, we devised a virtual reality (VR)-based interactive framework
specifically tailored for real-time validation and evaluation of the predictive models.
Within this framework, amputee users can easily affix sensors to their bodies to
control a humanoid actor within a virtual workspace, requiring minimal prepara-
tion for testing the control strategy. The overarching concept involves establishing a
platform for initially acquiring motion data from healthy subjects. This data is then
utilized to train predictive models for transhumeral prosthesis elbow control, with
subsequent validation of their efficacy on amputee subjects executing arm-reaching
tasks in the virtual workspace.

We trained generic predictive models based on the synergy-space approach, us-
ing recorded motion data from healthy human subjects performing extensive arm-
reaching movements towards targets in a 3D virtual workspace. The performance of
the predictive models was initially assessed offline, utilizing motion data from the
healthy subjects. The results of the elbow joint motion prediction demonstrated
sufficient accuracy and robustness across all subjects, signifying the effectiveness
of the predictive model’s training. Subsequently, we validated the performance of
the trained predictive model on a participant with a right arm transhumeral am-
putation. Remarkably, despite the participant lacking prior experience in the task
and familiarity with the apparatus, our synergy-space methodology-based predictive
model facilitated the successful execution of reaching movements toward all target
points in the virtual workspace. These findings highlight the potential efficacy of
the synergy-space neural network strategy for predicting elbow joint motion and
endorse the viability of VR-based platforms for the development and validation of
transhumeral prosthesis control.

5.2 Contribution

The primary contributions of this thesis include:

• The introduction of the synergy-space neural network as a transferable model
for predicting elbow joint motion in transhumeral prosthesis control.

• The illustration of the transferability characteristics of the synergy-space neu-
ral network through a comprehensive cross-subject evaluation.

• The proposal of a DRL-based motion cloning framework for the generation of
synthetic motion data.

• The demonstration of motion data augmentation to enhance the performance
and robustness of predictive models.
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• The creation of a VR-based interactive workspace for real-time validation and
evaluation of predictive models.

• The demonstration of real-time elbow joint motion prediction for a tran-
shumeral amputee user during arm-reaching movements in the virtual workspace.

5.3 Future Work

There are several improvements and further investigations that can be done to
the studies carried out in this thesis.

Firstly, the focal point of all the studies has been the control of elbow joint mo-
tion during target-reaching tasks, a fundamental aspect of transhumeral prosthesis
control. However, there is potential for future work to diversify the spectrum of
tasks. Incorporating activities such as drinking from a glass or engaging in specific
exercises would present a significant challenge, demanding itricate control of multi-
ple joints in the transhumeral prosthesis. Training a generalized predictive model
for such diverse tasks would be a formidable yet valuable undertaking.

Another area for improvement involves refining the DRL-based motion cloning
framework to handle more intricate movements. While the current simulation em-
ploys a 7-DOF arm agent to replicate arm-reaching motions, accurately mimicking
complex movements may necessitate the use of a full-body agent. Additionally, ex-
ploring and designing effective reward functions for the DRL algorithm is crucial to
ensure optimal learning and convergence. Hence, further research is imperative to
exploit the potential of synthetic motion data generation fully.

In this thesis, our emphasis was on the concurrent control of two DOFs of the
elbow joint, specifically pronation-supination and flexion-extension. While regulat-
ing these two DOFs proves adequate for many daily tasks, an alternative avenue for
exploration involves expanding control to include manipulation of the DOFs of the
wrist joint. This extension would be essential for more intricate movement control,
such as playing a violin. The concept underlying this extended control is to empower
amputee users to either sustain or cultivate hobbies that can help foster self-esteem
and social inclusion.

Finally, the most crucial aspect is the validation of the control strategy. In our
thesis, we constructed a VR platform for the real-time validation of our approach
with an amputee subject. This platform can be enhanced further to encompass a
variety of arm movements and, in general, provide a more immersive experience for
users. However, real-world validation on transhumeral prostheses is indispensable. A
potential avenue for future work involves creating a modular transhumeral prosthesis
that users can easily wear without special preparations, facilitating the testing of
the control strategy.
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